www.haleyaldrich.com

REPORT ON

HUMAN HEALTH AND ECOLOGICAL ASSESSMENT OF THE RUSH ISLAND ENERGY CENTER

AMEREN MISSOURI FESTUS, MISSOURI

by Haley & Aldrich, Inc. Boston, Massachusetts

for Ameren Missouri St. Louis, Missouri

RUSH ISLAND ENERGY CENTER

1. Introduction

The Ameren Missouri Rush Island Energy Center ("RIEC") is a 1250 MW coal-fueled steam electrical power generating facility located along the Mississippi River below the Mississippi River bluffs near Festus, Jefferson County, Missouri. The facility has been in operation since 1976, where coal ash has been managed in an on-site impoundment, referred to as the RCPA, for more than four decades. Figure 1 shows the location of the facility, and the location of the RCPA.

The U.S. Environmental Protection Agency (USEPA) issued a final rule for "Disposal of Coal Combustion Residuals from Electric Utilities" in 2015 (the CCR Rule). One of the requirements in the CCR Rule is that utilities monitor groundwater at coal ash management facilities, and that the data be reported publicly. Ameren Missouri is complying with the CCR Rule, and has posted the required information on their publicly-available website: <u>https://www.ameren.com/Environment/ccr-rule-compliance</u>.

This Haley & Aldrich report is a companion document to the recently published 2017 Annual Groundwater Monitoring Report prepared by Golder Associates Inc. ("Golder") to provide interested reviewers with the information needed to interpret and meaningfully understand the groundwater monitoring data. Beyond the specific monitoring requirements of the CCR Rule, Ameren Missouri has also voluntarily taken the additional steps to determine if there has been any off-site impact to surface water from the operation of the RCPA. That work was presented in a 2014 AECOM report that is posted on Ameren's publicly available website: <u>https://www.ameren.com/Environment/managing-ccrs/ash-pond-closure</u>. In this report, Haley & Aldrich examines groundwater data reported under the CCR Rule, and the results of the surface water samples collected from the Mississippi River and Isle Du Bois Creek, which border the Rush Island Energy Center.

Ameren Missouri's comprehensive evaluation demonstrates that there are no adverse impacts resulting from coal ash management practices at the Rush Island Energy Center on human health or the environment from either surface water or groundwater uses. In fact, as described in Sections 6 and 7, concentration levels of constituents detected in the groundwater would need to be multiple orders of magnitude higher before such a risk could exist. Details about the evaluation are provided below.

2. Approach

The analysis presented in this report was conducted by evaluating the environmental setting of the Rush Island Energy Center, including its location and where ash management has occurred at the facility. Information on where groundwater is located at the facility, the rate(s) of groundwater flow, the direction(s) of groundwater flow, and where waterbodies may intercept groundwater flow was prepared by Golder, and is reviewed and summarized here.

A conceptual model was developed based on this physical setting information, and the model was used to identify what human populations could contact groundwater and/or surface water in the area of the facility. This information was also used to identify where ecological populations could come into contact with surface water. This conceptual model approach was used to identify where to collect surface water samples to allow evaluation of potential impact to the environment. Groundwater and surface water data are evaluated on a human health risk basis and an ecological risk basis.

Human health risk assessment is a process used to estimate the chance that contact with constituents in the environment may result in harm to people. Generally, there are four components to the process: (1) Hazard Identification, (2) Toxicity Assessment, (3) Exposure Assessment, and (4) Risk Characterization.

The USEPA develops "screening levels" of constituent concentrations in groundwater (and other media) that are considered to be protective of specific human exposures. These screening levels are referred to as "Risk-Based Screening Levels" or RSLs, and are published by USEPA and updated twice yearly¹. In developing the screening levels, USEPA uses a specific target risk level (component 4) combined with an assumed exposure scenario (component 3) and toxicity information from USEPA (component 2) to derive an estimate of a concentration of a constituent in an environmental medium, for example groundwater, (component 1) that is protective of a person in that exposure scenario (for example, drinking water). Similarly, ecological screening levels for surface water are developed by Federal and State agencies to be protective of the wide range of potential aquatic ecological resources, or receptors.

Risk-based screening levels are designed to provide a conservative estimate of the concentration to which a receptor (human or ecological) can be exposed without experiencing adverse health effects. Due to the conservative methods used to derive risk-based screening levels, it can be assumed with reasonable certainty that concentrations below screening levels will not result in adverse health effects, and that no further evaluation is necessary. Concentrations above conservative risk-based screening levels do not necessarily indicate that a potential risk exists, but indicate that further evaluation may be warranted.

The surface water and groundwater data were evaluated using human health risk-based and ecological risk-based screening levels drawn from Federal and State sources. The screening levels are used to determine if the concentration levels of constituents could pose a risk to human health or the environment. The evaluation also considers whether constituents are present in groundwater and surface water above screening levels, and if so, if the results could be due to the ash management operations.

Conceptual Site Model

A conceptual site model is used to evaluate the potential for human or ecological exposure to constituents that may have been released to the environment. Some of the questions posed during the CSM evaluation include:

What is the source? How can constituents be released from the source? What environmental media may be affected by constituent release? How and where do constituents travel within a medium? Is there a point where a receptor (human or ecological) could contact the constituents in the medium? Are the constituent concentrations high enough to potentially exert a toxic effect?

For the evaluation of the ash management operations at the Rush Island Energy Center, the coal ash stored in the RCPA is the potential source. Constituents present in the coal ash can be dissolved into infiltrating water (either from precipitation or from groundwater intrusion) and those constituents may then be present in shallow groundwater, also referred to as the alluvial aquifer. Constituents could move with groundwater as it flows, usually in a downgradient/downhill direction.

¹ USEPA Risk-Based Screening Levels (November 2017).

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/Generic Tables/index.htm

The constituents derived from the coal ash could then be introduced to adjacent surface water bodies; here, that could be the Mississippi River and/or Isle Du Bois Creek. Figure 1 shows the facility location and layout, and identifies direction of groundwater flow and the adjacent surface water bodies. Thus, the environmental media of interest for this evaluation are:

- Groundwater on the facility;
- Mississippi River surface water; and
- Isle Du Bois Creek surface water.

The direction of groundwater flow has been cataloged for many years at the RIEC. The direction and rate of flow can vary with Mississippi River stage but as Figure 1 shows, the direction of groundwater flow is mainly from the bluffs on the western side of the facility towards the Mississippi River, and Isle Du Bois Creek.

There are no on-site users of shallow groundwater adjacent to the RCPA. As documented in the 2014 AECOM Report, there are approximately 16 private wells recorded within a one-mile radius of the facility, and all are located west and upgradient of the facility (see Figure 2).

There are two deep water wells on facility property that are used to supply water to the RIEC. Water from these wells is used for potable purposes. These wells are approximately 1,100 feet deep, and are located upgradient and west of the RCPA (see Figure 2). They are cased to a depth of over 600 feet, and the screened interval, from which water is drawn, is located entirely in the bedrock aquifer, which is a different and deeper geologic unit than where the CCR monitoring wells are placed at the RCPA. Water from these deep wells is routed to a facility holding tank. Sampling of the holding tank is conducted according to the facility permit requirements. The results of that sampling are discussed later in this report.

Thus, with respect to the shallow aquifer, there are no users of the groundwater from that aquifer. In addition, groundwater samples from the bedrock plant water supply wells do not show evidence of CCR impacts (see discussion in Section 6).

The Mississippi River is a supply source for drinking water and the nearest public water supply intake is located approximately 30 miles downstream near City of Chester, Illinois. Isle Du Bois Creek flows into the Mississippi River but is not a source of drinking water.

The Mississippi River can be used for human recreation – wading, swimming, boating, fishing. Isle Du Bois Creek can also be used recreationally, though its small size would limit it mostly to wading.

Both the creek and the river serve as habitat for aquatic species – fish, amphibians, etc.

A depiction of the conceptual site model is shown in Figure 3.

Based on this conceptual site model and the facility setting shown in Figure 1, samples have been collected from each of these environmental media – groundwater, Mississippi River surface water, and Isle Du Bois Creek surface water. The samples have been analyzed for constituents that are commonly associated with coal ash, as discussed below. However, it is recognized by the USEPA that all of these constituents can also be naturally occurring and can be found in rocks, soils, water and sediments; thus, the challenge is to understand what the naturally occurring background levels are for these constituents. [See Attachment A for a more detailed discussion of the constituents present in coal ash and in our natural environment.] The CCR Rule requires sampling and analysis of upgradient and/or

background groundwater just for this reason. The same reasoning applies to the surface water, thus, when sampling surface water for this evaluation, samples were collected upstream to assess background conditions, and downstream to assess whether the facility may be having impact on surface water quality. The sampling is detailed in the next section.

To answer the question, "Are the constituent concentrations high enough to potentially exert a toxic effect?" health risk-based screening levels from Federal and State sources are used for comparison to the data. To be conservative, all data are compared to risk-based drinking water screening level levels, even though the closest downgradient drinking water intake is 30 miles downstream in the Mississippi River. All of the surface water data is also compared to risk-based human recreational screening levels, and to ecological screening levels.

Thus, this conceptual site model has guided the off-site sample collection, sample analysis, and the riskbased sample results evaluation that are provided in the following sections.

3. Sample Collection

Alluvial Aquifer Groundwater

Nine (9) groundwater monitoring wells were installed to evaluate shallow alluvial groundwater at the RCPA under the CCR Rule: seven monitoring wells were installed around the perimeter of the RCPA to assess groundwater conditions at the ash management area, and two monitoring wells were installed just north of the facility to assess background groundwater conditions. Figure 1 shows the locations of the monitoring wells. Each well is identified by a unique name. MW-1 through MW-7 are located around the perimeter of the RCPA, and MW-B1 and MW-B2 are the two background wells that are used to identify upgradient/background conditions in groundwater. Each groundwater monitoring well was sampled nine (9) times².

Bedrock Aquifer Groundwater

The deep bedrock groundwater used at the facility has been sampled from the facility holding tank for inorganics as required by MDNR 2010, 2012, 2015, and is scheduled to be sampled again in April 2018. However, to support the preparation of this report, two additional samples were collected from each of the two wells and analyzed in January 2018. The results are presented in Section 6.

Mississippi River

Surface water samples (not required by the CCR Rule for compliance) were collected by Golder from 6 locations in the Mississippi River in April 2014. These locations are shown on Figure 4. At each sample location, shallow samples were collected near the surface of the river. Where the depth of water was greater than four (4) feet, a second sample was collected mid-depth in the river.

To assess water conditions unaffected by facility operations, Golder sampled the Mississippi River at three (3) locations approximately 0.25 miles upstream of the facility (RI-R-4 through -6). Samples were collected to represent the following environments:

• Nearshore on the side closest to the Rush Island Energy Center (RI-R-4S), shallow depth;

² The CCR Rule requires eight (8) rounds of sampling events to establish baseline conditions in each well. Under the CCR Rule, the ninth sampling round is defined as the "Detection" sampling round.

- Midstream (RI-R-6S/M), shallow depth, and mid-depth; and
- Near midstream (RI-R-5S/M), shallow depth, and mid-depth.

Thus, a total of five (5) upstream samples were collected.

Golder also sampled three locations approximately 0.25 miles downstream of the facility (RI-R-1 through -3). The data from these locations are used to assess whether there is potential impact by the facility to river water quality. Similar to the upstream location, samples were collected to represent the following environments:

- Nearshore on the side closest to the Rush Island Energy Center (RI-R-1S), shallow depth;
- Midstream (RI-R-3S/M), shallow depth, and mid-depth; and
- Near midstream (RI-R-2S/M), shallow depth, and mid-depth.

Thus, a total of five (5) downstream samples were collected. In addition, an extra water sample was collected randomly from one of the locations, in this case an extra shallow sample was collected from the nearshore upstream location.

Isle Du Bois Creek

The Isle Du Bois Creek forms the southern border of the RIEC and is downgradient of the ash impoundment. Golder collected shallow surface water samples from nine (9) locations in the creek in April 2014. These locations are shown on Figure 4. Three locations are upstream of the facility, three locations are near the confluence of the creek with the Mississippi River, and three additional locations are midway between the upstream and downstream locations. All samples are shallow samples as the creek was not deep enough to collect a mid-depth sample. Samples were collected:

- Nearshore on the side closest to the Rush Island Energy Center;
- Midstream; and
- Near midstream.

Thus, a total of nine (9) surface water samples were collected. In addition, an extra water sample was collected randomly from one of the locations, in this case an extra shallow sample was collected from the nearshore downstream location.

4. Sample Analysis

The CCR Rule identifies the constituents that are included for groundwater testing; these are:

Boron	Antimony	Lead
Calcium	Arsenic	Lithium
Chloride	Barium	Mercury
рН	Beryllium	Molybdenum
Sulfate	Cadmium	Selenium
TDS	Chromium	Thallium
Fluoride	Cobalt	Radium 226/228

The CCR Rule requires eight (8) rounds of groundwater sampling and analysis – this was conducted for all wells to provide a baseline for current conditions. All eight rounds of groundwater samples collected

through June 2017 were analyzed for all constituents. Detection monitoring samples from an additional ninth round from November 2017 were analyzed for the constituents listed in the first column above (these are the Appendix III constituents under the CCR Rule – the remaining are referred to as Appendix IV constituents). The CCR Rule requires statistical methods be used to determine whether a statistically significant increase (SSI) above background exists for the first column constituents. If so, additional assessment monitoring could be required.

So as to create an appropriate dataset for comparison, the above parameters were also used for the surface water sample analysis except for chloride, TDS, lithium, and radium 226/228³. Two sets of analyses were conducted on the surface water samples. The samples were analyzed for the list above (referred to as the "total (unfiltered)" results), and then an aliquot of each sample was filtered to remove sediments/particulates and then analyzed (referred to as the "dissolved (filtered)" results). This is an important step for the analysis of surface water samples for two reasons:

- Surface water, especially in large rivers, can carry a large sediment load the total (unfiltered results) include constituent concentrations that are associated with the sediment from upstream locations and not the water; and
- Some of the ecological screening levels used to evaluate the results apply only to dissolved (filtered) data.

The surface water samples were also analyzed for hardness, as some of the ecological screening levels are calculated based on site-specific hardness levels.

5. Risk-Based Screening Levels

A comprehensive set of risk-based screening levels have been compiled for this evaluation for the three types of potential exposures identified in the conceptual site model discussion above:

- Human health drinking water consumption;
- Human health recreational use of surface water; and
- Aquatic ecological receptors for surface water.

Table 1 provides the human health drinking water and recreational screening levels available from the State of Missouri sources and from Federal sources. Table 2 (Mississippi River) and Table 3 (Isle Du Bois Creek) provide the ecological screening levels.

Drinking Water Screening Levels

The Missouri State drinking water supply levels are essentially the same as the Federal primary drinking water standards, also known as Maximum Contaminant Levels or MCLs. The Missouri State groundwater screening levels provide some additional screening levels not included on their list of drinking water screening levels.

³ Radium was not included in the surface water sampling as it was not detected in the facility's NPDES Outfall 002 samples. As discussed in Section 6, neither chloride nor TDS exhibited SSIs for the CCR Rule monitoring, and while lithium was detected above risk-based screening levels in one CCR Rule monitoring well (MW-4), those concentrations were lower than in the background well (MW-B1). Such locations are selected intentionally so as to avoid potential CCR impacts, and the presence of constituents in a background well is indicative of naturally occurring conditions.

In addition to the MCLs that are enforceable for municipal drinking water supplies, there are Federal secondary MCLs, or SMCLs, that are generally based on aesthetics (taste, color) and are not risk-based. The USEPA also provides risk-based screening levels (RSLs) for tapwater (drinking water).

The selected screening levels used to evaluate potential drinking water exposures are shown on Table 1. Missouri drinking water supply screening levels were used and supplemented with Federal MCLs, then the USEPA risk-based levels for tapwater (RSLs), and finally the Federal SMCLs.

It is important to note that the CCR Rule limits the evaluation of groundwater monitoring data of ash management areas to Federal MCLs or to a comparison with site-specific background. That comparison and evaluation is provided in the CCR Rule Groundwater Monitoring Report prepared by Golder, which this report supplements. The use of a more comprehensive set of screening levels in this evaluation provides a broader risk-based evaluation of the groundwater data than would be provided by the CCR Rule requirements.

