

2020 Annual Groundwater Monitoring and Corrective Action Report

LCL1 - Utility Waste Landfill Cell 1, Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri

1901 Chouteau Avenue St. Louis, Missouri 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021 +1 314 984-8800 Project No. 153-140602 January 31, 2021

1.0 EXECUTIVE SUMMARY AND STATUS OF THE LCL1 GROUNDWATER MONITORING PROGRAM

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§§ 257.90(e)). Ameren Missouri (Ameren) has determined that the Utility Waste Landfill (UWL) at the Labadie Energy Center (LEC) is subject to the requirements of the CCR Rule. The UWL currently only operates LCL1 (Cell 1) which is an on-site landfill cell and manages Coal Combustion Residuals (CCR) from the facility. This Annual Report for the LCL1 describes CCR Rule groundwater monitoring activities from January 1, 2020 through December 31, 2020, including verification results related to late 2019 sampling.

Throughout 2020, the LCL1 CCR unit has been operating under the Detection Monitoring Program (§257.94) which began October 17, 2017. As a part of Detection Monitoring, statistical evaluations are completed after each sampling event to determine if there are any values that represent a Statistically Significant Increase (SSI) over background concentrations. In 2020, SSIs have been determined during one sampling event and a summary of the SSIs for the past year is provided in **Table 1**.

Table 1 – Summary of 2020 LCL1 Sampling Events, Previous Year Verification, and Statistical Evaluations

Event Name	Type of Event and Sampling Dates	Laboratory Analytical Data Receipt Date	Parameters Collected	Verified SSI	SSI Determination Date	ASD Completion Date
er 2019 g Event	Detection Monitoring, November 5-6, 2019	November 27, 2019	Appendix III, Major Cations and Anions	Boron: MW-26	February 25,	M
November 3	Verification Sampling, January 7-8, 2020	January 17 and February 13, 2020	Detected Appendix III Parameters (See Note 1)	Chloride: MW-26 TDS: MW-26	2020	May 22, 2020
2020 g Event	Detection Monitoring, April 14-21, 2020	May 22 & May 29, 2020 (See Note 2)	Appendix III, Major Cations and Anions	None	August 10,	Not Applicable
April 2020 Sampling Eve	Verification Sampling, May 27, 2020	June 3, 2020	Detected Appendix III Parameters (See Note 1)	None	2020	Not Applicable
November 2020 Sampling Event	Detection Monitoring, November 2-3, 2020	December 11, 2020	Appendix III, Major Cations and Anions		ed after statistical a	

Notes:

1) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

- 2) Golder accessed the preliminary data from the April 2020 Detection Monitoring event online on May 22, 2020 so that verification sampling could occur on schedule and concurrently with the subsequent Corrective Action sampling event for the LCPA. The official data from the laboratory was provided to Golder on May 29, 2020 and supported the preliminary data.
- SSI Statistically Significant Increase.
- 4) ASD Alternative Source Demonstration.
- 5) TDS Total Dissolved Solids.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An Alternative Source Demonstration (ASD) was prepared for the November 2019 sampling event and is discussed further in this Annual Report.

There were no changes made to the monitoring system in 2020 with no new wells being installed or decommissioned.

Table of Contents

1.0		UTIVE SUMMARY AND STATUS OF THE LCL1 GROUNDWATER MONITORING	ES-1
2.0	INSTA	ALLATION OR DECOMMISSIONING OF MONITORING WELLS	1
3.0	GRO	JNDWATER SAMPLING RESULTS AND DISCUSSION	1
	3.1	Detection Monitoring Program	1
	3.2	Groundwater Elevation, Flow Rate and Direction	2
	3.3	Sampling issues	2
4.0	ACTIV	/ITIES PLANNED FOR 2021	3

TABLES

Table 1 - Summary of 2020 LCL1 Sampling Events, Previous Year Verification, and Statistical Evaluations

Table 2 - Summary of Groundwater Sampling Dates

Table 3 - November 2019 Detection Monitoring Results

Table 4 - April 2020 Detection Monitoring Results

Table 5 - November 2020 Detection Monitoring Results

FIGURES

Figure 1 - Site Location Aerial Map and Monitoring Well Locations

APPENDICES

APPENDIX A

Laboratory Analytical Data

APPENDIX B

Alternative Source Demonstration - November 2019 Sampling Event

APPENDIX C

2020 Potentiometric Surface Maps

S GOLDER

2.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the LCL1. The groundwater monitoring system consists of six (6) groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1**. No new monitoring wells were installed or decommissioned in 2020 as a part of the CCR Rule monitoring program for the LCL1. For more information on the groundwater monitoring network, details are provided in the previous Annual Groundwater Monitoring Reports for the LCL1.

3.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections discuss the sampling events completed for the LCL1 CCR Unit in 2020. **Table 2** below provides a summary of the groundwater samples collected in 2020 including the number of samples, the date of sample collection, and the monitoring program.

Table 2 – Summary of Groundwater Sampling Dates

		Groun	dwater M	lonitoring	Wells		
Sampling Event	BMW-1S	BMW-2S	MW-26	TMW-1	TMW-2	TMW-3	Monitoring Program
		Dat	e of Samp	ole Collec	tion		
January 2020 Verification Sampling	-	-	1/8/2020	1/7/2020	-	-	Detection
April 2020 Detection Monitoring	4/14/2020	4/14/2020	4/20/2020	4/21/2020	4/21/2020	4/21/2020	Detection
May 2020 Verification Sampling	-	-	-	-	-	5/27/2020	Detection
November 2020 Detection Monitoring	11/2/2020	11/2/2020	11/2/2020	11/3/2020	11/3/2020	11/3/2020	Detection
Total Number of Samples Collected	2	2	3	3	2	3	NA

Notes:

- 1.) Detection Monitoring Events tested for Appendix III Parameters.
- 2.) Verification Sampling Events tested for Appendix III Parameters above the prediction limit for that analyte/well.
- 3.) "-" No sample collected.
- 4.) NA Not applicable

3.1 Detection Monitoring Program

A Detection Monitoring sampling event was completed November 5-6, 2019. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2019 event were not completed until 2020 and are, therefore, included in this report. Detections of Appendix III analytes triggered a verification sampling event, which was completed on January 7-8, 2020 and verified SSIs. **Table 3** summarizes the results of the statistical analysis of the November 2019 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD was completed for these SSIs and is provided in **Appendix B**. This ASD demonstrates that SSIs at the monitoring wells around LCL1 are not caused by the LCL1 CCR Unit and the LCL1 CCR Unit remains in Detection Monitoring.

Detection Monitoring samples were collected April 14-21, 2020, and testing was completed for all Appendix III analytes, as well as major cations and anions. Detections of Appendix III analytes triggered verification sampling, which was completed May 27, 2020 and the testing results did not verify any SSIs. **Table 4** summarizes the results of the statistical analysis of the April 2020 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

A Detection Monitoring sampling event was completed November 2-3, 2020, and testing was performed for all Appendix III analytes, as well as major cations and anions. Statistical analyses to evaluate for SSIs in the November 2020 data were not completed in 2020 and the results will be provided in the 2021 Annual Report. **Table 5** summarizes the results of the November 2020 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

3.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps provided in **Appendix C**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on potentiometric surface maps, a general flow direction from the south/southwest (bluffs area) to the north/northeast (Missouri River) is observed under normal river conditions. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

Groundwater flow direction and hydraulic gradient were estimated for the alluvial aquifer wells at the LEC using commercially available software. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow in the alluvial aquifer at the LEC is from the bluffs toward the river. Horizontal gradients calculated by the program range from 0.0001 to 0.0007 feet/foot with an estimated net annual groundwater movement of approximately 18 feet in the prevailing downgradient direction.

3.3 Sampling issues

The verification sampling for the April 2020 Detection Monitoring sampling event was scheduled to occur concurrently with the May 2020 sampling of the Corrective Action network for the nearby LCPA. The laboratory had not provided data to Golder before the event was scheduled to occur. Therefore, Golder accessed the preliminary laboratory data using the laboratory's online access tool on May 22, 2020. This allowed for verification sampling to occur as scheduled on May 27, 2020. The laboratory provided the official data to Golder

on May 29, 2020 and that data confirmed the initial exceedance previously identified for verification sampling using the preliminary data.

No additional notable sampling issues were encountered at the LCL1 in 2020.

4.0 ACTIVITIES PLANNED FOR 2021

Detection Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2020. Statistical analysis of the November 2020 Detection Monitoring data will be completed in 2021 and included in the 2021 Annual Report.

January 2021 153140602

Tables

Table 3 November 2019 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND			GROU	JNDWATER M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			N	lovember 201	9 Detection M	Ionitoring Eve	nt				
DATE	NA	11/5/2019	11/5/2019	NA	11/6/2019	NA	11/5/2019	NA	11/5/2019	NA	11/5/2019
рН	SU	6.83	7.08	6.02-7.44	7.30	6.623-7.19	6.94	6.42-7.17	6.95	5.83-7.07	6.74
BORON, TOTAL	μg/L	122	61.2 J	DQR	423	139.7	101	136.3	97.3 J	139.7	122
CALCIUM, TOTAL	μg/L	194,000	125,000	182,000	146,000	177,907	174,000 J	195,768	177,000	208,416	176,000
CHLORIDE, TOTAL	mg/L	4.8	3.3	5.922	22.5	4.246	4.4	7.116	4.9	8.166	5.5
FLUORIDE, TOTAL	mg/L	ND	0.12 J	0.2237	ND	0.2916	0.15 J	0.2707	0.13 J	DQR	0.089 J
SULFATE, TOTAL	mg/L	29.9	28.5	33.4	18.1	122.2	109	109.9	82.6	109.6	44.5
TOTAL DISSOLVED SOLIDS	mg/L	700	425	520.2	540	733.7	673	767.8	687	756.6	604
				January 2020	Verification S	ampling Event					
DATE	NA				1/8/2020		1/7/2020				
рН	SU										
BORON, TOTAL	μg/L				162						
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L				7.4		4.2				
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L				575						

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 7. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 8. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 9. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

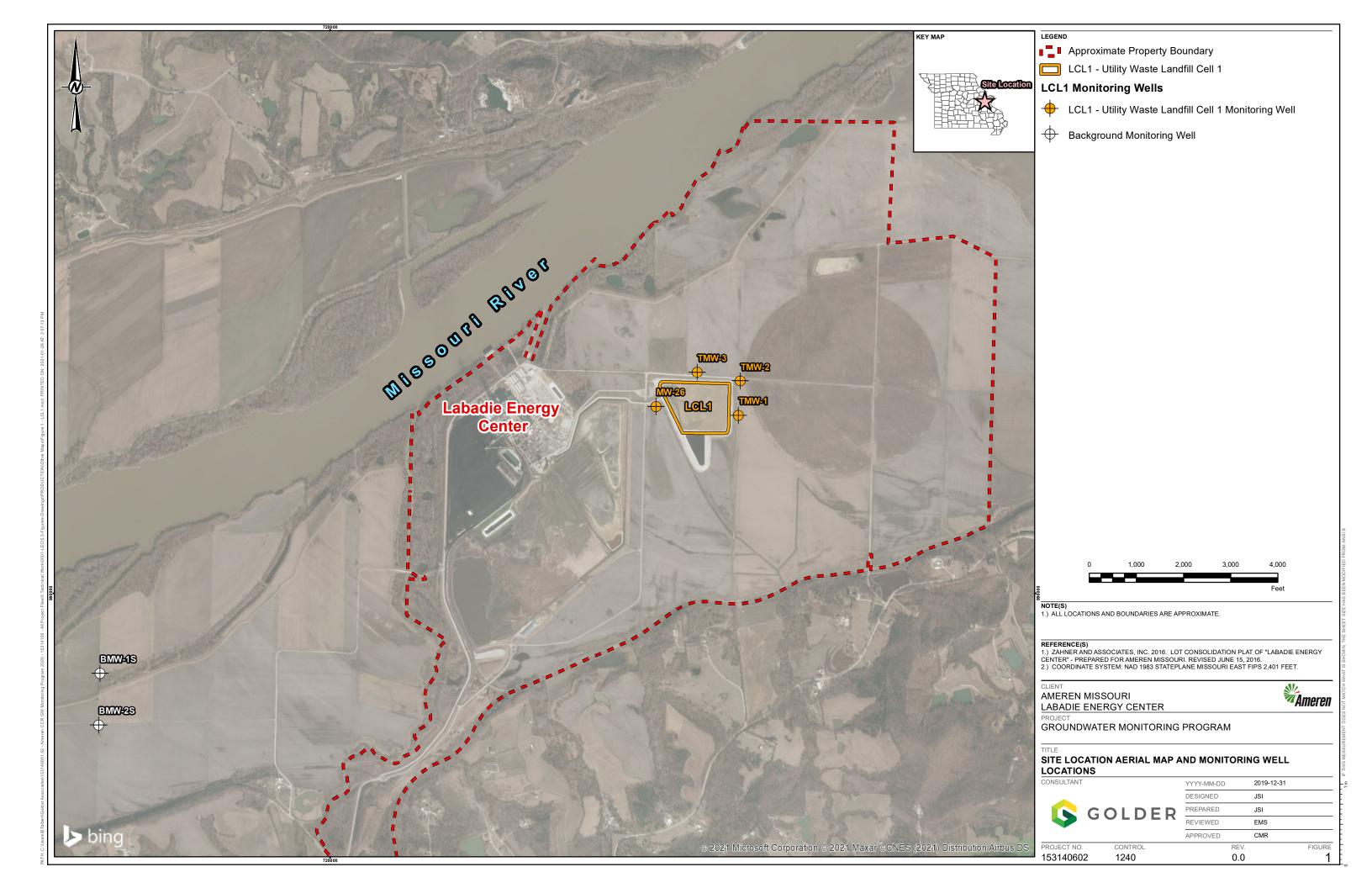
Table 4 April 2020 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND			GROU	JNDWATER M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
				April 2020 D	etection Mon	itoring Event					
DATE	NA	4/14/2020	4/14/2020	NA	4/20/2020	NA	4/21/2020	NA	4/21/2020	NA	4/21/2020
рН	SU	6.62	6.98	6.02-7.44	6.92	6.623-7.19	6.87	6.42-7.17	6.88	5.83-7.07	6.76
BORON, TOTAL	μg/L	95.2 J	51.0 J	DQR	ND	139.7	89.6 J	136.3	86.8 J	139.7	116
CALCIUM, TOTAL	μg/L	212,000	137,000	182,000	150,000	177,907	177,000	195,768	169,000 J	208,416	167,000
CHLORIDE, TOTAL	mg/L	3.7	4.0	5.922	4.2	4.246	3.8	7.116	3.8 J	8.166	4.3
FLUORIDE, TOTAL	mg/L	0.16 J	0.14 J	0.2237	0.14 J	0.2916	0.28	0.2707	0.27	DQR	0.30
SULFATE, TOTAL	mg/L	38.5	45.5	33.4	30.8	122.2	96.1	109.9	94.6	109.6	35.1
TOTAL DISSOLVED SOLIDS	mg/L	711	555	520.2	499	733.7	674	767.8	732	756.6	585
				May 2020 V	erification Sar	mpling Event					
DATE	NA										5/27/2020
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										
FLUORIDE, TOTAL	mg/L										ND
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L	_								_	

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Table 5 November 2020 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO


		BACKGR	OUND	GROU	JNDWATER M	IONITORING V	VELLS
ANALYTE	UNITS	BMW-1S	BMW-2S	MW-26	TMW-1	TMW-2	TMW-3
	N	lovember 202	0 Detection N	Ionitoring Eve	nt		
DATE	NA	11/2/2020	11/2/2020	11/2/2020	11/3/2020	11/3/2020	11/3/2020
рН	SU	6.87	7.23	7.00	6.95	6.89	6.84
BORON, TOTAL	μg/L	99.0 J	45.2 J	63.6 J	103	132	128
CALCIUM, TOTAL	μg/L	216,000	142,000	119,000	142,000 J	197,000	172,000
CHLORIDE, TOTAL	mg/L	6.4	3.4	5.9	1.8	8.2	5.3
FLUORIDE, TOTAL	mg/L	0.17 J	0.22	0.22	0.33	0.25	0.27
SULFATE, TOTAL	mg/L	66.5	73.4	29.8	30.9	116	56.1
TOTAL DISSOLVED SOLIDS	mg/L	780	524	420	579	801	651

NOTES:

- 1. Unit Abbreviations: $\mu g/L$ micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.

January 2021 153140602

Figures

January 2021 153140602

APPENDIX A

Laboratory Analytical Data

February 13, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between January 08, 2020 and January 10, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV-1, 2/13/20: Samples L-TMW-1 and L-LCL1-FB-1 added to report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Jami Church

Project Manager

Enclosures

cc: Ryan Feldmann, Golder Tommy Goodwin, Golder Associates Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water

Illinois Certification #: 004455 lowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60326300001	L-MW-26	Water	01/08/20 08:25	01/10/20 03:14	
60326300002	L-LCL1-DUP-1	Water	01/08/20 08:00	01/10/20 03:14	
60326111008	L-TMW-1	Water	01/07/20 12:25	01/08/20 03:30	
60326111009	L-LCL1-FB-1	Water	01/07/20 12:35	01/08/20 03:30	

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60326300001	L-MW-26	EPA 200.7	LRS	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	1	PASI-K
60326300002	L-LCL1-DUP-1	EPA 200.7	LRS	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	1	PASI-K
60326111008	L-TMW-1	EPA 200.7	LRS	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	1	PASI-K
60326111009	L-LCL1-FB-1	EPA 200.7	LRS	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	1	PASI-K

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Sample: L-MW-26	Lab ID:	60326300001	Collecte	d: 01/08/20	08:25	Received: 01	/10/20 03:14 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Boron	162	ug/L	100	11.7	1	01/13/20 09:51	01/14/20 16:00	7440-42-8	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	575	mg/L	10.0	10.0	1		01/15/20 10:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	7.4	mg/L	1.0	0.39	1		01/15/20 22:07	16887-00-6	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Sample: L-LCL1-DUP-1	Lab ID:	60326300002	Collecte	d: 01/08/20	08:00	Received: 01/	10/20 03:14 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP/	A 200.7			
Boron	167	ug/L	100	11.7	1	01/13/20 09:51	01/14/20 16:02	7440-42-8	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	556	mg/L	10.0	10.0	1		01/15/20 10:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	7.4	mg/L	1.0	0.39	1		01/15/20 22:54	16887-00-6	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Sample: L-TMW-1	Lab ID:	60326111008	Collected	d: 01/07/20	12:25	Received: 01	/08/20 03:30 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	95.2J	ug/L	100	11.7	1	01/13/20 09:51	01/14/20 15:36	7440-42-8	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	671	mg/L	10.0	10.0	1		01/14/20 09:14		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	4.2	mg/L	1.0	0.39	1		01/15/20 16:31	16887-00-6	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Sample: L-LCL1-FB-1	Lab ID:	60326111009	Collecte	d: 01/07/20	12:35	Received: 01	/08/20 03:30 M	latrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP/	A 200.7			
Boron	<11.7	ug/L	100	11.7	1	01/13/20 09:51	01/14/20 15:41	7440-42-8	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		01/14/20 09:14		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	<0.39	mg/L	1.0	0.39	1		01/15/20 16:47	16887-00-6	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Date: 02/13/2020 07:29 AM

QC Batch: 632714 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60326111008, 60326111009, 60326300001, 60326300002

METHOD BLANK: 2576847 Matrix: Water

Associated Lab Samples: 60326111008, 60326111009, 60326300001, 60326300002

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Boron ug/L <11.7 100 11.7 01/14/20 14:55

LABORATORY CONTROL SAMPLE: 2576848

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron ug/L 1000 975 97 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2576849 2576850

MS MSD 60326269001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 Boron ug/L ND 1000 1000 951 992 93 97 70-130

MATRIX SPIKE SAMPLE: 2576851

MS 60326111008 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 95.2J 70-130 Boron ug/L 1000 1060 97

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

QC Batch: 632924 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60326111008, 60326111009

METHOD BLANK: 2577333 Matrix: Water

Associated Lab Samples: 60326111008, 60326111009

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 01/14/20 09:13

LABORATORY CONTROL SAMPLE: 2577334

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 985 98 80-120

SAMPLE DUPLICATE: 2577335

60325852002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 888 2 10 **Total Dissolved Solids** 909 mg/L

SAMPLE DUPLICATE: 2577336

Date: 02/13/2020 07:29 AM

ParameterUnits60326252008 ResultDup ResultMax ResultMax RPDQualifiersTotal Dissolved Solidsmg/L9641000410

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

QC Batch: 633115 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60326300001, 60326300002

METHOD BLANK: 2578053 Matrix: Water

Associated Lab Samples: 60326300001, 60326300002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 01/15/20 10:02

LABORATORY CONTROL SAMPLE: 2578054

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2578055

60326266004 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1020 0 10 **Total Dissolved Solids** 1010 mg/L

SAMPLE DUPLICATE: 2578056

Date: 02/13/2020 07:29 AM

60326262001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 5060 **Total Dissolved Solids** mg/L 4600 10 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

QC Batch: 632763 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60326111008, 60326111009

METHOD BLANK: 2577002 Matrix: Water

Associated Lab Samples: 60326111008, 60326111009

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersChloridemg/L<0.39</td>1.00.3901/13/20 10:45

METHOD BLANK: 2577515 Matrix: Water

Associated Lab Samples: 60326111008, 60326111009

ParameterUnitsBlank ResultReporting LimitMDLAnalyzedQualifiersChloridemg/L<0.39</td>1.00.3901/14/20 09:36

METHOD BLANK: 2579424 Matrix: Water

Associated Lab Samples: 60326111008, 60326111009

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersChloridemg/L<0.39</td>1.00.3901/15/20 13:37

LABORATORY CONTROL SAMPLE: 2577003

Spike LCS LCS % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Chloride mg/L 5 4.7 95 90-110

LABORATORY CONTROL SAMPLE: 2577516

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers 5 97 Chloride 4.8 90-110 mg/L

LABORATORY CONTROL SAMPLE: 2579425

Date: 02/13/2020 07:29 AM

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Chloride mg/L 5 4.6 92 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Date: 02/13/2020 07:29 AM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2577004 2577005 MS MSD 60326237001 Spike Spike MS MSD MS MSD % Rec Max Qual Parameter Units Conc. Conc. Result Result % Rec % Rec RPD RPD Result Limits Chloride mg/L 689 250 250 994 979 122 80-120 15 M1

MATRIX SPIKE SAMPLE:	2577006						
		60326296001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	<77.5	1000	1050	98	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

QC Batch: 632967 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60326300001, 60326300002

METHOD BLANK: 2577539 Matrix: Water

Associated Lab Samples: 60326300001, 60326300002

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersChloridemg/L<0.39</td>1.00.3901/15/20 13:58

METHOD BLANK: 2579249 Matrix: Water

Associated Lab Samples: 60326300001, 60326300002

ParameterUnitsBlank ResultReporting LimitMDLAnalyzedQualifiersChloridemg/L<0.39</td>1.00.3901/16/20 14:00

LABORATORY CONTROL SAMPLE: 2577540

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 4.7 94 90-110

LABORATORY CONTROL SAMPLE: 2579250

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 4.9 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2577541 2577542

MS MSD 60326375001 Spike Spike MS MSD MS MSD % Rec Max Conc. % Rec RPD Parameter Units Result Conc. Result Result % Rec I imits **RPD** Qual Chloride mg/L 14.5 5 5 19.6 19.4 103 99 80-120 15

MATRIX SPIKE SAMPLE: 2577543

Date: 02/13/2020 07:29 AM

60326293001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chloride 3.3 8.5 103 80-120 mg/L 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 02/13/2020 07:29 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60326300

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60326111008	L-TMW-1	EPA 200.7	632714	EPA 200.7	632903
60326111009	L-LCL1-FB-1	EPA 200.7	632714	EPA 200.7	632903
60326300001	L-MW-26	EPA 200.7	632714	EPA 200.7	632903
60326300002	L-LCL1-DUP-1	EPA 200.7	632714	EPA 200.7	632903
60326111008	L-TMW-1	SM 2540C	632924		
60326111009	L-LCL1-FB-1	SM 2540C	632924		
60326300001	L-MW-26	SM 2540C	633115		
60326300002	L-LCL1-DUP-1	SM 2540C	633115		
60326111008	L-TMW-1	EPA 300.0	632763		
60326111009	L-LCL1-FB-1	EPA 300.0	632763		
60326300001	L-MW-26	EPA 300.0	632967		
60326300002	L-LCL1-DUP-1	EPA 300.0	632967		

