

March 31, 2023

Mr. Josiah Seif Groundwater Protection Program Hydrogeology Unit Manager Division of Water Pollution Control Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

<submitted electronically to Josiah.Seif@illinois.gov and Amy.Zimmer@illinois.gov>

Dear Mr. Seif:

Re: AmerenEnergy Medina Valley Cogen, LLC – Meredosia Energy Center Post-Closure Annual Report

As required per the closure plan, enclosed is the electronic file of the 2022 annual report at the AmerenEnergy Medina Valley Cogen, LLC – Meredosia Energy Center. One hard copy of this report will be mailed directly to the address above. This annual report includes compilation of groundwater monitoring data and the trend analysis necessary to demonstrate compliance per the post-closure plan which was approved by the Agency.

Please contact me at 314-488-0151 if there are any questions regarding this Annual Report.

Sincerely.

Lisa Meyer

Manager, Environmental Services

Ameren Missouri

lmeyer2@ameren.com

Cc: L. Dunaway, IEPA

C. Giesmann, Ameren

M. Wagstaff, Ameren

M. Maxwell, Ameren

J. Randazzo, Ameren

File: SharePoint

Intended for

AmerenEnergy Medina Valley CoGen, LLC

Date

March 31, 2023

Project No.

1940102568

2022 GROUNDWATER MONITORING ANNUAL REPORT

CLOSED FLY ASH & BOTTOM ASH PONDS MEREDOSIA POWER STATION

2022 GROUNDWATER MONITORING ANNUAL REPORT CLOSED FLY ASH & BOTTOM ASH PONDS MEREDOSIA POWER STATION

Project name Meredosia Power Station

Project no. **1940102568**

Recipient AmerenEnergy Medina Valley CoGen, LLC

Document type 2022 Annual Report

Revision **0**

Version FINAL

Date March 31, 2023
Prepared by Ruta Deshpande, EIT
Checked by Jake J. Walczak, PG
Approved by Eric Tlachac, PE

Ramboll

333 W. Wacker Drive

Suite 2700

Chicago, IL 60606

USA

T 312-288-3800 F 414-837-3608 https://ramboll.com

Ruta Deshpande, EIT Environmental Engineer

Jake J. Walczak, PG Senior Hydrogeologist

CONTENTS

1.	Introduction	5
1.1	Background	5
1.2	Groundwater Quality Overview - 2019 to 2022	6
1.2.1	Summary of Cover System Construction and Maintenance	6
1.2.2	Summary of 2019 to 2022 Groundwater Quality Data	6
1.2.3	Conclusion	7
2.	Groundwater Monitoring Plan Compliance	8
2.1	Applicable Groundwater Quality Standards	8
2.1.1	On-Site Groundwater Standards	8
2.1.2	Off-Site Groundwater Standards	8
2.2	Demonstration of Compliance	8
2.2.1	Compliance Determination	8
3.	Data Analysis	10
3.1	Groundwater Flow	10
3.2	Review of Analytical Data (2021–2022)	10
3.3	Statistical Analyses	11
3.3.1	Outlier Analysis	11
3.3.2	Sen's Estimate of Slope	11
3.3.3	Mann-Kendall Trend Analysis	11
3.4	Site Inspection	12
4.	Evaluation of Compliance and Conclusions	13
5.	References	14

TABLES Table 1-1 Groundwater Monitoring Program Schedule Table 1-2 Groundwater Monitoring System Wells Table 1-3 Groundwater Monitoring Program Parameters Table 3-1 Trend Analysis Results **FIGURES** Figure 1-1 Site Location Map Figure 1-2 Monitoring Well Location Map Figure 1-3 Boron concentrations (dissolved and total) since 2019 at upgradient well APW-1 Figure 1-4 Boron concentrations (dissolved and total) since 2019 at downgradient well APW-2 Figure 1-5 Boron concentrations (dissolved and total) since 2019 at downgradient well APW-3 Figure 1-6 Boron concentrations (dissolved and total) since 2019 at downgradient well APW-4 Figure 1-7 Boron concentrations (dissolved and total) since 2019 at upgradient well APW-5 Figure 1-8 Boron concentrations (dissolved and total) since 2019 at midgradient well APW-6 Figure 1-9 Boron concentrations (dissolved and total) since 2019 at midgradient well APW-7 Boron concentrations (dissolved and total) since 2019 at midgradient well APW-8 Figure 1-10 Figure 1-11 Boron concentrations (dissolved and total) since 2019 at downgradient well APW-9 Boron concentrations (dissolved and total) since 2019 at midgradient well APW-10 Figure 1-12 Boron concentrations (dissolved and total) since 2019 at upgradient well APW-11 Figure 1-13 Figure 1-14 Boron concentrations (dissolved and total) since 2019 at downgradient well APW-12 Figure 1-15 Arsenic concentrations (dissolved and total) since 2019 at upgradient well APW-1 Arsenic concentrations (dissolved and total) since 2019 at downgradient well APW-2 Figure 1-16 Figure 1-17 Arsenic concentrations (dissolved and total) since 2019 at downgradient well APW-3 Figure 1-18 Arsenic concentrations (dissolved and total) since 2019 at downgradient well APW-4 Arsenic concentrations (dissolved and total) since 2019 at upgradient well APW-5 Figure 1-19 Figure 1-20 Arsenic concentrations (dissolved and total) since 2019 at midgradient well APW-6 Figure 1-21 Arsenic concentrations (dissolved and total) since 2019 at midgradient well APW-7 Figure 1-22 Arsenic concentrations (dissolved and total) since 2019 at midgradient well APW-8 Figure 1-23 Arsenic concentrations (dissolved and total) since 2019 at downgradient well APW-9 Figure 1-24 Arsenic concentrations (dissolved and total) since 2019 at midgradient well APW-10 Arsenic concentrations (dissolved and total) since 2019 at upgradient well APW-11 Figure 1-25 Figure 1-26 Arsenic concentrations (dissolved and total) since 2019 at downgradient well APW-12 Figure 3-1 Groundwater Elevations - March 17, 2022 Figure 3-2 Groundwater Elevations - June 21-22, 2022 Figure 3-3 Groundwater Elevations – August 17-18, 2022 Groundwater Elevations - December 21, 2022 Figure 3-4 Figure 3-5 Groundwater Elevations Timeseries Plot Box-whisker plot showing distribution of dissolved boron concentration by monitoring Figure 3-6 well for data collected in 2021 and 2022 Figure 3-7 Dissolved boron concentrations during the reporting period (2021-2022) at all compliance wells Box-whisker plot showing distribution of total boron concentration by monitoring well Figure 3-8 for data collected in 2021 and 2022

Total boron concentrations during the reporting period (2021–2022) at all

compliance wells

Figure 3-9

Figure 3-10A	Box-whisker plot showing distribution of dissolved arsenic concentration by monitoring well for data collected in 2021 and 2022
Figure 3-10B	Box-whisker plot showing distribution of dissolved arsenic concentration by monitoring well for data collected in 2021 and 2022 (zoomed in)
Figure 3-11A	Dissolved arsenic concentrations during the reporting period (2021–2022) at all compliance wells
Figure 3-11B	Dissolved arsenic concentrations during the reporting period (2021–2022) at all compliance wells (zoomed in)
Figure 3-12A	Box-whisker plot showing distribution of total arsenic concentration by monitoring well for data collected in 2021 and 2022
Figure 3-12B	Box-whisker plot showing distribution of total arsenic concentration by monitoring well for data collected in 2021 and 2022 (zoomed in)
Figure 3-13A	Total arsenic concentrations during the reporting period (2021–2022) at all compliance wells
Figure 3-13B	Total arsenic concentrations during the reporting period (2021–2022) at all compliance wells (zoomed in)
Figure 3-14	Box-whisker plot showing distribution of dissolved sulfate concentration by monitoring well for data collected in 2021 and 2022
Figure 3-15	Dissolved sulfate concentrations during the reporting period (2021–2022) at all compliance wells

APPENDICES

Appendix A Groundwater Monitoring Results 2021-2022

Appendix B Statistical Output (on CD)

B1 Outlier Test

B2 Test Descriptions

Appendix C Site Inspection Reports

ACRONYMS AND ABBREVIATIONS

Ameren AmerenEnergy Medina Valley Cogen, LLC

Class I Groundwater Groundwater Quality Standards for Class I: Potable Resource Groundwater

Standard (35 IAC 620.410)

GMZ Groundwater Management Zone
GMP Groundwater Monitoring Plan
HDPE High-density polyethylene
IAC Illinois Administrative Code

IEPA Illinois Environmental Protection Agency

Meredosia Power Station mg/L milligrams per liter
TDS total dissolved solids

Ameren AmerenEnergy Medina Valley Cogen, LLC

1. INTRODUCTION

1.1 Background

This 2022 Annual Report has been prepared for AmerenEnergy Medina Valley Cogen, LLC (Ameren) to summarize groundwater monitoring results at the closed Fly Ash and Bottom Ash Ponds at the Meredosia Power Station (Meredosia, **Figure 1-1**). The Old Ash Pond was decommissioned and capped during the 1970's (Kleinfelder West, Inc., 2011), and is not addressed in this groundwater monitoring program. Ameren completed closure activities for the Fly Ash Pond and Bottom Ash Pond in December 2018 in accordance with the Closure Plan (Geotechnology, Inc., 2018a) and requirements of Title 35 of the Illinois Administrative Code (IAC) Section 840. Closure activities, which included grading, placement of a high-density polyethylene (HDPE) geomembrane covered with ClosureTurf®/ArmorFill® synthetic turf, and construction of surface water control structures, began in March 2018 and were completed as of December 5, 2018.

The current groundwater monitoring network comprises 14 monitoring wells, including five installed in October 2010 (APW-1 through APW-5), four installed in October 2015 (APW-6 through APW-9), three installed in August 2018 (APW-10 through APW-12) and two installed in July 2021 (APW-13 and APW-14). Monitoring wells APW-1 through APW-5 were sampled from 2010 to 2012. Beginning in June 2017, and in accordance with the Groundwater Monitoring Plan (GMP) dated December 14, 2016 (Geotechnology, Inc.), groundwater sampling was restarted and conducted quarterly at monitoring wells APW-1 through APW-9. Beginning in September 2018, and in accordance with the GMP, monitoring wells APW-10, APW-11, and APW-12 were incorporated into the well network and were sampled quarterly along with wells APW-1 through APW-9. Monitoring wells APW-13 and APW-14 were incorporated into the well network in July 2021. Monitoring wells were installed to define the lateral extent of impacts on site, as well as to assist in future groundwater monitoring of remedial actions. Locations of all monitoring wells are shown on **Figure 1-2**.

In conjunction with Ameren's request for approval of the Closure Plan, Ameren submitted a Groundwater Management Zone Plan, Fly Ash and Bottom Ash Pond, Meredosia Power Station (Geotechnology, Inc., 2016b) and a request to establish the Groundwater Management Zone (GMZ) pursuant to 35 IAC 620.250(a)(2): Ash Ponds Closure, Groundwater Management Zone Application, dated October 17, 2017, which was approved by the Illinois Environmental Protection Agency (IEPA) on November 1, 2017.

The GMP, in accordance with 35 IAC 840.114 and 35 IAC 840.116, outlines groundwater monitoring and sampling procedures, establishes the parameters and methods to be used for analyzing the groundwater samples, and describes evaluation methods to assess post-closure groundwater quality and trends to demonstrate compliance with the applicable groundwater standards. The Groundwater Monitoring Program Schedule is provided in **Table 1-1**.

Monitoring well installation date, construction details, monitoring objective, position relative to the Fly Ash and Bottom Ash Ponds, and groundwater zone monitored are provided in **Table 1-2**. Field and laboratory parameters for evaluating groundwater quality are shown in **Table 1-3**.

Seven quarterly rounds of pre-closure groundwater data and sixteen quarterly rounds of post-closure data have been collected between June 2017 and December 2022 to satisfy

requirements of the GMP (Geotechnology, Inc., 2016a). This is the sixth annual report for Meredosia since groundwater monitoring was restarted in 2017. This annual report includes the following elements:

- A summary of post-closure groundwater monitoring data in 2021 and 2022. Data tables are included in **Appendix A**.
- Methodology for the trend analysis and the outlier analysis along with the results for outlier analysis (Appendix B).
- Quarterly Site Inspection Forms, including observations and descriptions of any maintenance activities performed on the pond cap, embankment, roadway, and remaining basin (Appendix C).

1.2 Groundwater Quality Overview - 2019 to 2022

1.2.1 Summary of Cover System Construction and Maintenance

Inspections of the cover system are performed on a quarterly schedule. Routine maintenance activities are performed at the Fly Ash Pond and Bottom Ash Pond as needed and as soon as practicable after issues are identified, and may include recontouring the ground surface, repairing drainage channels, repairing and replacing lining material, revegetating areas, and removing woody vegetation. Maintenance activities can be found in more detail in the Post-Closure Care Plan (Geotechnology, Inc., 2018b) and Appendix C.

1.2.2 Summary of 2019 to 2022 Groundwater Quality Data

Groundwater quality data since completion of closure in December 2018 were reviewed to assess the overall condition of the groundwater and the performance of the cover system. This review was performed independently from the compliance evaluations required by the GMP, which are focused on specific compliance criteria and proposed mitigation actions. This review is intended as a holistic view of groundwater quality over time since closure.

Boron and arsenic were identified in the Closure Plan as the primary indicator constituents for coal ash leachate impacts to groundwater at the Fly Ash Pond and Bottom Ash Pond. As such, boron and arsenic were selected for this groundwater quality data review.

Dissolved and total boron concentrations over time since 2019 are presented in **Figures 1-3 through 1-14**. On the figures, the lines through the concentration data represent the best fit linear regressions for boron concentrations in each well. Best fit linear regression lines are included in the figures to provide a convenient means of evaluating general concentration patterns since closure. It should be noted that the regression lines are not equivalent to the statistical trends discussed in the groundwater compliance section of this report. Generally, dissolved and total boron concentrations in most compliance monitoring wells have been stable or decreasing since 2019 and most are currently below the 35 IAC 620.410 Class I Groundwater Standard for the majority of the compliance groundwater monitoring wells, with the following exceptions:

- APW-3 and APW-8 dissolved and total boron concentrations are above Class I standard but decreasing.
- APW-10 and APW-11 dissolved and total boron concentrations above Class I standard and show slight increases.

• Based upon the observed groundwater flow direction at the site, the positions of APW-10 and APW-11 are hydraulically upgradient of the closed Fly Ash and Bottom Ash Ponds. The magnitude of dissolved and total boron concentrations at AP-10 and APW-11 are low when compared to other wells located hydraulically downgradient of the closed Fly Ash Pond and Bottom Ash Pond, such as APW-3 and APW-8 (Figure 3-7 and 3-9). Consequently, the closed Fly Ash and Bottom Ash Ponds are not contributing to the slight increases of dissolved and total boron concentrations observed at APW-10 and APW-11.

Dissolved and total arsenic concentrations over time since 2019 are presented in **Figures 1-15 through 1-26**. Similar to boron, arsenic concentrations have generally been stable or decreasing since the closure completion and most are currently below the 35 IAC 620.410 Class I Groundwater Standard for the majority of the compliance groundwater monitoring wells, with the following exceptions:

- APW-3 dissolved and total arsenic concentrations are above the Class I standard and show slight increases, although these trends are not statistically significant.
 - A clear trend is difficult to discern for this location due to variability in the concentrations, which is likely related to fluctuations in the elevation of the Illinois River and associated influence on the aquifer and geochemistry.
- APW-10 and APW-12 total arsenic concentrations are below the Class I standard and show slight increases, although the data appear to be anomalous as described below.
 - Elevated total arsenic concentrations observed during the fourth quarter of 2021 were identified as outliers (**Appendix B**) due to sampling anomalies and were therefore not considered in the regression analysis. Total arsenic concentrations observed during the 2nd and 3rd quarters of 2022 driving the increasing trends were inconsistent with observed dissolved arsenic concentrations. Higher total arsenic concentrations were observed when the sample turbidity was high, and the observed elevated total arsenic concentrations may be due to elevated sample turbidity.

1.2.3 Conclusion

The stable or decreasing indicator constituent concentrations (boron and arsenic) in the majority of compliance monitoring wells across the site is a strong indication that the cover system is functioning as designed to improve overall groundwater quality beneath the pond.

2. GROUNDWATER MONITORING PLAN COMPLIANCE

2.1 Applicable Groundwater Quality Standards

2.1.1 On-Site Groundwater Standards

Pursuant to 35 IAC 620.450(a), the on-site groundwater quality shall be restored to the Groundwater Quality Standards for Class I: Potable Resource Groundwater (Class I Groundwater Standard) (35 IAC 620.410).

If upon completion of the 30-year post-closure care period the observed concentrations in the site groundwater still exceed a Class I Groundwater Standard, the on-site standard may be adjusted, provided criteria are addressed to the satisfaction of the IEPA.

2.1.2 Off-Site Groundwater Standards

For off-site groundwater compliance, the Class I Groundwater Standards are also used (35 IAC 620.410). A GMZ was requested and approved for Meredosia as part of the Closure Plan. The point of compliance wells for the subject property will be APW-2 and APW-3. These wells are located adjacent to the Illinois River and downgradient relative to the site. If closure of the Fly Ash Pond and Bottom Ash Pond do not reduce the contaminant concentrations to levels below the Class I groundwater standards, a plan for post-remediation monitoring will be submitted to the IEPA (Geotechnology, Inc., 2016b).

2.2 Demonstration of Compliance

Compliance will be based on attainment of post-closure groundwater quality that meets the Class I Groundwater Standards, as set forth in 35 IAC 620.410. Groundwater quality shall be in compliance when groundwater concentrations are below the Class I Groundwater Standards and there are no statistically significant increasing trends at the compliance GMZ boundary.

2.2.1 Compliance Determination

As described in Section 5.2 of the GMP:

- Compliance is determined by performing an annual trend analysis for each downgradient
 monitoring well (Table 1-2) for all constituents listed in Table 1-3. The analysis shall use
 Sen's Estimate of Slope and be performed on a minimum of eight consecutive post-closure
 groundwater samples.
- If the results of sampling and trend analysis show a positive slope at any downgradient monitoring well, a Mann-Kendall test will be performed at 95 percent confidence to determine whether or not the positive slope represents a statistically significant increasing trend. Ameren will investigate the cause of a statistically significant increasing trend as described below.
 - Notification of statistically significant increasing trends and revision to the sampling frequency must be reported to the IEPA within 30 days of making the determinations.
 - If the investigation attributes a statistically significant increasing trend to a superseding cause, Ameren will notify the IEPA in writing, stating the cause of the increasing trend and providing the rationale used in such a determination.

 If there is no superseding cause and the statistically significant increasing trend continues to be observed over two or more consecutive years, a hydrogeologic investigation (and additional site investigation(s), if necessary) will be performed.

Based on the outcome of the investigation above, Ameren will take action to mitigate statistically significant increasing trends that are causing, threatening or allowing exceedances of off-site groundwater quality standards. Such actions will be proposed as a modification to the post-closure care plan within 180 days after completion of the investigation activities described above.

3. DATA ANALYSIS

3.1 Groundwater Flow

Groundwater flow for 2022 is represented using groundwater elevation contour maps for each quarterly sampling event (**Figures 3-1 through 3-4**). Monitoring well APW-13 was dry in August and December of 2022 (**Figures 3-3 and 3-4**, respectively), and monitoring APW-14 was dry in March, August and December of 2022 (**Figures 3-1**, **3-3**, **and 3-4**, respectively). Groundwater in the uppermost aquifer generally flowed from east to west and northwest towards the Illinois River during 2022, which is consistent with past evaluations. No temporary groundwater flow reversals were observed in 2022.

In March and December 2022 (**Figure 3-1 and 3-4**, respectively), groundwater flow in the area of the Fly Ash Pond was to the northwest and groundwater flow in the area of the Bottom Ash Pond was to the southwest, where groundwater flow converged to the area between the two closed ponds. The primary groundwater flow direction at the site in March and December 2022 was from east to west and northwest towards the Illinois River.

3.2 Review of Analytical Data (2021–2022)

Groundwater samples from the most recent eight post-closure monitoring events were collected on, January 26, 2021; June 30, 2021; September 17, 2021; November 11, 2021/December 13, 2021; March 17, 2022; June 21-22, 2022; August 17-18, 2022; and December 21, 2022. All field and laboratory analytical results are tabulated in **Appendix A**. Sampling anomalies, such as wells that were dry, had water levels too low for sampling, or were not sampled during a sampling event for other reasons, are noted below:

- Monitoring well APW-13 was dry or did not have adequate water for sampling during all sampling events, with the exception of the first and second quarter of 2022, hence was only sampled two times.
- Monitoring well APW-14 was dry or did not have adequate water for sampling during all sampling events, hence was not sampled.

Results of groundwater monitoring for constituents that exceeded the 35 IAC 620.410 Class I Groundwater Standard when the GMZ was established (boron, arsenic, iron, manganese, and sulfate) are discussed below.

- Boron has been identified as the primary indicator constituent for coal ash impacts to groundwater at the Fly Ash Pond and Bottom Ash Pond (see Section 1.2.2). In the 2021–2022 monitoring period, dissolved boron concentrations ranged from 0.04 to 6.8 milligrams per liter (mg/L) and total boron concentrations ranged from 0.041 to 7.0 mg/L in upgradient monitoring wells. In midgradient monitoring wells, dissolved boron concentrations ranged from 0.12 to 7.1 mg/L and total boron concentrations ranged from 0.12 to 7.9 mg/L. In downgradient monitoring wells, dissolved boron concentrations ranged from 0.079 to 20 mg/L and total boron concentrations ranged from 0.082 to 21 mg/L (Figures 3-6 through 3-9).
- Arsenic has also been identified as an indicator for coal ash impacts to groundwater at the Fly
 Ash Pond and Bottom Ash Pond (see Section 1.2.2). In the 2021–2022 monitoring period,
 dissolved arsenic ranged from 0.0004 to 0.0008 mg/L and total arsenic concentrations ranged
 from 0.0004 to 0.0053 mg/L in upgradient monitoring wells. In midgradient monitoring wells,

dissolved arsenic concentrations ranged from 0.0004 to 0.0019 mg/L and total arsenic concentrations ranged from 0.0005 to 0.036 mg/L. In downgradient monitoring wells, dissolved arsenic concentrations ranged from 0.0004 to 0.32 mg/L and total arsenic concentrations ranged from 0.0008 to 0.36 mg/L (**Figures 3-10 through 3-13**).

- For sulfate, a non-indicator constituent, box-whisker and timeseries plots illustrating concentrations for the most recent eight monitoring events (2021–2022) were developed (**Figures 3-14 and 3-15**). Similar to the identified indicator parameters, sulfate showed generally stable trends during this reporting period.
- Fluctuations of oxidation/reduction (redox) potential and pH in the subsurface at this facility affect mobility of manganese and iron, making them unreliable indicators of CCR (Geotechnology, Inc., 2016b).

3.3 Statistical Analyses

Analytical data for downgradient wells (APW-2, APW-3, APW-4, APW-9, and APW-12) were evaluated to identify short-term (compliance) data trends in the 2021–2022 dataset. Trends were evaluated according to the procedure outlined in the GMP.

3.3.1 Outlier Analysis

The Grubbs outlier test determines whether there is statistical evidence of a high or low observation that differs significantly from the other data and provides statistical evidence of potential outliers. The test methodology and results are listed in **Appendix B1**. Outliers identified during the compliance period (2021–2022) by the Grubbs outlier test based on the date range of 2010-2022 were not eliminated from further statistical analysis due the lack of documentation indicating that they are not representative of actual field conditions. In addition, these identified outliers did not have any influence on the short-term compliance trends.

3.3.2 Sen's Estimate of Slope

Sen's estimate of slope is a non-parametric estimator of trend. It is the median of all slopes between all possible unique pairs of individual data points in the time period being analyzed. The slopes represent the rate of change of the measured parameter, with the y-axis being the parameter value and the x-axis being calendar time. The method is robust, and fairly insensitive to the presence of a small fraction of outliers and non-detect data values. The test methodologies are listed in **Appendix B2**.

Data collected at downgradient wells in 2021–2022 show 3 cases with positive slopes, 5 cases with negative slopes, and 35 cases with no slope for wells where concentrations above the 20 IAC 620.410 Class I Groundwater Standard were identified (**Table 3-1**). Sen's estimate of slope was not determined for downgradient wells where concentrations were below the 35 IAC 620.410 Class I Groundwater Standard during 2021–2022.

3.3.3 Mann-Kendall Trend Analysis

The 3 cases with positive Sen's slopes referenced above were tested using the Mann-Kendall test to determine if the positive slopes represented statistically significant increasing trends. The Mann-Kendall test is a non-parametric, one-tailed test to determine whether a dataset has a statistically significant increasing or decreasing trend. The test methodology is in **Appendix B2**. Increasing short-term (compliance) trends are identified in **Table 3-1**.

The Mann-Kendall test did not detect any case of statistically significant increasing trend in the 2021–2022 dataset for downgradient wells.

3.4 Site Inspection

The Post-Closure Maintenance Program requires quarterly inspection for the first five years after closure (i.e., through 2023). After five years, the inspection frequency can be reduced to semi-annually provided that semi-annual groundwater monitoring has been approved by IEPA. After five years of semiannual monitoring, the inspection frequency can be reduced to annually pending approval of annual groundwater monitoring. Discontinuance of site inspections will occur after IEPA approval of the certified Post-Closure Care Report.

Site inspections include assessment of the condition and need for repair of final cover and vegetation, as wells as fencing, monitoring points, and surface water control features. The inspection reports from 2021 are included in **Appendix C**.

Site inspections were performed on March 4, 2022, May 19, 2022, August 26, 2022, and November 30, 2022. As noted in November 2022 inspection report, a tear was observed in the ClosureTurf®/ArmorFill® synthetic turf towards the cap peak. A turf flap from the rip completely covers the HDPE geomenbrane and no geomembrane damage was observed, as such no action is required. Overall, all the components of the ClosureTurf®/ArmorFill® synthetic turf cover system are in good condition and will continue to be monitored as part of quarterly site inspections.

4. EVALUATION OF COMPLIANCE AND CONCLUSIONS

Cover system construction and maintenance, as well as stable or decreasing boron and arsenic concentrations in the majority of compliance monitoring wells across the site is a strong indication that the cover system is functioning as designed to improve overall groundwater quality beneath the pond.

Statistical analyses of analytical results for groundwater samples collected during the 2021-2022 compliance period at the Meredosia Fly Ash Pond and Bottom Ash Pond indicated downgradient monitoring wells were in compliance with the requirements stated in the GMP: concentrations of monitored parameters above the 35 IAC 620.410 Class I Groundwater Standard did not exhibit short-term statistically significant increasing trends for any parameter at any downgradient monitoring well during the 2021-2022 compliance period. As such, no further action is required at this time. The concentrations of indicator parameters will continue to be monitored and evaluated in 2023.

5. REFERENCES

Geotechnology, Inc., 2016a. *Groundwater Monitoring Plan, Fly Ash Pond and Bottom Ash Pond, Meredosia Power Station*. December 14, 2016.

Geotechnology, Inc., 2016b. *Groundwater Management Zone Plan, Fly Ash Bottom Ash Pond, Meredosia Power Station, 800 South Washington Street, Meredosia, Illinois.* December 22, 2016.

Geotechnology, Inc., 2018a. Closure Plan, Meredosia Power Station. March 12, 2018.

Geotechnology, Inc., 2018b. Post-Closure Care Plan, Meredosia Power Station. March 12, 2018.

Illinois Environmental Protection Agency (IEPA), 1991. *Groundwater Quality Standards for Class I: Potable Resource Groundwater*, Title 35 of the Illinois Administrative Code Part 620: Groundwater Quality, amended 2013.

Kleinfelder West, Inc., 2011. Coal Ash Impoundment Site Assessment Final Report, Meredosia Power Station, Ameren Energy Generating Company, Meredosia, Illinois. May 10, 2011.

TABLES

Table 1-1. Groundwater Monitoring Program Schedule 2022 Annual Report Meredosia Power Station - Fly Ash Pond and Bottom Ash Pond

Frequency	Duration	Sampling Quarter	
Quarterly	Begins: June 2017	January- March (1) April - June (2) July - September (3) October - December (4)	
Quarterry	Ends: After successful completion of the post-closure activities required and approval of the Illinois EPA; or Acceptance of reduced frequency by IEPA based on successful demonstration under Semi-Annual or Annual Frequency		
Semi-Annual or Annual	Begins: Upon demonstration that monitoring effectiveness will not be compromised by reduced frequency, adequate data has been collected to characterize groundwater, and concentration of constituents monitored at downgradient boundaries do not demonstrate statistically significant increasing trends that can be attributed to the former ash ponds	April - June (2)	
	Ends: After successful completion of the post-closure activities required and approval of the Illinois EPA	October - December (4)	

[O: YD/SJC, C: YD/SJC]

Table 1-2. Groundwater Monitoring System Wells 2022 Annual Report Meredosia Power Station - Fly Ash Pond and Bottom Ash Pond

Monitoring Well Number	Installation Date	Surface Elevation (ft, NAVD88) ¹	TOC Elevation (ft, NAVD88) ¹	Top of Screen Elevation (ft, NAVD88) ¹	Bottom of Screen Elevation (ft, NAVD88) ¹	Total Well Depth (ft, BGS)	Objective	Position	Monitoring Zone
APW-1	10/26/2010	446.06	449.26	431.40	421.40	24.7	Compliance	Upgradient	Uppermost Aquifer
APW-2	10/25/2010	433.97	436.87	421.10	411.10	22.9	Compliance	Downgradient	Uppermost Aquifer
APW-3	10/25/2010	433.35	436.28	420.80	410.80	22.6	Compliance	Downgradient	Uppermost Aquifer
APW-4	10/26/2010	431.90	434.86	415.80	409.30	26.1	Compliance	Downgradient	Uppermost Aquifer
APW-5	10/26/2010	450.48	453.20	431.00	421.00	29.5	Compliance	Upgradient	Uppermost Aquifer
APW-6	10/1/2015	448.60	451.90	431.10	421.10	28.0	Compliance	Midgradient	Uppermost Aquifer
APW-7	10/1/2015	435.00	438.70	429.00	419.00	16.5	Compliance	Midgradient	Uppermost Aquifer
APW-8	10/1/2015	460.50	463.90	431.90	421.90	39.1	Compliance	Midgradient	Uppermost Aquifer
APW-9	10/1/2015	445.00	448.10	426.20	416.20	29.3	Compliance	Downgradient	Uppermost Aquifer
APW-10	8/20/2018	454.10	457.45	424.90	414.90	39.4	Compliance	Midgradient	Uppermost Aquifer
APW-11	8/22/2018	461.89	465.40	427.64	417.64	44.45	Compliance	Upgradient	Uppermost Aquifer
APW-12	8/21/2018	431.94	435.52	422.10	412.10	20.0	Compliance	Downgradient	Uppermost Aquifer
APW-13	7/13/2021	457.84	461.55	437.34	427.34	31.0	Compliance	Midgradient	Uppermost Aquifer
APW-14	7/12/2021	455.55	459.27	439.04	429.04	27.0	Compliance	Midgradient	Uppermost Aquifer

[U: RSD 3/4/2022, C: RAB 3/10/22]

Notes:

1. Elevations referenced to North American Vertical Datum (NAVD) of 1988 with the exception of APW-5 through APW-9 which are referenced to feet above Mean Sea Level

TOC = top of casing (i.e. top of riser pipe)

BGS = below ground surface

ft = feet

Table 1-3. Groundwater Monitoring Program Parameters 2022 Annual Report

Meredosia Power Station - Fly Ash Pond and Bottom Ash Pond

Field Parameters	STORET Code					
pH ²	0400					
Specific Conductance ²	0	00094				
Temperature (Fahrenheit)		00011				
Depth to Water (from TOC)		72109				
Elevation of GW Surface ²	7	1993				
Depth of Well (BGS) ²		72008				
Elevation of Measuring Point		2110				
Laboratory Parameters ¹	STORET Code-Diss	STORET Code-Total				
Boron ²	01020	01022				
lron ²	01046	01045				
Manganese ²	01056	01055				
Sulfate ²	00946					
Total Dissolved Solids (TDS) ²	70300					
Antimony	01095	01097				
Arsenic	01000	01002				
Barium	01005	01007				
Beryllium	01010	01012				
Cadmium	01025	01027				
Chloride	00941					
Chromium	01030	01034				
Cobalt	01035	01037				
Copper	01040	01042				
Cyanide		00720				
Fluoride	00950					
Lead	01049	01051				
Mercury	71890	71900				
Nickel	01065	01067				
Nitrate as N	00613					
Nitrite as N	00618					
Selenium	01145	01147				
Silver	01075	01077				
Thallium	01057	01059				
Vanadium 	01085	01087				
Zinc	01090	01092 [0: VD/SIC C: VD/SIC]				

[O: YD/SJC, C: YD/SJC]

Notes:

BGS: Below Ground Surface

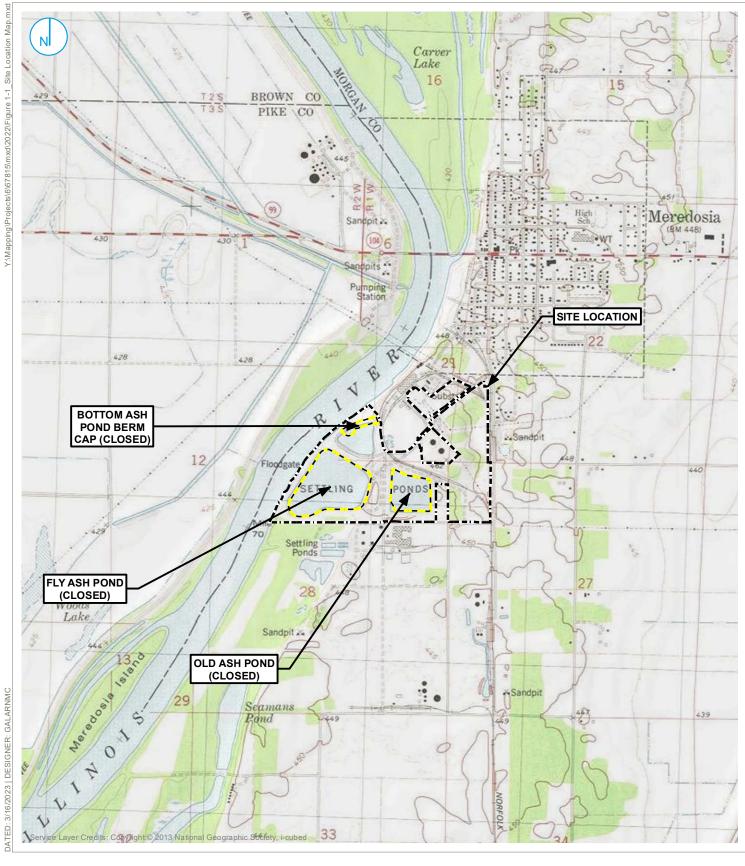
TOC: Top of Casing

¹ Reported as dissolved (filtered) concentrations.