Recreational Screening Levels

Table 1 provides the State of Missouri human health recreational screening levels, based on fish consumption. The Federal Ambient Water Quality Criteria (AWQC) for consumption of organisms are also provided. Both sources were used to identify the screening levels used in this analysis, as listed on Table 1. The drinking water screening levels used to evaluate surface water are protective for other recreational uses of the river such as swimming, wading, and boating. Note that this evaluation of other uses of surface water are above and beyond the requirements of the CCR Rule.

Ecological Screening Levels

The ecological risk-based screening levels for surface water are provided in Tables 2 and 3. As noted above, some of the screening levels are based on the hardness of the water. Therefore, Table 2 provides the screening levels for the Mississippi River based on its hardness data, and Table 3 provides the screening levels for Isle Du Bois Creek based on its hardness data. Note that this ecological evaluation of surface water is above and beyond the requirements of the CCR Rule.

6. Results

The level of analysis and comparison to risk-based screening levels presented below is above and beyond the requirements of the CCR Rule. The analysis of the groundwater results required by the CCR Rule is presented in the 2017 Groundwater Monitoring Annual Report: <u>https://www.ameren.com/Environment/managing-ccrs/ash-pond-closure</u>. This report serves to supplement that report by providing the risk-based analysis of groundwater and surface water, so that the groundwater results can be understood in their broader environmental context.

Alluvial Aquifer Groundwater – CCR Rule Evaluation

Ameren Missouri has filed on its website reports and notification required by the federal CCR Rule, as noted above, and additional reports will be prepared and posted on Ameren's website per the CCR Rule. The statistical analysis of the data has indicated an SSI for samples collected from monitoring wells MW-1, MW-2, MW-3, MW-4, MW-6, and MW-7 (see Figure 1) that monitor the shallow alluvial aquifer. Analytes exhibiting an SSI are a subset of the parameters identified in Section 4 and include pH, boron, fluoride, and sulfate.

The SSI values reflect a statistical evaluation that compares mathematically the results of the various rounds of samples to background water quality as required under the CCR rule. However, such values without further evaluation do not establish that there is an actual adverse impact to human health or the environment. The CSM process and screening analysis described in this report provides the relevant context for such groundwater monitoring results and whether the RCPA poses a true risk to human health and the environment. As explained in the remaining sections of this report, based upon surface water sampling data and the application of risk assessment principles uniformly adopted by USEPA and state environmental regulators including the Missouri Department of Natural Resources (MDNR), no such risk exists.

Alluvial Aquifer Groundwater – Risk-Based Evaluation

Groundwater data from all nine rounds of the shallow alluvial aquifer groundwater monitoring were compared to the human health risk-based drinking water screening levels required by the CCR Rule and those beyond the CCR Rule. Figure 1 shows that the monitoring wells are all located at the edge of the RCPA and, therefore, provide worst-case groundwater results.

Table 4 compares the results of all sampling rounds to human health drinking water screening levels. Analytical results greater than the screening level are provided; analytical results below the risk-based drinking water screening levels are indicated by "<". The vast majority of the results indicate concentration levels below the human health risk-based drinking water screening levels.

A limited number of parameters are above screening values for some, but not all, sampling events. MW-2 and MW-3 have the most results above the screening levels: these are for boron, pH, TDS, arsenic, and molybdenum. MW-4 also has a majority of results for boron, lithium and molybdenum above the screening levels.

The TDS (total dissolved solids) levels in MW-1, MW-2, and MW-3 are similar to the TDS levels above the screening level in background well BW-1. Similarly, the lithium levels in MW-4 are similar to the lithium levels above the screening level in background well BW-1. In fact, the highest level of lithium measured in any sample was in background monitoring well BW-1 (0.0647 mg/L). More detailed comparisons to background levels are provided in the CCR groundwater monitoring report.

The striking aspect of the analysis shown in Table 4 is how few results are above a conservative riskbased drinking water screening level for human health, given that the wells are located at the base of the ash management area, and the facility has been in operation for over 40 years⁴. Even for the very few results that may be above screening values for some of the sampling events, including the SSI results identified under the CCR Rule, there is no complete drinking water exposure pathway to groundwater. Where there is no exposure, there is no risk.

Bedrock Aquifer Groundwater – Risk-Based Evaluation

Table 13 provides the analytical results from groundwater samples collected from the two deep on-site water supply wells. The data are from 2010, 2012, 2015, and a sample collected in January 2018. The results indicate that chloride and TDS are above drinking water risk-based screening levels. Lithium is present at a concentration above the risk-based drinking water screening level, and the concentrations are higher than in the CCR well MW-4 and higher than in the CCR background well MW-B1. Boron and

⁴ Out of the 1566 groundwater analyses conducted, only 152 results are above a drinking water screening level (see Table 4). Put another way, approximately 90% of the groundwater results for the CCR Rule monitoring wells located at the edge of the RCPA are below drinking water screening levels.

sulfate concentrations in the deep water supply wells are negligible, demonstrating that these wells are not affected by facility coal ash management operations⁵.

Mississippi River

The comparison to risk-based screening levels of the analytical results for the Mississippi River are presented in Tables 5 through 7.

- Table 5 Comparison to drinking water screening levels No results are above risk-based screening levels for drinking water with the exception of pH; the pH results upstream and downstream are similar, thus, indicative of normal river conditions.
- Table 6 Comparison to human health recreational screening levels Only pH and total and dissolved concentrations of arsenic are above their screening levels. As described below, both the arsenic and pH results upstream and downstream are similar, thus, indicative of normal river conditions.
- Table 7 Comparison to ecological screening levels No results are above risk-based ecological screening levels with the exception of pH; the pH results upstream and downstream are similar, thus, indicative of normal river conditions.

There are no analytical results for the Mississippi River that above drinking water screening levels. While some of the pH results are outside of the human health recreational and ecological screening level range, the pH results are similar upstream and downstream.

Similarly, while arsenic concentrations in the river are slightly above the human health recreational screening levels, the concentrations are similar upstream and downstream indicating that the facility is not the source of the arsenic detected in the river. In fact, the concentrations of arsenic in all of the rivers sampled by Ameren for this evaluation (the Mississippi at Sioux, Meramec, and Rush Island; the Missouri River at Labadie and Sioux; and the Meramec River at Meramec) are all very similar with total results ranging from 0.0012 to 0.005 mg/L. This underscores the fact that arsenic is naturally occurring in our environment, as discussed in more detail in Attachment A.

Thus, the Mississippi River sampling results do not show evidence of impact of constituents derived from the RCPA. This is important in that the absence of concentrations above risk-based screening levels means that there is not a significant pathway of exposure.

Isle Du Bois Creek

The comparison to risk-based screening levels of the analytical results for Isle Du Bois Creek are presented in Tables 8 through 10.

- Table 8 Comparison to drinking water screening levels No results are above risk-based screening levels.
- Table 9 Comparison to human health recreational screening levels Only total concentrations of arsenic are above the screening level. The total arsenic results upstream and downstream are similar, thus, likely represent normal creek conditions.

⁵ Lithium levels within the deep aquifer groundwater are unrelated to the CCR unit due to the lack of corresponding coal ash constituents (i.e., boron, sulfate etc.) and could reflect naturally occurring levels within the bedrock aquifer or a sampling artifact due to piping grease or other interferences.

 Table 10 – Comparison to ecological screening levels – No results are above risk-based screening levels.

There are no analytical results for Isle Du Bois Creek above drinking water or ecological screening levels. While arsenic concentrations in the creek are slightly above the human health recreational screening levels, the concentrations are similar upstream and downstream.

Thus, even this small water body immediately adjacent to the RCPA does not show evidence of risk to human health or the environment from ash management operations at the RCPA. This is important in that the absence of concentrations above risk-based screening levels means that there is not a significant pathway of exposure.

NPDES Outfall WET Testing Results

The outfall for the RCPA impoundment is identified as 002 and, shown on Figure 2, is located near where Isle Du Bois Creek meets the Mississippi River. This is a permitted outfall under the National Pollutant Discharge Elimination System (NPDES) program. The outfall effluent water is tested for toxicity on a periodic basis as required by the permit; the latest permit-required test was conducted in February 2005. WET (whole effluent toxicity) testing involves mixing the effluent water from Outfall 002 with Mississippi River water collected upstream to simulate mixing of the effluent upon discharge to the river. Tests are also conducted on the upstream Mississippi River water and on laboratory water. If the effluent treatment results are not statistically different from the control results, then the effluent is considered to have passed the WET test. Table 11 shows the results of the direct aquatic organism toxicity testing that is conducted using the outfall effluent. The results indicate no evidence of aquatic toxicity of the RCPA outfall effluent. This is a direct biological measure demonstrating the lack of toxicity of the Outfall 002 effluent.

7. Derivation of Risk-Based Screening Levels for Groundwater

The results presented here demonstrate that the 40-year history of ash management activities at the RCPA have not had an adverse effect on human health or the environment. While some groundwater results are above drinking water screening levels, there is no pathway of exposure to the on-site groundwater (i.e., the shallow alluvial groundwater is not used as a source of drinking water). For those waters where a theoretical pathway of exposure exists (i.e., the Isle Du Bois Creek and the Mississippi River), there is no evidence of impact and all samples are either below screening levels or consistent with background.

Ameren's facilities are located on major river systems with a massive and rapid river flow. In this section, we have attempted to illustrate how the groundwater – which is a fraction of the volume and flow rate of the river – may interact with a surface body under an assumed set of criteria and conditions (see Attachment B). Such an exercise in assumptions can help put in context whether a theoretical risk to public water supplies exists, particularly where, as here, actual surface water samples have been collected and evaluated.

However, impacts to groundwater does not mean that surface waters are impaired. The degree of interface between groundwater and surface waters is variable and complex and dependent upon a variety of factors including gradient and flow rate. It is possible, however, to determine the maximum concentration level that would need to be present on-site in groundwater and still be protective of the surface water environment, assuming gradient and flow rates are such that groundwater flows into the surface water. Groundwater and surface waters flow at very different rates and volumes. The

Mississippi River is the largest river system in North America and as depicted on Table 12 and Attachment B, when compared to groundwater, its dilution factor is greater than 100,000.

It is possible to calculate a protective screening level for groundwater based upon the amount of dilution that occurs under the above assumption. This calculated risk-based screening level for groundwater can be used to determine whether an on-site groundwater concentration level is protective of the river. Stated differently, at what concentration level does groundwater entering the river system pose a human health or ecological risk?

Table 12 is summarized below and shows the application of the dilution factor to calculate risk-based screening levels for the following parameters: boron, sulfate, TDS, antimony, arsenic, lead, lithium, and molybdenum. These Table 4 constituents have one or more monitoring well concentrations above the drinking water screening levels. For each constituent, the human health drinking water and recreational screening levels are presented as well as the ecological screening level. The lowest of the three screening levels is then identified for surface water. The dilution factor is then applied to this lowest screening level for surface water to result in the groundwater alternative risk-based screening level, which is what is shown in the table below.

This evaluation is not limited to only those constituents for which SSIs have been identified. The constituents listed here are those for which there is one or more groundwater result above a risk-based screening level⁶.

	Estimated Dilution Factor for Mississippi River	100,000			
		Groundwater			Ratio Between
	Lowest of the Human	Risk-Based		num RIEC	Groundwater Screening
	Health and Ecological	Screening		ndwater	Level and the Maximum
	Screening Levels	Level		entration	RIEC Groundwater
Constituents*	(mg/L)	(mg/L)**	(n	ng/L)	Concentration
Boron***	2	200000	15.7	R-MW-3	>12,000
Sulfate***	250	25000000	382	R-MW-1	>65,000
TDS	500	5000000	874	R-MW-2	>50,000
Antimony	0.006	600	0.0064	R-MW-2	>93,000
Arsenic	0.00014	14	0.257	R-MW-2	>50
Lead	0.0058	578	0.0177	R-MW-2	>32,000
Lithium	0.04	4000	0.0647	R-MW-B1	>61,000
Molybdenum	0.1	10000	0.943	R-MW-3	>10,000

CALCULATING RISK-BASED SCREENING LEVELS FOR GROUNDWATER BASED ON THE MISSISSIPPI RIVER (see Table 12)

* A dilution factor is not directly applicable to pH, thus it is not included in this analysis.

** Where the Groundwater Risk-Based Screening Level = Screening Level x Dilution Factor.

*** Constituents for which an SSI has been identified. Note that although an SSI was identified for boron and sulfate, these constituents are not present in surface water above the risk-based screening levels. Also note that although an SSI has been identified for fluoride, its concentrations in groundwater are below risk-based screening levels for drinking water.

⁶ Note that under the CCR Rule, statistically significant levels of Appendix IV constituents are determined after Assessment Monitoring has been conducted.

The groundwater alternative risk-based screening levels are calculated in units of milligrams of constituent per liter of water (mg/L). One mg/L is equivalent to one million parts per million.^{7,8}

The table identifies the maximum groundwater concentration of each constituent detected in the RCPA monitoring wells. The comparison between the target levels and the maximum concentrations indicates that there is a wide margin of safety between the two values. This margin is shown in the last column of the table. To illustrate, concentration levels of arsenic and lead would need to be more than 50 and 32,000 times higher, respectively, than currently measured levels before an adverse impact in the river could occur.

This means that not only do the present concentrations of constituents in groundwater at the RCPA not pose a risk to human health or the environment, but even much higher concentrations would not be harmful.

8. Closure of the RCPA

Current plans for the facility are to close the RCPA.⁹ Currently, closure of the RCPA is expected to be completed by 2022. Closure is estimated to reduce the movement of CCR constituents from the RCPA discharge (or flux) of water into the alluvial aquifer to groundwater by 90% or more. This reduction is the result of several factors: closure will cease the flow of water and ash to the RCPA, a cap will be installed that will limit infiltration of precipitation, and the closure plan includes stormwater run-on and run-off controls to route stormwater off of the capped area and away from the RCPA. It is likely that concentrations of constituents in groundwater downgradient from the RCPA will decrease post-closure.

9. Summary

This comprehensive evaluation demonstrates that there are no adverse impacts on human health from either surface water or groundwater uses resulting from coal ash management practices at the Rush Island Energy Center.

10. Attachments

<u>TABLES</u>

- 1 HUMAN HEALTH SCREENING LEVELS
- 2 ECOLOGICAL SCREENING LEVELS MISSISSIPPI RIVER
- 3 ECOLOGICAL SCREENING LEVELS ISLE DU BOIS CREEK

⁹ Importantly, the CCR Rule promulgated by USEPA in 2015 is both under appeal [Utility Solid Waste Activities, et al v. EPA, Docket No. 15-01219, DC Circuit Court of Appeals Sept 13, 2017, Letter from Pruitt to reconsider.] and is being reconsidered by the current Administration. Notwithstanding any proposed changes to the federal CCR Rule, Ameren Missouri intends to implement its closure plan and schedule.

⁷ Note that because the target level calculation is a mathematical exercise, certain results may not be applicable in the real world. For example, the result for sulfate is 25 million parts per million, which is not physically possible. However, what this means is that there is no level of sulfate that could be present in the groundwater at the RCPA that could result in a risk of harm to human health or the environment.

⁸ A million parts per million is equivalent to 1 penny in \$10,000 worth of pennies, 1 second in 11.5 days, or 1 inch in 15.8 miles.

