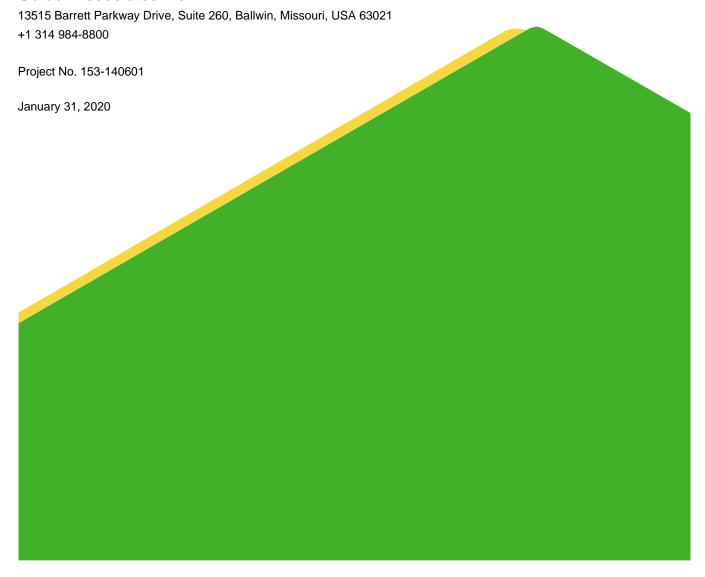


2019 Annual Groundwater Monitoring and Corrective Action Report

LCPA Surface Impoundment, Labadie Energy Center, Franklin County, Missouri, USA


Submitted to:

Ameren Missouri

1901 Chouteau Avenue, St. Louis, Missouri 63103

Submitted by:

Golder Associates Inc.

Table of Contents

1.0	INTR	ODUCTION	1
	1.1	Overview of CCR Rule Activities Prior to 2019	1
2.0		ACTIVITIES AND CURRENT STATUS OF THE LCPA GROUNDWATER MONITORING	1
3.0	INST	ALLATION OR DECOMMISSIONING OF MONITORING WELLS	2
4.0	GRO	UNDWATER SAMPLING RESULTS AND DISCUSSION	3
	4.1	Detection Monitoring Program	3
	4.2	Assessment Monitoring Program	3
	4.2.1	Nature and Extent Evaluation	4
	4.3	Groundwater Elevation, Flow Rate and Direction	4
	4.4	Sampling Issues	5
5.0	ACTI	VITIES PLANNED FOR 2020	5
TAE	BLES		
Tab Tab Tab Tab Tab Tab Tab	le 2 - S le 3 - S le 4 - N le 5 - A le 6 - N le 7 - N le 8 - A	CPA Groundwater Monitoring Programs Monitoring Wells ummary of Well Construction Details ummary of Groundwater Sampling Dates ovember 2018 Detection Monitoring Results pril-May 2019 Detection Monitoring Results ovember 2019 Detection Monitoring Results ovember 2018 Assessment Monitoring Results pril-October 2019 Assessment Monitoring Results ovember 2019 Assessment Monitoring Results	

FIGURES

Figure 1 - Site Location and Monitoring Well and Piezometer Locations Map

APPENDICES

APPENDIX A - Corrective Measures Assessment and Certification
APPENDIX B - Well Construction Diagrams
APPENDIX C - Laboratory Analytical Data
APPENDIX D - November 2018 Assessment Monitoring Statistical Evaluation
APPENDIX E - April-May 2019 Assessment Monitoring Statistical Evaluation
APPENDIX F - Nature and Extent Technical Memorandum
APPENDIX G - 2019 Potentiometric Surface Maps
APPENDIX H - UMW-6D Modification Records

1.0 INTRODUCTION

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§ 257.90(e)). Ameren Missouri (Ameren) has determined that the LCPA Surface Impoundment at the Labadie Energy Center (LEC) is subject to the requirements of the CCR Rule. This Annual Report for the LCPA describes CCR Rule groundwater monitoring activities from January 1, 2019 through December 31, 2019.

1.1 Overview of CCR Rule Activities Prior to 2019

The CCR Rule was published in the Federal Register on April 17, 2015. This rule required CCR surface impoundments and landfills to monitor groundwater around these CCR units. Prior to the first major deadline of October 17, 2017, Ameren completed the following tasks: (1) installation of a groundwater monitoring well system; (2) a Statistical Method Certification; (3) a Groundwater Monitoring Plan (GMP) that details design, installation, development, sampling procedures, as well as statistical methods; and (4) eight baseline groundwater sampling events for all Appendix III and Appendix IV parameters of the CCR Rule. In November 2017, the first Detection Monitoring event was completed. Results from this event demonstrated some Appendix III parameters were present at concentrations that were a Statistically Significant Increase (SSI) over background and were then verified in January 2018 testing. In accordance with the CCR Rule, Ameren placed a "Notification of the Establishment of a CCR Assessment Monitoring Program" and began Assessment Monitoring within 90 days. Results from the Assessment Monitoring events for the LCPA indicated the presence of molybdenum at a Statistically Significant Level (SSL) over the site-specific Groundwater Protection Standard (GWPS) in several of the compliance monitoring wells. As required, Ameren placed a "Notification of the Detection of Statistically Significant Levels Above CCR Groundwater Protection Standards" on its website and commenced an assessment of potential Corrective Measures.

2.0 2019 ACTIVITIES AND CURRENT STATUS OF THE LCPA GROUNDWATER MONITORING PROGRAM

The LCPA is currently in Corrective Action with Detection and Assessment Monitoring continuing concurrently. In 2019, Ameren Missouri completed a Corrective Measures Assessment (CMA). Due to the complexities of the site, the 60-day extension was used for the completion of the CMA. The CMA was placed on Ameren's publicly available website (Ameren's publicly available website is at: https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion) in May 2019 as required by the CCR Rule (§257.96(a)) and is provided in **Appendix A**. On May 29, 2019 Ameren held its public meeting on the findings of the CMA and accepted public comments. Ameren reviewed the comments and in August 2019 provided a response to the public comments, which is provided on Ameren's publicly available website. After reviewing the options from the CMA and public comments, on August 30, Ameren selected a final remedy of source control through installation of a low permeability cover system and use of Monitored Natural Attenuation (MNA). As required by the CCR Rule (§257.97(a)), a report discussing this remedy selection as well as a certification by a Professional Engineer was placed in the operating record. After selecting a remedy, a Corrective Action Groundwater Monitoring Program was established within 90 days as required by the CCR Rule (§257.98(a)). Certifications of the Corrective Action Statistical Analysis Plan (SAP) and Groundwater Monitoring System (GMS) are provided on Ameren's publicly available website. Additionally, Ameren began closure of the LCPA and placed a "Notification of Intent to Close a

CCR Unit and Certification for Final Cover Design System" onto its publicly available website. Detection and Assessment Monitoring continued on a semi-annual basis and the results are discussed in more detail below.

3.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS

There are currently two (2) different networks used for monitoring the LCPA, the monitoring well network established under §257.91 used for Detection and Assessment Monitoring and the network established under §257.98 used for Corrective Action Monitoring. **Table 1** (in text) provides a list of the monitoring wells used for each program and the location of the monitoring wells is provided in **Figure 1**. In addition, a summary of well construction details is provided in **Table 2**.

For the Detection and Assessment
Groundwater Monitoring Network, all but two
(2) monitoring wells are the same as in years
past. Well construction diagrams for the
previously used wells are provided in the
2017 and 2018 Annual Reports for this CCR
Unit. AM-1S and AM-1D (UMW-10S and
UMW-10D) were added to the network to
satisfy the requirements of §257.95(g)(1),
which required at least one (1) additional
monitoring well be installed at the
downgradient facility boundary. The well
construction diagrams for these wells can be
found in the 2018 Annual Report for this CCR
Unit.

The Corrective Action Groundwater Monitoring Program consists of wells that

Table 1 - LCPA Groundwater Monitoring Programs Monitoring Wells

Detection and Assessment Groundwater Monitoring Program Wells	Correctiv Ground Monitoring We	lwater Program
BMW-1D	TP-1D	BMW-1S
BMW-2D	TP-2M	BMW-2S
UMW-1D	TP-2D	LMW-1S
UMW-2D	TP-3M	LMW-2S
UMW-3D (R)	TP-3D	LMW-4S
UMW-4D	TP-4D	LMW-7S
UMW-5D	MW-33(D)	LMW-8S
UMW-6D	MW-34(D)	MW-24
UMW-7D	MW-35(D)	MW-26
UMW-8D	AMW-8	S-1
UMW-9D		
AM-1S (UMW-10S)	1	
AM-1D (UMW-10D)	1	

have been used for different monitoring programs. Well construction diagrams are provided for these monitoring wells as follows:

- BMW-1S, BMW-2S, LMW-1S, LMW-2S, LMW-4S, LMW-7S, LMW-8S, and MW-26 are in the 2017 Annual Reports for the LCPB and LCL1 CCR Units.
- TP-1D, TP-2M, TP-2D, TP-3M, TP-3D, TP-4D, and TP-5D are in the 2018 Annual Report for the LCPA CCR Unit.
- MW-33(D), MW-34(D), MW-35(D), AMW-8, MW-24 and S1 are used in a State Utility Waste Landfill or National Pollutant Discharge Elimination System (NPDES) monitoring programs and are provided in Appendix B.

No monitoring wells used for CCR Rule monitoring were abandoned in 2019.

4.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections review the sampling events completed for the LCPA CCR Unit in 2019. **Table 3** provides a summary of the groundwater samples collected in 2019 including the number of samples, the date of the sample collection, and the monitoring program for the samples. **Appendix C** provides laboratory analytical data for CCR Rule sampling events.

4.1 Detection Monitoring Program

A Detection Monitoring event was completed November 7-9, 2018. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2018 event were not completed until 2019 and are included in this report. Detections of Appendix III analytes triggered a verification sampling event, which was completed on January 2-3, 2019 and verified SSIs. **Table 4** summarizes the results and the statistical analysis of the November 2018 Detection Monitoring event.

A Detection Monitoring event was completed April 30-May 8, 2019, and testing was completed for all Appendix III analytes. Statistical analysis of the data determined that there were SSIs. Detections of Appendix III analytes triggered a verification sampling event, which was completed on August 21, 2019, following flooding (May-August). **Table 5** summarizes the results and the statistical analysis of the April-May 2019 Detection Monitoring event. UMW-10D (AM-1D) and UMW-10S (AM-1S) were added to the Detection and Assessment Monitoring Well Network for this event.

As outlined in the Statistical Analysis Plan for this site, updates to the statistical limits are completed once four (4) to eight (8) new sample results are available. During the statistical analysis of the April-May 2019 sampling event, the statistical limits used to determine an SSI were updated according to the Statistical Analysis Plan.

A Detection Monitoring event was completed November 5-7, 2019 and testing was performed for all Appendix III analytes. Statistical analyses to evaluate for SSIs in the November 2019 data were not completed in 2019 and this statistical evaluation will be included in the 2020 Annual Report. **Table 6** summarizes the results of the November 2019 Detection Monitoring event.

4.2 Assessment Monitoring Program

An Assessment Monitoring event was completed November 7-9, 2018 and testing was completed for Appendix IV parameters that were detected during the April 2018 sampling event. The statistical evaluation for this event was completed in 2019 and therefore is included in this report. **Table 7** summarizes the results of the November 2018 Assessment Monitoring event. Based on the results from the analysis, there were no new constituents or monitoring wells at which a SSL was detected for the LCPA. The results from this analysis and a table that displays the site-specific GWPS are provided in **Appendix D**. The SSLs for the LCPA continue to be:

Molybdenum at UMW-3D, UMW-4D, UMW-5D, UMW-6D, and UMW-7D

An Assessment Monitoring event was completed April 30-May 8, 2019, and testing was completed for all Appendix IV analytes. Statistical analysis of the data is provided in **Appendix E** and determined that there were no new SSLs. **Table 8** summarizes the results of the April-May 2019 Assessment Monitoring event. UMW-10D (AM-1D) and UMW-10S (AM-1S) were added to the Detection and Assessment Monitoring Well Network for this event.

During the statistical analysis of the April-May 2019 sampling event, the site specific GWPS used to determine SSLs were updated in accordance with the Statistical Analysis Plan.

Since the April-May 2019 event was the first Assessment Monitoring sampling event for monitoring wells UMW-10D (AM-1D) and UMW-10S (AM-1S), resampling for all detected Appendix IV parameters was completed in October 2019 and the results for this sampling event are included in the April-October 2019 sampling results shown in **Table 8**.

On November 5-7, 2019, the November 2019 Assessment Monitoring event was completed. This sampling event analyzed the Appendix IV constituents detected in groundwater during the initial assessment monitoring event of 2019 (detected parameters from the April-May 2019 event). **Table 9** summaries the results of the November 2019 Assessment Monitoring event; however, statistical analyses to evaluate for SSLs over GWPS were not completed in 2019. Results of the statistical evaluation will be included in the 2020 Annual Report.

Statistical evaluations to determine if there is a concentration at an SSL above the site GWPS at UMW-10D (AM-1D) and UMW-10S (AM-1S) were not completed in 2019. As outlined in the Statistical Analysis Plan for this site, a minimum of four (4) samples are required to complete an SSL statistical evaluation. Statistical analysis for these monitoring wells will begin with the analysis of the November 2019 data, and will be included in the 2020 Annual Report.

4.2.1 Nature and Extent Evaluation

As required by the CCR Rule, after an SSL is determined to be above the site GWPS, an investigation into the nature and extent of impacts to groundwater must be initiated. Groundwater sampling for nature and extent was completed with an initial event in November 2018 and a second event in April-August 2019. A technical memorandum summarizing the results is provided in **Appendix F**. Results from this investigation were used for the CMA, remedy selection, and to select the Corrective Action monitoring well network.

4.3 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps included in **Appendix G**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in water level of the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on the potentiometric surface maps, a general flow direction from the south (bluffs area) to the north (Missouri River) is observed under normal river conditions. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

Groundwater flow direction and hydraulic gradient were estimated for the monitoring wells at the LEC using commercially available software. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow at the LCPA is from the bluffs toward the river. Horizontal gradients calculated by the program range from 0.0001 to 0.0007 feet/foot with an estimated net annual groundwater velocity of approximately 17 feet per year in the prevailing downgradient direction.

4.4 Sampling Issues

In January 2019, upon data validation of the November 2018 sampling data, it was discovered that an error was made in the laboratory sample analysis of L-UMW-FB-2. It was determined that a laboratory error had occurred for the Total Metals, EPA Method 200.7. Based on analysis of the data, it was determined that the sampling results for L-UMW-5D were reported for this field blank; however, when this error was recognized the laboratory had disposed of the sample bottles and the samples could not be re-analyzed. Based on professional judgement, these values were omitted and not used for data validation purposes.