² Mandatory monitoring parameter per 35 IAC 840.114(a).

Table 3-1. Trend Analysis Results

2022 Annual Report


Meredosia Power Station - Fly Ash Pond and Bottom Ash Pond

	APW-2	APW-3	APW-4	APW-9	APW-12
Number of Samples	8	8	8	8	8
Antimony, dissolved	DNE	DNE	DNE	DNE	DNE
Antimony, total	DNE	DNE	DNE	DNE	DNE
Arsenic, dissolved	DNE	None	None	DNE	DNE
Arsenic, total	DNE	None	None	DNE	None
Barium, dissolved	DNE	DNE	DNE	DNE	DNE
Barium, total	DNE	DNE	DNE	DNE	DNE
Beryllium, dissolved	DNE	DNE	DNE	DNE	DNE
Beryllium, total	DNE	DNE	DNE	DNE	DNE
Boron, dissolved	None	-	DNE	DNE	DNE
Boron, total	None	-	DNE	DNE	DNE
Cadmium, dissolved	DNE	DNE	DNE	DNE	DNE
Cadmium, total	DNE	DNE	DNE	DNE	DNE
Chloride, dissolved	DNE	DNE	DNE	DNE	DNE
Chromium, dissolved	DNE	DNE	DNE	DNE	DNE
Chromium, total	DNE	DNE	DNE	DNE	DNE
Cobalt, dissolved	DNE	DNE	DNE	DNE	DNE
Cobalt, total	DNE	DNE	DNE	DNE	DNE
Copper, dissolved	DNE	DNE	DNE	DNE	DNE
Copper, total	DNE	DNE	DNE	DNE	DNE
Cyanide, total	DNE	DNE	DNE	DNE	DNE
Fluoride, dissolved	DNE	DNE	DNE	DNE	DNE
Iron, dissolved	DNE	DNE	-	DNE	DNE
Iron, total	DNE	+	-	DNE	+
Lead, dissolved	DNE	DNE	DNE	DNE	DNE
Lead, total	DNE	DNE	DNE	DNE	None
Manganese, dissolved	None	None	None	DNE	None
Manganese, total	None	None	None	None	+
Mercury, dissolved	DNE	DNE	DNE	DNE	DNE
Mercury, total	DNE	DNE	DNE	DNE	DNE
Nickel, dissolved	DNE	DNE	DNE	DNE	DNE
Nickel, total	DNE	DNE	DNE	DNE	None
Nitrate (as N), dissolved	DNE	DNE	DNE	DNE	DNE
Nitrite (as N), dissolved*	DNE	DNE	DNE	DNE	DNE
Selenium, dissolved	DNE	DNE	DNE	DNE	DNE
Selenium, total	DNE	DNE	DNE	DNE	DNE
Silver, dissolved	DNE	DNE	DNE	DNE	DNE
Silver, total	DNE	DNE	DNE	DNE	DNE
Sulfate, dissolved	DNE	DNE	DNE	-	DNE
Thallium, dissolved	DNE	DNE	DNE	DNE	DNE
Thallium, total	DNE	None	DNE	DNE	None
Total Dissolved Solids	DNE	DNE	DNE	DNE	DNE
Vanadium, dissolved	DNE	DNE	DNE	DNE	DNE
Vanadium, total	DNE	DNE	DNE	DNE	None
Zinc, dissolved	DNE	DNE	DNE	DNE	DNE
Zinc, total	DNE	DNE	DNE	DNE	DNE

Notes:

- Trend analysis wsa done for downgradient wells.
- "+" indicates that the Sen's non-parametric estimate of the median slope is positive.
- "-" indicates that the Sen's non-parametric estimate of the median slope is negative.
- "Increase" indicates a statistically significant increasing trend
- "Decrease" indicates a statistically significant decreasing trend
- DNE indicates constituents that did not exceed the Class I groundwater quality standard in the reporting period (2021-2022).
- "None" indicates insufficent evidence of a trend as determined using the Mann-Kendall test at 95% confidence for
- * indicates No Class 1 Standard
- Mann Kendall Trend analysis done with non-detects at one half the detection limit.
- Date range for the Sen's non-parametric estimate of the median slope and trend analysis is 1/1/2021-12/31/2022

FIGURES

Map Scale: 1:1:24,000; Map Center: 90°34'10"W 39°49'15"N APPROXIMATE
PROPERTY
BOUNDARY

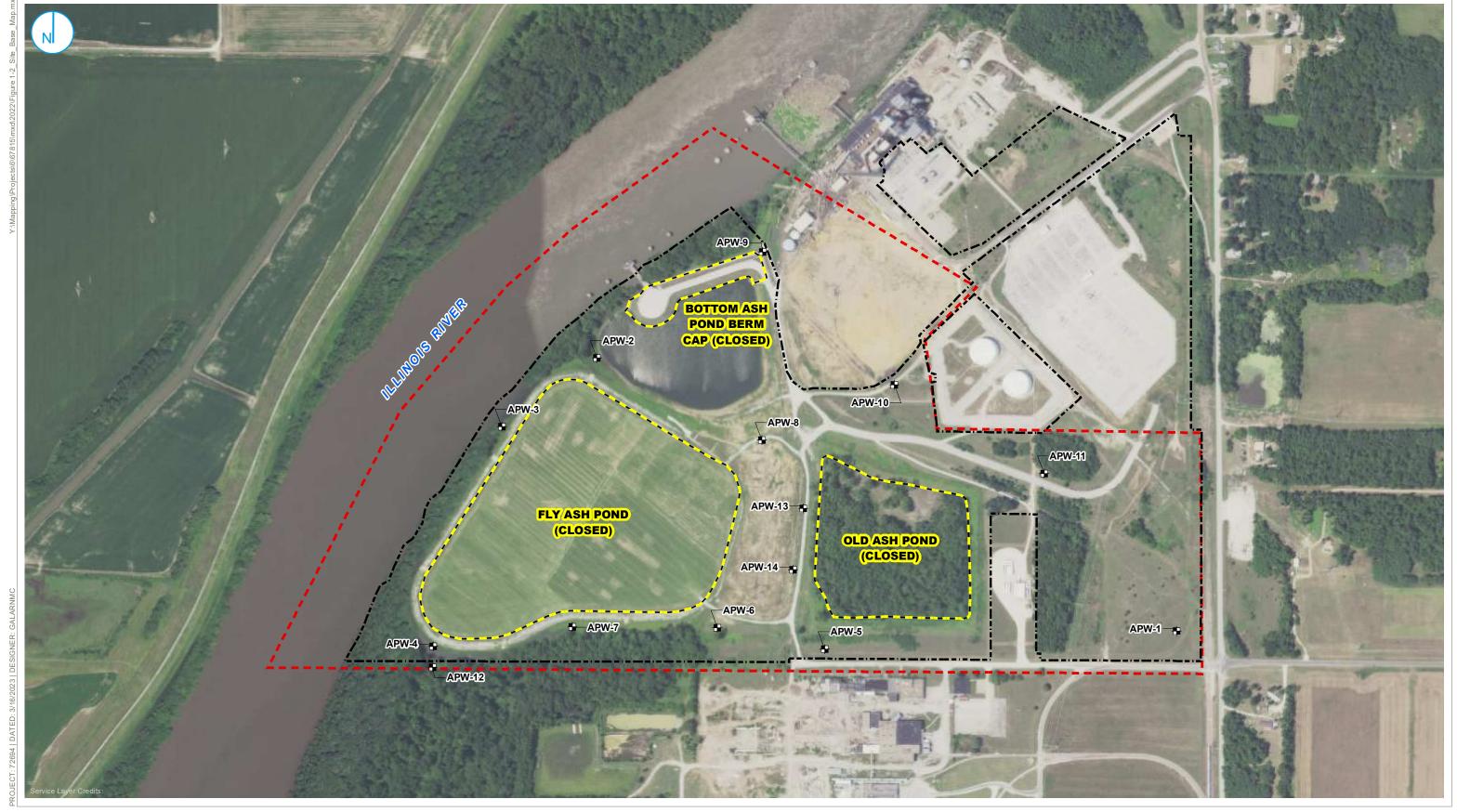
LIMITS OF CCP MANAGEMENT

NOTE

Base map property lines were updated based on March 2019 Plat of Survey.

0 1,000 2,000 Feet

SITE LOCATION MAP


2022 GROUNDWATER MONITORING ANNUAL REPORT

AMEREN ENERGY RESOURCES MEREDOSIA POWER STATION MORGAN COUNTY, ILLINOIS

FIGURE 1-1

RAMBOLL US CORPORATION
A RAMBOLL COMPANY

MONITORING WELL LOCATION
APPROXIMATE PROPERTY BOUNDARY
LIMITS OF CCP MANAGEMENT
APPROXIMATE GROUNDWATER MONITORING ZONE

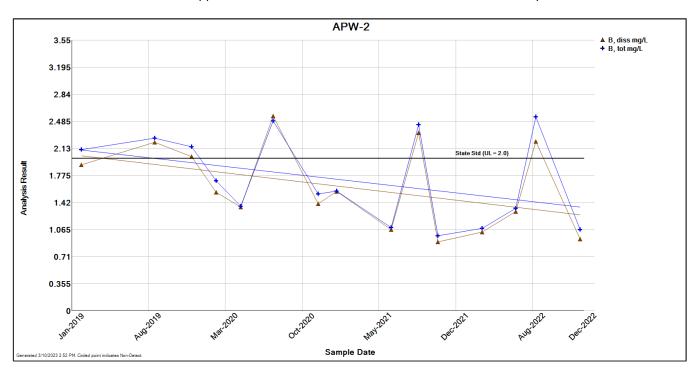
NOTE

Base map property lines were updated based on March 2019 Plat of Survey.

MONITORING WELL LOCATION MAP

RAMBOLL US CORPORATION A RAMBOLL COMPANY

2022 GROUNDWATER MONITORING ANNUAL REPORT
AMEREN ENERGY RESOURCES
MEREDOSIA POWER STATION
MORGAN COUNTY, ILLINOIS


FIGURE 1-2

0 240 480

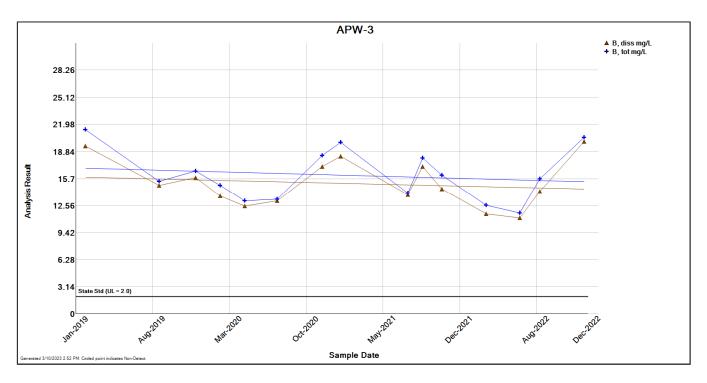


Figure 1-3. Boron (dissolved and total) concentrations since 2019 at upgradient well APW-1. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

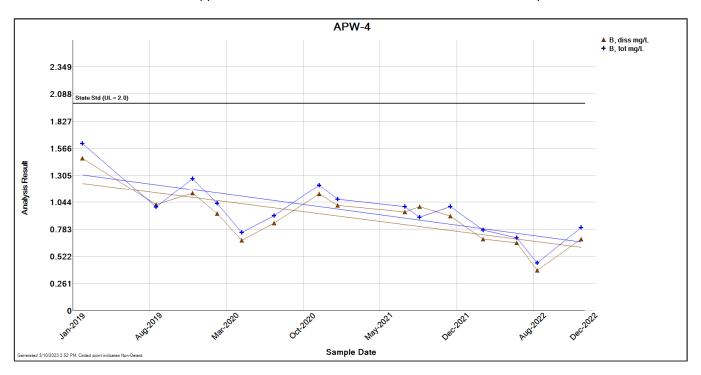


Figure 1-4. Boron (dissolved and total) concentrations since 2019 at downgradient well APW-2. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

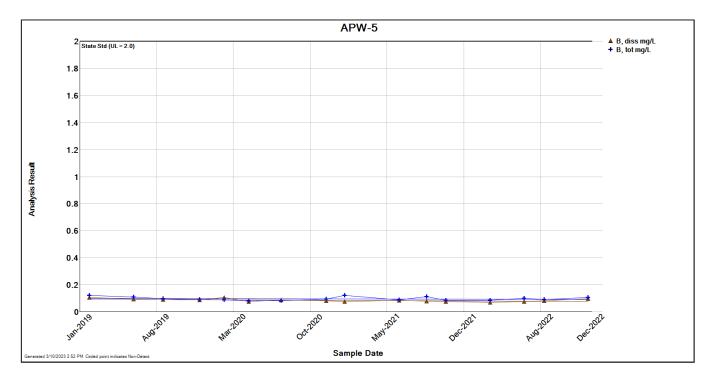


Figure 1-5. Boron (dissolved and total) concentrations since 2019 at downgradient well APW-3. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

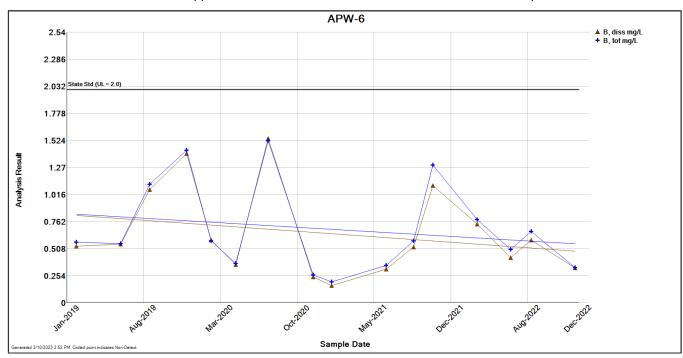


Figure 1-6. Boron (dissolved and total) concentrations since 2019 at downgradient well APW-4. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

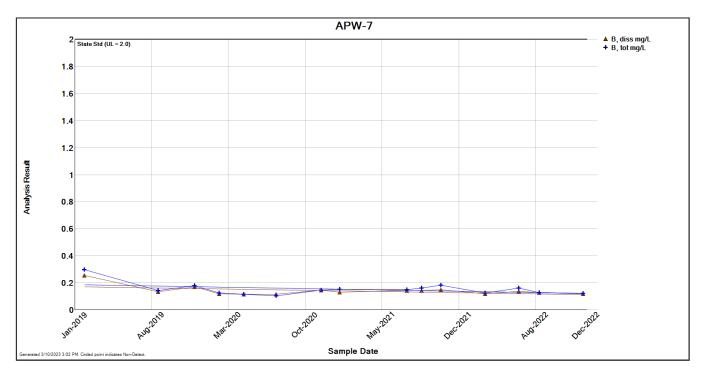


Figure 1-7. Boron (dissolved and total) concentrations since 2019 at upgradient well APW-5. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

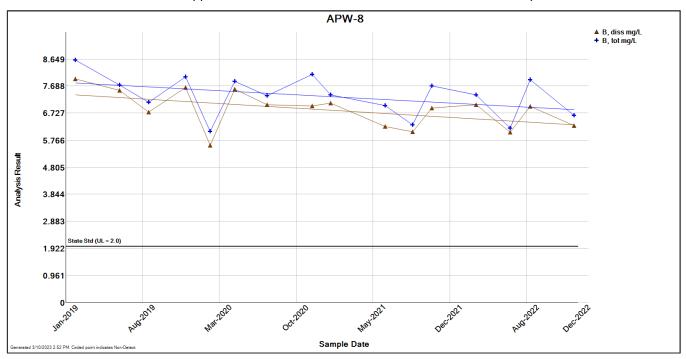


Figure 1-8. Boron (dissolved and total) concentrations since 2019 at midgradient well APW-6. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

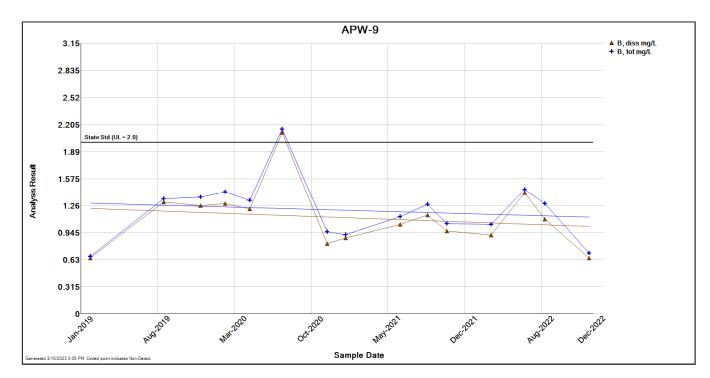


Figure 1-9. Boron (dissolved and total) concentrations since 2019 at midgradient well APW-7. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

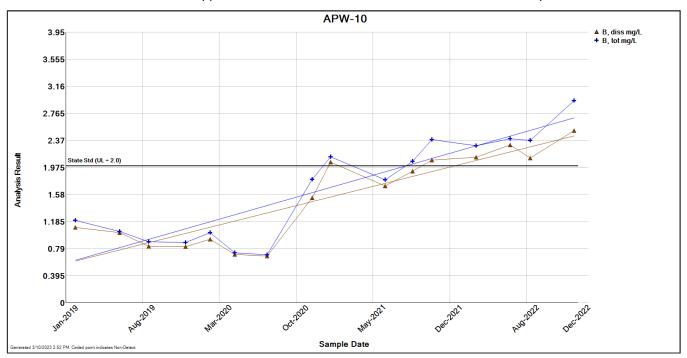


Figure 1-10. Boron (dissolved and total) concentrations since 2019 at midgradient well APW-8. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

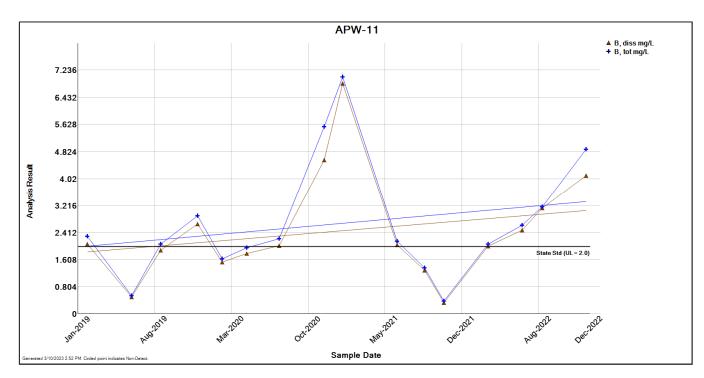


Figure 1-11. Boron (dissolved and total) concentrations since 2019 at downgradient well APW-9. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

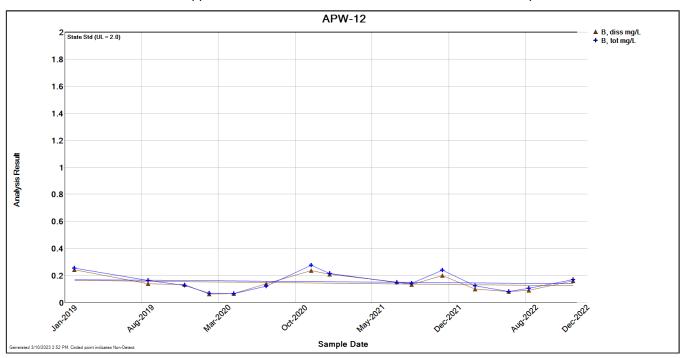


Figure 1-12. Boron (dissolved and total) concentrations since 2019 at midgradient well APW-10. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

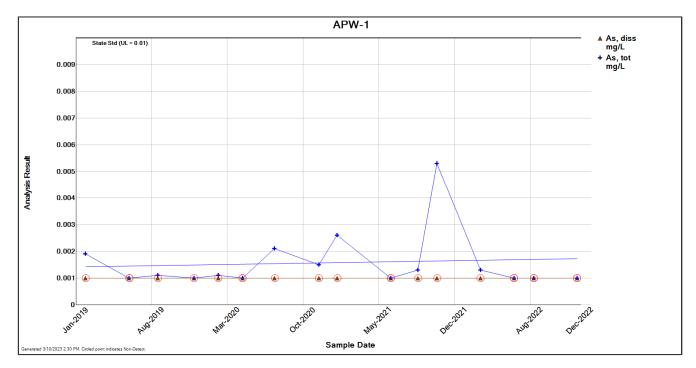


Figure 1-13. Boron (dissolved and total) concentrations since 2019 at upgradient well APW-11. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

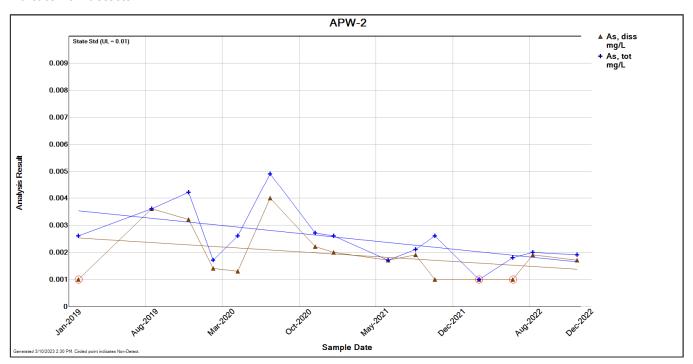


Figure 1-14. Boron (dissolved and total) concentrations since 2019 at downgradient well APW-12. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

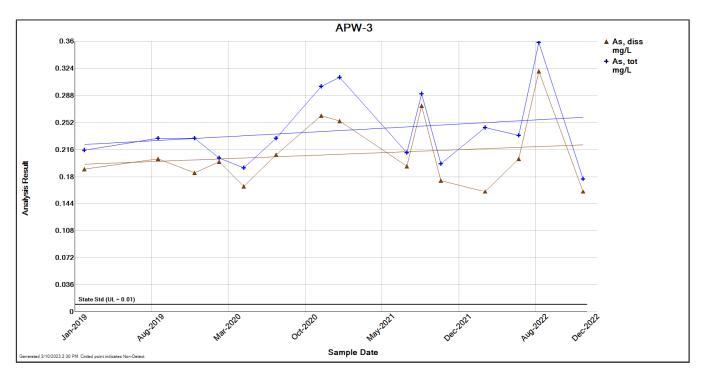


Figure 1-15. Arsenic (dissolved and total) concentrations since 2019 at upgradient well APW-1. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

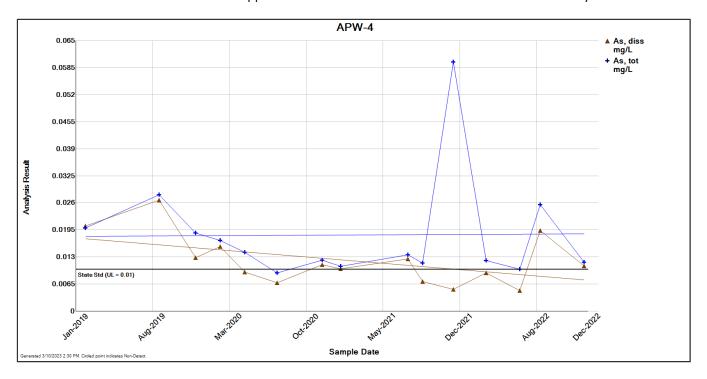


Figure 1-16. Arsenic (dissolved and total) concentrations since 2019 at downgradient well APW-2. The Class Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

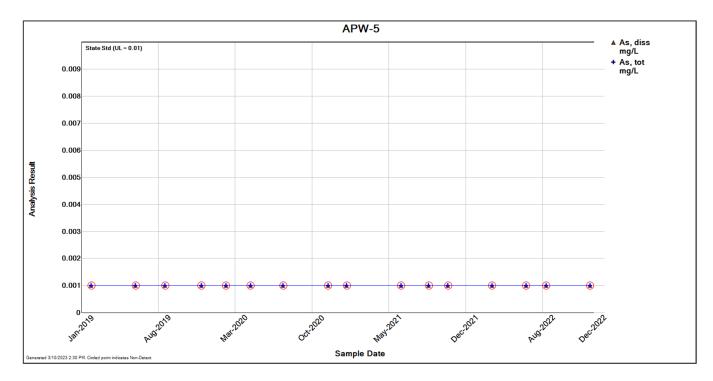


Figure 1-17. Arsenic (dissolved and total) concentrations since 2019 at downgradient well APW-3. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

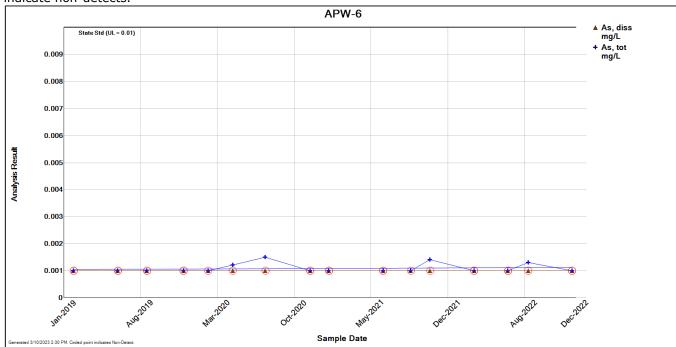


Figure 1-18. Arsenic (dissolved and total) concentrations since 2019 at downgradient well APW-4. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

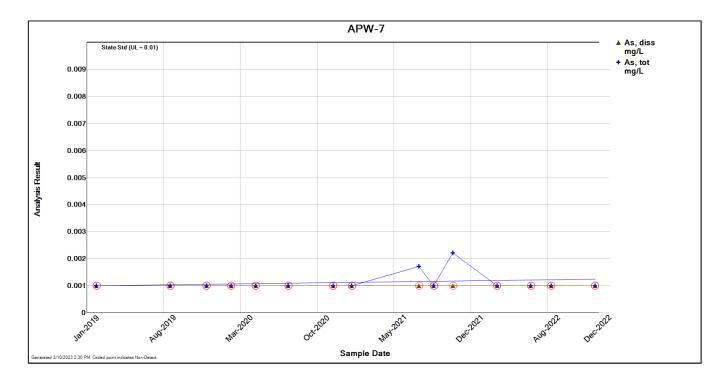


Figure 1-19. Arsenic (dissolved and total) concentrations since 2019 at upgradient well APW-5. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

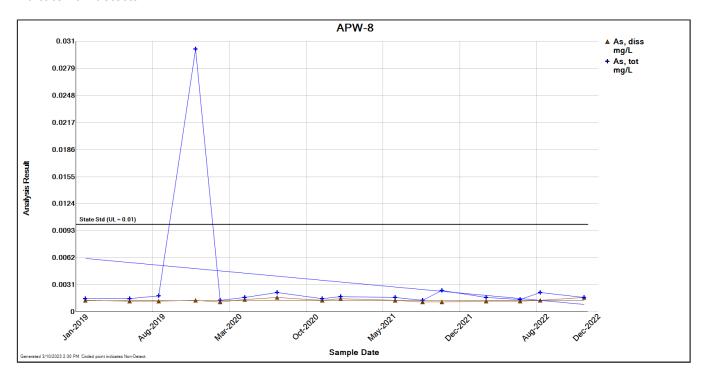


Figure 1-20. Arsenic (dissolved and total) concentrations since 2019 at midgradient well APW-6. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

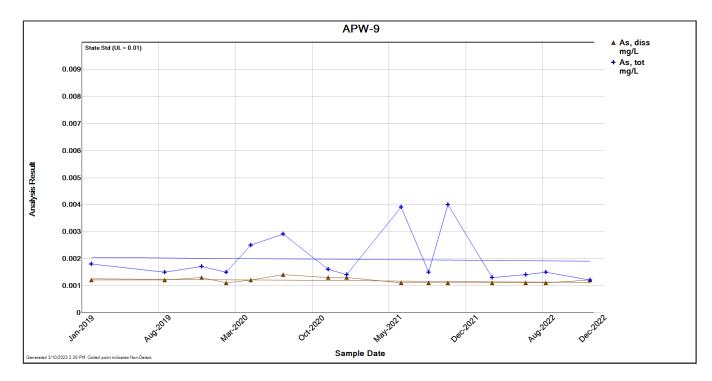


Figure 1-21. Arsenic (dissolved and total) concentrations since 2019 at midgradient well APW-7. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

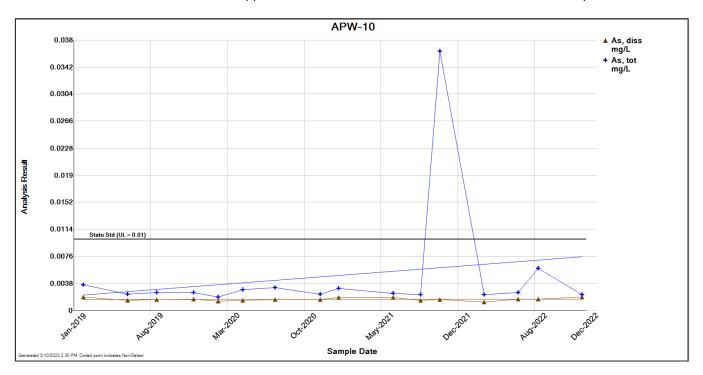


Figure 1-22. Arsenic (dissolved and total) concentrations since 2019 at midgradient well APW-8. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