- 4 SUMMARY OF RCPA SURFACE IMPOUNDMENT GROUNDWATER MONITORING RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS
- 5 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS
- 6 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVEL
- 7 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL USE SCREENING LEVELS
- 8 SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS
- 9 SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVELS
- 10 SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL SCREENING LEVELS
- 11 SUMMARY OF WHOLE EFFLUENT TOXICITY TESTING RESULTS FOR NPDES OUTFALL 002
- 12 DERIVATION OF RISK-BASED SCREENING LEVELS FOR GROUNDWATER BASED ON THE MISSISSIPPI RIVER
- 13 SUMMARY OF ON-SITE DEEP WELL WATER COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS

FIGURES

- 1 ESTIMATED LENGTH OF DISCHARGE AND EXAMPLE GROUNDWATER FLOW MAP
- 2 PRIVATE WELL LOCATIONS WITHIN 1-MILE RADIUS OF FACILITY BOUNDARY
- 3 CONCEPTUAL SITE MODEL
- 4 SURFACE WATER SAMPLING LOCATIONS

ATTACHMENTS

ATTACHMENT A – CONSTITUENTS PRESENT IN COAL ASH AND IN OUR NATURAL ENVIRONMENT ATTACHMENT B – RUSH ISLAND ENERGY CENTER DILUTION FACTOR CALCULATIONS

TABLES

TABLE 1 HUMAN HEALTH SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

			Missou	ri State Water	Quality		Federal W	ater Quality			Sele	
			Scre	ening Levels (r	ng/L)		Screening L	evels (mg/L)			Screening L	evel (mg/L)
Constituent	Abbreviation	CASRN	Human Health Fish Consumption (a)	Drinking Water Supply (a)	Groundwater (a)	USEPA AWQC Human Health Consumption of Organism Only (b)	MCLs (c)	SMCLs (c)	November 201 USEPA Tapwater RSLs (d)	17	Drinking Water (e)	Recreational Use (f)
Antimony	Sb	7440-36-0	4.3	0.006	0.006	0.64	0.006	NA	0.0078	(m)	0.006	4.3
Arsenic	As	7440-38-2	NA	0.05	0.05	0.00014 (i)	0.01	NA	0.000052		0.05	0.00014
Barium	Ba	7440-39-3	NA	2	2	NA	2	NA	3.8		2	NA
Beryllium	Be	7440-41-7	NA	0.004	0.004	NA	0.004	NA	0.025		0.004	NA
Boron	В	7440-42-8	NA	NA	2	NA	NA	NA	4		4 (c) NA
Cadmium	Cd	7440-43-9	NA	0.005	0.005	NA	0.005	NA	0.0092		0.005	NA
Calcium	Ca	7440-70-2	NA	NA	NA	NA	NA	NA	NA		NA	NA
Chloride	CI	7647-14-5	NA	250	NA	NA	NA	250	NA		250	NA
Chromium	Cr	16065-83-1 (g)	NA	0.1	0.1	NA	0.1 (j)	NA	22	(n)	0.1	NA
Cobalt	Co	7440-48-4	NA	NA	1	NA	NA	NA	0.006		0.006	NA
Fluoride	FI	16984-48-8	NA	4	4	NA	4	2	0.8		4	NA
Lead	Pb	7439-92-1	NA	0.015	0.015	NA	0.015 (k)	NA	0.015		0.015	NA
Lithium	Li	7439-93-2	NA	NA	NA	NA	NA	NA	0.04		0.04	NA
Mercury	Hg	7487-94-7 (h)	NA	0.002	0.002	NA	0.002 (I)	NA	0.0057	(o)	0.002	NA
Molybdenum	Mo	7439-98-7	NA	NA	NA	NA	NA	NA	0.1		0.1	NA
Radium 226/228 (pCi/L)	Ra 226/228	RADIUM226228	NA	NA	NA	NA	5	NA	NA		5	NA
Selenium	Se	7782-49-2	NA	0.05	0.05	4.2	0.05	NA	0.1		0.05	4.2
Sulfate	SO4	7757-82-6	NA	250	NA	NA	NA	250	NA		250	NA
Thallium	TI	7440-28-0	0.0063	0.002	0.002	0.00047	0.002	NA	0.0002	(p)	0.002	0.0063
Total Dissolved Solids	TDS	TDS	NA	NA	NA	NA	NA	500	NA		500	NA
pH (std)		PHFLD	NA	NA	NA	NA	NA	6.5 - 8.5	NA		6.5 - 8.5	NA

Notes:

AWQC - Ambient Water Quality Criteria.	NA - not available.
CASRN - Chemical Abstracts Service Registry Number.	pCi/L - picoCurie per liter.
HI - Hazard Index (noncancer child).	RSL - Risk-based Screening Levels (USEPA).
MCL - Maximum Contaminant Level.	TR - Target Risk (carcinogenic).
mg/L - milligram per liter.	USEPA - United States Environmental Protection Agency.

(a) - 10 Missouri Code of State Regulations Division 20 Chapter 7 Table A. Updated January 29, 2014. Per 10 CSR 20-7.031(4)(B)(2), the criteria for Human Protection Fish Consumption apply to dissolved metals data. All other criteria apply to total concentrations.

http://www.sos.mo.gov/adrules/csr/current/10csr/10c20-7a.pdf

(b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. Accessed November 2014. <u>https://www.epa.gov/wgc/national-recommended-water-quality-criteria-human-health-criteria-table</u> USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

(c) - USEPA 2012 Edition of the Drinking Water Standards and Health Advisories. Spring 2012.

http://water.epa.gov/drink/contaminants/index.cfm

(d) - USEPA Risk-Based Screening Levels (November 2017). Values for tapwater. HI = 1.0, TR = 1E-06. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(e) - The hierachy for selecting the Human Health Screening Level for Drinking Water is: Missouri State Water Quality Criteria for Drinking Water Supply (a); Federal USEPA MCL for Drinking Water (c); Federal June 2017 USEPA Tapwater RSL (d); Federal USEPA SMCL for Drinking Water (c).

(f) - The hierachy for selecting the Human Health Screening Level for Recreational Use is: Missouri State Water Quality Criteria for Human Health Fish Consumption (a); Federal USEPA AWQC for Human Health Consumption of Organism Only (b).

(g) - CAS number for Trivalent Chromium.

(h) - CAS number for Mercuric Chloride.

(i) - Value applies to inorganic form of arsenic only.

(j) - Value for Total Chromium.

(k) - Lead Treatment Technology Action Level is 0.015 mg/L.

(I) - Value for Inorganic Mercury.

(m) - RSL for Antimony (metallic) used for Antimony.

(n) - RSL for Chromium (III), Insoluble Salts used for Chromium.

(o) - RSL for Mercuric Chloride used for Mercury.

(p) - RSL for Thallium (Soluble Salts) used for Thallium.

(q) - RSL selected for Boron as the Missouri State Water Quality Groundwater screening level is based on irrigation.

TABLE 2 ECOLOGICAL SCREENING LEVELS - MISSISSIPPI RIVER RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

				Missouri	State Water Q	uality Criteria (mg/L)		Fe	deral Water Qua	lity Criteria (m	g/L)
			Site-S	pecific	Site-S	pecific		Livestock	Site-S	pecific	Site-	Specific
			Protection of	f Aquatic Life	Protection of	f Aquatic Life	Irrigation	Wildlife	USEPA Aqua	tic Life AWQC	USEPA Aqu	atic Life AWQC
			Acu	te (a)	Chro	nic (a)	(a)	Watering (a)	Freshwate	er Acute (b)	Freshwate	r Chronic (b)
Constituent	Abbreviation	CASRN	Total	Dissolved	Total	Dissolved	Total	Total	Total	Dissolved	Total	Dissolved
Antimony (c)	Sb	7440-36-0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	As	7440-38-2	NA	NA	NA	0.02	0.1	NA	0.34	0.34	0.15	0.15
Barium (c)	Ba	7440-39-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	Be	7440-41-7	NA	NA	NA	0.005	0.1	NA	NA	NA	NA	NA
Boron	В	7440-42-8	NA	NA	NA	NA	2	NA	NA	NA	NA	NA
Cadmium	Cd	7440-43-9	NA	0.010 (f)	NA	0.0004 (f)	NA	NA	0.0041 (f)	0.0037 (g)	0.0015 (f)	0.0013 (g)
Calcium (c)	Ca	7440-70-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	CI	16887-00-6	NA	NA	NA	NA	NA	NA	860	NA	230	NA
Chromium	Cr	7440-47-3	NA	1.1 (e.g)	NA	0.14 (e,q)	0.1 (e)	NA	3.4 (e,g)	1.1 (e,h)	0.16 (e,q)	0.14 (e,h)
Cobalt	Co	7440-48-4	NA	NA	NA	NA	NA	1	NA	NA	NA	NA
Fluoride	FI	16984-48-8	NA	NA	NA	NA	NA	4	NA	NA	NA	NA
Lead	Pb	7439-92-1	NA	0.15 (f)	NA	0.0058 (f)	NA	NA	0.22 (f)	0.15 (g)	0.0085 (f)	0.0058 (g)
Lithium (c)	Li	7439-93-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	Hg	7439-97-6	0.0024	NA	0.0005	NA	NA	NA	0.0016	0.0014	0.00091	0.00077
Molybdenum (c)	Mo	7439-98-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	Se	7782-49-2	NA	NA	NA	0.005	NA	NA	0.013 (d)	0.013 (d)	0.005 (d)	0.005 (d)
Sulfate	SO4	14808-79-8	NA	NA	1583 (g,i)	NA	NA	NA	NA	NA	NA	NA
Thallium (c)	TI	7440-28-0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (c)	TDS	TDS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

AWQC - USEPA Ambient Water Quality Criteria.

CASRN - Chemical Abstracts Service Registry Number.

CMC - Criterion Maximum Concentration

mg/L - milligram per liter. NA - Not Available. USEPA - United States Environmental Protection Agency

(a) - 10 Missouri Code of State Regulations Division 20 Chapter 7 Table A. January 29, 2014. http://www.sos.mo.gov/adrules/csr/current/10csr/10c20-7a.pdf. Total values provided. Missouri State Protection of Aquatic Life Acute and Chronic values apply only to dissolved results (except mercury) irrigation, livestock/wildlife watering, and mercury Aquatic Life Acute and Chronic values apply only to totals result

(b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. Accessed December 2014. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm Total values provided. Values adjusted for site-specific hardness - see note (f). USEPA provides AWQC for both total and dissolved results.

(c) - Water quality criteria from the presented sources are not available for this constituent

(d) - Acute AWQC is equal to 1/[(f1/CMC1) + (f2/CMC2)] where f1 and f2 are the fractions of total selenium that are treated as selenite and selenate respectively, and CMC1 and CMC2 are 185.9 ug/L and 12.82 ug/L, respectively. Calculated assuming that all selenium is present as selenate a likely overly conservative assumption. (e) - Value for trivalent chromium used.

(f) - Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Mississippi River of 217 mg/L as CaCO3 usec

(g) - Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Mississippi River of 217 mg/L as CaCO3 used

(h) - Chloride dependent value (default chloride value of 25 mg/L is assumed) for the Mississippi River When chloride is greater than or equal to 25 and less than or equal to 500 mg/L and hardness is between 100 and 500 mg/L sulfate limit in mg/L = [1276.7 + 5.508 (hardness) - 1.457 (chloride)] * 0.65.

TABLE 3 ECOLOGICAL SCREENING LEVELS - ISLE DU BOIS CREEK RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

				Missouri	State Water Q	uality Criteria (mg/L)		Fe	deral Water Qual	lity Criteria (m	g/L)
			Site-S	pecific	Site-S	pecific		Livestock	Site-S	pecific	Site-	Specific
			Protection o	f Aquatic Life	Protection o	f Aquatic Life	Irrigation	Wildlife	USEPA Aqua	tic Life AWQC	USEPA Aqu	atic Life AWQC
			Acu	ite (a)	Chro	nic (a)	(a)	Watering (a)	Freshwate	er Acute (b)	Freshwate	r Chronic (b)
Constituent	Abbreviation	CASRN	Total	Dissolved	Total	Dissolved	Total	Total	Total	Dissolved	Total	Dissolved
Antimony (c)	Sb	7440-36-0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	As	7440-38-2	NA	NA	NA	0.02	0.1	NA	0.34	0.34	0.15	0.15
Barium (c)	Ba	7440-39-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium	Be	7440-41-7	NA	NA	NA	0.005	0.1	NA	NA	NA	NA	NA
Boron	В	7440-42-8	NA	NA	NA	NA	2	NA	NA	NA	NA	NA
Cadmium	Cd	7440-43-9	NA	0.013 (f)	NA	0.0005 (f)	NA	NA	0.0051 (f)	0.0046 (g)	0.0018 (f)	0.0015 (g)
Calcium (c)	Ca	7440-70-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	CI	16887-00-6	NA	NA	NA	NA	NA	NA	860	NA	230	NA
Chromium	Cr	7440-47-3	NA	1.3 (e, g	NA	0.17 (e, g)	0.1 (e)	NA	4.1 (e,q)	1.3 (e,h)	0.20 (e,q)	0.17 (e,h)
Cobalt	Co	7440-48-4	NA	NA	NA	NA	NA	1	NA	NA	NA	NA
Fluoride	FI	16984-48-8	NA	NA	NA	NA	NA	4	NA	NA	NA	NA
Lead	Pb	7439-92-1	NA	0.19 (f)	NA	0.0074 (f)	NA	NA	0.29 (f)	0.19 (g)	0.0114 (f)	0.0074 (g)
Lithium (c)	Li	7439-93-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	Hg	7439-97-6	0.0024	NA	0.0005	NA	NA	NA	0.0016	0.0014	0.00091	0.00077
Molybdenum (c)	Mo	7439-98-7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	Se	7782-49-2	NA	NA	NA	0.005	NA	NA	0.013 (d)	0.013 (d)	0.005 (d)	0.005 (d)
Sulfate	SO4	14808-79-8	NA	NA	1784 (g,i)	NA	NA	NA	NA	NA	NA	NA
Thallium (c)	TI	7440-28-0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Dissolved Solids (c)	TDS	TDS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

AWQC - USEPA Ambient Water Quality Criteria.

CASRN - Chemical Abstracts Service Registry Number.

CMC - Criterion Maximum Concentration

mg/L - milligram per liter. NA - Not Available. USEPA - United States Environmental Protection Agency

(a) - 10 Missouri Code of State Regulations Division 20 Chapter 7 Table A. January 29, 2014. http://www.sos.mo.gov/adrules/csr/current/10csr/10c20-7a.pdf, Total values provided. Missouri State Protection of Aquatic Life Acute and Chronic values apply only to dissolved results (except mercury) irrigation, livestock/wildlife watering, and mercury Aquatic Life Acute and Chronic values apply only to totals result

(b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. Accessed December 2014. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm Total values provided. Values adjusted for site-specific hardness - see note (f).

USEPA provides AWQC for both total and dissolved results.

(c) - Water quality criteria from the presented sources are not available for this constituent

(d) - Acute AWQC is equal to 1/[(f1/CMC1) + (f2/CMC2)] where f1 and f2 are the fractions of total selenium that are treated as selenite and selenate respectively, and CMC1 and CMC2 are 185.9 ug/L and 12.82 ug/L, respectively. Calculated assuming that all selenium is present as selenate a likely overly conservative assumption. (e) - Value for trivalent chromium used.

(f) - Hardness dependent value for total metals. Site-specific total recoverable mean hardness value the Isle Du Bois Creek of 273 mg/L as CaCO3 used

(g) - Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Isle Du Bois Creek of 273 mg/L as CaCO3 usec

(h) - Chloride dependent value (default chloride value of 25 mg/L is assumed) for the Isle Du Bois Creek When chloride is greater than or equal to 25 and less than or equal to 500 mg/L and hardness is between 100 and 500 mg/L sulfate limit in mg/L = [1276.7 + 5.508 (hardness) - 1.457 (chloride)] * 0.65.