In May 2019, UMW-10S (AM-1S) was sampled. However, chloride was not analyzed for due to lab error. Chloride was tested in subsequent verification sampling. Verification sampling confirmed that chloride was not at a statistically significant increase over background in UMW-10S (AM-1S).

As a part of the May-August 2019 Nature and Extent sampling event, sample analysis for EPA methods 200.7 and 200.8 for L-UWL-FB-1 were not performed due to laboratory error. Reported values for L-UWL-FB-1 were mistakenly reported from L-MW-26, and no 200.7 and 200.8 samples were analyzed from L-UWL-FB-1. These values were determined to be incorrect based on review of the results and professional judgement. The incorrect values were not used for statistical analysis or data validation for the Nature and Extent data obtained from monitoring wells used to monitor the LCL1.

From approximately May to August 2019, some of the monitoring wells at the LEC were under water due to the flooding of the Missouri River. This caused a delay in the planned sampling dates of some of the monitoring wells. On July 19, July 26 and August 12, 2019 Golder performed post-flood monitoring well inspections at the LEC and found that only Nature and Extent piezometers TP-4S and TP-4M had been impacted by the flood. These piezometers were re-developed to remove floodwater impacts to the well prior to groundwater elevation measurements or the collection of groundwater samples. After successful re-development, TP-4S and TP-4M were returned to service.

In August 2019, the riser pipe and protective cover at UMW-6D was modified. This monitoring well was modified due to construction requirements associated with the closures of the LCPA and LCPB CCR units. This modification is temporary, and the final protective cover and modification will be completed in 2020 as the capping of the LCPA is completed. **Appendix H** provides the Missouri Department of Natural Resources (MNDR) variance used for the monitoring well modification.

No other notable sampling issues were encountered in 2019.

5.0 ACTIVITIES PLANNED FOR 2020

Detection and Assessment Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2020. Statistical analysis of the November 2019 Detection and Assessment Monitoring data will be completed in 2020 and included in the 2020 Annual Report.

Corrective Action sampling is also scheduled to begin in the second quarter of 2020. After the initial sampling event, a subsequent event for all Appendix III and detected Appendix IV parameters will be completed. A second semi-annual Corrective Action event for all Appendix III and the detected Appendix IV parameters is also scheduled to be completed in the fourth quarter 2020.

Tables

Table 2 Summary of Well Construction Details LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

Monitoring Well	Installation Date	Location		Casing Surface Screer Elevation Elevation Elevation			Base of Well	Total Depth
		Northing ¹	Easting ¹	(FT MSL) ²		(FT MSL) ²	(FT MSL) ²	(FT BGS) ³
			LE COMPLIAI					
UMW-1D	11/19/2015	988822.5	723129.4	489.72	487.8	407.6	397.4	90.4
UMW-2D	11/21/2015	990437.2	722248.6	484.81	482.7	412.7	402.5	80.3
UMW-3D	11/22/2015	991830.7	723558.8	490.62	488.8	408.3	398.1	90.6
UMW-3D (R)	10/25/2018	991823.5	723545.1	491.13	488.9	409.4	399.2	89.7
UMW-4D	11/24/2015	992512.3	724538.1	494.95	493.2	407.9	397.7	95.5
UMW-5D	11/23/2015	992027.2	725067.9	496.76	494.9	408.2	398.0	96.9
UMW-6D	11/22/2015	991382.8	725540.9	496.19	494.5	410.4	400.2	94.3
UMW-7D	11/20/2015	990722.8	726032.4	469.79	468.0	412.6	402.4	65.6
UMW-8D	11/19/2015	989892.7	725179.5	469.47	467.5	407.0	396.8	70.6
UMW-9D	11/19/2015	989220.0	724447.8	470.61	468.8	408.9	398.7	70.1
BMW-1D	2/1/2016	988310.6	715138.4	473.54	471.2	410.5	400.3	70.9
BMW-2D	2/2/2016	987204.3	715104.2	474.39	472.4	413.0	402.8	69.6
UMW-10S (AM-1S)	5/31/2018	995288.1	723817.1	483.00	480.2	454.8	444.6	35.6
UMW-10D (AM-1D)	5/31/2018	995298.6	723827.3	482.78	480.0	409.8	399.6	80.4
	CO	RRECTIVE AC	TION MONIT	ORING WEL	L NETWOR	.K		
BMW-1S	2/1/2016	988310.0	715131.6	473.49	471.2	450.7	440.5	30.7
BMW-2S	2/2/2016	987210.1	715104.3	474.56	472.5	454.6	444.4	28.1
LMW-1S	11/20/2015	990727.7	726039.1	470.06	468.1	454.5	444.3	23.8
LMW-2S	11/23/2015	992017.5	725074.2	496.64	494.9	445.8	440.6	54.3
LMW-4S	11/18/2015	994194.9	725624.1	472.88	470.7	448.3	438.1	32.7
LMW-7S	11/20/2015	992330.1	726371.1	468.43	466.7	453.4	443.2	23.5
LMW-8S	11/20/2015	991371.2	726351.3	467.24	465.2	452.2	442.0	23.2
MW-24	3/20/2013	991819.3	727992.3	467.10	464.6	457.3	447.1	17.5
MW-26	3/20/2013	993976.5	726910.9	469.20	466.7	456.4	446.2	20.5
S-1	4/5/2017	994676.8	726055.1	472.64	470.4	453.2	442.9	27.5
TP-1D	6/3/2018	997122.3	734100.3	469.09	465.8	380.1	375.0	90.8
TP-2M	6/2/2018	993865.6	722603.7	471.22	468.2	412.9	407.8	60.5
TP-2D	6/2/2018	993865.6	722603.7	471.22	468.2	374.6	369.5	98.7
TP-3M	6/17/2018	996343.6	725783.7	475.64	472.6	417.8	412.7	59.9
TP-3D	6/17/2018	996343.6	725783.7	475.63	472.6	382.5	377.4	95.2
TP-4D	6/13/2018	999139.8	728578.3	472.08	469.1	379.0	373.9	95.2
MW-33(D)	3/6/2014	995742.0	727409.0	472.15	469.4	402.1	391.9	77.5
MW-34(D)	2/25/2014	995561.0	728820.0	470.19	467.4	401.5	391.3	76.1
MW-35(D)	3/8/2014	992693.0	727536.0	468.59	465.9	398.5	388.3	77.6
AMW-8	6/13/2018	994225.9	726113.0	471.06	468.4	411.1	400.9	67.5

Notes:

- 1) Horizontal Datum: State Plane Coordinates NAD83 (2000) Missouri East Zone feet.
- 2) FT MSL- Feet above mean sea level.
- 3) FT BGS Feet below ground surface.
- 4) Vertical Datum: NAVD88 feet.

Prepared by: EMS Checked by: RJF Reviewed by: CMR

Table 3 Summary of Groundwater Sampling Dates LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

Labadie Ellergy Center, Franklin County, MO										
			Date of San	nple Collection						
Groundwater Monitoring Wells	January 2019 Verification Sampling	April-May 2019 Assessment/ Detection Monitoring Sampling	May-August 2019 Nature and Extent Sampling	August - October 2019 Verification/ Assessment Monitoring Sampling	November 2019 Assessment/ Detection Monitoring Sampling	Total Number of Samples				
	CCR	Rule Complian	ce Monitoring	Well Network						
BMW-1D	-	5/1/2019	-	-	11/5/2019	2				
BMW-2D	-	5/1/2019	-	-	11/5/2019	2				
UMW-1D	1/2/2019	4/30/2019	-	8/21/2019	11/6/2019	4				
UMW-2D	-	5/1/2019	-	-	11/7/2019	2				
UMW-3D (R)	1/3/2019	4/30/2019	-	8/21/2019	11/7/2019	4				
UMW-4D	1/3/2019	4/30/2019	-	-	11/7/2019	3				
UMW-5D	1/3/2019	4/30/2019	-	-	11/7/2019	3				
UMW-6D UMW-7D	-	4/30/2019 5/2/2019	-	-	11/7/2019 11/6/2019	2				
UMW-8D	1/2/2019	4/30/2019		8/21/2019	11/6/2019	4				
UMW-9D	-	4/30/2019		8/21/2019	11/6/2019	3				
UMW-10D (AM-1D)	-	5/8/2019	_	10/16/2019	11/7/2019	3				
UMW-10S (AM-1S)	_	5/8/2019	-	10/16/2019	11/7/2019	3				
			Extent Invest							
BMW-1S	-	-	5/1/2019	-	-	1				
BMW-2S	-	-	5/1/2019	-	-	1				
LMW-1S	-	-	5/1/2019	-	=	1				
LMW-2S	-	-	4/30/2019	-	-	1				
LMW-3S	-	-	5/2/2019	-	-	1				
LMW-4S	-	-	5/1/2019	-	-	1				
LMW-5S	-	-	5/1/2019	-	-	1				
LMW-6S	-	-	5/8/2019	-	-	1				
LMW-7S	-	-	5/8/2019	-	-	1				
LMW-8S MW-26	-	-	5/2/2019	-	-	1				
TMW-1	-	-	5/8/2019 5/2/2019	-	-	1				
TMW-2	-		5/2/2019		-	1				
TMW-3	-	-	5/8/2019	_	_	1				
L-TP-1D	-	-	5/8/2019	-	-	1				
L-TP-1M	_	_	5/8/2019	_	_	1				
L-TP-1S	-	-	5/8/2019	-	-	1				
L-TP-2D	-	-	8/20/2019	-	-	1				
L-TP-2M	=	-	8/20/2019	-	=	1				
L-TP-2S	-	-	8/20/2019	-	-	1				
L-TP-3D	-	-	5/9/2019	-	-	1				
L-TP-3M	-	-	5/9/2019	-	-	1				
L-TP-3S	-	-	5/9/2019	-	-	1				
L-TP-4D	-	-	8/20/2019	-	-	1				
L-TP-4M	-	-	8/20/2019	-	-	1				
L-TP-4S		-	8/20/2019	-	-	1				
L-TP-5D L-TP-5M	-	-	5/9/2019 5/9/2019	-	-	1				
L-TP-5S	-	-	5/9/2019		-	1				
Detection or Assessment Monitoring	Detection	Assesment/ Detection	Assesment	Assessment/ Detection	Assessment/ Detection	NA				

Notes:

- 1.) Detection Monitoring Events tested for Appendix III Parameters.
- 2.) Verification Sampling Events tested for Appendix III Parameters with initial exceedances that have not alread verified.
- 3.) Assessment Monitoring Events tested for Appendix IV Parameters.
- 4.) "-" No sample collected.
- 5.) NA Not Applicable.

Table 4 November 2018 Detection Monitoring Results LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

		DDEDICTION	BACKG	ROUND			G	GROUNDWA	TER MONITO	ORING WELL	_S		
ANALYTE	UNITS	PREDICTION LIMITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D (R)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D
	November 2018 Detection Monitoring Event												
DATE NA NA 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/8/2018 11/9/2018 11/9/2018 11/9/2018 11/7/												11/7/2018	
рН	SU	6.634-7.617	7.17	7.36	7.13	7.59	8.87	8.25	9.62	8.68	7.47	7.58	7.48
BORON, TOTAL	μg/L	DQR	92.2 J	78.5 J	1,260	1,620	9,300	4,970	5,130	15,500	8,310	437	113
CALCIUM, TOTAL	μg/L	156,193	132,000	120,000	159,000	90,700	84,400	61,200	63,200	97,200	220,000	128,000	114,000
CHLORIDE, TOTAL	mg/L	18.10	11.2	6.3	16.0	24.1	18.6	21.2	19.0	21.2	14.5	11.3	20.7
FLUORIDE, TOTAL	mg/L	0.29	0.25	0.25	0.21	0.42	ND	0.49	ND	ND	0.29	0.23	0.21
SULFATE, TOTAL	mg/L	67.9	34.9	31.9	81.9	187	350	366	269	433	568	62.2	ND
TOTAL DISSOLVED SOLIDS	mg/L	579	550 J	427 J	556 J	1,080 J	600	1040	708	669	1,020 J	667 J	541 J
				Janu	uary 2019 Vo	erification Sa	ampling Eve	nt					
DATE	NA	NA			1/2/2019		1/3/2019	1/3/2019	1/3/2019			1/2/2019	
рН	SU	6.634-7.617			7.16		8.60	8.36	9.57			7.21	
BORON, TOTAL	μg/L	DQR											
CALCIUM, TOTAL	μg/L	156,193		_	168,000	_	_			_	_	_	_
CHLORIDE, TOTAL	mg/L	18.10		_	_	_	17.7			_	_	_	_
FLUORIDE, TOTAL	mg/L	0.29											
SULFATE, TOTAL	mg/L	67.9			83.5								
TOTAL DISSOLVED SOLIDS	mg/L	579						625	531			576	

NOTES:

- 1. Unit Abbreviations: μ g/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.
- 7. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 8. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 9. Only analytes/wells that were detected above the prediction limit and that had not already been verified were tested during Verification Sampling.

Prepared By: JSI/RJF Checked By: EMS Reviewed By: CMR

Table 5 April-May 2019 Detection Monitoring Results LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

			BACKG	ROUND				(GROUNDWA	TER MONITO	ORING WELL	_S			
ANALYTE	UNITS	PREDICTION LIMITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D (R)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D	UMW-10S (AM-1S)	UMW-10D (AM-1D)
	April-May 2019 Detection Monitoring Event														
DATE	NA	NA	5/1/2019	5/1/2019	4/30/2019	5/1/2019	4/30/2019	4/30/2019	4/30/2019	4/30/2019	5/2/2019	4/30/2019	4/30/2019	5/8/2019	5/8/2019
рН	SU	6.33-7.50	6.82	6.35	6.24	6.66	8.43	7.29	9.34	8.33	6.99	6.24	6.23	5.81	6.52
BORON, TOTAL	μg/L	100.2	82.0 J	81.8 J	555	1,210	9,590 J	3,680	5,400	15,600	7,030	532	97.3 J	374	6,900
CALCIUM, TOTAL	μg/L	150,626	120,000	137,000	127,000	83,400	84,000 J	67,700	68,000	103,000	213,000	135,000	116,000	172,000 J	83,700
CHLORIDE, TOTAL	mg/L	17.72	12.3	10.4	12.6	22.1	18.8	24.3	19.8	21.8	13.9	10.9	23.0	NC	37.7
FLUORIDE, TOTAL	mg/L	0.2919	0.18 J	0.17 J	0.18 J	0.35	0.15 J	0.29	0.095 J	ND	0.13 J	0.16 J	0.14 J	0.13 J	0.35
SULFATE, TOTAL	mg/L	64.6	32.1	34.5	7.3	206	350	386	264	426	422	13.3	ND	17.6	332
TOTAL DISSOLVED SOLIDS	mg/L	577.8	492	506	559	547	579	657	503	758	1,030	531	473	931	752
					Augu	st-October '	Verification :	Sampling Ev	ent						
DATE	NA	NA			8/21/2019		8/21/2019					8/21/2019	8/21/2019	10/16/2019	10/16/2019
рН	SU	6.33-7.50			6.78		8.60					6.55	6.51	6.35	7.36
BORON, TOTAL	μg/L	100.2												200	6,540
CALCIUM, TOTAL	μg/L	150,626												231,000	
CHLORIDE, TOTAL	mg/L	17.72					21.2							7.8	35.8
FLUORIDE, TOTAL	mg/L	0.2919													0.38
SULFATE, TOTAL	mg/L	64.6													275
TOTAL DISSOLVED SOLIDS	mg/L	577.8												783	684

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 7. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 8. Only analytes/wells that were detected above the prediction limit and that had not already been verified were tested during Verification Sampling.
- 9. NC Not collected.