Sample Condition Upon Receipt

Client Name: Golden			
Courier: FedEx UPS UPS VIA Clay F	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☑ Client ☐ Other ☐	
Tracking #: Pace	e Shipping Label Use	d? Yes □ No 🗸	
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	1	
Packing Material: Bubble Wrap □ Bubble Bags ▶	· ·	None ☐ Other □	
Thermometer Used: -299 Type of	Ice: Wet Blue No	ne	
Cooler Temperature (°C): As-read Corr. Factor		Date and initials of person	9
Temperature should be above freezing to 6°C			
Chain of Custody present:	Yes ONO ON/A		
Chain of Custody relinquished;	Yes No NA		
Samples arrived within holding time:	Yes No N/A		
Short Hold Time analyses (<72hr):	Yes No DN/A		
Rush Turn Around Time requested:	□Yes No □N/A		\neg
Sufficient volume:	Yes No N/A		
	1,		
Correct containers used:	/•		-
Pace containers used:	/ ☐Yes ☐No ☐N/A		\dashv
Containers intact:	//ZYes \(\text{No} \(\text{N/A} \)		-
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	['] □Yes □No □N/A		
Filtered volume received for dissolved tests?	□Yes □No □N/A		
Sample labels match COC: Date / time / ID / analyses	Yes No N/A		
Samples contain multiple phases? Matrix:	Yes No N/A		
Containers requiring pH preservation in compliance?	PYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the	
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	/	date/time added.	
Cyanide water sample checks:			
Lead acetate strip tums dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		_
Trip Blank present:	□Yes □No □N/A		
Headspace in VOA vials (>6mm):	□Yes □No □N/A		
Samples from USDA Regulated Area: State:	□Yes □No ZN/A		_
Additional labels attached to 5035A / TX1005 vials in the field?	Yes No N/A		
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N	
Person Contacted: Date/T	ime:		
Comments/ Resolution:			
		1/10/20	_
Project Manager Review Janui Church			
Project Manager Review:	Date	∍:	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Project Number: Project Nu
Sample Day Sample Day Ste Day

Sample Condition Upon Receipt

1			
Client Name: 1000			
Courier: FedEx □ UPS □ VIA □ Clay □ P	PEX 🗆 EC		Pace Xroads Client Other
Tracking #: Pace	e Shipping La		
Custody Seal on Cooler/Box Present: Yes ⊅ No □	Seals intac	t: Yes 🗷	No □
Packing Material: Bubble Wrap □ Bubble Bags □ Thermometer Used: Type of		oam □ llue No	None □ Other 22 P1C
Cooler Temperature (°C): As-read Corr. Factor	or 40.2	Correc	ted 0-2 Date and initials of person examining contents: VIS (18/202
Temperature should be above freezing to 6°C	-, -		113/1/
Chain of Custody present:	□/es □No	□n/a	
Chain of Custody relinquished:	ØYes □No	□n/a	
Samples arrived within holding time:	ØYes □No	□n/a	
Short Hold Time analyses (<72hr):	□Yes ⊅No	□n/a	
Rush Turn Around Time requested:	□Yes □No	□n/a	
Sufficient volume:	Øes □No	□n/a	
Correct containers used:	ØYes □No	□n/a	Did not recieve samples
Pace containers used:	□Yes □No	□n/a	L-UMW-5D L-LMW-4S,
Containers intact:	ØYes □No	□n/a	and L-LCDB-FB-1
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	f □Yes □No	□ N /A	
Filtered volume received for dissolved tests?	□Yes □No	ØN/A	
Sample labels match COC: Date / time / ID / analyses	Des Dio	□n/a	
Samples contain multiple phases? Matrix: W+	□Yes □No	□n/a	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	☐Yes □No	□N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	□Yes □No	Z ÎN/A	
Headspace in VOA vials (>6mm):	□Yes □No	ZN/A	
Samples from USDA Regulated Area: State:	□Yes □No	ZN/A	
 Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No	E N/A	
Client Notification/ Resolution: Copy COC to		/ N	Field Data Required? Y / N
Person Contacted: Date/Til	me:		
Comments/ Resolution: Per Eric Schneider, missing sample	es will be sub	mitted	at a later date.
			4.440.000
Project Manager Review: fana Chush		Date	=

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section Required	Section A Required Client Information:	Section B Required Project Information:	t Inform	ation:				Sect Invoic	Section C Invoice Information:	ation:									Page:	_	Į0	3
Company	Golder Associates	Report To: Jeffrey Ingram	rey Ing	gram				Attention:	ion:													
Address:	13515 Barrett Parkway Drive, Ste 260	Copy To:	n Feld	Ryan Feldmann/Eri	Eric Schneider	der		Comp	Сотрапу Nате:	ie:						REGUI	ATORY	REGULATORY AGENCY				
	Ballwin, MO 63021							Address:	is.							Ž	NPDES	GROU	GROUND WATER	1	DRINKIN	DRINKING WATER
Email To:	jeffrey_ingram@golder.com	Purchase Order No.	02					Pace Quote	huore:							UST	Ħ	RCRA			OTHER	
Phone: (636-724-9191 Fax: 636-724-9323	Project Name:	Ameren	len Gen				Pace Project Manager:	roject ar.	Jamie	Jamie Church	-				Site L	Site Location	}	Г		No.	Section 2
Requeste	Requested Due Date/TAT: Standard	Project Number:						Pace	Pace Profile #:	9285							STATE	Q M	Ť			
														Regu	sted	Analysi	Requested Analysis Filtered (Y/N)	(N/A) P				
	Section D Valid Matrix Codes Required Client Information MATRIX CO	oope Oope	(awc		COLLECTED	СТЕР				Presei	Preservatives		Z 1N/A	z	z	z			disag	223		Est.
	DRINKING WATER WASTE WASE WASE PRODUCT SOIL/SOLID OIL	DW VT WW VT VP VP VP VP VP VP VP VP VP VP VP VP VP	DS=O BARD=	COMPOSITE	SITE	COMPOSITE	OFFECTION						, †i						(N/X) €			
# MƏTI	SAMPLE ID (A-Z, 0-9), -) Sample IDs MUST BE UNIQUE	2000 AIGETTA	SAMPLE TYPE (G.	DATE	IME	DATE	E TEMP LE TEMP AT C	# ОЕ СОИТАІИЕН	Unpreserved A₂SO₄	HCI HNO³	HO _S N EO _S 2s _P N	Methanol Other	Analysis Test Foron Goron	muiolsO 7.002	əbiroldə əbiroul-	Sulfate TDS			Besidual Chlorine	9	LOO 32U 111	324 11 Samuel Sala I.D.
-	L-WM/A - 17	TW	g			6	Nork	-	1			F	1			-			F			
2	L-UMD-ED	TW	-				0450	-	1			F	_		F		F		F		-	
е	CI-IMM 1	TW	-			Vota 110K	٧	_		1		F		1								
4	L-11M12-80	WT	9			16/10/12/00	É	Ą	/	1				1		1						
S	L-UMW 9D	WT	g			1/0/20 14	Q.	7	1	1			1	1		1						
ø	1-AM-15	WT	O	Vilo	1	0	0000	_	1						-3							
7	LCAB-DUPT	WT	g			16/20		2	1	7				1		1						
	している一十五十	WT	Ø			Va/20 13	1300	12	1	1			1		*	1						
æ		WT										1					-		-			
5 2		TW	o 0										+		-							
5		TW					-	_				F										
	ADDITIONAL COMMENTS	RELI	INDAIS	RELINGUISHED BY / A	/ AFFILIATION	Z	DATE	Ľ	TIME		ACC	EPTED	BY/A	ACCEPTED BY / AFFILIATION	NO	-	DATE	TIME		SAMF	SAMPLE CONDITIONS	SNO
		(IN	3	(01		~	~	/	3		Just 1	3	Ψ	4	13	7	18/2010	0380	7.0	>	*	>-
					SAMPLE	SAMPLER NAME AND SIGNATURE	HGNATU	"											0,		pler	foat
					a.	PRINT Name of SAMPLER:	SAMPLER	,,,											, uj di	Devle	erody d Cod V/N)	(N/A)
					"	SIGNATURE of SAMPLER:	SAMPLER	 						DATE Signed	gned				теТ		uO elsei	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chair-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Golder Associates 13515 Barrett Parkway Drive, Ste 260 Ballwin, MO 63021 [effrey Ingram @ golder.com 36-724-9191	Section A Required Cl		Section B Required Project Information:		Section C Invoice Information:	nation:					194			Page:	N	Jo	N
The price of the control of the co	Company:	Golder Associates	Report To: Jeffrey Ingram		Attention:								10				
The content of the	Address:	_	Ryan Feldmann/		Company Na	me:					REGUL	ATORY	AGENCY	1			
The post of the part		Ballwin, MO 63021			Address:						ΡĀ	DES	GROUI	ND WATE	/HI	DRINKING	WATER
Table Tabl	mail To:		Purchase Order No.:		Pace Quote						Sn	F	HCHA			OTHER	
The property of the property	hone: 63	Fax 636-724-9323			Pace Project Manager:	Jamie Church					Site Lo	cation		Γ			100
SAMPLE ID Secrete Controller Code Wild Mark Formation SAMPLE ID Secrete Code Controller Code Sample Code Controller Code Will formation to an interest of which formation in the controller Code Will code Code Code Code Code Code Code Code C	equested	Standard	Project Number:		Pace Profile #:						S	TATE	N N				
SAMPLE ID Wild feather Codes Will feather Cod									Reque	sted ,	Analysis	Filtere	(N/N) P		100	0.00	N. Perille
SAMPLE ID	Se Bec	Valid Matrix C	odes cope to left)	٥		Preservatives		_	z		-						
AZACE-15 DATE CALIFORNIA COMBETTS CALIFORNIA		DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL	WWW WY COMPOSITE SILE START ST		SI			† 1						(N/A) e			
WT G WT G WT A			MATRIX CODE AMPLETYPE (G	Ε	Unpreserved	N ^g S ^S O³ HCI HOO³	Olher		muiolsO 7.00g		ətsiluð			nninoldO IsubiseA		1037	Z ()
WIT G	-	L-LMJ-4	0	1130			T					F		F			
WT G	2	1-1438-FB-1	9	F	2/3		F				1	F		F			
WIT G WIT	3		_														
WY C	4		-					Ш									
WT G	LO.		-		,14												
WT G	9																
WT G	7							_									
WT G			_														
WT G WT G WT ADDITIONAL COMMENTS ADDITIONAL ACCEPTED BY AFFILIATION DATE TIME SCAMPLE CONDITIONS ADDITIONAL ACCEPTED BY AFFILIATION BRINT Name of SAMPLER Cusiody Cus	6		_														
WT G	10		_							\Box							
ADDITIONAL COMMENTS A RELINQUÍGHED BY AFFILIATION ADDITIONAL COMMENTS A CCEPTED BY AFFILIATION DATE THAE ACCEPTED BY AFFILIATION DATE THAE ACCEPTED BY AFFILIATION DATE CLUSIONAL CLUSIONA	=		_					_		4		4		\exists			
A RELINQUIGHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE FINIT Name of SAMPLER: (MMDD/YY): ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS CUSION OF CONDITIONS CUSION OF CONDITIONS (MMDD/YY): (MMDD/YY): CONDITIONS CONDI	12		WT G					-									
DATE Signed (MMDDXY):		ADDITIONAL COMMENTS	RELINGUISHED BY / AFFILIATION	DATE	TIME	ACCE	PTED	BY / AF	FILIAT	NO	_	ATE	TIME		SAMP	LE CONDITION	SNC
DATE Signed Temp in °C Custody Sealed Cooler (W/V):			CAMERA MAN	[-]	174	With	Q	0		au		1200	2330	7.0	7	7	7
DATE Signed Temp In °C Temp Cooler Custody Sealed Cooler (MMDD/YY):										>					-	-	_
DATE Signed Temp in °C Custody Sealed Cooler (MMDDYY):																	
DATE Signed (MMDDAYY): Cualor Sealed C(Y/N)			SAMPLER NAM	IE AND SIGNATUR										၁.	no t	19/00	niaci
DATE Signed (MM/DD/YY):			PRINT	Vame of SAMPLER:										ui du	oevie NY) ∈	og pe	(N/A)
			SIGNAT	TURE of SAMPLER:				<u>.</u> 5	MM/DD/	gned YY):				ιθΤ	96円 기	Seal	БатІ

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section C Invoice Information:

Company Name:

Copy To: Ryan Feldmann/Eric Schneider

13515 Barrett Parkway Drive, Ste 260

Golder Associates

Section A Required Client Information:

Section B
Required Project Information:
Report To: Jeffrey Ingram

Address:

DRINKING WATER OTHER

NPDES GROUND WATER

Ballwin, MO 63021

REGULATORY AGENCY

ŏ

Page:

																					NPDES		GHO	GHOLIND WATER	ATER		DRINKING WATER		
Email To:	o: jeffrey ingram@golder.com		Purchase Order No.:	der N						n Œ	Pace Quote Reference:										UST		HCRA	4		OTHER	E.		
Phone	Phone 636-724-9191 Fa	6-724-9323	Project Name:		Ameren	Ę.				a S	Pace Project Manager:		amie	Jamie Church	ج					-ig	Site Location	Į,	'				The same of the sa		
Reques	Requested Due Date/TAT: St	Standard	Project Number	per:						n.	Pace Profile #:	l	9285								STATE	Ë	Σ	OW				1	
																-		Redne	ested	Analy	sis F	Itered	Requested Analysis Filtered (Y/N)		ALC: N	10			
	Section D Required Client Information	Valid Matrix Codes	_	(Hel of a	(9MO		COLL	COLLECTED			Ы	P	uasa.	Preservatives	6	¶N/A	2	z	z	z	z							l)	
	SAMPLEID	DHAMAS WALE WW WW WASTE WASTE P PRODUCT S. SOLSOLID OL. OL. OL. OL. W. W. W. W. W. P. C.		(see valid code	0=0BAB C=0	START	SITE	COMPOSITE	SSITE		SH					Its	A 10							(((///) 00			1		
# MƏTI	(A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE			MATRIX CODE	SAMPLETYPE (DATE	TIME	DATE	TIME	TA 9M9T 3J9MA8	# OF CONTAINE	H ^S SO ⁴	HCI	HO _B N HO _S S _‡ 6N	Methanol	Other Tellysis Te	200.7 Boron	200.7 Calcium	Chloride Fluoride	Sulfate	LDS			Posidual Chlori	Residual Chlori	3037	Pace Project No/ Lab I.D.		24
-	MULT-7	1	Α	WT	ŋ			4441	1225		12			H														Γ	
2	1-1771	17-1	Α	WT	g			V1/10	95.1		17	1								_									
6			^	TW	g			20.00																					
4			^	TM	g					_									_										
ĸ			>	ΤW	g														-			ä							
9			>	⊢M	g																								
7			>	⊢M	g																	=							
8			>	ΜT	O														_										
6			>		Ø																_								
10			>	×	Ø														_										
Ξ			2	LM.	g																				_				
12			2	ΙM	IJ											-			Н										
	ADDITIONAL COMMENTS	OMMENTS	A C	ELIN	HSIND	ED BY / A	RELINQUISHED BY / AFFILIATION	NO	DATE		TIME			AC	ACCEPTED BY / AFFILIATION	ED BY	// AFF	ППАП	NO		DATE		TIME		SA	SAMPLE CONDITIONS	DITTONS		
			B	3	260	2 //	7		-/		F.	6	3	B	3	ZV	ΓΥ	7	pure		2/8/	980	0550 202/8/	0.2	7	7	>		
												+								\forall		\forall	Н						
												=										-							
							SAMPLE	H NAME A	SAMPLER NAME AND SIGNATURE	TURE					-									o.	ou Ou	_			
							(MA)	PRINT Nam	PRINT Name of SAMPLER:	ER						l								uj di	bevie ∜Y) (· · · ·	
								SIGNATUR	SIGNATURE of SAMPLER:	EE							ి క	DATE Signed (MM/DD/YY):	gred					пөТ	eoeA eol	JO else2)	Звтр		
						46											1												

MEMORANDUM

DATE February 13, 2020 **Project No.** 153140601

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60326300REV1

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

None.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates	Project Manager: J Ingram							
	Name: Ameren - Labadie - LCL1		Proje	ect Numbe	r: 153140601				
Review	er: T Goodwin	_	Valid	dation Date	2: 2/13/2020				
Laborat	ory: Pace Analytical - KS		SDG	; #: 603263	00rev1				
Analytic	cal Method (type and no.): EPA 2007. (Metals), SM 254	 0C (TDS							
Matrix:	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste								
Sample	Names L-MW-26, L-LCL1-DUP-1, L-TMW-1, L-LCL1-FB-	1							
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).				
Field In	formation	YES	NO	NA	COMMENTS				
a)	Sampling dates noted?	X			1/7-8/2020				
b)	Sampling team indicated?	х							
c)	Sample location noted?	х							
d)	Sample depth indicated (Soils)?			X					
e)	Sample type indicated (grab)composite)?	X							
f)	Field QC noted?	х							
g)	Field parameters collected (note types)?	х			pH, Sp.Cond, ORP, Temp, DO, Turb				
h)	Field Calibration within control limits?	×	\Box	\Box					
i)	Notations of unacceptable field conditions/performa		om field l	oas or field	I notes?				
.,	recauses of anacospasso nota containers, porterna		×						
i۱	Does the laboratory narrative indicate deficiencies?			X					
j)	Note Deficiencies:		_						
	Note Belieferides.								
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS				
a)	Was the COC properly completed?		Х	П	See Notes				
b)	Was the COC signed by both field	ш							
D)	and laboratory personnel?		Х		Second CoC not signed by field staff				
c)	Were samples received in good condition?	Х							
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS				
a)	Were hold times met for sample pretreatment?	X							
b)	Were hold times met for sample analysis?	Х							
c)	Were the correct preservatives used?	х							
d)	Was the correct method used?	Х							
e)	Were appropriate reporting limits achieved?	Х							
f)	Were any sample dilutions noted?		х						
a)	Were any matrix problems noted?	П	×						

Revised May 2004 Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		х		
b)	Were analytes detected in the field blank(s)?		х		
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	Х			
c)	Was the LCS accuracy criteria met?	Х			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	ıplicate	sample n	names)?	See Notes
,					
b)	Were field dup. precision criteria met (note RPD)?	х			See Notes
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?	?	
,			×		Unrelated Sample
d)	Were lab dup. precision criteria met (note RPD)?			х	
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		х		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			Х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	Х			
	Recovery could not be calculated since sample contained high concentration of analyte?	П	х	П	
b)	Was MSD accuracy criteria met?	П		X	Unrelated Sample
,	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?			х	Unrelated Sample
Comm	ents/Notes:				
DUP-	1 @ L-MW-26; L-LCL1-FB-1 @ L-TMW-1				
	Samples on page 1 and 2 of the second CoC are	not ass	sociated v	with this	data package.
	Field Duplicate RPD: 3% (20% Limit)				
	,				

Revised May 2004 Page 2 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

None	Sample Name	Constituent(s)	Result	Qualifier	Reason
	None				
			`		

Signature:	Tomy of Soul- h	_{Date:} 2/13/2020
•	9-1/	

Revised May 2004 Page 3 of 3

May 29, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between April 15, 2020 and April 22, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com

314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 200030

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET

Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60334358003	L-TMW-1	Water	04/21/20 08:38	04/22/20 02:38
60334358004	L-TMW-2	Water	04/21/20 09:43	04/22/20 02:38
60334358005	L-TMW-3	Water	04/21/20 10:32	04/22/20 02:38
60334358006	L-UWL-DUP-1	Water	04/21/20 08:00	04/22/20 02:38
60334358007	L-UWL-FB-1	Water	04/21/20 08:00	04/22/20 02:38
60334356003	L-BMW-1S	Water	04/14/20 11:24	04/15/20 02:25
60334356004	L-BMW-2S	Water	04/14/20 11:39	04/15/20 02:25
60334356030	L-MW-26	Water	04/21/20 14:05	04/22/20 02:38

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60334358003	L-TMW-1	EPA 200.7	HKC	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60334358004	L-TMW-2	EPA 200.7	HKC	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0334358005	L-TMW-3	EPA 200.7	HKC	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0334358006	L-UWL-DUP-1	EPA 200.7	HKC	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0334358007	L-UWL-FB-1	EPA 200.7	HKC	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0334356003	L-BMW-1S	EPA 200.7	HKC	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR, LDB	3	PASI-K
0334356004	L-BMW-2S	EPA 200.7	HKC	7	PASI-K
		SM 2320B	MJK	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR, LDB	3	PASI-K
0334356030	L-MW-26	EPA 200.7	JLH	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-TMW-1	Lab ID:	60334358003	Collected	d: 04/21/20	08:38	Received: 04/	/22/20 02:38 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	89.6J	ug/L	100	11.7	1	04/28/20 14:10	04/29/20 16:28	7440-42-8	
Calcium	177000	ug/L	200	32.4	1	04/28/20 14:10	04/29/20 16:28	7440-70-2	
Iron	213	ug/L	50.0	26.8	1	04/28/20 14:10	04/29/20 16:28	7439-89-6	
Magnesium	46100	ug/L	50.0	19.7	1	04/28/20 14:10	04/29/20 16:28	7439-95-4	
Manganese	5600	ug/L	5.0	0.97	1	04/28/20 14:10	04/29/20 16:28	7439-96-5	
Potassium	5310	ug/L	500	189	1	04/28/20 14:10	04/29/20 16:28	7440-09-7	
Sodium	13200	ug/L	500	107	1	04/28/20 14:10	04/29/20 16:28	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	527	mg/L	20.0	8.4	1		04/28/20 12:41		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	674	mg/L	10.0	10.0	1		04/27/20 15:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	3.8	mg/L	1.0	0.39	1		04/30/20 20:01	16887-00-6	В
Fluoride	0.28	mg/L	0.20	0.075	1		04/30/20 20:01	16984-48-8	
Sulfate	96.1	mg/L	5.0	1.4	5		04/30/20 20:17	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-TMW-2	Lab ID:	60334358004	Collected	d: 04/21/20	09:43	Received: 04/	/22/20 02:38 Ma	atrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	•	Method: EPA 2 ytical Services	•		od: EP/	A 200.7					
Boron Calcium Iron Magnesium Manganese Potassium Sodium	86.8J 169000 206 44300 5360 5100	ug/L ug/L ug/L ug/L ug/L ug/L	100 200 50.0 50.0 5.0 500	11.7 32.4 26.8 19.7 0.97 189	1 1 1 1 1	04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10	04/29/20 16:30 04/29/20 16:30 04/29/20 16:30	7440-70-2 7439-89-6 7439-95-4 7439-96-5 7440-09-7	M1		
2320B Alkalinity	Analytical Pace Anal	12600 ug/L 500 107 1 04/28/20 14:10 04/29/20 16:30 7440-23-5 Analytical Method: SM 2320B Pace Analytical Services - Kansas City									
Alkalinity, Total as CaCO3 2540C Total Dissolved Solids	,	mg/L Method: SM 25 ytical Services		8.4 ty	1		04/28/20 12:48				
Total Dissolved Solids 300.0 IC Anions 28 Days	,	732 mg/L 10.0 10.0 1 04/27/20 15:31 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City									
Chloride Fluoride Sulfate	3.8 0.27 94.6	mg/L mg/L mg/L	1.0 0.20 5.0	0.39 0.075 1.4	1 1 5		04/30/20 20:34 04/30/20 20:34 04/30/20 21:57	16984-48-8	В		