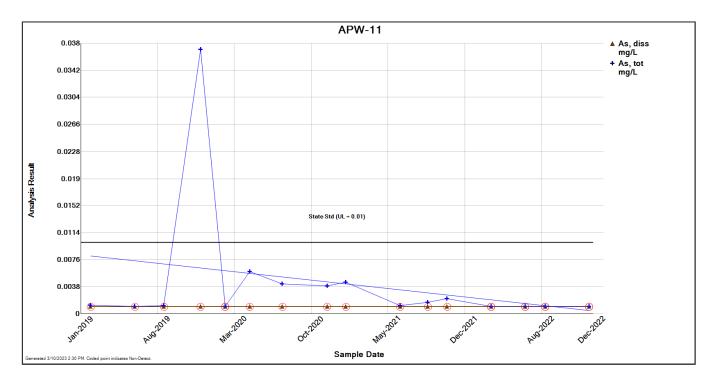


Figure 1-23. Arsenic (dissolved and total) concentrations since 2019 at downgradient well APW-9. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

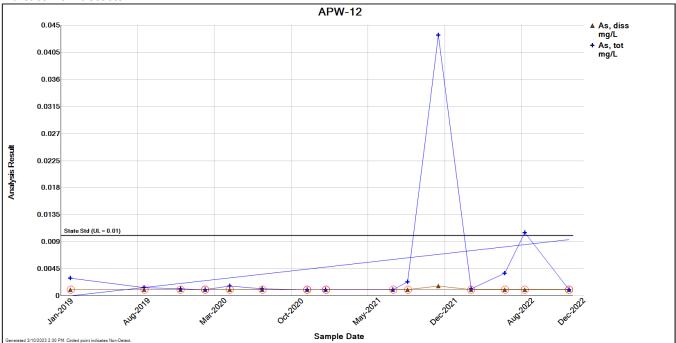


Figure 1-24. Arsenic (dissolved and total) concentrations since 2019 at midgradient well APW-10. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

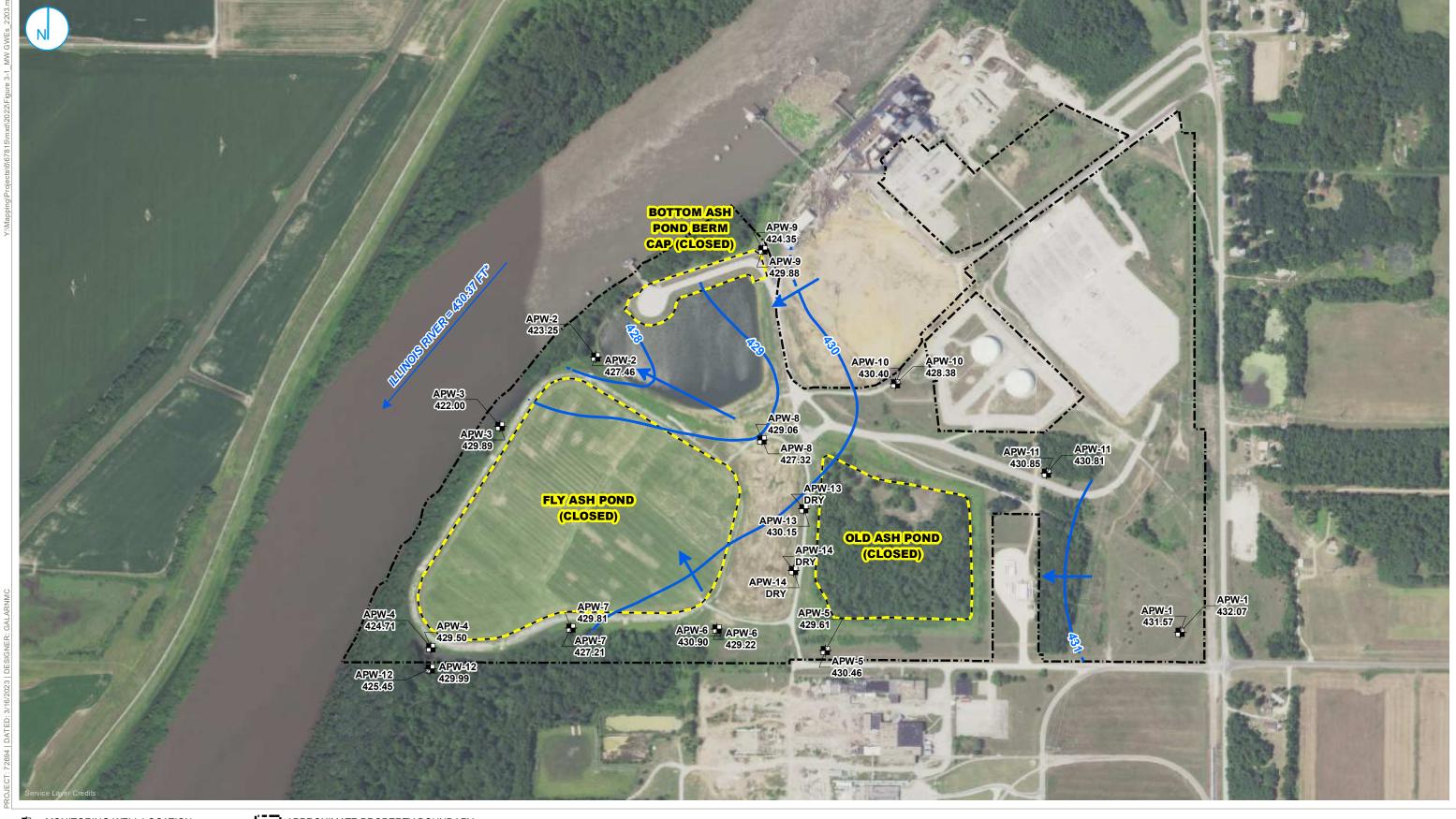


Figure 1-25. Arsenic (dissolved and total) concentrations since 2019 at upgradient APW-11. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

Figure 1-26. Arsenic (dissolved and total) concentrations since 2019 at downgradient APW-12. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

based on March 2019 Plat of Survey.

MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

APPROXIMATE PROPERTY BOUNDARY

LIMITS OF CCP MANAGEMENT

*River Elevation obtained from United States Geological Survey 05585500 Meredosia, IL gaging station. The elevation was reported in NGVD29 and then converted to NAVD88 at the time of this drawing.

1= Groundwater Elevation Not Used For Contouring
2= Well Dry, Groundwater Level Below Bottom of Well Elevation Shown

NGVD29 = National Geodetic Vertical Datum of 1929 NAVD88 = North American Vertical Datum of 1988

GROUNDWATER ELEVATIONS - MARCH 17, 2022

2022 GROUNDWATER MONITORING ANNUAL REPORT AMEREN ENERGY RESOURCES MEREDOSIA POWER STATION MORGAN COUNTY, ILLINOIS FIGURE 3-1

based on March 2019 Plat of Survey.

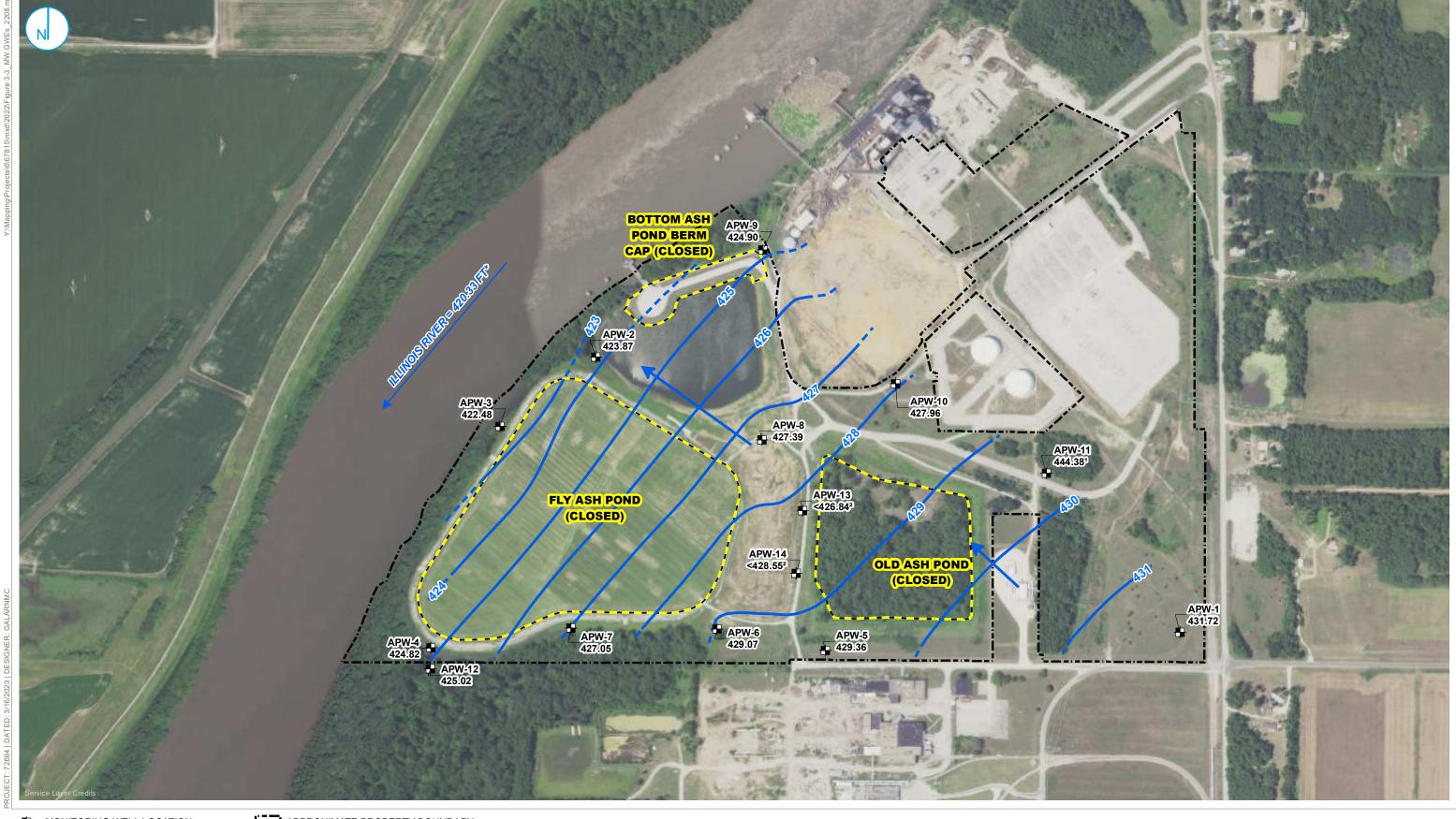
MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

APPROXIMATE PROPERTY BOUNDARY LIMITS OF CCP MANAGEMENT


*River Elevation obtained from United States Geological Survey 05585500 Meredosia, IL gaging station. The elevation was reported in NGVD29 and then converted to NAVD88 at the time of this drawing. NM= Groundwater Elevation Not Measured Due to Flooding

NGVD29 = National Geodetic Vertical Datum of 1929 NAVD88 = North American Vertical Datum of 1988

GROUNDWATER ELEVATIONS - JUNE 21-22, 2022

2022 GROUNDWATER MONITORING ANNUAL REPORT AMEREN ENERGY RESOURCES MEREDOSIA POWER STATION MORGAN COUNTY, ILLINOIS FIGURE 3-2

based on March 2019 Plat of Survey.

MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

APPROXIMATE PROPERTY BOUNDARY

LIMITS OF CCP MANAGEMENT

*River Elevation obtained from United States Geological Survey 05585500 Meredosia, IL gaging station. The elevation was reported in NGVD29 and then converted to NAVD88 at the time of this drawing.

1= Groundwater Elevation Not Used For Contouring
2= Well Dry, Groundwater Level Below Bottom of Well Elevation Shown NGVD29 = National Geodetic Vertical Datum of 1929 NAVD88 = North American Vertical Datum of 1988

GROUNDWATER ELEVATIONS - AUGUST 17-18, 2022

2022 GROUNDWATER MONITORING ANNUAL REPORT AMEREN ENERGY RESOURCES MEREDOSIA POWER STATION MORGAN COUNTY, ILLINOIS FIGURE 3-3

based on March 2019 Plat of Survey.

MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

APPROXIMATE PROPERTY BOUNDARY

LIMITS OF CCP MANAGEMENT

*River Elevation obtained from United States Geological Survey 05585500 Meredosia, IL gaging station. The elevation was reported in NGVD29 and then converted to NAVD88 at the time of this drawing.

1= Groundwater Elevation Not Used For Contouring
2= Well Dry, Groundwater Level Below Bottom of Well Elevation Shown

NGVD29 = National Geodetic Vertical Datum of 1929 NAVD88 = North American Vertical Datum of 1988

GROUNDWATER ELEVATIONS - DECEMBER 21, 2022

2022 GROUNDWATER MONITORING ANNUAL REPORT AMEREN ENERGY RESOURCES MEREDOSIA POWER STATION MORGAN COUNTY, ILLINOIS FIGURE 3-4

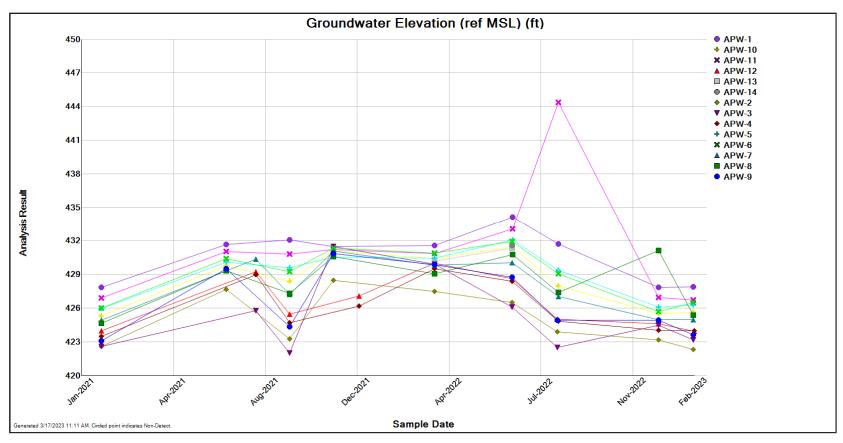
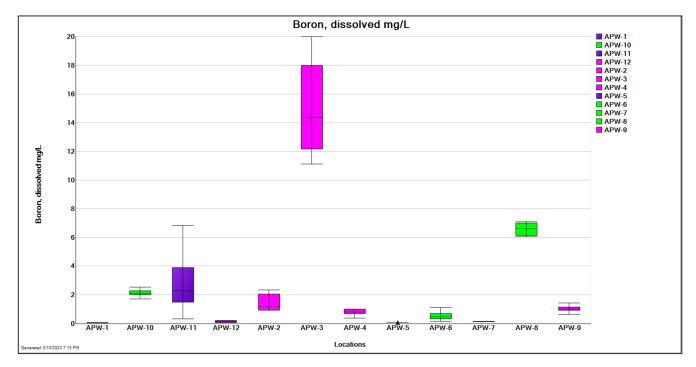
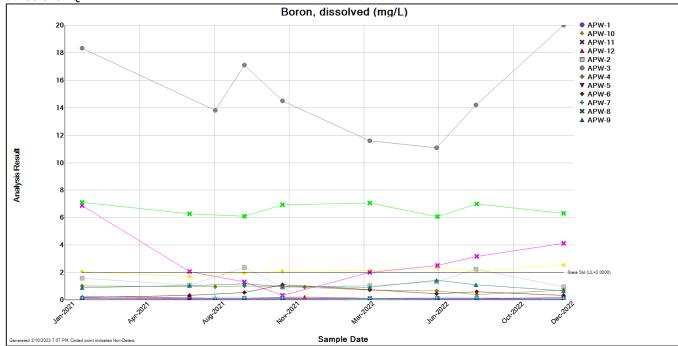




Figure 3-5. Groundwater elevations timeseries plot

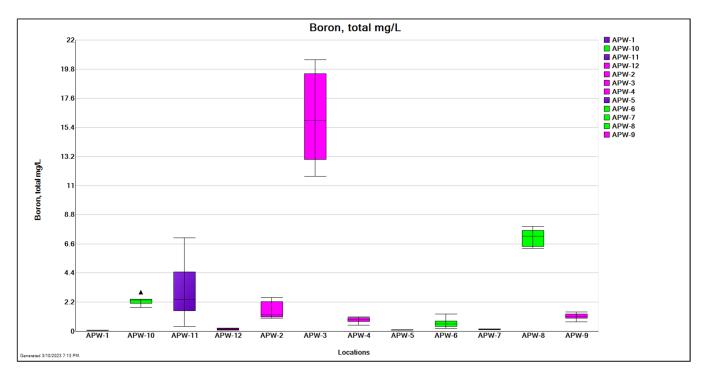


Figure 3-6. Box-whisker plot showing distribution of **dissolved boron** concentration by monitoring well for data collected in 2021 and 2022. Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the interquartile range (IQR) of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.

Figure 3-7. Dissolved boron concentrations during the reporting period (2021–2022) at all compliance wells.

Figure 3-8. Box-whisker plot showing distribution of **total boron** concentration by monitoring well for data collected in 2021 and 2022. Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.

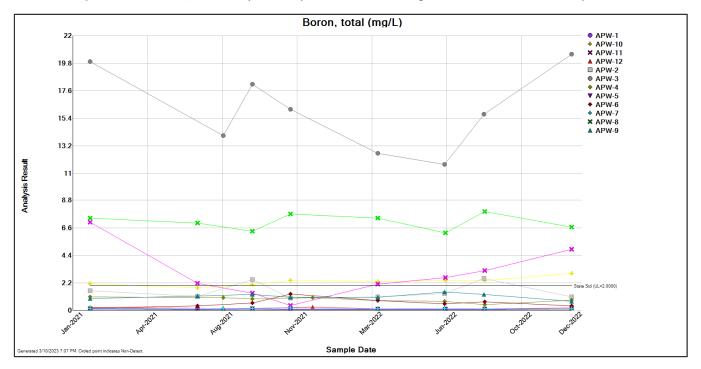
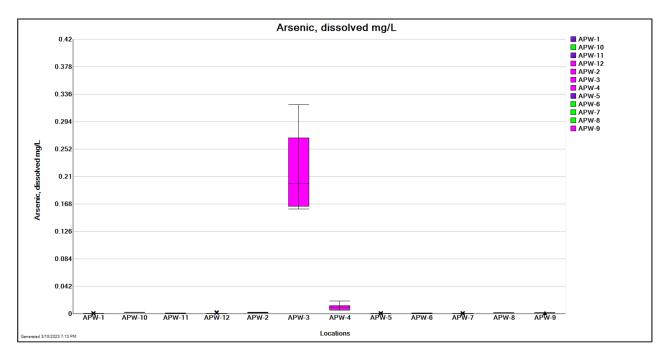
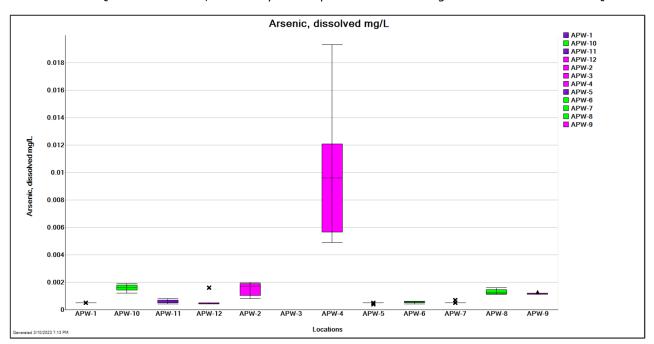




Figure 3-9. Total boron concentrations during the reporting period (2021–2022) at all compliance wells.

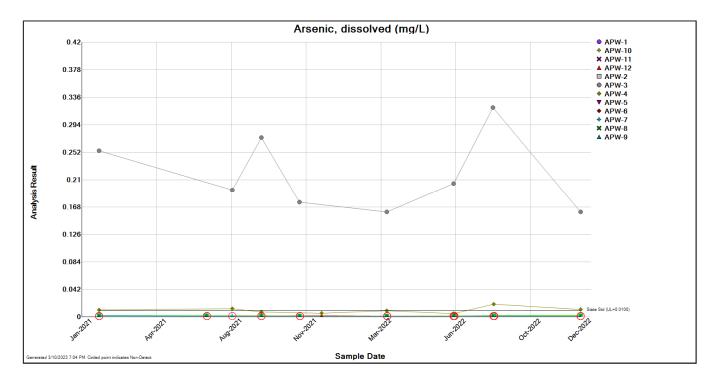


Figure 3-10A. Box-whisker plot showing distribution of **dissolved arsenic** concentration by monitoring well for data collected in 2021 and 2022. Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.

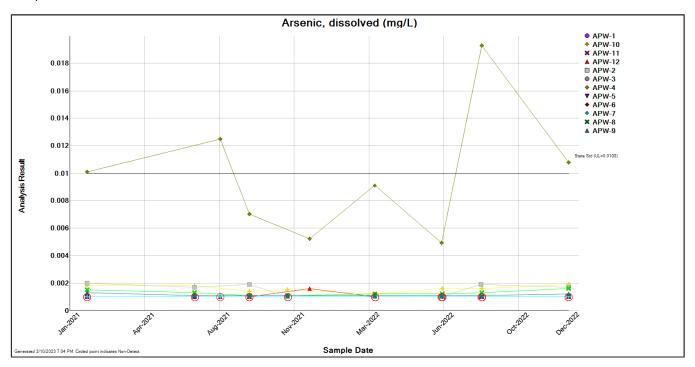
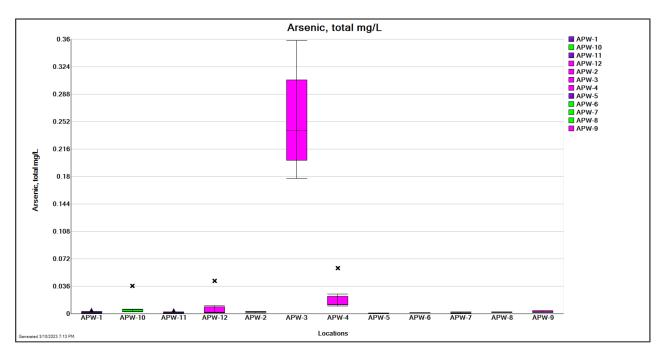


Figure 3-10B. Box-whisker plot showing distribution of **dissolved arsenic** concentration by monitoring well for data collected in 2021 and 2022 (zoomed in). Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.



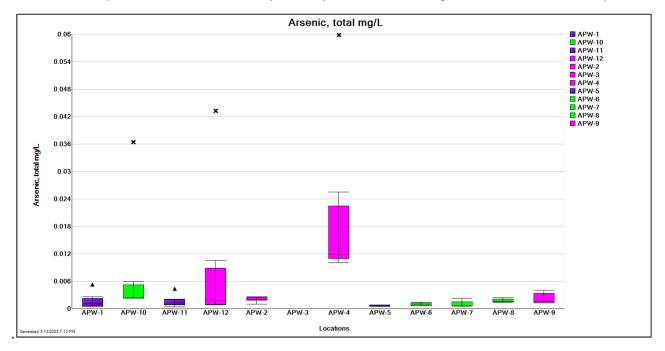

Figure 3-11A. Dissolved arsenic concentrations during the reporting period (2021–2022) at all compliance wells. Circled results indicate non-detects.

Figure 3-11B. Dissolved arsenic concentrations during the reporting period (2021–2022) at all compliance wells (zoomed in). Circled results indicate non-detects.

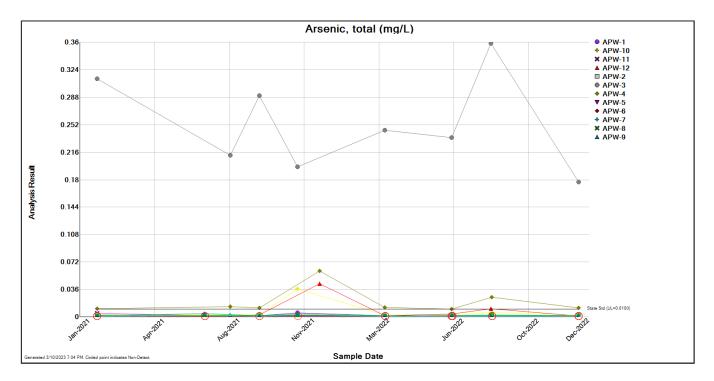


Figure 3-12A. Box-whisker plot showing distribution of **total arsenic** concentration by monitoring well for data collected in 2021 and 2022. Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR

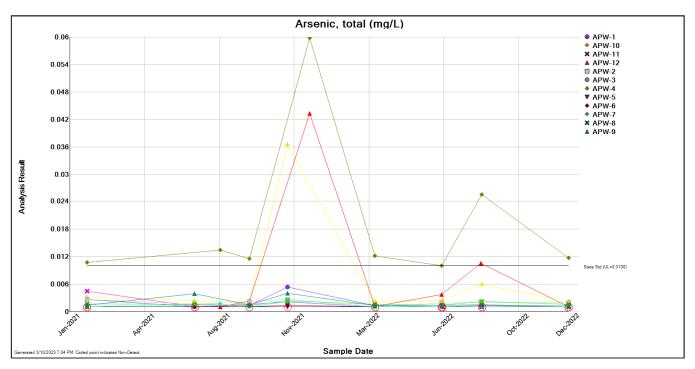


Figure 3-12B. Box-whisker plot showing distribution of **total arsenic** concentration by monitoring well for data collected in 2021 and 2022 (zoomed in). Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.

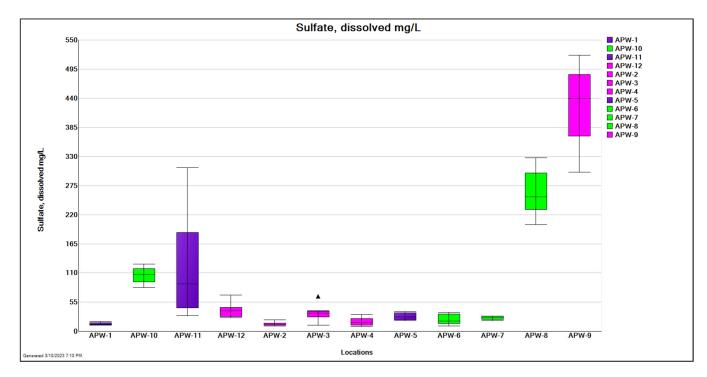


Figure 3-13A. Total arsenic concentrations during the reporting period (2021–2022) at all compliance wells. Circled results indicate non-detects.

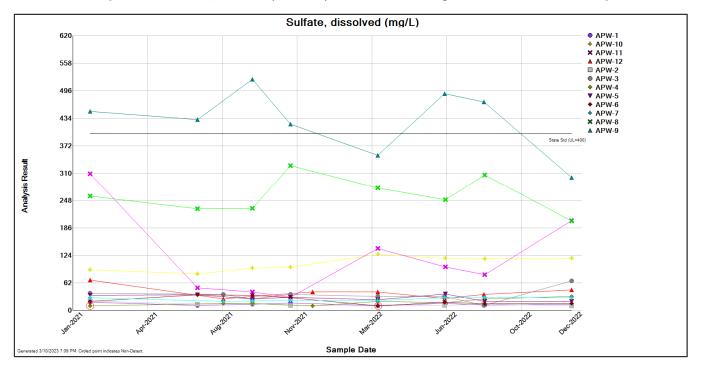


Figure 3-13B. Total arsenic concentrations during the reporting period (2021–2022) at all compliance wells (zoomed in). Circled results indicate non-detects.

Figure 3-14. Box-whisker plot showing distribution of **dissolved sulfate** concentration by monitoring well for data collected in 2021 and 2022. Note: Box-whisker plots for upgradient wells are purple, for midgradient wells are green, and for downgradient wells are pink. The triangle symbol represents an outlier greater than 1.5 times the IQR of the dataset, the "X" symbol represents an outlier greater than 3 times the IQR.

Figure 3-15. Dissolved sulfate concentrations during the reporting period (2021–2022) at all compliance wells. Circled results indicate non-detects.