TABLE 4 SUMMARY OF RCPA SURFACE IMPOUNDMENT GROUNDWATER MONITORING RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Hu	nan Health	Drinking Wa	ater Screenir	ng (a)								
	Constituent	Boron	Calcium	Chloride	pH	Sulfate	TDS	Fluoride	Antimony	Arsenic	Barium	Beryllium		Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226/228
	HH DW SL	4	NA	250	6.5-8.5	250	500	4	0.006	0.05	2	0.004	0.005	0.1	0.006	0.015	0.04	0.002	0.1	0.05	0.002	5
Monitoring Well ID	Sampling Event Date	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R-MW-1	Mar-16	<	<	<	9.5	341	554	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	May-16	<	<	<	9.7	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jul-16	<	<	<	9.4	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Sep-16	<	<	<	9.7 10	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Nov-16 Jan-17	~	~	~	9.6	~	~	~	<	<	~	<	<	<	~	<	<	~	<	~	~	<
	Mar-17	~	2	2	9.4	~	2	2	~	~	2	~	~	2	2	~	2	~	<	~	~	~
	Jun-17	<	<	<	9.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Nov-17	<	<	<	NA	382	585	<	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
R-MW-2	Mar-16	<	<	<	10.8	266	795	<	<	0.257	<	<	<	<	<	<	<	<	0.15	<	<	<
	May-16	4.08	<	<	10.6	<	794	<	<	0.231	<	<	<	<	<	<	<	<	0.173	<	<	<
	Jul-16 Sep-16	< 4.35	~	<	10.4 10.5	310 324	855 856	<	<	0.238 0.25	~	~	~	<	<	< 0.0177	<	<	0.197 0.183	~	~	<
	Nov-16	5.73	2	2	10.8	288	783	~	0.0064	0.257	2	~	~	2	2	<	2	~	0.201	~	~	~
	Jan-17	4.85	<	<	10.6	321	874	<	<	0.224	<	<	<	<	<	<	<	<	0.16	<	<	<
	Mar-17	5.06	<	<	10.4	292	829	<	<	0.217	<	<	<	<	<	<	<	<	0.168	<	<	<
	Jun-17	5.51	<	<	10.6	279	812	<	<	0.242	<	<	<	<	<	<	<	<	0.174	<u><</u>	<	<
R-MW-3	Nov-17	5.65	<	<	NA	294	792	<	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
R-IVIV-3	Mar-16 May-16	15.6 14.9	<	<	9.6 9.6	<	688 806	<	<	<	<	<	<	<	<	<	<	<	0.943	<	<	<
	Jul-16	14.9	<	<	9.5	<	705	~	<	< 0.064	~	< <	< <	<	~	< <	<	<	0.826	~	< <	<
	Sep-16	14.5	, ,	~	9.6	, ,	731	~	~	0.0743	~	~	~	, ,	~	~	~	~	0.804	~	~	~
	Nov-16	15.6	<	<	9.2	<	664	<	<	<	<	<	<	<	<	<	<	<	0.869	<	<	<
	Jan-17	14.5	<	<	9.6	<	718	<	<	0.072	<	<	<	<	<	<	<	<	0.697	<	<	<
	Mar-17 Jun-17	15.7 14.9	<	<	9.6 9.7	<	707 719	<	<	0.08 0.0856	<	<	<	<	<	<	<	<	0.753 0.676	<	<	<
	Nov-17	15.4	<	2	9.7 NA	<	697	<	< NA	0.0856 NA	< NA	< NA	ŇĂ	< NA	< NA	NA	< NA	< NA	NA	< NA	ŇĂ	< NA
R-MW-4	Mar-16	4.2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.0458	<	<	<	<	<
	May-16	4.07	2	2	~	~	2	2	~	~		~	~	~	2	~	0.0414	~	~	~	~	~
	Jul-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.0431	<	<	<	<	<
	Sep-16	4.35	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.0448	<	0.105	<	<	<
	Nov-16	4.45	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.109	<	<	<
	Jan-17 Mar-17	4.18 4.5	<	<	<	<	Ś	<	Ś	~	<	Ś	Ś	<	<	<	0.0446 0.0457	<	< 0.103	<	<	<
	Jun-17	4.51	2	2	~	2	2	2	~	2	2	~	~	2	2	~	0.0441	~	0.133	è.	 	< label{eq:starter}
	Nov-17	4.26	<	<	NA	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
R-MW-5	Mar-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	May-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jul-16 Sep-16	~	~	~	<	~	~	~	<	<	~	<	<	<	~	<	<	~	<	~	~	<
	Nov-16	, ,	, ,	, ,	< <	, ,			< <	< <	,	< l	< l	, ,	2	<	<	, ,	< <	, ,	, ,	<
	Jan-17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Mar-17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jun-17	~	<	<	< NA	<	<	<	<	< NA	<	<	< NA	<	<	× NA	<	<	< NA	<	<	<
R-MW-6	Nov-17	-	<	<		<	<	<	NA		NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
14-10100-0	Mar-16 May-16	< <	<	<	<	<	<	<	<	<	<	<	Ś	< <	<	~	<	<	<	<	<	<
	Jul-16	~	2	2	~	~	2	2	~	~		~	~	~	2	~	~	~	~	~	~	~
	Sep-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Nov-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jan-17 Mar 17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Mar-17 Jun-17	~	~	~	~	~	~	~	<	ź	~	<	<	< Z	~	<	<	~	~	~	~	< Z
	Nov-17	, ,	, ,	, ,	NA	, ,			NA	NA	NA	NA	NA	NĂ	NA	NA	NA	NA	NA	NA	NA	NA
R-MW-7	Mar-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.17	<	<	<
	May-16	<	<	<	<	<	<	<	<	0.0763	<	<	<	<	<	<	<	<	0.171	<	<	<
	Jul-16	<	<	<	<	<	<	<	<	0.0918 0.0963	<	<	<	<	<	<	<	<	0.185 0.188	<	<	<
	Sep-16 Nov-16	~	<	<	<	<	~	~	<	0.0963	<	~	~	~	~	~	<	<	0.188	<	~	<
	Jan-17	~	~	, Z	~	~	~	<	<	0.0966	<	~	~	<	~	~	<	<	0.182	~	~	<
	Mar-17	<	<	<	<	<	<	<	<	0.0923	<	<	<	<	<	<	<	<	0.196	<	<	<
	Jun-17	<	<	<	<	<	<	<	<	0.105	<	<	<	<	<	<	<	<	0.152	<	<	<
	Nov-17	<	<	<	NA	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
R-MW-B1	Mar-16 May-16	<	<	<	<	<	677 757	<	<	<	<	<	<	<	<	<	0.0642 0.0629	<	<	<	<	<
	Jul-16	< <	<	<	<	<	757	< <	<	~	~	< <	< <	Ś	~	< <	0.0629	< <	<	~	< <	<
	Sep-16	, <	~	~	<	, <	733	,	~	, <	, ,	, <	, <	, ,	, <	<	0.0615	, ,	<	<	, <	~
	Nov-16	<	<	<	<	<	658	<	<	<	<	<	<	<	<	<	0.0547	<	<	<	<	<
	Jan-17	<	<	<	<	<	704	<	<	<	<	<	<	<	<	<	0.0647	<	<	<	<	<
	Mar-17	<	<	<	<	<	681	<	<	<	<	<	<	<	<	<	0.0644	<	<	<	<	<
	Jun-17	<	<	<	< NA	<	664 685	<	< NA	< NA	< NA	< NA	< NA	< NA	< NA	< NA	0.0556 NA	< NA	< NA	< NA	< NA	< NA
	Nov-17	<	<	<	INA	<	000	<	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA

TABLE 4 SUMMARY OF RCPA SURFACE IMPOUNDMENT GROUNDWATER MONITORING RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Hur	nan Health	Drinking Wa	ter Screenir	ng (a)								
	Constituent	Boron	Calcium	Chloride	pН	Sulfate	TDS	Fluoride	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226/228
	HH DW SL	4	NA	250	6.5-8.5	250	500	4	0.006	0.05	2	0.004	0.005	0.1	0.006	0.015	0.04	0.002	0.1	0.05	0.002	5
Monitoring Well ID	Sampling Event Date	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
R-MW-B2	Mar-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	May-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jul-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Sep-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Nov-16	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jan-17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Mar-17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Jun-17	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
	Nov-17	<	<	<	NA	<	<	<	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sur	mmary	24:81	0:81	0:81	24:72	10:81	29:81	0:81	1:72	20:72	0:72	0:72	0:72	0:72	0:72	1:72	15:72	0:72	28:72	0:72	0:72	0:72

 Notes:
 < 24:01</td>

 < Less than the Human Health Drinking Water Screening Level.</td>
 DW - Drinking Water.

 HH - Human Health.
 MCL - Maximum Contaminant Level.

 med.
 milling mean time.

mg/L - milligram per liter. NA - Not Applicable/Not Analyzed.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Drinking Water Supply. Federal USEPA MCL for Drinking Water. Federal November 2017 USEPA Tapwater RSL. Federal USEPA SMCL for Drinking Water.

RSL - Risk-Based Screening Level. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

TABLE 5 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Huma	an Health I	Drinking Wat	er Screeni	ing (a)								
	Constituent	B	oron	Cal	cium	Chloride	pН	Sulfate	TDS	Fluoride	Anti	mony	Ars	enic	Ba	rium	Ber	/llium	Cad	lmium	Chrc	omium
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	HH DW SL	4	4	NA	NA	250	6.5-8.5	250	500	4	0.006	0.006	0.05	0.05	2	2	0.004	0.004	0.005	0.005	0.1	0.1
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																						
RI-R-4S	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-4S DUP	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-5S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-5M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-6S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-6M	Apr-14	<	<	<	<	NA	8.76	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
DOWNSTREAM																						
RI-R-1S	Apr-14	<	<	<	<	NA	8.58	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-2S	Apr-14	<	<	<	<	NA	8.56	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-2M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-3S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
RI-R-3M	Apr-14	<	<	<	<	NA	8.93	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<

Notes: < - Less than the Human Health Drinking Water Screening Level. DW - Drinking Water. HH - Human Health. MCL - Maximum Contaminant Level.

mg/L - milligram per liter. NA - Not Applicable/Not Analyzed.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Drinking Water Supply.

Federal USEPA MCL for Drinking Water.

Federal November 2017 USEPA Tapwater RSL.

Federal USEPA SMCL for Drinking Water.

pCi/L - picoCurie per liter. RSL - Risk-Based Screening Level. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

TABLE 5 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

								Human	Health Drir	king Wate	er Screening	(a)					
	Constituent	Co	obalt	Le	ead	Lit	hium	Mer	rcury	Molyt	denum	Sele	nium	Tha	allium	Radium-226/228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	HH DW SL	0.006	0.006	0.015	0.015	0.04	0.04	0.002	0.002	0.1	0.1	0.05	0.05	0.002	0.002	5	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																	
RI-R-4S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-4S DUP	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																	
RI-R-1S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Notes: < - Less than the Human Health Drinking Water Screening Level. DW - Drinking Water. HH - Human Health.

MCL - Maximum Contaminant Level.

mg/L - milligram per liter. NA - Not Applicable/Not Analyzed.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Drinking Water Supply.

Federal USEPA MCL for Drinking Water.

Federal November 2017 USEPA Tapwater RSL.

Federal USEPA SMCL for Drinking Water.

pCi/L - picoCurie per liter. RSL - Risk-Based Screening Level. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

TABLE 6 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Humar	Health Re	creational	Use Screen	ing (a)								
	Constituent	В	oron	Cal	cium	Chloride	pН	Sulfate	TDS	Fluoride	Anti	mony	Ars	enic	Bai	rium	Bery	/llium	Cac	lmium	Chrc	omium
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	HH REC SL	NA	NA	NA	NA	NA	6.5-8.5	NA	500	NA	4.3	4.3	0.00014	0.00014	NA	NA	NA	NA	NA	NA	NA	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																						
RI-R-4S	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	0.0021	0.001 J	<	<	<	<	<	<	<	<
RI-R-4S DUP	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	0.0028	0.0019 J	<	<	<	<	<	<	<	<
RI-R-5S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0019 J	0.0015 J	<	<	<	<	<	<	<	<
RI-R-5M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	0.0025	0.0012 J	<	<	<	<	<	<	<	<
RI-R-6S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0023	0.0013 J	<	<	<	<	<	<	<	<
RI-R-6M	Apr-14	<	<	<	<	NA	8.76	<	NA	<	<	<	0.0021	0.0014 J	<	<	<	<	<	<	<	<
DOWNSTREAM	I																					
RI-R-1S	Apr-14	<	<	<	<	NA	8.58	<	NA	<	<	<	0.0028	0.0015 J	<	<	<	<	<	<	<	<
RI-R-2S	Apr-14	<	<	<	<	NA	8.56	<	NA	<	<	<	0.0021	0.0011 J	<	<	<	<	<	<	<	<
RI-R-2M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	0.0024	0.0012 J	<	<	<	<	<	<	<	<
RI-R-3S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0024	0.0012 J	<	<	<	<	<	<	<	<
RI-R-3M	Apr-14	<	<	<	<	NA	8.93	<	NA	<	<	<	0.0022	0.0011 J	<	<	<	<	<	<	<	<

Notes: < - Less than the Human Health Recreational Use Screening Level. HH - Human Health. mg/L - milligram per liter. NA - Not Applicable/Not Analyzed. pC/L - picoCurie per liter. REC - Recreational Use. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - Linited States Environmental Protection Agency.

Qualifiers: J - Value is estimated.

USEPA - United States Environmental Protection Agency.

(a) - Recreational Use Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for Human Health Fish Consumption.

USEPA Ambient Water Quality Criteria for Human Health Consumption of Organism Only.

TABLE 6 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

								Human	Health Recr	eational U	se Screenin	g (a)					
ľ	Constituent	C	obalt	Le	ead	Lit	hium	Mer	rcury	Molyb	denum	Sele	enium	Tha	Illium	Radium-226/228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	HH REC SL	NA	NA	NA	NA	0.04	0.04	NA	NA	NA	NA	4.2	4.2	0.0063	0.0063	NA	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																	
RI-R-4S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-4S DUP	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																	
RI-R-1S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3S	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3M	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Qualifiers: J - Value is estimated.

Notes: < - Less than the Human Health Recreational Use Screening Level. HH - Human Health. mg/L - milligram per liter. NA - Not Applicable/Not Analyzed. pC/L - picoCurie per liter. REC - Recreational Use. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - Linited States Environmental Protection Agency.

USEPA - United States Environmental Protection Agency.

(a) - Recreational Use Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for Human Health Fish Consumption. USEPA Ambient Water Quality Criteria for Human Health Consumption of Organism Only. Page 2 of 2

TABLE 7 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO

AMEREN MISSOURI

										Ecolog	ical Scree	ning (a)								
	Constituent	Bo	oron	Cal	cium	Chloride	pН	Sulfate	TDS	Fluoride	Anti	mony	Ars	senic	Ba	rium	Ber	yllium	Cad	mium
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	ECO SL	2	2	NA	NA	230	6.5-8.5	1583	NA	4	NA	NA	0.15	0.15	NA	NA	0.1	0.1	0.0015	0.0015
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																				
RI-R-4S	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-4S DUP	Apr-14	<	<	<	<	NA	6.14	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-5S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-5M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-6S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-6M	Apr-14	<	<	<	<	NA	8.76	<	NA	<	<	<	<	<	<	<	<	<	<	<
DOWNSTREAM																				
RI-R-1S	Apr-14	<	<	<	<	NA	8.58	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-2S	Apr-14	<	<	<	<	NA	8.56	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-2M	Apr-14	<	<	<	<	NA	8.88	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-3S	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-R-3M	Apr-14	<	<	<	<	NA	8.93	<	NA	<	<	<	<	<	<	<	<	<	<	<

Notes:

< - Less than the Ecological Screening Level.

ECO - Ecological.

mg/L - milligram per liter. NA - Not Applicable/Not Analyzed.

pCi/L - picoCurie per liter. SL - Screening Level.

S.U. - Standard Units.

TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

(a) - Ecological Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for the Protection of Aquatic Life (Chronic). USEPA Aquatic Life Ambient Water Quality Criteria (Chronic). Missouri State Water Quality Criteria for the Protection of Aquatic Life (Acute). Missouri State Water Quality Criteria for the Protection of Aquatic Life USEPA Aquatic Life Ambient Water Quality Criteria (Acute). Missouri State Water Quality Criteria for Irrigation. Missouri State Water Quality Criteria for Livestock Wildlife Watering.

TABLE 7 SUMMARY OF MISSISSIPPI RIVER SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO

AMEREN MISSOURI

										Ecologie	cal Screenin	g (a)							
	Constituent	Chro	omium	Co	obalt	L	ead	Lit	hium	Mei	rcury	Molyb	denum	Sele	nium	Tha	allium	Radium-226/228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	ECO SL	0.162	0.162	1	1	0.009	0.009	NA	NA	0.0005	0.0005	NA	NA	0.005	0.005	NA	NA	NA	NA
LocationI ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																			
RI-R-4S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-4S DUP	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-5M	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-6M	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																			
RI-R-1S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-2M	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3S	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-R-3M	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Notes:

ECO - Ecological.

mg/L - milligram per liter. NA - Not Applicable/Not Analyzed. pCi/L - picoCurie per liter. SL - Screening Level.

S.U. - Standard Units.

TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

(a) - Ecological Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for the Protection of Aquatic Life (Chronic). USEPA Aquatic Life Ambient Water Quality Criteria (Chronic). Missouri State Water Quality Criteria for the Protection of Aquatic Life (Acute). Missouri State Water Quality Criteria for the Protection of Aquatic Life USEPA Aquatic Life Ambient Water Quality Criteria (Acute). Missouri State Water Quality Criteria for Irrigation. Missouri State Water Quality Criteria for Livestock Wildlife Watering.