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-TMW-3	Lab ID:	60334358005	Collected	d: 04/21/20	10:32	Received: 04/	/22/20 02:38 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	116	ug/L	100	11.7	1	04/28/20 14:10	04/29/20 16:36	7440-42-8	
Calcium	167000	ug/L	200	32.4	1	04/28/20 14:10	04/29/20 16:36	7440-70-2	
Iron	742	ug/L	50.0	26.8	1	04/28/20 14:10	04/29/20 16:36	7439-89-6	
Magnesium	33100	ug/L	50.0	19.7	1	04/28/20 14:10	04/29/20 16:36	7439-95-4	
Manganese	244	ug/L	5.0	0.97	1	04/28/20 14:10	04/29/20 16:36	7439-96-5	
Potassium	6920	ug/L	500	189	1	04/28/20 14:10	04/29/20 16:36	7440-09-7	
Sodium	13500	ug/L	500	107	1	04/28/20 14:10	04/29/20 16:36	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
•	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	525	mg/L	20.0	8.4	1		04/28/20 13:11		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Ci	ity					
Total Dissolved Solids	585	mg/L	10.0	10.0	1		04/27/20 15:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	4.3	mg/L	1.0	0.39	1		04/30/20 22:46	16887-00-6	В
Fluoride	0.30	mg/L	0.20	0.075	1		04/30/20 22:46	16984-48-8	
Sulfate	35.1	mg/L	5.0	1.4	5		04/30/20 23:03	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-UWL-DUP-1	Lab ID:	60334358006	Collected	: 04/21/20	00:80	Received: 04/	22/20 02:38 Ma	atrix: Water		
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	•	Method: EPA 2 ytical Services	•		od: EPA	A 200.7				
Boron Calcium Iron Magnesium Manganese Potassium Sodium	107 194000 482 46900 2600 6560 17900	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	100 200 50.0 50.0 5.0 500	11.7 32.4 26.8 19.7 0.97 189	1 1 1 1 1	04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10 04/28/20 14:10		7440-70-2 7439-89-6 7439-95-4 7439-96-5 7440-09-7		
2320B Alkalinity	Pace Anal	Analytical Method: SM 2320B Pace Analytical Services - Kansas City								
Alkalinity, Total as CaCO3 2540C Total Dissolved Solids	•	mg/L Method: SM 25 ytical Services		8.4 ty	1		04/28/20 13:17			
Total Dissolved Solids 300.0 IC Anions 28 Days	,	719 mg/L 10.0 10.0 1 04/27/20 15:31 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City								
Chloride Fluoride Sulfate	5.7 0.23 94.2	mg/L mg/L mg/L	1.0 0.20 5.0	0.39 0.075 1.4	1 1 5		04/30/20 23:19 04/30/20 23:19 04/30/20 23:36	16984-48-8		

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-UWL-FB-1	Lab ID:	60334358007	Collected	d: 04/21/20	08:00	Received: 04/	22/20 02:38 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	<11.7	ug/L	100	11.7	1	04/28/20 14:10	04/29/20 16:41	7440-42-8	
Calcium	<32.4	ug/L	200	32.4	1	04/28/20 14:10	04/29/20 16:41	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	04/28/20 14:10	04/29/20 16:41	7439-89-6	
Magnesium	<19.7	ug/L	50.0	19.7	1	04/28/20 14:10	04/29/20 16:41	7439-95-4	
Manganese	<0.97	ug/L	5.0	0.97	1	04/28/20 14:10	04/29/20 16:41	7439-96-5	
Potassium	<189	ug/L	500	189	1	04/28/20 14:10	04/29/20 16:41	7440-09-7	
Sodium	<107	ug/L	500	107	1	04/28/20 14:10	04/29/20 16:41	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	<8.4	mg/L	20.0	8.4	1		04/28/20 13:21		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	18.0	mg/L	5.0	5.0	1		04/27/20 15:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	<0.39	mg/L	1.0	0.39	1		04/30/20 23:53	16887-00-6	
Fluoride	<0.075	mg/L	0.20	0.075	1		04/30/20 23:53	16984-48-8	
Sulfate	<0.28	mg/L	1.0	0.28	1		04/30/20 23:53	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-BMW-1S	Lab ID:	60334356003	Collected	d: 04/14/20	11:24	Received: 04/	15/20 02:25 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	95.2J	ug/L	100	11.7	1	04/23/20 16:10	04/24/20 18:04	7440-42-8	
Calcium	212000	ug/L	200	32.4	1	04/23/20 16:10	04/24/20 18:04	7440-70-2	
Iron	27900	ug/L	50.0	26.8	1	04/23/20 16:10	04/24/20 18:04	7439-89-6	
Magnesium	47100	ug/L	50.0	19.7	1	04/23/20 16:10	04/24/20 18:04	7439-95-4	
Manganese	2730	ug/L	5.0	0.97	1	04/23/20 16:10	04/24/20 18:04	7439-96-5	
Potassium	5180	ug/L	500	189	1	04/23/20 16:10	04/24/20 18:04	7440-09-7	
Sodium	15000	ug/L	500	107	1	04/23/20 16:10	04/24/20 18:04	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	674	mg/L	20.0	8.4	1		04/23/20 13:07		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	711	mg/L	10.0	10.0	1		04/20/20 11:44		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
- -	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	3.7	mg/L	1.0	0.39	1		04/21/20 23:39	16887-00-6	В
Fluoride	0.16J	mg/L	0.20	0.075	1		04/21/20 23:39	16984-48-8	
Sulfate	38.5	mg/L	5.0	1.4	5		04/20/20 18:04	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-BMW-2S	Lab ID:	60334356004	Collected	l: 04/14/20	11:39	Received: 04/	/15/20 02:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•	Method: EPA 2			od: EP/	A 200.7			
Davis		•		,		0.4/0.0/0.0.4.0.4.0	0.4/0.4/0.0.40.00	7440 40 0	
Boron	51.0J	ug/L	100	11.7	1	04/23/20 16:10	04/24/20 18:06		
Calcium	137000	ug/L	200	32.4	1	04/23/20 16:10	04/24/20 18:06		
Iron	<26.8	ug/L	50.0	26.8	1	04/23/20 16:10			
Magnesium	20400	ug/L	50.0	19.7	1	04/23/20 16:10			
Manganese	<0.97	ug/L	5.0	0.97	1	04/23/20 16:10			
Potassium	6800	ug/L	500	189	1	04/23/20 16:10			
Sodium	7920	ug/L	500	107	1	04/23/20 16:10	04/24/20 18:06	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
•	Pace Anal	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	301	mg/L	20.0	8.4	1		04/22/20 17:45		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	•	ytical Services		ty					
Total Dissolved Solids	555	mg/L	10.0	10.0	1		04/20/20 11:45		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	 Kansas Ci 	ty					
Chloride	4.0	mg/L	1.0	0.39	1		04/21/20 23:55	16887-00-6	В
Fluoride	0.14J	mg/L	0.20	0.075	1		04/21/20 23:55		_
Sulfate	45.5	mg/L	5.0	1.4	5		04/20/20 18:20		
Sullate	45.5	mg/L	5.0	1.4	Э		04/20/20 18:20	14000-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Sample: L-MW-26	Lab ID:	60334356030	Collected	d: 04/21/20	14:05	Received: 04/	22/20 02:38 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Analy	ytical Services	- Kansas C	ity					
Boron	93.0J	ug/L	100	11.7	1	04/29/20 13:20	04/30/20 17:28	7440-42-8	В
Calcium	150000	ug/L	200	32.4	1	04/29/20 13:20	04/30/20 17:28	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	04/29/20 13:20	04/30/20 17:28	7439-89-6	
Magnesium	29800	ug/L	50.0	19.7	1	04/29/20 13:20	04/30/20 17:28	7439-95-4	
Manganese	1000	ug/L	5.0	0.97	1	04/29/20 13:20	04/30/20 17:28	7439-96-5	
Potassium	4010	ug/L	500	189	1	04/29/20 13:20	04/30/20 17:28	7440-09-7	
Sodium	9540	ug/L	500	107	1	04/29/20 13:20	04/30/20 17:28	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	425	mg/L	20.0	8.4	1		04/28/20 12:34		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas C	ity					
Total Dissolved Solids	499	mg/L	10.0	10.0	1		04/27/20 15:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas C	ity					
Chloride	4.2	mg/L	1.0	0.39	1		05/08/20 22:45	16887-00-6	В
Fluoride	0.14J	mg/L	0.20	0.075	1		05/08/20 22:45	16984-48-8	
Sulfate	30.8	mg/L	2.0	0.56	2		05/11/20 15:54	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 650987 Analysis Method:

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

EPA 200.7

Associated Lab Samples: 60334356003, 60334356004

METHOD BLANK: 2641577 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<11.7	100	11.7	04/24/20 17:56	
Calcium	ug/L	<32.4	200	32.4	04/24/20 17:56	
Iron	ug/L	<26.8	50.0	26.8	04/24/20 17:56	
Magnesium	ug/L	<19.7	50.0	19.7	04/24/20 17:56	
Manganese	ug/L	< 0.97	5.0	0.97	04/24/20 17:56	
Potassium	ug/L	<189	500	189	04/24/20 17:56	
Sodium	ug/L	<107	500	107	04/24/20 17:56	

LABORATORY CON	ITROL	SAMPLE:	2641578
----------------	-------	---------	---------

Date: 05/29/2020 09:00 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	1020	102	85-115	
Calcium	ug/L	10000	10500	105	85-115	
Iron	ug/L	10000	10200	102	85-115	
Magnesium	ug/L	10000	11000	110	85-115	
Manganese	ug/L	1000	1050	105	85-115	
Potassium	ug/L	10000	9870	99	85-115	
Sodium	ug/L	10000	10000	100	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 2641	579		2641580							
			MS	MSD								
	6	0334356007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	11000	1000	1000	11600	11800	60	72	70-130	1	20	M1
Calcium	ug/L	82900	10000	10000	91700	93200	88	103	70-130	2	20	
Iron	ug/L	4720	10000	10000	14600	14700	99	100	70-130	0	20	
Magnesium	ug/L	20600	10000	10000	30300	30600	96	100	70-130	1	20	
Manganese	ug/L	212	1000	1000	1220	1210	101	100	70-130	1	20	
Potassium	ug/L	6200	10000	10000	16000	16200	98	100	70-130	1	20	
Sodium	ug/L	73500	10000	10000	81900	82800	84	94	70-130	1	20	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2641	581		2641582							
			MS	MSD								
		60334356010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L		1000	1000	1120	1100	104	103	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2641			2641582							
	,	20224250040	MS	MSD	МС	MCD	MC	MCD	0/ Daa		N.4	
		50334356010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	ug/L	139000	10000	10000	151000	150000	120	109	70-130	1	20	
Iron	ug/L	8850	10000	10000	18900	18700	101	99	70-130	1	20	
Magnesium	ug/L	36400	10000	10000	47200	46900	108	105	70-130	1	20	
Manganese	ug/L	276	1000	1000	1300	1280	102	101	70-130	1	20	
Potassium	ug/L	4080	10000	10000	14200	13900	101	99	70-130	2	20	
Sodium	ug/L	11700	10000	10000	21900	21700	102	100	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

LABORATORY CONTROL SAMPLE:

Potassium

Date: 05/29/2020 09:00 AM

Sodium

QC Batch: 651685 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

METHOD BLANK: 2643997 Matrix: Water

2643998

ug/L

ug/L

Associated Lab Samples: 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<11.7	100	11.7	04/29/20 16:15	
Calcium	ug/L	<32.4	200	32.4	04/29/20 16:15	
Iron	ug/L	<26.8	50.0	26.8	04/29/20 16:15	
Magnesium	ug/L	<19.7	50.0	19.7	04/29/20 16:15	
Manganese	ug/L	< 0.97	5.0	0.97	04/29/20 16:15	
Potassium	ug/L	<189	500	189	04/29/20 16:15	
Sodium	ug/L	<107	500	107	04/29/20 16:15	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	1000	100	85-115	
Calcium	ug/L	10000	10800	108	85-115	
Iron	ug/L	10000	10600	106	85-115	
Magnesium	ug/L	10000	11100	111	85-115	
Manganese	ug/L	1000	1050	105	85-115	

10000

10000

MATRIX SPIKE & MATRIX S	PIKE DUPLI	ICATE: 2643	999		2644000							
			MS	MSD								
		60334358004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	86.8J	1000	1000	1050	1040	96	96	70-130	0	20	
Calcium	ug/L	169000	10000	10000	182000	180000	137	114	70-130	1	20	M1
Iron	ug/L	206	10000	10000	10500	10300	103	101	70-130	1	20	
Magnesium	ug/L	44300	10000	10000	54800	55300	105	111	70-130	1	20	
Manganese	ug/L	5360	1000	1000	6310	6350	95	99	70-130	1	20	
Potassium	ug/L	5100	10000	10000	15700	15500	106	104	70-130	1	20	
Sodium	ug/L	12600	10000	10000	23100	22800	105	103	70-130	1	20	

10700

10600

107

106

85-115

85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

EPA 200.7

Pace Project No.: 60334358

QC Batch Method:

QC Batch: 651904

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356030

METHOD BLANK: 2644803

Matrix: Water

Associated Lab Samples: 60334356030

LABORATORY CONTROL SAMPLE:

Potassium

Date: 05/29/2020 09:00 AM

Sodium

2644804

ug/L

ug/L

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	12.8J	100	11.7	04/30/20 17:09	
Calcium	ug/L	<32.4	200	32.4	04/30/20 17:09	
Iron	ug/L	<26.8	50.0	26.8	04/30/20 17:09	
Magnesium	ug/L	<19.7	50.0	19.7	04/30/20 17:09	
Manganese	ug/L	< 0.97	5.0	0.97	04/30/20 17:09	
Potassium	ug/L	<189	500	189	04/30/20 17:09	
Sodium	ug/L	<107	500	107	04/30/20 17:09	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	999	100	85-115	
Calcium	ug/L	10000	10100	101	85-115	
Iron	ug/L	10000	9930	99	85-115	
Magnesium	ug/L	10000	10500	105	85-115	
Manganese	ug/L	1000	1010	101	85-115	

10000

10000

MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 2644			2644806							
Parameter	Units	60334356027 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	7780	1000	1000	8480	8340	69	56	70-130	2	20	M1
Calcium	ug/L	95600	10000	10000	102000	103000	62	74	70-130	1	20	M1
Iron	ug/L	4560	10000	10000	14200	14600	97	100	70-130	3	20	
Magnesium	ug/L	15300	10000	10000	24400	24800	91	95	70-130	2	20	
Manganese	ug/L	266	1000	1000	1260	1280	100	102	70-130	2	20	
Potassium	ug/L	8110	10000	10000	18000	18200	98	101	70-130	2	20	
Sodium	ug/L	117000	10000	10000	124000	123000	68	64	70-130	0	20	M1

9960

10200

100

102

85-115

85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 650660 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356004

METHOD BLANK: 2640387 Matrix: Water

Associated Lab Samples: 60334356004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <8.4 20.0 8.4 04/22/20 17:19

LABORATORY CONTROL SAMPLE: 2640388

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 477 95 90-110

SAMPLE DUPLICATE: 2640389

 Parameter
 Units
 60334977003 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 152
 154
 1
 10

SAMPLE DUPLICATE: 2640390

Date: 05/29/2020 09:00 AM

60334689003 Dup Max RPD RPD Parameter Units Result Result Qualifiers 515 6 10 Alkalinity, Total as CaCO3 mg/L 546

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 650869 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356003

METHOD BLANK: 2641105 Matrix: Water

Associated Lab Samples: 60334356003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <8.4 20.0 8.4 04/23/20 11:43

LABORATORY CONTROL SAMPLE: 2641106

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 455 91 90-110

SAMPLE DUPLICATE: 2641107

60334355001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 218 Alkalinity, Total as CaCO3 mg/L 5 228 10

SAMPLE DUPLICATE: 2641108

Date: 05/29/2020 09:00 AM

60334356007 Dup Max RPD RPD Parameter Units Result Result Qualifiers 168 172 10 Alkalinity, Total as CaCO3 mg/L 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 651576 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356030, 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

METHOD BLANK: 2643724 Matrix: Water

Associated Lab Samples: 60334356030, 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

Blank Reporting
Result Limit MDL

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <8.4 20.0 8.4 04/28/20 11:57

LABORATORY CONTROL SAMPLE: 2643725

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Alkalinity, Total as CaCO3 500 484 97 90-110 mg/L

SAMPLE DUPLICATE: 2643726

60334358004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 563 mg/L 5 Alkalinity, Total as CaCO3 594 10

SAMPLE DUPLICATE: 2643727

Date: 05/29/2020 09:00 AM

 Parameter
 Units
 60334358007 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 <8.4</td>
 <8.4</td>
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 650056 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356003, 60334356004

METHOD BLANK: 2638189 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/20/20 11:43

LABORATORY CONTROL SAMPLE: 2638190

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 955 96 80-120

SAMPLE DUPLICATE: 2638191

60334355006 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 10.0 **Total Dissolved Solids** 10 D6 mg/L 12.0 18

SAMPLE DUPLICATE: 2638192

Date: 05/29/2020 09:00 AM

60334359008 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 715 752 mg/L 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 651301 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356030, 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

METHOD BLANK: 2642929 Matrix: Water

Associated Lab Samples: 60334356030, 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.004/27/20 15:30

LABORATORY CONTROL SAMPLE: 2642930

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 1000 997 100 80-120 mg/L

SAMPLE DUPLICATE: 2642931

 Parameter
 Units
 60335043008 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 5640
 5560
 1
 10

SAMPLE DUPLICATE: 2642932

Date: 05/29/2020 09:00 AM

60334358004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 732 mg/L 728 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 650170 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356003, 60334356004

METHOD BLANK: 2638395 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/20/20 10:38	
Fluoride	mg/L	< 0.075	0.20	0.075	04/20/20 10:38	
Sulfate	mg/L	<0.28	1.0	0.28	04/20/20 10:38	

METHOD BLANK: 2638926 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.44J	1.0	0.39	04/16/20 09:12	
Fluoride	mg/L	< 0.075	0.20	0.075	04/16/20 09:12	
Sulfate	mg/L	<0.28	1.0	0.28	04/16/20 09:12	

METHOD BLANK: 2639261 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/21/20 16:31	
Fluoride	mg/L	< 0.075	0.20	0.075	04/21/20 16:31	
Sulfate	mg/L	<0.28	1.0	0.28	04/21/20 16:31	

METHOD BLANK: 2639859 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/22/20 12:52	
Fluoride	mg/L	< 0.075	0.20	0.075	04/22/20 12:52	
Sulfate	mg/L	<0.28	1.0	0.28	04/22/20 12:52	

METHOD BLANK: 2641399 Matrix: Water

Associated Lab Samples: 60334356003, 60334356004

Date: 05/29/2020 09:00 AM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	ma/L	<0.39	1.0	0.39	04/23/20 08:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Fluoride

Sulfate

Date: 05/29/2020 09:00 AM

METHOD BLANK: 2641399		Matri	x: Water				
Associated Lab Samples: 60334350	6003, 60334356004	Disasta	D				
Parameter	Units	Blank Result	Reporting Limit) MDL	Analyz	ed Qu	ualifiers
Fluoride	mg/L	<0.075	5 0	.20 0.0	75 04/23/20	08:10	
Sulfate	mg/L	<0.28	3	1.0 0	.28 04/23/20	08:10	
LABORATORY CONTROL SAMPLE:	2638396						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Chloride	mg/L		4.8	96	90-110		_
Fluoride	mg/L	2.5	2.3	94	90-110		
Sulfate	mg/L	5	5.0	101	90-110		
LABORATORY CONTROL SAMPLE:	2638927						
David and an	11.5.	Spike	LCS	LCS	% Rec	0	
Parameter	Units		Result	% Rec	Limits	Qualifiers	_
Chloride	mg/L	5	4.6	92	90-110		
Fluoride	mg/L	2.5	2.6	105	90-110		
Sulfate	mg/L	5	5.1	102	90-110		
LABORATORY CONTROL SAMPLE:	2639262						
Parameter	Lleite	Spike	LCS	LCS	% Rec	Ouglifiere	
	Units	Conc	Result	% Rec	Limits	Qualifiers	_
Chloride	mg/L	5	4.7	95	90-110		
Fluoride	mg/L	2.5	2.5	101	90-110		
Sulfate	mg/L	5	5.0	100	90-110		
LABORATORY CONTROL SAMPLE:	2639860						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
						Qualifiers	_
Chloride Fluoride	mg/L mg/L	5 2.5	4.7 2.3	95 91	90-110		
Sulfate	-	2.5 5	2.3 4.8	91 97	90-110 90-110		
Sunate	mg/L	ວ	4.8	97	90-110		
LABORATORY CONTROL SAMPLE:	2641400						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Chloride	mg/L		4.8	97	90-110		_
CCGO	g/ <u>-</u>		7.0		30 110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

2.6

5.1

104

103

90-110

90-110

2.5

5

mg/L

mg/L

Project: AMEREN LABADIE ENERGY CTR LCL1

mg/L

mg/L

mg/L

63.0

0.33

ND

25

2.5

5

Pace Project No.: 60334358

Chloride

Fluoride

Sulfate

Date: 05/29/2020 09:00 AM

MATRIX SPIKE SAMPLE:		2638397										
Parameter		Units		34355007 Result	Spike Conc.	MS Resul	lt	MS % Rec	% Red		Qualif	iers
Chloride		mg/L		19.1	10		30.3	112	80)-120		
Fluoride		mg/L		0.18J	2.5		2.7	102	80)-120		
Sulfate		mg/L		222	100		325	103	80)-120		
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 2638			2638399							
			MS	MSD								
		60334434003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual

25

2.5

5

81.8

3.0

5.3

81.9

3.0

5.3

75

106

101

75

107

101

80-120

80-120

80-120

0

0 15

1 15

15 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

QC Batch: 652203 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

METHOD BLANK: 2645879 Matrix: Water

Associated Lab Samples: 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/30/20 14:29	
Fluoride	mg/L	< 0.075	0.20	0.075	04/30/20 14:29	
Sulfate	mg/L	<0.28	1.0	0.28	04/30/20 14:29	

METHOD BLANK: 2646385 Matrix: Water

Associated Lab Samples: 60334358003, 60334358004, 60334358005, 60334358006, 60334358007

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.44J	1.0	0.39	05/01/20 23:49	
Fluoride	mg/L	< 0.075	0.20	0.075	05/01/20 23:49	
Sulfate	mg/L	<0.28	1.0	0.28	05/01/20 23:49	

LABORATORY CONTROL SAMPLE:	2645880					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.6	91	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

LABORATORY CONTROL SAMPLE:	2646386					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	
Fluoride	mg/L	2.5	2.7	109	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX SP	2645882											
			MS	MSD								
		60334358004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.8	5	5	8.7	8.9	99	102	80-120	2	15	
Fluoride	mg/L	0.27	2.5	2.5	2.9	3.0	105	107	80-120	2	15	
Sulfate	mg/L	94.6	25	25	122	121	110	107	80-120	1	15	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

MATRIX SPIKE SAMPLE:	2645883						
		60334358007	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	<0.39		4.9	93	80-120	
Fluoride	mg/L	< 0.075	2.5	2.7	108	80-120	
Sulfate	mg/L	<0.28	5	5.4	107	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

QC Batch: 653452 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60334356030

METHOD BLANK: 2650862 Matrix: Water

Associated Lab Samples: 60334356030

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	05/08/20 13:45	
Fluoride	mg/L	< 0.075	0.20	0.075	05/08/20 13:45	
Sulfate	mg/L	<0.28	1.0	0.28	05/08/20 13:45	

METHOD BLANK: 2652708 Matrix: Water

Associated Lab Samples: 60334356030

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	05/11/20 09:21	
Fluoride	mg/L	< 0.075	0.20	0.075	05/11/20 09:21	
Sulfate	mg/L	<0.28	1.0	0.28	05/11/20 09:21	

METHOD BLANK: 2653004 Matrix: Water

Associated Lab Samples: 60334356030

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/21/20 17:16	
Fluoride	mg/L	< 0.075	0.20	0.075	04/21/20 17:16	
Sulfate	mg/L	<0.28	1.0	0.28	04/21/20 17:16	

METHOD BLANK: 2653006 Matrix: Water

Associated Lab Samples: 60334356030

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/29/20 07:26	
Fluoride	mg/L	< 0.075	0.20	0.075	04/29/20 07:26	
Sulfate	mg/L	<0.28	1.0	0.28	04/29/20 07:26	

METHOD BLANK: 2653008 Matrix: Water

Associated Lab Samples: 60334356030

Date: 05/29/2020 09:00 AM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	ma/L	0.44J	1.0	0.39	04/23/20 00:34	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