APPENDIX A GROUNDWATER MONITORING RESULTS 2021-2022

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
As, tot, mg/L	0.0026	< 0.0010	0.0013	0.0053	0.0013	< 0.0010	< 0.0010	< 0.0010
B, diss, mg/L	0.0739	0.0559	0.0427	0.0483	0.0619	0.0553	0.0402	0.0585
B, tot, mg/L	0.0839	0.0572	0.0492	0.0563	0.0604	0.0577	0.0410	0.0719
Ba, diss, mg/L	0.0140	0.0232	0.0179	0.0110	0.0094	0.0193	0.0131	0.0090
Ba, tot, mg/L	0.0251	0.0250	0.0242	0.0378	0.0159	0.0238	0.0165	0.0130
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	39.0	100.0	111.0	91.0	46.0	159.0	84.0	42.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	0.0076	< 0.0050	< 0.0050	0.0182	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0067	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	0.0068	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	0.0061	< 0.0050	< 0.0050	0.0115	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.14	0.13	0.21	0.29	0.23	0.23	0.33	0.30
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	3.5200	0.4960	1.4000	8.3100	1.6400	0.9330	0.6240	0.4690
GW Elv, ft	427.82	431.64	432.07	431.48	431.57	434.14	431.72	427.83
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.3290	0.0442	0.1450	0.8870	0.1110	0.1190	0.0687	0.0429
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	0.0127	< 0.0050	0.0066	0.0315	0.0069	0.0053	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	4.810	4.280	3.710	3.600	4.350	2.290	6.110	3.220
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	0.0047	< 0.0010	0.0028	0.0095	0.0018	0.0016	< 0.0010	< 0.0010
pH (field), STD	7.00	6.36	7.02	7.04	6.93	6.93	6.84	7.02
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	18	11	13	16	11	15	12	13
Spec. Cond. (field), micromho	441	629	1030	555	491	685	711	564
TDS, mg/L	252	298	374	348	208	420	392	240
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0104	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	0.0148	< 0.0100	< 0.0100	0.0276	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.0020	0.0017	0.0019	0.0010	< 0.0010	< 0.0010	0.0019	0.0017
As, tot, mg/L	0.0026	0.0017	0.0021	0.0026	0.0010	0.0018	0.0020	0.0019
B, diss, mg/L	1.5600	1.0600	2.3300	0.9010	1.0300	1.3000	2.2200	0.9390
B, tot, mg/L	1.5700	1.0900	2.4400	0.9810	1.0800	1.3400	2.5400	1.0600
Ba, diss, mg/L	0.0482	0.0390	0.0602	0.0368	0.0357	0.0417	0.0544	0.0375
Ba, tot, mg/L	0.0598	0.0374	0.0714	0.0677	0.0398	0.0573	0.0639	0.0500
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	10.0	4.0	19.0	2.0	2.0	8.0	17.0	<4.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.25	0.32	0.28	0.37	0.30	0.29	0.26	0.31
Fe, diss, mg/L	< 0.0400	< 0.0400	0.3470	< 0.0400	< 0.0400	< 0.0400	0.0409	< 0.0400
Fe, tot, mg/L	1.2200	0.0689	1.5800	3.9800	0.2900	2.0800	1.0800	0.5080
GW Elv, ft	422.60	427.67	423.25	428.45	427.46	426.48	423.87	423.17
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	0.1740	0.2170	0.4860	0.1270	0.0519	0.1710	0.4400	0.0834
Mn, tot, mg/L	0.1870	0.2200	0.5490	0.1870	0.0743	0.2710	0.5330	0.1440
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0013
Pb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0020	< 0.0010	0.0012	< 0.0010	< 0.0010
pH (field), STD	7.00	6.65	6.79	6.80	6.84	6.98	6.84	6.87
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	0.0041	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	21	13	15	11	10	11	14	10
Spec. Cond. (field), micromho	606	607	1110	487	684	479	793	704
TDS, mg/L	368	306	466	298	300	356	492	332
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0265	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.2540	0.1940	0.2740	0.1750	0.1600	0.2040	0.3200	0.1600
As, tot, mg/L	0.3120	0.2120	0.2900	0.1970	0.2450	0.2350	0.3580	0.1770
B, diss, mg/L	18.3000	13.8000	17.1000	14.5000	11.6000	11.1000	14.2000	20.0000
B, tot, mg/L	19.9000	14.0000	18.1000	16.1000	12.6000	11.7000	15.7000	20.5000
Ba, diss, mg/L	0.0901	0.1050	0.0952	0.0810	0.0895	0.0701	0.0716	0.1140
Ba, tot, mg/L	0.1180	0.1020	0.1060	0.1520	0.1100	0.1150	0.1140	0.1570
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	22.0	19.0	19.0	18.0	16.0	17.0	17.0	26.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0070	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.16	0.20	0.22	0.25	0.20	0.20	0.20	0.18
Fe, diss, mg/L	2.5200	3.2700	3.0300	1.4800	4.4500	1.9500	1.5500	3.7200
Fe, tot, mg/L	4.8400	5.3800	4.1000	10.7000	6.0000	7.7400	6.5600	6.7000
GW Elv, ft	422.58	425.79	422.00	431.46	429.89	426.09	422.48	424.47
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	0.8750	0.9760	0.8660	0.8430	1.0700	1.0200	0.9800	1.0700
Mn, tot, mg/L	0.9660	1.0100	0.9210	1.0700	1.1700	1.1600	1.1200	1.3100
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0077	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	0.0010	0.0011	< 0.0010	0.0039	< 0.0010	0.0020	0.0011	0.0018
pH (field), STD	7.40	7.17	7.36	7.24	7.24	7.35	7.45	7.28
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	38	36	25	36	31	31	11	66
Spec. Cond. (field), micromho	1030	1100	1400	978	1310	772	1030	1430
TDS, mg/L	720	678	672	646	636	612	676	760
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	0.0021	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0229	< 0.0100	0.0131	< 0.0100	0.0122

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	12/13/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.0101	0.0125	0.0070	0.0052	0.0091	0.0049	0.0193	0.0108
As, tot, mg/L	0.0107	0.0134	0.0115	0.0598	0.0121	0.0100	0.0255	0.0117
B, diss, mg/L	1.0100	0.9460	1.0000	0.9090	0.6870	0.6520	0.3840	0.6870
B, tot, mg/L	1.0700	1.0000	0.8950	1.0000	0.7730	0.6970	0.4550	0.7960
Ba, diss, mg/L	0.0409	0.0452	0.0336	0.0223	0.0350	0.0335	0.0287	0.0300
Ba, tot, mg/L	0.0478	0.0477	0.0466	0.2860	0.0586	0.0708	0.0669	0.0461
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	29.0	23.0	20.0	20.0	30.0	36.0	53.0	35.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0060	< 0.0050	< 0.0050	0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0159	0.0069	< 0.0050	0.0105	0.0139
F, diss, mg/L	0.38	0.41	0.45	0.40	0.40	0.37	0.38	0.41
Fe, diss, mg/L	9.6200	10.6000	5.8500	1.1400	9.2000	4.5000	7.3600	4.6600
Fe, tot, mg/L	11.3000	10.1000	9.1300	70.3000	14.0000	12.2000	16.2000	6.0900
GW Elv, ft	423.47	428.97	424.71	426.18	429.50	428.37	424.82	424.02
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	1.5800	1.5300	1.4400	1.4200	1.4900	1.3200	1.4400	1.2400
Mn, tot, mg/L	1.6600	1.6200	1.5000	2.2500	1.7000	1.4800	1.7000	1.5300
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	< 0.050	< 0.050	< 0.050	< 0.100	< 0.050	< 0.050	0.210	< 0.050
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0013	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0052	0.0014	0.0021	0.0038	0.0038
pH (field), STD	6.90	6.77	6.73	6.64	6.92	6.94	6.77	6.85
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0017	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0013	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	12/13/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	<10	15	15	10	20	17	25	31
Spec. Cond. (field), micromho	711	778	896	842	890	520	613	954
TDS, mg/L	418	428	392	418	396	368	420	444
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0103	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0369	0.0111	0.0133	0.0221	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
As, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
B, diss, mg/L	0.0752	0.0824	0.0785	0.0752	0.0693	0.0730	0.0806	0.0967
B, tot, mg/L	0.1190	0.0866	0.1100	0.0831	0.0826	0.0982	0.0884	0.1040
Ba, diss, mg/L	0.0071	0.0071	0.0055	0.0077	0.0063	0.0085	0.0069	0.0071
Ba, tot, mg/L	0.0078	0.0072	0.0078	0.0105	0.0085	0.0095	0.0085	0.0082
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	7.0	6.0	6.0	5.0	3.0	2.0	2.0	9.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.13	0.15	0.17	0.18	0.17	0.19	0.18	0.22
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.0640	< 0.0400	0.4670	0.4200	0.4990	0.1080	0.3880	< 0.0400
GW Elv, ft	425.96	430.08	429.61	430.52	430.46	432.05	429.36	426.10
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0089	0.0117	0.0922	0.1090	0.0653	0.0190	0.0688	< 0.0070
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	2.780	1.740	2.570	4.290	2.220	2.600	2.310	1.760
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0013	< 0.0010
Pb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
pH (field), STD	7.30	6.87	7.30	7.19		7.27	7.38	7.41
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	0.0012	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	34	35	25	29	24	37	20	20
Spec. Cond. (field), micromho	453	523	518	513	580	476	445	642
TDS, mg/L	260	258	216	320	238	330	272	288
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010		< 0.0010
As, tot, mg/L	< 0.0010	< 0.0010	0.0010	0.0014	< 0.0010	< 0.0010		< 0.0010
B, diss, mg/L	0.1610	0.3120	0.5230	1.1000	0.7370	0.4230		0.3270
B, tot, mg/L	0.1950	0.3500	0.5800	1.2900	0.7800	0.4980	0.6680	0.3300
Ba, diss, mg/L	0.0108	0.0187	0.0168	0.0165		0.0136		0.0099
Ba, tot, mg/L	0.0116	0.0197	0.0206	0.0226		0.0148		0.0107
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005		< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	6.0	27.0	6.0	3.0	1.0	3.0	1.0	<4.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.11	0.12	0.16	0.11	0.14	0.15	0.16	0.13
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.0939	0.1070	0.6200	1.2400	0.4860	0.2420	0.9660	0.1300
GW Elv, ft	426.01	430.40	429.22	431.36	430.90	431.94	429.07	425.70
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	0.0224	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0088	0.0135	0.0642	0.0917	0.0279	0.0144	0.0609	0.0081
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	0.374	0.330	0.148	0.330		0.175	0.253	0.622
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	< 0.0010	0.0011	0.0016	< 0.0010	< 0.0010	0.0013	< 0.0010
pH (field), STD	7.00	6.72	6.98	6.91	7.15	7.17	7.27	7.27
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	20	35	34	28	<10	18	14	15
Spec. Cond. (field), micromho	496	749	793	554	606	391	408	593
TDS, mg/L	284	384	338	336	252	272	242	258
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
As, tot, mg/L	< 0.0010	0.0017	< 0.0010	0.0022	< 0.0010	< 0.0010	< 0.0010	< 0.0010
B, diss, mg/L	0.1290	0.1410	0.1420	0.1480	0.1160	0.1350	0.1250	0.1180
B, tot, mg/L	0.1500	0.1470	0.1580	0.1810	0.1230	0.1590	0.1270	0.1200
Ba, diss, mg/L	0.0275	0.0445	0.0378	0.0342	0.0285	0.0333	0.0270	0.0196
Ba, tot, mg/L	0.0297	0.0511	0.0415	0.0515	0.0331	0.0357	0.0304	0.0251
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	33.0	30.0	30.0	24.0	21.0	35.0	48.0	38.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.22	0.29	0.32	0.27	0.23	0.26	0.27	0.27
Fe, diss, mg/L	< 0.0400	0.0769	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.1670	1.5600	0.3050	3.0900	0.3870	0.6260	0.4740	0.5090
GW Elv, ft	424.94	430.37	427.21	431.09	429.81	430.02	427.05	424.95
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	0.0433	0.3690	0.0948	0.0416	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0648	0.6360	0.1530	0.2210	0.0423	0.0393	0.0283	0.0288
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	0.0099	< 0.0050	< 0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	0.249	0.112	0.386	1.120	3.140	5.000	3.380	1.140
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	0.0013	< 0.0010	0.0020		< 0.0010	< 0.0010	< 0.0010
pH (field), STD	7.00	6.71	6.82	7.06	6.97	7.15	6.90	7.10
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	28	20	21	22	22	28	28	28
Spec. Cond. (field), micromho	605	641	747	564	723	471	587	743
TDS, mg/L	330	308	310	330	310	334	356	348
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.0015	0.0013	0.0011	0.0011	0.0012	0.0012	0.0013	0.0016
As, tot, mg/L	0.0017	0.0016	0.0013	0.0024	0.0016	0.0014	0.0022	0.0016
B, diss, mg/L	7.0900	6.2600	6.0600	6.9100	7.0200	6.0500	6.9600	6.2800
B, tot, mg/L	7.3700	6.9900	6.3100	7.7000	7.3800	6.2000	7.9100	6.6500
Ba, diss, mg/L	0.0644	0.0676	0.0526	0.0749	0.0538	0.0706	0.0676	0.0479
Ba, tot, mg/L	0.0671	0.0742	0.0558	0.0917	0.0583	0.0748	0.0781	0.0552
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	10.0	8.0	9.0	13.0	12.0	11.0	11.0	11.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	0.0087	0.0080	0.0071	0.0147	0.0256	0.0072	0.0108	0.0320
Cr, tot, mg/L	0.0088	0.0079	0.0074	0.0185	0.0278	0.0078	0.0138	0.0381
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	< 0.10	< 0.10	0.10	< 0.10	0.13	0.10	0.12	< 0.10
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.0746	0.0992	0.0725	1.7900	0.1300	0.1240	0.9260	0.0751
GW Elv, ft	424.65	429.31	427.32	430.58	429.06	430.76	427.39	431.11
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0102	0.0132	0.0166	0.1490	0.0156	0.0158	0.1010	0.0159
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0072	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	5.770	4.450	3.980	5.270	4.730	4.280	3.900	3.330
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0021	< 0.0010	< 0.0010	0.0013	< 0.0010
pH (field), STD	7.30	6.99	7.36	7.09		7.29	7.41	7.44
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	0.0885	0.0774	0.0573	0.0834	0.0583	0.0698	0.0614	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Se, tot, mg/L	0.0867	0.0850	0.0722	0.0943	0.0627	0.0720	0.0819	0.0451
SO4, diss, mg/L	258	229	230	327	276	249	306	201
Spec. Cond. (field), micromho	881	946	999	944	1240	747	881	1050
TDS, mg/L	634	578	508	696	658	600	652	572
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.0013	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0012
As, tot, mg/L	0.0014	0.0039	0.0015	0.0040	0.0013	0.0014	0.0015	0.0012
B, diss, mg/L	0.8790	1.0400	1.1500	0.9610	0.9150	1.4100	1.1000	0.6460
B, tot, mg/L	0.9210	1.1300	1.2700	1.0500	1.0400	1.4500	1.2800	0.7030
Ba, diss, mg/L	0.0204	0.0264	0.0233	0.0195	0.0177	0.0281	0.0212	0.0117
Ba, tot, mg/L	0.0224	0.0489	0.0275	0.0441	0.0199	0.0335	0.0239	0.0147
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	3.0	22.0	3.0	5.0	2.0	3.0	2.0	<4.0
Co, diss, mg/L	< 0.0050	< 0.0050	0.0071	0.0072	< 0.0050	< 0.0050	0.0070	< 0.0050
Co, tot, mg/L	< 0.0050	0.0055	0.0074	0.0119	< 0.0050	< 0.0050	0.0074	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	0.0055	< 0.0050	0.0059	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	0.28	0.27	0.32	0.32	0.36	0.26	0.35	0.52
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.1820	3.1700	0.2190	3.8600	0.1270	0.9960	0.1220	0.1510
GW Elv, ft	423.07	429.50	424.35	430.85	429.88	428.72	424.90	424.90
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0175	0.4310	0.0219	0.3670	0.0136	0.0413	0.0157	0.0164
Ni, diss, mg/L	< 0.0050	< 0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	< 0.0050	0.0094	0.0068	0.0141	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	2.580	3.700	4.110	3.190	2.740	3.860	2.690	1.910
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	0.0039	< 0.0010	0.0043	< 0.0010	< 0.0010	< 0.0010	< 0.0010
pH (field), STD	6.90	6.65	6.80	6.87	6.84	7.08	6.97	7.19
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	0.0016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	449	431	521	421	350	489	471	300
Spec. Cond. (field), micromho	1100	1460	1700	1100	1370	1040	1210	1070
TDS, mg/L	928	988	1010	852	782	1040	986	634
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	0.0110	< 0.0100	0.0135	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	0.0018	0.0018	0.0014	0.0015	0.0012	0.0016	0.0016	0.0019
As, tot, mg/L	0.0031	0.0024	0.0022	0.0364	0.0022	0.0025	0.0059	0.0022
B, diss, mg/L	2.0500	1.7000	1.9200	2.0800	2.1200	2.3000	2.1100	2.5100
B, tot, mg/L	2.1300	1.7900	2.0600	2.3800	2.2900	2.3900	2.3700	2.9500
Ba, diss, mg/L	0.0218	0.0189	0.0196	0.0190	0.0222	0.0219	0.0231	0.0188
Ba, tot, mg/L	0.0264	0.0202	0.0243	0.1430	0.0265	0.0277	0.0345	0.0226
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	0.0013	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	5.0	5.0	7.0	7.0	6.0	5.0	4.0	<4.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.1110	< 0.0050	< 0.0050	0.0082	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0431	< 0.0050	< 0.0050	0.0060	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0913	< 0.0050	< 0.0050	0.0084	< 0.0050
F, diss, mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	1.4100	0.3410	0.7480	44.5000	0.9240	1.2200	3.9700	0.1930
GW Elv, ft	425.34	429.75	428.38	431.06	430.40	431.48	427.96	425.50
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	0.0073	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.1350	0.0419	0.0718	3.4300	0.0701	0.1420	0.2880	0.0146
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	0.0065	< 0.0050	< 0.0050	0.1600	< 0.0050	0.0057	0.0122	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	2.400	2.400	2.480	2.480	2.390	3.070	3.190	2.400
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	0.0021	< 0.0010	0.0013	0.0469	0.0012	0.0019	0.0056	< 0.0010
pH (field), STD	7.50	7.11	7.41	7.54	7.39	7.54		7.39
Sb, diss, mg/L	< 0.0010	0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0018	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	91	82	95	97	126	117	116	117
Spec. Cond. (field), micromho	524	597	741	525	809	515	588	714
TDS, mg/L	330	312	332	350	386	382	408	374
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0622	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.1680	< 0.0100	< 0.0100	0.0137	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
As, tot, mg/L	0.0044	0.0011	0.0016	0.0021	< 0.0010	< 0.0010	< 0.0010	< 0.0010
B, diss, mg/L	6.8400	2.0400	1.2900	0.3280	2.0000	2.4800	3.1400	4.1100
B, tot, mg/L	7.0400	2.1500	1.3600	0.3660	2.0700	2.6200	3.1700	4.8900
Ba, diss, mg/L	0.0284	0.0110	0.0100	0.0132	0.0198	0.0140	0.0175	0.0169
Ba, tot, mg/L	0.0384	0.0114	0.0139	0.0195	0.0218	0.0171	0.0194	0.0205
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	11.0	3.0	2.0	4.0	5.0	4.0	2.0	6.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	0.0104	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	0.0051	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	0.0121	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
F, diss, mg/L	< 0.10	0.12	0.11	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	5.1500	0.3140	1.4700	2.0200	0.4520	0.8650	0.2330	0.2370
GW Elv, ft	426.88	431.04	430.81	431.22	430.85	433.03	444.38	426.94
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070
Mn, tot, mg/L	0.2640	0.0302	0.1040	0.2560	0.0263	0.0964	0.0308	0.0185
Ni, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Ni, tot, mg/L	0.0159	< 0.0050	0.0057	0.0091	< 0.0050	< 0.0050	< 0.0050	< 0.0050
NO2, diss, mg/L	< 0.05		< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	3.480	2.660	2.880	2.300	2.760	2.940	0.656	5.020
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	0.0057	< 0.0010	0.0019	0.0025	< 0.0010	< 0.0010	< 0.0010	< 0.0010
pH (field), STD	7.30	7.03	7.34	7.26	7.40	7.34	7.21	7.43
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	0.0453	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	6/30/2021	9/17/2021	11/11/2021	3/17/2022	6/22/2022	8/18/2022	12/21/2022
Se, tot, mg/L	0.0479	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	309	50	41	29	139	98	80	202
Spec. Cond. (field), micromho	1100	551	589	360	852	503	596	1080
TDS, mg/L	812	292	256	226	416	354	424	578
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	0.0214	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	12/13/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Ag, diss, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0016	< 0.0010	< 0.0010	< 0.0010	< 0.0010
As, tot, mg/L	< 0.0010	0.0010	0.0023	0.0433	0.0011	0.0037	0.0105	< 0.0010
B, diss, mg/L	0.2090	0.1490	0.1320	0.2000	0.0993	0.0791	0.0881	0.1600
B, tot, mg/L	0.2140	0.1480	0.1400	0.2380	0.1220	0.0816	0.1040	0.1690
Ba, diss, mg/L	0.1630	0.1300	0.1190	0.1140	0.1380	0.0975	0.1120	0.1140
Ba, tot, mg/L	0.1770	0.1390	0.1370	0.4390	0.1690	0.1430	0.1830	0.1370
Be, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005	< 0.0005	0.0018	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Cl, diss, mg/L	41.0	30.0	29.0	24.0	40.0	48.0	47.0	40.0
Co, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Co, tot, mg/L	0.0076	< 0.0050	< 0.0050	0.0723	0.0106	0.0118	0.0157	0.0068
Cr, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cr, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0450	< 0.0050	< 0.0050	0.0079	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050	< 0.0050	0.0693	< 0.0050	0.0064	0.0148	< 0.0050
F, diss, mg/L	0.33	0.36	0.38	0.32	0.29	0.34	0.32	0.34
Fe, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	0.1660	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Fe, tot, mg/L	0.4270	0.0989	2.2200	57.6000	0.5740	4.4500	10.9000	0.6220
GW Elv, ft	423.97	429.24	425.45	427.07	429.99	428.61	425.02	424.61
Hg, diss, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Mn, diss, mg/L	1.5600	1.0300	1.2900	1.1100	1.0100	1.0200	1.4300	1.3400
Mn, tot, mg/L	3.5600	1.2800	1.6600	12.0000	4.2600	2.2300	2.6300	2.5000
Ni, diss, mg/L	0.0101	0.0073	0.0091	0.0096	0.0065	0.0065	0.0068	0.0081
Ni, tot, mg/L	0.0151	0.0074	0.0138	0.1040	0.0127	0.0152	0.0278	0.0124
NO2, diss, mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
NO3, diss, mg/L	< 0.050	0.099	0.224	2.000	2.320	0.238	0.368	0.215
Pb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0011	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Pb, tot, mg/L	< 0.0010	< 0.0010	0.0025	0.0438	< 0.0010	0.0038	0.0109	< 0.0010
pH (field), STD	6.80	6.67	6.73	6.72	6.72	7.01	7.01	6.91
Sb, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0029	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Se, diss, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	1/26/2021	8/6/2021	9/17/2021	12/13/2021	3/17/2022	6/21/2022	8/17/2022	12/21/2022
Se, tot, mg/L	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
SO4, diss, mg/L	68	25	31	41	41	26	36	46
Spec. Cond. (field), micromho	831	645	839	927	876	466	678	881
TDS, mg/L	510	324	348	458	372	340	414	420
Tl, diss, mg/L	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020	< 0.0020	0.0024	< 0.0020	< 0.0020	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.0894	< 0.0100	< 0.0100	0.0186	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100	< 0.0100	0.1850	< 0.0100	0.0157	0.0343	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	3/17/2022	6/21/2022
Ag, diss, mg/L	< 0.007	< 0.007
Ag, tot, mg/L	< 0.007	< 0.007
As, diss, mg/L	< 0.0010	< 0.0010
As, tot, mg/L	0.0012	< 0.0010
B, diss, mg/L	7.1300	5.2700
B, tot, mg/L	7.4600	5.5200
Ba, diss, mg/L	0.0553	0.0405
Ba, tot, mg/L	0.0599	0.0438
Be, diss, mg/L	< 0.0005	< 0.0005
Be, tot, mg/L	< 0.0005	< 0.0005
Cd, diss, mg/L	< 0.0020	< 0.0020
Cl, diss, mg/L	20.0	6.0
Co, diss, mg/L	< 0.0050	< 0.0050
Co, tot, mg/L	< 0.0050	< 0.0050
Cr, diss, mg/L	0.0083	< 0.0050
Cr, tot, mg/L	0.0143	< 0.0050
Cu, diss, mg/L	< 0.0050	< 0.0050
Cu, tot, mg/L	< 0.0050	< 0.0050
F, diss, mg/L	< 0.10	< 0.10
Fe, diss, mg/L	< 0.0400	< 0.0400
Fe, tot, mg/L	1.0600	0.6030
GW Elv, ft	430.15	431.35
Hg, diss, mg/L	< 0.0002	< 0.0002
Hg, tot, mg/L	< 0.0002	< 0.0002
Mn, diss, mg/L	< 0.0070	< 0.0070
Mn, tot, mg/L	0.0683	0.0266
Ni, diss, mg/L	< 0.0050	< 0.0050
Ni, tot, mg/L	0.0056	< 0.0050
NO2, diss, mg/L	< 0.05	< 0.05
NO3, diss, mg/L	4.620	3.040
Pb, diss, mg/L	< 0.0010	< 0.0010
Pb, tot, mg/L	0.0011	< 0.0010
pH (field), STD	7.03	7.06
Sb, diss, mg/L	< 0.0010	< 0.0010
Sb, tot, mg/L	< 0.0010	< 0.0010
Se, diss, mg/L	0.0873	< 0.0400

Date Range: 01/01/2021 to 12/31/2022

	3/17/2022	6/21/2022
Se, tot, mg/L	0.0892	< 0.0400
SO4, diss, mg/L	205	193
Spec. Cond. (field), micromho	1120	710
TDS, mg/L	572	624
Γl, diss, mg/L	< 0.0020	< 0.0020
Tl, tot, mg/L	< 0.0020	< 0.0020
V, diss, mg/L	< 0.0100	< 0.0100
V, tot, mg/L	< 0.0100	< 0.0100
Zn, diss, mg/L	< 0.0100	< 0.0100
Zn, tot, mg/L	< 0.0100	< 0.0100

Date Range: 01/01/2021 to 12/31/2022

	6/21/2022
GW Elv, ft	431.57

APPENDIX B STATISTICAL OUTPUT

APPENDIX B1 OUTLIER TEST

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: APW-1

Mean of all data: 0.000371

Standard Deviation of all data: 0.000222

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, dissolved, mg/L

Location: APW-10

Mean of all data: 0.000528

Standard Deviation of all data: 0.000118

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

Outlier Outlier

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 06/30/2021
 0.00100
 False
 1

Antimony, dissolved, mg/L

Location: APW-11

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: APW-12

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, dissolved, mg/L

Location: APW-2

Mean of all data: 0.000379

Standard Deviation of all data: 0.000218

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Antimony, dissolved, mg/L

Location: APW-3

Mean of all data: 0.000379

Standard Deviation of all data: 0.000218

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: APW-4

Mean of all data: 0.000436

Standard Deviation of all data: 0.000323

Largest Observation Concentration of all data: Xn = 0.00170

Test Statistic, high extreme of all data: Tn = 3.91

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2021 0.00170 False

Antimony, dissolved, mg/L

Location: APW-5

Mean of all data: 0.000371

Standard Deviation of all data: 0.000222

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Tcr = 2.76

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Antimony, dissolved, mg/L

Location: APW-6

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: APW-7

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, dissolved, mg/L

Location: APW-8

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Antimony, dissolved, mg/L

Location: APW-9

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, total, mg/L Location: APW-1

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, total, mg/L Location: APW-10

Mean of all data: 0.000572

Standard Deviation of all data: 0.000306

Largest Observation Concentration of all data: Xn = 0.00180

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

Antimony, total, mg/L Location: APW-11

Mean of all data: 0.000617

Standard Deviation of all data: 0.000495

Largest Observation Concentration of all data: Xn = 0.00260

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 12/09/2019
 0.00260
 False
 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, total, mg/L Location: APW-12

Mean of all data: 0.000641

Standard Deviation of all data: 0.000582

Largest Observation Concentration of all data: Xn = 0.00290

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00290
 False
 1

Antimony, total, mg/L Location: APW-2

Mean of all data: 0.000664

Standard Deviation of all data: 0.000768

Largest Observation Concentration of all data: Xn = 0.00410

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/30/2021
 0.00410
 False
 1

Antimony, total, mg/L Location: APW-3

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, total, mg/L Location: APW-4

Mean of all data: 0.000536

Standard Deviation of all data: 0.000171

Largest Observation Concentration of all data: Xn = 0.00130

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Sample Date Value LT Value Coutlier Outlier

Low Side High Side

12/13/2021 0.00130 False

Antimony, total, mg/L Location: APW-5

Mean of all data: 0.000530

Standard Deviation of all data: 0.000146

Largest Observation Concentration of all data: Xn = 0.00120

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/30/2021
 0.00120
 False
 1

Antimony, total, mg/L Location: APW-6

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, total, mg/L Location: APW-7

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, total, mg/L Location: APW-8

Mean of all data: 0.000752

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00570

Test Statistic, high extreme of all data: Tn = 4.56

T Critical of all data: Tcr = 2.62

Antimony, total, mg/L Location: APW-9

Mean of all data: 0.000636

Standard Deviation of all data: 0.000311

Largest Observation Concentration of all data: Xn = 0.00160

Test Statistic, high extreme of all data: Tn = 3.10

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L

Location: APW-1

Mean of all data: 0.000371

Standard Deviation of all data: 0.000222

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Arsenic, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00153

Standard Deviation of all data: 0.000214

Largest Observation Concentration of all data: Xn = 0.00190

Test Statistic, high extreme of all data: Tn = 1.74

T Critical of all data: Ter = 2.50

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Arsenic, dissolved, mg/L

Location: APW-11

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L Location: APW-12

Mean of all data: 0.000565

Standard Deviation of all data: 0.000267

Largest Observation Concentration of all data: Xn = 0.00160

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00160
 False
 1

Arsenic, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00205

Standard Deviation of all data: 0.00140

Largest Observation Concentration of all data: Xn = 0.00440

Test Statistic, high extreme of all data: Tn = 1.67

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Arsenic, dissolved, mg/L Location: APW-3

Mean of all data: 0.207

Standard Deviation of all data: 0.0521

Standard Deviation of all data: 0.0521

Largest Observation Concentration of all data: Xn = 0.320

Test Statistic, high extreme of all data: Tn = 2.17

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0266

Standard Deviation of all data: 0.0408

Largest Observation Concentration of all data: Xn = 0.180

Test Statistic, high extreme of all data: Tn = 3.76

T Critical of all data: Tcr = 2.71

Arsenic, dissolved, mg/L Location: APW-5

Mean of all data: 0.000439

Standard Deviation of all data: 0.000258

Largest Observation Concentration of all data: Xn = 0.00110

Test Statistic, high extreme of all data: Tn = 2.57

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Arsenic, dissolved, mg/L

Location: APW-6

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

11

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Arsenic, dissolved, mg/L

Location: APW-7

Mean of all data: 0.000523

Standard Deviation of all data: 0.000107

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Outlier Outlier LT Value Low Side High Side Sample Date Value

06/28/2017 0.00100 False

Arsenic, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00128

Standard Deviation of all data: 0.000161

Largest Observation Concentration of all data: Xn = 0.00160

Test Statistic, high extreme of all data: Tn = 1.97

T Critical of all data: Tcr = 2.62

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Arsenic, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00103

Standard Deviation of all data: 0.000304

Largest Observation Concentration of all data: Xn = 0.00140

Test Statistic, high extreme of all data: Tn = 1.23

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, total, mg/L Location: APW-1

Mean of all data: 0.00182

Standard Deviation of all data: 0.00187

Largest Observation Concentration of all data: Xn = 0.00890

Test Statistic, high extreme of all data: Tn = 3.79

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.00890
 False
 1

Arsenic, total, mg/L Location: APW-10

Mean of all data: 0.00478

Standard Deviation of all data: 0.00796

Largest Observation Concentration of all data: Xn = 0.0364

Test Statistic, high extreme of all data: Tn = 3.97

T Critical of all data: Tcr = 2.50

Arsenic, total, mg/L Location: APW-11

Mean of all data: 0.00377

Standard Deviation of all data: 0.00848

Largest Observation Concentration of all data: Xn = 0.0371

Test Statistic, high extreme of all data: Tn = 3.93

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, total, mg/L Location: APW-12

Mean of all data: 0.00457

Standard Deviation of all data: 0.0103

Largest Observation Concentration of all data: Xn = 0.0433

Test Statistic, high extreme of all data: Tn = 3.77

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0433
 False
 1

Arsenic, total, mg/L Location: APW-2

Mean of all data: 0.00264

Standard Deviation of all data: 0.00142

Largest Observation Concentration of all data: Xn = 0.00670

Test Statistic, high extreme of all data: Tn = 2.86

T Critical of all data: Tcr = 2.60

Arsenic, total, mg/L Location: APW-3

Mean of all data: 0.240

Standard Deviation of all data: 0.0533

Largest Observation Concentration of all data: Xn = 0.358

Test Statistic, high extreme of all data: Tn = 2.22

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, total, mg/L Location: APW-4

Mean of all data: 0.0166

Standard Deviation of all data: 0.0110

Largest Observation Concentration of all data: Xn = 0.0598

Test Statistic, high extreme of all data: Tn = 3.93

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0598
 False
 1

Arsenic, total, mg/L Location: APW-5

Mean of all data: 0.000857

Standard Deviation of all data: 0.000854

Largest Observation Concentration of all data: Xn = 0.00390

Test Statistic, high extreme of all data: Tn = 3.56

T Critical of all data: Tcr = 2.62

Arsenic, total, mg/L Location: APW-6

Mean of all data: 0.00101

Standard Deviation of all data: 0.000596

Largest Observation Concentration of all data: Xn = 0.00270

Test Statistic, high extreme of all data: Tn = 2.83

T Critical of all data: Ter = 2.62

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, total, mg/L Location: APW-7

Mean of all data: 0.00178

Standard Deviation of all data: 0.00466

Largest Observation Concentration of all data: Xn = 0.0225

Test Statistic, high extreme of all data: Tn = 4.45

T Critical of all data: Ter = 2.60

Arsenic, total, mg/L Location: APW-8

Mean of all data: 0.00301

Standard Deviation of all data: 0.00593

Largest Observation Concentration of all data: Xn = 0.0301

Test Statistic, high extreme of all data: Tn = 4.57

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.0301
 False
 1

Arsenic, total, mg/L Location: APW-9

Mean of all data: 0.00206

Standard Deviation of all data: 0.000914

Largest Observation Concentration of all data: Xn = 0.00420

Test Statistic, high extreme of all data: Tn = 2.34

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

1

Meredosia Power Station Outlier Analysis Results

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Barium,\,dissolved,\,mg/L$

Location: APW-1

Mean of all data: 0.0128

Standard Deviation of all data: 0.00437

Largest Observation Concentration of all data: Xn = 0.0232

Test Statistic, high extreme of all data: Tn = 2.39

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2010 <0.0 True -1

 $Barium,\,dissolved,\,mg/L$

Location: APW-10

Mean of all data: 0.0191

Standard Deviation of all data: 0.00234

Largest Observation Concentration of all data: Xn = 0.0231

Test Statistic, high extreme of all data: Tn = 1.70

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Barium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.0158

Standard Deviation of all data: 0.00429

Largest Observation Concentration of all data: Xn = 0.0284

Test Statistic, high extreme of all data: Tn = 2.94

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

01/26/2021 0.0284 False

Meredosia Power Station

User Supplied Information

Outlier Analysis Results

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Barium,\,dissolved,\,mg/L$

Location: APW-12

Mean of all data: 0.131

Standard Deviation of all data: 0.0360

Largest Observation Concentration of all data: Xn = 0.246

Test Statistic, high extreme of all data: Tn = 3.19

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 01/29/2019
 0.246
 False
 1

Barium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.0506

Standard Deviation of all data: 0.0141

Largest Observation Concentration of all data: Xn = 0.0718

Test Statistic, high extreme of all data: Tn = 1.50

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2010
 <0.0</td>
 True
 -1

 $Barium,\,dissolved,\,mg/L$

Location: APW-3

Mean of all data: 0.0697

Standard Deviation of all data: 0.0245

Largest Observation Concentration of all data: Xn = 0.114

Test Statistic, high extreme of all data: Tn = 1.81

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2010 <0.0 True -1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Barium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0492