< - Less than the Ecological Screening Level.

TABLE 8

SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVEL RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

									Hum	an Health D	rinking Wa	ter Screenin	ng (a)							
	Constituent	Bo	Boron Calcium Chloride pH Sulfate TDS Fluoride Antimom Arsenic Barium Beryllium Cadmin Total Dissolved Total Dissolved Dissolved Disso															Imium		
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	HH DW SL	4	4	NA	NA	250	6.5-8.5	250	500	4	0.006	0.006	0.05	0.05	2	2	0.004	0.004	0.005	0.005
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																				
RI-C-7	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-8	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-9	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
ADJACENT																				
RI-C-4	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-5	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-6	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
DOWNSTREAM																				
RI-C-1	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-1 DUP	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-2	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-3	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<

Notes:

< - Less than the Human Health Drinking Water Screening Level.

DW - Drinking Water.

HH - Human Health.

MCL - Maximum Contaminant Level.

mg/L - milligram per liter.

NA - Not Applicable/Not Analyzed.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy:

Missouri State Water Quality Criteria for Drinking Water Supply.

Federal USEPA MCL for Drinking Water.

Federal November 2017 USEPA Tapwater RSL. Federal USEPA SMCL for Drinking Water.

pCi/L - picoCurie per liter.

RSL - Risk-Based Screening Level.

SL - Screening Level.

S.U. - Standard Units.

TDS - Total Dissolved Solids.

USEPA - United States Environmental Protection Agency.

TABLE 8

SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVEL RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

									Human	Health Dri	nking Water	Screening	g (a)						
	Constituent	Chro	omium	Co	balt	Le	ad	Lith	nium	Mei	rcury	Molyb	denum	Sele	enium	Th	allium	Radium-226/228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	HH DW SL	0.1	0.1	0.006	0.006	0.015	0.015	0.04	0.04	0.002	0.002	0.1	0.1	0.05	0.05	0.002	0.002	5	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																			
RI-C-7	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-8	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-9	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
ADJACENT																			
RI-C-4	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-5	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-6	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																			
RI-C-1	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-1 DUP	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-2	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-3	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Notes:

< - Less than the Human Health Drinking Water Screening Level.

DW - Drinking Water.

HH - Human Health.

MCL - Maximum Contaminant Level.

mg/L - milligram per liter.

NA - Not Applicable/Not Analyzed.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy:

Missouri State Water Quality Criteria for Drinking Water Supply.

Federal USEPA MCL for Drinking Water.

Federal November 2017 USEPA Tapwater RSL. Federal USEPA SMCL for Drinking Water.

pCi/L - picoCurie per liter. RSL - Risk-Based Screening Level. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency. Page 2 of 2

TABLE 9 SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Humar	Health R	ecreational	Use Screen	ing (a)								
	Constituent	B	oron	Cal	cium	Chloride	pН	Sulfate	TDS	Fluoride	Anti	mony	Ars	enic	Ba	rium	Ber	yllium	Cad	mium	Chr	omium
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	HH REC SL	NA	NA	NA	NA	NA	6.5-8.5	NA	NA	NA	4.3	4.3	0.00014	0.00014	NA	NA	NA	NA	NA	NA	NA	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																						
RI-C-7	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0011 J	<	<	<	<	<	<	<	<	<
RI-C-8	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.00079 J	<	<	<	<	<	<	<	<	<
RI-C-9	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0012 J	<	<	<	<	<	<	<	<	<
ADJACENT																						
RI-C-4	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.00091 J	<	<	<	<	<	<	<	<	<
RI-C-5	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0012 J	<	<	<	<	<	<	<	<	<
RI-C-6	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<	<	<
DOWNSTREAM																						
RI-C-1	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0015 J	<	<	<	<	<	<	<	<	<
RI-C-1 DUP	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0015 J	<	<	<	<	<	<	<	<	<
RI-C-2	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0017 J	<	<	<	<	<	<	<	<	<
RI-C-3	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	0.0013 J	<	<	<	<	<	<	<	<	<

Notes:

Qualifiers: J - Value is estimated.

< - Less than the Human Health Recreational Use Screening Level. HH - Human Health.

mg/L - milligram per liter.

pCi/L - picoCurie per liter.

NA - Not Applicable/Not Analyzed.

REC - Recreational Use.

SL - Screening Level.

S.U. - Standard Units.

TDS - Total Dissolved Solids.

USEPA - United States Environmental Protection Agency.

(a) - Recreational Use Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for Human Health Fish Consumption. USEPA Ambient Water Quality Criteria for Human Health Consumption of Organism Only.

TABLE 9 SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO HUMAN HEALTH RECREATIONAL USE SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

Qualifiers:

J - Value is estimated.

								Human	Health Recr	eational L	Jse Screenin	g (a)					
	Constituent	Co	obalt	Le	ead	Lit	hium	Mer	rcury	Moly	bdenum	Sele	enium	Tha	illium	Radium-226+228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	HH REC SL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.2	4.2	0.0063	0.0063	NA	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																	
RI-C-7	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-8	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-9	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
ADJACENT																	
RI-C-4	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	^
RI-C-5	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-6	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																	
RI-C-1	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	۸
RI-C-1 DUP	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-2	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-3	Apr-14	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Notes:

L ovel

< - Less than the Human Health Recreational Use Screening Level. HH - Human Health.

mg/L - milligram per liter.

pCi/L - picoCurie per liter.

NA - Not Applicable/Not Analyzed.

REC - Recreational Use.

SL - Screening Level.

S.U. - Standard Units.

TDS - Total Dissolved Solids.

USEPA - United States Environmental Protection Agency.

(a) - Recreational Use Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for Human Health Fish Consumption. USEPA Ambient Water Quality Criteria for Human Health Consumption of Organism Only.

TABLE 10

SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL SCREENING LEVEL! RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

										Ecolog	ical Scree	ning (a)								
	Constituent	Bo	oron	Cal	cium	Chloride	pН	Sulfate	TDS	Fluoride	Anti	mony	Ars	senic	Ba	irium	Bery	/llium	Cad	lmium
	Fraction	Total	Dissolved	Total	Dissolved	Total	Total	Total	Total	Total	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Sample	ECO SL	2	2	NA	NA	230	6.5-8.5	1784	NA	4	NA	NA	0.15	0.02	NA	NA	0.1	0.005	0.0018	0.00049
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	S.U	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
UPSTREAM																				
RI-C-7	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-8	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-9	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
ADJACENT																				
RI-C-4	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-5	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-6	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
DOWNSTREAM																				
RI-C-1	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-1 DUP	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-2	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<
RI-C-3	Apr-14	<	<	<	<	NA	<	<	NA	<	<	<	<	<	<	<	<	<	<	<

Notes:

< - Less than the Ecological Screening Level.

ECO - Ecological.

mg/L - milligram per liter.

NA - Not Applicable/Not Analyzed.

pCi/L - picoCurie per liter.

SL - Screening Level. S.U. - Standard Units.

TDS - Total Dissolved Solids.

USEPA - United States Environmental Protection Agency.

(a) - Ecological Screening Levels selected in Table 3 following the following hierarchy:

Missouri State Water Quality Criteria for the Protection of Aquatic Life (Chronic).

USEPA Aquatic Life Ambient Water Quality Criteria (Chronic). Missouri State Water Quality Criteria for the Protection of Aquatic Life (Acute).

USEPA Aquatic Life Ambient Water Quality Criteria (Acute).

Missouri State Water Quality Criteria for Irrigation. Missouri State Water Quality Criteria for Livestock Wildlife Watering.

Haley & Aldrich, Inc.

TABLE 10

SUMMARY OF ISLE DU BOIS CREEK SURFACE WATER TOTAL (UNFILTERED) AND DISSOLVED (FILTERED) RESULTS COMPARISON TO ECOLOGICAL SCREENING LEVEL! RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MC AMEREN MISSOURI

										Ecologic	al Screening	g (a)							
	Constituent	Chro	omium	Co	obalt	Le	ead	Lith	nium	Mer	cury	Molyt	denum	Sele	enium	Tha	llium	Radium-226/228	Hardness
	Fraction	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
Sample	ECO SL	0.196	0.17	1	1	0.011	0.0074	NA	NA	0.0005	0.00077	NA	NA	0.005	0.005	NA	NA	NA	NA
Location ID	Sampling Event Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pCi/L	mg/L
UPSTREAM																			
RI-C-7	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-8	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-9	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
ADJACENT																			
RI-C-4	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-5	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-6	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
DOWNSTREAM																			
RI-C-1	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-1 DUP	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-2	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<
RI-C-3	Apr-14	<	<	<	<	<	<	NA	NA	<	<	<	<	<	<	<	<	NA	<

Notes:

< - Less than the Ecological Screening Level.

ECO - Ecological.

mg/L - milligram per liter.

NA - Not Applicable/Not Analyzed.

pCi/L - picoCurie per liter.

SL - Screening Level. S.U. - Standard Units.

TDS - Total Dissolved Solids. USEPA - United States Environmental Protection Agency.

(a) - Ecological Screening Levels selected in Table 3 following the following hierarchy:

Missouri State Water Quality Criteria for the Protection of Aquatic Life (Chronic).

USEPA Aquatic Life Ambient Water Quality Criteria (Chronic). Missouri State Water Quality Criteria for the Protection of Aquatic Life (Acute).

USEPA Aquatic Life Ambient Water Quality Criteria (Acute).

Missouri State Water Quality Criteria for Irrigation. Missouri State Water Quality Criteria for Livestock Wildlife Watering.

TABLE 11 SUMMARY OF WHOLE EFFLUENT TOXICITY TESTING RESULTS FOR NPDES OUTFALL 002 (a) RUSH ISLAND ENERGY CENTER, FRANKLIN COUNTY, MO AMEREN MISSOURI

		Percent Surviv	/al at 48 hours
Sampling Event	Treatment	Pimephales promelas	Ceriodaphnia dubia
Outfall 002		-	
	10% Effluent	98%	100%
February 2005 (a)	Reconstituted Control	100%	100%
	Upstream Control	98%	100%

Notes:

NPDES - Natural Pollutant Discharge Elimination System.

No significant difference (alpha = 0.05) between effluent and control survival data for the above test.

Effluent passes the test conducted in 2005.

10% Effluent - Outfall 002 effluent mixed with Mississippi River water.

Reconstituted Control - Laboratory reconstituted water.

Upstream Control - Mississippi River water.

(a) - Effluent samples collected on February 8, 2005.

TABLE 12 DERIVATION OF RISK-BASED SCREENING LEVELS FOR GROUNDWATER BASED ON THE MISSISSIPPI RIVER RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

			Estima	ted Dilution Factor (d) =	100,000			
				Lowest of the Human	Groundwater Risk-	Maximu	Im RIEC	Ratio Between Groundwater
				Health and Ecological	Based Screening	Groun	dwater	Risk-Based Screening Level and
	HH DW SL (a)	HH REC SL (b)	ECO SL (c)	Screening Levels	Level*	Conce	ntration	the Maximum RIEC
Constituents	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(m	g/L)	Groundwater Concentration
Boron	4	NA	2	2	200000	15.7	R-MW-3	>12,000
Sulfate	250	NA	1582	250	25000000	382	R-MW-1	>65,000
Antimony	0.006	4.3	NA	0.006	600	0.0064	R-MW-2	>93,000
Arsenic	0.05	0.00014	0.02	0.00014	14	0.257	R-MW-2	>50
Lead	0.015	NA	0.0058	0.0058	578	0.0177	R-MW-2	>32,000
Lithium	0.04	NA	NA	0.04	4000	0.0647	R-MW-B1	>61,000
Molybdenum	0.1	NA	NA	0.1	10000	0.943	R-MW-3	>10,000
TDS	500	NA	NA	500	5000000	874	R-MW-2	>50,000

Notes:

* Where the Groundwater Risk-Based Screening Level = Screening Level x Dilution Factor.

ECO SL - Ecological Screening Level.

HH DW SL - Human Health Drinking Water Screening Level.

HH REC SL - Human Health Recreational Use Screening Level.

mg/L - milligram per liter.

NA - Not Available.

(a) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Drinking Water Supply. Federal USEPA MCL for Drinking Water. Federal November 2017 USEPA Tapwater RSL.

Federal USEPA SMCL for Drinking Water.

(b) - Recreational Use Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Human Health Fish Consumption. USEPA Ambient Water Quality Criteria for Human Health Consumption of Organism Only.

(c) - Ecological Screening Levels selected in Table 2 following the following hierarchy: Missouri State Water Quality Criteria for the Protection of Aquatic Life (Chronic). USEPA Aquatic Life Ambient Water Quality Criteria (Chronic). Missouri State Water Quality Criteria for the Protection of Aquatic Life (Acute). USEPA Aquatic Life Ambient Water Quality Criteria (Acute).

Missouri State Water Quality Criteria for Irrigation.

Missouri State Water Quality Criteria for Livestock Wildlife Watering.

(d) - Estimated value, see text and Attachment B for derivation.

TABLE 13 SUMMARY OF ON-SITE DEEP WELL WATER COMPARISON TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI

										Human H	ealth Drin	king Water	Screening	(a,b)							
	Constituent	Boron	Calcium	Chloride	pН	Sulfate	TDS	Fluoride	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
	HH DW SL	4000	NA	250	6.5-8.5	250	500	4	6	50	200	4	5	100	6	15	40	2	100	50	2
Monitoring Well ID	Sampling Event Date	mg/L	mg/L	mg/L	S.U.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	Apr-10	NA	<	<	<	<	<	<	<	<	<	<	<	<	NA	<	NA	<	NA	<	<
Storage Tank	Apr-12	NA	<	413	<	<	1022	<	<	<	<	<	<	<	NA	<	NA	<	NA	<	<
	Apr-15	NA	<	460	<	<	1020	<	<	<	<	<	<	<	NA	<	NA	<	NA	<	<
RI-Well-A	Jan-18	<	<	627	<	<	1140	<	<	<	<	<	<	<	<	<	137	<	<	<	<
RI-Well-B	Jan-18	<	<	417	<	<	868	<	<	<	<	<	<	<	<	<	112	<	<	<	<

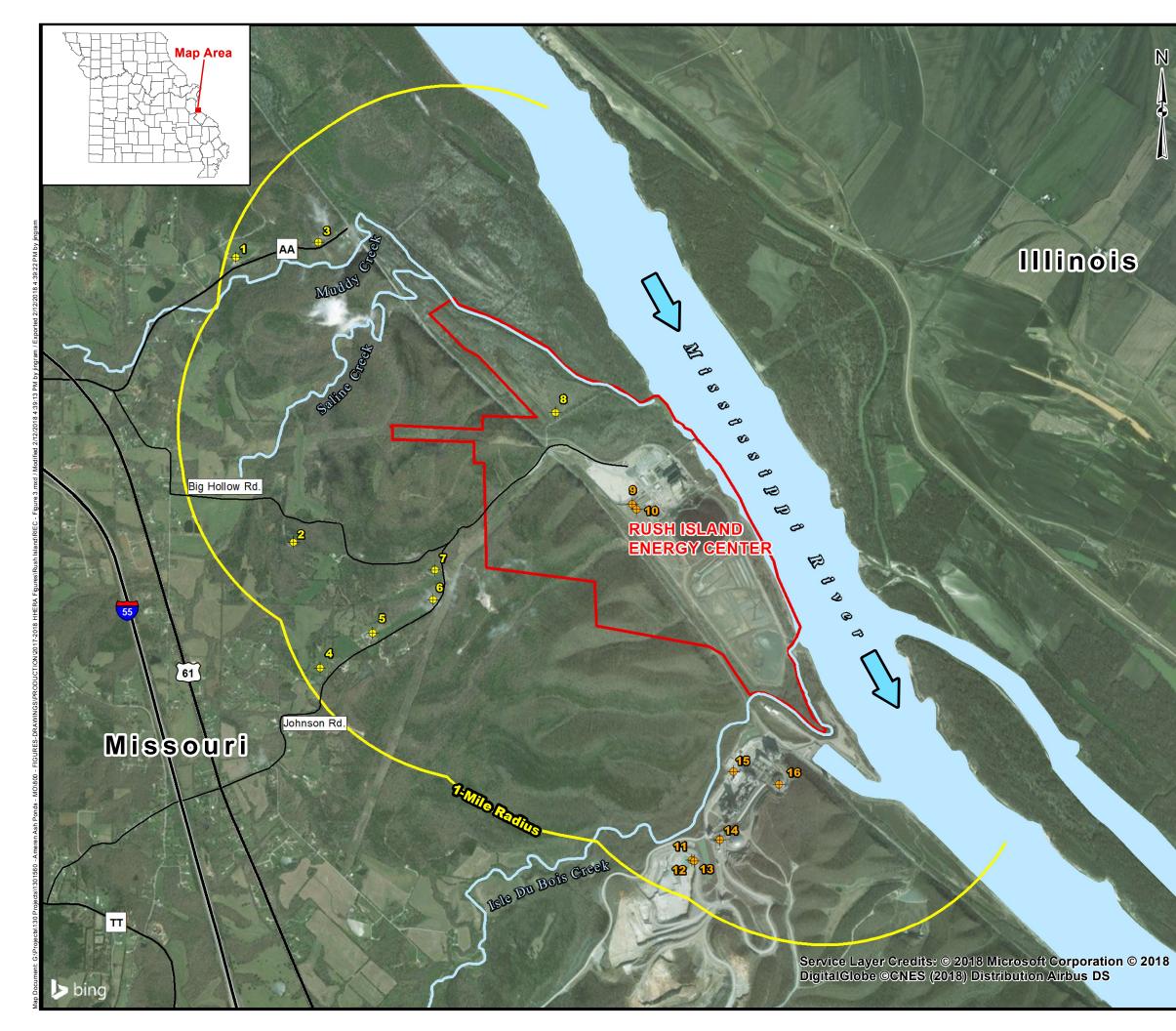
Notes:

< Less than the Human Health Drinking Water Screening Level.
 DW - Drinking Water.
 HH - Human Health.