METHOD BLANK: 2653008

Matrix: Water

METHOD BLANK: 2653008		Matri	ix: Water				
Associated Lab Samples: 6033435	6030						
		Blank	Reporting	l			
Parameter	Units	Result	Limit	MDL	Analyz	ed (Qualifiers
Fluoride	mg/L	<0.07	5 0	.20 0.0	075 04/23/20	00:34	
Sulfate	mg/L	<0.2	8	1.0 0	0.28 04/23/20	00:34	
LABORATORY CONTROL SAMPLE:	2650863						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	3
Chloride	mg/L		4.7	94	90-110		
Fluoride	mg/L	2.5	2.3	93	90-110		
Sulfate	mg/L	5	4.8	95	90-110		
LABORATORY CONTROL SAMPLE:	2652709						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	3
Chloride	mg/L		4.6	92	90-110		
Fluoride	mg/L	2.5	2.4	94	90-110		
Sulfate	mg/L	5	4.9	98	90-110		
LABORATORY CONTROL SAMPLE:	2653005						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	3
Chloride	mg/L	5	4.7	94	90-110		
Fluoride	mg/L	2.5	2.3	91	90-110		
Sulfate	mg/L	5	4.9	98	90-110		
LABORATORY CONTROL SAMPLE:	2653007						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	3
Chloride	mg/L		4.7	94	90-110		
Fluoride	mg/L	2.5	2.4	95	90-110		
Sulfate	mg/L	5	5.1	101	90-110		
LABORATORY CONTROL SAMPLE:	2653009						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	<u> </u>
Chloride	mg/L		4.9	97	90-110		
Fluoride	mg/L	2.5	2.5	101	90-110		
Sulfate	mg/L	5	5.0	100	90-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

MATRIX SPIKE & MATRIX S	2650865											
Parameter	6 Units	60334857001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	116	50	50	166	165	101	99	80-120	1	15	
Fluoride	mg/L	0.49	2.5	2.5	2.9	3.0	98	100	80-120	2	15	
Sulfate	mg/L	783	500	500	1290	1290	102	100	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/29/2020 09:00 AM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60334358

Date: 05/29/2020 09:00 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
60334356003 60334356004	L-BMW-1S L-BMW-2S	EPA 200.7 EPA 200.7	650987 650987	EPA 200.7 EPA 200.7	651023 651023	
60334356030	L-MW-26	EPA 200.7	651904	EPA 200.7	651985	
60334358003 60334358004 60334358005 60334358006 60334358007	L-TMW-1 L-TMW-2 L-TMW-3 L-UWL-DUP-1 L-UWL-FB-1	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7	200.7 651685 200.7 651685 200.7 651685 200.7 651685 200.7 651685		651717 651717 651717 651717 651717	
60334356003	L-BMW-1S	SM 2320B	650869			
60334356004	L-BMW-2S	SM 2320B	650660			
60334356030 60334358003 60334358004 60334358005 60334358006 60334358007	L-MW-26 L-TMW-1 L-TMW-2 L-TMW-3 L-UWL-DUP-1 L-UWL-FB-1	SM 2320B SM 2320B SM 2320B SM 2320B SM 2320B SM 2320B	651576 651576 651576 651576 651576 651576			
60334356003 60334356004	L-BMW-1S L-BMW-2S	SM 2540C SM 2540C	650056 650056			
60334356030 60334358003 60334358004 60334358005 60334358006 60334358007	L-MW-26 L-TMW-1 L-TMW-2 L-TMW-3 L-UWL-DUP-1 L-UWL-FB-1	SM 2540C SM 2540C SM 2540C SM 2540C SM 2540C SM 2540C	651301 651301 651301 651301 651301			
60334356003 60334356004	L-BMW-1S L-BMW-2S	EPA 300.0 EPA 300.0	650170 650170			
60334358003 60334358003 60334358004 60334358005 60334358006	L-MW-26 L-TMW-1 L-TMW-2 L-TMW-3 L-UWL-DUP-1	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0	653452 652203 652203 652203 652203 652203			

Sample Condition Upon Receipt

WO#:60334358

Client Name: 6010es				
Courier: FedEx UPS UPS VIA Clay U	PEX 🗆	ECI		Pace 🖂 Xroads 🖂 Client 🖂 Other 🖂
Tracking #:	ace Shippin	ıg Lab	el Use	d? Yes □ Not
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals i	ntact:	YesX	No □
Packing Material: Bubble Wrap □ Bubble Bags	; 🗆	Foa	am 🗆	None (1) Other 7010
Thermometer Used: 7298 Type	of Ice We	t)Blu	ie No	ne
Cooler Temperature (°C): As-read (O. 5 Corr. Fa	ctor +0	1	Correct	Date and initials of person examining contents: 4/5 >050
Temperature should be above freezing to 6°C T(o. 1				16.2
Chain of Custody present:	Yes	ONC	□N/A	cooler with 16.2 temp
Chain of Custody relinquished	Yes	□No	□n/a	Viao only Kadium
Samples arrived within holding time:	XIyes	□No	□N/A	,
Short Hold Time analyses (<72hr):	Xives	□No	□N/A	Te+2
Rush Turn Around Time requested:	□Yes	(No	□N/A	
Sufficient volume:	XiYes	□No	□N/A	
Correct containers used:	Yes	□No	□N/A	
Pace containers used:	Yes	□No	□N/A	Did not receive somples for
Containers intact:	XYes I	□No	□N/A	this Coc
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes [□No	N/A	
Filtered volume received for dissolved tests?	∐Yes [□No ,	DVVA	
Sample labels match COC: Date / time / ID / analyses	Yes	ΩNo	□n/a	
Samples contain multiple phases? Matrix: W	□Yes)	No	□n/a	
Containers requiring pH preservation in compliance?	Yes [□No	□n/a	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	63177	607	عدد	date/iline added.
Cyanide water sample checks:	2001-7	WO-1		
Lead acetate strip tums dark? (Record only)	□Yes [□No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes [
Trip Blank present:	□Yes [□No	AIN	
Headspace in VOA vials (>6mm):	∐Yes [(IN/A	
Samples from USDA Regulated Area: State	□Yes [□No	QN/A	
Additional labels attached to 5035A / TX1005 vials in the fiel	d? □Yes []No-	NIA	
Client Notification/ Resolution: Copy COC	to Client?	Y	N	Field Data Required? Y / N
Person Contacted: Date	/Time:			
Comments/ Resolution				
				4/15/20
Project Manager Review: Janui Churh			Б. 1	4/15/20
Project Manager Review:	===		Date	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Pace Analytical

Pace Project No./ Lab I.D. (N/Y) **DRINKING WATER** Samples Intact SAMPLE CONDITIONS Cooler (Y/N) OTHER ō Sealed Sealed (V/Y) eal M 2 Received on GROUND WATER Page: Residual Chlorine (Y/N) O° ni qmeT 4.15-41622510. REGULATORY AGENCY 9 RCRA TIME Requested Analysis Filtered (Y/N) DATE Signed (MM/DD/YY): 64 (14 / 20 STATE: Site Location DATE NPDES X LDS ACCEPTED BY / AFFILIATION Alkalinity ø App III and Cat/An Metals 見り Chloride/Fluoride/Sulfate Golder Associates Inc **↓teeT eisylsnA** N/A Other Methanol Jamie Church Na₂S₂O₃ Preservatives 9285, line 3 chused HOBN HCI HNO3 Company Name: ⁷OS²H 200 Section C TIME Pace Project Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: ~2/h//h SAMPLE TEMP AT COLLECTION DATE 1239 TIME 7 Ameren Labadie Energy Center LCPB HZ)(02/1/17 DATE COLLECTED Eric Schnieder, Ryan Feldman RELINQUISHED BY / AFFILIATION 153140602.0001 TIME urchase Order No.: COC #3 4 START DATE Report To: Jeffrey Ingram Required Project Information: O O ഗ O O O O O O ഗ O (G=GRAB C=COMP) SAMPLE TYPE \forall ₹ × ₹ ¥ Ž ξ Ž Š ¥ ₹ Š Project Number: (see valid codes to left) MATRIX CODE Project Name: Section B Copy To: The Party Bo 1-BMW-2 21-BMB-1 /alid Matrix Codes ΜV DRINKING WATER WATER WASTE WATER WASTE WATER WASTE SOUCH SOUCH SOUCH WATER WAT 13515 Barrett Parkway Dr., Ste 260 Metals" - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B Fax: 636-724-9323 MATRIX E-LIVING-IVISD-1 T-CIM-MAN-INIS-1 jeffrey ingram@golder.com ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Golder Associates Ballwin, MO 63021 Required Client Information Section A Required Client Information: hone: 636-724-9191 Requested Due Date/TAT: Section D ompany: mail To: Page 33 of 35 ddress: 10 7 12 4 S œ 6 m 9 N # MaTI

F-ALL-Q-020rev.08, 12-Oct-2007

important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Sample Condition Upon Receipt

Seals of Ice We ctor - O Yes Yes Yes Yes	Intact For Bl INO	bel Use Yes am [] lue No Correc	Pace CI Xroads Client C Other C d? Yes Down No C Other C Tyl (one ted
Seals of Ice We ctor - O Yes Yes Yes Yes	Intact Fo Bi Intac	Yes? am lue No Correct N/A N/A N/A	None Other Tyl (Date and initials of person examining contents: 4.2).20
of Ice We ctor FO	BI No	am [] lue No Correc N/A N/A N/A	None □ Othe □ Toll (one ted /. S Date and initials of person examining contents: (4.2).20
of Ice We ctor FO	BINO DINO	Ue No Correc □N/A □N/A □N/A □N/A	ted /. S Date and initials of person examining contents: 4-21-20
Yes Yes Yes Yes Yes		Correc	ted /. S Date and initials of person examining contents: 4.23-20
Yes Yes Yes Yes	□No □No □No □No	□N/A □N/A □N/A	ted /. 5 examining contents: 4-22-20
Yes Yes Yes Yes	□No □No □No □No	□N/A □N/A □N/A	
Yes Yes	□No □No No	□n/A □n/A	
Yes Yes	□No No No	□n/a	
☐Yes ☐Yes	Ž(io Ž(io	□N/A	
□Yes	200		
Yes	1	□N/A	
	□No		
		ANC	
1_Yes	□No	□n/A	
Alles	ΩNo	□N/A	
Yes	□No	□N/A	
∐Yes	□No	INA	
□Yes	□No	ENVA	
Yes	□No	E]N/A	
□Yes€	No	□N/A	
Yes	□No	□N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
ב רוצם	Sec		date/inte added.
□Yes	□No		
□Yes	□No		
□Yes	□No,	XINA	
ШYes		INIA	
□Yes	□и₀	NIA	
d? □Yes i	□No	NIA	
to Client?	Y	N	Field Data Required? Y / N
Time:			
		D-1	4/22/20
1	Yes Yes Yes Yes Yes Yes Yes Yes	Yes	No No No No No No No No

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. (N/X) DRINKING WATER Samples Intaci SAMPLE CONDITIONS OTHER Cooler (Y/N) ŏ Sustody Seale (N/Y) eol Received on **GROUND WATER** るう Page: Residual Chlorine (Y/N) 5.5 SI SICOPARA 15 J. ul dweT REGULATORY AGENCY 9 RCRA TIME 421/00/124 Requested Analysis Filtered (Y/N) DATE Signed (MM/DD/YY): OHAL/ZO Site Location STATE NPDES DATE UST 3 Z LDS X ACCEPTED BY / AFFILIATION Alkalinity X k App III and Cat/An Metals × z 4 Chloride/Fluoride/Sulfate 火 z Golder Associates Inc LAnalysis Test ↓ N/A 2 Other Methanol Jamie Church Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Preservatives Na₂S₂O₃ 9285, line 3 NaOH HCI atherine Invoice Information HO03 Company Name: Reference;
Pace Project
Manager;
Pace Profile #; DS2H Section C TIME Unpreserved Pace Quote Address: 2 # OF CONTAINERS SAMPLER NAME AND SIGNATURE 4/21/20 14/20 PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION SIGNATURE of SAMPLER DATE 0943 0943 137 4121/20 0838 1837 TIME 5041 R2/02/h Ameren Labadie Energy Center LCL1 Į 4/2/120 COLLECTED Eric Schnieder, Ryan Feldman RELINQUISHED BY / AFFILIATION 75/Dex Z TIME 153140602.0001C COMPOSITE COC #4 DATE Report To: Jeffrey Ingram Required Project Information: ഗ urchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE U O O O Ō O O O ഗ ഗ O Project Number: Ž X 5 Š M 5 5 ₹ Ş 5 5 5 (see valid codes to left) MATRIX CODE Project Name: Section B Copy To: Valid Matrix Codes ¥ ¥ ¥ ¥ SL OL WP OT TS DRINKING WATER V
WASTE WATER V
PRODUCT
SOIL/SOLID
S
OIL 13515 Barrett Parkway Dr., Ste 260 tals" - EPA 200,7; Fe, Mg, Mn, K, Na, Ca, B Fax: 636-724-9323 L-UWL-MSD-1 L-UWL-DUP-1 jeffrey ingram@golder.com L-UWL-MS-1 C-BIMW-1S P-DMM-7S L-UWL-FB-1 L-TMW-3 L-MW-26 L-TMW-2 L-TMW-1 ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Ballwin, MO 63021 Golder Associates Required Client Information Required Client Information: Requested Due Date/TAT: Phone: 636-724-9191 Section D Section A TIME! To: ddress Page 35 of 35 8 m 2 9 w 6 9 F 12 ITEM # 7

F-ALL-Q-020rev 08, 12-Oct-2007

MEMORANDUM

DATE June 1, 2020 **Project No.** 153140602

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60334358

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates Inc.		Proje	Project Manager: J. Ingram					
Project	Name: Ameren - LEC - LCL1		Project Number: 153140602						
Review	er: A. Muehlfarth	_	Validation Date: 06/01/2020						
Lahorat	ory: Pace Analytical Services	SDG #: 60334358							
Analytic	cal Method (type and no.): EPA 200.7 (Total Metals); SI	 И2320В							
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste	<u> </u>							
Sample	Names L-TMW-1, L-TMW-2, L-TMW-3, L-UWL-DUP-1, L-U	1, L-BMW-1S, L-BMW-2S, L-MW-26							
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).				
Field Ir	formation	YES	NO	NA	COMMENTS				
a)	Sampling dates noted?	х			4/14 - 4/21/2020				
b)	Sampling team indicated?	X							
c)	Sample location noted?	х							
d)	Sample depth indicated (Soils)?			X					
e)	Sample type indicated (grab/composite)?	×			Grab				
f)	Field QC noted?	×			See Notes				
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb				
h)	Field Calibration within control limits?	×			· · · · · · · · · · · · · · · · · · ·				
	Notations of unacceptable field conditions/performa		⊔ om field l	∟ ogo or fiold	notos?				
i)	Notations of unacceptable field conditions/performa		_	_	Hotes!				
• • • • • • • • • • • • • • • • • • • •			×						
j)	Does the laboratory narrative indicate deficiencies?			Х					
	Note Deficiencies:								
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS				
a)	Was the COC properly completed?		X		Pace did not received samples for COC dated 04/14/2020				
b)	Was the COC signed by both field								
	and laboratory personnel?	×							
c)	Were samples received in good condition?	Х	Ш	Ш					
Genera	ıl (reference QAPP or Method)	YES	NO	NA	COMMENTS				
a)	Were hold times met for sample pretreatment?	Х							
b)	Were hold times met for sample analysis?	Х							
c)	Were the correct preservatives used?	Х							
d)	Was the correct method used?	Х							
e)	Were appropriate reporting limits achieved?	Х							
f)	Were any sample dilutions noted?	Х			See Notes				
a)	Were any matrix problems noted?	X			See Notes				

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks	S	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	Х			See Notes
b)	Were analytes detected in the field blank(s)?	Х			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			х	
Labora	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	Х			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	e sample n	ames)?	L-UWL-DUP-1 @ L-TMW-2
		Х			
b)	Were field dup. precision criteria met (note RPD)?		х		See Notes
c)	Were lab duplicates analyzed (note original and du	plicate	samples)?		
		х			
d)	Were lab dup. precision criteria met (note RPD)?	х			
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		х		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
c)	Were MS/MSD precision criteria met?	х			
Comm	ents/Notes:				
Sulfa	te was diluted in several samples, no qualification r	necess	sary.		
MB: 2	2644803: Boron (12.8 J), associated sample -5603	0			
2638	926: Chloride (0.44 J), associated samples -5600	3 and	-56004, d	etections	in samples > RL, no qualification necessary
26463	85: Chloride (0.44 J), associated samples -58003 through -5	8007, d	etections in	samples >	RL or non detect (-58007), no qualification necessary
2653	008: Chloride (0.44 J), associated sample -56030,	detect	ion in sam	ple > RL	, no qualification necessary
FB: L	UWL-FB-1 @ L-TMW-3: TDS (18.0), detection in	sampl	e > 10x bl	ank resu	lt, no qualification necessary

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

L-UWL-DUP-1: RPD exceeds limit (20%) for Boron, Iron, Manganese, Potassium, Sodium, and Chloride Lab Duplicates: SAMPLE DUPLICATE 2638191: RPD exceeds limit (10%) for TDS, associated sample -55006 (unrelated sample) MS/MSD: 2641579, 2641580, 2641579: MS % Rec low for Boron, associated with sample -56007 (unrelated sample) 2643999, 2644000: MS % Rec high for Calcium, associated with sample -58004 2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample) 2638398, 2638399: MS/MSD % Rec low for Chloride associated with sample -34003 (unrelated sample)	
MS/MSD: 2641579, 2641580, 2641579: MS % Rec low for Boron, associated with sample -56007 (unrelated sample) 2643999, 2644000: MS % Rec high for Calcium, associated with sample -58004 2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample)	L-UWL-DUP-1: RPD exceeds limit (20%) for Boron, Iron, Manganese, Potassium, Sodium, and Chloride
MS/MSD: 2641579, 2641580, 2641579: MS % Rec low for Boron, associated with sample -56007 (unrelated sample) 2643999, 2644000: MS % Rec high for Calcium, associated with sample -58004 2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample)	
2643999, 2644000: MS % Rec high for Calcium, associated with sample -58004 2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample)	Lab Duplicates: SAMPLE DUPLICATE 2638191: RPD exceeds limit (10%) for TDS, associated sample -55006 (unrelated sample)
2643999, 2644000: MS % Rec high for Calcium, associated with sample -58004 2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample)	
2644805, 2644806: MS/MSD % Rec low for Boron, Calcium, and Sodium, associated with sample -56027 (unrelated sample)	
2638398, 2638399: MS/MSD % Rec low for Chloride associated with sample -34003 (unrelated sample)	
	2638398, 2638399: MS/MSD % Rec low for Chloride associated with sample -34003 (unrelated sample)

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-MW-26	Boron	100	U	Detected in MB, RL>Result>MDL
L-TMW-2	Boron	86.8	J	DUP RPD exceeded limits
L-TMW-2	Iron	206	J	II .
L-TMW-2	Manganese	5360	J	п
L-TMW-2	Potassium	5100	J	п
L-TMW-2	Sodium	12600	J	"
L-TMW-2	Chloride	3.8	J	"
L-UWL-DUP-1	Boron	107	J	п
L-UWL-DUP-1	Iron	482	J	п
L-UWL-DUP-1	Manganese	2600	J	п
L-UWL-DUP-1	Potassium	6560	J	п
L-UWL-DUP-1	Sodium	17900	J	п
L-UWL-DUP-1	Chloride	5.7	J	II .
L-TMW-2	Calcium	169000	J	MS % rec high
	1 MIII 4	_		

Signature: _____ 06/01/2020

Revised May 2004 Page 4 of 4

June 03, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LCLI Pace Project No.: 60338352

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on May 28, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church pacelabs.com

314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LCLI
Pace Project No.: 60338352

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water

Illinois Certification #: 200030 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LCLI Pace Project No.: 60338352

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60338352001	L-TMW-3	Water	05/27/20 09:58	05/28/20 03:05	
60338352002	L-UWL-DUP-1	Water	05/27/20 08:00	05/28/20 03:05	
60338352003	L-UWL-FB-1	Water	05/27/20 10:25	05/28/20 03:05	

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LCLI Pace Project No.: 60338352

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60338352001	L-TMW-3	EPA 300.0	JWR	1	PASI-K
60338352002	L-UWL-DUP-1	EPA 300.0	JWR	1	PASI-K
60338352003	L-UWL-FB-1	EPA 300.0	JWR	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Date: 06/03/2020 01:55 PM

ANALYTICAL RESULTS

Project: AMEREN LCLI
Pace Project No.: 60338352

Sample: L-TMW-3 Lab ID: 60338352001 Collected: 05/27/20 09:58 Received: 05/28/20 03:05 Matrix: Water

Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0

Pace Analytical Services - Kansas City

Fluoride **0.16J** mg/L 0.20 0.075 1 06/02/20 13:53 16984-48-8

Date: 06/03/2020 01:55 PM

ANALYTICAL RESULTS

Project: AMEREN LCLI
Pace Project No.: 60338352

 Sample:
 L-UWL-DUP-1
 Lab ID:
 60338352002
 Collected:
 05/27/20 08:00
 Received:
 05/28/20 03:05
 Matrix:
 Water

Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0

Pace Analytical Services - Kansas City

Fluoride **0.24** mg/L 0.20 0.075 1 05/29/20 21:56 16984-48-8

(913)599-5665

Date: 06/03/2020 01:55 PM

ANALYTICAL RESULTS

Project: AMEREN LCLI
Pace Project No.: 60338352

Sample: L-UWL-FB-1 Lab ID: 60338352003 Collected: 05/27/20 10:25 Received: 05/28/20 03:05 Matrix: Water

Parameters Results Units PQL MDL DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0

Pace Analytical Services - Kansas City

Fluoride **0.082J** mg/L 0.20 0.075 1 05/29/20 22:12 16984-48-8

QUALITY CONTROL DATA

Project: AMEREN LCLI
Pace Project No.: 60338352

QC Batch: 657410 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60338352001, 60338352002, 60338352003

METHOD BLANK: 2666088 Matrix: Water

Associated Lab Samples: 60338352001, 60338352002, 60338352003

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Fluoride
 mg/L
 <0.075</td>
 0.20
 0.075
 05/29/20 08:05

METHOD BLANK: 2667783 Matrix: Water

Associated Lab Samples: 60338352001, 60338352002, 60338352003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Fluoride mg/L <0.075 0.20 0.075 06/01/20 09:31

METHOD BLANK: 2668608 Matrix: Water

Associated Lab Samples: 60338352001, 60338352002, 60338352003

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Fluoride
 mg/L
 <0.075</td>
 0.20
 0.075
 06/02/20 09:28

LABORATORY CONTROL SAMPLE: 2666089

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits

Fluoride mg/L 2.5 2.5 100 90-110

LABORATORY CONTROL SAMPLE: 2667784

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride mg/L 2.5 2.6 106 90-110

LABORATORY CONTROL SAMPLE: 2668609

Date: 06/03/2020 01:55 PM

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Fluoride 2.5 2.4 97 90-110 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qualifiers

QUALITY CONTROL DATA

Project: AMEREN LCLI
Pace Project No.: 60338352

Date: 06/03/2020 01:55 PM

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2666	090		2666091							
		60338348001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	0.45	2.5	2.5	3.1	3.1	105	107	80-120	2	15	
MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2666	6092		2666093							
			MS	MSD								
		60338349001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	0.47	2.5	2.5	3.1	3.2	106	108	80-120	2	15	
MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2666	6094		2666095	i						
			MS	MSD								
		60338352001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L		2.5	2.5	2.7	2.7	101	101	80-120		15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALIFIERS

Project: AMEREN LCLI
Pace Project No.: 60338352

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 06/03/2020 01:55 PM

(913)599-5665

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LCLI Pace Project No.: 60338352

Date: 06/03/2020 01:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60338352001	L-TMW-3	EPA 300.0	657410		
60338352002	L-UWL-DUP-1	EPA 300.0	657410		
60338352003	L-UWL-FB-1	EPA 300.0	657410		