Prepared By: JSI/RJF Checked By: EMS

Reviewed By: CMR

Table 6 November 2019 Detection Monitoring Results LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

		BACKG	ROUND				G	GROUNDWA [*]	TER MONITO	ORING WELL	.S			
ANALYTE	UNITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D (R)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D	UMW-10S (AM-1S)	UMW-10D (AM-1D)
					Novembe		ction Monit	oring Event					(7 (14) 13)	(71171 12)
DATE	NA	11/5/2019	11/5/2019	11/6/2019	11/7/2019	11/7/2019	11/7/2019	11/7/2019	11/7/2019	11/6/2019	11/5/2019	11/6/2019	11/7/2019	11/7/2019
рН	SU	7.15	7.31	7.28	7.58	8.76	8.20	9.31	8.90	7.30	7.10	7.31	6.81	7.73
BORON, TOTAL	μg/L	82.3 J	65.6 J	1,340	1,010	9,090	4,810	10,200	13,200	11,000	1,680	106	242	7,010
CALCIUM, TOTAL	μg/L	124,000	124,000	130,000 J	85,000	119,000	90,000	96,100	118,000	266,000 J	143,000	119,000	218,000	87,800
CHLORIDE, TOTAL	mg/L	9.4	10.1	14.1	21.8	21.5	20.0	22.1	20.0	17.4	13.6	20.7	7.9	36.9
FLUORIDE, TOTAL	mg/L	0.23	0.25	0.24	0.34	ND	0.27	0.12 J	0.091 J	0.16 J	0.20 J	0.19 J	0.15 J	0.31
SULFATE, TOTAL	mg/L	12.2	28.2	86.0	172	298	410	292	504	992	227	ND	78	302
TOTAL DISSOLVED SOLIDS	mg/L	446	456	634	545	661	811	590	864	1,560	677	459	826	726

NOTES:

- 1. Unit Abbreviations: $\mu g/L$ micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.

Prepared By: RJF Checked By: TJG

Reviewed By: CMR

Table 7
November 2018 Assessment Monitoring Results
LCPA Surface Impoundment
Labadie Energy Center, Franklin County, MO

ANALYTE	LINUTC	BACKG	ROUND				GROUNDWA	TER MONITO	RING WELLS			
ANALYTE	UNITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D (R)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D
	Field Parameters											
DATE NA 11/7/2018 11/7/2018 11/7/2018 11/7/2018 11/8/2018 11/9/2018 11/8/2018 11/9/2018 11/9/2018 11/7/2018 11/7/2018 11/7/2018 11/7/2018											11/7/2018	
DISSOLVED OXYGEN	mg/L	0.17	0.11	0.15	0.11	1.35	1.19	0.12	0.99	0.71	0.64	1.45
рН	SU	7.17	7.36	7.13	7.59	8.87	8.25	9.62	8.68	7.47	7.58	7.48
REDOX POTENTIAL	mV	-40.7	-59.9	-55.1	-43.4	-44.2	108.8	-134.7	5.3	-96.7	-109.7	-110.2
SPECIFIC CONDUCTIVITY	mS/cm	0.60	0.51	0.79	0.61	0.76	0.82	0.51	0.94	1.29	0.86	0.79
TURBIDITY	NTU	1.74	3.31	0.31	1.35	3.91	3.52	0.13	3.89	3.89	4.26	4.10
				P	Appendix IV	Parameter	S					
ARSENIC, TOTAL	μg/L	0.90 J	33.5	69.5	1.8	1.7	0.16 J	16.1	15.4	20.7	24.3	34.5
BARIUM, TOTAL	μg/L	1,160	309	588	105	82.2	81.5	60.0	114	121	446	500
FLUORIDE, TOTAL	mg/L	0.25	0.25	0.21	0.42	ND	0.49	ND	ND	0.29	0.23	0.21
LITHIUM, TOTAL	μg/L	29.6	39.3	32.6	21.9	13.4	33.2	12.9	5.2 J	25.0	31.4	16.4
MOLYBDENUM, TOTAL	μg/L	ND	2.0 J	1.2 J	40.9	206	107	151	591	231	15.5 J	ND
RADIUM [226 + 228]	pCi/L	4.140	ND	4.330 J	1.839	ND	1.075	ND	0.987	ND	ND	ND

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units, pCi/L picocuries per liter, mV millivolts, mS/cm millisiemens per centimeter, NTU nephelometric turbidity unit.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.
- 6. Statistical Analysis for the Assessment Monitoring data is provided in Appendix D.

Table 8

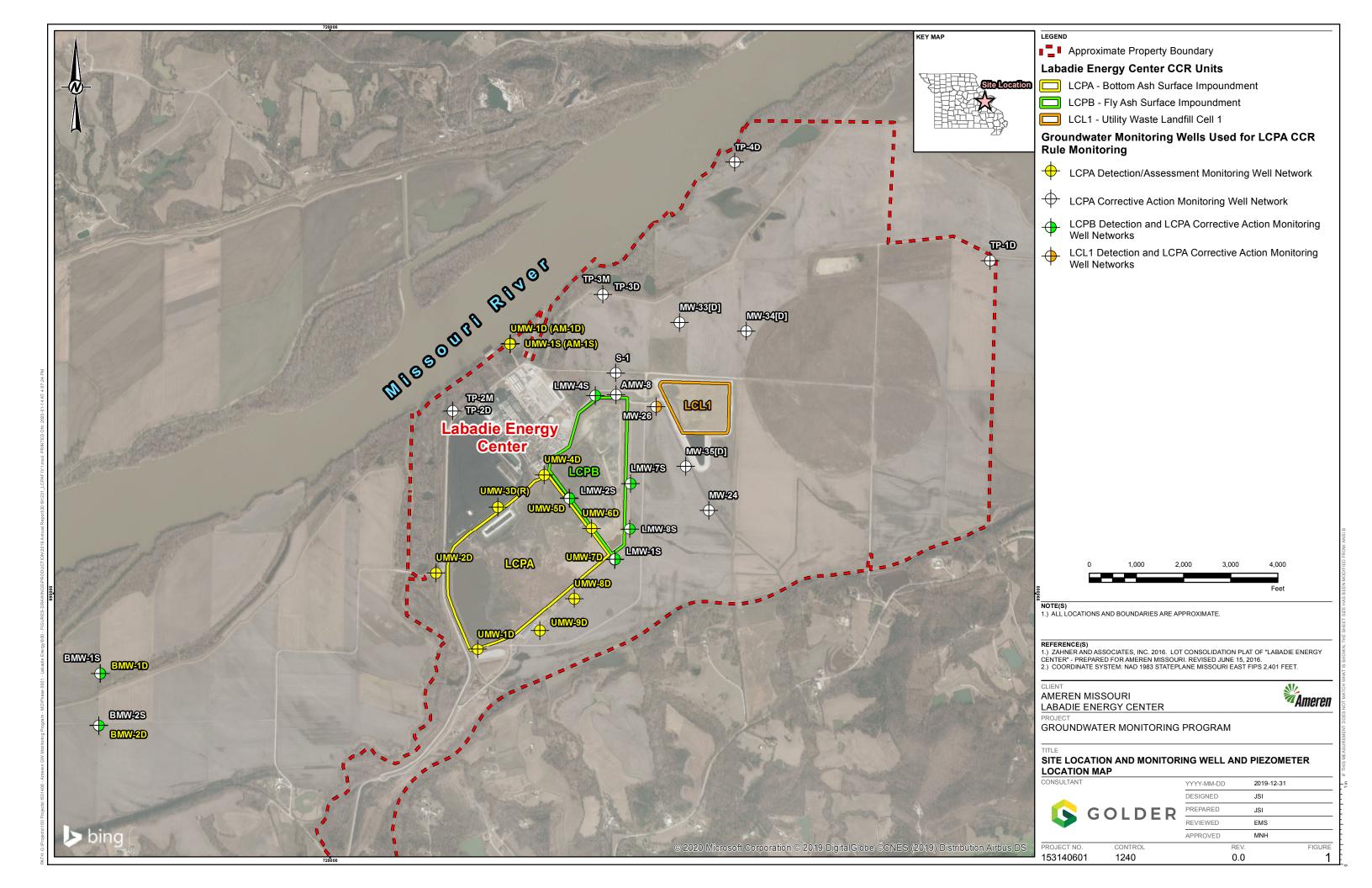
April-October 2019 Assessment Monitoring Results LCPA Surface Impoundment

Labadie Energy Center, Franklin County, MO

		BACKGI	ROUND						GROUNDWA	TER MONITO	RING WELLS					
ANALYTE	UNITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D(R)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D	AM-1S	AM-1D	AM-1S	AM-1D
							Field P	arameters								
DATE	NA	5/1/2019	5/1/2019	4/30/2019	5/1/2019	4/30/2019	4/30/2019	4/30/2019	4/30/2019	5/2/2019	4/30/2019	4/30/2019	5/8/2019	5/8/2019	10/16/2019	10/16/2019
DISSOLVED OXYGEN	mg/L	0.72	0.15	0.15	0.17	6.42	0.14	0.76	1.20	0.82	0.21	0.17	0.10	0.19	0.22	0.30
pН	SU	6.82	6.35	6.24	6.66	8.43	7.29	9.34	8.33	6.99	6.24	6.23	5.81	6.52	6.35	7.36
REDOX POTENTIAL	mV	-114.7	53.4	29.4	99.2	-165.8	93.3	-175.1	-211.6	-136.4	-27.4	-57.3	79.9	-1.9	166.5	-20.6
SPECIFIC CONDUCTIVITY	mS/cm	0.65	0.50	0.72	0.59	0.62	0.77	0.57	0.97	1.36	0.73	0.65	1.11	0.81	1.32	0.99
TURBIDITY	NTU	2.42	1.64	1.82	4.02	1.03	1.61	1.18	1.98	1.90	1.93	3.93	4.62	1.95	3.76	4.31
							Appendix	V Parameter	S							
ANTIMONY, TOTAL	μg/L	ND	ND	0.082 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
ARSENIC, TOTAL	μg/L	0.94 J	29.8	34.7	1.8	4.6	0.13 J	16.7	17.3	20.3	27.5	32.2	2.9	2.7	3.0	2.3
BARIUM, TOTAL	μg/L	941	353	421	95.5	68.1	88.6	64.0	115	126	438	479	551	63.6	537	72.6
BERYLLIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.37 J	ND	ND	ND	0.26 J	-	-
CADMIUM, TOTAL	μg/L	ND	ND	ND	ND	0.10 J	0.050 J	0.078 J	0.27 J	0.082 J	ND	ND	ND	0.16 J	-	-
CHROMIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.28 J	ND	ND	0.091 J	0.19 J	-	-
COBALT, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5 J	ND	-	
FLUORIDE, TOTAL	mg/L	0.18 J	0.17 J	0.18 J	0.35	0.15 J	0.29	0.095 J	ND	0.13 J	0.16 J	0.14 J	0.13 J	0.35	0.25	0.38
LEAD, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	
LITHIUM, TOTAL	μg/L	26.6	40.6	24.8	22.8	18.0	33.3	16.7	9.2 J	20.8	32.8	15.9	33.8	36.1	23.4	37.0
MERCURY, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-
MOLYBDENUM, TOTAL	μg/L	ND	ND	ND	43.4	202	83.4	157	593	208	16.7 J	ND	2.9 J	370	ND	345
RADIUM [226 + 228]	pCi/L	3.380	ND	1.873	1.593	ND	ND	ND	ND	ND	2.690	ND	1.46	2.32 J	ND	ND
SELENIUM, TOTAL	μg/L	ND	ND	0.11 J	0.11 J	0.16 J	ND	0.14 J	0.24 J	0.089 J	ND	ND	ND	0.13 J	-	
THALLIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-

NOTES:

- 1. Unit Abbreviations: µg/L micrograms per liter, mg/L milligrams per liter, SU standard units, pCi/L picocuries per liter, mV millivolts, mS/cm millisiemens per centimeter, NTU nephelometric turbidity unit.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.
- 6. Statistical Analysis for the Assessment Monitoring data is provided in Appendix E.
- 7. "-" Not Sampled.