RSL - Regional Screening Level. SL - Screening Level. S.U. - Standard Units. TDS - Total Dissolved Solids.

USEPA - United States Environmental Protection Agency.


MCL - Maximum Contaminant Level.


mg/L - milligram per liter. NA - Not applicable.

(a) - Numerical values were obtained from the Ameren Missouri Rush Island Energy Center, Jefferson County, Festus, MO.
 (b) - Drinking Water Screening Levels selected in Table 1 following the following hierarchy: Missouri State Water Quality Criteria for Drinking Water Supply.
 Federal USEPA MCL for Drinking Water.
 Federal November 2017 USEPA Tapwater RSL.

FIGURES

PRIVATE WELL LOCATIONS WITHIN 1-MILE RADIUS OF **FACILITY BOUNDARY**

<u>LEGEND</u>

- Rush Island Property Boundary
- Approximate 1-Mile Radius
- ♦ Non-Community Public Well
- + Private Well
- Surface Water Flow Direction

NOTES

1.) All locations and boundaries are approximate.

 Figure displays all non-community public and private wells located near the Rush Island Energy Center property boundary in Jefferson and Ste. Genevieve Counties, Missouri, based on state well records.
 See Table 2 and Appendix B for more information on the wells located within one mile of the Rush Island Energy Center Property Boundary.

4.) Wells displayed outside of the 1-mile radius are plotted based on the address of the well from the MDNR well certification forms.

- 5.) MDNR Missouri Department of Natural Resources.
- 6.) MSDIS Missouri Spatial Data Information Service.
- 7.) GeoSTRAT Geosciences Technical Resources Assessment Tool.

REFERENCES

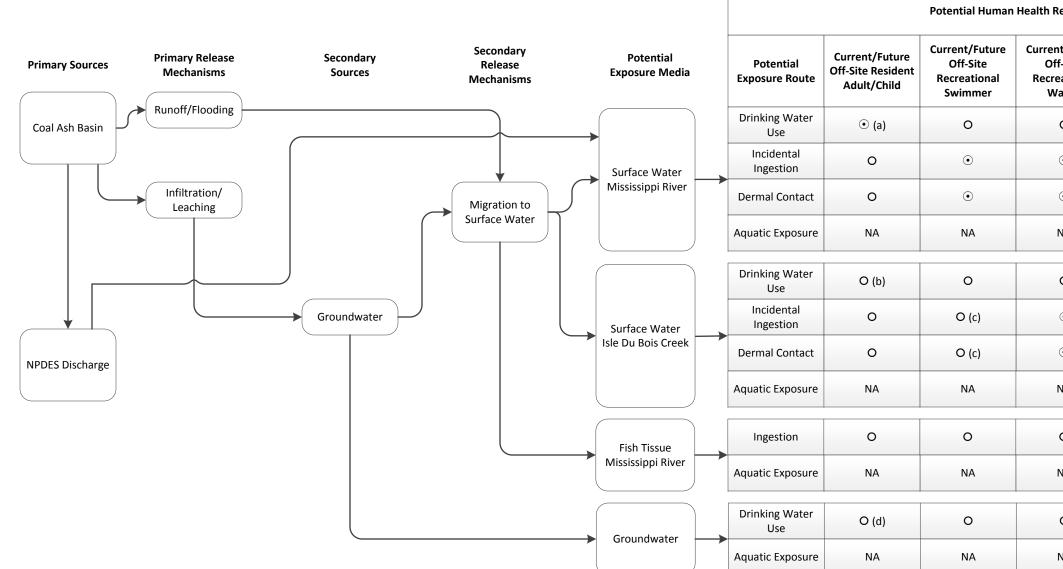
1.) Ameren, 2012. Ameren Missouri Rush Island Energy Center, Rush Island Property Control Map, January 2012.

2.) CARES. 2013. Public Drinking Water System Reports. Center for Applied Research and Environmental Systems.

3.) MDNR. 2013a. Missouri Well Information Management System (WIMS), Wellhead Protection Program. Missouri Department of Natural Resources.

4.) MDNR. 2013b. Geologic Well Logs of Missouri, Water Resource Center. Missouri Department of Natural Resources.

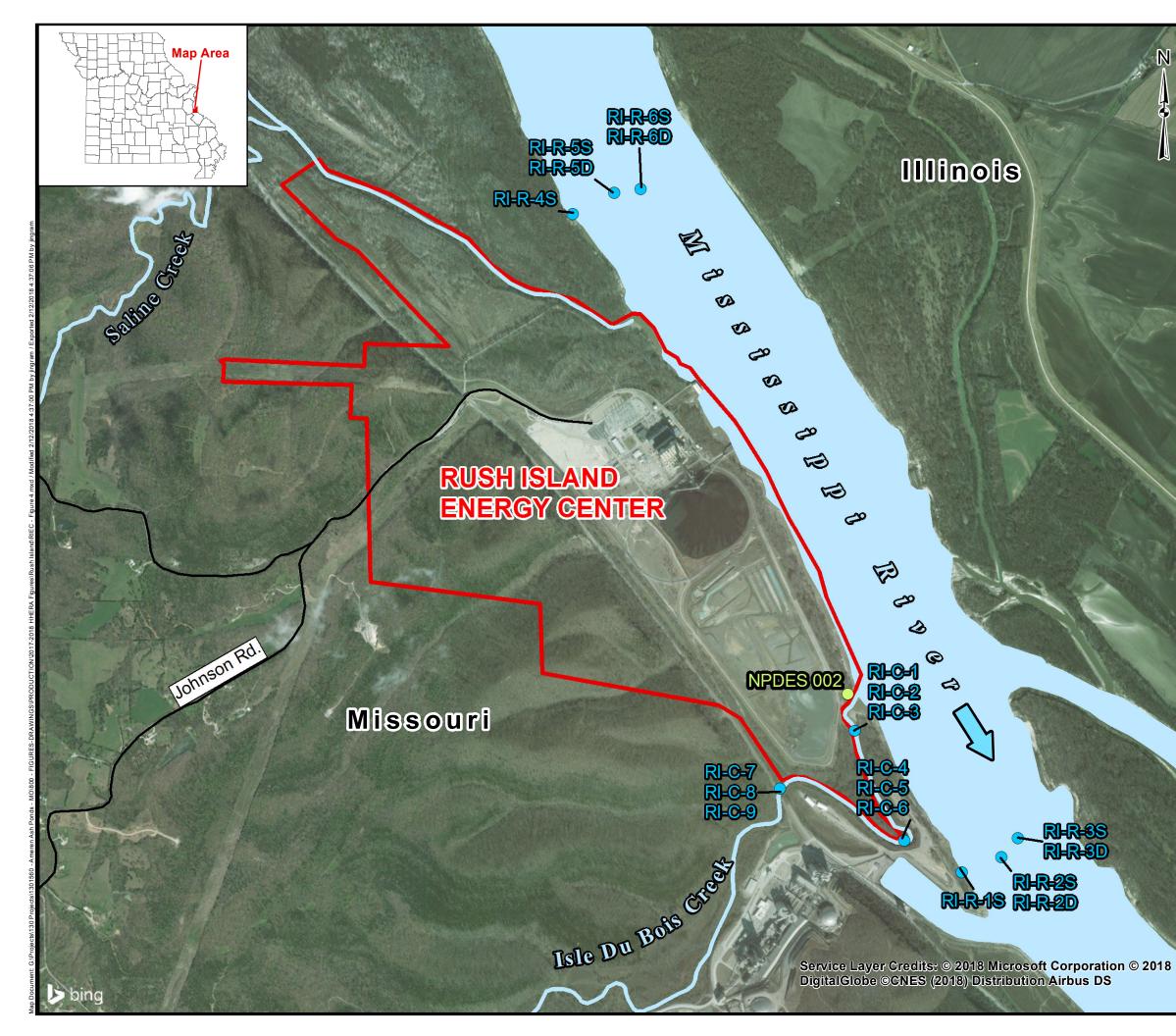
 MDNR, 2014a. Geosciences Technical Resource Assessment Tool (GeoSTRAT). Missouri Department of Natural Resources.
 MEGA. 2007. Missouri Environmental Geology Atlas. A Collection of Statewide Geographic Information System Data. 7.) MSDIS. 2013. Missouri Spatial Data Information Service. 8.) COORDINATE SYSTEM: NAD 1983 StatePlane Missouri East FIPS 2401 Feet.


PROJECT

AMEREN MISSOURI RUSH ISLAND ENERGY CENTER JEFFERSON COUNTY, MISSOURI

	PROJECT No	130-1560		RI	EC - Figure 3.mxd
	DESIGN	-	-	SCALE: AS SHOWN	REV. 3
Golder	GIS	JSI	6/6/2014		
Associates		MWD	6/7/2014	FIGUR	E 2
Associates	REVIEW	MNH	6/15/2014		

FIGURE 3 CONCEPTUAL SITE MODEL RUSH ISLAND ENERGY CENTER, JEFFERSON COUNTY, FESTUS, MO AMEREN MISSOURI



Notes:

- Pathway potentially complete
- Pathway potentially complete, but insignificant.
- O Pathway evaluated and found incomplete.
- (a) The Mississippi River is used as a source of drinking water; the nearest downstream drinking water intake is 30 miles downstream at the Chester Intake in Illinois. All detected constituent concentrations are below drinking water screening levels.
- (b) Isle Du Bois Creek is not used as a source of drinking water.
- (c) The size of Isle Du Bois Creek precludes swimming, fishing and boating activities.
- (d) The shallow alluvial aquifer in the vicinity of the RCPA is not used for drinking water purposes.
- (e) Ecological Receptors are not exposed to groundwater.
- NA Not Applicable.
- NPDES National Pollutant Discharge Elimination System.

Receptors			Potential Ecological Receptors
nt/Future f-Site eational /ader	Current/Future Off-Site Recreational Boater	Current/Future Off-Site Recreational Fisher	Aquatic Receptors
0	ο	ο	NA
٢	۲	۲	NA
•	۲	۲	NA
NA	NA	NA	•
0	0	0	NA
۲	O (c)	O (c)	NA
	O (c)	O (c)	NA
NA	NA	NA	۲
0	0	•	NA
NA	NA	NA	٠
0	0	0	NA
NA	NA	NA	O (e)

TITLE

SURFACE WATER SAMPLING LOCATIONS

LEGEND

Ø

- Rush Island Property Boundary
- Surface Water Sample Location

Ameren NPDES Outfall

NOTES

1.) All boundaries and locations are approximate.

- Sample locations for surface water samples were obtained during sampling using a Trimble GeoXH GPS unit.
 NPDES outfall location based on MEGA database.

REFERENCES

Ameren, 2012. Ameren Missouri Rush Island Energy Center, Rush Island Property Control Map, January 2012.
 MEGA. 2007. Missouri Environmental Geology Atlas. A Collection of Statewide Geographic Information System Data.
 COORDINATE SYSTEM: NAD 1983 StatePlane Missouri East FIPS 2401 Feet.

PROJECT

AMEREN MISSOURI RUSH ISLAND ENERGY CENTER JEFFERSON COUNTY, MISSOURI

4		PROJECT No.	130-1560			RI	EC - Figure 4.mxd
		DESIGN	-	-	SCALE:	AS SHOWN	REV. 3
	Golder	GIS	JSI	6/4/2014			
	Associates	CHECK	MWD	6/5/2014	FIGURE 4		E4
		REVIEW	MNH	6/15/2014			

ATTACHMENT A

Constituents Present in Coal Ash and in Our Natural Environment

Attachment A

Constituents Present in Coal Ash and in Our Natural Environment

It is important to understand what constituents are present in coal ash, which can be released to the environment, and to understand the natural occurrence of these constituents in our environment.

Coal is a type of sedimentary rock that is a natural component of the earth's crust and the inorganic minerals and elements it contains are also naturally occurring. It is the organic component of coal that burns and produces energy, and it is the inorganic minerals and elements that remain after combustion the make up the coal ash, or coal combustion products (CCPs).

A.1 Major, Minor and Trace Constituents in Coal Ash

All of the inorganic minerals and elements that are present in coal ash are also present in our natural environment. This is one fact that that the public seems either not to understand or will not acknowledge. **Figure A-1** shows the major and minor components of fly ash, bottom ash, volcanic ash, and shale. It is important to understand that the constituents that are the focus of many of the concerns expressed by the public about the toxicity of coal ash (e.g., lead, arsenic, mercury, cadmium, selenium, etc.) are trace elements, so called because they are present in such low concentrations (in the mg/kg or part per million (ppm) range). Together, the trace elements generally make up less than 1 percent of the total mass of these materials. To put these concentrations into context, a mg/kg or ppm is equivalent to:

- 1 penny in a large container holding \$10,000 worth of pennies, or
- 1 second in 11.5 days, or
- 1 inch in 15.8 miles

These trace elements have been referred to by the public and even in the popular press as "toxic" without any context provided for what this means. Moreover, claims have been made that there is no safe level of exposure to any of these elements.

This is simply not true, and there are two important facts that must be understood to put this in context. The first relates to background levels of constituents in our environment and the second relates to toxicity.

A.2 Background Levels in Soils

The first fact that must be understood is that all of the constituents present in coal ash occur naturally in our environment. U.S. Geological Survey (USGS) data demonstrate the presence of these constituents in the soils across the U.S. Prime examples include arsenic, lead, mercury and selenium. With respect to arsenic, **Figure A-2** shows the range of background levels of arsenic in soils across the U.S., as published by the USGS. The USGS is conducting a "national geochemical survey" to identify background levels of elements in soils in the U.S. (USGS, 2013). **Figures A-3 – A-6** provide maps prepared by the USGS demonstrating the naturally-occurring presence of other trace elements in soils in the U.S., including aluminum and copper (**Figure A-3**), iron and lead (**Figure A-4**), manganese and mercury (**Figure A-5**), and selenium and zinc (**Figure A-6**).

These soils are found in our backyards, schools, parks, etc., and because of their presence in soil, these constituents are also present in the foods we eat. Some of these constituents are present in

our vitamins, such as manganese and selenium. Thus, we are exposed to these trace elements in our natural environment every day, and in many ways.

A.3 Toxicity and Risk

The second fact is that all constituents and materials that we encounter in our natural environment can be toxic, but what determines whether a toxic effect actually occurs is how one is exposed to the constituent, the amount of material to which one may be exposed, and the timing and duration of that exposure. Without sufficient exposure the science tells us that there are no toxic effects. Put another way, when a toxic effect is demonstrated by a particular constituent, it is generally caused by high levels of exposure over a long-term duration. The fundamental principles here are:

- All constituents can exert toxic effects (from aspirin¹ to table salt to water to minerals).
- For such toxic effects to occur, exposure must occur at a sufficiently high level for a sufficiently long period of time.
- If there is no exposure, there is no risk.