Sample Condition Upon Receipt

PEX ECI D Ice Shipping Label L Seals intact: Ye Foam	No 🗆
Seals intact: Ye	No 🗆
	s No 🗆
□ Foam I	~ ` \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	Date and initials of nessen
tor 10.1 Com	ected 0.2 examining contents:5.28-203
	1.9
Yes DNo DA	/A
Kes DNo DN	/A
Mes □No □N	/A
□Yes XNo □N	/A
□Yes → □N	/A
Yes DNo DN	/A
PRS DNO DN	/A
« Ces □No □N	(A)
Pres DNo DN	(A
□Yes □No XN	/A
□Yes □No □	A
Xiyes DNo DN	/A
□Yes Jo □N	/A
Yes DNo DN	List sample IDs, volumes, lot #'s of preservative and the
1-7177	date/time added.
400110	
□Yes □No	
□Yes □No	
□Yes □No ■N	A
□Yes □No ⊘	A
□Yes □No □No	A
? □Yes □No , D	Ä
o Client? Y / N	Field Data Required? Y / N
Γime:	
	4.9
	5/29/20
	ate
	Of Ice: Wet Blue ctor

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:		Section B Required Project Information:	Section C Invoice Information:	tíon:	Z aled	(
Сотрапу:	Golder Associates	Report To: Jeffrey Ingram	Attention:			
Address:	13515 Barrett Parkway Drive, Ste 260	Copy To: Ryan Feldmann/Eric Schneider	Company Name	à	REGULATORY AGENCA	
	Ballwin, MO 63021		Address:		NPDES GROUND WATER	> DRINKING WATER
Email To:	jeffrey_ingram@golder.com	Purchase Order No.:	Pace Quote Reference:		UST RCRA	OTHER
Phone 636-	Fax: 636-724-9323	Project Name: Ameren		Jamie Church	Site Location	
Requested Due Date/TAT:	Standard	Project Number. 5 140 60 2.600 1C	Pace Pro⊓te #:	9285	STATE:	
				Requested	Requested Analysis Filtered (Y/N)	
Secti		odes CODE	f	Preservatives X N N		
	MATER (\$
	SAMPLE ID (A-Z. 0-91) Sample IDs MUST BE UNIQUE	CODE (see	EMP AT COL	↓ tesT ei	Chlorine ('	1387
# W∃TI		SAMPLE T. THE TIME	H OF CON	HCI HCI HCI HOO3		Pace Project No./ Lab I.D.
-	1-TMM-3	5	1 1			
2	1- (JWL-D, 2)			\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		
e	1-0M1M1-1	WT G	अ 58 । ।			
4	2- MWL - MSD-	WT G	0868 1			
ın	T WAY - W	WI G	1			
9	2- MML - F8-1	WT G	1 1 520	\ 		
7		_				
ω σ		9 M M				
10		-				
11		© TW				
12		WT G	\dashv			
	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	DATE TIME	ACCEPTED BY / AFFILIATION	DATE TIME S	SAMPLE CONDITIONS
		Katherine Rodes/Golder	542/20 182D	MZ.0F/Ks	C-28-20 000 00-3	ファケ
		N I			5	777
		CAMPI ED NAME AND CICARATI IPE	A HOUSE OF		+	(pə
		PRINT Name	PRINT Name of SAMPLER:	MICH R. 415	D° ni q	(Y/N) y Seal y (Y/N syn) se
		HANGIS	SIGNATURE of SAMPLER	DATE Signed	iese/	lce coole
				(MM/DD/YY):	2001	סיי

MEMORANDUM

DATE June 9, 2020 **Project No.** 153140602

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60338352

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates Inc.	_	Project Manager: J. Ingram							
Project	Name: Ameren - LEC - LCL1		Project Number: 153140602							
Review	er: A. Muehlfarth	_	Validation Date: 06/09/2020							
Laborat	ory: Pace Analytical		SDG #: 60338352							
	cal Method (type and no.): EPA 300.0 (Anions)	_	300	, #. <u></u>						
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste	П								
	Names L-TMW-3, L-UWL-DUP-1, L-UWL-FB-1	Ш _								
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).					
Field In	formation	YES	NO	NA	COMMENTS					
a)	Sampling dates noted?	X			05/27/2020					
b)	Sampling team indicated?	X								
c)	Sample location noted?	X								
d)	Sample depth indicated (Soils)?	П		X						
e)	Sample type indicated (grab/composite)?	×			Grab					
f)	Field QC noted?	×			See Notes					
g)	Field parameters collected (note types)?	X		П	pH, Sp.Cond, ORP, Temp, DO, Turb					
	Field Calibration within control limits?	×								
h)			 							
i)	Notations of unacceptable field conditions/performa	nces tro		_	notes?					
			×							
j)	Does the laboratory narrative indicate deficiencies?			Х						
	Note Deficiencies:									
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS					
a)	Was the COC properly completed?	х	П	П						
b)	Was the COC signed by both field	_	_	_						
۵,	and laboratory personnel?	X								
c)	Were samples received in good condition?	Х								
Genera	Il (reference QAPP or Method)	YES	NO	NA	COMMENTS					
a)	Were hold times met for sample pretreatment?	х								
b)	Were hold times met for sample analysis?	X								
c)	Were the correct preservatives used?	X								
d)	Was the correct method used?	×								
e)	Were appropriate reporting limits achieved?	×								
f)	Were any sample dilutions noted?		X							
a)	Were any matrix problems noted?		IX							

Revised May 2004 Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		x		
b)	Were analytes detected in the field blank(s)?	X			See Notes
c)	Were analytes detected in the equipment blank(s)?			Х	
d)	Were analytes detected in the trip blank(s)?			Х	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ates	YES	NO	NA	COMMENTS
а)	Were field duplicates collected (note original and du	ıplicate	sample n	ames)?	
,	, , ,	X	Ċ		L-UWL-DUP-1 @ L-TMW-3
b)	Were field dup. precision criteria met (note RPD)?		х		
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?	>	
,	, , , , , , , , , , , , , , , , , , , ,		×		
d)	Were lab dup. precision criteria met (note RPD)?			х	
ŕ					
Blind S	tandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		х		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			Х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	Х			
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?	Х			
	Recovery could not be calculated since sample contained high concentration of analyte?			Х	
c)	Were MS/MSD precision criteria met?	х			
Comme	ents/Notes:				
FB: L	-UWL-FB-1 @ L-TMW-3: Fluoride (0.082 J)				
DUP:	L-UWL-DUP-1: RPD exceeds limit (>20%) for fluo	ride			

Revised May 2004 Page 2 of 3

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-3	Fluoride	0.20	UJ	Detected in FB, DUP RPD exceeds limit
	\			
		1		
	`			
		`		
		1		
		1		
		1		
		1		
				`

Revised May 2004 Page 3 of 3

December 11, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LCL1
Pace Project No.: 60353404

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on November 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LCL1 Pace Project No.: 60353404

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030

Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LCL1
Pace Project No.: 60353404

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60353404001	L-TMW-1	Water	11/03/20 10:15	11/04/20 03:50
60353404002	L-TMW-2	Water	11/03/20 11:20	11/04/20 03:50
60353404003	L-TMW-3	Water	11/03/20 12:25	11/04/20 03:50
60353404004	L-UWL-DUP-1	Water	11/03/20 08:00	11/04/20 03:50
60353404005	L-UWL-FB-1	Water	11/03/20 12:45	11/04/20 03:50
60353399002	L-BMW-1S	Water	11/02/20 10:20	11/04/20 03:50
60353399003	L-BMW-2S	Water	11/02/20 11:53	11/04/20 03:50
60353399005	L-MW-26	Water	11/02/20 11:50	11/04/20 03:50

SAMPLE ANALYTE COUNT

Project: AMEREN LCL1
Pace Project No.: 60353404

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60353404001	L-TMW-1	EPA 200.7		7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	VRP	3	PASI-K
0353404002	L-TMW-2	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	VRP	3	PASI-K
0353404003	L-TMW-3	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	VRP	3	PASI-K
0353404004	L-UWL-DUP-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	VRP	3	PASI-K
0353404005	L-UWL-FB-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	VRP	3	PASI-K
0353399002	L-BMW-1S	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
0353399003	L-BMW-2S	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
0353399005	L-MW-26	EPA 200.7	JLH	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	LDB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-TMW-1	Lab ID:	60353404001	Collected	11/03/20	10:15	Received: 11/	04/20 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Analy	ytical Services	- Kansas Cit	y					
Boron	103	ug/L	100	11.7	1	11/06/20 09:10	11/09/20 13:36	7440-42-8	
Calcium	142000	ug/L	200	32.4	1	11/06/20 09:10	11/09/20 13:36	7440-70-2	M1
Iron	30.6J	ug/L	50.0	26.8	1	11/06/20 09:10	11/09/20 13:36	7439-89-6	
Magnesium	39800	ug/L	50.0	19.7	1	11/06/20 09:10	11/09/20 13:36	7439-95-4	
Manganese	3360	ug/L	5.0	0.97	1	11/06/20 09:10	11/09/20 13:36	7439-96-5	
Potassium	4970	ug/L	500	189	1	11/06/20 09:10	11/09/20 13:36	7440-09-7	
Sodium	8570	ug/L	500	107	1	11/06/20 09:10	11/09/20 13:36	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Analy	ytical Services	- Kansas Cit	y					
Alkalinity, Total as CaCO3	499	mg/L	20.0	8.4	1		11/06/20 10:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Analy	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	579	mg/L	10.0	10.0	1		11/06/20 08:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Analy	ytical Services	- Kansas Cit	y					
Chloride	1.8	mg/L	1.0	0.36	1		11/10/20 20:32	16887-00-6	
Fluoride	0.33	mg/L	0.20	0.085	1		11/10/20 20:32	16984-48-8	
Sulfate	30.9	mg/L	5.0	2.1	5		11/10/20 19:11	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-TMW-2	Lab ID:	60353404002	Collected	: 11/03/20	11:20	Received: 11/	04/20 03:50 Ma	atrix: Water			
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7					
	Pace Analytical Services - Kansas City										
Boron	132	ug/L	100	11.7	1	11/06/20 09:10	11/09/20 13:51	7440-42-8			
Calcium	197000	ug/L	200	32.4	1	11/06/20 09:10	11/09/20 13:51	7440-70-2			
Iron	1170	ug/L	50.0	26.8	1	11/06/20 09:10	11/09/20 13:51	7439-89-6			
Magnesium	55900	ug/L	50.0	19.7	1	11/06/20 09:10	11/09/20 13:51	7439-95-4			
Manganese	2050	ug/L	5.0	0.97	1	11/06/20 09:10	11/09/20 13:51	7439-96-5			
Potassium	6800	ug/L	500	189	1	11/06/20 09:10	11/09/20 13:51	7440-09-7			
Sodium	15500	ug/L	500	107	1	11/06/20 09:10	11/09/20 13:51	7440-23-5			
2320B Alkalinity	Analytical	Method: SM 23	320B								
	Pace Anal	ytical Services	- Kansas Cit	у							
Alkalinity, Total as CaCO3	634	mg/L	20.0	8.4	1		11/06/20 10:17				
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C								
	Pace Anal	ytical Services	- Kansas Cit	у							
Total Dissolved Solids	801	mg/L	13.3	13.3	1		11/09/20 13:55				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00								
•	Pace Anal	ytical Services	- Kansas Cit	у							
Chloride	8.2	mg/L	1.0	0.36	1		11/10/20 21:20	16887-00-6			
Fluoride	0.25	mg/L	0.20	0.085	1		11/10/20 21:20	16984-48-8			
Sulfate	116	mg/L	10.0	4.2	10		11/10/20 21:37	14808-79-8			

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-TMW-3	Lab ID:	60353404003	Collected:	11/03/20	12:25	Received: 11/	04/20 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepara	ation Meth	od: EP/	A 200.7			
	Pace Anal	tical Services	 Kansas City 	/					
Boron	128	ug/L	100	11.7	1	11/06/20 09:10	11/09/20 13:53	7440-42-8	
Calcium	172000	ug/L	200	32.4	1	11/06/20 09:10	11/09/20 13:53	7440-70-2	
Iron	7510	ug/L	50.0	26.8	1	11/06/20 09:10	11/09/20 13:53	7439-89-6	
Magnesium	37400	ug/L	50.0	19.7	1	11/06/20 09:10	11/09/20 13:53	7439-95-4	
Manganese	926	ug/L	5.0	0.97	1	11/06/20 09:10	11/09/20 13:53	7439-96-5	
Potassium	6570	ug/L	500	189	1	11/06/20 09:10	11/09/20 13:53	7440-09-7	
Sodium	9100	ug/L	500	107	1	11/06/20 09:10	11/09/20 13:53	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	tical Services	- Kansas City	/					
Alkalinity, Total as CaCO3	544	mg/L	20.0	8.4	1		11/06/20 10:24		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	tical Services	- Kansas City	/					
Total Dissolved Solids	651	mg/L	10.0	10.0	1		11/09/20 13:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Analy	tical Services	- Kansas City	/					
Chloride	5.3	mg/L	1.0	0.36	1		11/10/20 21:53	16887-00-6	
Fluoride	0.27	mg/L	0.20	0.085	1		11/10/20 21:53	16984-48-8	
Sulfate	56.1	mg/L	5.0	2.1	5		11/10/20 22:09	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-UWL-DUP-1	Lab ID:	60353404004	Collected:	11/03/20	08:00	Received: 11/	04/20 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepara	ation Meth	od: EP/	A 200.7			
	Pace Analy	tical Services	- Kansas City	/					
Boron	126	ug/L	100	11.7	1	11/06/20 09:10	11/09/20 13:56	7440-42-8	
Calcium	194000	ug/L	200	32.4	1	11/06/20 09:10	11/09/20 13:56	7440-70-2	
Iron	3600	ug/L	50.0	26.8	1	11/06/20 09:10	11/09/20 13:56	7439-89-6	
Magnesium	54800	ug/L	50.0	19.7	1	11/06/20 09:10	11/09/20 13:56	7439-95-4	
Manganese	2090	ug/L	5.0	0.97	1	11/06/20 09:10	11/09/20 13:56	7439-96-5	
Potassium	6480	ug/L	500	189	1	11/06/20 09:10	11/09/20 13:56	7440-09-7	
Sodium	15100	ug/L	500	107	1	11/06/20 09:10	11/09/20 13:56	7440-23-5	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
	Pace Analy	tical Services	- Kansas City	/					
Alkalinity, Total as CaCO3	636	mg/L	20.0	8.4	1		11/06/20 10:31		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
	Pace Analy	tical Services	- Kansas City	/					
Total Dissolved Solids	805	mg/L	13.3	13.3	1		11/09/20 13:56		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
·	Pace Analy	tical Services	- Kansas City	/					
Chloride	8.1	mg/L	1.0	0.36	1		11/10/20 22:25	16887-00-6	
Fluoride	0.25	mg/L	0.20	0.085	1		11/10/20 22:25	16984-48-8	
Sulfate	119	mg/L	10.0	2.8	10		11/11/20 11:58	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-UWL-FB-1	Lab ID:	60353404005	Collected	l: 11/03/20	12:45	Received: 11/	04/20 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
	Pace Analy	ytical Services	- Kansas Ci	ty					
Boron	<11.7	ug/L	100	11.7	1	11/06/20 09:10	11/09/20 13:58	7440-42-8	
Calcium	45.9J	ug/L	200	32.4	1	11/06/20 09:10	11/09/20 13:58	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	11/06/20 09:10	11/09/20 13:58	7439-89-6	
Magnesium	22.4J	ug/L	50.0	19.7	1	11/06/20 09:10	11/09/20 13:58	7439-95-4	
Manganese	<0.97	ug/L	5.0	0.97	1	11/06/20 09:10	11/09/20 13:58	7439-96-5	
Potassium	<189	ug/L	500	189	1	11/06/20 09:10	11/09/20 13:58	7440-09-7	
Sodium	<107	ug/L	500	107	1	11/06/20 09:10	11/09/20 13:58	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	<8.4	mg/L	20.0	8.4	1		11/06/20 10:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	5.5	mg/L	5.0	5.0	1		11/09/20 13:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas Ci	ty					
Chloride	<0.36	mg/L	1.0	0.36	1		11/10/20 23:30	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/10/20 23:30	16984-48-8	
Sulfate	<0.42	mg/L	1.0	0.42	1		11/10/20 23:30	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-BMW-1S	Lab ID:	60353399002	Collected:	11/02/20	10:20	Received: 11/	04/20 03:50 Ma	atrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7					
	Pace Analytical Services - Kansas City										
Boron	99.0J	ug/L	100	11.7	1	12/01/20 15:10	12/02/20 20:11	7440-42-8			
Calcium	216000	ug/L	200	32.4	1	12/01/20 15:10	12/02/20 20:11	7440-70-2			
Iron	26000	ug/L	50.0	26.8	1	12/01/20 15:10	12/02/20 20:11	7439-89-6			
Magnesium	44600	ug/L	50.0	19.7	1	12/01/20 15:10	12/02/20 20:11	7439-95-4			
Manganese	2600	ug/L	5.0	0.97	1	12/01/20 15:10	12/02/20 20:11	7439-96-5			
Potassium	5350	ug/L	500	189	1	12/01/20 15:10	12/02/20 20:11	7440-09-7			
Sodium	15600	ug/L	500	107	1	12/01/20 15:10	12/02/20 20:11	7440-23-5			
2320B Alkalinity	Analytical	Method: SM 23	320B								
	Pace Anal	ytical Services	- Kansas Cit	y							
Alkalinity, Total as CaCO3	742	mg/L	20.0	8.4	1		11/06/20 14:47				
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C								
	Pace Anal	ytical Services	- Kansas Cit	y							
Total Dissolved Solids	780	mg/L	13.3	13.3	1		11/05/20 13:57				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00								
•	Pace Anal	ytical Services	- Kansas Cit	y							
Chloride	6.4	mg/L	1.0	0.39	1		11/25/20 19:37	16887-00-6			
Fluoride	0.17J	mg/L	0.20	0.075	1		11/25/20 19:37	16984-48-8			
Sulfate	66.5	mg/L	5.0	1.4	5		11/25/20 19:51	14808-79-8			

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-BMW-2S	Lab ID:	60353399003	Collected	: 11/02/20	11:53	Received: 11/	04/20 03:50 Ma	atrix: Water			
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP	A 200.7					
	Pace Analytical Services - Kansas City										
Boron	45.2J	ug/L	100	11.7	1	12/01/20 15:10	12/02/20 20:13	7440-42-8			
Calcium	142000	ug/L	200	32.4	1	12/01/20 15:10	12/02/20 20:13	7440-70-2			
Iron	<26.8	ug/L	50.0	26.8	1	12/01/20 15:10	12/02/20 20:13	7439-89-6			
Magnesium	20900	ug/L	50.0	19.7	1	12/01/20 15:10	12/02/20 20:13	7439-95-4			
Manganese	2.1J	ug/L	5.0	0.97	1	12/01/20 15:10	12/02/20 20:13	7439-96-5			
Potassium	5040	ug/L	500	189	1	12/01/20 15:10	12/02/20 20:13	7440-09-7			
Sodium	3570	ug/L	500	107	1	12/01/20 15:10	12/02/20 20:13	7440-23-5			
2320B Alkalinity	Analytical	Method: SM 23	20B								
	Pace Anal	ytical Services	- Kansas Cit	у							
Alkalinity, Total as CaCO3	359	mg/L	20.0	8.4	1		11/06/20 14:52				
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C								
	Pace Anal	ytical Services	- Kansas Cit	у							
Total Dissolved Solids	524	mg/L	10.0	10.0	1		11/05/20 13:57				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00								
•	Pace Anal	ytical Services	- Kansas Cit	у							
Chloride	3.4	mg/L	1.0	0.39	1		11/25/20 20:06	16887-00-6			
Fluoride	0.22	mg/L	0.20	0.075	1		11/25/20 20:06	16984-48-8			
Sulfate	73.4	mg/L	5.0	1.4	5		11/25/20 20:20	14808-79-8			

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60353404

Date: 12/11/2020 10:54 AM

Sample: L-MW-26	Lab ID:	60353399005	Collected:	11/02/20	11:50	Received: 11/	04/20 03:50 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepara	ation Meth	od: EPA	A 200.7			
	Pace Anal	ytical Services	- Kansas City	y					
Boron	63.6J	ug/L	100	11.7	1	12/01/20 15:10	12/02/20 20:18	7440-42-8	
Calcium	119000	ug/L	200	32.4	1	12/01/20 15:10	12/02/20 20:18	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	12/01/20 15:10	12/02/20 20:18	7439-89-6	
Magnesium	21700	ug/L	50.0	19.7	1	12/01/20 15:10	12/02/20 20:18	7439-95-4	
Manganese	127	ug/L	5.0	0.97	1	12/01/20 15:10	12/02/20 20:18	7439-96-5	
Potassium	3900	ug/L	500	189	1	12/01/20 15:10	12/02/20 20:18	7440-09-7	
Sodium	5210	ug/L	500	107	1	12/01/20 15:10	12/02/20 20:18	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas City	y					
Alkalinity, Total as CaCO3	374	mg/L	20.0	8.4	1		11/06/20 15:04		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas City	y					
Total Dissolved Solids	420	mg/L	10.0	10.0	1		11/05/20 13:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Anal	ytical Services	- Kansas City	y					
Chloride	5.9	mg/L	1.0	0.39	1		11/25/20 21:33	16887-00-6	
Fluoride	0.22	mg/L	0.20	0.075	1		11/25/20 21:33	16984-48-8	
Sulfate	29.8	mg/L	2.0	0.56	2		11/25/20 22:30	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 687553 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

METHOD BLANK: 2778593 Matrix: Water

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<11.7	100	11.7	11/09/20 13:31	
Calcium	ug/L	<32.4	200	32.4	11/09/20 13:31	
Iron	ug/L	<26.8	50.0	26.8	11/09/20 13:31	
Magnesium	ug/L	<19.7	50.0	19.7	11/09/20 13:31	
Manganese	ug/L	< 0.97	5.0	0.97	11/09/20 13:31	
Potassium	ug/L	<189	500	189	11/09/20 13:31	
Sodium	ug/L	<107	500	107	11/09/20 13:31	

LABORATORY CONTROL SAMPLE: 2778594

Date: 12/11/2020 10:54 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	998	100	85-115	
Calcium	ug/L	10000	9970	100	85-115	
Iron	ug/L	10000	10000	100	85-115	
Magnesium	ug/L	10000	10400	104	85-115	
Manganese	ug/L	1000	1010	101	85-115	
Potassium	ug/L	10000	9830	98	85-115	
Sodium	ug/L	10000	9790	98	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPI	ICATE: 2778	595		2778596							
Parameter	Units	60353404001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	103	1000	1000	1100	1100	100	100	70-130		20	
Calcium	ug/L	142000	10000	10000	152000	148000	97	51	70-130	3	20	M1
Iron	ug/L	30.6J	10000	10000	9830	9700	98	97	70-130	1	20	
Magnesium	ug/L	39800	10000	10000	49000	48000	93	82	70-130	2	20	
Manganese	ug/L	3360	1000	1000	4300	4120	94	76	70-130	4	20	
Potassium	ug/L	4970	10000	10000	14800	14500	98	96	70-130	2	20	
Sodium	ug/L	8570	10000	10000	18400	18000	98	94	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 692094 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353399002, 60353399003, 60353399005

METHOD BLANK: 2795352 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<11.7	100	11.7	12/02/20 20:03	
Calcium	ug/L	<32.4	200	32.4	12/02/20 20:03	
Iron	ug/L	<26.8	50.0	26.8	12/02/20 20:03	
Magnesium	ug/L	35.6J	50.0	19.7	12/02/20 20:03	
Manganese	ug/L	< 0.97	5.0	0.97	12/02/20 20:03	
Potassium	ug/L	<189	500	189	12/02/20 20:03	
Sodium	ug/L	<107	500	107	12/02/20 20:03	

LABORATORY CONTROL SAMPLE:	2795353
----------------------------	---------

Date: 12/11/2020 10:54 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	978	98	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Iron	ug/L	10000	9920	99	85-115	
Magnesium	ug/L	10000	9960	100	85-115	
Manganese	ug/L	1000	990	99	85-115	
Potassium	ug/L	10000	9850	99	85-115	
Sodium	ug/L	10000	9840	98	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2795	354 MS	MSD	2795355							
_	_	0353399005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	63.6J	1000	1000	1080	1080	101	101	70-130	0	20	
Calcium	ug/L	119000	10000	10000	129000	130000	93	103	70-130	1	20	
Iron	ug/L	<26.8	10000	10000	10100	10000	101	100	70-130	0	20	
Magnesium	ug/L	21700	10000	10000	31600	31600	98	99	70-130	0	20	
Manganese	ug/L	127	1000	1000	1130	1120	100	100	70-130	0	20	
Potassium	ug/L	3900	10000	10000	14000	14100	102	102	70-130	0	20	
Sodium	ug/L	5210	10000	10000	15100	15200	99	100	70-130	0	20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2795356 2795357												
			MS	MSD								
		60353399008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	67.9J	1000	1000	1060	1070	100	100	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