Table 9
November 2019 Assessment Monitoring Results
LCPA Surface Impoundment
Labadie Energy Center, Franklin County, MO

ANALYTE	UNITS	BACKG	ROUND				GRC	UNDWAT	ER MONIT	ORING W	ELLS			
ANALTIE	UNITS	BMW-1D	BMW-2D	UMW-1D	UMW-2D	UMW-3D(r)	UMW-4D	UMW-5D	UMW-6D	UMW-7D	UMW-8D	UMW-9D	AM-1S	AM-1D
	Field Parameters													
DATE NA 11/5/2019 11/5/2019 11/6/2019 11/6/2019 11/7/2019 11/7/2019 11/7/2019 11/7/2019 11/7/2019 11/7/2019 11/5/2019 11/5/2019 11/6/2019 11/7/2019 11/7/2019														
DISSOLVED OXYGEN	mg/L	0.58	0.12	0.18	0.24	1.39	0.20	0.16	0.19	0.18	0.59	0.14	0.22	0.56
рН	SU	7.15	7.31	7.28	7.58	8.76	8.20	9.31	8.90	7.30	7.10	7.31	6.81	7.73
REDOX POTENTIAL	mV	-137.0	-141.6	127.7	-188.7	-116.4	159.2	126.4	128.4	-178.3	-142.3	96.2	113.5	104.0
SPECIFIC	mS/cm	0.812	0.781	1.110	0.857	0.923	1.210	0.840	1.200	1.994	1.029	0.850	1.360	1.060
TURBIDITY	NTU	4.88	9.53	0.82	3.63	2.12	1.32	1.05	2.98	4.09	1.52	1.27	3.34	2.80
					Арре	endix IV Pa	arameters							
ARSENIC, TOTAL	μg/L	1.9	44.2	49.7	1.5	52.1	0.14 J	11.9	29.0	24.1	30.5	35.6	3.7	4.0
BARIUM, TOTAL	μg/L	1,120	321	502	101	105	119	88.4	131	131	431	536	527	75.6
FLUORIDE, TOTAL	mg/L	0.23	0.25	0.24	0.34	ND	0.27	0.12 J	0.091 J	0.16 J	0.20 J	0.19 J	0.15 J	0.31
LITHIUM, TOTAL	μg/L	30.3	41.1	24.8	26.8	20	32.9	35.9	16.8	18.8	34.4	16.8	28.2	38.6
MOLYBDENUM, TOTAL	μg/L	ND	ND	6.9 J	40.7	168	120	263	535	342	29.1	ND	ND	390
RADIUM [226 + 228]	pCi/L	2.212	ND	2.197 J	ND	ND	ND	ND	1.197	ND	ND	ND	ND	1.446

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units, pCi/L picocuries per liter, mV millivolts, mS/cm millisiemens per centimeter, NTU nephelometric turbidity unit.
- 2. J Result is an estimated value.
- 3. ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.
- 4. NA Not applicable.
- 5. Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.

Figures

APPENDIX A

Corrective Measures Assessment and Certification

HALEY & ALDRICH, INC. 6500 Rockside Road Suite 200 Cleveland, OH 44131 216.739.0555

MEMORANDUM

April 2019

Project No. 132002

SUBJECT: Demonstration for 60-Day Extension – Corrective Measures Assessment (CMA)

Coal Combustion Residual (CCR) Surface Impoundment (LCPA)

Ameren Missouri Labadie Energy Center

Franklin County, Missouri

Pursuant to CFR Title 40 Chapter I Subchapter I Part 257 Subpart D §257.96(a) (CCR Rule), I certify that Ameren Missouri, St. Louis, Missouri (Ameren) has demonstrated the need for additional time beyond the regulatory time period of 90 days to complete the assessment of corrective measures due to site-specific conditions and the evaluation of remedial treatment alternatives in support of an informed CMA process.

In the case of the assessment for the LCPA unit, the site has complex hydrogeological conditions. In addition, Ameren is in the process of reviewing possible groundwater remedies, and ongoing discussions with third-party experts regarding effectivity and implementation of critical steps in the treatment and remedy assessment process. Based on these site-specific conditions and related groundwater treatment alternatives evaluations in support of the CMA by Ameren, the CCR Rule allows for a 60-day extension to complete the CMA process.

This certification as submitted, is to the best of my knowledge, accurate and complete.

Signed:

Certifying Engineer

Print Name: Steven F. Putrich, P.E.

Missouri License No.: 2014035813

Title: CCR Practice Lead, Senior Consulting Engineer

Company: Haley & Aldrich, Inc.

Professional Engineer's Seal

CORRECTIVE MEASURES ASSESSMENT AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

by Haley & Aldrich, Inc. Cleveland, Ohio

for Ameren Missouri St. Louis, Missouri

May 2019

Overview

This Corrective Measures Assessment (CMA) was prepared by Haley & Aldrich, Inc. (Haley & Aldrich) for Union Electric Company d/b/a Ameren Missouri (Ameren) for the Coal Combustion Residual (CCR) surface impoundment (LCPA) located at the Ameren Labadie Energy Center (LEC). The LEC is a coal-fired power plant located along the Missouri River in Franklin County, Missouri. The CMA was completed in accordance with requirements stated in the U.S. Environmental Protection Agency's (USEPA) rule entitled *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities*. 80 Fed. Reg. 21302 (Apr. 17, 2015) (promulgating 40 CFR §257.61); 83 Fed. Reg. 36435 (July 30, 2018) (amending 40 CFR §257.61) (CCR Rule).

Ameren implemented groundwater monitoring under the CCR Rule through a phased approach to allow for a graduated response and evaluation of steps to address groundwater quality. Assessment monitoring completed in 2018 evaluated the presence and concentration of constituents in groundwater specified in the CCR Rule (i.e. Appendix IV). Of the 23 CCR parameters evaluated, only one constituent of concern (COC), molybdenum, exceeded the Groundwater Protection Standards (GWPS) established for the LCPA in a very limited number of wells and to a limited extent. As described in **Section 3.3.1**, 96% of Appendix IV parameters tested comply with CCR Rule requirements.

Ameren completed a detailed environmental evaluation of the LCPA and surrounding area, including voluntary, supplemental surface water sampling and bedrock groundwater sampling. In 2018, a risk evaluation was undertaken to identify whether current groundwater conditions pose an unacceptable risk to human health and the environment, and whether corrective measures mitigate such an unacceptable risk, if present. The risk evaluations concluded that there are **no adverse effects on human health or the environment currently or under reasonably anticipated future uses** from either surface water or groundwater due to CCR management practices at LEC.

In performing this CMA, Haley & Aldrich considered the following: presence and distribution of molybdenum, LCPA configuration, hydrogeologic setting, and the results of the detailed risk evaluation. Within the LCPA, CCR is managed in an impoundment that extends to a depth of approximately 100 feet (ft) below ground surface (bgs). Groundwater within the Missouri River valley ranges in thickness from 0 ft thick at the aquifer pinch-out along the bedrock bluff to the south of the LCPA near the railroad, to up to greater than 120 ft thick where the sedimentary bedrock surface has been eroded by the Missouri River. Although flow direction is influenced by elevation changes of surface water in the Missouri River, groundwater generally/predominantly flows from the south to north beneath the LCPA, towards the Missouri River.

To provide a comprehensive CMA, this effort included surface impoundment closures and groundwater remediation alternatives, including:

- Alternative 1: Closure in place (CIP) with low permeability capping and monitored natural attenuation (MNA);
- Alternative 2: CIP with in-situ stabilization (ISS), low permeability capping and MNA;
- Alternative 3: CIP with low permeability capping and in-situ groundwater treatment;
- <u>Alternative 4</u>: CIP with low permeability capping, hydraulic containment (HC) of groundwater, and ex-situ groundwater treatment; and

Alternative 5: Closure by removal (CBR) with MNA.

These five alternatives were evaluated based on the threshold criteria provided in the CCR Rule and then compared to three of the four balancing criteria stated in the CCR Rule. The four balancing criteria consider:

- 1. The long- and short-term effectiveness and protectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful;
- 2. The effectiveness of the remedy in controlling the source to reduce further releases;
- 3. The ease or difficulty of implementing a potential remedy; and
- 4. The degree to which community concerns are addressed by a potential remedy.

Balancing criteria four, which considers community concerns, will be evaluated following a public information session scheduled for May 2019.

The following observations are made regarding closure scenarios and groundwater remedial alternatives for the LCPA and are described more fully in this report:

- Cap Integrity and Hydrogeologic Conditions: For all CIP alternatives, Ameren intends to install a
 geomembrane and soil cover system that exceeds, by two orders-of-magnitude, the
 performance criteria set forth in the CCR Rule and is referred to in this CMA as a "low
 permeability cap." Vertical infiltration via precipitation is virtually eliminated following
 installation of the geomembrane cover system. Modelling predicts that post-closure, 99% of
 groundwater travels horizontally around the unit via a preferential pathway in the surrounding
 soils.
- No Risk: Risk assessment evaluations confirm that the LCPA, even prior to closure, presents no unacceptable risk to human health or the environment. In fact, concentration levels of molybdenum would need to be more than 40,000 times higher, than currently measured levels before an adverse impact in the Missouri River could occur. Therefore, since no adverse risk currently exists, implementation of any of the remedies considered will not result in a meaningful reduction in risk.
- Groundwater Compliance: Molybdenum concentrations are predicted to reduce below GWPS within an estimated 22 years after closure due to geochemical conditions of the groundwater. Such timeframe reduces to approximately 16 years following in-situ treatment according to predictive modeling performed by Gredell Engineering Resourcing, Inc. (Gredell). See Figure 4-2. Ameren has retained XDD Environmental (XDD) to evaluate and develop groundwater treatment methods to address molybdenum and potentially accelerate this timeframe.
- Excavation Timeframe: As described in an Extraction & Transportation Study prepared by the Lochmueller Group (Lochmueller), removal of large volumes of stored CCR creates extensive logistical challenges including excavation, transportation, and disposal, and could take decades to complete during which time the impoundment would remain open and the would be subject to ongoing infiltration from precipitation.

- Groundwater Treatment: As noted, laboratory bench-scale testing and in-situ treatment
 evaluations are being performed by XDD. XDD expects to complete these evaluations this
 summer.
- Residential Supply Wells: Bedrock groundwater sampling performed to respond to expressed concerns about drinking water quality confirms that the LEC is not impacting the groundwater used for drinking water. Residential supply wells draw groundwater from the bedrock aquifer at depths of 500 to 700 ft bgs. The investigations demonstrate that the bedrock groundwater in the bluff area is upgradient of the LEC and all results meet drinking water standards. Even under extreme flood conditions, modeling confirms that such wells would not be impacted by CCR operations at the LEC.

In accordance with §257.98, Ameren will implement a groundwater monitoring program to document the effectiveness of the selected remedial alternative. Corrective measures are considered complete when monitoring reflects groundwater downgradient of the LCPA does not exceed the Appendix IV GWPS for three consecutive years. USEPA is in the process of modifying certain CCR Rule requirements and, depending upon the nature of such changes, assessments made herein could be modified or supplemented to reflect such future regulatory revisions. See *Federal Register (March 15, 2018; 83 FR 11584*).

Corrective Measures Assessment – Labadie Energy Center

Table of Contents

			Page
Ove	rview		i
List	of Tab	les	vi
List	of Figu	ıres	vi
List	of Acr	onyms and Abbreviations	vii
1.	Intr	oduction	1
	1.1	FACILITY DESCRIPTION/BACKGROUND	1
	1.2	SITE CHARACTERIZATION WORK SUMMARY	1
	1.3	GROUNDWATER MONITORING	2
	1.4	CORRECTIVE MEASURES ASSESSMENT PROCESS	3
	1.5	RISK REDUCTION AND REMEDY	3
2.	Gro	undwater Conceptual Site Model	5
	2.1	SITE SETTING	5
	2.2	SITE TOPOGRAPHY	5
	2.3	GEOLOGY AND HYDROGEOLOGY	5
	2.4	GROUNDWATER PROTECTION STANDARDS	8
	2.5	NATURE AND EXTENT OF GROUNDWATER IMPACTS	8
	2.6 2.7	SURFACE WATER SAMPLING BEDROCK WELL SAMPLING	8 9
	2.7	BEDROCK WELL SAIVIPLING	9
3.	Risk	Assessment and Exposure Evaluation	10
	3.1	APPROACH	10
	3.2	CONCEPTUAL SITE MODEL	11
	3.3	RESULTS	11
		3.3.1 Alluvial Aquifer	11
		3.3.2 Surface Water 3.3.3 National Pollutant Discharge Elimination System Outfall	12 12
		3.3.4 Off-Site Bedrock Groundwater	12
	3.4	CONCLUSION	12
	3.1	3.4.1 Trace Elements in Coal Ash	13
		3.4.2 Molybdenum	13
	3.5	EVALUATION OF RISK IN THE CORRECTIVE MEASURES ASSESSMENT	14
4.	Corı	rective Measures Alternatives	16
	4.1	CORRECTIVE MEASURES ASSESSMENT GOALS	16

Corrective Measures Assessment – Labadie Energy Center

Table of Contents

	Page
4.2 GROUNDWATER MODELING	16
4.3 GROUNDWATER TREATMENT EVALUATION	16
4.4 CORRECTIVE MEASURES ALTERNATIVES	17
4.4.1 Alternative 1 – Closure in Place with Capping and Monitored Natural	
Attenuation	17
4.4.2 Alternative 2 – CIP with In-Situ Stabilization, Capping and Monitored Nat	
Attenuation	18
4.4.3 Alternative 3 – CIP with Capping and In-Situ Groundwater Treatment	19
4.4.4 Alternative 4 – CIP with Capping and Hydraulic Containment Through	
Groundwater Pumping and Ex-Situ Treatment	19
4.4.5 Alternative 5 – Closure by Removal with Monitored Natural Attenuation	19
5. Comparison of Corrective Measures Alternatives	22
5.1 EVALUATION CRITERIA	22
5.2 COMPARISON OF ALTERNATIVES	22
5.2.1 The Long- and Short-Term Effectiveness and Protectiveness of the Poten	ntial
Remedy, along with the Degree of Certainty That the Remedy Will Prove)
Successful	22
5.2.2 The Effectiveness of the Remedy in Controlling the Source to Reduce Fur	rther
Releases	27
5.2.3 The Ease or Difficulty of Implementing a Potential Remedy	28
6. Summary	32
References	33
Tables Figures Appendix A Surface Water Screening Tables	
Appendix A – Surface Water Screening Tables Appendix B – What You Need to Know About Molyhdenum	

Appendix C – Extraction and Transportation Study

List of Tables

Table No. Title

I Groundwater Analytical Results – Appendix IV Constituents

List of Figures

Figure No.	Title
1-1	Site Location Map
1-2	Site Features
2-1	Monitoring Well Locations
2-2	Surface Water Sampling Locations
2-3	Bedrock Monitoring Well Locations
4-1	Remedial Alternatives Roadmap
4-2	Modeled Molybdenum Concentrations After Capping and Closing the LCPA

List of Acronyms and Abbreviations

Ameren Ameren Missouri
AMSL Above Mean Sea Level
bgs Below Ground Surface
CBR Closure by Removal

CCR Coal Combustion Residuals

CIP Closure In-Place

CMA Corrective Measures Assessment

cm/sec Centimeters per Second
COC Constituents of Concern
CSM Conceptual Site Model
DSI Detailed Site Investigation

ft Feet

Golder Golder Associates Inc.