Standard Deviation of all data: 0.0187

Largest Observation Concentration of all data: Xn = 0.0950

Test Statistic, high extreme of all data: Tn = 2.45

T Critical of all data: Tcr = 2.71

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Barium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00777

Standard Deviation of all data: 0.00204

Largest Observation Concentration of all data: Xn = 0.0108

Test Statistic, high extreme of all data: Tn = 1.49

T Critical of all data: Tcr = 2.76

Outlier Outlier Sample Date Value LT Value Low Side High Side

< 0.0 12/13/2010 True -1

Barium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.0142

Standard Deviation of all data: 0.00288

Largest Observation Concentration of all data: Xn = 0.0198

Test Statistic, high extreme of all data: Tn = 1.95

T Critical of all data: Tcr = 2.62

Outlier Outlier Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Barium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.0308

Standard Deviation of all data: 0.00630

Largest Observation Concentration of all data: Xn = 0.0445

Test Statistic, high extreme of all data: Tn = 2.18

T Critical of all data: Ter = 2.60

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Barium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.0642

Standard Deviation of all data: 0.00802

Largest Observation Concentration of all data: Xn = 0.0754

Test Statistic, high extreme of all data: Tn = 1.40

T Critical of all data: Ter = 2.62

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Barium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.0252

Standard Deviation of all data: 0.00924

Largest Observation Concentration of all data: Xn = 0.0490

Test Statistic, high extreme of all data: Tn = 2.57

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, total, mg/L Location: APW-1

Mean of all data: 0.0226

Standard Deviation of all data: 0.0108

Largest Observation Concentration of all data: Xn = 0.0650

Test Statistic, high extreme of all data: Tn = 3.92

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.0650
 False
 1

Barium, total, mg/L Location: APW-10

Mean of all data: 0.0312

Standard Deviation of all data: 0.0282

Largest Observation Concentration of all data: Xn = 0.143

Test Statistic, high extreme of all data: Tn = 3.97

T Critical of all data: Tcr = 2.50

Barium, total, mg/L Location: APW-11

Mean of all data: 0.0252

Standard Deviation of all data: 0.0191

Largest Observation Concentration of all data: Xn = 0.0970

Test Statistic, high extreme of all data: Tn = 3.75

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, total, mg/L Location: APW-12

Mean of all data: 0.172

Standard Deviation of all data: 0.0793

Largest Observation Concentration of all data: Xn = 0.439

Test Statistic, high extreme of all data: Tn = 3.36

T Critical of all data: Ter = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.439
 False
 1

Barium, total, mg/L Location: APW-2

Mean of all data: 0.0724

Standard Deviation of all data: 0.0267

Largest Observation Concentration of all data: Xn = 0.165

Test Statistic, high extreme of all data: Tn = 3.46

T Critical of all data: Tcr = 2.60

Barium, total, mg/L Location: APW-3

Mean of all data: 0.104

Standard Deviation of all data: 0.0240

Largest Observation Concentration of all data: Xn = 0.157

Test Statistic, high extreme of all data: Tn = 2.20

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, total, mg/L Location: APW-4

Mean of all data: 0.0746

Standard Deviation of all data: 0.0511

Largest Observation Concentration of all data: Xn = 0.286

Test Statistic, high extreme of all data: Tn = 4.14

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.286
 False
 1

Barium, total, mg/L Location: APW-5

Mean of all data: 0.0109

Standard Deviation of all data: 0.00487

Largest Observation Concentration of all data: Xn = 0.0304

Test Statistic, high extreme of all data: Tn = 4.00

T Critical of all data: Ter = 2.62

Barium, total, mg/L Location: APW-6

Mean of all data: 0.0170

Standard Deviation of all data: 0.00399

Largest Observation Concentration of all data: Xn = 0.0270

Test Statistic, high extreme of all data: Tn = 2.51

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, total, mg/L Location: APW-7

Mean of all data: 0.0417

Standard Deviation of all data: 0.0274

Largest Observation Concentration of all data: Xn = 0.160

Test Statistic, high extreme of all data: Tn = 4.32

T Critical of all data: Ter = 2.60

Barium, total, mg/L Location: APW-8

Mean of all data: 0.0757

Standard Deviation of all data: 0.0261

Largest Observation Concentration of all data: Xn = 0.185

Test Statistic, high extreme of all data: Tn = 4.18

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.185
 False
 1

Barium, total, mg/L Location: APW-9

Mean of all data: 0.0334

Standard Deviation of all data: 0.0122

Largest Observation Concentration of all data: Xn = 0.0606

Test Statistic, high extreme of all data: Tn = 2.22

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.000185

Standard Deviation of all data: 0.000111

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Beryllium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier White A Country of the Country of t

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: APW-12

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.000190

Standard Deviation of all data: 0.000109

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Beryllium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.000364

Standard Deviation of all data: 0.000764

Largest Observation Concentration of all data: Xn = 0.00420

Test Statistic, high extreme of all data: Tn = 5.02

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.00420 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.000314

Standard Deviation of all data: 0.000390

Largest Observation Concentration of all data: Xn = 0.00180

Test Statistic, high extreme of all data: Tn = 3.81

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2011 0.00180 False

Beryllium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.000185

Standard Deviation of all data: 0.000111

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.000313

Standard Deviation of all data: 0.000302

Largest Observation Concentration of all data: Xn = 0.00170

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.00170 False 1

Beryllium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, total, mg/L Location: APW-1

Mean of all data: 0.000265

Standard Deviation of all data: 0.0000730

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.000600
 False
 1

Beryllium, total, mg/L Location: APW-10

Mean of all data: 0.000308

Standard Deviation of all data: 0.000247

Largest Observation Concentration of all data: Xn = 0.00130

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

Beryllium, total, mg/L Location: APW-11

Mean of all data: 0.000314

Standard Deviation of all data: 0.000271

Largest Observation Concentration of all data: Xn = 0.00140

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, total, mg/L Location: APW-12

Mean of all data: 0.000341

Standard Deviation of all data: 0.000376

Largest Observation Concentration of all data: Xn = 0.00180

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00180
 False
 1

Beryllium, total, mg/L Location: APW-2

Mean of all data: 0.000266

Standard Deviation of all data: 0.0000746

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Tcr = 2.60

Beryllium, total, mg/L Location: APW-3

Mean of all data: 0.000461

Standard Deviation of all data: 0.000991

Largest Observation Concentration of all data: Xn = 0.00490

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Location: APW-4

Beryllium, total, mg/L

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, total, mg/L Location: APW-5

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Beryllium, total, mg/L Location: APW-6

Mean of all data: 0.000265

Standard Deviation of all data: 0.0000730

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.000600 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, total, mg/L Location: APW-7

Mean of all data: 0.000280

Standard Deviation of all data: 0.000139

Largest Observation Concentration of all data: Xn = 0.000900

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Beryllium, total, mg/L Location: APW-8

Mean of all data: 0.000350

Standard Deviation of all data: 0.000364

Largest Observation Concentration of all data: Xn = 0.00190

Test Statistic, high extreme of all data: Tn = 4.26

T Critical of all data: Tcr = 2.62

Beryllium, total, mg/L Location: APW-9

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L Location: APW-1

Mean of all data: 0.0773

Standard Deviation of all data: 0.0250

Largest Observation Concentration of all data: Xn = 0.140

Test Statistic, high extreme of all data: Tn = 2.50

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, dissolved, mg/L Location: APW-10

Mean of all data: 1.49

Standard Deviation of all data: 0.615

Largest Observation Concentration of all data: Xn = 2.51

Test Statistic, high extreme of all data: Tn = 1.66

T Critical of all data: Ter = 2.50

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Boron, dissolved, mg/L Location: APW-11

Mean of all data: 2.43

Standard Deviation of all data: 1.52

Largest Observation Concentration of all data: Xn = 6.84

Test Statistic, high extreme of all data: Tn = 2.91

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/26/2021 6.84 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L Location: APW-12

Mean of all data: 0.144

Standard Deviation of all data: 0.0583

Largest Observation Concentration of all data: Xn = 0.241

Test Statistic, high extreme of all data: Tn = 1.66

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, dissolved, mg/L

Location: APW-2

Mean of all data: 2.18

Standard Deviation of all data: 0.823

Largest Observation Concentration of all data: Xn = 3.90

Test Statistic, high extreme of all data: Tn = 2.09

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Boron, dissolved, mg/L

Location: APW-3

Mean of all data: 20.7

Standard Deviation of all data: 8.33

Largest Observation Concentration of all data: Xn = 46.0

Test Statistic, high extreme of all data: Tn = 3.04

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 Sample Date
 Value
 E1_value
 Low side
 Fight Side

 06/18/2012
 46.0
 False
 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L

Location: APW-4

Mean of all data: 1.83

Standard Deviation of all data: 1.55

Largest Observation Concentration of all data: Xn = 6.30Test Statistic, high extreme of all data: Tn = 2.88

T Critical of all data: Tcr = 2.71

 $Boron,\,dissolved,\,mg/L$

Location: APW-5

Mean of all data: 0.135

Standard Deviation of all data: 0.0957

Largest Observation Concentration of all data: Xn = 0.410

Test Statistic, high extreme of all data: Tn = 2.87

T Critical of all data: Tcr = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/18/2012
 0.410
 False
 1

 $Boron,\,dissolved,\,mg/L$

Location: APW-6

Mean of all data: 0.681

Standard Deviation of all data: 0.499

Largest Observation Concentration of all data: Xn = 1.81

Test Statistic, high extreme of all data: Tn = 2.26

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L Location: APW-7

Mean of all data: 0.154

Standard Deviation of all data: 0.0654

Largest Observation Concentration of all data: Xn = 0.378

Test Statistic, high extreme of all data: Tn = 3.43

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/27/2018
 0.378
 False
 1

Boron, dissolved, mg/L

Location: APW-8

Mean of all data: 7.18

Standard Deviation of all data: 0.824

Largest Observation Concentration of all data: Xn = 8.88Test Statistic, high extreme of all data: Tn = 2.06

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, dissolved, mg/L Location: APW-9

Mean of all data: 1.07 Standard Deviation of all data: 0.456

Largest Observation Concentration of all data: Xn = 2.11

Test Statistic, high extreme of all data: Tn = 2.28

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

1

Meredosia Power Station Outlier Analysis Results

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, total, mg/L Location: APW-1

Mean of all data: 0.0733

Standard Deviation of all data: 0.0163

Largest Observation Concentration of all data: Xn = 0.110

Test Statistic, high extreme of all data: Tn = 2.25

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, total, mg/L Location: APW-10

Mean of all data: 1.62

Standard Deviation of all data: 0.702

Largest Observation Concentration of all data: Xn = 2.95Test Statistic, high extreme of all data: Tn = 1.90

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, total, mg/L Location: APW-11

Mean of all data: 2.64

Standard Deviation of all data: 1.67

Largest Observation Concentration of all data: Xn = 7.04Test Statistic, high extreme of all data: Tn = 2.63

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/26/2021 7.04 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Boron, total, mg/L **Location: APW-12**

Mean of all data: 0.153

Standard Deviation of all data: 0.0631

Largest Observation Concentration of all data: Xn = 0.273

Test Statistic, high extreme of all data: Tn = 1.90

T Critical of all data: Tcr = 2.48

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Boron, total, mg/L **Location: APW-2**

Mean of all data: 1.95

Standard Deviation of all data: 0.617

Largest Observation Concentration of all data: Xn = 2.94 Test Statistic, high extreme of all data: Tn = 1.60

T Critical of all data: Ter = 2.60

Outlier Outlier Sample Date Value LT Value Low Side High Side

No Outliers

Boron, total, mg/L **Location: APW-3**

Mean of all data: 18.3

Standard Deviation of all data: 4.84

Largest Observation Concentration of all data: Xn = 28.7

Test Statistic, high extreme of all data: Tn = 2.15

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, total, mg/L Location: APW-4

Mean of all data: 1.20

Standard Deviation of all data: 0.451

Largest Observation Concentration of all data: Xn = 2.14

Test Statistic, high extreme of all data: Tn = 2.09

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, total, mg/L Location: APW-5

Mean of all data: 0.0994

Standard Deviation of all data: 0.0169

Largest Observation Concentration of all data: Xn = 0.154

Test Statistic, high extreme of all data: Tn = 3.22

T Critical of all data: Tcr = 2.62

Outlier Outlier Outlier

Sample Date Value LT_Value Low Side High Side

09/20/2018 0.154 False 1

Boron, total, mg/L Location: APW-6

Mean of all data: 0.726

Standard Deviation of all data: 0.522

Largest Observation Concentration of all data: Xn = 1.91

Test Statistic, high extreme of all data: Tn = 2.27

T Critical of all data: Tcr = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, total, mg/L Location: APW-7

Mean of all data: 0.162

Standard Deviation of all data: 0.0657

Largest Observation Concentration of all data: Xn = 0.363

Test Statistic, high extreme of all data: Tn = 3.06

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

11/27/2018 0.363 False

Boron, total, mg/L Location: APW-8

Mean of all data: 7.62

Standard Deviation of all data: 0.876

Largest Observation Concentration of all data: Xn = 9.40Test Statistic, high extreme of all data: Tn = 2.04

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Boron, total, mg/L Location: APW-9

Mean of all data: 1.18

Standard Deviation of all data: 0.514

Largest Observation Concentration of all data: Xn = 2.30

Test Statistic, high extreme of all data: Tn = 2.18

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.000742

Standard Deviation of all data: 0.000445

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, dissolved, mg/L

Location: APW-12

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.000759

Standard Deviation of all data: 0.000435

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Cadmium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.000945

Standard Deviation of all data: 0.000371

Largest Observation Concentration of all data: Xn = 0.00190

Test Statistic, high extreme of all data: Tn = 2.58

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.000786

Standard Deviation of all data: 0.000418

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.513

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.000742

Standard Deviation of all data: 0.000445

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Tcr = 2.76

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Cadmium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Cadmium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Cadmium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, total, mg/L Location: APW-1

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, total, mg/L Location: APW-10

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Cadmium, total, mg/L Location: APW-11

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Will City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, total, mg/L Location: APW-12

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, total, mg/L Location: APW-2

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Cadmium, total, mg/L Location: APW-3

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, total, mg/L Location: APW-4

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, total, mg/L Location: APW-5

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Cadmium, total, mg/L Location: APW-6

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, total, mg/L Location: APW-7

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, total, mg/L Location: APW-8

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Cadmium, total, mg/L Location: APW-9

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: APW-1

Mean of all data: 39.2

Standard Deviation of all data: 35.6

Largest Observation Concentration of all data: Xn = 159.

Test Statistic, high extreme of all data: Tn = 3.37

T Critical of all data: Ter = 2.76

Chloride, dissolved, mg/L

Location: APW-10

Mean of all data: 3.64

Standard Deviation of all data: 1.73

Largest Observation Concentration of all data: Xn = 7.00Test Statistic, high extreme of all data: Tn = 1.94

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chloride, dissolved, mg/L

Location: APW-11

Mean of all data: 3.83

Standard Deviation of all data: 2.31 Largest Observation Concentration of all data: Xn = 11.0

Test Statistic, high extreme of all data: Tn = 3.11

T Critical of all data: Tcr = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Chloride, dissolved, mg/L

Location: APW-12

Mean of all data: 44.4

Standard Deviation of all data: 13.5

Largest Observation Concentration of all data: Xn = 75.0

Test Statistic, high extreme of all data: Tn = 2.27

T Critical of all data: Tcr = 2.48

Outlier Outlier High Side

LT_Value Low Side Sample Date Value

No Outliers

Chloride, dissolved, mg/L

Location: APW-2

Mean of all data: 23.7

Standard Deviation of all data: 14.5

Largest Observation Concentration of all data: Xn = 50.0

Test Statistic, high extreme of all data: Tn = 1.81

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Chloride, dissolved, mg/L

Location: APW-3

Mean of all data: 30.1

Standard Deviation of all data: 13.1

Largest Observation Concentration of all data: Xn = 58.0

Test Statistic, high extreme of all data: Tn = 2.13

T Critical of all data: Tcr = 2.73

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: APW-4

Mean of all data: 36.9

Standard Deviation of all data: 11.1

Largest Observation Concentration of all data: Xn = 63.0

Test Statistic, high extreme of all data: Tn = 2.35

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chloride, dissolved, mg/L

Location: APW-5

Mean of all data: 5.74

Standard Deviation of all data: 4.94

Largest Observation Concentration of all data: Xn = 22.0

Test Statistic, high extreme of all data: Tn = 3.29

T Critical of all data: Tcr = 2.76

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/04/2019
 22.0
 False
 1

Chloride, dissolved, mg/L

Location: APW-6

Mean of all data: 6.89

Standard Deviation of all data: 6.70

Largest Observation Concentration of all data: Xn = 27.0

Test Statistic, high extreme of all data: Tn = 3.00

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/30/2021 27.0 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: APW-7

Mean of all data: 37.5

Standard Deviation of all data: 11.0

Largest Observation Concentration of all data: Xn = 67.0

Test Statistic, high extreme of all data: Tn = 2.68

T Critical of all data: Ter = 2.60

Chloride, dissolved, mg/L

Location: APW-8

Mean of all data: 10.1

Standard Deviation of all data: 3.77

Largest Observation Concentration of all data: Xn = 18.0

Test Statistic, high extreme of all data: Tn = 2.10

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chloride, dissolved, mg/L

Location: APW-9

Mean of all data: 16.8

Standard Deviation of all data: 13.0

Largest Observation Concentration of all data: Xn = 43.0

Test Statistic, high extreme of all data: Tn = 2.02

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.00185

Standard Deviation of all data: 0.00111

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chromium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Chromium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: APW-12

Mean of all data: 0.00250

Standard Deviation of all data: 0.00000000000412

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chromium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00190

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Chromium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.00190

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Tcr = 2.73

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.00221

Standard Deviation of all data: 0.00134

Largest Observation Concentration of all data: Xn = 0.00690

Test Statistic, high extreme of all data: Tn = 3.51

T Critical of all data: Tcr = 2.71

Sample DateValueLT ValueLow SideHigh Side

09/15/2011 0.00690 False

Chromium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00185

Standard Deviation of all data: 0.00111

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Chromium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chromium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.0113

Standard Deviation of all data: 0.00605

Largest Observation Concentration of all data: Xn = 0.0320

Test Statistic, high extreme of all data: Tn = 3.42

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/21/2022 0.0320 False

Chromium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, total, mg/L Location: APW-1

Mean of all data: 0.00306

Standard Deviation of all data: 0.00196

Largest Observation Concentration of all data: Xn = 0.0111

Test Statistic, high extreme of all data: Tn = 4.10

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT Value
 Low Side
 High Side

03/21/2018 0.0111 False

Chromium, total, mg/L Location: APW-10

Mean of all data: 0.00537

Standard Deviation of all data: 0.00953

Largest Observation Concentration of all data: Xn = 0.0431

Test Statistic, high extreme of all data: Tn = 3.96

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/11/2021
 0.0431
 False
 1

11/11/2021 0.0431 Paise

Chromium, total, mg/L Location: APW-11

Mean of all data: 0.00551

Standard Deviation of all data: 0.0103

Largest Observation Concentration of all data: Xn = 0.0465

Test Statistic, high extreme of all data: Tn = 3.97

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

12/09/2019 0.0465 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, total, mg/L Location: APW-12

Mean of all data: 0.00532

Standard Deviation of all data: 0.0103

Largest Observation Concentration of all data: Xn = 0.0450

Test Statistic, high extreme of all data: Tn = 3.85

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0450
 False
 1

Chromium, total, mg/L

Location: APW-2

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chromium, total, mg/L Location: APW-3

Mean of all data: 0.00299

Standard Deviation of all data: 0.00160

Largest Observation Concentration of all data: Xn = 0.00870

Test Statistic, high extreme of all data: Tn = 3.58

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Location: APW-4

Chromium, total, mg/L

Mean of all data: 0.00345

Standard Deviation of all data: 0.00230

Largest Observation Concentration of all data: Xn = 0.0105

Test Statistic, high extreme of all data: Tn = 3.06

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/21/2017
 0.0105
 False
 1

Chromium, total, mg/L Location: APW-5

Mean of all data: 0.00266

Standard Deviation of all data: 0.000751

Largest Observation Concentration of all data: Xn = 0.00610

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Tcr = 2.62

Chromium, total, mg/L

Location: APW-6

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, total, mg/L Location: APW-7

Mean of all data: 0.00348

Standard Deviation of all data: 0.00461

Largest Observation Concentration of all data: Xn = 0.0241

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Chromium, total, mg/L Location: APW-8

Mean of all data: 0.0142

Standard Deviation of all data: 0.00966

Largest Observation Concentration of all data: Xn = 0.0438

Test Statistic, high extreme of all data: Tn = 3.07

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.0438
 False
 1

Chromium, total, mg/L Location: APW-9

Mean of all data: 0.00263

Mean of all data: 0.00263

Standard Deviation of all data: 0.000597

Largest Observation Concentration of all data: Xn = 0.00530

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Cobalt, dissolved, mg/L

Location: APW-1

Mean of all data: 0.00185

Standard Deviation of all data: 0.00111

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

Outlier Outlier

LT_Value Low Side High Side Sample Date Value

No Outliers

Cobalt, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Cobalt, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, dissolved, mg/L Location: APW-12

Mean of all data: 0.00250

Standard Deviation of all data: 0.00000000000412

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00253

Standard Deviation of all data: 0.000568

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 1.71

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2010 <0.0 True -1

Cobalt, dissolved, mg/L

Location: APW-3

Mean of all data: 0.00190

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, dissolved, mg/L

Location: APW-4

Mean of all data: 0.00196

Standard Deviation of all data: 0.00104

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.513

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00185

Standard Deviation of all data: 0.00111

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Cobalt, dissolved, mg/L

Location: APW-6

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Cobalt, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00355

Standard Deviation of all data: 0.00180

Largest Observation Concentration of all data: Xn = 0.00720

Test Statistic, high extreme of all data: Tn = 2.03

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, total, mg/L Location: APW-1

Mean of all data: 0.00549

Standard Deviation of all data: 0.00737

Largest Observation Concentration of all data: Xn = 0.0352

Test Statistic, high extreme of all data: Tn = 4.03

T Critical of all data: Ter = 2.62

Cobalt, total, mg/L Location: APW-10

Mean of all data: 0.00969

Standard Deviation of all data: 0.0254

Largest Observation Concentration of all data: Xn = 0.111Test Statistic, high extreme of all data: Tn = 3.99

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/11/2021
 0.111
 False
 1

Cobalt, total, mg/L Location: APW-11

Mean of all data: 0.00857

Standard Deviation of all data: 0.0196

Largest Observation Concentration of all data: Xn = 0.0860

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Tcr = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, total, mg/L Location: APW-12

Mean of all data: 0.00913

Standard Deviation of all data: 0.0168

Largest Observation Concentration of all data: Xn = 0.0723

Test Statistic, high extreme of all data: Tn = 3.77

T Critical of all data: Ter = 2.48

Cobalt, total, mg/L Location: APW-2

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, total, mg/L Location: APW-3

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, total, mg/L Location: APW-4

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, total, mg/L Location: APW-5

Mean of all data: 0.00426

Standard Deviation of all data: 0.00527

Largest Observation Concentration of all data: Xn = 0.0265

Test Statistic, high extreme of all data: Tn = 4.22

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.0265 False

Cobalt, total, mg/L Location: APW-6

Mean of all data: 0.00273

Standard Deviation of all data: 0.00108

Largest Observation Concentration of all data: Xn = 0.00770

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.00770 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, total, mg/L Location: APW-7

Mean of all data: 0.00333

Standard Deviation of all data: 0.00388

Largest Observation Concentration of all data: Xn = 0.0207

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Cobalt, total, mg/L Location: APW-8

Mean of all data: 0.00612

Standard Deviation of all data: 0.0155

Largest Observation Concentration of all data: Xn = 0.0771

Test Statistic, high extreme of all data: Tn = 4.57

T Critical of all data: Tcr = 2.62

Cobalt, total, mg/L Location: APW-9

Mean of all data: 0.00510

Standard Deviation of all data: 0.00318

Largest Observation Concentration of all data: Xn = 0.0119

Test Statistic, high extreme of all data: Tn = 2.14

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Copper,\,dissolved,\,mg/L$

Location: APW-1

Mean of all data: 0.00199

Standard Deviation of all data: 0.00142

Largest Observation Concentration of all data: Xn = 0.00680

Test Statistic, high extreme of all data: Tn = 3.38

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/30/2021 0.00680 False

 $Copper,\, dissolved,\, mg/L$

Location: APW-10

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Copper, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, dissolved, mg/L Location: APW-12

Mean of all data: 0.00250

Standard Deviation of all data: 0.00000000000412

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Copper, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00190

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Copper, dissolved, mg/L

Location: APW-3

Mean of all data: 0.00190

Standard Deviation of all data: 0.00109

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Tcr = 2.73

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, dissolved, mg/L

Location: APW-4

Mean of all data: 0.00196

Standard Deviation of all data: 0.00104

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.513

T Critical of all data: Ter = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Copper, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00185

Standard Deviation of all data: 0.00111

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Copper, dissolved, mg/L

Location: APW-6

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Copper, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Copper, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Copper, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, total, mg/L Location: APW-1

Mean of all data: 0.00392

Standard Deviation of all data: 0.00453

Largest Observation Concentration of all data: Xn = 0.0226

Test Statistic, high extreme of all data: Tn = 4.12

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.0226
 False
 1

Copper, total, mg/L Location: APW-10

Mean of all data: 0.00813

Standard Deviation of all data: 0.0209

Largest Observation Concentration of all data: Xn = 0.0913

Test Statistic, high extreme of all data: Tn = 3.99

T Critical of all data: Tcr = 2.50

Copper, total, mg/L Location: APW-11

Mean of all data: 0.0103

Standard Deviation of all data: 0.0245

Largest Observation Concentration of all data: Xn = 0.107

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Tcr = 2.50

Sample Date Value LT_Value Outlier Outlier

Low Side High Side

12/09/2019 0.107 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, total, mg/L Location: APW-12

Mean of all data: 0.00738

Standard Deviation of all data: 0.0162

Largest Observation Concentration of all data: Xn = 0.0693

Test Statistic, high extreme of all data: Tn = 3.81

T Critical of all data: Ter = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0693
 False
 1

Copper, total, mg/L Location: APW-2

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Copper, total, mg/L Location: APW-3

Mean of all data: 0.00272

Standard Deviation of all data: 0.00104

Largest Observation Concentration of all data: Xn = 0.00740

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, total, mg/L Location: APW-4

Mean of all data: 0.00482

Standard Deviation of all data: 0.00420

Largest Observation Concentration of all data: Xn = 0.0159

Test Statistic, high extreme of all data: Tn = 2.64

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0159
 False
 1

Copper, total, mg/L Location: APW-5

Mean of all data: 0.00312

Standard Deviation of all data: 0.00229

Largest Observation Concentration of all data: Xn = 0.0130

Test Statistic, high extreme of all data: Tn = 4.32

T Critical of all data: Tcr = 2.62

Copper, total, mg/L Location: APW-6

Mean of all data: 0.00277

Standard Deviation of all data: 0.00127

Largest Observation Concentration of all data: Xn = 0.00860

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, total, mg/L Location: APW-7

Mean of all data: 0.00358

Standard Deviation of all data: 0.00507

Largest Observation Concentration of all data: Xn = 0.0263

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Copper, total, mg/L Location: APW-8

Mean of all data: 0.00618

Standard Deviation of all data: 0.0164

Largest Observation Concentration of all data: Xn = 0.0815

Test Statistic, high extreme of all data: Tn = 4.58

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.0815
 False
 1

Copper, total, mg/L Location: APW-9

Mean of all data: 0.00310

Standard Deviation of all data: 0.00167

Largest Observation Concentration of all data: Xn = 0.00930

Test Statistic, high extreme of all data: Tn = 3.70

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cyanide, total, mg/L Location: APW-1

Mean of all data: 0.00198

Standard Deviation of all data: 0.00123

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 1.23

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: APW-10

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Cyanide, total, mg/L Location: APW-11

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cyanide, total, mg/L Location: APW-12

Mean of all data: 0.00250

Standard Deviation of all data: 0.00000000000412

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: APW-2

Mean of all data: 0.00203

Standard Deviation of all data: 0.00122

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 1.20

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: APW-3

Mean of all data: 0.00205

Standard Deviation of all data: 0.00124

Largest Observation Concentration of all data: Xn = 0.00400

Test Statistic, high extreme of all data: Tn = 1.57

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cyanide, total, mg/L Location: APW-4

Mean of all data: 0.00211

Standard Deviation of all data: 0.00117

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 1.19

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: APW-5

Mean of all data: 0.00198

Standard Deviation of all data: 0.00123

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 1.23

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: APW-6

Mean of all data: 0.00267

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 2.13

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Cyanide, total, mg/L **Location: APW-7**

Mean of all data: 0.00270

Standard Deviation of all data: 0.000454

Largest Observation Concentration of all data: Xn = 0.00400

Test Statistic, high extreme of all data: Tn = 2.85

T Critical of all data: Ter = 2.60

Outlier Outlier LT Value Low Side High Side Sample Date Value

03/21/2018 < 0.00400 True

Cyanide, total, mg/L **Location: APW-8**

Mean of all data: 0.00267

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 2.13

T Critical of all data: Tcr = 2.62

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Cyanide, total, mg/L **Location: APW-9**

Mean of all data: 0.00268

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 2.07

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Fluoride, dissolved, mg/L

Location: APW-1

Mean of all data: 0.156

Standard Deviation of all data: 0.102

Largest Observation Concentration of all data: Xn = 0.350

Test Statistic, high extreme of all data: Tn = 1.89

T Critical of all data: Ter = 2.76

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Fluoride, dissolved, mg/L

Location: APW-10

Mean of all data: 0.0500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Fluoride, dissolved, mg/L

Location: APW-11

Mean of all data: 0.0617

Standard Deviation of all data: 0.0271

Largest Observation Concentration of all data: Xn = 0.130

Test Statistic, high extreme of all data: Tn = 2.53

T Critical of all data: Tcr = 2.50

Outlier Outlier Sample Date LT Value High Side Value Low Side

06/04/2019 0.130 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Fluoride, dissolved, mg/L

Location: APW-12

Mean of all data: 0.337

Standard Deviation of all data: 0.0410

Largest Observation Concentration of all data: Xn = 0.420

Test Statistic, high extreme of all data: Tn = 2.02

T Critical of all data: Tcr = 2.48

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Fluoride, dissolved, mg/L

Location: APW-2

Mean of all data: 0.284

Standard Deviation of all data: 0.0790

Largest Observation Concentration of all data: Xn = 0.460

Test Statistic, high extreme of all data: Tn = 2.23

T Critical of all data: Tcr = 2.73

Outlier Outlier Sample Date Value LT Value Low Side High Side

03/24/2011 < 0.0 True -1

Fluoride, dissolved, mg/L

Location: APW-3

Mean of all data: 0.250

Standard Deviation of all data: 0.0871

Largest Observation Concentration of all data: Xn = 0.540

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.73

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

10/28/2011 0.540 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Fluoride, dissolved, mg/L

Location: APW-4

Mean of all data: 0.440

Standard Deviation of all data: 0.102

Largest Observation Concentration of all data: Xn = 0.790

Test Statistic, high extreme of all data: Tn = 3.42

T Critical of all data: Tcr = 2.71

Outlier Outlier LT_Value Low Side High Side Sample Date Value 0.790 False

10/28/2011

Fluoride, dissolved, mg/L

Location: APW-5

Mean of all data: 0.110

Standard Deviation of all data: 0.0878

Largest Observation Concentration of all data: Xn = 0.360

Test Statistic, high extreme of all data: Tn = 2.85

T Critical of all data: Tcr = 2.76

High Side Sample Date Value LT Value Low Side 10/28/2011 0.360 False 1

Outlier

Outlier

Fluoride, dissolved, mg/L

Location: APW-6

Mean of all data: 0.153

Standard Deviation of all data: 0.0362

Largest Observation Concentration of all data: Xn = 0.250

Test Statistic, high extreme of all data: Tn = 2.69

T Critical of all data: Tcr = 2.62

Outlier Outlier Sample Date Value LT Value Low Side High Side 07/29/2020 0.250 False 1