Date: 12/11/2020 10:54 AM

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60353404

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 2795	356		2795357							
	_		MS	MSD								
	_	0353399008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	ug/L	141000	10000	10000	150000	147000	87	65	70-130	1	20	M1
Iron	ug/L	8540	10000	10000	18400	18100	98	96	70-130	1	20	
Magnesium	ug/L	35200	10000	10000	44700	44500	95	94	70-130	0	20	
Manganese	ug/L	242	1000	1000	1220	1220	98	98	70-130	0	20	
Potassium	ug/L	4420	10000	10000	14500	14400	100	100	70-130	0	20	
Sodium	ug/L	12900	10000	10000	22700	22500	98	96	70-130	1	20	

Project: AMEREN LCL1 Pace Project No.: 60353404

QC Batch: 687538

Analysis Method: SM 2320B QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

> Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

METHOD BLANK: 2778499 Matrix: Water

 $60353404001,\,60353404002,\,60353404003,\,60353404004,\,60353404005$ Associated Lab Samples:

> Blank Reporting

MDL Qualifiers Parameter Units Result Limit Analyzed 8.4 Alkalinity, Total as CaCO3 <8.4 20.0 11/06/20 09:43 mg/L

LABORATORY CONTROL SAMPLE: 2778500

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 499 100 90-110

SAMPLE DUPLICATE: 2778501

60353402001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 275 Alkalinity, Total as CaCO3 mg/L 277 10

SAMPLE DUPLICATE: 2778502

Date: 12/11/2020 10:54 AM

60353404001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 499 2 Alkalinity, Total as CaCO3 mg/L 510 10

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 687540 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353399002, 60353399003, 60353399005

METHOD BLANK: 2778511 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <8.4 20.0 8.4 11/06/20 13:23

LABORATORY CONTROL SAMPLE: 2778512

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 510 102 90-110

SAMPLE DUPLICATE: 2778513

 Parameter
 Units
 60353399005 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 374
 371
 1
 10

SAMPLE DUPLICATE: 2778514

Date: 12/11/2020 10:54 AM

60353399008 Dup Max RPD RPD Parameter Units Result Result Qualifiers 528 10 Alkalinity, Total as CaCO3 mg/L 547 4

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 687484 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353399002, 60353399003, 60353399005

METHOD BLANK: 2778180 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 11/05/20 13:56

LABORATORY CONTROL SAMPLE: 2778181

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2778491

60353399005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 420 **Total Dissolved Solids** mg/L 430 2 10

SAMPLE DUPLICATE: 2778492

Date: 12/11/2020 10:54 AM

60353399008 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 527 mg/L 561 6 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SAMPLE DUPLICATE: 2779176

SAMPLE DUPLICATE: 2779177

Parameter

Total Dissolved Solids

Total Dissolved Solids

Date: 12/11/2020 10:54 AM

Parameter

AMEREN LCL1

Project:

QUALITY CONTROL DATA

Pace Project No.: 60353404 QC Batch: 687684 Analysis Method: SM 2540C QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids Laboratory: Pace Analytical Services - Kansas City Associated Lab Samples: 60353404001 METHOD BLANK: 2779174 Matrix: Water Associated Lab Samples: 60353404001 Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Total Dissolved Solids <5.0 5.0 5.0 11/06/20 08:46 mg/L LABORATORY CONTROL SAMPLE: 2779175 Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1020 102 80-120

Dup

Result

Dup

Result

300

562

RPD

RPD

2

3

Max

RPD

Max

RPD

10

10

Qualifiers

Qualifiers

60353402001

Result

60353404001

Result

296

579

Units

mg/L

Units

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 688098 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353404002, 60353404003, 60353404004, 60353404005

METHOD BLANK: 2781156 Matrix: Water

Associated Lab Samples: 60353404002, 60353404003, 60353404004, 60353404005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/09/20 13:54

LABORATORY CONTROL SAMPLE: 2781157

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2781158

 Parameter
 Units
 60353404002 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 801
 808
 1
 10

SAMPLE DUPLICATE: 2781159

Date: 12/11/2020 10:54 AM

60353603001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 648 10 mg/L 642 1

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 687877 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

METHOD BLANK: 2779939 Matrix: Water

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.36	1.0	0.36	11/10/20 13:20	
Fluoride	mg/L	< 0.085	0.20	0.085	11/10/20 13:20	
Sulfate	mg/L	< 0.42	1.0	0.42	11/10/20 13:20	

METHOD BLANK: 2782514 Matrix: Water

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.36	1.0	0.36	11/11/20 09:01	
Fluoride	mg/L	<0.085	0.20	0.085	11/11/20 09:01	
Sulfate	mg/L	< 0.42	1.0	0.42	11/11/20 09:01	

METHOD BLANK: 2783729 Matrix: Water

Associated Lab Samples: 60353404001, 60353404002, 60353404003, 60353404004, 60353404005

mg/L

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.36	1.0	0.36	11/12/20 09:08	
Fluoride	mg/L	< 0.085	0.20	0.085	11/12/20 09:08	
Sulfate	mg/L	<0.42	1.0	0.42	11/12/20 09:08	

LABORATORY CONTROL SAMPLE: 2779940 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 5.1 102 90-110 Fluoride mg/L 2.5 2.5 102 90-110

5

LABORATORY CONTROL SAMPLE: 2782515

Sulfate

Date: 12/11/2020 10:54 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		5.2	103	90-110	
Fluoride	mg/L	2.5	2.7	108	90-110	
Sulfate	mg/L	5	5.2	105	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

5.4

108

90-110

Date: 12/11/2020 10:54 AM

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60353404

LABORATORY CONTROL	SAMPLE:	2783730										
Damanatan		l laita	Spike	LC		LCS	% Re		D = 1:4: = ==			
Parameter		Units	Conc.	Res		% Rec	Limit		Qualifiers	_		
Chloride		mg/L		5	5.2	103		90-110				
Fluoride		mg/L	2.		2.7	109		90-110				
Sulfate		mg/L		5	5.2	104	4 8	90-110				
MATRIX SPIKE & MATRIX	SPIKE DUPL		941		2779942							
			MS	MSD								
		60353402001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.2	5	5	7.0	7.0	96	96	80-120	0	15	
Fluoride	mg/L	0.37	2.5	2.5	2.8	2.8	96	96	80-120	0	15	
				_		400	400	400	00 400	0	15	
Sulfate	mg/L	7.6	5	5	12.8	12.8	103	103	80-120	U	13	
				5	12.8 		103	103	80-120			
Sulfate MATRIX SPIKE & MATRIX				MSD 5			103	103	80-120			
			943				103 MS	MSD	80-120 % Rec		Max	
		ICATE: 2779	943 MS	MSD	2779944					RPD		Qual
MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2779 60353404001	943 MS Spike	MSD Spike	2779944 MS	MSD	MS	MSD	% Rec		Max RPD	Qual
MATRIX SPIKE & MATRIX Parameter	SPIKE DUPL Units	LICATE: 2779 60353404001 Result	943 MS Spike Conc.	MSD Spike Conc.	2779944 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride	SPIKE DUPL Units mg/L	LICATE: 2779 60353404001 Result 1.8	943 MS Spike Conc.	MSD Spike Conc.	2779944 MS Result	MSD Result	MS % Rec 93	MSD % Rec	% Rec Limits 80-120	RPD 0	Max RPD 15 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L	LICATE: 2779 60353404001 Result 1.8 0.33 30.9	943 MS Spike Conc. 5 2.5 25	MSD Spike Conc. 5 2.5	2779944 MS Result 6.5 2.6	MSD Result 6.5 2.6 56.7	MS % Rec 93 92	MSD % Rec 94 92	% Rec Limits 80-120 80-120	RPD 0 0	Max RPD 15 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride	SPIKE DUPL Units mg/L mg/L mg/L	LICATE: 2779 60353404001 Result 1.8 0.33 30.9	943 MS Spike Conc. 5 2.5 25	MSD Spike Conc. 5 2.5	2779944 MS Result 6.5 2.6 56.6	MSD Result 6.5 2.6 56.7	MS % Rec 93 92	MSD % Rec 94 92	% Rec Limits 80-120 80-120	RPD 0 0	Max RPD 15 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L	LICATE: 2779 60353404001 Result 1.8 0.33 30.9	943 MS Spike Conc. 5 2.5 25	MSD Spike Conc. 5 2.5 25	2779944 MS Result 6.5 2.6 56.6	MSD Result 6.5 2.6 56.7	MS % Rec 93 92	MSD % Rec 94 92	% Rec Limits 80-120 80-120	RPD 0 0	Max RPD 15 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L	LICATE: 2779 60353404001 Result 1.8 0.33 30.9 LICATE: 2779	943 MS Spike Conc. 5 2.5 25	MSD Spike Conc. 5 2.5 25	2779944 MS Result 6.5 2.6 56.6	MSD Result 6.5 2.6 56.7	MS % Rec 93 92 103	MSD % Rec 94 92 103	% Rec Limits 80-120 80-120	RPD 0 0	Max RPD 15 15 15	Qual
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX Parameter	SPIKE DUPL Units mg/L mg/L SPIKE DUPL	1.8 0.33 30.9 LICATE: 2779	943 MS Spike Conc. 5 2.5 25 945 MS Spike	MSD Spike Conc. 5 2.5 25 MSD Spike	2779944 MS Result 6.5 2.6 56.6	MSD Result 6.5 2.6 56.7	MS % Rec 93 92 103	MSD % Rec 94 92 103	% Rec Limits 80-120 80-120 80-120	8PD 0 0	Max RPD 15 15 15 15	
MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX	SPIKE DUPL Units mg/L mg/L mg/L SPIKE DUPL Units	1.8 0.33 30.9 LICATE: 2779 60352861002 Result	943 MS Spike Conc. 5 2.5 25 WS Spike Conc.	MSD Spike Conc. 5 2.5 25 MSD Spike Conc.	2779944 MS Result 6.5 2.6 56.6 MS Result	MSD Result 6.5 2.6 56.7 MSD Result	MS % Rec 93 92 103 MS % Rec	MSD % Rec 94 92 103 MSD % Rec	% Rec Limits 80-120 80-120 80-120	RPD 0 0 0 0 0	Max RPD 15 15 15 15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60353404

QC Batch: 691503 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60353399002, 60353399003, 60353399005

METHOD BLANK: 2793442 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.39 1.0 0.39 11/25/20 16:29 Fluoride mg/L <0.075 0.20 0.075 11/25/20 16:29 Sulfate mg/L < 0.28 1.0 0.28 11/25/20 16:29

METHOD BLANK: 2794765 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	11/30/20 09:10	
Fluoride	mg/L	< 0.075	0.20	0.075	11/30/20 09:10	
Sulfate	mg/L	<0.28	1.0	0.28	11/30/20 09:10	

METHOD BLANK: 2794769 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	11/30/20 09:07	
Fluoride	mg/L	< 0.075	0.20	0.075	11/30/20 09:07	
Sulfate	mg/L	<0.28	1.0	0.28	11/30/20 09:07	

METHOD BLANK: 2796664 Matrix: Water

Associated Lab Samples: 60353399002, 60353399003, 60353399005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	11/18/20 16:09	
Fluoride	mg/L	< 0.075	0.20	0.075	11/18/20 16:09	
Sulfate	mg/L	<0.28	1.0	0.28	11/18/20 16:09	

LABORATORY CONTROL SAMPLE: 2793443

Date: 12/11/2020 10:54 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.7	94	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LCL1

60353404

Project:

Sulfate

Date: 12/11/2020 10:54 AM

Pace Project No.:

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 2793443 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5 5.0 99 90-110 LABORATORY CONTROL SAMPLE: 2794766 LCS LCS % Rec Spike Parameter Units Conc. % Rec Limits Qualifiers Result Chloride mg/L 5 5.0 100 90-110 2.5 Fluoride 2.5 102 90-110 mg/L Sulfate mg/L 5 5.3 106 90-110 LABORATORY CONTROL SAMPLE: 2794770 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 4.7 94 90-110 Fluoride mg/L 2.5 2.4 96 90-110

5.0

99

90-110

LABORATORY CONTROL SAMPLE:	2796665	Spike	LCS	LCS	% Rec	
		Spike				
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.9	99	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

5

mg/L

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2793	444		2793445							
Parameter	Units	60353386001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	12.1	5	5	17.0	16.8	98	94	80-120	1	15	
Fluoride Sulfate	mg/L mg/L	0.34 121	2.5 50	2.5 50	2.5 176	2.5 174	88 110	86 107	80-120 80-120	2 1	15 15	

MATRIX SPIKE & MATRIX SF	IKE DUPLI	CATE: 2793	456		2793457							
			MS	MSD								
		60353399005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5.9	5	5	10.5	10	90	81	80-120	5	15	
Fluoride	mg/L	0.22	2.5	2.5	2.5	2.3	89	81	80-120	8	15	
Sulfate	mg/L	29.8	10	10	41.3	41.5	115	117	80-120	0	15	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LCL1
Pace Project No.: 60353404

SAMPLE DUPLICATE: 2793458

Date: 12/11/2020 10:54 AM

Parameter	Units	60353399005 Result	Dup Result	RPD	Max RPD	Qualifiers
Chloride	mg/L	5.9	5.9	0	15	
Fluoride	mg/L	0.22	0.23	1	15	
Sulfate	mg/L	29.8	29.5	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LCL1
Pace Project No.: 60353404

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/11/2020 10:54 AM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Date: 12/11/2020 10:54 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LCL1
Pace Project No.: 60353404

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60353399002	L-BMW-1S	EPA 200.7	692094	EPA 200.7	692180
60353399003	L-BMW-2S	EPA 200.7	692094	EPA 200.7	692180
60353399005	L-MW-26	EPA 200.7	692094	EPA 200.7	692180
60353404001	L-TMW-1	EPA 200.7	687553	EPA 200.7	687760
60353404002	L-TMW-2	EPA 200.7	687553	EPA 200.7	687760
60353404003	L-TMW-3	EPA 200.7	687553	EPA 200.7	687760
60353404004	L-UWL-DUP-1	EPA 200.7	687553	EPA 200.7	687760
60353404005	L-UWL-FB-1	EPA 200.7	687553	EPA 200.7	687760
60353399002	L-BMW-1S	SM 2320B	687540		
60353399003	L-BMW-2S	SM 2320B	687540		
60353399005	L-MW-26	SM 2320B	687540		
60353404001	L-TMW-1	SM 2320B	687538		
60353404002	L-TMW-2	SM 2320B	687538		
60353404003	L-TMW-3	SM 2320B	687538		
60353404004	L-UWL-DUP-1	SM 2320B	687538		
60353404005	L-UWL-FB-1	SM 2320B	687538		
60353399002	L-BMW-1S	SM 2540C	687484		
60353399003	L-BMW-2S	SM 2540C	687484		
60353399005	L-MW-26	SM 2540C	687484		
60353404001	L-TMW-1	SM 2540C	687684		
60353404002	L-TMW-2	SM 2540C	688098		
60353404003	L-TMW-3	SM 2540C	688098		
60353404004	L-UWL-DUP-1	SM 2540C	688098		
60353404005	L-UWL-FB-1	SM 2540C	688098		
60353399002	L-BMW-1S	EPA 300.0	691503		
60353399003	L-BMW-2S	EPA 300.0	691503		
60353399005	L-MW-26	EPA 300.0	691503		
60353404001	L-TMW-1	EPA 300.0	687877		
60353404002	L-TMW-2	EPA 300.0	687877		
60353404003	L-TMW-3	EPA 300.0	687877		
60353404004	L-UWL-DUP-1	EPA 300.0	687877		
60353404005	L-UWL-FB-1	EPA 300.0	687877		

Sample Condition Upon Receipt

Client Name: Golder ASSOC		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace ☐ Xroad Client ☐ Other ☐
Tracking #: Pa	ace Shipping Label Used	d? Yes □ Nodî
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals intact: Yes] No □
Packing Material: Bubble Wrap □ Bubble Bags	;□	None □ Other C C C
Thermometer Used: 7099 Type	of Ice Wet Blue No	
Cooler Temperature (°C): As-read (. C) Corr. Fac	ctor +0 & Correct	Date and initials of person examining contents: //- 4-202
Temperature should be above freezing to 6°C	700	
Chain of Custody present:	Yes No N/A	_
Chain of Custody relinquished:	es 🗆 No 🗆 N/A	
Samples arrived within holding time:	□Nes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	Yes ONO ON/A	
Pace containers used:	Yes No N/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No N/A	
Filtered volume received for dissolved tests?	□Yes □No ANA	
Sample labels match COC: Date / time / ID / analyses	Yes Ono On/A	
Samples contain multiple phases? Matrix: (())	── □Yes ŊNo □N/A	*
Containers requiring pH preservation in compliance?	Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	60000	date/fillle added.
Cyanide water sample checks:	1000110	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No N/A	
Headspace in VOA vials (>6mm):	□Yes □No DN/A	
Samples from USDA Regulated Area: State:	□Yes □No N/A	
 Additional labels attached to 5035A / TX1005 vials in the fiel	d? □Yes □No □MMA	
Client Notification/ Resolution: Copy COC	to Client? Y N	Field Data Required? Y / N
Person Contacted: Date	/Time:	=====
Comments/ Resolutio REVIEWED		
By jchurch at 10:10 am, 11/5/20		
Project Manager Review:	Date	<u> </u>

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Section A	lient Information:	Section B Required Project Information:)formation:				ú S	Section C		:										Page:	-	9	-	
Company	Golder Associates	Report To: Jeffrey Ingram	Ingram				A	Attention:	ormatic				1						_	1	-		-	7
Address	40574		5										H											
odies	13515 Barrett Parkway Drive, Ste 260	Copy To: Ryan F	Feldman	Ryan Feldmann/Eric Schneider	eider		ŭ	Company Name:	lame:							REGU	LATO	REGULATORY AGENCY	ENCY	Ì	1			
	Ballwin, MO 63021		ľ				Ac	Address:								Z	NPDES	٣	SROUN	GROUNDWATER	, w	DRINK	DRINKING WATER	
mail To	jeffrey ingram@golder.com	Purchase Order No.	9				g &	Pace Quote								j	UST	6 "	RCRA	V		OTHER		
hone:	Fax: 636-724-9323	Project Name: Ameren LCI	meren L	CL1 Labad	1 Labadie Energy Center	Senter	u S	Pace Project		Jamie Church	urch				T	Site	Site Location	L						
edne	equested Due Date/TAT: Standard	Project Number: 153-140602	53-1406		0001C (COC #4)		g.	Pace Profile #:	#: 9285	35						.,	STATE:	1	Ø ■	1				
П							1					H	"	Sedne	ited A	nalysi	is Filte	Requested Analysis Filtered (Y/N)	Į.					
		(Hal of	(Albic	TOO	COLLECTED				Pre	Preservatives	ves		Z ↑ N / A	z	z	z	z	z						
	DRINKING WATER WASTE WATER WASTE WATER PRODUCT SOIL/SOLID OIL	Seboo bilev ees	SCENT OF COLOR	COMPOSITE	COMPOSITE	SITE RAB								alsteM n						(N/A)				
# MƏTI	SAMPLE ID (A.Z. 0-9) Sample IDs MUST BE UNIQUE	MATRIX CODE (s	SAMPLE TYPE (G=	E E	DATE	E M	SAMPLE TEMP AT C	# OF CONTAINERS	^E ONH [†] OS ^z H	N9OH HCI	Na _z S _z on Nethanol	Офрег	teaT sisylsnA J	Ayp III and Cat'A	SO.	Appendix IV Meta Aercury	82S muibes 82S muibes	077 110000		Residual Chlorine		225	17045550	, ,
-	L-TMW-1	WT	O	-	1115/20	195		3-	7	-			-	卜	1		1	1	F	F	3	a r i ofer	NO.1 Lab	
2	L-TMW-2	TW	9		-	1120		-	-	-	F		_	-	-	H		ļ	F	F				
6	L-TMW-3	WT	g	_	4	1225		F	F		F			E	F	-		İ	F	F				
4	L-MW-26	WT	υ	_	11/2/20 1150	1150			F		F					F			F					
2	L-BMW-1S	. TW	O	_		1020														F				
9	L-BMW-2S	MT O	U	_	4	1153															-			
^	L-UWL-DUP-1	WT	Ø		11/3/20	l																		
80	L-UWL-FB-1	MT W	O	_		1245			F		H								F					
6	L-UWL-MS-1	W	9	_		1015																		
9	L-UWL-MSD-1	D TW	ø	-	4	1015		-1	4				4	7	7								2	
=		₩.	U	1																				
2		WT 0	9					Ξ																
	ADDITIONAL COMMENTS	RELING	RELINQUISHED BY	BY / AFFILIATION	NOI	DATE		TIME			ACCEPTED BY / AFFILIATION	TEDE	Y / AF	FILIATION	N N	Ĺ	DATE	F	TIME	1	SAM	SAMPLE CONDITIONS	SNOILI	
EPA 2	EPA 200,7: Fe, Mg, Mn. K, Na, Ca, B	houl	1	Coch		02/5/1		(1850			7	1	7	3		#	Q:h://	IO	257	1.6				
							+		-			-												T
									+			1						1						
				SAMPL	SAMPLER NAME AND SIGNATURE	IND SIGNA	TURE		-			1				-		-	Г	0	uc	let	act	
					PRINT Name of SAMPLER:	ie of SAMPI	Ë	1/2	1	12/2	1 3		k.	l						, uj d	(N/Y)	stody a Cog	es Int	(N/)
					SIGNATUR	SIGNATURE of SAMPLER:	ER.	1	1	7	1	1	2 2	DATE Signed	e e	1/0	1/03/13	~		məT	eseR esi	Seale	ldms	1)
							1	1	1		1		1.0	i	÷	200	4 1 10	5				:	3	_

MEMORANDUM

DATE December 14, 2020 **Project No.** 153140602

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60353404

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates Inc.		Proje	ect Manag	er: J. Ingram			
	Name: Ameren - LEC - LCL1		Project Number: 153140602					
	er: A. Muehlfarth		-		12/14/2020			
1 -6	ory: Pace Analytical Services, LLC		CDC	3 #: 603534	04			
Laborat	cal Method (type and no.): EPA 200.7 (Total Metals); SI	 И2320В						
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste			,,				
	Names L-TMW-1, L-TMW-2, L-TMW-3, L-UWL-DUP-1, L-I	JWL-FB	-1, L-BMW	/-1S, L-BMV	V-2S, L-MW-26			
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).			
Field In	formation	YES	NO	NA	COMMENTS			
a)	Sampling dates noted?	х			11/02/2020- 11/03/2020			
b)	Sampling team indicated?	х			ВТТ			
c)	Sample location noted?	х		П				
d)	Sample depth indicated (Soils)?	\Box		×				
e)	Sample type indicated (grab/composite)?	×			Grab			
f)	Field QC noted?	×		П	See Notes			
,	Field parameters collected (note types)?	×		П	pH, Sp.Cond, ORP, Temp, DO, Turb			
g)	, , ,	_			p.,, epissiia, e.u., temp, 2 e, tai2			
h)	Field Calibration within control limits?	×						
i)	Notations of unacceptable field conditions/performa	nces ire		ogs or field	notes?			
			х					
j)	Does the laboratory narrative indicate deficiencies?		Ш	Х				
	Note Deficiencies:							
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS			
a)	Was the COC properly completed?	х						
b)	Was the COC signed by both field	_	_	_				
	and laboratory personnel?	Х						
c)	Were samples received in good condition?	х						
Genera	ll (reference QAPP or Method)	YES	NO	NA	COMMENTS			
۵)	Ware held times met for sample protrectment?							
a)	Were hold times met for sample pretreatment?	×						
b)	Were hold times met for sample analysis?	X						
c)	Were the correct preservatives used?	X						
d)	Was the correct method used?	X						
e)	Were appropriate reporting limits achieved?	x			Con Natas			
f)	Were any sample dilutions noted?	х			See Notes			
a)	Were any matrix problems noted?	X			See Notes			

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	Х			See Notes
b)	Were analytes detected in the field blank(s)?	Х			See Notes
c)	Were analytes detected in the equipment blank(s)?			Х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	Х			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ites	YES	NO	NA	COMMENTS
. а)	Were field duplicates collected (note original and du	ıplicate	sample r	names)?	
,					See Notes
b)	Were field dup. precision criteria met (note RPD)?		х		See Notes
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)′	?	
,	, , , , , , , , , , , , , , , , , , , ,	х			
d)	Were lab dup. precision criteria met (note RPD)?	X			Max RPD: 6% (<10%)
Dii d O	Accordangle	VEO	NO	NIA	COMMENTO
	tandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,	Ш	Х		
I- \	analytes included and concentrations)?				
b)	Was the %D within control limits?	Ш		х	
Matrix \$	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		X		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
b)	Was MSD accuracy criteria met?		x		See Notes
,	Recovery could not be calculated since sample contained high concentration of analyte?			×	
c)	Were MS/MSD precision criteria met?	×			
٥,	viole inclines producti ancha met.				
Comme	ents/Notes:				
Sulfat	e was diluted in several samples, no qualification r	100000	an/		
Juliati	e was unuted in several samples, no qualification i		aiy.		
Metho	od blank:				
27953	352: Magnesium (35.6J), associated with samples	60353	399002,	-003, and	-005. Sample results >10x the blank
result,	no qualification necessary.				