GMP Groundwater Monitoring Plan
Gredell Gredell Engineering Resources, Inc.
GWPS Groundwater Protection Standards

Haley & Aldrich Haley & Aldrich, Inc.
HC Hydraulic Containment
ISS In-Situ Solidification

LCPA Bottom Ash Surface Impoundment LCPB Fly Ash Surface Impoundment Utility Waste Landfill Cell 1 LCL1 LEC Labadie Energy Center Lochmueller Lochmueller Group MM CY Million Cubic Yards mg/kg Milligrams per kilogram mg/l Milligrams per liter

MNA Monitored Natural Attenuation

N&E Nature and Extent

NAS U.S. National Academy of Sciences
O&M Operations and Maintenance
ORP Oxidation Reduction Potential

ppm Parts per Million

PRB Permeable Reactive Barrier
RDA Recommended Daily Allowance

RO Reverse Osmosis

SSI Statistically Significant Increase
SSL Statistically Significant Level

ug/L Micrograms per liter
UL Tolerable Upper Limit

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey XDD XDD Environmental

1. Introduction

Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this Corrective Measures Assessment (CMA) for the Coal Combustion Residual (CCR) surface impoundment (LCPA) located at the Ameren Missouri (Ameren) Labadie Energy Center (LEC) located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri. Ameren has conducted detailed geologic and hydrogeologic investigations under Missouri's utility and solid waste landfill requirements as well as the USEPA rule entitled *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities.* 80 Fed. Reg. 21302 (Apr. 17, 2015) (promulgating 40 CFR §257.61); 83 Fed. Reg. 36435 (July 30, 2018) (amending 40 CFR §257.61) (CCR Rule). These investigations were, in part, related to determination of requirements related to the potential for both LCPA closure and groundwater corrective action.

This CMA includes a summary of the results of groundwater and site investigations at the LEC. Groundwater impacted by the LCPA exceeds statistically-derived GWPS for only molybdenum at only five monitoring well locations. This report evaluates potential corrective measures to address the limited exceedances of the GWPS.

1.1 FACILITY DESCRIPTION/BACKGROUND

The LEC is located in rural Franklin County and surrounded by agricultural fields. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, and to the south by a railroad line and bedrock bluffs (Figure 1-1). The LCPA is an unlined impoundment approximately 165 acres in size and is the focus of this CMA. Directly northeast of the LCPA is the lined fly ash surface impoundment (LCPB). East of LCPB is the utility waste landfill (UWL) used for managing dry CCR. Site features are illustrated on Figure 1-2.

Both fly ash and bottom ash have been historically managed in this LCPA.

Labadie Energy Center

Construction drawings indicate that the base depth of CCR in the LCPA extends down approximately 100 ft bgs in the deepest portions of the unit. Over the past 17 years, Ameren has been able to beneficially use 64% of the bottom ash material with the remaining managed in the LCPA. The estimated volume of CCR currently within the limits of the LCPA is approximately 17.3 million cubic yards (MM CY). Ameren is constructing wastewater treatment facilities and will terminate usage of the impoundment system in September 2019 and commence closure of both the lined (LCPB) and unlined (LCBA) impoundments shortly thereafter.

1.2 SITE CHARACTERIZATION WORK SUMMARY

Extensive subsurface investigations have occurred pursuant to Missouri's utility and solid waste landfill requirements as well as the CCR Rule. In addition, in 2012 Ameren voluntarily installed an off-site well network to confirm groundwater flow direction and bedrock water quality in response to community

concerns. Ameren also voluntarily conducted surface water sampling. In 2011, and as part of state permitting requirements for UWLs, Gredell and Reitz & Jens, Inc., prepared a Detailed Site Investigation (DSI) Report to characterize geology and hydrogeology conditions. Haley & Aldrich used, in part, the DSI to support the development of a hydrogeologic Conceptual Site Model (CSM). The DSI investigation included:

- Soil borings and sampling;
- Geotechnical testing;
- Rock coring;
- Well and piezometer installation;
- Slug testing; and
- Groundwater sampling.

The CSM has been further enhanced with ongoing CCR groundwater monitoring and supplemental subsurface investigation activities performed by Golder Associates, Inc. (Golder). Findings from these extensive and updated series of geologic, geotechnical, and hydrogeologic investigations including voluntary surface water sampling conducted, have produced a robust CSM that supports the CMA activities discussed in this report.

1.3 GROUNDWATER MONITORING

Groundwater monitoring under the CCR Rule occurs through a phased approach to allow for a graduated response (i.e., baseline, detection, and assessment monitoring as applicable) and evaluation of steps to address groundwater quality associated with a CCR unit. Golder prepared a Groundwater Monitoring Plan (GMP) as required by the CCR Rule. The GMP presents the design of the groundwater monitoring system, groundwater sampling and analysis procedures, and groundwater statistical analysis methods.

Monitoring wells were installed in November 2015 and February 2016 and includes two background wells (BMW-1D and BMW-2D) that are located off-site (west of the CCR unit) and nine downgradient monitoring wells (UMW-1 through UMW-9) located around the perimeter of the LCPA. In general, the monitoring wells are screened in the alluvial aquifer zone near the base elevation of the LCPA.

Groundwater Monitoring Well Locations

Detection monitoring sampling events occurred in 2017 and 2018. The results of the sampling events were then compared to background, or natural groundwater values, using statistical methods to determine if Appendix III constituents at the base of the ash basin are present at concentrations above background, called statistically significant increases (SSI). Detection of Appendix III analytes triggered a verification sampling event in January 2018 and verified SSIs. The results of this analysis indicated SSIs necessitating the establishment of an Assessment Monitoring Program and respective notification of the same.

	CCR Rule Monitoring Constituents				
	Boron		Antimony		
■	Calcium		Arsenic		
×	Chloride		Barium		
enc	Fluoride		Beryllium		
Appendix III	Sulfate		Cadmium		
ď	рН	Appendix IV	Chromium		
	Tot. Dissolved Solids		Cobalt		
		bua	Fluoride		
		Арре	Lead		
			Lithium		
			Mercury		
			Molybdenum		
			Selenium		
			Thallium		
			Radium 226 & 228		

During the Assessment Monitoring

phase, CCR groundwater monitoring well samples were collected during April, May and November 2018 and subsequently analyzed for Appendix IV constituents. Appendix IV analytical results for the baseline and Assessment Monitoring events are summarized in **Table I**.

1.4 CORRECTIVE MEASURES ASSESSMENT PROCESS

The CMA process involves development of groundwater remediation technologies that will result in the following threshold criteria: protection of human health and the environment, attainment of GWPS, source control, COC removal and compliance with standards for waste management. Once these technologies are demonstrated to meet these criteria, they are then compared to one another with respect to long- and short-term effectiveness, source control, and implementability. Input from the community on such proposed measures will occur as part of a public meeting scheduled for May 2019.

1.5 RISK REDUCTION AND REMEDY

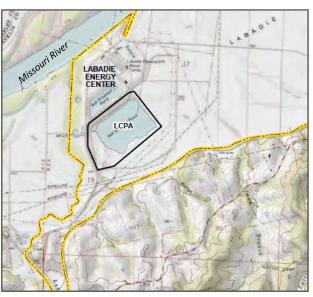
The CCR Rule at §257.97 (Selection of Remedy) at (b)(1) requires that remedies must be protective of human health and the environment. Further, at (c) the CCR Rule requires that in selecting a remedy, the owner or operator of the CCR unit shall consider specific evaluation factors, including the risk reduction achieved by each of the proposed corrective measures. Each of the evaluation factors listed here and discussed in **Section 4** are those that consider risk to human health or the environment.

- (1)(i) Magnitude of reduction of existing risks;
- (1)(ii) Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy;
- (1)(iv) Short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and re-disposal of contaminant;

- (1)(vi) Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment;
- (4) Potential risks to human health and the environment from exposure to contamination prior to completion of the remedy¹;
- (5)(i) Current and future uses of the aquifer;
- (5)(ii) Proximity and withdrawal rate of users; and
- (5)(iv) The potential damage to wildlife, crops, vegetation, and physical structures caused by exposure to CCR constituents.

¹ Factors 4 and 5 are not part of the CMA evaluation process as described in §257.97(d)(4), §257.97(d)(5)(i)(ii)(iv); rather they are factors the owner or operator must consider as part of the schedule for remedy implementation.

2. Groundwater Conceptual Site Model


To evaluate the magnitude of risk reduction, the degree of existing risk must first be identified. Prior risk evaluations and data collected are summarized below.

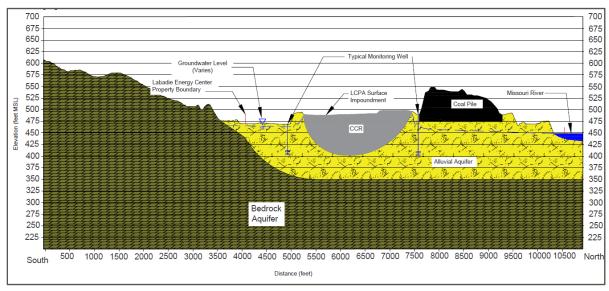
2.1 SITE SETTING

The LEC is located in Franklin County adjacent to the Missouri River within a wide area known as the Missouri River Bottoms. The facility is surrounded by agricultural fields. Residential homes are located in the bluffs to the south and there are no residential structures within the bottoms area. The LEC is connected to a public water supply provided by the town of Labadie, Missouri. Residences within the bluffs area draw water from private supply wells drilled deep into the bedrock aquifer.

2.2 SITE TOPOGRAPHY

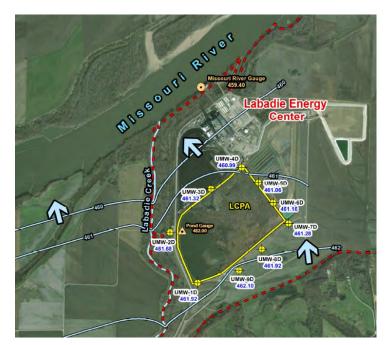
Ground surface elevation near the LEC ranges between roughly 468 ft to 495 ft above mean sea level (AMSL). A lined ash impoundment and a UWL are located northeast of the LCPA and all such CCR Units are protected by berms. The plant property was elevated during construction of the LEC and agricultural fields located to the south are at a lower elevation ranging from approximately 465 to 475 ft AMSL. South of bottoms, bedrock bluffs rise to an elevation of over 550 ft AMSL. The western side of the LCPA is bounded by Labadie Creek, which flows north to the Missouri River.

Topographic Map


2.3 GEOLOGY AND HYDROGEOLOGY

The geology immediately surrounding the LEC is composed of two distinctly different geological terrains; (1) floodplain deposits of the Missouri River Valley and (2) older sedimentary bedrock formations. The river valley in this region is an approximately 2 to 3-mile-wide area of floodplain with alluvial deposits (alluvium) that are the result of the water flow and deposition from the Missouri River². The alluvial aquifer varies in thickness from 0 ft thick at the aquifer pinch-out along the bedrock bluff to the South near the railroad, to up to greater than 120 ft thick where the sedimentary bedrock surface has been eroded by the Missouri River.

² 40 CFR Part 257, Groundwater Monitoring Plan LCPA, Labadie Energy Center, Franklin County, Missouri (Golder 2017)


The cross-section provides a depiction of the LCPA in relation to the bedrock and alluvial aquifers along with alluvial deposits consisting primarily of alluvial sands with some silt, clay, and gravel. This alluvium overlies Ordovician-aged sedimentary bedrock formations comprised of relatively flat-lying Ordovician-aged limestones, sandstones and dolomites.

Generalized Cross-Section
Image from Figure 3, Groundwater Monitoring Plan, LCPA LEC (Golder 2017)

Groundwater flow direction within the alluvium flows from the south (bluffs area) to the north (Missouri River) under normal river conditions. However, during periods of high river levels, groundwater can temporarily reverse flow until such time as the river surface elevation decreases. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs. Modelling performed by Golder confirms that even under the most extreme flood event (i.e. a flood of record lasting 55 days), such temporary reversal does not impact the bedrock aquifer from which residents draw water.

Groundwater flow direction and gradient were estimated for the

Groundwater Flow Map-November 7, 2018 Image from Figure C3, 2018 Annual Groundwater Monitoring and Corrective Action Report (Golder 2019)

downgradient CCR monitoring wells using the USEPA's On-line Tool for Site Assessment Calculation for Hydraulic Gradient (Magnitude and Direction) (USEPA, 2016). Results from this assessment indicate that

the overall net groundwater flow at the LCPA is from the bluffs toward the river^{3 4}. Horizontal gradients calculated by the program ranged from 0.0003 to 0.0006 ft/ft with an estimated net annual groundwater velocity of approximately 19 ft per year under current conditions⁵.

Vertical hydraulic gradients from areas away from the LCPA are relatively variable and fluctuate between upward and downward with no consistent vertical gradient present between shallow and deeper zones of the alluvial aquifer. Areas adjacent to the LCPA demonstrate a downward gradient. While results vary, overall gradients are typically downward ranging up to 0.4 ft difference between the groundwater levels. Vertical gradients within the LCPA and the underlying alluvial groundwater zone changes seasonally based on river levels and fluctuating alluvial aquifer groundwater levels.

Groundwater flow modeling completed by Gredell evaluated the flux of groundwater passing through the CCR, following closure and dewatering of the LCPA. As shown in the figure below, the model results indicated that over 99% of groundwater moving laterally through the alluvial aquifer preferentially flows under (and around) the LCPA, due to the notably lower horizontal hydraulic conductivity of the CCR.

Groundwater Preferentially Flows Under/Around the LCPA

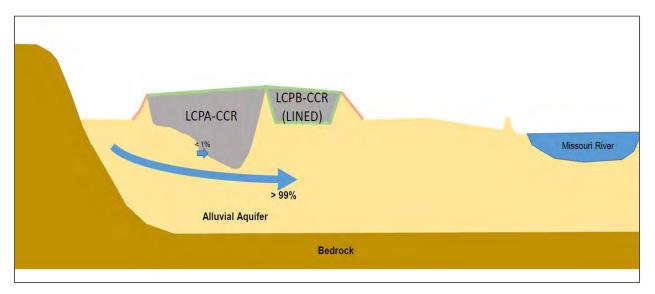


Image provided by Golder 2019

⁵ 2018 Annual Groundwater Monitoring and Corrective Action Report, LCPA Surface Impoundment, LEC, Franklin County, Missouri (Golder 2019)

³ Labadie Energy Center Groundwater Modeling Technical Memorandum (Golder 2015)

⁴ 2016 Ground and Surface Water Assessment Labadie Energy Center (Ferrara, R.A., 2016)

2.4 GROUNDWATER PROTECTION STANDARDS

Golder completed a statistical evaluation of groundwater samples using the methods and procedures outlined in the Groundwater Monitoring Plan's *Statistical Analysis Plan* (Golder 2017) to develop site-specific GWPS for each Appendix IV constituents.