Based on Grubbs one-sided outlier test

1

Meredosia Power Station Outlier Analysis Results

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Fluoride, dissolved, mg/L

Location: APW-7

Mean of all data: 0.270

Standard Deviation of all data: 0.0502

Largest Observation Concentration of all data: Xn = 0.400

Test Statistic, high extreme of all data: Tn = 2.58

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Fluoride, dissolved, mg/L

Location: APW-8

Mean of all data: 0.107

Standard Deviation of all data: 0.0527

Largest Observation Concentration of all data: Xn = 0.240

Test Statistic, high extreme of all data: Tn = 2.52

T Critical of all data: Tcr = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Fluoride, dissolved, mg/L

Location: APW-9

Mean of all data: 0.317

Standard Deviation of all data: 0.0917

Largest Observation Concentration of all data: Xn = 0.570

Test Statistic, high extreme of all data: Tn = 2.76

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.570 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: APW-1

Mean of all data: 0.0197

Standard Deviation of all data: 0.0277

Largest Observation Concentration of all data: Xn = 0.162

Test Statistic, high extreme of all data: Tn = 5.13

T Critical of all data: Ter = 2.76

Iron, dissolved, mg/L Location: APW-10

Mean of all data: 0.0486

Standard Deviation of all data: 0.121

Largest Observation Concentration of all data: Xn = 0.535

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Tcr = 2.50

Iron, dissolved, mg/L Location: APW-11

Mean of all data: 0.0269

Standard Deviation of all data: 0.0292

Largest Observation Concentration of all data: Xn = 0.144

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: APW-12

Mean of all data: 0.0286

Standard Deviation of all data: 0.0354

Largest Observation Concentration of all data: Xn = 0.166

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

Iron, dissolved, mg/L Location: APW-2

Mean of all data: 0.225

Standard Deviation of all data: 0.264

Largest Observation Concentration of all data: Xn = 1.10Test Statistic, high extreme of all data: Tn = 3.32

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/24/2011
 1.10
 False
 1

Iron, dissolved, mg/L Location: APW-3

Mean of all data: 1.77

Standard Deviation of all data: 1.39

Largest Observation Concentration of all data: Xn = 5.40Test Statistic, high extreme of all data: Tn = 2.62

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: APW-4

Mean of all data: 7.87

Standard Deviation of all data: 3.98

Largest Observation Concentration of all data: Xn = 16.0

Test Statistic, high extreme of all data: Tn = 2.04

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Iron, dissolved, mg/L Location: APW-5

Mean of all data: 0.0139

Standard Deviation of all data: 0.00841

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.721

T Critical of all data: Ter = 2.76

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Iron, dissolved, mg/L Location: APW-6

Mean of all data: 0.0183

Standard Deviation of all data: 0.00388

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: APW-7

Mean of all data: 0.0302

Standard Deviation of all data: 0.0248

Largest Observation Concentration of all data: Xn = 0.113

Test Statistic, high extreme of all data: Tn = 3.34

T Critical of all data: Ter = 2.60

Iron, dissolved, mg/L Location: APW-8

Mean of all data: 0.0183

Standard Deviation of all data: 0.00388

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Iron, dissolved, mg/L Location: APW-9

Mean of all data: 0.0198

Standard Deviation of all data: 0.00908

Largest Observation Concentration of all data: Xn = 0.0565

Test Statistic, high extreme of all data: Tn = 4.04

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, total, mg/L Location: APW-1

Mean of all data: 2.79

Standard Deviation of all data: 3.61

Largest Observation Concentration of all data: Xn = 17.4

Test Statistic, high extreme of all data: Tn = 4.05

T Critical of all data: Ter = 2.62

Iron, total, mg/L Location: APW-10

Mean of all data: 3.89

Standard Deviation of all data: 10.2

Largest Observation Concentration of all data: Xn = 44.5Test Statistic, high extreme of all data: Tn = 3.98

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/11/2021
 44.5
 False
 1

Iron, total, mg/L Location: APW-11

Mean of all data: 4.79

Standard Deviation of all data: 13.2

Largest Observation Concentration of all data: Xn = 56.8

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, total, mg/L Location: APW-12

Mean of all data: 5.19

Standard Deviation of all data: 13.8

Largest Observation Concentration of all data: Xn = 57.6Test Statistic, high extreme of all data: Tn = 3.81

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 57.6
 False
 1

Iron, total, mg/L Location: APW-2

Mean of all data: 2.92

Standard Deviation of all data: 3.84

Largest Observation Concentration of all data: Xn = 17.8Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.60

Iron, total, mg/L Location: APW-3

Mean of all data: 4.97

Standard Deviation of all data: 2.59

Largest Observation Concentration of all data: Xn = 11.5Test Statistic, high extreme of all data: Tn = 2.52

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, total, mg/L Location: APW-4

Mean of all data: 14.4

Standard Deviation of all data: 13.2

Largest Observation Concentration of all data: Xn = 70.3

Test Statistic, high extreme of all data: Tn = 4.25

T Critical of all data: Ter = 2.60

Iron, total, mg/L Location: APW-5

Mean of all data: 0.777

Standard Deviation of all data: 1.27

Largest Observation Concentration of all data: Xn = 5.80Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 5.80
 False
 1

Iron, total, mg/L Location: APW-6

Mean of all data: 0.755

Standard Deviation of all data: 0.826

Largest Observation Concentration of all data: Xn = 3.82

Test Statistic, high extreme of all data: Tn = 3.71

T Critical of all data: Ter = 2.62

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, total, mg/L Location: APW-7

Mean of all data: 2.29

Standard Deviation of all data: 7.35

Largest Observation Concentration of all data: Xn = 35.0Test Statistic, high extreme of all data: Tn = 4.45

T Critical of all data: Ter = 2.60

Iron, total, mg/L Location: APW-8

Mean of all data: 2.30

Standard Deviation of all data: 8.61

Largest Observation Concentration of all data: Xn = 41.7

Test Statistic, high extreme of all data: Tn = 4.58

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 41.7
 False
 1

Iron, total, mg/L Location: APW-9

Mean of all data: 1.18

Standard Deviation of all data: 1.36

Largest Observation Concentration of all data: Xn = 5.06Test Statistic, high extreme of all data: Tn = 2.86

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: APW-1

Mean of all data: 0.000371

Standard Deviation of all data: 0.000222

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, dissolved, mg/L Location: APW-10

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Lead, dissolved, mg/L Location: APW-11

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Will City William Will City Wi

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: APW-12

Mean of all data: 0.000535

Standard Deviation of all data: 0.000146

Largest Observation Concentration of all data: Xn = 0.00110

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00110
 False
 1

Lead, dissolved, mg/L Location: APW-2

Mean of all data: 0.000445

Standard Deviation of all data: 0.000293

Largest Observation Concentration of all data: Xn = 0.00130

Test Statistic, high extreme of all data: Tn = 2.91

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/21/2022
 0.00130
 False
 1

Lead, dissolved, mg/L Location: APW-3

Mean of all data: 0.000417

Standard Deviation of all data: 0.000244

Largest Observation Concentration of all data: Xn = 0.00110

Test Statistic, high extreme of all data: Tn = 2.80

T Critical of all data: Ter = 2.73

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: APW-4

Mean of all data: 0.000421

Standard Deviation of all data: 0.000270

Largest Observation Concentration of all data: Xn = 0.00130

Test Statistic, high extreme of all data: Tn = 3.25

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00130
 False
 1

Lead, dissolved, mg/L Location: APW-5

Mean of all data: 0.000435

Standard Deviation of all data: 0.000363

Largest Observation Concentration of all data: Xn = 0.00170

Test Statistic, high extreme of all data: Tn = 3.48

T Critical of all data: Tcr = 2.76

Lead, dissolved, mg/L Location: APW-6

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: APW-7

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, dissolved, mg/L Location: APW-8

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Lead, dissolved, mg/L Location: APW-9

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier White A Country of the Country of t

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, total, mg/L Location: APW-1

Mean of all data: 0.00342

Standard Deviation of all data: 0.00375

Largest Observation Concentration of all data: Xn = 0.0179

Test Statistic, high extreme of all data: Tn = 3.86

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.0179
 False
 1

Lead, total, mg/L Location: APW-10

Mean of all data: 0.00452

Standard Deviation of all data: 0.0107

Largest Observation Concentration of all data: Xn = 0.0469

Test Statistic, high extreme of all data: Tn = 3.97

T Critical of all data: Ter = 2.50

Lead, total, mg/L Location: APW-11

Mean of all data: 0.00525

Standard Deviation of all data: 0.0140

Largest Observation Concentration of all data: Xn = 0.0605

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, total, mg/L Location: APW-12

Mean of all data: 0.00452

Standard Deviation of all data: 0.0105

Largest Observation Concentration of all data: Xn = 0.0438

Test Statistic, high extreme of all data: Tn = 3.76

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0438
 False
 1

Lead, total, mg/L Location: APW-2

Mean of all data: 0.000759

Standard Deviation of all data: 0.000509

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 2.44

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, total, mg/L Location: APW-3

Mean of all data: 0.00115

Standard Deviation of all data: 0.00127

Largest Observation Concentration of all data: Xn = 0.00560

Test Statistic, high extreme of all data: Tn = 3.49

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, total, mg/L Location: APW-4

Mean of all data: 0.00177

Standard Deviation of all data: 0.00180

Largest Observation Concentration of all data: Xn = 0.00580

Test Statistic, high extreme of all data: Tn = 2.24

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, total, mg/L Location: APW-5

Mean of all data: 0.00124

Standard Deviation of all data: 0.00183

Largest Observation Concentration of all data: Xn = 0.00780

Test Statistic, high extreme of all data: Tn = 3.59

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.00780 False 1

Lead, total, mg/L Location: APW-6

Mean of all data: 0.00106

Standard Deviation of all data: 0.000840

Largest Observation Concentration of all data: Xn = 0.00400

Test Statistic, high extreme of all data: Tn = 3.50

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.00400 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, total, mg/L Location: APW-7

Mean of all data: 0.00192

Standard Deviation of all data: 0.00575

Largest Observation Concentration of all data: Xn = 0.0276

Test Statistic, high extreme of all data: Tn = 4.46

T Critical of all data: Ter = 2.60

Lead, total, mg/L Location: APW-8

Mean of all data: 0.00296

Standard Deviation of all data: 0.00993

Largest Observation Concentration of all data: Xn = 0.0484

Test Statistic, high extreme of all data: Tn = 4.57

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.0484
 False
 1

Lead, total, mg/L Location: APW-9

Mean of all data: 0.00144

Standard Deviation of all data: 0.00140

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 2.55

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Manganese, dissolved, mg/L

Location: APW-1

Mean of all data: 0.00318

Standard Deviation of all data: 0.00201

Largest Observation Concentration of all data: Xn = 0.00910

Test Statistic, high extreme of all data: Tn = 2.94

T Critical of all data: Ter = 2.76

Outlier Outlier LT Value Low Side High Side Sample Date Value 06/18/2012 0.00910 False

Manganese, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00603

Standard Deviation of all data: 0.00982

Largest Observation Concentration of all data: Xn = 0.0452

Test Statistic, high extreme of all data: Tn = 3.99

T Critical of all data: Tcr = 2.50

Outlier Outlier High Side Sample Date Value LT Value Low Side 01/29/2019 0.0452 False 1

Manganese, dissolved, mg/L

Location: APW-11

Mean of all data: 0.0117

Standard Deviation of all data: 0.0222

Largest Observation Concentration of all data: Xn = 0.0900

Test Statistic, high extreme of all data: Tn = 3.52

T Critical of all data: Tcr = 2.50

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

06/04/2019 0.0900 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, dissolved, mg/L

Location: APW-12

Mean of all data: 1.17

Standard Deviation of all data: 0.293

Largest Observation Concentration of all data: Xn = 1.74

Test Statistic, high extreme of all data: Tn = 1.95

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Manganese, dissolved, mg/L

Location: APW-2

Mean of all data: 0.490

Standard Deviation of all data: 0.310

Largest Observation Concentration of all data: Xn = 1.07

Test Statistic, high extreme of all data: Tn = 1.87

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Manganese, dissolved, mg/L

Location: APW-3

Mean of all data: 0.714

Standard Deviation of all data: 0.260

Largest Observation Concentration of all data: Xn = 1.20

Test Statistic, high extreme of all data: Tn = 1.87

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, dissolved, mg/L

Location: APW-4

Mean of all data: 2.02

Standard Deviation of all data: 0.910

Largest Observation Concentration of all data: Xn = 5.40

Test Statistic, high extreme of all data: Tn = 3.71

T Critical of all data: Tcr = 2.71

Manganese, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00413

Standard Deviation of all data: 0.00698

Largest Observation Concentration of all data: Xn = 0.0400

Test Statistic, high extreme of all data: Tn = 5.14

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/18/2012
 0.0400
 False
 1

 $Manganese, \, dissolved, \, mg/L$

Location: APW-6

Mean of all data: 0.00397

Standard Deviation of all data: 0.00409

Largest Observation Concentration of all data: Xn = 0.0224

Test Statistic, high extreme of all data: Tn = 4.50

T Critical of all data: Tcr = 2.62

Sample Date Value LT_Value Outlier Outlier

Low Side High Side

11/11/2021 0.0224 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, dissolved, mg/L

Location: APW-7

Mean of all data: 0.0790

Standard Deviation of all data: 0.147

Largest Observation Concentration of all data: Xn = 0.611

Test Statistic, high extreme of all data: Tn = 3.62

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/28/2017
 0.611
 False
 1

Manganese, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00315

Standard Deviation of all data: 0.000775

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Manganese, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00334

Standard Deviation of all data: 0.00130

Largest Observation Concentration of all data: Xn = 0.00800

Test Statistic, high extreme of all data: Tn = 3.57

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, total, mg/L

Location: APW-1

Mean of all data: 0.268

Standard Deviation of all data: 0.377

Largest Observation Concentration of all data: Xn = 1.79

Test Statistic, high extreme of all data: Tn = 4.04

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 1.79
 False
 1

Manganese, total, mg/L

Location: APW-10

Mean of all data: 0.308

Standard Deviation of all data: 0.784

Largest Observation Concentration of all data: Xn = 3.43Test Statistic, high extreme of all data: Tn = 3.98

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/11/2021
 3.43
 False
 1

Manganese, total, mg/L

Location: APW-11Mean of all data: 0.332

Ct. 1 1D 't' C 11 1 t 0 t

Standard Deviation of all data: 0.845

Largest Observation Concentration of all data: Xn = 3.69Test Statistic, high extreme of all data: Tn = 3.97

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 3.69
 False
 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, total, mg/L

Location: APW-12

Mean of all data: 2.47 Standard Deviation of all data: 2.63

Largest Observation Concentration of all data: Xn = 12.0

Test Statistic, high extreme of all data: Tn = 3.62

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 12.0
 False
 1

Manganese, total, mg/L

Location: APW-2

Mean of all data: 0.433

Standard Deviation of all data: 0.275

Largest Observation Concentration of all data: Xn = 1.10Test Statistic, high extreme of all data: Tn = 2.42

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Manganese, total, mg/L Location: APW-3

Mean of all data: 0.901

Standard Deviation of all data: 0.179

Largest Observation Concentration of all data: Xn = 1.31

Test Statistic, high extreme of all data: Tn = 2.28

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, total, mg/L

Location: APW-4

Mean of all data: 1.79

Standard Deviation of all data: 0.308

Largest Observation Concentration of all data: Xn = 2.35

Test Statistic, high extreme of all data: Tn = 1.83

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Manganese, total, mg/L

Location: APW-5

Mean of all data: 0.136

Standard Deviation of all data: 0.249

Largest Observation Concentration of all data: Xn = 1.15

Test Statistic, high extreme of all data: Tn = 4.07

T Critical of all data: Tcr = 2.62

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 1.15
 False
 1

Manganese, total, mg/L

Mean of all data: 0.0513

Location: APW-6

Standard Deviation of all data: 0.0531

Largest Observation Concentration of all data: Xn = 0.233

Test Statistic, high extreme of all data: Tn = 3.42

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/21/2018 0.233 False 1

107

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, total, mg/L

Location: APW-7

Mean of all data: 0.225

Standard Deviation of all data: 0.417

Largest Observation Concentration of all data: Xn = 1.92

Test Statistic, high extreme of all data: Tn = 4.06

T Critical of all data: Ter = 2.60

Manganese, total, mg/L

Location: APW-8

Mean of all data: 0.174

Standard Deviation of all data: 0.558

Largest Observation Concentration of all data: Xn = 2.71Test Statistic, high extreme of all data: Tn = 4.55

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 2.71
 False
 1

Manganese, total, mg/L

Location: APW-9

Mean of all data: 0.121

Standard Deviation of all data: 0.148

Largest Observation Concentration of all data: Xn = 0.525

Test Statistic, high extreme of all data: Tn = 2.74

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: APW-1

Mean of all data: 0.0000742

Standard Deviation of all data: 0.0000445

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-10

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-11

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: APW-12

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-2

Mean of all data: 0.0000759

Standard Deviation of all data: 0.0000435

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-3

Mean of all data: 0.0000759

Standard Deviation of all data: 0.0000435

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.554

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0000786

Standard Deviation of all data: 0.0000418

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.513

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-5

Mean of all data: 0.0000742

Standard Deviation of all data: 0.0000445

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Mercury, dissolved, mg/L

Location: APW-6

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: APW-7

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-8

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Mercury, dissolved, mg/L

Location: APW-9

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, total, mg/L Location: APW-1

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, total, mg/L Location: APW-10

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Mercury, total, mg/L Location: APW-11

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, total, mg/L Location: APW-12

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, total, mg/L Location: APW-2

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Mercury, total, mg/L Location: APW-3

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, total, mg/L Location: APW-4

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, total, mg/L Location: APW-5

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Mercury, total, mg/L Location: APW-6

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, total, mg/L Location: APW-7

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, total, mg/L Location: APW-8

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000219

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Mercury, total, mg/L Location: APW-9

Mean of all data: 0.000100

Standard Deviation of all data: 0.00000000000194

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L Location: APW-1

Mean of all data: 0.00248

Standard Deviation of all data: 0.00244

Largest Observation Concentration of all data: Xn = 0.0140

Test Statistic, high extreme of all data: Tn = 4.73

T Critical of all data: Ter = 2.76

Nickel, dissolved, mg/L Location: APW-10

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nickel, dissolved, mg/L Location: APW-11

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L Location: APW-12

Mean of all data: 0.00676

Standard Deviation of all data: 0.00246

Largest Observation Concentration of all data: Xn = 0.0101

Test Statistic, high extreme of all data: Tn = 1.36

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nickel, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00384

Standard Deviation of all data: 0.00308

Largest Observation Concentration of all data: Xn = 0.0120

Test Statistic, high extreme of all data: Tn = 2.65

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Nickel, dissolved, mg/L

Location: APW-3

Mean of all data: 0.00345

Standard Deviation of all data: 0.00287

Largest Observation Concentration of all data: Xn = 0.0120

Test Statistic, high extreme of all data: Tn = 2.98

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

09/17/2012 0.0120 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L Location: APW-4

Mean of all data: 0.00388

Standard Deviation of all data: 0.00378

Largest Observation Concentration of all data: Xn = 0.0190

Test Statistic, high extreme of all data: Tn = 4.00

T Critical of all data: Tcr = 2.71

Nickel, dissolved, mg/L Location: APW-5

Mean of all data: 0.00262

Standard Deviation of all data: 0.00205

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 3.59

T Critical of all data: Ter = 2.76

Nickel, dissolved, mg/L Location: APW-6

M 6 11 1 4 0 002

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nickel, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Nickel, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00409

Standard Deviation of all data: 0.00325

Largest Observation Concentration of all data: Xn = 0.0119

Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, total, mg/L Location: APW-1

Mean of all data: 0.0102

Standard Deviation of all data: 0.0123

Largest Observation Concentration of all data: Xn = 0.0583

Test Statistic, high extreme of all data: Tn = 3.92

T Critical of all data: Ter = 2.62

Nickel, total, mg/L Location: APW-10

Mean of all data: 0.0139

Standard Deviation of all data: 0.0367

Largest Observation Concentration of all data: Xn = 0.160

Test Statistic, high extreme of all data: Tn = 3.98

T Critical of all data: Tcr = 2.50

Nickel, total, mg/L Location: APW-11

Mean of all data: 0.0142

Standard Deviation of all data: 0.0349

Largest Observation Concentration of all data: Xn = 0.152

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022

Confidence Level: 95%

Number of Outliers: One Outlier

Transform: None

Nickel, total, mg/L Location: APW-12

Mean of all data: 0.0174

Standard Deviation of all data: 0.0228

Largest Observation Concentration of all data: Xn = 0.104

Test Statistic, high extreme of all data: Tn = 3.79

T Critical of all data: Tcr = 2.48

Nickel, total, mg/L Location: APW-2

Mean of all data: 0.00318

Standard Deviation of all data: 0.00150

Largest Observation Concentration of all data: Xn = 0.00700

Test Statistic, high extreme of all data: Tn = 2.55

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nickel, total, mg/L Location: APW-3

Mean of all data: 0.00304

Standard Deviation of all data: 0.00175

Largest Observation Concentration of all data: Xn = 0.00910

Test Statistic, high extreme of all data: Tn = 3.47

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, total, mg/L Location: APW-4

Mean of all data: 0.00333

Standard Deviation of all data: 0.00233

Largest Observation Concentration of all data: Xn = 0.0107

Test Statistic, high extreme of all data: Tn = 3.17

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/21/2017
 0.0107
 False
 1

Nickel, total, mg/L Location: APW-5

Mean of all data: 0.00509

Standard Deviation of all data: 0.00694

Largest Observation Concentration of all data: Xn = 0.0332

Test Statistic, high extreme of all data: Tn = 4.05

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.0332
 False
 1

Nickel, total, mg/L Location: APW-6

Mean of all data: 0.00324

Standard Deviation of all data: 0.00187

Largest Observation Concentration of all data: Xn = 0.0103

Test Statistic, high extreme of all data: Tn = 3.78

T Critical of all data: Ter = 2.62

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, total, mg/L Location: APW-7

Mean of all data: 0.00474

Standard Deviation of all data: 0.00842

Largest Observation Concentration of all data: Xn = 0.0417

Test Statistic, high extreme of all data: Tn = 4.39

T Critical of all data: Ter = 2.60

Nickel, total, mg/L Location: APW-8

Mean of all data: 0.00843

Standard Deviation of all data: 0.0244

Largest Observation Concentration of all data: Xn = 0.120

Test Statistic, high extreme of all data: Tn = 4.57

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.120
 False
 1

Nickel, total, mg/L Location: APW-9

Mean of all data: 0.00721

Standard Deviation of all data: 0.00546

Largest Observation Concentration of all data: Xn = 0.0194

Test Statistic, high extreme of all data: Tn = 2.23

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: APW-1

Mean of all data: 3.99

Standard Deviation of all data: 1.45

Largest Observation Concentration of all data: Xn = 8.24

Test Statistic, high extreme of all data: Tn = 2.92

T Critical of all data: Ter = 2.76

Nitrate nitrogen, dissolved, mg/L

Location: APW-10

Mean of all data: 3.09

Standard Deviation of all data: 0.731

Largest Observation Concentration of all data: Xn = 4.53

Test Statistic, high extreme of all data: Tn = 1.97

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Nitrate nitrogen, dissolved, mg/L

Location: APW-11

Mean of all data: 2.92

Standard Deviation of all data: 0.884

Largest Observation Concentration of all data: Xn = 5.02

Test Statistic, high extreme of all data: Tn = 2.38

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT Value
 Low Side
 High Side

08/18/2022 0.656 False -1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: APW-12

Mean of all data: 0.976

Standard Deviation of all data: 1.41

Largest Observation Concentration of all data: Xn = 5.50

Test Statistic, high extreme of all data: Tn = 3.20

T Critical of all data: Tcr = 2.48

Nitrate nitrogen, dissolved, mg/L

Location: APW-2

Mean of all data: 0.0492

Standard Deviation of all data: 0.0877

Largest Observation Concentration of all data: Xn = 0.400

Test Statistic, high extreme of all data: Tn = 4.00

T Critical of all data: Ter = 2.73

 $Nitrate\ nitrogen,\ dissolved,\ mg/L$

Location: APW-3

Mean of all data: 0.0367

Standard Deviation of all data: 0.0880

Largest Observation Concentration of all data: Xn = 0.490

Test Statistic, high extreme of all data: Tn = 5.15

T Critical of all data: Tcr = 2.73

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0590

Standard Deviation of all data: 0.0831

Largest Observation Concentration of all data: Xn = 0.310

Test Statistic, high extreme of all data: Tn = 3.02

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2010
 0.310
 False
 1

Nitrate nitrogen, dissolved, mg/L

Location: APW-5

Mean of all data: 2.18

Standard Deviation of all data: 0.717

Largest Observation Concentration of all data: Xn = 4.29Test Statistic, high extreme of all data: Tn = 2.95

T Critical of all data: Ter = 2.76

Nitrate nitrogen, dissolved, mg/L

Location: APW-6

Mean of all data: 0.413

Standard Deviation of all data: 0.422

Largest Observation Concentration of all data: Xn = 2.13

Test Statistic, high extreme of all data: Tn = 4.07

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 2.13
 False
 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: APW-7

Mean of all data: 1.96

Standard Deviation of all data: 1.92

Largest Observation Concentration of all data: Xn = 5.47

Test Statistic, high extreme of all data: Tn = 1.83

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nitrate nitrogen, dissolved, mg/L

Location: APW-8

Mean of all data: 4.37

Standard Deviation of all data: 0.699

Largest Observation Concentration of all data: Xn = 5.77

Test Statistic, high extreme of all data: Tn = 2.00

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Nitrate nitrogen, dissolved, mg/L

Location: APW-9

Mean of all data: 3.32

Standard Deviation of all data: 1.35

Largest Observation Concentration of all data: Xn = 8.33

Test Statistic, high extreme of all data: Tn = 3.70

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

07/29/2020 8.33 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrite nitrogen, dissolved, mg/L

Location: APW-1

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Ter = 2.58

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-10

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000340

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000102

T Critical of all data: Tcr = 2.44

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-11

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000340

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000102

T Critical of all data: Tcr = 2.44

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrite nitrogen, dissolved, mg/L

Location: APW-12

Mean of all data: 0.0297

Standard Deviation of all data: 0.0134

Largest Observation Concentration of all data: Xn = 0.0700

Test Statistic, high extreme of all data: Tn = 3.01

T Critical of all data: Tcr = 2.48

Nitrite nitrogen, dissolved, mg/L

Location: APW-2

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000302

Largest Observation Concentration of all data: Xn = 0.0250 Test Statistic, high extreme of all data: Tn = -.0000000115

T Critical of all data: Tcr = 2.56

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-3

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Tcr = 2.58

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrite nitrogen, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0250

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-5

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Tcr = 2.58

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-6

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Tcr = 2.58

Outlier Outlier White IT VI

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrite nitrogen, dissolved, mg/L

Location: APW-7

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Ter = 2.58

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-8

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000295

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000118

T Critical of all data: Tcr = 2.58

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Nitrite nitrogen, dissolved, mg/L

Location: APW-9

Mean of all data: 0.0250

Standard Deviation of all data: 0.000000000302

Largest Observation Concentration of all data: Xn = 0.0250Test Statistic, high extreme of all data: Tn = -.0000000115

T Critical of all data: Tcr = 2.56

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD Location: APW-1

Mean of all data: 7.01

Standard Deviation of all data: 0.28

Largest Observation Concentration of all data: Xn = 7.83

Test Statistic, high extreme of all data: Tn = 2.91

T Critical of all data: Ter = 2.74

pH (field), STD Location: APW-10

Mean of all data: 7.53

Standard Deviation of all data: 0.15

Largest Observation Concentration of all data: Xn = 7.75

Test Statistic, high extreme of all data: Tn = 1.47

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/30/2021
 7.11
 False
 -1

pH (field), STD Location: APW-11

Mean of all data: 7.39

Standard Deviation of all data: 0.14

Largest Observation Concentration of all data: Xn = 7.57

Test Statistic, high extreme of all data: Tn = 1.28

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/30/2021 7.03 False -1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD

Location: APW-12

Mean of all data: 6.92 Standard Deviation of all data: 0.18

Standard Deviation of all data. 0.16

Largest Observation Concentration of all data: Xn = 7.24

Test Statistic, high extreme of all data: Tn = 1.77

T Critical of all data: Ter = 2.47

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

pH (field), STD Location: APW-2

Mean of all data: 6.88

Standard Deviation of all data: 0.25

Largest Observation Concentration of all data: Xn = 7.41

Test Statistic, high extreme of all data: Tn = 2.10

T Critical of all data: Ter = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2010 5.98 False -1

pH (field), STD Location: APW-3

Mean of all data: 7.54

Standard Deviation of all data: 0.34

Largest Observation Concentration of all data: Xn = 8.36

Test Statistic, high extreme of all data: Tn = 2.42

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD Location: APW-4

Mean of all data: 6.89

Standard Deviation of all data: 0.25

Largest Observation Concentration of all data: Xn = 7.42

Test Statistic, high extreme of all data: Tn = 2.08

T Critical of all data: Ter = 2.70

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/13/2010 5.88 False -1

pH (field), STD Location: APW-5

Mean of all data: 7.36

Standard Deviation of all data: 0.26

Largest Observation Concentration of all data: Xn = 7.91Test Statistic, high extreme of all data: Tn = 2.10

T Critical of all data: Tcr = 2.74

 Sample Date
 Value
 LT Value
 Low Side
 High Side

12/13/2010 6.44 False -1

pH (field), STD Location: APW-6

Mean of all data: 7.17

Standard Deviation of all data: 0.17

Largest Observation Concentration of all data: Xn = 7.53

Test Statistic, high extreme of all data: Tn = 2.13

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT Value
 Low Side
 High Side

06/30/2021 6.72 False -1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

pH (field), STD **Location: APW-7**

Mean of all data: 7.01

Standard Deviation of all data: 0.13

Largest Observation Concentration of all data: Xn = 7.16

Test Statistic, high extreme of all data: Tn = 1.15

T Critical of all data: Ter = 2.60

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

pH (field), STD **Location: APW-8**

Mean of all data: 7.35

Standard Deviation of all data: 0.12

Largest Observation Concentration of all data: Xn = 7.56

Test Statistic, high extreme of all data: Tn = 1.75

T Critical of all data: Ter = 2.62

Outlier Outlier Sample Date Value LT Value Low Side High Side

6.99 06/30/2021 False -1

pH (field), STD **Location: APW-9**

Mean of all data: 6.92

Standard Deviation of all data: 0.13

Largest Observation Concentration of all data: Xn = 7.19

Test Statistic, high extreme of all data: Tn = 2.00

T Critical of all data: Tcr = 2.60

Outlier Outlier Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.0152

Standard Deviation of all data: 0.00833

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.579

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Selenium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.0214

Standard Deviation of all data: 0.00596

Largest Observation Concentration of all data: Xn = 0.0453

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/26/2021 0.0453 False 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, dissolved, mg/L

Location: APW-12

Mean of all data: 0.0200

Standard Deviation of all data: 0.000000000329

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.0155

Standard Deviation of all data: 0.00810

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.552

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Selenium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.0155

Standard Deviation of all data: 0.00822

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.553

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Selenium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.0190

Standard Deviation of all data: 0.00475

Largest Observation Concentration of all data: Xn = 0.0300

Test Statistic, high extreme of all data: Tn = 2.32

T Critical of all data: Tcr = 2.71

Outlier Outlier LT Value High Side Sample Date Value Low Side

12/13/2010 < 0.0 True -1

Selenium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.0153

Standard Deviation of all data: 0.00815

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.578

T Critical of all data: Tcr = 2.76

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Selenium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Selenium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Selenium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.0720

Standard Deviation of all data: 0.0179

Largest Observation Concentration of all data: Xn = 0.0963

Test Statistic, high extreme of all data: Tn = 1.36

T Critical of all data: Ter = 2.62

Outlier Outlier Sample Date Value LT Value Low Side High Side

12/21/2022 < 0.0200 True -1

Selenium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

1

Meredosia Power Station Outlier Analysis Results

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, total, mg/L Location: APW-1

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, total, mg/L Location: APW-10

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, total, mg/L Location: APW-11

Mean of all data: 0.0216

Standard Deviation of all data: 0.00658

Largest Observation Concentration of all data: Xn = 0.0479

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/26/2021 0.0479 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, total, mg/L Location: APW-12

Mean of all data: 0.0200

Standard Deviation of all data: 0.000000000329

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, total, mg/L Location: APW-2

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Selenium, total, mg/L Location: APW-3

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Will City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, total, mg/L Location: APW-4

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, total, mg/L Location: APW-5

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Selenium, total, mg/L Location: APW-6

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, total, mg/L Location: APW-7

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Selenium, total, mg/L Location: APW-8

Mean of all data: 0.0773

Standard Deviation of all data: 0.0154

Largest Observation Concentration of all data: Xn = 0.111

Test Statistic, high extreme of all data: Tn = 2.19

T Critical of all data: Ter = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Selenium, total, mg/L Location: APW-9

Mean of all data: 0.0200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Location: APW-1

Silver, dissolved, mg/L

Mean of all data: 0.00247

Standard Deviation of all data: 0.00152

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.681

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: APW-10

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Silver, dissolved, mg/L Location: APW-11

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, dissolved, mg/L Location: APW-12

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: APW-2

Mean of all data: 0.00252

Standard Deviation of all data: 0.00148

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.662

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Silver, dissolved, mg/L Location: APW-3

Mean of all data: 0.00252

Standard Deviation of all data: 0.00148

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.662

T Critical of all data: Tcr = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

Meredosia Power Station

User Supplied Information

Outlier Analysis Results

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, dissolved, mg/L Location: APW-4

Mean of all data: 0.00261

Standard Deviation of all data: 0.00143

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.625

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: APW-5

Mean of all data: 0.00247

Standard Deviation of all data: 0.00152

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.681

T Critical of all data: Ter = 2.76

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Silver, dissolved, mg/L Location: APW-6

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, dissolved, mg/L Location: APW-7

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: APW-8

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Silver, dissolved, mg/L Location: APW-9

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, total, mg/L Location: APW-1

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, total, mg/L Location: APW-10

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Silver, total, mg/L Location: APW-11

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, total, mg/L Location: APW-12

Mean of all data: 0.00350

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, total, mg/L Location: APW-2

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Silver, total, mg/L Location: APW-3

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Silver, total, mg/L **Location: APW-4**

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Silver, total, mg/L **Location: APW-5**

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Silver, total, mg/L Location: APW-6

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Silver, total, mg/L **Location: APW-7**

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Silver, total, mg/L **Location: APW-8**

Mean of all data: 0.00333

Standard Deviation of all data: 0.000388

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Silver, total, mg/L Location: APW-9

Mean of all data: 0.00332

Standard Deviation of all data: 0.000395

Largest Observation Concentration of all data: Xn = 0.00350

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-1

Mean of all data: 445

Standard Deviation of all data: 181

Largest Observation Concentration of all data: Xn = 1030

Test Statistic, high extreme of all data: Tn = 3

T Critical of all data: Tcr = 3

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-10

Mean of all data: 555

Standard Deviation of all data: 103

Largest Observation Concentration of all data: Xn = 809

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-11
Mean of all data: 648

G. 1 1B C. II 1

Standard Deviation of all data: 205

Largest Observation Concentration of all data: Xn = 1100

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-12

Mean of all data: 770

Standard Deviation of all data: 157

Largest Observation Concentration of all data: Xn = 1138

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 2

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-2

Mean of all data: 800

Standard Deviation of all data: 192

Largest Observation Concentration of all data: Xn = 1152

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-3

Mean of all data: 1066

Standard Deviation of all data: 168

Largest Observation Concentration of all data: Xn = 1430

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier Hill City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-4

Mean of all data: 804

Standard Deviation of all data: 115

Largest Observation Concentration of all data: Xn = 967

Test Statistic, high extreme of all data: Tn = 1

T Critical of all data: Tcr = 3

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-5

Mean of all data: 520

Standard Deviation of all data: 84

Largest Observation Concentration of all data: Xn = 707

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier Sample Date Value LT Value Low Side High Side

12/13/2010 267 False -1

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-6

Mean of all data: 580

Standard Deviation of all data: 108

Largest Observation Concentration of all data: Xn = 793

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-7

Mean of all data: 654

Standard Deviation of all data: 85

Largest Observation Concentration of all data: Xn = 819

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-8

Mean of all data: 987

Standard Deviation of all data: 122

Largest Observation Concentration of all data: Xn = 1240

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Specific Conductance @ 25C (field), micromhos/cm

Location: APW-9

Mean of all data: 1305

Standard Deviation of all data: 257

Largest Observation Concentration of all data: Xn = 1740

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier Wild City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Sulfate,\,dissolved,\,mg/L$

Location: APW-1

Mean of all data: 16.2

Standard Deviation of all data: 4.94

Largest Observation Concentration of all data: Xn = 33.0

Test Statistic, high extreme of all data: Tn = 3.40

T Critical of all data: Ter = 2.76

 $Sulfate,\,dissolved,\,mg/L$

Location: APW-10

Mean of all data: 82.5

Standard Deviation of all data: 26.9

Largest Observation Concentration of all data: Xn = 126.