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes: Field Blanks: L-UWL-FB-1 @ L-TMW-3: Calcium (45.9J), Magnesium (22.4J), TDS (5.5). Sample results >10x blank results, no qualification DUP: L-UWL-DUP-1@ L-TMW-2: RPD for Iron (101.9%) exceeds limit (20%). MS/MSD: 2778595/2778596: MSD % recovery low for Calcium, associated with sample L-TMW-1. 2795356/2795357: MSD % recovery low for Calcium. MS/MSD performed on unrelated sample, no qualification necessary.

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-2	Iron	1170	J	DUP RPD exceeds limit
L-UWL-DUP-1	"	3600	J	"
L-TMW-1	Calcium	142000	J	MSD% recovery low
	1 MIII H			<u> </u>
Signature:	ann Muhlforth			Date: 12/14/2020

Revised May 2004 Page 4 of 4

January 2021 153140602

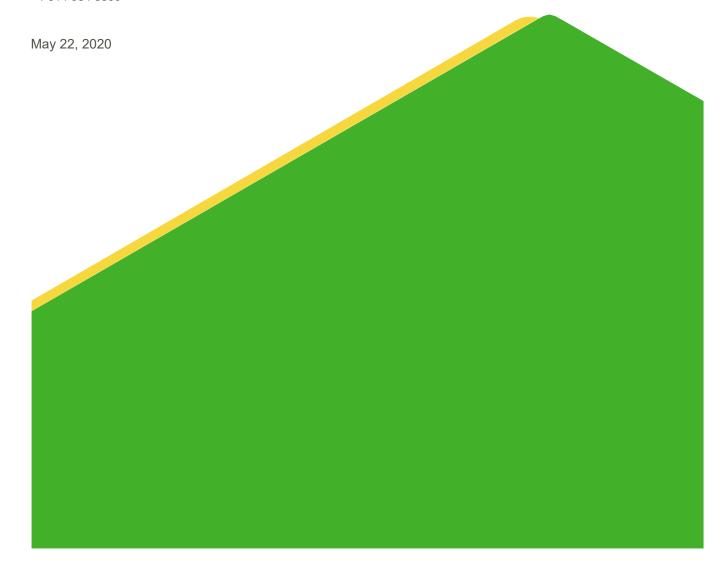
APPENDIX B

Alternative Source Demonstration – November 2019 Sampling Event

LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:


Ameren Missouri

1901 Chouteau Ave, St. Louis, MO 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021, USA +1 314 984 8800

Table of Contents

1.0	CERTI	IFICATION STATEMENT	1
2.0	INTRO	DDUCTION	2
3.0	SITE	DESCRIPTION AND BACKGROUND	2
	3.1	Geological and Hydrogeological Setting	2
	3.2	Utility Waste Landfill Cell 1 – LCL1	2
	3.3	CCR Rule Groundwater Monitoring	3
4.0	REVIE	W OF THE STATISTICALLY SIGNIFICANT INCREASES	4
5.0	EVIDE	NCE OF SSI FROM ALTERNATIVE SOURCE	4
	5.1	CCR Indicators	5
	5.2	Analysis of Groundwater Flow	5
	5.3	SSIs at MW-26	6
	5.3.1	Boron Concentrations	6
	5.3.2	Chloride Concentrations	7
	5.3.3	Total Dissolved Solids Concentrations	7
6.0	DEMO	NSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT	8
7 0	RFFF	RENCES	9

Tables

- Table 1: November 2019 Detection Monitoring Results
- Table 2: Types of CCR and Typical Indicator Parameters (in text)
- Table 3: Groundwater Flow in the Shallow Alluvial Aquifer near the LCL1

Figures

- Figure 1: Site Aerial and Shallow Monitoring Well Location Map
- Figure 2: November 2019 Boron Concentrations
- Figure 3: Time Series Plot for Sodium and Chloride Concentrations in MW-26
- Figure 4: November 2019 Chloride Concentrations
- Figure 5: Time Series and Upper Prediction Limits Plot for Total Dissolved Solids at MW-26

1.0 **CERTIFICATION STATEMENT**

This LCL1 - Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this LCL1 - Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G.

Principal, Practice Leader

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this LCL1 - Alternative Source Demonstration has been prepared to document an Alternative Source Demonstration (ASD) for Statistically Significant Increases (SSIs) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

3.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including, floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

3.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR Unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently the facility manages dry disposal of fly ash and bottom ash from the LEC.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the

intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters. In April 2017, four (4) monitoring wells were installed and added to this network along Labadie Bottoms Road (S-1, S-2, S-3, and S-4).

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information on the design and installation of the monitoring wells is provided in the LCL1 GMP and the LCL1 2017 Annual Report.

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events were completed in November 2017, May 2018, November 2018, May 2019 and November 2019. Laboratory testing was performed for the following Appendix III constituents during Detection Monitoring:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2018, background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPL were then compared to the Detection Monitoring results. If results from Detection Monitoring were higher than the calculated UPL, it is an initial exceedance, in which case a verification sample was collected and tested in accordance with the LCL1 statistical analysis plan. Per the statistical analysis plan after the May 2019 sampling event, the UPLs were updated to include four (4) additional sampling events that had been completed for Detection Monitoring.

In November 2017, there were no initial exceedances. In May 2018, three (3) initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1 and fluoride at TMW-2. Verification sampling results confirmed all four (4) SSIs. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report. This ASD concluded that the SSIs observed in the May 2018 sampling event were not caused by the LCL1, but rather primarily caused by relatively low calculated UPLs that did not reflect the full, natural variability within the alluvial aquifer.

In November 2018, four (4) initial exceedances were identified for boron, chloride and fluoride at TMW-1 and fluoride at TMW-2. Verification sampling results confirmed only the fluoride at TMW-1 result. An ASD was prepared for the November 2018 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the SSI observed in the November 2018 sampling event was not caused by the LCL1, but rather primarily caused by relatively low calculated UPLs that did not reflect the natural geochemical variability within the alluvial aquifer.

In May 2019, seven (7) initial exceedances were identified for pH, calcium, chloride, and fluoride. Verification sampling results confirmed only chloride at TMW-1. An ASD was prepared for the May 2019 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the SSI observed in the May 2019 sampling event was not caused by the LCL1, but rather primarily caused by relatively low calculated UPLs that did not reflect the natural geochemical variability within the alluvial aquifer.

In November 2019, four (4) initial exceedances were identified for boron, chloride, and TDS at MW-26 and chloride at TMW-1. Verification sampling results only confirmed the three (3) SSIs at MW-26. Results from these sampling events are provided in **Table 1**.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

The SSIs for boron, chloride, and TDS occurred at monitoring well MW-26 and the values are provided on **Table 1**. MW-26 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown on **Figure 1**, MW-26 is located to the west of the LCL1, and east of the generating plant as well as the two surface impoundments (LCPA and LCPB). Closure activities were initiated for both LCPA and LCPB during 2019.

Based on Golder's review of the pre-disposal data discussed in Section 3.2 above, as well as our comparison of the pre-disposal data with the results from the eight (8) CCR-Rule baseline events, the groundwater at the LCL1 contains low-level, pre-existing CCR impacts from units/activities that pre-dated disposal activities in the LCL1. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPL) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

5.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at the MW-26 are not the result of a release from the LCL1, but are rather from an alternative source. The following section describes the different lines of evidence, that support this ASD.

- Documentation of pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the LCL1 operation.
- Review of groundwater results prior to and after construction and CCR placement in the LCL1.

Documentation of the construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.

- Review of groundwater results in nearby monitoring wells and background monitoring wells.
- Groundwater flow direction within the uppermost alluvial aquifer.
- Constituent concentrations upgradient and downgradient of the LCL1.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Table 2: Types of CCR and Typical Indicator Parameters

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	BoronMolybdenumLithiumSulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	BromidePotassiumSodiumFluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

5.2 Analysis of Groundwater Flow

As required by the CCR Rule, groundwater level measurements are obtained at monitoring wells prior to the start of each groundwater purging and sampling event. These static groundwater elevation measurements are then used to generate potentiometric surface maps. Available potentiometric surface maps for the site from November 2017 (two years prior to this sampling event) through 2019 are provided in the 2017, 2018 and 2019 Annual Reports for the LCPA, LCPB and LCL1.

As discussed in the 2017, 2018 and 2019 annual reports, on a site-wide scale, groundwater flow directions in the uppermost aquifer are dynamic and are influenced by seasonal changes in water level of the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on the potentiometric surface maps, a general flow direction from the south (bluffs area) to the north (Missouri River) is observed under normal river conditions in the Labadie Bottoms area. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

An analysis of shallow alluvial aquifer groundwater flow in the immediate area near MW-26 in the past two years displays a more consistent groundwater flow direction. As shown on **Table 3**, groundwater flow in the shallow alluvial aquifer zone around MW-26 has been from the south or west toward the north or east for water levels measured during the past two years, with the overall net groundwater movement direction towards the northeast at approximately 17 feet per year.

Based on these potentiometric surface maps and the groundwater flow calculations, groundwater impacts from the LCL1 would be expected in the monitoring wells located to the north or east of the LCL1, in the direction of downgradient flow. MW-26 is located upgradient (west) of the LCL1; thus, elevated constituent concentrations in MW-26 are more likely attributable to an alternative source, such as the LCPA, which is hydraulically upgradient of MW-26.

5.3 SSIs at MW-26

5.3.1 Boron Concentrations

As indicated in **Table 2**, above, boron is a key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present at relatively high concentrations in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early indicator of impacts from a CCR Unit. At MW-26, boron concentrations were 423 micrograms per liter (μ g/L) in November 2019 and 162 μ g/L in January 2020 verification sampling event. Concentrations prior to the November 2019 sampling event ranged from 54.0 – 120 μ g/L. During the November 2019 event, boron concentrations in the three (3) downgradient wells for the LCL1 (TMW-1, TMW-2 and TMW-3) ranged between 97.3 – 122 μ g/L and were all in compliance with their UPLs (**Table 1**). The UPL for boron based on the background wells BMW-1S and BMW-2S is 156.1 μ g/L.

As discussed above in Section 5.2, groundwater flow in the area around MW-26 has consistently been toward the north and/or east, therefore, MW-26 has been consistently upgradient of the LCL1. As an upgradient well, elevated concentrations of boron in MW-26 are not from the LCL1, but rather, from an upgradient alternative source.

The LCPA is located southwest of the LCL1 and is currently in Corrective Action based on previous results in Detection and Assessment Monitoring. This location to the southwest makes the LCPA an upgradient source to MW-26 and the LCL1. A boron concentration map for the upper aquifer wells in the area of the LCPA and LCL1 from the November 2019 sampling event is provided in **Figure 2**. This figure displays increased boron concentrations in several of the monitoring wells intermediate to the LCPA and LCL1, and upgradient from the LCL1 (west/south), particularly S-1, S-2, L-LMW-6S, and L-LMW-7S. Concurrently, areas downgradient of the LCL1 (north/east) display lower concentrations, which are consistent with historical values and less than background levels. Based on this distribution pattern, and the known flow direction of groundwater in the area around MW-26, the SSI at MW-26 is a result of CCR impacts from the LCPA and not the LCL1.

5.3.2 Chloride Concentrations

Chloride is not listed in **Table 2** as an indicator of fly ash or boiler slag/bottom ash (EPRI 2012, EPRI 2017) because it typically has low concentrations in CCR leachate relative to typical background. It can be an indicator however, if concentrations in the source are higher than background levels. Chloride is typically a key indicator for FGD type wastes and is commonly found near salt and brine treated roadways where it can be a good indicator because it, like boron, has high mobility and low reactivity in most aquifer conditions. There is no FGD waste at the LEC, and fly ash or bottom ash/boiler slag are the typical wastes in the LCPA, LCPB, and LCL1.

Concentrations for the November 2019 sampling event and subsequent verification sampling event are 22.5 and 7.4 milligrams per liter (mg/L) respectively. The calculated UPL for MW-26 is 5.92 mg/L. Historically, based on State UWL and CCR Rule sampling, chloride concentrations have ranged from 2.7 – 18.0 mg/L. Background monitoring wells located 2-miles upgradient from the LCL1 have had chloride concentrations ranging from 1.3 to 7.4 mg/L with a UPL of 8.32 and a couple of high outliers at 8.2 and 21.2 mg/L. Additionally, during the November 2017 ASD investigation, chloride concentrations within the pore-water of the LCPA ranged from 15.2 – 25.5 mg/L.

MW-26 is located ~ 225 feet east of Labadie Bottoms Road and 75 feet south of new haul road built to transport CCR from the LEC to the LCL1 (**Figure 1**). Road salt (NaCl) is a typical alternative source for chloride, especially in monitoring wells near roadways. Road salt impacts typically consist of increases in chloride and sodium concentrations. As displayed on **Figure 3**, in well MW-26 chloride and sodium concentrations do not covary, and thus, the chloride increase does not appear to from the use of road salt.

As discussed above in Section 5.2 and 5.3.1, groundwater flow in in the area around MW-26 has consistently been toward the north or east in the past years, making MW-26 an upgradient well to the LCL1. Therefore, elevated concentrations from MW-26 are not from the LCL1 and come from an alternative source. Much like boron concentrations when chloride concentrations are compared spatially to the LCL1 (**Figure 4**), increased chloride concentrations are present in wells located between the LCPA and LCL1 in the upgradient direction (8.8 – 25.2 mg/L) and decreased chloride concentrations are present north and east of the LCL1 in the downgradient direction (1.0 – 8.0 mg/L). Based on these concentration patterns, and the predominate direction of groundwater flow in the area around MW-26, the LCPA obviously contains higher chloride concentrations than the surrounding groundwater. Thus, the SSI at MW-26 is from CCR impacts from the LCPA and not the LCL1.

5.3.3 Total Dissolved Solids Concentrations

TDS alone is not known to be a fly ash or boiler slag/bottom ash indicator (EPRI 2017, EPRI 2012). The concentration of TDS is largely based on the concentration of major ions in groundwater (calcium, magnesium, sodium, potassium, carbonates, chloride, sulfate, etc.). Although TDS alone is not a key indicator of CCR impacts, an increase in some of the major ions associated with CCR (calcium, sodium, chloride, sulfate) can represent CCR impacts.

During baseline sampling at MW-26, TDS results ranged from 486-510 mg/L with an outlier at 291 mg/L and a UPL of 520.2 mg/L. During the November 2019 sampling event, TDS was elevated with respect to historical CCR Rule sampling results at 540 mg/L and was 575 mg/L during the subsequent verification sampling event. Results for TDS from the State UWL wells ranged from 446-612 mg/L prior to the receipt of CCR with a calculated UPL of 613. Additionally, results from the background wells (BMW-1S and BMW-2S) have ranged from 366-784 mg/L, and the background UPL is 784 mg/L.

Figure 5 displays TDS concentrations over time at MW-26, BMW-1S, and BMW-2S and shows that the high values detected during the November 2019 sampling event in MW-26, while elevated with respect to historical intrawell values, are well within the bounds of historical concentrations prior to the placement of CCR in the LCL1

and lower than background concentrations at BMW-1S and BMW-2S, located ~2 miles upgradient of the LCL1. Additionally, samples for state UWL sampling collected on November 19, 2019 (~2 weeks after the CCR rule sampling event) are lower than the UPL for MW-26 with a value of 472 mg/L. Finally, the April 2020 result for TDS in MW-26 is within the range of historical intrawell values.

This information indicates that the higher concentration in MW-26 in November 2019 was not caused by a release from the LCL1, but instead can be attributed to natural variability and seasonality in the alluvial aquifer during the November 2019 sampling event, or possibly lab testing variability.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in Section 5 above, the SSIs at MW-26 were not caused by impacts from the LCL1. The SSI for TDS appears to be a result of numerous factors, but is primarily caused by relatively low calculated UPLs and a relatively small set of baseline data that do not reflect the full natural variability within the alluvial aquifer. This is because only twelve (12) samples were used to calculate the UPL for TDS and these sampling events have apparently not captured the full extent of the natural spatial and temporal variability in the alluvial aquifer especially for TDS. When results are compared to historical data from the state sampling program, as well as background data from monitoring wells located ~2-miles upgradient, it is apparent that there are no impacts from the LCL1. Based on this information, the SSI observed in MW-26 for TDS was not caused by impacts from the LCL1.

The SSIs for Boron and Chloride appear to be caused by the upgradient, unlined LCPA Surface Impoundment. The unlined LCPA is currently in corrective action (closure), whereas the construction of the LCL1, with 2-feet of compacted clay overlain by a 60-mil HDPE liner, limits the likelihood that the SSI is a result an impact from LCL1. Groundwater flow analysis from late 2017 through the November 2019 sampling event shows that groundwater flow has been consistently flowing towards the east or north. This demonstrates that MW-26 has been upgradient of the LCL1, and therefore, boron and chloride increases present in MW-26 are not from the LCL1, but are from an alternate source. Furthermore, boron and chloride concentrations upgradient of the LCL1 are and have been higher than those downgradient of the LCL1, which indicates that an alternative source is responsible for the elevated concentrations. Based on this information, the SSIs observed in MW-26 for boron and chloride were not caused by impacts from the LCL1, but, as discussed in detail in Section 5, are from the upgradient LCPA.

7.0 REFERENCES

Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.

- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019C, Updated Statistical Limits With Additional Background Data LCL1.
- Golder Associates Inc., 2019D, Updated Statistical Limits With Additional Background Data LCPB.
- Golder Associates Inc., 2020, 2019 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.
- Reitz & Jens, Inc. 2014. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

May 2020 153140602

Tables

Table 1 November 2019 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND	GROUNDWATER MONITORING WELLS								
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3	
			N	ovember 201	9 Detection M	Ionitoring Eve	nt					
DATE	NA	11/5/2019	11/5/2019	NA	11/6/2019	NA	11/5/2019	NA	11/5/2019	NA	11/5/2019	
рН	SU	6.83	7.08	6.02-7.44	7.30	6.623-7.19	6.94	6.42-7.17	6.95	5.83-7.07	6.74	
BORON, TOTAL	μg/L	122	61.2 J	DQR	423	139.7	101	136.3	97.3 J	139.7	122	
CALCIUM, TOTAL	μg/L	194,000	125,000	182,000	146,000	177,907	174,000 J	195,768	177,000	208,416	176,000	
CHLORIDE, TOTAL	mg/L	4.8	3.3	5.922	22.5	4.246	4.4	7.116	4.9	8.166	5.5	
FLUORIDE, TOTAL	mg/L	ND	0.12 J	0.2237	ND	0.2916	0.15 J	0.2707	0.13 J	DQR	0.089 J	
SULFATE, TOTAL	mg/L	29.9	28.5	33.4	18.1	122.2	109	109.9	82.6	109.6	44.5	
TOTAL DISSOLVED SOLIDS	mg/L	700	425	520.2	540	733.7	673	767.8	687	756.6	604	
				January 2020	Verification S	ampling Event	t					
DATE	NA				1/8/2020		1/7/2020					
рН	SU											
BORON, TOTAL	μg/L				162							
CALCIUM, TOTAL	μg/L											
CHLORIDE, TOTAL	mg/L				7.4		4.2					
FLUORIDE, TOTAL	mg/L											
SULFATE, TOTAL	mg/L											
TOTAL DISSOLVED SOLIDS	mg/L				575							

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 7. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 8. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 9. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

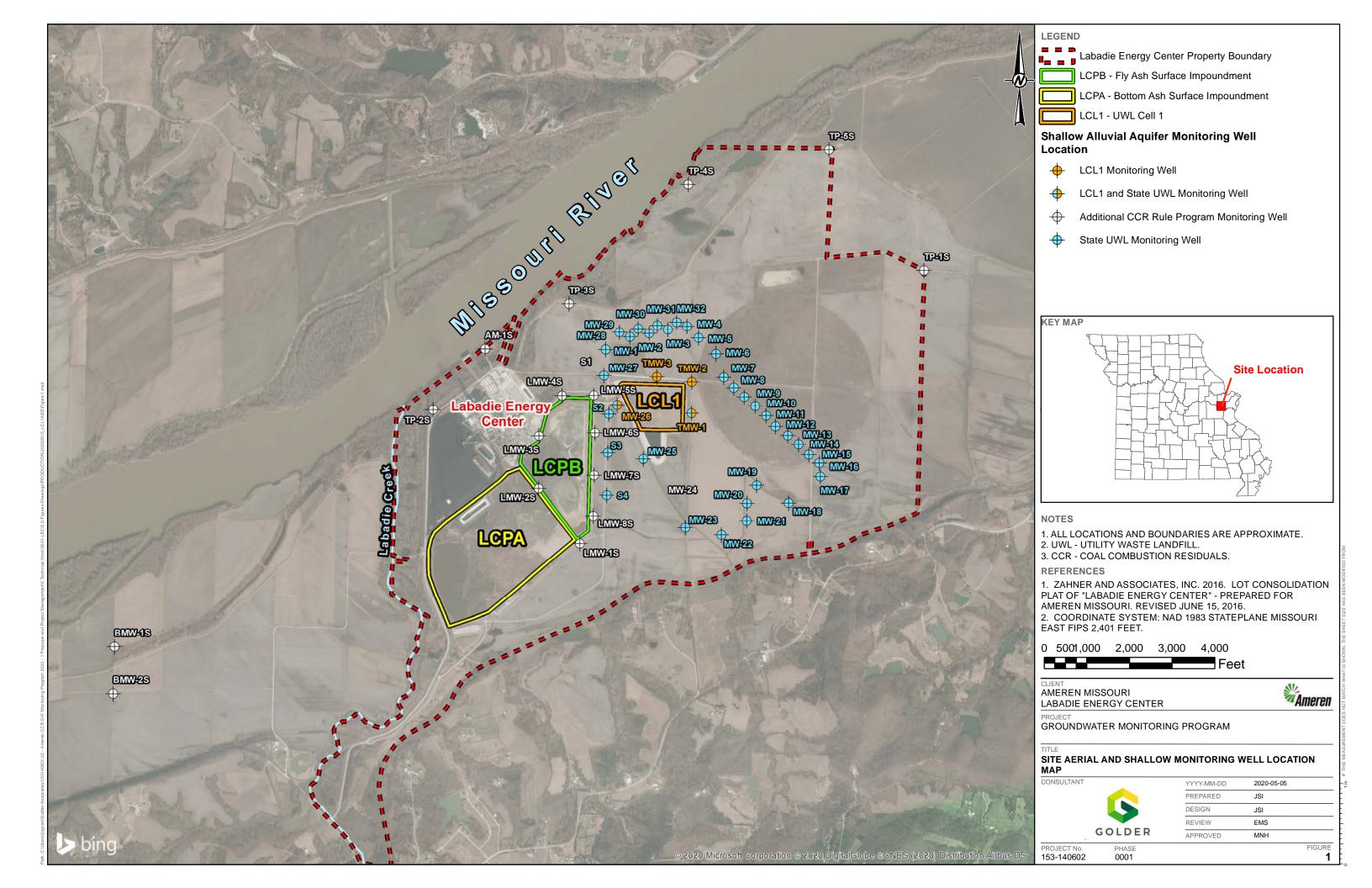
Table 3

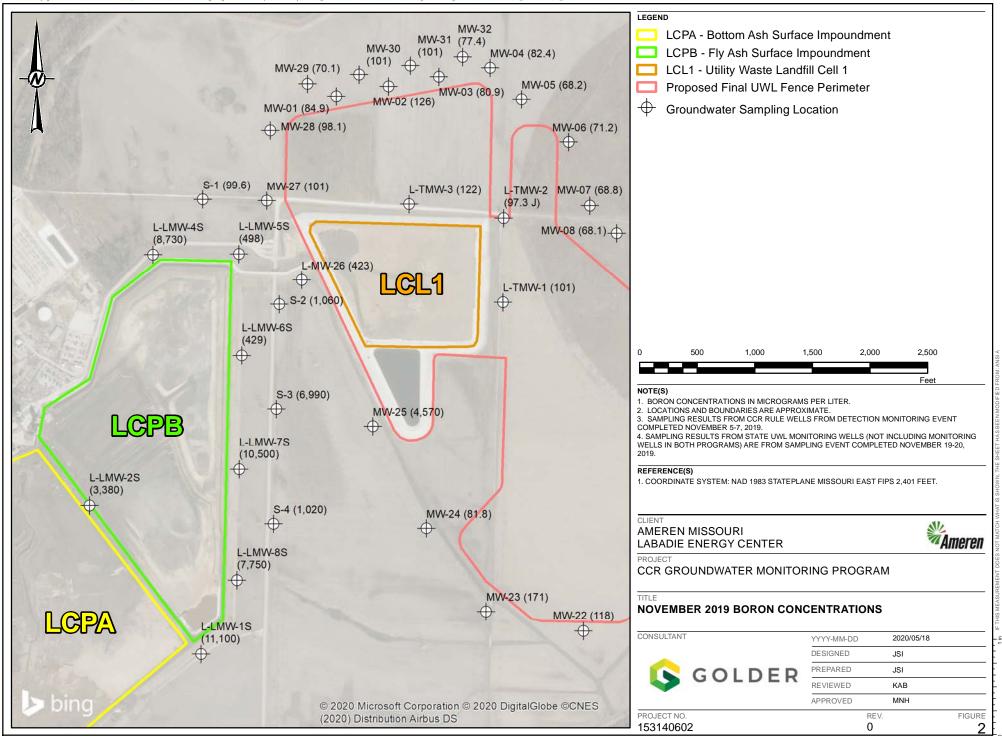
Groundwater Flow in the Shallow Alluvial Aquifer Near the LCL1 LCL1 - Utility Waste Landfill Cell 1