Groundwater results were compared to the site-specific GWPS. Statistically significant levels (SSL) above the GWPS are limited to five monitoring wells (UMW-3D, UMW-4D, UMW-5D, UMW-6D and UMW-7D) and only for one parameter, molybdenum.

2.5 NATURE AND EXTENT OF GROUNDWATER IMPACTS

Ameren initiated a nature and extent (N&E) investigation as required by the CCR Rule in 2018 and installed additional monitoring wells and piezometers (N&E wells). The N&E wells are screened in three different, generalized zones of the alluvial aquifer: shallow zone, middle/intermediate zone, and deep zone. Well screen lengths range from 5 to 10 ft long and total depths range from approximately 24 to 98 ft bgs.

Parameter	Site GWPS	Units
Antimony	6	μg/L
Arsenic	42.6	μg/L
Barium	2000	μg/L
Beryllium	4	μg/L
Cadmium	5	μg/L
Chromium	100	μg/L
Cobalt	6	μg/L
Fluoride	4	mg/l
Lead	15	μg/L
Lithium	54.85	μg/L
Mercury	2	μg/L
Molybdenum	100	μg/L
Radium 226+228	5	pCi/L
Selenium	50	μg/L
Thallium	2	μg/L

Groundwater Protection Standards

ug/L - micrograms per liter

mg/l – milligrams per liter

pCi/L - picoCuries per liter

Analytical results from the N&E wells indicate that molybdenum concentrations are limited in their extent. In the shallow alluvial aquifer zone, the results from monitoring wells at the property boundary are below the GWPS. In the intermediate and deep alluvial aquifer zone, molybdenum concentrations are below the GWPS at nested wells located east of the LCPA (TP-1, TP-4 and TP-5). Results from wells to the north of the LCPA are above the GWPS (TP-2, TP-3 and AM-1D). Concentrations of molybdenum are highest in the intermediate and deep alluvial aquifer zone samples. Monitoring Well locations are show on **Figure 2-1**.

The extent of molybdenum above the GWPS is limited to the alluvial aquifer and does not extend into the bedrock beneath and adjacent to the LCPA or the offsite bedrock well network. Results from the N&E wells were used to develop corrective measures alternatives.

2.6 SURFACE WATER SAMPLING

The limited elevated levels of molybdenum have not impacted surface waters. Prior to the CCR Rule, Ameren voluntarily collected samples of surface water from the Missouri River and Labadie Creek to evaluate whether ash management operations at the LEC have impacted these surface water bodies. Surface water sampling locations for these events are shown on **Figure 2-2.**

Golder collected surface water samples from 12 locations in the Missouri River and six locations in Labadie Creek. At each sample location, shallow samples were collected near the surface of the river. Where the depth of water was greater than four feet, a second sample was collected mid-depth in the

river (referred to here as a deep sample). A total of 55 samples were collected from the Missouri River and a total of 12 samples were collected in Labadie Creek.

Samples were analyzed for the same Appendix III and Appendix IV constituents listed in **Section 1.3**, with the exception of radium (all CCR monitoring well data are below the GWPS for radium). Sample results were also compared to human health and ecological risk-based screening levels. The screening levels and comparison of the surface water results to the screening levels are provided in **Appendix A**.

In summary, the results of this investigation demonstrate that the Missouri River and Labadie Creek sampling **do not** show evidence of impact of CCR constituents including molybdenum⁶.

2.7 BEDROCK WELL SAMPLING

Ameren installed an off-site monitoring network to evaluate water quality within the bedrock aquifer and to confirm groundwater flow direction. In 2012 and 2014, Golder installed seven monitoring wells with screened intervals in bedrock at similar depths to residential water wells closest to the LEC property boundary (south of the LEC, in the bluff area). The bedrock groundwater monitoring well locations are shown on **Figure 2-3**. Bedrock groundwater sampling results **fully comply with federal and state drinking water standards.** See **Appendix A**.

ALDRICH

9

⁶ In some river samples, the concentrations of arsenic or lithium exceeded screening levels, however, the results are statistically **no different** in upstream and downstream samples indicating that the LCPA is not the source of the constituents detected in the rivers. At the LCPA, arsenic and lithium groundwater results comply with the CCR Rule's GWPS.

3. Risk Assessment and Exposure Evaluation

As described in this report, Ameren has conducted detailed environmental evaluations of the LEC and its environs. These investigations have been detailed in two risk evaluation reports available to the public on the Ameren website:

- January 2014: Groundwater and Surface Water Data Demonstrate No Adverse Human Health Impact from Coal Ash Management at the Ameren Labadie Energy Center. Available at: https://www.ameren.com/-/media/corporate https://www.ameren.com/-/media/corporate https://www.ameren.com/-/media/corporate https://www.ameren.com/-/media/corporate https://www.amerenlabadiereport.ashx?la=en&hash=3B8226534EAF26E0A90 https://www.amerenlabadiereport.ashx?la=en&hash=3B8226534EAF26E0A90
- February 2018: Human Health and Ecological Assessment of the Labadie Energy Center. Available at: <a href="https://www.ameren.com/-/media/corporate-site/files/environment/ccr-rule/2017/groundwater-monitoring/labadie-haley-aldrich-report.ashx?la=en&hash=76A0B8C34676EA9D3A7C8F61284917F50E02ED46

The purpose of the risk evaluations is to identify whether current groundwater conditions pose a risk to human health and the environment and, if so, whether the corrective measures identified in this report mitigate such risk.

3.1 APPROACH

The risk evaluation provided in the 2018 risk assessment report evaluated the environmental setting of the LEC, which has been in operation for 48 years, including its location and ash management operations at the facility. Golder provided information on groundwater location and direction, the rate(s) of groundwater flow, and where waterbodies may intercept groundwater flow.

A conceptual model was then developed based on this physical setting information and used to identify whether human populations could contact groundwater and/or surface water in the area of the facility. This information was also used to identify locations where ecological populations could come into contact with surface water. Based on this conceptual model approach, Ameren's environmental consultants and risk assessors identified sampling locations to evaluate potential impact to the environment. Sampling results were then evaluated, as appropriate, on both a human health and ecological risk basis.

Human health risk assessment is a process used to estimate the chance that contact with constituents in the environment may result in harm to people. Generally, there are four components to the process (USEPA, 1989): (1) Hazard Identification, (2) Toxicity Assessment, (3) Exposure Assessment, and (4) Risk Characterization.

The USEPA develops "screening levels" of constituent concentrations in groundwater (and other media) that are considered to be protective of specific human exposures. These screening levels are referred to as "Regional Screening Levels" and are published by USEPA and updated twice yearly (USEPA, 2018a). In developing the screening levels, USEPA uses a specific target risk level (component 4) combined with an assumed exposure scenario (component 3) and toxicity information from USEPA (component 2) to derive an estimate of a concentration of a constituent in an environmental medium, for example groundwater, (component 1) that is protective of a person in that exposure scenario (for example,

drinking water). Similarly, ecological screening levels for surface water are developed by Federal and State agencies to be protective of the wide range of potential aquatic ecological resources, or receptors.

Risk-based screening levels are designed to provide a conservative estimate of the concentration to which a receptor (human or ecological) can be exposed without experiencing adverse health effects. Due to the conservative methods used to derive risk-based screening levels, it can be assumed with reasonable certainty that concentrations below screening levels will not result in adverse health effects, and that no further evaluation is necessary. Concentrations above conservative risk-based screening levels do not necessarily indicate that a potential risk exists but indicate that further evaluation may be warranted.

The surface water and groundwater data were evaluated using human health risk-based and ecological risk-based screening levels drawn from Federal sources. The screening levels are used to determine if the concentration levels of constituents could pose an unacceptable risk to human health or the environment. The evaluation also considers whether constituents are present in groundwater and surface water above screening levels, and if so, if the results could be due to the ash management operations.

3.2 CONCEPTUAL SITE MODEL

There are no on-site users of alluvial groundwater adjacent to LEC. As documented in the 2018 risk assessment report, while there are approximately 76 private wells recorded within a one-mile radius of the facility, all are located in the bluff area south and upgradient of the facility (a detailed discussion of the wells is presented in the AECOM 2014 report). Thus, there are **no users** of groundwater impacted by molybdenum or any other CCR constituent in the vicinity of the LEC ash management areas and sampling results from the off-site network demonstrate that bedrock groundwater fully complies with federal and state drinking water standards.

3.3 RESULTS

3.3.1 Alluvial Aquifer

Figure 1-2 shows the location of the CCR monitoring wells at the LCPA. A summary of the screening results is presented in the table below:

Table: Assessment Monitoring Reflects High Percentage Compliance

	Labadie Energy Center LCPA – Shallow Alluvial Aquifer
Percent of Assessment Monitoring Parameter Compliance	96%
Percent of Assessment Monitoring Parameter Results Requiring Corrective Action (Constituents)	4% Molybdenum

This is striking, given that the wells are located directly adjacent to and at the base of the ash management area, and the facility has been in operation for 48 years. Note that out of the 2,170

groundwater analyses conducted, only 55 results are above the GWPS. Put another way, over 96% of the groundwater results for the CCR Rule monitoring wells located at the edges of LCPA (UMW-1D through UMW-9D) are below the GWPS.

3.3.2 Surface Water

The Missouri River and Labadie Creek sampling results do not show evidence of impact of constituents derived from LEC. There are no analytical results for the Labadie Creek that are above drinking water screening levels. While arsenic concentrations in the Missouri River and Labadie Creek are slightly above the human health recreational screening levels and lithium concentrations are above the drinking water screening level in the Missouri River, the concentrations are statistically no different in upstream and downstream samples for both arsenic and lithium indicating that **the facility is not the source**.

3.3.3 National Pollutant Discharge Elimination System Outfall

The outfall for the LCPA is identified as 002 and is shown on **Figure 2-2**. This is a permitted outfall under the National Pollutant Discharge Elimination System program. The outfall effluent water is tested for toxicity on a periodic basis as required by the permit. The biological toxicity testing results for Outfall 002 at the LCPA shows no evidence of aquatic toxicity in the outfall effluent.

3.3.4 Off-Site Bedrock Groundwater

The deep groundwater at locations south of the Site are upgradient of the LCPA, as shown on **Figure 2-3**. All results meet drinking water standards and do not show evidence of impact from coal ash (see **Appendix A**). This confirms that the coal ash management practices at the LEC have not had an impact on groundwater used as a source of drinking water.

3.4 CONCLUSION

The sampling results for the Missouri River and Labadie Creek are important. Although groundwater at the edge of ash shows that one constituent is present in some wells are above the GWPS, less than 4% of the results are above a GWPS, and the adjacent surface water bodies do not show evidence of impact of constituents derived from the LCPA. This is important because the absence of concentrations above risk-based screening levels means that there is not a significant pathway of exposure.

Impacts to groundwater do not mean that surface waters are impaired. The degree of interface between groundwater and surface waters is variable and complex and dependent upon a variety of factors including gradient and flow rate. It is possible, however, to determine the maximum concentration level that would need to be present on-site in groundwater and still be protective of the surface water environment. Groundwater and surface waters flow at very different rates and volumes. The Missouri River is the longest river system in North America and as groundwater at the facility flows into the river, it is diluted by more than 100,000 times.

This conservative estimate of dilution is used to further understand how high a molybdenum groundwater concentration would have to be to potentially have an adverse impact on the Missouri River. The table below shows how this factor is applied to the most conservative of the human health and ecological risk-based screening levels for surface water.

CALCULATING RISK-BASED SCREENING LEVELS FOR LCPA GROUNDWATER BASED ON THE MISSOURI RIVER

	Estimated Dilution Factor for the Missouri River	100,000			
Constituents	Lowest of the Human Health and Ecological Screening Levels (mg/L)	Groundwater Risk-Based Screening Level* (mg/L)	Grour Conce	um LCPA ndwater ntration ng/L)	Ratio Between Groundwater Risk-Based Screening Level and the Maximum LEC Groundwater Concentration
Molybdenum	0.1	10000	0.674	L-UMW-6D	>40,000

^{*}Where the Groundwater Risk-Based Screening Level = Screening Level x Dilution Factor.

The groundwater alternative risk-based screening levels are calculated in units of milligrams of constituent per liter of water (mg/L). One mg/L is equivalent to one part per one million parts.

The table identifies the maximum groundwater concentration of molybdenum detected in the LCPA monitoring wells. The comparison between the target levels and the maximum concentrations indicates that there is a wide margin of safety between the two values. This margin is shown in the last column of the table. To illustrate, concentration levels molybdenum would need to be **more than 40,000 times higher** than currently measured levels before an adverse impact in the Missouri River could occur.

The comprehensive evaluation summarized here demonstrates that there are no adverse impacts on human health from either surface water or groundwater uses resulting from coal ash management practices at the LCPA.

3.4.1 Trace Elements in Coal Ash

All of the inorganic minerals and elements that are present in coal ash are also present naturally in our environment. Molybdenum is referred to as a trace element, so called because they are present in soils (and in coal ash) at such low concentrations (in the milligrams per kilogram (mg/kg) or part per million (ppm) range). Together, the trace elements generally make up less than 1 percent of the total mass of these materials. To put these concentrations into context, a mg/kg or ppm is equivalent to:

- 1 penny in a large container holding \$10,000 worth of pennies, or
- 1 second in 11.5 days, or
- 1 inch in 15.8 miles

All of the constituents present in coal ash occur naturally in our environment. U.S. Geological Survey (USGS) data demonstrate the presence of these constituents in the soils across the U.S. These soils are found in our backyards, schools, parks, etc., and because of their presence in soil, these constituents are also present in the foods we eat. Some of these constituents are present in our vitamins, such as molybdenum. Thus, we are exposed to these trace elements in our natural environment every day, and in many ways.

3.4.2 Molybdenum

Haley & Aldrich has prepared a fact sheet (**Appendix B**) that provides information on molybdenum so that the groundwater data can be considered in context. There is no public exposure to groundwater at

the LEC and concentration levels of molybdenum in adjacent surface waters are all well below health-based regulatory standards.

As discussed in more detail in **Appendix B**, molybdenum is an essential nutrient for humans, and the Institute of Medicine of the U.S. National Academy of Sciences (NAS) has provided recommended daily allowances (RDA) and tolerable upper limits (UL) to be used as guidelines for vitamins and supplements and other exposures (NAS, 2001).

The RDA for a nutrient is "the average daily dietary nutrient intake level sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) health individuals" (NAS, 2001). The RDA for molybdenum for adults set by the NAS in 2001 is 0.045 mg/day and is based on the amount of molybdenum needed to achieve a steady healthy balance in the body for the majority of the population.