Test Statistic, high extreme of all data: Tn = 1.62

T Critical of all data: Tcr = 2.50

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

 $Sulfate,\,dissolved,\,mg/L$

Location: APW-11

Mean of all data: 102.

Standard Deviation of all data: 75.2

Largest Observation Concentration of all data: Xn = 309.

Test Statistic, high extreme of all data: Tn = 2.75

T Critical of all data: Tcr = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Sulfate,\,dissolved,\,mg/L$

Location: APW-12

Mean of all data: 45.9

Standard Deviation of all data: 19.0

Largest Observation Concentration of all data: Xn = 96.0Test Statistic, high extreme of all data: Tn = 2.63

Test Statistic, high extreme of an data. If

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 01/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010
 1/20/2010

01/29/2019 96.0 False 1

Sulfate, dissolved, mg/L

Location: APW-2

Mean of all data: 22.9

Standard Deviation of all data: 14.9

Largest Observation Concentration of all data: Xn = 67.0Test Statistic, high extreme of all data: Tn = 2.96

T Critical of all data: Tcr = 2.73

Sulfate, dissolved, mg/L

Location: APW-3

Mean of all data: 140.

Standard Deviation of all data: 105.

Largest Observation Concentration of all data: Xn = 310.

Test Statistic, high extreme of all data: Tn = 1.62

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Sulfate, dissolved, mg/L

Location: APW-4

Mean of all data: 24.7

Standard Deviation of all data: 11.8

Largest Observation Concentration of all data: Xn = 53.0Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Ter = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Sulfate, dissolved, mg/L

Location: APW-5

Mean of all data: 31.1

Standard Deviation of all data: 19.2

Largest Observation Concentration of all data: Xn = 83.0

Test Statistic, high extreme of all data: Tn = 2.69

T Critical of all data: Ter = 2.76

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Sulfate, dissolved, mg/L

Location: APW-6

Mean of all data: 20.8

Standard Deviation of all data: 9.00

Largest Observation Concentration of all data: Xn = 38.0

Test Statistic, high extreme of all data: Tn = 1.91

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Sulfate, dissolved, mg/L

Location: APW-7

Mean of all data: 30.3

Standard Deviation of all data: 7.31

Largest Observation Concentration of all data: Xn = 41.0

Test Statistic, high extreme of all data: Tn = 1.46

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Sulfate, dissolved, mg/L

Location: APW-8

Mean of all data: 304.

Standard Deviation of all data: 63.3

Largest Observation Concentration of all data: Xn = 421.

Test Statistic, high extreme of all data: Tn = 1.85

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Sulfate, dissolved, mg/L

Location: APW-9

Mean of all data: 450.

Standard Deviation of all data: 150.

Largest Observation Concentration of all data: Xn = 757.

Test Statistic, high extreme of all data: Tn = 2.05

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.000677

Standard Deviation of all data: 0.000439

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.735

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Thallium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, dissolved, mg/L

Location: APW-12

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.000690

Standard Deviation of all data: 0.000431

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.720

T Critical of all data: Ter = 2.73

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Thallium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.000724

Standard Deviation of all data: 0.000414

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.667

T Critical of all data: Ter = 2.73

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.000714

Standard Deviation of all data: 0.000418

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.684

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.000677

Standard Deviation of all data: 0.000439

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.735

T Critical of all data: Tcr = 2.76

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Thallium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Thallium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, total, mg/L Location: APW-1

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, total, mg/L Location: APW-10

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Thallium, total, mg/L Location: APW-11

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, total, mg/L Location: APW-12

Mean of all data: 0.00108

Standard Deviation of all data: 0.000340

Largest Observation Concentration of all data: Xn = 0.00240

Test Statistic, high extreme of all data: Tn = 3.88

T Critical of all data: Tcr = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.00240
 False
 1

Thallium, total, mg/L Location: APW-2

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Thallium, total, mg/L Location: APW-3

Mean of all data: 0.000959

Standard Deviation of all data: 0.000322

Largest Observation Concentration of all data: Xn = 0.00210

Test Statistic, high extreme of all data: Tn = 3.55

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Number of Outliers: One Outlier

Thallium, total, mg/L Location: APW-4

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, total, mg/L Location: APW-5

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Thallium, total, mg/L Location: APW-6

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Ter = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Thallium, total, mg/L Location: APW-7

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Thallium, total, mg/L Location: APW-8

Mean of all data: 0.000913

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.449

T Critical of all data: Tcr = 2.62

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Thallium, total, mg/L Location: APW-9

Mean of all data: 0.000909

Standard Deviation of all data: 0.000197

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.461

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Total Dissolved Solids, mg/L

Location: APW-1

Mean of all data: 223.

Standard Deviation of all data: 76.5

Largest Observation Concentration of all data: Xn = 420.

Test Statistic, high extreme of all data: Tn = 2.57

T Critical of all data: Ter = 2.76

Outlier Outlier Low Side High Side

LT_Value Sample Date Value

No Outliers

Total Dissolved Solids, mg/L

Location: APW-10

Mean of all data: 326.

Standard Deviation of all data: 45.0

Largest Observation Concentration of all data: Xn = 408.

Test Statistic, high extreme of all data: Tn = 1.82

T Critical of all data: Ter = 2.50

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Total Dissolved Solids, mg/L

Location: APW-11

Mean of all data: 395.

Standard Deviation of all data: 147.

Largest Observation Concentration of all data: Xn = 812.

Test Statistic, high extreme of all data: Tn = 2.83

T Critical of all data: Tcr = 2.50

Outlier Outlier

Sample Date LT Value High Side Value Low Side 812. 1

01/26/2021 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: APW-12

Mean of all data: 423.

Standard Deviation of all data: 105.

Largest Observation Concentration of all data: Xn = 730.

Test Statistic, high extreme of all data: Tn = 2.91

T Critical of all data: Tcr = 2.48

Total Dissolved Solids, mg/L

Location: APW-2

Mean of all data: 465.

Standard Deviation of all data: 101.

Largest Observation Concentration of all data: Xn = 630.

Test Statistic, high extreme of all data: Tn = 1.64

T Critical of all data: Tcr = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Total Dissolved Solids, mg/L

Location: APW-3

Mean of all data: 697.

Standard Deviation of all data: 83.5

Largest Observation Concentration of all data: Xn = 970.

Test Statistic, high extreme of all data: Tn = 3.27

T Critical of all data: Tcr = 2.73

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: APW-4

Mean of all data: 453.

Standard Deviation of all data: 75.4

Largest Observation Concentration of all data: Xn = 690.

Test Statistic, high extreme of all data: Tn = 3.15

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 06/18/2012
 690.
 False
 1

Total Dissolved Solids, mg/L

Location: APW-5

Mean of all data: 277.

Standard Deviation of all data: 56.0

Largest Observation Concentration of all data: Xn = 382. Test Statistic, high extreme of all data: Tn = 1.87

T Critical of all data: Ter = 2.76

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Total Dissolved Solids, mg/L

Location: APW-6

Mean of all data: 314.

Standard Deviation of all data: 47.6

Largest Observation Concentration of all data: Xn = 398.

Test Statistic, high extreme of all data: Tn = 1.76

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: APW-7

Mean of all data: 352.

Standard Deviation of all data: 43.0

Largest Observation Concentration of all data: Xn = 464.

Test Statistic, high extreme of all data: Tn = 2.61

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/29/2019 464. False 1

Total Dissolved Solids, mg/L

Location: APW-8

Mean of all data: 669.

Standard Deviation of all data: 86.0

Largest Observation Concentration of all data: Xn = 832.

Test Statistic, high extreme of all data: Tn = 1.90

T Critical of all data: Tcr = 2.62

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Total Dissolved Solids, mg/L

Location: APW-9

Mean of all data: 974.

Standard Deviation of all data: 242.

Largest Observation Concentration of all data: Xn = 1430.

Test Statistic, high extreme of all data: Tn = 1.88

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, dissolved, mg/L

Location: APW-1

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-10

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-11

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Vanadium,\,dissolved,\,mg/L$

Location: APW-12

Mean of all data: 0.00500

Standard Deviation of all data: 0.0000000000823

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-2

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-3

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, dissolved, mg/L

Location: APW-4

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-5

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Vanadium, dissolved, mg/L

Location: APW-6

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, dissolved, mg/L

Location: APW-7

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-8

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Vanadium, dissolved, mg/L

Location: APW-9

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, total, mg/L Location: APW-1

Mean of all data: 0.00591

Standard Deviation of all data: 0.00337

Largest Observation Concentration of all data: Xn = 0.0205

Test Statistic, high extreme of all data: Tn = 4.32

T Critical of all data: Ter = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/21/2018
 0.0205
 False
 1

Vanadium, total, mg/L Location: APW-10

Mean of all data: 0.00818

Standard Deviation of all data: 0.0135

Largest Observation Concentration of all data: Xn = 0.0622

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Ter = 2.50

Vanadium, total, mg/L Location: APW-11

Mean of all data: 0.00958

Standard Deviation of all data: 0.0174

Largest Observation Concentration of all data: Xn = 0.0790

Test Statistic, high extreme of all data: Tn = 3.98

T Critical of all data: Ter = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, total, mg/L Location: APW-12

Mean of all data: 0.0108

Standard Deviation of all data: 0.0205

Largest Observation Concentration of all data: Xn = 0.0894

Test Statistic, high extreme of all data: Tn = 3.83

T Critical of all data: Ter = 2.48

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0894
 False
 1

Vanadium, total, mg/L Location: APW-2

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, total, mg/L Location: APW-3

Mean of all data: 0.00537

Standard Deviation of all data: 0.00175

Largest Observation Concentration of all data: Xn = 0.0132

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, total, mg/L Location: APW-4

Mean of all data: 0.00607

Standard Deviation of all data: 0.00287

Largest Observation Concentration of all data: Xn = 0.0152

Test Statistic, high extreme of all data: Tn = 3.19

T Critical of all data: Ter = 2.60

Vanadium, total, mg/L Location: APW-5

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Vanadium, total, mg/L Location: APW-6

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Vanadium, total, mg/L Location: APW-7

Mean of all data: 0.00758

Standard Deviation of all data: 0.0121

Largest Observation Concentration of all data: Xn = 0.0618

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Vanadium, total, mg/L Location: APW-8

Mean of all data: 0.00705

Standard Deviation of all data: 0.00984

Largest Observation Concentration of all data: Xn = 0.0522

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

Vanadium, total, mg/L Location: APW-9

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: APW-1

Mean of all data: 0.00407

Standard Deviation of all data: 0.00316

Largest Observation Concentration of all data: Xn = 0.0162

Test Statistic, high extreme of all data: Tn = 3.84

T Critical of all data: Ter = 2.76

Sample DateValueLT ValueLow SideHigh Side

12/09/2019 0.0162 False

Zinc, dissolved, mg/L Location: APW-10

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: APW-11

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

1

Meredosia Power Station Outlier Analysis Results

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: APW-12

Mean of all data: 0.00500

Standard Deviation of all data: 0.0000000000823

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: APW-2

Mean of all data: 0.00401

Standard Deviation of all data: 0.00210

Largest Observation Concentration of all data: Xn = 0.00640

Test Statistic, high extreme of all data: Tn = 1.14

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: APW-3

Mean of all data: 0.00421

Standard Deviation of all data: 0.00254

Largest Observation Concentration of all data: Xn = 0.0120

Test Statistic, high extreme of all data: Tn = 3.07

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/18/2012 0.0120 False

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: APW-4

Mean of all data: 0.00419

Standard Deviation of all data: 0.00203

Largest Observation Concentration of all data: Xn = 0.00720

Test Statistic, high extreme of all data: Tn = 1.48

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: APW-5

Mean of all data: 0.00371

Standard Deviation of all data: 0.00222

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.580

T Critical of all data: Ter = 2.76

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Zinc, dissolved, mg/L Location: APW-6

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: APW-7

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: APW-8

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Zinc, dissolved, mg/L Location: APW-9

Mean of all data: 0.00500

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier Hill City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, total, mg/L Location: APW-1

Mean of all data: 0.0102

Standard Deviation of all data: 0.0104

Largest Observation Concentration of all data: Xn = 0.0510

Test Statistic, high extreme of all data: Tn = 3.91

T Critical of all data: Ter = 2.62

Zinc, total, mg/L Location: APW-10

Mean of all data: 0.0155

Standard Deviation of all data: 0.0383

Largest Observation Concentration of all data: Xn = 0.168

Test Statistic, high extreme of all data: Tn = 3.98

T Critical of all data: Tcr = 2.50

Zinc, total, mg/L Location: APW-11

Mean of all data: 0.0183

Standard Deviation of all data: 0.0432

Largest Observation Concentration of all data: Xn = 0.189

Test Statistic, high extreme of all data: Tn = 3.95

T Critical of all data: Tcr = 2.50

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, total, mg/L Location: APW-12

Mean of all data: 0.0183

Standard Deviation of all data: 0.0436

Largest Observation Concentration of all data: Xn = 0.185

Test Statistic, high extreme of all data: Tn = 3.82

T Critical of all data: Tcr = 2.48

Sample Date Value LT Value Low Side High Side

12/13/2021 0.185 False

Zinc, total, mg/L Location: APW-2

Mean of all data: 0.00598

Standard Deviation of all data: 0.00458

Largest Observation Concentration of all data: Xn = 0.0265

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

11/11/2021 0.0265 False 1

Zinc, total, mg/L Location: APW-3

Mean of all data: 0.00753

Standard Deviation of all data: 0.00618

Largest Observation Concentration of all data: Xn = 0.0275

Test Statistic, high extreme of all data: Tn = 3.23

T Critical of all data: Ter = 2.60

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 09/19/2017
 0.0275
 False
 1

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, total, mg/L Location: APW-4

Mean of all data: 0.0108

Standard Deviation of all data: 0.00972

Largest Observation Concentration of all data: Xn = 0.0369

Test Statistic, high extreme of all data: Tn = 2.69

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/13/2021
 0.0369
 False
 1

Zinc, total, mg/L Location: APW-5

Mean of all data: 0.00580

Standard Deviation of all data: 0.00281

Largest Observation Concentration of all data: Xn = 0.0173

Test Statistic, high extreme of all data: Tn = 4.09

T Critical of all data: Tcr = 2.62

Zinc, total, mg/L Location: APW-6

Mean of all data: 0.00536

Standard Deviation of all data: 0.00173

Largest Observation Concentration of all data: Xn = 0.0133

Test Statistic, high extreme of all data: Tn = 4.59

T Critical of all data: Ter = 2.62

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, total, mg/L Location: APW-7

Mean of all data: 0.00910

Standard Deviation of all data: 0.0193

Largest Observation Concentration of all data: Xn = 0.0953

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Ter = 2.60

Zinc, total, mg/L Location: APW-8

Mean of all data: 0.0116

Standard Deviation of all data: 0.0291

Largest Observation Concentration of all data: Xn = 0.145

Test Statistic, high extreme of all data: Tn = 4.58

T Critical of all data: Tcr = 2.62

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 12/09/2019
 0.145
 False
 1

Zinc, total, mg/L Location: APW-9

Mean of all data: 0.00613

Standard Deviation of all data: 0.00299

Largest Observation Concentration of all data: Xn = 0.0154

Test Statistic, high extreme of all data: Tn = 3.10

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 12/13/2010 to 12/21/2022

Confidence Level: 95%

Number of Outliers: One Outlier

LT Multiplier: x 0.50

Transform: None

APPENDIX B2 TEST DESCRIPTIONS

MANAGES

Groundwater Data Management and Evaluation Software

Software Manual Product ID #1012581

Software Manual, February 2010

EPRI Project Manager K. Ladwig

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

ELECTRIC POWER RESEARCH INSTITUTE, INC. ("EPRI") RESERVES ALL RIGHTS IN THE PROGRAM AS DELIVERED. THE PROGRAM OR ANY PORTION THEREOF MAY NOT BE REPRODUCED IN ANY FORM WHATSOEVER EXCEPT AS PROVIDED BY LICENSE, WITHOUT THE CONSENT OF EPRI.

A LICENSE UNDER EPRI'S RIGHTS IN THE PROGRAM CAN BE OBTAINED DIRECTLY FROM EPRI.

THE EMBODIMENTS OF THIS PROGRAM AND SUPPORTING MATERIALS MAY BE INDEPENDENTLY AVAILABLE FROM ELECTRIC POWER SOFTWARE CENTER (EPSC) FOR AN APPROPRIATE DISTRIBUTION FEE.

Electric Power Software Center (EPSC) 9625 Research Drive Charlotte, NC 28262

THIS NOTICE MAY NOT BE REMOVED FROM THE PROGRAM BY ANY USER THEREOF.

NEITHER EPRI, ANY MEMBER OF EPRI, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

- 1. MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS OF ANY PURPOSE WITH RESPECT TO THE PROGRAM; OR
- 2. ASSUMES ANY LIABILITY WHATSOEVER WITH RESPECT TO ANY USE OF THE PROGRAM OR ANY PORTION THEREOF OR WITH RESPECT TO ANY DAMAGES WHICH MAY RESULT FROM SUCH USE.

RESTRICTED RIGHTS LEGEND: USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTION AS SET FORTH IN PARAGRAPH (G) (3) (I), WITH THE EXCEPTION OF PARAGRAPH (G) (3) (I) (B) (5), OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE IN FAR 52.227-14, ALTERNATE III.

Research Contractor Company Name (add others on lines below if more than one)

NOTICE: THIS REPORT CONTAINS PROPRIETARY INFORMATION THAT IS THE INTELLECTUAL PROPERTY OF EPRI, ACCORDINGLY, IT IS AVAILABLE ONLY UNDER LICENSE FROM EPRI AND MAY NOT BE REPRODUCED OR DISCLOSED, WHOLLY OR IN PART, BY ANY LICENSEE TO ANY OTHER PERSON OR ORGANIZATION.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2009 Electric Power Research Institute, Inc. All rights reserved.

10 STATISTICAL ANALYSIS

Stand-Alone Statistical Tests

Statistical Evaluation Report

The Statistical Evaluation Report is comprised of a series of subreports as described below.

User Selections:

- One location.
- Sample date range for data selection.
- Interval length: the length of the averaging period in months (1,2,3,4, or 6).
- One parameter.
- Non-detect processing: multiplier between 0 and 1.
- One-sided confidence $(1-\alpha)$ level -0.90, 0.95 or 0.99.
- Limit type: used in the statistical overview to determine exceedances.

Mann-Kendall Trend and Seasonal Analysis Tests

The Mann-Kendall test for trend is insensitive to the presence or absence of seasonality. The test is non-parametric and does not assume any type of data distribution. Nonetheless, two forms of the test are provided in MANAGES, one ignoring data seasonality even if it is present, and one considering data seasonality. In the test, the null hypothesis, H_0 , is that the Sen trend is zero, and the alternate hypothesis, H_a , is that the trend is non-zero.

In general, the Mann-Kendall test considering seasonality indicates a larger range for allowable Sen estimate of trend when seasonality is actually present than the range indicated by the test performed ignoring seasonality.

In the Mann-Kendall Trend Analysis, available in under the Statistical Evaluation Report and in the Statistical Procedure for Detection Monitoring, and Mann-Kendall Seasonal Analysis, found under the Statistical Evaluation Report, MANAGES first calculates the Sen slope and the upper and lower confidence limits of the Sen slope, and then determines whether the Sen slope is statistically significant. Slope is statistically significant if it is non-zero.

Mann-Kendall Test for Sen Slope Significance – a two-sided, non-parametric method for data sets as small as 10, unless there are many tied (e.g., equal, NDs are treated as tieds) values (Gilbert, 1987; p. 208)

Indicator Function	$= 1 \text{ if } (x_{ij} - x_{jk}) > 0$
$\operatorname{sgn}(x_{ij}-x_{jk})$	$= 0 \text{ if } (x_{ij} - x_{jk}) = 0$
	$=-1 \text{ if } (x_{ij}-x_{jk})<0$
	where $x_{i1}, x_{i2},, x_{in}$ are the time ordered data (n_i is total of data in the ith season).
Mann-Kendall Statistic, S_i	$= \sum_{k=1}^{n_i-1} \sum_{j=k+1}^{n_i} \operatorname{sgn}(x_{ij} - x_{jk})$
Variance of S_i $VAR(S_i)$	$VAR(S_i) =$
	$\frac{1}{18} \left\{ n_i (n_i - 1)(2n_i + 5) - \sum_{p=1}^{g_i} t_{ip} (t_{ip} - 1)(2t_{ip} + 5) - \sum_{q=1}^{h_i} u_{iq} (u_{iq} - 1)(2u_{iq} + 5) \right\}$
	$+\frac{\sum_{p=1}^{g_i} t_{ip}(t_{ip}-1)(t_{ip}-2) \sum_{q=1}^{h_i} u_{iq}(u_{iq}-1)(u_{iq}-2)}{9n_i(n_i-1)(n_i-2)}$
	$+\frac{\sum_{p=1}^{g_i} t_{ip}(t_{ip}-1) \sum_{q=1}^{h_i} u_{iq}(u_{iq}-1)}{2n_i(n_i-1)}.$
	The variable g_i is the number of tied groups (equal-valued) data in the
	i-th season, t_{ip} is the number of tied data in the p-th group for the i-th
	season, h_i is the number of sampling times (or time periods) in the i-th season that contain multiple data, u_{iq} is the number of multiple data in
	the q-th time period in the i-th season, and n_i is the number of data values in the i-th season.

Test Statistic,	If $S' = \sum_{i=1}^{K} S_i$, where K is the number of seasons, then the test statistic	
Z	\overline{z} is computed as:	
	$Z = \begin{cases} \frac{S'-1}{[VAR(S')]^{1/2}} & \text{iff } S' > 0 \\ 0 & \text{iff } S' = 0 \end{cases}$ $\frac{S'+1}{[VAR(S')]^{1/2}} & \text{iff } S' < 0$	
	$Z = \begin{cases} 0 & \text{iff } S' = 0 \end{cases}$	
	$\frac{S'+1}{[VAR(S')]^{1/2}} iff S' < 0$	
	Where "iff" is an acroym meaning: if-and-only-if. A positive Z value means an upward trend and a negative Z value means a negative trend.	
Hypothesis Test:	Accept the null hypothesis H_0 of no trend	
H_0 = no trend	if $Z \le Z_{1-\alpha/2}$	
H_a = trend present	Reject the null hypothesis H_0	
This is a two-sided test at the α significance level.	if $Z > Z_{1-\alpha/2}$	
	where $Z_{1-\alpha/2}$ is obtained from Table A1 in Gilbert (1987; p. 254).	

Kruskal-Wallis Analysis (Test for Seasonality)

To perform the Kruskal-Wallis test for data seasonality, data points are first segmented according to season (Gilbert, 1987). The null hypothesis, H_0 , is that all seasons have the same mean value. The alternative hypothesis, H_a , is that at least one season has a mean larger or smaller than the mean of at least one other season. Montgomery et al. (1987) provide additional information on groundwater data seasonality. This is a two-sided, non-parametric test.

In MANAGES, the Kruskal-Wallis Test for Seasonality is found under Data Review // Non-Parametric Methods // Kruskal-Wallis Analysis. It determines whether the seasonal means for the specified parameter at the specified location are statistically the same.

	or $Z_i \ge SCL$.
--	--------------------

Outlier Tests

Outlier tests are useful in detecting inconsistencies of measurement within a data set. An outlier is defined as an observation that appears to deviate markedly from other values of a sample set. There are many possible reasons for the presence of an outlier, including 1) the presence of a true but extreme value from a single population, resulting from random variability inherent in the data; 2) an improper identification of the underlying distribution describing the population from which the sample set comes from; 3) the occurrence of some unknown event(s) such as a spill, creating a mixture of two or more populations; 4) a gross deviation from prescribed sampling procedures or laboratory analysis; 5) a transcription error in the data value or data unit of measurement.

USEPA (1989; p. 8-11) states that the purpose of a test for outliers is to determine whether or not there is statistical evidence that an observation that appears extreme does not fit the distribution of the rest of the data. If an observation is identified as an outlier, then steps need to be taken to determine whether it is the result of an error or a valid extreme observation. If a true error, such as in transcription, dilution, or analytical procedure, can be identified, then the suspect value should be replaced with its corrected value. If the source of the error can be determined but no correction is possible, then the observation is deleted and the reason for deletion is reported along with any statistical analysis. If no source of error can be documented, then it must be assumed that the observation is a true but extreme value of the data set. If this is the case, the outlier observation(s) must not be altered or excluded from any statistical analysis. Identification of an observation as an outlier but with no error documented could be used to suggest resampling to confirm the value (USEPA, 1989; p. 8-13).

The outlier tests provided in MANAGES are based on either the single outlier test of Grubbs (1969), which is used by USEPA (1989; pp. 8-10 to 8-13) or the single outlier test of Dixon (1951, 1953), which is used by USEPA (2000; pp. 4-24) and by ASTM (1998). The outlier tests assume the data come from a normal distribution. Only one outlier, either an extreme low or an extreme high, can be detected during a single analysis of a data set. Additional outliers can be detected by temporarily removing a previously detected outlier from a data set and then repeating the test on the remaining, reduced, data set. During each pass of the outlier test, the sample mean, standard deviation, and sample size used in the test statistics are computed using only the data remaining in the set. The process can be continued until there is either an insufficient amount of data remaining (a minimum of 3 values) or when no additional outliers are found. When using MANAGES, the user will be asked how many outliers are to be checked and it will then automatically perform all of the recursive calls and data reductions with the Grubbs or Dixon routine. When done, a report can be generated that will show each outlier marked with a flag indicating the sequential order in which the outliers were identified.

Critical values used in the one-sided Grubbs test are taken directly from those in Grubbs and Beck (1972) for sample sizes smaller than 147 observations. Critical values for sample sizes larger than 147 were generated numerically using a Monte Carlo routine, where each sampling event was simulated 100,000 times. Sample sizes ranging from 148 to 5,000 where used and then their resultant test statistic T_n curve fitted at specific significance levels. By this method, it was possible to match Grubbs results to at least four significant digits for corresponding tabulated values.

Critical values used in the one-sided Dixon outlier test are taken directly from tables given in Dixon (1951), Dixon (1953; page 89), and USEPA (2000; p. A-5, Table A-3). The critical values were then curve fitted for every sample size between 3 and 25 as a function of the significance level. By this method, it was possible to match Dixon's results to at least four significant digits for corresponding tabulated values. Note that the Dixon test assumes the data are either normally or lognormally distributed. Hence, sample sizes can only range between 3 and 25, inclusive. Dixon never developed an outlier test for sample sizes larger than 25.

User Selections:

- One or up to 100 locations: a separate test is performed for each location.
- One or up to 100 parameters: a separate test is performed for each parameter.
- Evaluation date range.
- Confidence $(1-\alpha)$ level: 0.90, 0.95 or 0.99.
- Non-detect processing: multiplier between 0 and 1.
- Data transformation option: none and log (base e).
- Number of outliers: one, two, first 5%, first 10%. Selecting any option other than one causes MANAGES to rerun the test, with outliers from prior tests removed, until either no outliers are detected or the specified number of outliers are detected.