A.4 Risk-Based Screening Levels

The U.S. Environmental Protection Agency (USEPA) uses information on the potential toxicity of constituents to identify concentrations of trace elements in soil in a residential setting that are considered by USEPA to be protective for humans (including sensitive groups) over a lifetime (USEPA, 2014c). Specifically, residential soil screening levels are levels that are protective of a child and adult's daily exposure to constituents present in soil or a solid matrix over a residential lifetime. In the context of regulatory decision making, at sites where constituent concentrations fall below these screening levels, no further action or study is warranted under the federal Superfund program. Missouri Department of Natural Resources also applies this concept to the development of screening levels in its Risk-Based Corrective Action program (MDNR, 2006).

Figure A-7 shows USEPA's residential soil screening levels for a variety of trace elements that are present in coal ash. USEPA considers it to be safe for children to be exposed to these concentrations of each of these trace elements in soils on a daily basis, throughout their lifetime. What this tells us is that by developing these residential soil screening levels, USEPA considers the presence of these levels of these constituents in soils to be safe for humans, even for exposure on a daily basis. It is, therefore, simply not true that there are no safe levels of exposure to these constituents.

A.5 Comparison of Coal Ash Constituent Concentrations to Risk-Based Screening Levels and Background

A comparison of constituent concentrations in coal ash, as reported by the USGS (USGS, 2011a) to USEPA's risk-based screening levels for residential soil indicates that with only a few exceptions, constituent concentrations in coal ash are below screening levels developed by the USEPA for residential soils, and are similar in concentration to background U.S. soils. Details of this evaluation are provided in the report titled "Coal Ash Material Safety: A Health Risk-Based Evaluation of USGS

¹ For example, if one takes two aspirin every four hours as directed, aspirin is not toxic. If one takes the entire bottle at once, the aspirin is very toxic.

Coal Ash Data from Five US Power Plants" (AECOM, 2012). The study is available at: http://www.acaa-usa.org/associations/8003/files/ACAA_CoalAshMaterialSafety_June2012.pdf.

Figure A-8 is an updated chart from this study comparing ranges of trace element concentrations in fly ash produced from coal from the Powder River Basin in Wyoming (the same type of coal used at Rush Island Energy Center) to USEPA screening levels, and to background levels in soils in the U.S. The USEPA screening levels for residential soils (USEPA, 2014c) are shown as the green vertical bars, the ranges for the Wyoming coal fly ash are shown in purple on top of the green vertical bars, and the ranges of background levels in U.S. soils are shown in the grey bars. What this figure shows is that all but one of the constituents are present in the Wyoming fly ash at concentrations that are below the USEPA residential soil screening levels; and for cobalt, the concentration range is only marginally above the screening level for cobalt is based is two levels of magnitude lower than what has been derived by other regulatory agencies; thus a much higher health protective soil screening level for cobalt exists. What the data also show is that constituent concentrations in coal ash are not that different from concentrations in soils in the U.S.

The results are similar for all of the coal ashes evaluated in the report (AECOM, 2012). The evaluation in the report included not only the simple comparison of constituent concentrations in coal ash to USEPA screening levels, but also provided a detailed cumulative risk screen for each coal ash data set to account for potential additive effects of combined exposures to the trace elements in coal ash. The results confirm the simple screening results, which indicate that no significant risk would be posed by direct exposure to coal ash in a residential setting.

Thus, by considering the levels of trace elements in coal ash in comparison to the background levels in soils in the U.S., and in comparison to the USEPA screening levels for these constituents in residential soil, screening levels that are protective of daily exposure to soils by children and adults, including sensitive subgroups, it is concluded that even daily direct contact to trace elements in coal ash would not pose a significant risk to human health.

A.6 Background Levels in Groundwater

Because these constituents are naturally present in soils and rocks, they are also naturally present in our groundwaters and surface waters. The USGS has published a report titled "Trace Elements and Radon in Groundwater Across the United States" (USGS, 2011b). Just as for soil, it is important to understand that there are background levels of constituents in groundwater. Constituent concentrations in groundwater that is upgradient of a source represent background conditions. To demonstrate a release to groundwater by a source, concentrations downgradient of the source must be greater than the background/upgradient concentrations at a statistically significant level for a consistent period of time.

The same concept applies to surface water. These same constituents are naturally present in surface water due to discharge of groundwater to surface water and the effect of erosion of soil into our surface waters. To demonstrate an effect of a source on surface water, the concentrations downgradient/downstream of the source must be greater than the background/upstream concentrations at a statistically significant level for a consistent period of time.

Constituents in groundwater and surface water can be in a dissolved form, or they can be adhered to or part of a soil or sediment particle. Movement of these particles in groundwater is generally more difficult because of the presence of the soil and rock that the groundwater must move through. Surface water is constantly impacted by erosion of soils, thus in surface water, it is much more

common for constituents to be bound to particles rather than dissolved in the water. For this reason, it is important to evaluate both total concentrations of constituents in water (which represents constituents dissolved in the water and as part of a soil or sediment particle) and the dissolved component (by filtering out the soil/sediment particles).

A.7 Toxicity Evaluation for Cobalt and Chromium

A.7.1 Cobalt

Cobalt is the only constituent in the Powder River Basin coal ash (the coal that is used at the Rush Island Energy Center) with concentrations above the USEPA screening level for residential soils. There is much uncertainty associated with the USEPA dose-response value for cobalt, and with the resulting screening level for residential soil. The World Health Organization (WHO) indicates that "there are no suitable data with which to derive a tolerable intake for chronic ingestion of cobalt" (WHO, 2006). Agency for Toxic Substances and Disease Registry (ATSDR, 2004) states that "adequate chronic studies of the oral toxicity of cobalt or cobalt compounds in humans and animals are not presently available." However, using a short-term study in six human volunteers, ATSDR (2004) derived an intermediate-term (15-364 days) minimal risk level (MRL) of 0.05 mg/kg-day. The "adverse" effect was identified as increased red blood cell count, although it is also noted that cobalt is used as a treatment for anemia (low red blood cell count). ATSDR also notes that "Since cobalt is naturally found in the environment, people cannot avoid being exposed to it. However, the relatively low concentrations present do not warrant any immediate steps to reduce exposure." WHO notes that the largest source of exposure to cobalt for the general population is the food supply; the estimated intake from food is 5-40 ug/day, most of which is inorganic cobalt (WHO, 2006). Expressed on a mg/kg-day basis, this is 0.00007–0.0005 mg/kg-day from the diet.

USEPA however has derived a Provisional Peer-Reviewed Toxicity Value (PPRTV) for cobalt of 0.0003 mg/kg-day, this is two orders of magnitude lower than the ATSDR intermediate term MRL, and is higher that most dietary intake estimates. Thus the RSL for cobalt for residential soil is much lower than values derived by other regulatory bodies.

A.7.2 Hexavalent Chromium

The data provided by USGS (2011a) for chromium is for total chromium in the samples; the Ameren data for groundwater and surface water are also based on analysis of total chromium. Many metals can exist in different oxidation states; for some metals, the oxidation state can have different toxicities. This is the case for chromium. Chromium exists in two common oxidation states: trivalent chromium (chromium-3, Cr(III) or Cr+3), and hexavalent chromium (chromium-6, Cr(VI) or Cr+6). Trivalent chromium is essentially nontoxic, as evidenced by its RSL of 120,000 mg/kg. It can be bought over-the-counter as a supplement, and is included in most vitamins. Hexavalent chromium has been concluded to be a human carcinogen by the inhalation route of exposure (USEPA, 2014a).

Currently on USEPA's toxicity database, the Integrated Risk Information System (IRIS) (USEPA, 2014a), the primary source of dose-response information for risk assessment and for the RSL tables, an oral reference dose is available for trivalent chromium, and IRIS provides an inhalation IUR for potential inhalation carcinogenic effects and an oral reference dose and inhalation reference concentration for hexavalent chromium. The oral noncancer dose-response value for hexavalent chromium is based on a study where no adverse effects were reported; thus the target endpoint is identified as "none reported."

Recent studies by the National Toxicology Program (NTP) have shown that when present in high concentrations in drinking water, hexavalent chromium can cause gastrointestinal tract tumors in mice (NTP, 2008). IRIS does not present an oral CSF for hexavalent chromium; a value developed by the New Jersey Department of Environmental Protection (NJDEP, 2009) was used in the development of the RSLs. USEPA developed a draft oral cancer dose-response value for hexavalent chromium, based on the same study and was the same as the NJDEP value. However, it should be noted that USEPA's Science Advisory Board (SAB) provided comments in July 2011 on the draft USEPA derivation of the oral CSF for hexavalent chromium and indicated many reservations with the assumptions of mode of action, and in the derivation itself. The SAB review can be accessed at http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=221433. Thus, the value used to develop the RSLs for hexavalent chromium has been called into question by USEPA's peer review panel. Currently there is much scientific debate about whether the mode of action of hexavalent chromium in very high concentrations in drinking water is relevant to the low concentrations most likely to be encountered in environmental situations (Proctor, et al., 2012).

Therefore, for this evaluation of chromium in the Powder River Basin coal ash, total chromium is evaluated assuming the total concentration is hexavalent chromium and using RSLs calculated using USEPA's on-line RSL calculator (USEPA, 2014b), based on the primary dose-response values provided in the IRIS database (USEPA, 2014a) for both potential carcinogenic and noncarcinogenic endpoints.

The assumption that all chromium in CCPs is in the hexavalent form is very conservative, and in fact unrealistic. Data for the Alaska Power Plant indicate that hexavalent chromium comprises 0.25% of the total chromium concentration in the combined fly ash/bottom ash material from that facility. Literature data for analyses of CCPs from US coals (total CCPs) indicate that hexavalent chromium can comprise up to 5% of the total chromium (Huggins, et al., 1999); thus over 95% of the total chromium is present in the nontoxic trivalent form. This is consistent with data from USEPA, though there are some single higher results (USEPA, 2009).

A.8 Summary

Constituents present in coal ash are also present in our natural environment, and we are exposed to them every day, in the soils that we contact and the food that we eat. All of these constituents have USEPA-derived risk-based screening levels for residential soils. The constituent concentrations in coal ash from the Powder River Basin, the source of the coal used at the Rush Island Energy Center, are below risk-based screening levels for residential soils (with one exception) and the concentrations are similar to background levels in U.S. soils.

A.9 References

AECOM. 2012. Coal Ash Material Safety: A Health Risk-Based Evaluation of USGS Coal Ash Data from Five US Power Plants. Prepared for the American Coal Ash Association. Available at: http://www.acaa-usa.org/associations/8003/files/ACAA_CoalAshMaterialSafety_June2012.pdf

ATSDR. 2004. Toxicological Profile for Cobalt. Agency for Toxic Substances and Disease Registry. Available at: <u>http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=373&tid=64</u>

Huggins, FE, M Najih, and GP Huffman. 1999. Direct speciation of chromium in coal combustion byproducts by X-ray absorption fine-structure spectroscopy. Fuel 78:233–242. MDNR. 2006. Missouri Risk-Based Correction Action (MRBCA) Technical Guidance. April, 2006. Available at: <u>http://www.dnr.mo.gov/env/hwp/mrbca/docs/mrbca-sections6-06.pdf</u>

NJDEP. 2009. Derivation of Ingestion-Based Soil Remediation Criterion for Cr+6 Based on the NTP Chronic Bioassay Data for Sodium Dichromate Dihydrate. Division of Science, Research and Technology New Jersey Department of Environmental Protection. Risk Assessment Subgroup of the NJDEP Chromium Workgroup. April 8, 2009.

NTP. 2008. NTP technical report on the toxicology and carcinogenesis studies of sodium dichromate dihydrate (CAS No. 7789-12-0) in F344/N rats and B6C3F1 mice (drinking water studies), NTP TR 546. NIH Publication No. 08-5887. National Toxicology Program.

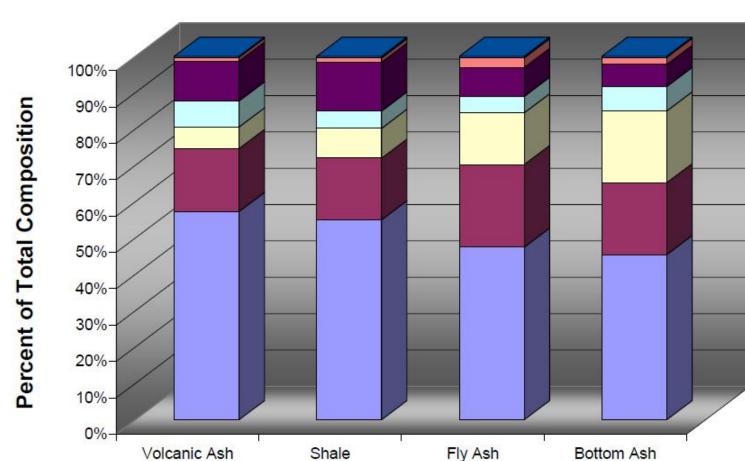
Proctor, DM, M Suh, LL Aylward, CR Kirman, MA Harris, CM Thompson, H Gurleyuk, R Gerads, LC Haws, SM Hays. 2012. Hexavalent chromium reduction kinetics in rodent stomach contents. Chemosphere 89(5): 487–493. Available at: http://www.sciencedirect.com/science/article/pii/S0045653512005978

USEPA. 2009. Characterization of Coal Combustion Residues from Electric Utilities – Leaching and Characterization Data. U.S. Environmental Protection Agency. EPA-600/R-09/151. December 2009.

USEPA. 2014a. Integrated Risk Information System (IRIS). Environmental Criteria and Assessment Office. U.S. Environmental Protection Agency, Cincinnati, OH. Available at: <u>http://cfpub.epa.gov/ncea/iris/index.cfm</u>

USEPA. 2014b. Regional Screening Levels (RSLs) Calculator. U.S. Environmental Protection Agency. Available at: <u>http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search</u>

USEPA. 2014c. USEPA Regional Screening Levels. May 2014. U.S. Environmental Protection Agency. Available at <u>http://www.epa.gov/reg3hwmd/risk/human/rb-</u>concentration_table/Generic_Tables/index.htm


USGS. 2011a. Geochemical Database of Feed Coal and Coal Combustion Products (CCPs) from Five Power Plants in the United States. Data Series 635. U.S. Geological Survey. Available at: <u>http://pubs.usgs.gov/ds/635/</u>

USGS. 2011b. Trace Elements and Radon in Groundwater Across the United States. U.S. Geological Survey. Scientific Investigations Report 2011-5059. Authors: Ayotte, J.D. Gronberg, J.M., and Apodaca, L.E. Available at: <u>http://pubs.usgs.gov/sir/2011/5059/pdf/sir2011-5059_report-covers_508.pdf</u>

USGS. 2013. National Geochemical Survey. http://mrdata.usgs.gov/geochem/doc/averages/countydata.htm

WHO. 2006. Cobalt and Inorganic Cobalt Compounds. Concise International Chemical Assessment Document 69. World Health Organization.