The UL for molybdenum set by the NAS is 2 mg/day. This level is based on an evaluation of the potential toxicity of molybdenum at high levels of intake. Based on the UL, a safe drinking water level for molybdenum is 0.6 mg/L or 600 ug/L, or six-fold higher than the level set by USEPA of 0.1 mg/L or 100 ug/L in the CCR Rule. This difference serves to underscore the conservatism of the USEPA value when evaluating groundwater under the CCR Rule. Below is a chart that depicts groundwater and surface water samples collected from Ameren's four energy centers and compares concentration levels based on both the NAS UL and the GWPS established by the USEPA in the CCR Rule. As reflected in the chart below, over 90% of the GW results across all four energy centers and all but **three samples** at Labadie are below the standard the National Academy of Science developed for vitamins and supplements.

	Labadie	Meramec	Rush Island	Sioux
Groundwater				
Number of Samples	208	88	77	244
Molybdenum greater than CCR GWPS of				
0.1 mg/L (a)	81	35	38	77
Molybdenum greater than NAS standard				
of 0.6 mg/L (b)	3	1	11	49
Surface Water				
Number of Samples	67	74	50	80
Molybdenum greater than 0.1 mg/L (a)	0	0	0	0

Notes:

mg/L - milligrams per liter.

- (a) Drinking water-based on GWPS specified in the CCR Rule.
- (b) Alternative health-protective drinking water screening level based on the NAS

3.5 EVALUATION OF RISK IN THE CORRECTIVE MEASURES ASSESSMENT

In summary, there are no adverse impacts resulting from coal ash management practices at the LCPA on human health or the environment from either surface water or groundwater uses. There are no users of groundwater near LCPA. In fact, as described above, concentrations of molybdenum detected in groundwater would need to be more than **40,000 times higher** before such an unacceptable risk could exist under current and reasonable anticipated future uses of the surface water.

Although the purpose of this CMA is to evaluate remedies to address the SSLs, the current conditions at the LCPA, even prior to closure, do not pose an unacceptable risk to human health or the environment. Therefore, the risk-based evaluation provides additional support for the selection of a remedy moving forward.

4. Corrective Measures Alternatives

4.1 CORRECTIVE MEASURES ASSESSMENT GOALS

The overall goal of this CMA is to identify and evaluate the appropriateness of potential corrective measures to prevent further releases of Appendix IV constituents above their GWPS, to remediate releases of Appendix IV constituents detected during groundwater monitoring above their GWPS that have already occurred, and to restore groundwater in the affected area to conditions that do not exceed the GWPS for these Appendix IV constituents. The corrective measures evaluation that is discussed below and subsequent sections provides an analysis of the effectiveness of five potential corrective measures in meeting the requirements and objectives of remedies as described under §257.97 (also shown graphically on **Figure 4-1**). This assessment also meets the requirements promulgated in §257.96 which require the assessment to evaluate:

- The performance, reliability, ease of implementation, and potential impacts of appropriate
 potential remedies, including safety impacts, cross-media impacts, and control of exposure to
 residual contamination;
- The time required to complete the remedy; and
- The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy.

The criteria listed above are included in the balancing criteria considered during the corrective measures evaluation, described in **Section 5**.

4.2 GROUNDWATER MODELING

Modeling is an analytical tool used to create estimates based on computer-simulated conditions. Groundwater flow and geochemical modeling⁷ performed by Gredell evaluated the hydrogeologic and geochemical conditions at the LCPA. Gredell used MT3DMS to model contaminant transport at the LCPA, conservatively assuming that hydrodynamic dispersion is the only process that attenuates the concentration molybdenum during transport in groundwater.

4.3 GROUNDWATER TREATMENT EVALUATION

In-situ treatment to reduce the concentrations of dissolved metals in groundwater can occur via stabilization of metals through precipitation of a metal compound, co-precipitation of the target metal within the structure of another compound, and/or sorption of the target metal onto other compounds in the subsurface. In simple terms, groundwater amendments are injected into the aquifer to create a chemical reaction that attenuates metals through precipitation or sorption.

Chemical precipitation is an available and demonstrated groundwater treatment technology recognized by USEPA⁸. Groundwater geochemistry (including oxidation reduction potential (ORP)) can greatly

⁸ EPA, "Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category: EPA's Response to Public Comments; Part 7 of 10", SE05958A6, p. 7-20

⁷Groundwater flow modeling was performed using MODFLOW 2000.

impact metals mobility at a site, where some metal compounds may be more soluble under highly oxidative (positive ORP) conditions while others are more soluble under reduced conditions (negative ORP). Also, the solubilities of many metal compounds are highly dependent on pH.

Ameren has retained XDD to research and develop appropriate treatment options for molybdenum and is performing bench-scale treatability studies to demonstrate the effectiveness of treatment options on site-specific basis. Evaluations of the Rush and Meramec Energy Centers commenced earlier

pH and Water (USGS - Water Science School publication).

this year and XDD has collected soil and groundwater samples from the LEC impoundment area. Laboratory results for Rush Island indicate that molybdenum concentrations can decrease at certain pH levels. Bench-scale treatment results from such studies including potential treatment trains from all four of Ameren's energy centers are expected to be completed in the Summer of 2019.

4.4 CORRECTIVE MEASURES ALTERNATIVES

Corrective measures can terminate when groundwater impacted by the LCPA does not exceed the Appendix IV GWPS for three consecutive years of groundwater monitoring. In accordance with §257.97, the groundwater corrective measures to be considered must meet, at a minimum, the following threshold criteria:

- 1. Be protective of human health and the environment;
- 2. Attain the GWPS;
- 3. Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of COCs to the environment;
- 4. Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, considering factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- 5. Comply with standards (regulations) for waste management.

Each of the remedial alternatives assembled as part of this CMA meet the requirements of the threshold criteria listed above.

The remedial alternatives presented below contemplate both CIP (Alternative 1 through 4) and CBR (Alternative 5) of the LCPA. Both closure methods are expressly authorized under the CCR Rule.

4.4.1 Alternative 1 – Closure in Place with Capping and Monitored Natural Attenuation

The LCPA would be closed in place with a geomembrane and soil protective cap system to reduce infiltration of surface water to groundwater thereby isolating source material. This cap selection exceeds regulatory requirements by more than two orders of magnitude (<1x10⁻⁷ centimeters per second (cm/sec) planned versus 1x10⁻⁵ cm/sec required by the CCR Rule). Over time, depletion of COCs in CCR would allow the concentration of COCs in downgradient groundwater to decline and overall groundwater concentrations of COCs to attenuate. Geochemical modeling results indicate that post closure 99% of groundwater will flow around and not through the LPCA, thereby isolating the source.

The dissolved phase plume of molybdenum remaining above the GWPS post-closure eventually attenuates. The timeline for MNA duration for molybdenum is shown on **Figure 4-2**.

CIP can be completed safely, in compliance with applicable federal and state regulations, and be protective of public health and the environment. In general, CIP consists of installing a cap/cover designed to significantly reduce infiltration from surface water or rainwater, resist erosion, contain CCR materials, and prevent exposures to CCR. For this alternative, Ameren would install a geomembrane with a permeability that is 100 times lower than what the CCR Rule requires thus further reducing infiltration. At the LEC, site preparation, construction and installation of cap and cover systems will take approximately 18 to 24 months.

MNA is a viable remedial technology recognized by both state and federal regulators that is applicable to inorganic compounds in groundwater. The USEPA defines MNA as "the reliance on natural attenuation processes to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other more active methods". The 'natural attenuation processes' that are at work in such a remediation approach include a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. These in-situ processes include biodegradation; dispersion; dilution; sorption; volatilization; radioactive decay; and chemical or biological stabilization, transformation, or destruction of contaminants" (USEPA, 2015). When combined with a low-permeability cap to address the source by limiting the infiltration of precipitation into and through the CCR, MNA can over time reduce concentrations of molybdenum in groundwater at the LCPA boundary.

Following the installation of the cap system, Ameren would implement post-closure care activities. Post-closure care includes long-term groundwater monitoring until such time that groundwater conditions return to regulatory levels and cap system maintenance. Future development of the capped surface could be used for solar photovoltaic arrays or other site staging/ancillary operational needs.

4.4.2 Alternative 2 - CIP with In-Situ Stabilization, Capping and Monitored Natural Attenuation

In-situ stabilization is a technique that uses mixing of the CCR with amendments to solidify the material in place. Amendments typically include Portland Cement and the solidification is completed in-situ using large diameter augers. CCR located beneath the water table would be isolated by ISS, followed by capping of the surface impoundment. Groundwater impacts would be addressed through the processes of natural attenuation. This alternative would isolate the source, and over time, allow the concentrations of COCs in downgradient groundwater to decline and overall groundwater concentrations of COCs to attenuate.

In-situ stabilization of the LCPA is predicted to take a number of years to complete, depending on the availability of specialized contractors and equipment. Additionally, implementation of ISS will require a detailed design effort with bench scale testing to determine the appropriate amendment mix. Pilot testing will also be needed to verify the ability of equipment to solidify material at depth. ISS has not been commonly used to stabilize entire ash units as part of a closure strategy. Changes to groundwater chemistry relative to the mobility of Appendix IV constituents following completion of ISS, where large volumes of amendments (typically Portland cement) are added to the subsurface, are unknown and would require pilot testing.

Following the ISS completion and low-permeability final cover system ($<1 \times 10^{-7}$ cm/sec), Ameren would implement post-closure care activities that includes long-term groundwater monitoring and cover system maintenance; future development of the capped surface could be used for solar photovoltaic arrays or other site staging/ancillary operational needs.

4.4.3 Alternative 3 – CIP with Capping and In-Situ Groundwater Treatment

Similar to Alternative 1, the LCPA would be CIP with a low-permeability ($<1 \times 10^{-7}$ cm/sec) cap to reduce infiltration of surface water to groundwater and to isolate source material. Molybdenum would be addressed through in-situ injection of groundwater amendments downgradient of the LCPA with the objective of accelerating the time required to achieve the GWPS within the treatment zone.

Following the installation of the low-permeability cap and in-situ treatment system, Ameren would implement post-closure care activities that include periodic amendment injections or periodic replenishment of the treatment reagents within the permeable reactive barrier (PRB), long-term groundwater sampling to monitor treatment system performance, and cover system maintenance. Future development of the capped surface could be used for solar photovoltaic arrays or other site staging/ancillary operational needs.

4.4.4 Alternative 4 – CIP with Capping and Hydraulic Containment Through Groundwater Pumping and Ex-Situ Treatment

The LCPA would be closed in place with a low-permeability ($<1 \times 10^{-7}$ cm/sec) cap to reduce infiltration and isolate source material. Pumping wells would be used to hydraulically control the downgradient migration of molybdenum. However, pumping wells would generate large volumes of effluent that would require ex-situ treatment, likely with an ion exchange or a reverse osmosis (RO) treatment system. Both treatment systems are complex with ongoing operation and maintenance and would generate a secondary waste stream – including regeneration/replacement of the ion exchange media or concentration reject water from the RO system. Approvals and permitting would be required for the construction and installation of the treatment systems and discharge of the treated groundwater.

Implementation of a large-scale hydraulic containment system will require a detailed design effort with bench scale testing to verify groundwater treatment. Pilot testing, such as pumping tests and additional groundwater modeling, will be needed to verify the hydraulic capture zone. While hydraulic containment is a widely used remediation technology, it has not been commonly used as part of a large-scale CCR unit closure strategy.

Following the installation of the low-permeability cap, groundwater pumping well network, and ex-situ treatment system, Ameren would implement post-closure care activities that includes operation and maintenance of the hydraulic containment (HC) system, long-term groundwater sampling to monitor HC system performance, and cover system maintenance. Future development of the capped surface could be used for solar photovoltaic arrays or other site staging/ancillary operational needs.

4.4.5 Alternative 5 – Closure by Removal with Monitored Natural Attenuation

This alternative consists of removal of LCPA contents followed by natural attenuation of molybdenum in groundwater. While this alternative would eliminate (through removal) the source, it takes decades to implement during which time the LCPA would remain open and the ponded ash subject to ongoing

infiltration for the duration of the removal activities. As with Alternative 1, 2, and 3 concentration of molybdenum in downgradient groundwater would decline via natural attenuation processes.

Lochmueller Group prepared an Extraction and Transportation Assessment (Lochmueller Study) to evaluate CBR excavation and disposal scenarios. On-site and off-site disposal options were considered. The LEC presents unique challenges that can impact cost estimates and closure times. It is important to note that the existing on-site UWL was designed and permitted to manage ongoing production through the retirement dates of the LEC. Accordingly, excavated material would need to be transported off-site to a commercial landfill <u>or</u> Ameren Missouri would need to permit and construct a new on-site landfill. The regulatory process for construction of an on-site landfill could require multiple levels of approval including environmental permits, conditional use local authorization and, if necessary, certificate issuance from the Missouri Public Service Commission. Opposition to such projects and regulatory approval would take years to resolve *before* construction could commence. As a point of reference, efforts to permit and construct the existing UWL commenced in 2008. Following years of litigation and opposition from environmental groups, the UWL was placed in service in 2016⁹.

There are also several potential community impacts, safety concerns and project duration challenges associated with the CBR alternative for the off-site disposal option. Given the magnitude of the total estimated haul volume (17.3 MM CY) along with the travel distance required to transport the CCR to one or more off-site landfills, injuries and fatalities would be likely. The Lochmueller Study (**Appendix C**) estimated that the time period needed to transport off-site to a commercial landfill could be 35 years or greater. The Lochmueller Study bases its time estimate on assumed productivity rates that are subject to significant variability and potential disruptions (e.g., weather conditions, available landfill capacity, travel route traffic congestion, etc.) that could impact the overall CBR timeframe. As the report makes clear, there is simply a limit on how much excavation, and roundtrip truck hauls can occur on a given eight-hour workday.

Excavated materials from the LCPA would not be suitable for beneficial use applications, due to chemical reactions that occurred during the placement of class C fly ash via wet sluicing. Traditional beneficial use applications for class C fly ash, such as replacement for cement in the production of ready-mix concrete and concrete related products require the materials to be capable of reacting chemically to produce cementitious bonds. The capability to produce these chemical reactions have been expended with the wet-sluicing process of CCR into LCPA. In contrast, the chemistry of class F fly ash, produced at other utility sites, does not react with sluice water to create cementitious bonds, and thus may be suitable for recovery and processing for use in ready mix concrete and concrete related products¹⁰.