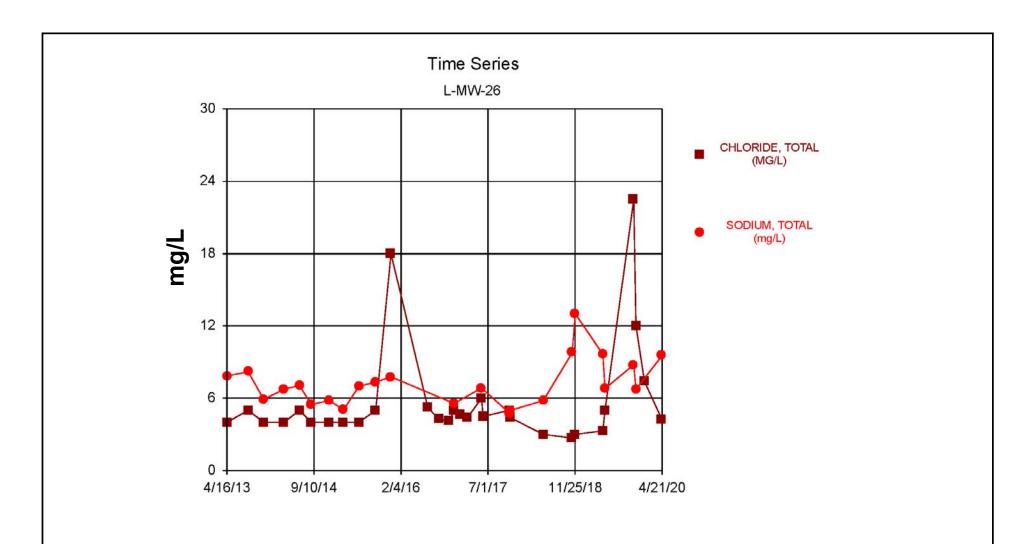
Labadie Enegy Center, Franklin County, Missouri

Baseline Sampling Event Date	Average Groundwater flow Direction (Azimuth)	Estimated Hydraulic Gradient (Feet/Foot)	Hydraulic Conductivity (Feet/Day)	Mean Hydraulic Conductivity (cm/sec)	Estimated Effective Porosity	Estimated Groundwater Velocity (Feet/Day)
11/7/2017	12	0.00027	58.33	2.1E-02	0.35	0.05
1/4/2018	340	0.00040	58.33	2.1E-02	0.35	0.07
3/5/2018	44	0.00048	58.33	2.1E-02	0.35	0.08
4/9/2018	40	0.00043	58.33	2.1E-02	0.35	0.07
5/21/2018	28	0.00038	58.33	2.1E-02	0.35	0.06
6/25/2018	19	0.00038	58.33	2.1E-02	0.35	0.06
7/24/2018	75	0.00037	58.33	2.1E-02	0.35	0.06
8/22/2018	85	0.00034	58.33	2.1E-02	0.35	0.06
9/27/2018	90	0.00047	58.33	2.1E-02	0.35	0.08
11/7/2018	51	0.00037	58.33	2.1E-02	0.35	0.06
1/2/2019	40	0.00056	58.33	2.1E-02	0.35	0.09
4/29/2019	97	0.00026	58.33	2.1E-02	0.35	0.04
10/4/2019	99	0.00080	58.33	2.1E-02	0.35	0.13
11/4/2019	92	0.00032	58.33	2.1E-02	0.35	0.05
1/6/2020	4	0.00009	58.33	2.1E-02	0.35	0.01
4/13/2020	19	0.00020	58.33	2.1E-02	0.35	0.03

Estimated Results								
Resultant Groundwater Flow Direction (Azimuth)	53							
Estimated Annual Net								
Groundwater Movement	17							
(Feet/Year)								

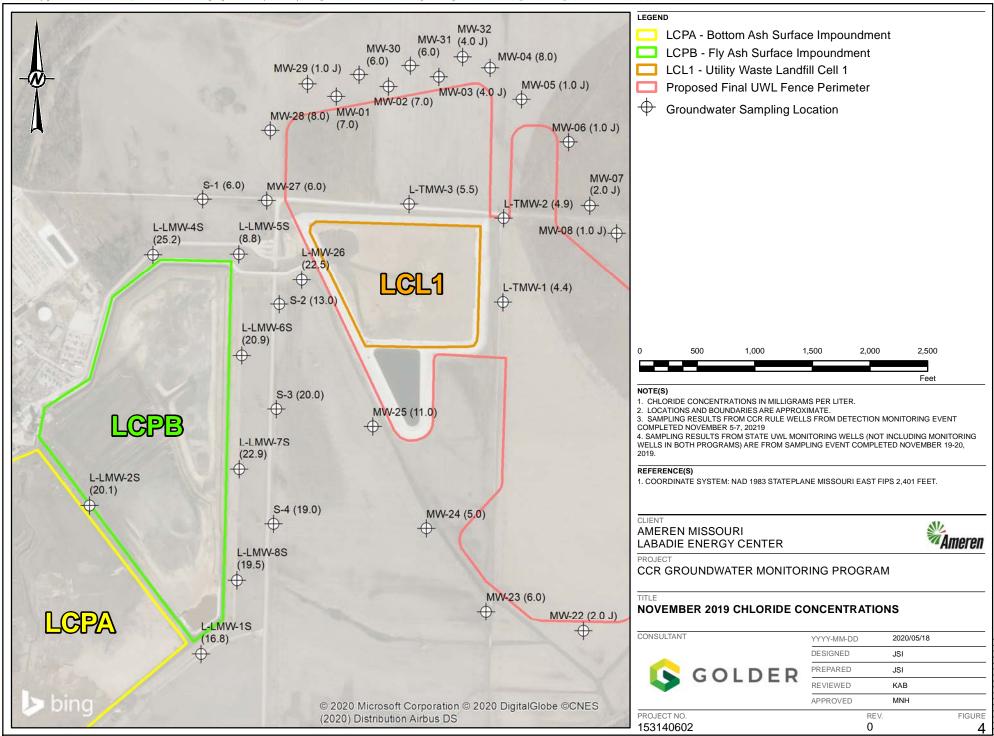

Prepared By: JSI Checked By: EMS Reviewed By: MNH

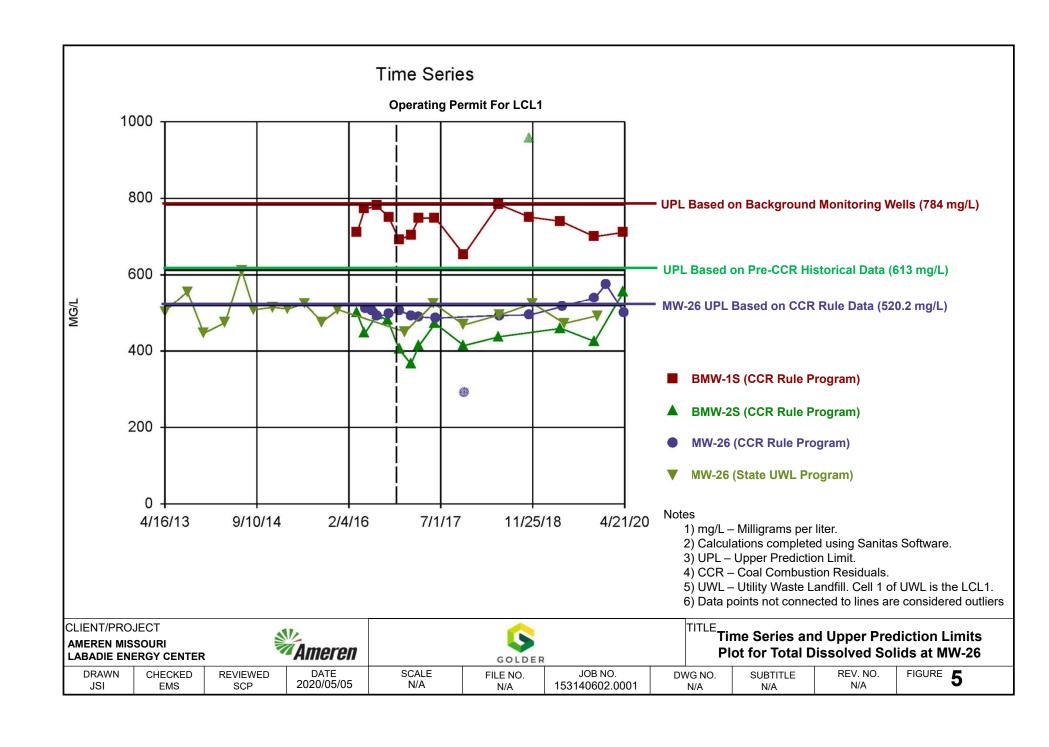

Notes:


- 1. Azimuth and Hydraulic Gradient calculated using the spreadsheet tool from the 2005 report entitled "A Spreadsheet Method For Estimating Hydraulic Gradient With Heads From Multiple Wells" submitted to Ground Water" by J.F. Devlin
- 2. Hydraulic conductivity value is the geometric mean of slug test results for the CCR compliance wells.
- 3. An effective porosity of 0.35 was used based on grain size distributions and published values (Fetter 2000, Cohen 1953, and Johnson 1967).
- 4. Azimuth is measured clockwise in degrees from north.
- 5. cm/sec centimeters per second.
- 6. Monitoring Wells LMW-1S, LMW-2S. LMW-3S, LMW-4S, LMW-5S, LMW-6S, LMW-7S, LMW-8S, MW-26, TMW-
- 1, TMW-2, TMW-3, MW-23, MW-24, MW-25, MW-27, MW-28, S-1, S-2, S-3, and S-4 were used for this analysis.

May 2020 153140602

Figures

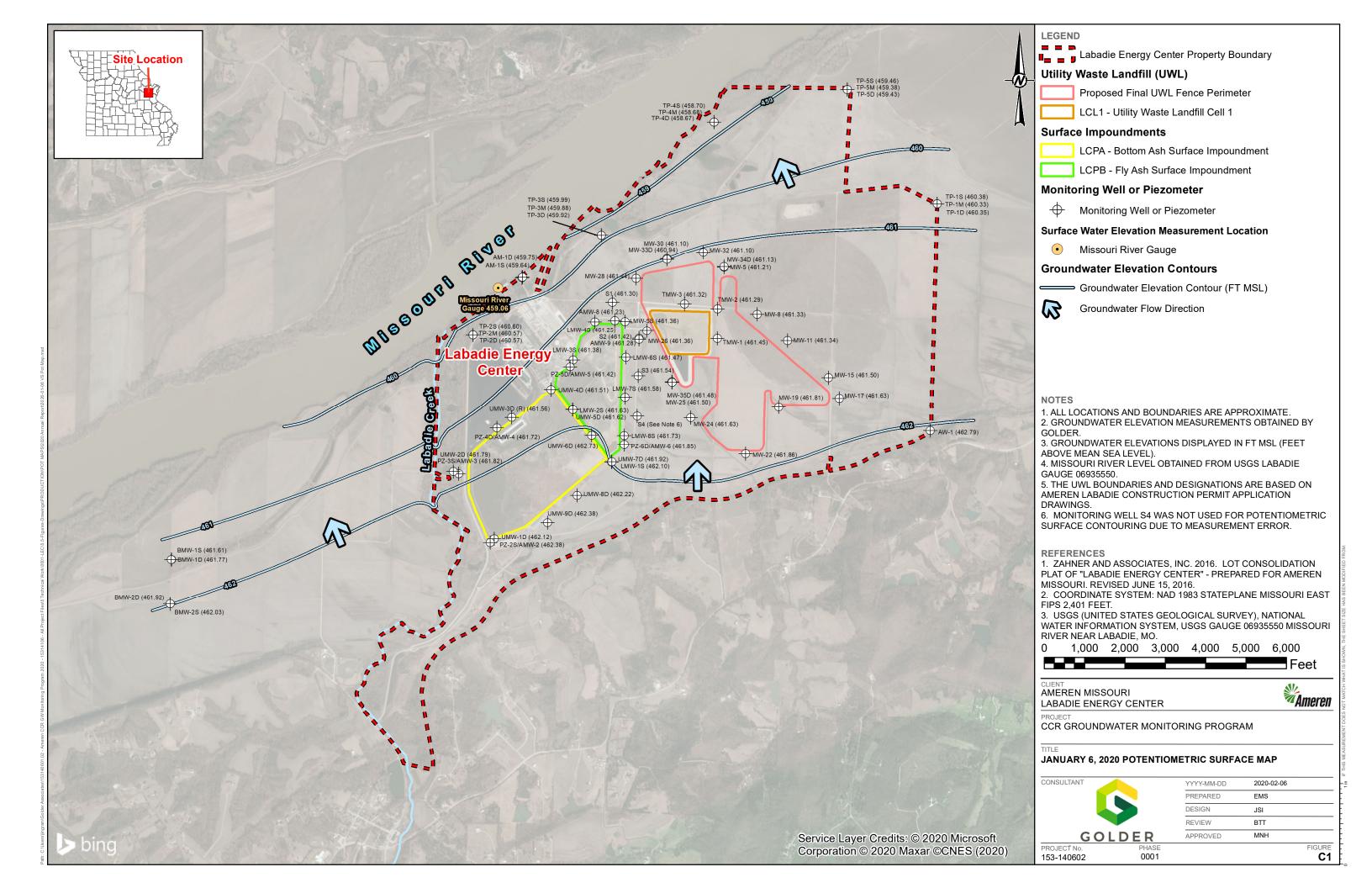


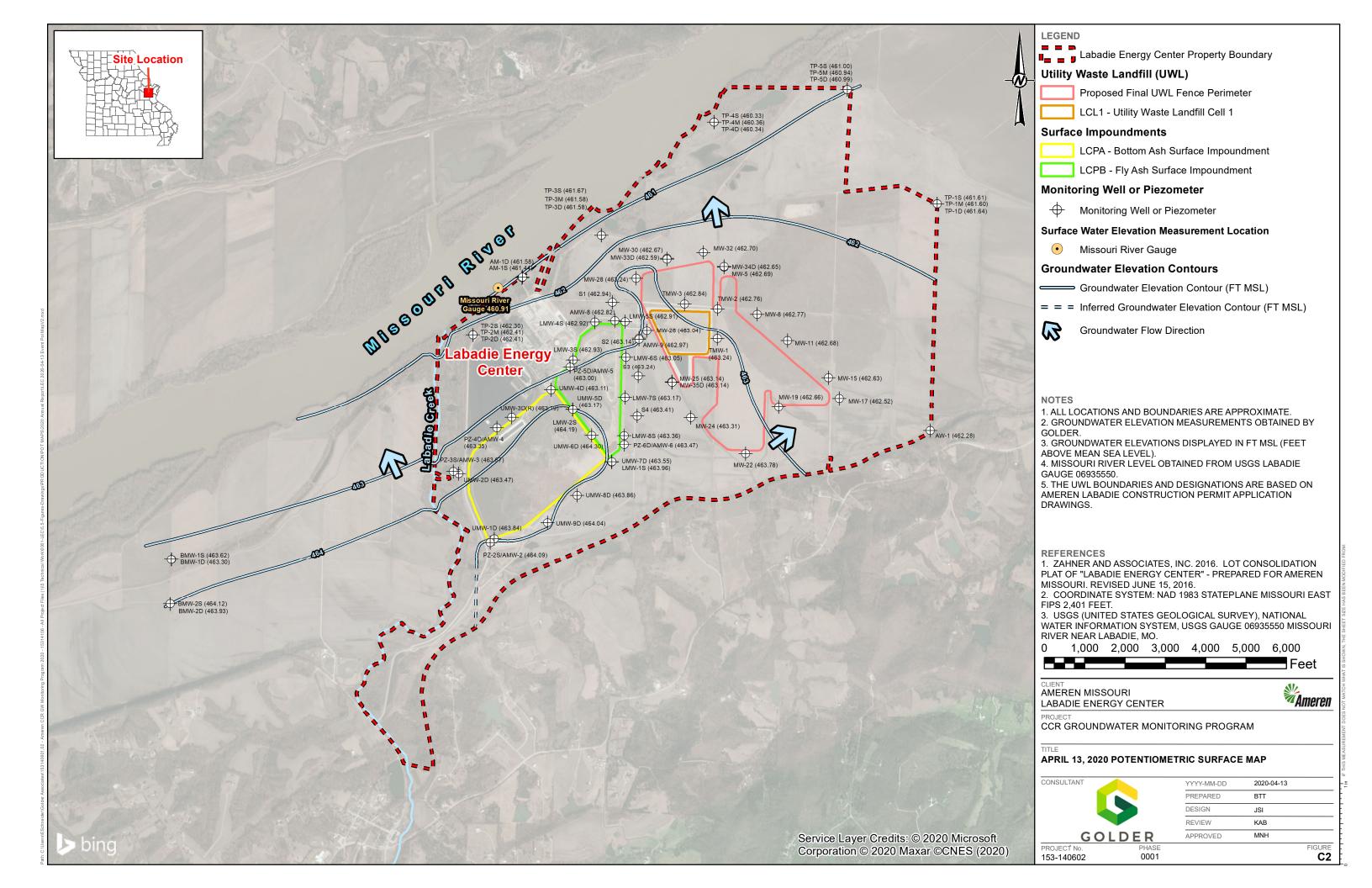


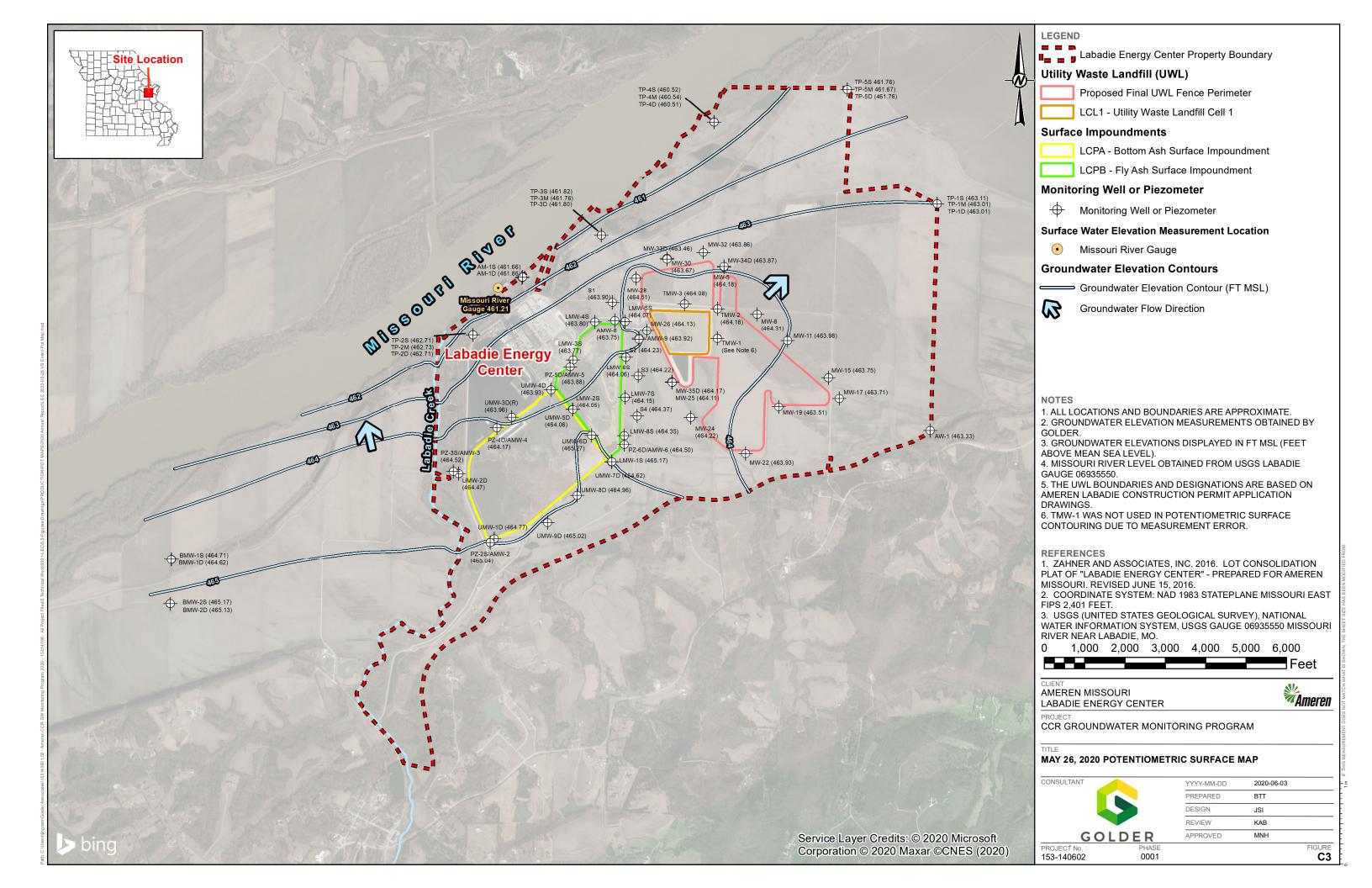
Notes

1) mg/L – Milligrams per liter.

CLIENT/PROJECT AMEREN MISSOURI LABADIE ENERGY CENTER			GOLDER				Time Series Plot for Sodium and Chloride Concentrations in MW-26				
DRAWN JSI	CHECKED EMS	REVIEWED SCP	DATE 2020/05/19	SCALE N/A	FILE NO. N/A	JOB NO. 153140602.0001	1	NG NO. N/A	SUBTITLE N/A	REV. NO. N/A	FIGURE 3




golder.com


January 2021 153140602

APPENDIX C

2020 Potentiometric Surface Maps

golder.com