Technical Details

Grubbs Outlier Test – The Grubbs outlier test determines whether there is statistical evidence that an observation does not fit the remaining data (USEPA, 1989; p. 8-11). This significance test looks at either the highest or the lowest observation in normal samples.		
The number of observations taken during a specified scoping period; n	n	

Mean of the observed data during the scoping period; \overline{X}	$X = \frac{1}{n} \sum_{i=1}^{n} X_i$
	where X_i is the i-th observation.
Standard deviation of observed data; S_x .	$S_{x} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$
Test statistics: T_l & T_n	Sort the data into ascending order, then compute the statistics
	$T_{l} = (\overline{X} - X_{l}) S_{x}$ $T_{n} = (X_{n} - \overline{X}) S_{x}$
	where X_l is the smallest value of the n observations and X_n is the largest value of the n observations.
One-sided test with a $(1-\alpha)$ confidence level that there is a single extreme outlier within the n observations.	Grubbs single, one-sided test of either an extreme low outlier:
within the if observations.	X_l is an outlier if $T_l \ge T_{cr(1-\alpha,n)}$
	or an extreme high outlier:
	X_n is an outlier if $T_n \ge T_{cr(1-\alpha,n)}$.
	The function $T_{cr(1-\alpha,n)}$ is the critical value,
	given in Grubbs and Beck (1972; Table 1) and USEPA (1989; p. B-11, Table 8). Note that the critical value assumes that the mean and standard deviation are computed from the sample being tested.

Dixon Outlier Test – The Dixon outlier test determines whether there is statistical evidence that an extreme observation does not fit the remaining data (USEPA, 2000; p. 4-24 and ASTM D6312, 1998). This significance test looks at both the highest and the

lowest observations in a sample data set. However, the routine will only perform the outlier tests if several conditions are first satisfied. For example, the Dixon outlier algorithm checks the distribution of the sample data for both normality and lognormality using the Shapiro-Wilk W-test. The outlier routine will not proceed with a data set if the W-test fails. In addition, the Dixon outlier test is limited to a minimum of 3 and a maximum sample size n of 25 data values.

	T
The number of observations taken during a specified scoping period; n	Number of observations, n , where $3 \le n \le 25$.
Sorting the sample data	Sort the data into ascending order, with the minimum data value $X_{(1)}$ first and the maximum data value $X_{(n)}$ last. Use the natural log of the data values if data are lognormally distributed, i.e., $X_{(j)} = Ln[X_{(j)}]$.
Goodness-of fit tests	After temporarily excluding either the minimum or maximum value of the data set, the Shapiro-Wilk's W-test is used to determine if the remaining $n-1$ values are normally or lognormally distributed. If not, the Dixon outlier test can't be used.
Test statistic, T _s , for the minimum data value	Compute the T_s test statistic for $X_{(1)}$ as an outlier: $T_s = \frac{X_{(2)} - X_{(1)}}{X_{(n)} - X_{(1)}} for 3 \le n \le 7$ $T_s = \frac{X_{(2)} - X_{(1)}}{X_{(n-1)} - X_{(1)}} for 8 \le n \le 10$ $T_s = \frac{X_{(3)} - X_{(1)}}{X_{(n-1)} - X_{(1)}} for 11 \le n \le 13$ $T_s = \frac{X_{(3)} - X_{(1)}}{X_{(n-2)} - X_{(1)}} for 14 \le n \le 25.$
Test statistic, T _s , for the maximum data value	Compute the T_s test statistic for $X_{(n)}$ as an outlier:

	$T_{s} = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(1)}} for 3 \le n \le 7$ $T_{s} = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(2)}} for 8 \le n \le 10$ $T_{s} = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(2)}} for 11 \le n \le 13$ $T_{s} = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(3)}} for 14 \le n \le 25.$
Critical value T _c	USEPA (2000; p. A-5, Table A-3) lists the critical values of the Dixon test as a function of sample size for a one-sided extreme value test at the significance levels α of 0.1, 0.05, and 0.01.
One-sided test with a $(1-\alpha)$ confidence level that there is a single extreme outlier within the n observations.	Dixon's single, one-sided test for statistical evidence of either an extreme low-valued outlier: $X_{(1)} \text{ is an outlier if } T_s \geq T_c$ or an extreme high-valued outlier: $X_{(n)} \text{ is an outlier if } T_s \geq T_c.$ The function T_c is the critical value, given in Dixon (1953; page 89) and USEPA (2000; p. A-5, Table A-3). Note that the critical value assumes that the data are either normally or lognormally distributed.

Other Statistical Calculations Used in MANAGES

Sen Estimate of Slope

The Sen estimate of slope is the median of all slopes between all possible unique pairs of individual data points in the time period being analyzed (Gilbert, 1987). The slopes represent the rate of change of the measured parameter, with the y-axis being the parameter value and the x-axis being calendar days. Sen's estimate of slope is a non-parametric estimator of trend. The method is robust, and fairly insensitive to the presence of a small fraction of outliers and non-detect data values. In contrast, linear regression and other least squares estimators of slope are significantly more sensitive, and more likely to give erroneous slope indications, even when only a few outlier values are present.

When data averaging is not activated, the Sen slope is calculated using individual data points and actual sampling dates. When data averaging is activated, multiple data points within each specified season period are reduced to one data point by arithmetic averaging over each of the season periods. These averaged values are then assigned to the day that corresponds to the middle of that season's period.

The approximate lower and upper confidence limits for the Sen slope can also be calculated using normal theory (Gilbert, 1987). It should be noted that confidence limits for the Sen slope are not necessarily symmetrical about the estimated slope since ranked values of slope are used in the calculation.

MANAGES calculates Sen slope in the Sen Slope Overlay Graph, Statistical Summary reports and in the two Mann-Kendall tests performed under the Statistical Evaluation Report.

Sen's Estimate of Slope – two-sided, non-parametric method that calculates the trend of a single data series. It is less sensitive to outliers and non-detect values than linear regression (Gilbert, 1987; p. 217).	
Slope, Q	where $X_{i'}$ and x_{i} are data values at times i' and i , respectively, and where $i' > i$. Typically, i' and i are expressed in units of either days for trend analysis or years for seasonal analysis.
N'	Number of unique data point pairs that can be made for the observations in the data set, for $i'>i$. For n monitoring events, N' is given as: $N' = n(n-1)/2$

Sen's Slope Estimate	Sen's slope estimator = median slope
	$= Q_{[(N'+1)/2]} \text{ if } N' \text{ is odd}$
	$= \frac{1}{2} (Q_{[N'/2]} + Q_{[(N'+2)/2]}) \text{ if } N' \text{ is even}$
	where the Q values have first been ranked from smallest to largest.
$Z_{ ext{l}-lpha/2}$	Statistic for the cumulative normal distribution (Gilbert, 1987; p. 254) for the two-sided, α significance level.
Variance estimate of the Mann-Kendall S Statistic, VAR(S)	VAR(S) $= \frac{1}{18} [n(n-1)(2n+5) - \sum_{p=1}^{g} t_p(t_p - 1)(2t_p + 5)]$
	where g is the number of tied groups, t_p is the number of data in the p th group, and n is the number of data values.
C_{α}	$=Z_{1-\alpha/2}\overline{VAR(S)}$
Sen's Slope , a two-sided test at the α significance level	$M_1 = \frac{(N' - C_{\alpha})}{2}$ $M_2 = \frac{(N' + C_{\alpha})}{2}$
	Lower limit of confidence interval is the M_1 -th largest slope, and upper limit of confidence interval is the (M_2+1) -th largest of the N' ordered slope estimates.

Coefficient of Skewness for Normality

The coefficient of skewness is another measure for data normality (Gilbert, 1987). MANAGES provides the value of the coefficient of skewness in the Statistical Evaluation Report, Statistical Overview. Additional information on data normality is given by Montgomery, et al. (1987).

APPENDIX C SITE INSPECTION REPORTS

Inspection Form for Closed Ponds at Ameren Facilities

Project Name: Quarterly Ash Pond Cap Inspection

Inspection Date: 03/04/2022

Temperature: 28 F

Meredosia Power Plant Location:

Weather: Mostly cloudy

System Description: Fly Ash Pond

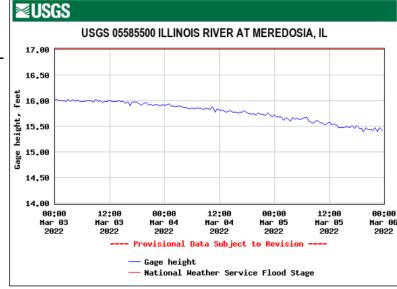
gage at Meredosia

River Level

433.8 15.8

Bottom Ash Embankment

Gage 0' = 418.00' MSL


Bottom Ash Pond bottom

Engineer/Inspectors: Lisa Meyer and Mike Wagstaff

is at 430.00' MSL

Owner Representative:

n/a

Overall System Rating: Acceptable

System Rating Codes

Acceptable System: Nearly all items or components are rated as GC or NE.

Minimally Acceptable System: One or more items are rated as MM or one or more items are rated as IM or EC and an engineering determination concludes that the IM or EC items would not prevent the system from performing as intended.

Unacceptable System: One or more items are rated as IM or EC and would prevent the system from performing as intended, or a serious deficiency noted in past inspections (which had previously resulted in a minimally acceptable system rating) has not been corrected within the established timeframe, not to exceed two years.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Supervising Engineer, Dam Safety; i.e. pool draw down, work stoppage, or plant stoppage.

IM = Item needing Immediate Maintenance to restore or ensure its safety or integrity. Remediation should be completed within an appropriate timeframe as determined by the Supervising Engineer, Dam Safety.

MM = Item needing Minor Maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular Observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No Evidence of a problem.

NI = Not Inspected. Reason should be stated in comment

Meredosia Power Station Fly Ash Pond Cap - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 2 of 7
Date	03/04/2022
Inspector	Lisa Meyer and Mike Wagstaff
Temperature	28 F
Weather	Mostly cloudy

_	Item	Condition Code *	Comments
	Drainage Ditch/ArmorFill	GC	ArmorFill in good condition in ditches. No change in locations/quantity of puddles in ditches.
Сар	Sand on Cap	GC	Sand is in good condition. No need to place additional sand or sweep existing sand.
Closure (ClosureTurf	GC	No damage or degradation evident.
Ö	Riprap Outlet Flumes	GC	Flumes are in good condiiton.
	Other		
	Riprap	GC	Riprap is in good condition.
+	Vegetation in riprap	GC	Weeds were sprayed on Sept 24, 2021.
Embankment	Vegetation at Toe	GC	Vegetation that re-emerged after flood-waters receded is not a problem.
mbar	Debris/Logs	GC	Minimal debris on embankment and at toe of embankment.
Ш	Erosion	GC	No erosion evident at toe of embankments.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

NI = Not Inspected. Reason should be stated in comment

Meredosia Power Station Bottom Ash Embankment - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 3 of 7
Date	03/04/2022
Inspector	Lisa Meyer and Mike Wagstaff
Temperature	28 F
Weather	Mostly cloudy

	ltem	Condition Code *	Comments
Roadway	Gravel Road	GC	Roadway gravel is compacted and smooth.
	Drainage	GC	No drainage problems at this time.
	Other	GC	No issues.
Embankment	Vegetation at Toe	GC	Vegetation at toe has re-emerged after flood-waters receded.
	ClosureTurf	GC	Turf is in good condition. Sand on slopes does not require sweeping.
	ArmorFill	GC	Polyurethane has been applied and sand is locked in-place. No disintegration of polyurethane material is evident at this time.
	Riprap at Toe	GC	Riprap at toe is in good condition. Weeds were sprayed on Sept 24, 2021.
	Riprap Outlet Flumes	GC	Flumes are in good condition. Weeds were sprayed on Sept 24, 2021.
	Other		
Remaining Basin	Side Slopes	GC	Sedimentation logs are in good condition. Vegetation is established on the slopes.
	Bottom	GC	Vegetation is re-emerging after flooding. Some shallow ponding (<3" water) at various locations within the limits of the clean-closed bottom ash pond. Minimal debris (caused by flooding) along slopes of basin.
	Outlet Riprap	GC	Riprap is in good condtion. Weeds were sprayed on Sept 24, 2021.
	Toe Riprap	GC	Riprap in good condition. Weeds were sprayed on Sept 24, 2021.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

NI = Not Inspected. Reason should be stated in comment

Acceptable:

Fly Ash Pond Cap – outlet 4

Fly Ash Pond Cap – outlet 5;

Bottom Ash Cap - west side berm view

Fly Ash Pond Cap – outlet 6

Bottom Ash embankment north side by well 9

Bottom Ash embankment penetration by Well 9

Bottom Ash embankment outlet to river

Minor general site deficiencies to address in 2022:

Old East Pond Berm washout

Old East Pond area needs more mowing attention

Minor soil washout under the fence by well 9

82 F

Inspection Form for Closed Ponds at Ameren Facilities

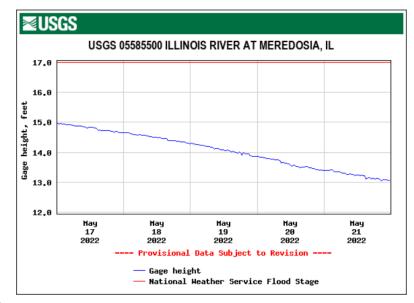
Project Name: Quarterly Ash Pond Cap Inspection

05/19/2022 Inspection Date: Temperature:

Location: Meredosia Power Plant Weather: Sunny

System Description: Fly Ash Pond

River Level 432.1 gage at Meredosia 14.1


Bottom Ash Embankment

Gage 0' = 418.00' MSLBottom Ash Pond bottom

Engineer/Inspectors: Lisa Meyer

is at 430.00' MSL

Owner Representative: n/a

Overall System Rating: Acceptable

System Rating Codes

Acceptable System: Nearly all items or components are rated as GC or NE.

Minimally Acceptable System: One or more items are rated as MM or one or more items are rated as IM or EC and an engineering determination concludes that the IM or EC items would not prevent the system from performing as intended.

Unacceptable System: One or more items are rated as IM or EC and would prevent the system from performing as intended, or a serious deficiency noted in past inspections (which had previously resulted in a minimally acceptable system rating) has not been corrected within the established timeframe, not to exceed two years.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Supervising Engineer, Dam Safety; i.e. pool draw down, work stoppage, or plant stoppage.

IM = Item needing Immediate Maintenance to restore or ensure its safety or integrity. Remediation should be completed within an appropriate timeframe as determined by the Supervising Engineer, Dam Safety.

MM = Item needing Minor Maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular Observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No Evidence of a problem.

Meredosia Power Station Fly Ash Pond Cap - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 2 of 9
Date	05/19/2022
Inspector	Lisa Meyer
Temperature	82 F
Weather	Sunny

	Item	Condition Code *	Comments
	Drainage Ditch/ArmorFill		ArmorFill in good condition in ditches. No change in locations/quantity of puddles in ditches.
Сар	Sand on Cap	GC	Sand is in good condition. No need to place additional sand or sweep existing sand.
Closure (ClosureTurf	GC	No damage or degradation evident.
Ö	Riprap Outlet Flumes	GC	Flumes are in good condiiton.
	Other		
	Riprap	GC	Riprap is in good condition.
t t	Vegetation in riprap	GC	Weeds spraying scheduled for week of May 23, 2022.
Embankment	Vegetation at Toe	GC	Vegetation that re-emerged after flood-waters receded is not a problem.
mbar	Debris/Logs	GC	Minimal debris on embankment and at toe of embankment.
Ū	Erosion	GC	No erosion evident at toe of embankments.
4	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

QB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Meredosia Power Station Bottom Ash Embankment - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 3 of 9
Date	05/19/2022
Inspector	Lisa Meyer
Temperature	82 F
Weather	Sunny

	ltem	Conditior Code *	Comments
ay	Gravel Road	GC	Roadway gravel is compacted and smooth.
Roadway	Drainage	GC	No drainage problems at this time.
Ä	Other	GC	No issues.
	Vegetation at Toe	GC	Vegetation at toe has re-emerged after flood-waters receded.
ent	ClosureTurf	GC	Turf is in good condition. Sand on slopes does not require sweeping.
Embankment	ArmorFill	GC	Polyurethane has been applied and sand is locked in-place. No disintegration of polyurethane material is evident at this time.
Emb	Riprap at Toe	GC	Riprap at toe is in good condition. Weeds spraying scheduled for week of May 23, 2022.
	Riprap Outlet Flumes	GC	Flumes are in good condition. Weeds spraying scheduled for week of May 23, 2022.
4	Other		
	Side Slopes	GC	Sedimentation logs are in good condition. Vegetation is established on the slopes.
Remaining Basin	Bottom	GC	Vegetation is re-emerging after flooding. Some shallow ponding (<3" water) at various locations within the limits of the clean-closed bottom ash pond. Minimal debris (caused by flooding) along slopes of basin.
aininę	Outlet Riprap	GC	Riprap is in good condtion. Weeds spraying scheduled for week of May 23, 2022.
Remä	Toe Riprap	GC	Riprap in good condition.Weeds spraying scheduled for week of May 23, 2022.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

QB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

05/19/22 Inspection Page **4** of **9**

Fly Ash Pond Cap – Outlet 1 and embankment (facing west and north)

Fly Ash Pond Cap – outlet 2 and embankment (facing east and west)

05/19/22 Inspection Page 5 of 9

Fly Ash Pond Cap – outlet 3 and embankment (facing north and south)

Fly Ash Pond Cap – outlet 4 and embankment (facing north and south)

05/19/22 Inspection Page 6 of 9

Fly Ash Pond Cap – outlet 5 and embankment (looking east and west)

Fly Ash Pond Cap – outlet 6 and embankment (facing east and west)

05/19/22 Inspection Page **7** of **9**

Fly Ash CAP Center (facing north by road, facing east by outlet 1, then facing east by outlet 4)

MONITOR - Fly Ash CAP - Air bubble looking south from outlet 6

05/19/22 Inspection Page **8** of **9**

Bottom Ash CAP - embankment view (facing north)

Bottom Ash CAP Penetrations by Well 9, north embankment, river embankment, and letdown)

05/19/22 Inspection Page **9** of **9**

REPAIRED MAY 2022 - Minor soil washout under the fence by well 9

REPAIRED MAY 2022 - Old East Pond north side embankment washout

Inspection Form for Closed Ponds at Ameren Facilities

Project Name: Quarterly Ash Pond Cap Inspection

Inspection Date: 08/26/2022

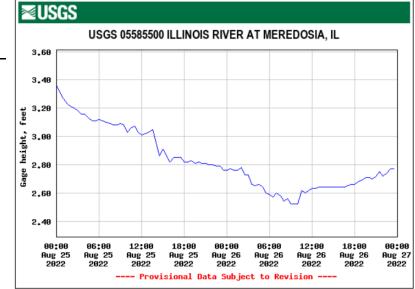
Location: Meredosia Power Plant

Temperature: 87 F
Weather: Partly Sunny

System Description: Fly Ash Pond

River Level 420.6 gage at Meredosia 2.6

Bottom Ash Embankment


Gage 0' = 418.00' MSL Bottom Ash Pond bottom

Engineer/Inspectors: Lisa Meyer

is at 430.00' MSL

Owner Representative:

n/a

Overall System Rating:

Acceptable

System Rating Codes

Acceptable System: Nearly all items or components are rated as GC or NE.

Minimally Acceptable System: One or more items are rated as MM or one or more items are rated as IM or EC and an engineering determination concludes that the IM or EC items would not prevent the system from performing as intended.

Unacceptable System: One or more items are rated as IM or EC and would prevent the system from performing as intended, or a serious deficiency noted in past inspections (which had previously resulted in a minimally acceptable system rating) has not been corrected within the established timeframe, not to exceed two years.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Supervising Engineer, Dam Safety; i.e. pool draw down, work stoppage, or plant stoppage.

IM = Item needing Immediate Maintenance to restore or ensure its safety or integrity. Remediation should be completed within an appropriate timeframe as determined by the Supervising Engineer, Dam Safety.

MM = Item needing Minor Maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular Observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No Evidence of a problem.

Meredosia Power Station Fly Ash Pond Cap - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 2 of 9
Date	08/26/2022
Inspector	Lisa Meyer
Temperature	87 F
Weather	Partly Sunny

	Item	Condition Code *	Comments
	Drainage Ditch/ArmorFill	1 1 21 2	ArmorFill in good condition in ditches. No change in locations/quantity of puddles in ditches.
Сар	Sand on Cap	GC	Sand is in good condition. No need to place additional sand or sweep existing sand.
Closure (ClosureTurf	GC	No damage or degradation evident.
Ö	Riprap Outlet Flumes	GC	Flumes are in good condiiton.
	Other		
	Riprap	GC	Riprap is in good condition.
ant	Vegetation in riprap	MM	Weeds were starting to wilt from last herbicide application which occurred just days before this inspection on Sept 23, 2022. Contractor will reevaluate weed condition in Sept. to determine if an additional application and/or herbicide mixture adjustment is needed.
Embankment	Vegetation at Toe	GC	Vegetation that re-emerged after flood-waters receded is not a problem.
Emba	Debris/Logs	GC	Minimal debris on embankment and at toe of embankment.
	Erosion	GC	No erosion evident at toe of embankments.
4	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

QB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Meredosia Power Station Bottom Ash Embankment - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 3 of 9
Date	08/26/2022
Inspector	Lisa Meyer
Temperature	87 F
Weather	Partly Sunny

	ltem	Conditior Code *	Comments
ay	Gravel Road	GC	Roadway gravel is compacted and smooth.
Roadway	Drainage	GC	No drainage problems at this time.
R	Other	GC	No issues.
	Vegetation at Toe	GC	Vegetation at toe has re-emerged after flood-waters receded.
ent	ClosureTurf	GC	Turf is in good condition. Sand on slopes does not require sweeping.
Embankment	ArmorFill	GC	Polyurethane has been applied and sand is locked in-place. No disintegration of polyurethane material is evident at this time.
Emb	Riprap at Toe	GC	Riprap at toe is in good condition.Weeds sprayed on Sept 23, 2022.
	Riprap Outlet Flumes	GC	Flumes are in good condition. Weeds sprayed on Sept 23, 2022
4	Other		
	Side Slopes	GC	Sedimentation logs are in good condition. Vegetation is established on the slopes.
Remaining Basin	Bottom	GC	Vegetation is re-emerging after flooding. Some shallow ponding (<3" water) at various locations within the limits of the clean-closed bottom ash pond. Minimal debris (caused by flooding) along slopes of basin.
aininę	Outlet Riprap	GC	Riprap is in good condtion. Weeds sprayed on Sept. 23, 2022.
Remä	Toe Riprap	GC	Riprap in good condition.Weeds sprayed Sept 23, 2022.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

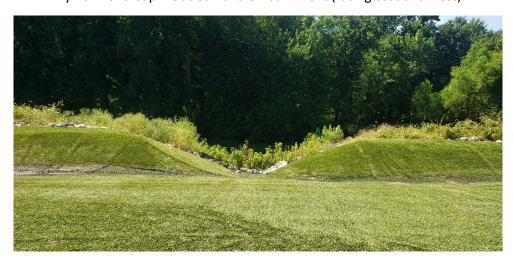
MM = Item needing Minor Maintenance and/or repairs within the year.

QB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

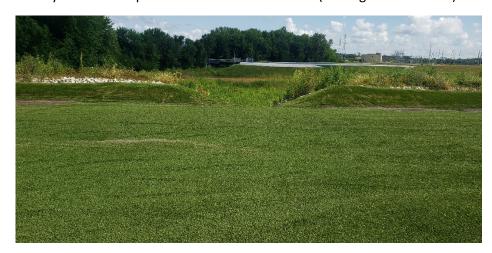
8/26/22 Inspection Page 4 of 9


Fly Ash Pond Cap – Outlet 1 and embankment (facing east and west)

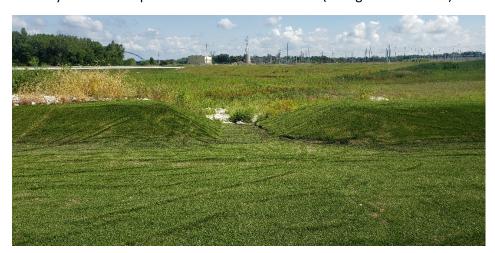
Fly Ash Pond Cap – Outlet 2 and embankment (facing east and west)

8/26/22 Inspection Page 5 of 9

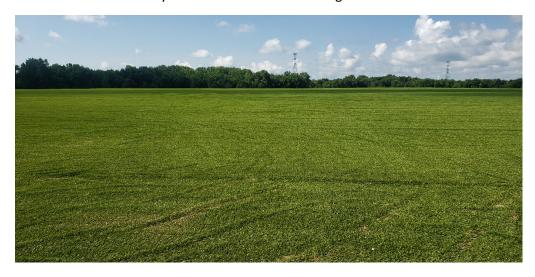
Fly Ash Pond Cap – Outlet 3 and embankment (facing north and south)


Fly Ash Pond Cap – Outlet 4 and embankment (facing north and south)

8/26/22 Inspection Page 6 of 9


Fly Ash Pond Cap – Outlet 5 and embankment (looking east and west)

Fly Ash Pond Cap – Outlet 6 and embankment (facing east and west)


8/26/22 Inspection Page **7** of **9**

Fly Ash CAP Center (@ center facing NE, @ outlet 1 facing north)

RESOLVED - Fly Ash CAP – Air bubble looking south from outlet 6

8/26/22 Inspection Page 8 of 9

Bottom Ash CAP - embankment view (facing north)

Bottom Ash CAP – Penetrations, north and south embankments, and river embankment

8/26/22 Inspection Page **9** of **9**

Old East Pond – East embankment

Old East Pond – North embankment

Old East Pond – West embankment

Inspection Form for Closed Ponds at Ameren Facilities

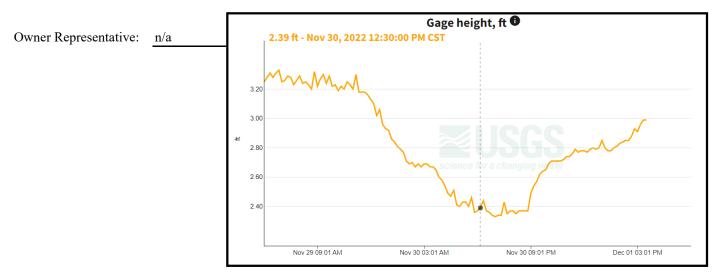
Project Name: Quarterly Ash Pond Cap Inspection

Meredosia Power Plant Location:

System Description: Fly Ash Pond

Bottom Ash Embankment

Inspection Date: 11/30/2022


Temperature: 30 F Weather: Sunny

River Level 420.39 gage at Meredosia 2.39

Gage 0' = 418.00' MSLBottom Ash Pond bottom

is at 430.00' MSL

Engineer/Inspectors: Lisa Meyer

Overall System Rating:

Acceptable

System Rating Codes

Acceptable System: Nearly all items or components are rated as GC or NE.

Minimally Acceptable System: One or more items are rated as MM or one or more items are rated as IM or EC and an engineering determination concludes that the IM or EC items would not prevent the system from performing as intended.

Unacceptable System: One or more items are rated as IM or EC and would prevent the system from performing as intended, or a serious deficiency noted in past inspections (which had previously resulted in a minimally acceptable system rating) has not been corrected within the established timeframe, not to exceed two years.

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Supervising Engineer, Dam Safety; i.e. pool draw down, work stoppage, or plant stoppage.

IM = Item needing Immediate Maintenance to restore or ensure its safety or integrity. Remediation should be completed within an appropriate timeframe as determined by the Supervising Engineer, Dam Safety.

MM = Item needing Minor Maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular Observation to ensure that the condition does not become worse.

GC = Good Condition.

NE = No Evidence of a problem.

Meredosia Power Station Fly Ash Pond Cap - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 2 of 9
Date	11/30/2022
Inspector	Lisa Meyer
Temperature	30 F
Weather	Sunny

	Item	Condition Code *	Comments
	Drainage Ditch/ArmorFill	GC	ArmorFill in good condition in ditches. No change in locations/quantity of puddles in ditches.
ар	Sand on Cap	GC	Sand is in good condition. No need to place additional sand or sweep existing sand.
Closure Cap	ClosureTurf	ОВ	About a 3 ft tear in the turf towards the cap peak out from outfall 6. Turf flap from rip completely covers HDPE liner. No damage or degradation evident in the HDPE liner. Monitor.
ŏ	Riprap Outlet Flumes	GC	Flumes are in good condiiton.
	Other		
	Riprap	GC	Riprap is in good condition.
ent	Vegetation in riprap	GC	No overgrowth of weeds or sapplings. Additional herbicide application occurred October 4, 2022.
Embankment	Vegetation at Toe	GC	Vegetation that re-emerged after flood-waters receded is not a problem.
Emba	Debris/Logs	GC	Minimal debris on embankment and at toe of embankment.
	Erosion	GC	No erosion evident at toe of embankments.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Meredosia Power Station Bottom Ash Embankment - ClosureTurf

Quarterly Site Inspection Checksheet

	Page 3 of 9
Date	11/30/2022
Inspector	Lisa Meyer
Temperature	30 F
Weather	Sunny

	Item	Condition	Comments
ž	Gravel Road	GC	Roadway gravel is compacted and smooth.
Roadway	Drainage	GC	No drainage problems at this time.
R	Other	GC	No issues.
	Vegetation at Toe	GC	Vegetation at toe has re-emerged after flood-waters receded.
ent	ClosureTurf	GC	Turf is in good condition. Sand on slopes does not require sweeping.
Embankment	ArmorFill	GC	Polyurethane has been applied and sand is locked in-place. No disintegration of polyurethane material is evident at this time.
Emb	Riprap at Toe	GC	Riprap at toe is in good condition.Weeds sprayed on Sept 23, 2022.
	Riprap Outlet Flumes	GC	Flumes are in good condition. Weeds sprayed on Sept 23, 2022
	Other		
	Side Slopes	GC	Sedimentation logs are in good condition. Vegetation is established on the slopes.
Remaining Basin	Bottom	GC	Vegetation is re-emerging after flooding. Some shallow ponding (<3" water) at various locations within the limits of the clean-closed bottom ash pond. Minimal debris (caused by flooding) along slopes of basin.
	Outlet Riprap	GC	Riprap is in good condtion. Weeds sprayed on Sept. 23, 2022.
Rem	Toe Riprap	GC	Riprap in good condition.Weeds sprayed Sept 23, 2022.
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

11/30/22 Inspection Page 4 of 9

Fly Ash Pond Cap – Outlet 1 and embankment (facing east and west)

Fly Ash Pond Cap – Outlet 2 and embankment (facing east and west)

11/30/22 Inspection Page 5 of 9

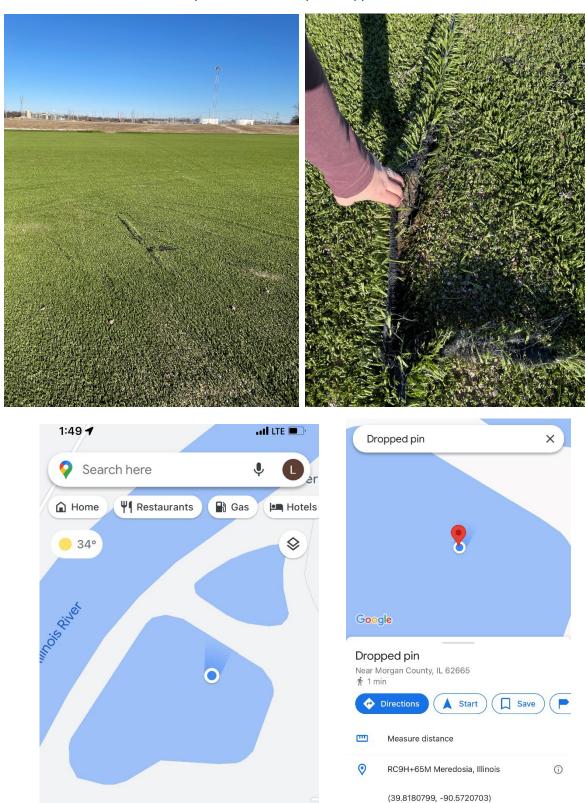
Fly Ash Pond Cap – Outlet 3 and embankment (facing north and south)

Fly Ash Pond Cap – Outlet 4 and embankment (facing north and south)

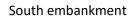
11/30/22 Inspection Page 6 of 9

Fly Ash Pond Cap – Outlet 5 and embankment (looking east and west)

Fly Ash Pond Cap – Outlet 6 and embankment (facing east and west)



11/30/22 Inspection Page **7** of **9**


MONITOR – Fly Ash CAP – Turf Rip with approximate coordinates

11/30/22 Inspection Page 8 of 9

Bottom Ash CAP

North Embankment

River embankment

Letdown

11/30/22 Inspection Page 9 of 9

Old East Pond

East embankment

West embankment

North embankment

South embankment