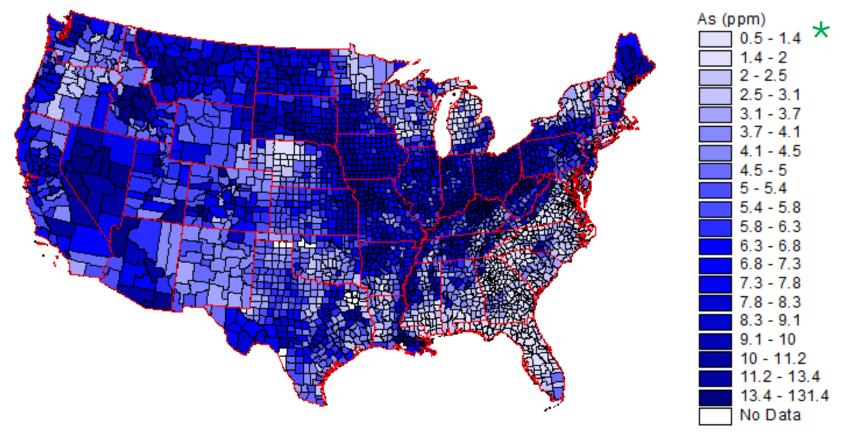
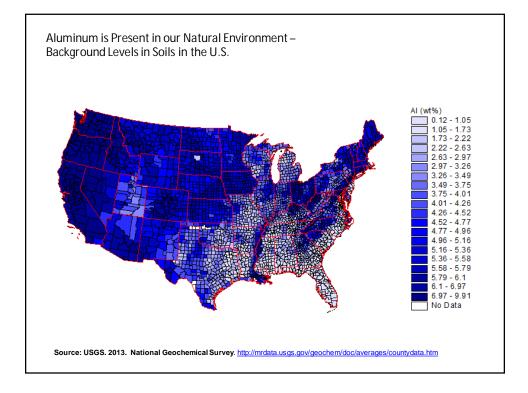
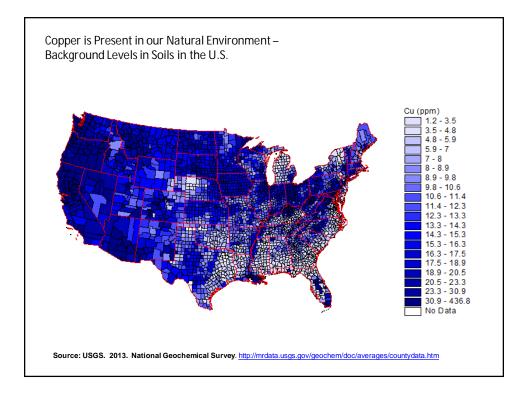
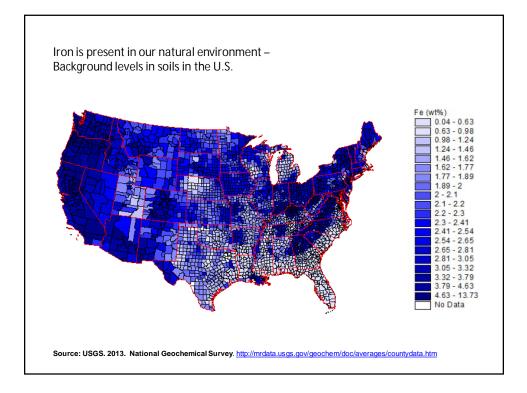

Attachment A – Figures

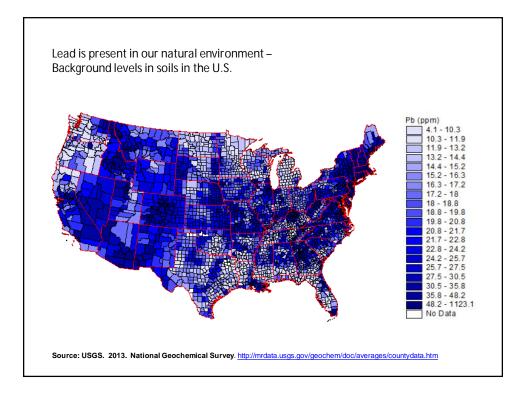
Figure A-1 Composition of Coal Ash and Other Natural Materials

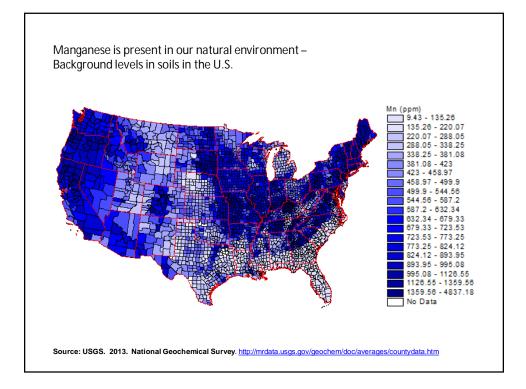
Source: EPRI. 2010. Comparison of Coal Combustion Products to Other Common Materials – Chemical Characteristics. Report No. 1020556. Available for download at www.epri.com.

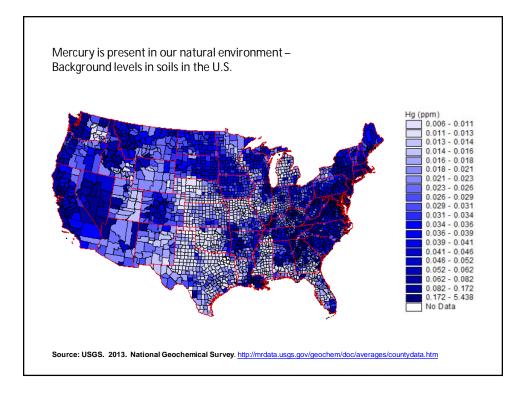

Figure A-2 Arsenic is Present in our Natural Environment – Background Levels in Soils in the U.S.

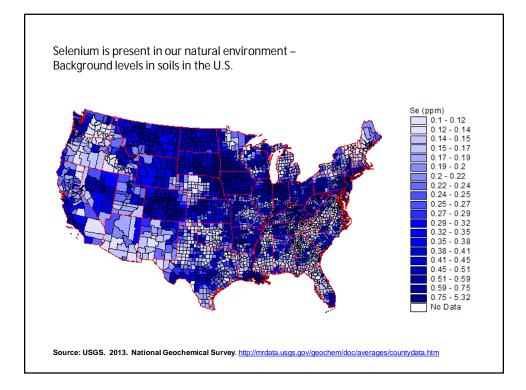


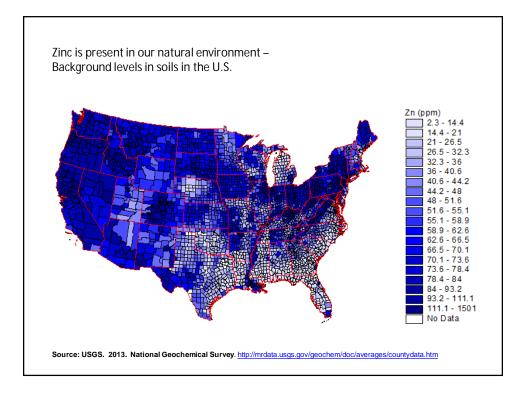

The USEPA regional screening level for arsenic in residential soil at a one in one million risk level is 0.67 mg/kg. USEPA. 2014c. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm


Thus the arsenic concentration in the majority of the soils in the U.S. are above the one in one million risk level.


Source: USGS. 2013. National Geochemical Survey. http://mrdata.usgs.gov/geochem/doc/averages/countydata.htm







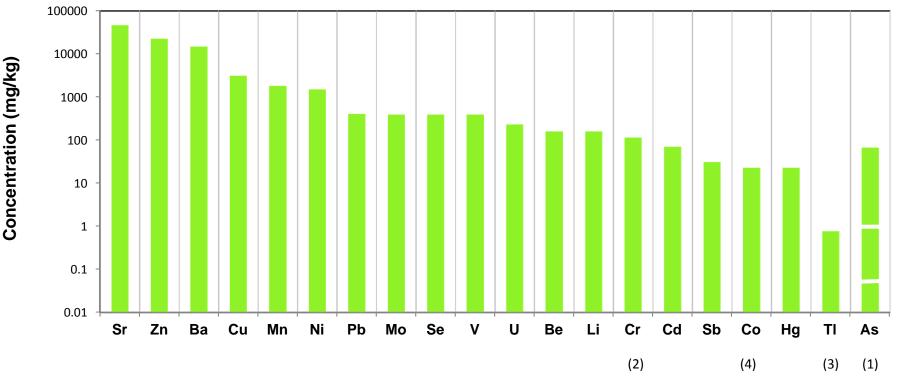
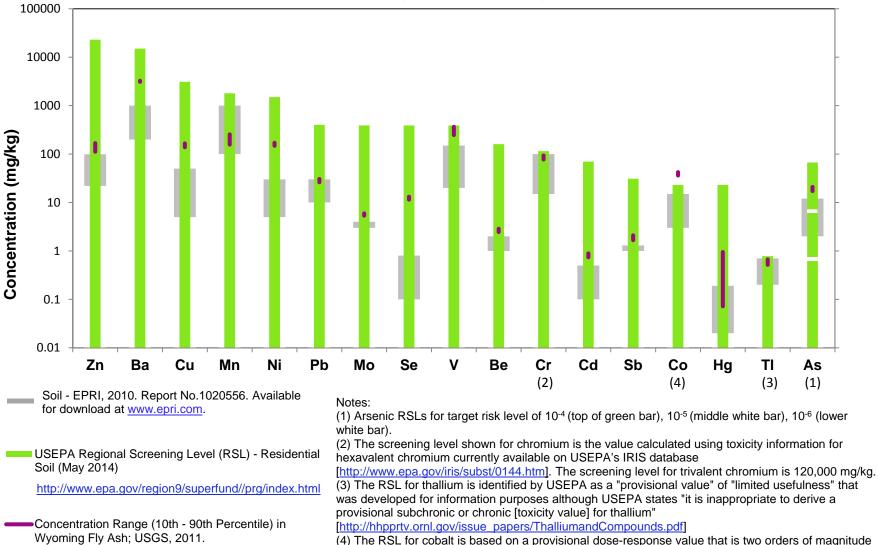


Figure A-7

USEPA Regional Screening Levels for Residential Soils - Coal Ash Constituents

Notes:

(1) Arsenic RSLs for target risk level of 10⁻⁴ (top of green bar), 10⁻⁵ (middle white bar), 10⁻⁶ (lower white bar.
(2) The screening level shown for chromium is the value calculated using toxicity information for hexavalent chromium currently available on USEPA's IRIS database [http://www.epa.gov/iris/subst/0144.htm]. The screening level for trivalent chromium is 120,000 mg/kg.


(3) The RSL for thallium is identified by USEPA as a "provisional value" of "limited usefulness" that was developed for information purposes although USEPA states "it is inappropriate to derive a provisional subchronic or chronic [toxicity value] for thallium" [http://hhpprtv.ornl.gov/issue_papers/ThalliumandCompounds.pdf]

(4) The RSL for cobalt is based on a provisional dose-response value that is two orders of magnitude lower than values from other regulatory sources, and higher than most dietary intake estimates. Thus, a more realistic RSL could be more than an order of magnitude higher than the value shown here.

 Top of bar corresponds to the USEPA Regional Screening Level (RSL) - Residential Soil (May 2014)

http://www.epa.gov/region9/superfund//prg/index.html

Figure A-8 Comparison of 10th and 90th percentile USGS Database Constituent Concentrations in Fly Ash from the Wyoming Coal Power Plant and Background Levels in US Soils to the USEPA Regional Screening Levels for Residential Soils

http://pubs.usgs.gov/ds/635/

(4) The RSL for cobalt is based on a provisional dose-response value that is two orders of magnitude lower than values from other regulatory sources, and higher than most dietary intake estimates. Thus, a more realistic RSL could be more than an order of magnitude higher than the value shown here.

ATTACHMENT B

Rush Island Energy Center Dilution Factor Calculations

CALCULATIONS

Date: February 8, 2018	Made by:	J. Ingram
Project No.: 130-1560	Checked by:	J. White/ E. Kidner
Subject: Rush Island Energy Center Dilution Factor Calculations	Reviewed by:	M.Haddock

1.0 Introduction

Mississippi River is a large, flowing water body and daily flow at the Rush Island Energy Center (RIEC) is estimated to range between 36 and 538 billion gallons per day, depending upon the river stage. In contrast, during low river flow conditions, average daily groundwater flow into the river is a fraction (estimated to be 199,000 gallons or 0.0006%) of the receiving water body. This ratio of flow is referred to as a "dilution factor" and is useful when assessing the relationship between smaller and larger water bodies. Set forth below is a calculation of a dilution factor based on specific criteria and assumptions delineated in Section 1.6.

1.1 Low River Conditions

			Mississippi River			Mississippi River
	St. Louis Gauge	St. Louis Gauge	Elevation at the	Chester Gauge	Chester Gauge	Elevation at the
Date	Height	Elevation	St. Louis Gauge	Height	Elevation	Chester Gauge
Units	FT Above Gauge	FT MSL	FT MSL	FT Above Gauge	FT MSL	FT MSL
1/1/2013	-4.55	379.58	375.03	-1.12	340.72	339.6

Notes:

1) FT MSL - feet above mean sea level.

2) Information on the St. Louis Gauge available at https://waterdata.usgs.gov/usa/nwis/uv?07010000.

3) Information on the Chester Gauge available at https://waterdata.usgs.gov/il/nwis/uv?site_no=07020500.

		Distance			
Mississippi River	Mississippi River	Between St. Louis	Estimated	Distance from St.	Estimated
Elevation at the	Elevation at the	and Chester	Mississippi River	Louis Gauge to	Mississippi River
St. Louis Gauge	Chester Gauge	Gauges	Gradient	RIEC	Elevation at RIEC
FT MSL	FT MSL	River Miles	feet/feet	River Miles	FT MSL
375.0	339.6	70.1	0.00010	40.0	355

1) Estimated Mississippi River level calculated by subtracting the gradient of the Mississippi River multiplied by the distance from the St. Louis Gauge (in river feet) from the St. Louis Gauge Mississippi River elevation.

1.2 Aquifer Discharge Length and Area

Description	Value	Units
Estimated length of discharge zone	5,100	feet
Estimated top of discharge zone (low river conditions)	355	feet above mean sea level
Estimated bottom of discharge zone (Bedrock)	265	feet above mean sea level
Estimated thickness of discharge zone (Top - Bottom)	90	feet
Estimated area of discharge zone (length x thickness)	459,000	feet ²

CALCULATIONS

Date: 2-6-2018	Made by:	J. Ingram
Project No.: 130-1560	Checked by:	J. White/ E. Kidner
Subject: Rush Island Energy Center Dilution Factor Calculations	Reviewed by:	M.Haddock

1.3 Groundwater Properties

Description	Symbol	Value	Units
Average Hydraulic Conductivity (includes MW-1, MW-2, MW-3, P17I, P17D, P19I, P19D, P21I, and P21D)	К	83	feet/day
Average Groundwater Gradient (from GMP)	I	0.0007	feet/feet
Effective Porosity (from GMP)	n	35	%
Average linear groundwater velocity (V=KI/n)	V	0.17	feet/day

1.4 Groundwater Discharge

Description	Symbol	Value	Units
Average linear groundwater velocity	V	0.17	feet/day
Estimated Discharge zone area	А	459,000	feet ²
Effective Porosity (from GMP)	n	35	%
Estimated total GW Discharge (Q=V*A*n)	Q	26,668	feet ³ /day

1.5 Mississippi River Flow

Description	Value	Units
Estimated low Mississippi River		
Conditions (1/1/2013)	355	feet above mean sea level
Corresponding STL Discharge (1/1/2013)		
	56,400	feet ³ /sec
Seconds per Day	86,400	seconds/day
Estimated low Flow Daily Discharge (Discharge * seconds per day)	4,872,960,000	feet ³ /day

1.5 Dilution Factor at Low River Flow

Description	Values	Units
Estimated Daily Groundwater Discharge	26,668	feet ³ /day
Estimated Daily Groundwater Discharge	199,490	gallons/day
Estimated Daily River Flow	4,872,960,000	feet ³ /day
Estimated Daily River Flow	36,452,274,739	gallons/day
Estimated Dilution Factor (River / GW)	182,728 or >100,000	Unitless

CALCULATIONS

Date: 2-6-2018	Made by:	J. Ingram
Project No.: 130-1560	Checked by:	J. White/ E. Kidner
Subject: Rush Island Energy Center Dilution Factor Calculations	Reviewed by:	M.Haddock

1.6 List of Conservative Assumptions Used

1) Calculations are based on estimated flow rates under low flow river conditions. As an example, low flow values used for Rush Island are from January 1, 2013 which is the lowest value since 1989 and the 9th lowest in recorded history at the St. Louis Mississippi River gauge. Using river flow averages would greatly increase the dilution by an order of magnitude. Mississippi River data is available at

http://water.weather.gov/ahps2/hydrograph.php?wfo=lsx&gage=EADM7.

2) To simplify the calculations, the alluvial aquifer was assumed to consist of higher permeability sands, resulting in conservative (higher) estimates of groundwater discharge.

3) The calculations do not take into account any dilution from the alluvial aquifer itself. The river locally recharges the aquifer at varying rates depending on river stage. In addition, on a near continuous basis, groundwater flows from the bedrock aquifer into the shallow alluvial aquifer. All of these sources increase dilution within the alluvial aquifer.

Although these calculations use conservative assumptions which would serve to increase the dilution factor ratio, the calculated value for the dilution factor has been rounded down. This dilution factor ratio represents a worst case scenario and actual dilution factors are likely greater.