In addition to the logistical challenges of designing and construction an on-site landfill, technical and logistical challenges of implementing a large-scale ash removal project also need to be considered. Removal activities will be difficult and require full-time dewatering, implementation of CCR stabilization methods and temporary staging/stockpiling of material for drying prior to transportation; these

⁹ <u>See</u> Petition for Writ of Certiorari [to invalidate county landfill ordinance] Franklin County Circ. Ct., 11/23/11, Case # 11AB-C286; Appeal to Franklin County Board of Adjustment, #14-00002, Filed 1/8/14 (of Land Use Administrator 10/10/13 and 12/10/13 Decisions), Denied by BZA 6/24/14; Appealed to Circ. Ct. by Writ of Certiorari, Cause # 14AB-CC00155, 7/24/14; Intervention and Motion to Dismiss in PSC Case EA 2012-0281, Ameren Application to PSC for CCN to operate landfill (PSC overruled Motion to Dismiss on 4/17/13); Administrative Hearing Commission Petition for Review [of MDNR Solid Waste Disposal Construction Permit], Filed 1-30-15, #15-0136, dismissed by AHC 3/5/15. <u>See also</u> Campbell v. County Commission of Franklin County, 453 S.W.3d 762 (Mo. banc 2015).

۵

considerations will affect productivity and increase removal duration. Excavation and construction safety during the removal duration is another major concern due to heavy equipment (bulldozers, excavators, front end loaders, off-road trucks) and dump truck operation within the active LEC site. Additional community impacts associated with the use of heavy equipment and truck traffic are also a consideration for this alternative. Lastly, further review of local restrictions and approvals would be required to verify that any selected landfill could receive the ash for disposal.

5. Comparison of Corrective Measures Alternatives

The purpose of this section is to evaluate, compare, and rank the five corrective measures alternatives using the balancing criteria described in §257.97.

5.1 EVALUATION CRITERIA

In accordance with §257.97, remedial alternatives that satisfy the threshold criteria are then compared to four balancing (evaluation) criteria. The balancing criteria allow a comparative analysis for each corrective measure, thereby providing the basis for final corrective measure selection. The four balancing criteria include the following:

- 1. The long- and short-term effectiveness and protectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful;
- 2. The effectiveness of the remedy in controlling the source to reduce further releases;
- 3. The ease or difficulty of implementing a potential remedy; and
- 4. The degree to which community concerns are addressed by a potential remedy.

Public input and feedback will be considered following a public information session to be held in May 2019.

5.2 COMPARISON OF ALTERNATIVES

This section compares the alternatives to each other based on evaluation of the balancing criteria listed above. The goal of this analysis is to identify the alternative that is technologically feasible, relevant and readily implementable, provides adequate protection to human health and the environment, and minimizes impacts to the community.

A graphic is provided within each subsection below to provide a visual snapshot of the favorability of each alternative, where green represents favorable, yellow represents less favorable, and red represents unfavorable.

5.2.1 The Long- and Short-Term Effectiveness and Protectiveness of the Potential Remedy, along with the Degree of Certainty That the Remedy Will Prove Successful

This balancing criterion takes into consideration the following sub criteria relative to the long-term and short-term effectiveness of the remedy, along with the anticipated success of the remedy.

5.2.1.1 Magnitude of reduction of existing risks

As summarized in **Section 3**, no unacceptable risk to human health and the environment exists with respect to the LCPA. Therefore, none of the remedial alternatives are necessary to reduce an assumed risk posed by Appendix IV constituents in groundwater because no such adverse risk currently exists. However, other types of impacts can be posed by the various remedial alternatives considered here. The remedial alternatives that pose the least external impact are Alternative 1 (CIP with MNA) and 3 (CIP with in-situ treatment) because they are implemented onsite and involve the least amount of construction and operations and maintenance (O&M) activities and associated impacts. Alternative 5

(CBR with MNA) has the highest potential impact due to prolonged truck traffic, which increases the likelihood of roadway accidents during the decades needed to complete the CBR project. Further, during the long removal process, CCR material will remain open to the environment. Construction and material transportation will also be required for Alternative 2 (CIP with ISS) during the process of solidifying the CCR. Aside from the cap construction, only minor construction will be required for Alternatives 3 (CIP with in-situ). Additional construction will be required for Alternative 4 (CIP with HC) during treatment system installation.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 1 - Subcriteria i) Magnitude of reduction of risks					

5.2.1.2 Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy

Alternative 5 (CBR with MNA) has the lowest long-term residual risk in that the source material is removed. However, implementation of this alternative would take decades to implement during which time the source material (ash) is subject to ongoing infiltration (because it remains open to the environment during removal), relative to the other alternatives. For Alternatives 1 through 4, the CCR would be CIP with the installation of a low permeability ($<1 \times 10^{-7}$ cm/s) cap that virtually eliminates infiltration of precipitation and isolates the source material. Dissolved phase COCs to groundwater are addressed through MNA processes. Alternatives 3 and 4 also provide additional measures to address potential groundwater impacts through in-situ treatment and hydraulic controls. A low residual risk for releases exists with Alternative 2 (CIP with ISS) upon completion provided that solidification amendments do not have an adverse geochemical impact on the groundwater aquifer.

5.2.1.3 The type and degree of long-term management required, including monitoring, operation, and maintenance

Alternative 1 (CIP with MNA) is the most favorable alternative with respect to this criterion because it requires the least amount of long-term management and involves no mechanical systems as part of the remedy. Alternative 5 (CBR with MNA) is least favorable because off- site removal is estimated to take approximately 40 years or greater to complete and involves coordination with off-site disposers (landfills). The design and construction of an on-site landfill is also logistically complex with the design, permitting, approvals and construction required and anticipated legal challenges. The remaining alternatives fall between Alternatives 1 and 5 because they involve more intensive systems to implement and/or maintain throughout their remediation life cycle.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 1 - Subcriteria iii) Type and degree of long-term management required					

5.2.1.4 Short-term risks that might be posed to the community or the environment during implementation of such a remedy

The highest short-term impact posed to the community or environment would be during implementation of Alternative 5 (CBR with MNA) followed by Alternative 2 (CIP with ISS), making these alternatives least favorable. Potential environmental impacts include noise and emissions from heavy equipment, the potential for a release during excavation and dewatering, and fugitive dust emissions. Community impacts include general impacts to the community due to increased truck traffic on public roads during the entire project duration, along with an increased potential for traffic accidents and fatalities, noise, and truck emissions. As noted, Alternative 5 (whether off-site disposal or a new onsite landfill) will require a substantial period of time when the LCPA will remain open to the environment posing risk during implementation of this remedy.

For Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC), risk to the community during implementation is considered the same and would be minimal compared to the other alternatives. Periodic sampling of the monitoring well network to verify treatment system effectiveness will pose no risk to the community.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 1 - Subcriteria iv) Short term risk to community or environment during implementation					

5.2.1.5 Time until full protection is achieved

There is currently no unacceptable risk to human health and the environment associated with groundwater at the LCPA; therefore, protection is already achieved. Based upon predictive modeling, Alternative 1 (CIP with MNA), molybdenum concentrations will attain GWPS in approximately 22 years (see **Figure 4-2**). With in-situ groundwater treatment, such time is predicted to occur in 16 years. Both Alternatives 3 (CIP with in-situ treatment) and 4 (CIP with HC) take the least amount of time to reduce COC concentrations (see **Figure 4-2**). These two alternatives are favorable given the shorter timeframe to achieve the requisite performance standard.

Alternative 5 (CBR with MNA) could take approximately 35 to 40 years to fully implement followed by a period of groundwater monitoring to verify natural attenuation of the existing groundwater plume, which makes this alternative unfavorable. As detailed in the Lochmueller report, implementation is limited mainly by the amount of material that can be excavated and hauled during a workday, disposal facility capacity, and the volume of ash. If a new on-site landfill is considered, the permitting and approval process will be lengthy and legal challenges are expected.

Implementation of Alternative 2 (CIP with ISS) would require extensive engineering analysis and field testing. Assuming such studies confirm the viability of ISS technology at the LCPA and equipment availability, field implementation could take a significant amount of time to implement due to the

volume of ash. Ongoing groundwater monitoring will be required as the MNA process addresses the existing dissolved phase plume. Including a five-year time horizon for planning and regulatory approvals, the total timeframe until achieving the GWPS for this alternative is comparable to the timeframe estimated for Alternatives 1, 3, and 4.

5.2.1.6 Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment

Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC) all have similar, minimal potential for exposure to humans and environmental receptors during regrading and cap construction; monitoring well system installation; and installation of the in-situ treatment system, or HC system. Alternative 1 (CIP with MNA) is the most favorable alternative since, aside from capping, no additional contact with CCR or impacted groundwater would be needed. Alternative 3 (CIP with in-situ treatment) is also favorable because treatment occurs below ground and no waste stream is generated. A waste stream would be generated under Alternative 4 (CIP with HC) and need to be managed either on-site or off-site, which creates a potential for exposure.

Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) have moderate and high potential for exposure, respectively, which makes them the least favorable remedy for this criterion. A high potential for exposure exists during the excavation and transport (both off-site and on-site) of the CCR over local roadways if Alternative 5 is implemented. A moderate potential to exposure exists during ISS construction (Alternative 2) if some CCR needs to be disposed off-site as part of the preliminary removal effort prior to ISS implementation.

5.2.1.7 Long-term reliability of the engineering and institutional controls

Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC) are all expected to have high long-term reliability, as capping and long-term monitoring are common methods for long-term waste management. HC and ex-situ treatment (Alternative 4) are considered reliable, proven technologies and would have high long-term reliability, but require bench scale testing and rely on mechanical systems to operate. Alternative 3 will require bench scale and pilot scale testing to confirm treatability of molybdenum. Of the CIP alternatives, Alternative 1 (CIP with MNA) is considered the most favorable because no additional ongoing O&M would be needed, other than periodic groundwater sampling and verification of decreasing concentrations.

For Alternatives 1 through 4, which include CIP, institutional controls such as the recording of an environmental covenant restricting the use of groundwater can easily be implemented because the LCPA is located on property owned by Ameren.

Alternative 5 (CBR with MNA) engineering and institutional controls would have high long-term reliability because the CCR will have been removed from the LCPA. With the CCR no longer in place, no additional engineering and institutional controls are anticipated. Alternative 2 (CIP with ISS) is also expected to have a high long-term reliability because the CCR would be isolated within the ISS monolith.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 1 - Subcriteria vii) Long-term reliability of engineering and institutional controls					

5.2.1.8 Potential need for replacement of the remedy

CIP of the LCPA with ISS (Alternatives 2) and CBR (Alternative 5) are both considered permanent and can be effective in appropriate circumstances. For Alternative 2 (CIP with ISS) detailed engineering assessments would need to be completed before the viability of such an approach could be considered at a unit such as the LCPA given its depth and volume. Field pilot testing would also be needed for ISS to confirm the ability of equipment to reach the bottom of CCR. From the perspective of needing to replace the remedy, source removal (Alternative 5) is permanent but takes decades to implement.

Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC) are expected to have permanent closures with capping in place. Should monitoring results indicate that the selected remedial alternative is not effective at reducing the concentration of COCs over time, alternate and/or additional active remedial methods for groundwater may be considered in the future.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 1 - Subcriteria viii) Potential need for replacement of the remedy					

5.2.1.9 Long- and short-term effectiveness and protectiveness criterion summary

The graphic below provides a summary of the long- and short-term effectiveness and protectiveness of the potential remedy, along with the degree of certainty that the remedy will prove successful. Alternatives 1 (CIP with MNA) and 3 (CIP with in-situ treatment) are the most favorable, while Alternative 5 (CBR with MNA) is the least favorable. Alternative 1 is expected to be effective both short-and long-term and does not include additional treatment technology aside from MNA. Alternative 3 (CIP with in-situ treatment) is comparable to Alternative 1 because it has a shorter timeframe to meet the GWPS despite requiring treatment. Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) will require a lengthy design and construction period, and therefore are not effective in the short-term. Further, to implement Alternative 5, the impoundment will be open to the environment during the lengthy removal process.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
CATEGORY 1 Long- and Short Term Effectiveness, Protectiveness, and Certainty of Success					

5.2.2 The Effectiveness of the Remedy in Controlling the Source to Reduce Further Releases

This balancing criterion takes into consideration the ability of the remedy to control a future release, and the extensiveness of treatment technologies that will be required.

5.2.2.1 The extent to which containment practices will reduce further releases

For remedial Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC) installation of the low permeability cap will reduce the infiltration of surface water into the LCPA and decrease the flux of COCs passing from ash porewater to groundwater over time. Groundwater mounding, and associated outward hydraulic gradient, present at the LCPA during operation is expected to dissipate after closure. Alternatives 3 and 4 are considered the most favorable because treatment technologies (in-situ treatment and HC) will be implemented to limit down-gradient migration of COCs in groundwater.

Under Alternatives 2 (CIP with ISS) and 5 (CBR with MNA), no further releases are anticipated following solidification or removal of the CCR material. However, the implementation of each of these alternatives is anticipated to require multiple years to complete with MNA monitoring following completion of construction. During the period of construction for Alternatives 2 and 5, the CCR material remains open to the environment.

For Alternatives 3 (CIP with in-situ treatment) and 4 (CIP with HC), additional containment or treatment practices (in-situ treatment and HC with ex-situ treatment) will address COCs in groundwater migrating downgradient, achieving the performance criteria at the waste boundary. Alternative 4, however, will create additional waste streams requiring management on and off site. Alternative 1 will not have an additional containment technology beyond natural attenuation but is expected to reduce the concentrations below the GWPS over time.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 2 - Subcriteria i) Extent to which containment practices will reduce further releases					

5.2.2.2 The extent to which treatment technologies may be used

No groundwater treatment technologies, other than natural attenuation, will be used for Alternatives 1 and 5. There would be no ongoing operation and maintenance of a treatment technology, other than periodic groundwater monitoring. Alternative 1 relies only on low-permeability capping, and therefore is the most favorable.

Alternative 2 (CIP with ISS) uses solidification of the CCR below the water table to address COCs in groundwater.

Alternative 3 will use one additional technology, in-situ treatment, while Alternative 4 will use two additional technologies, HC and ex-situ treatment. The operation of an ex-situ treatment system will create a secondary waste stream, such as concentrated reject water (RO) requiring off-site disposal, or depleted resin (ion exchange), requiring regeneration or off-site disposal.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 2 - Subcriteria ii) Extent to which treatment technologies may be used					

5.2.2.3 Effectiveness of the remedy in controlling the source to reduce further releases summary

The graphic below provides a summary of the effectiveness of the remedial alternatives to control the source to reduce further releases. Alternative 3 (CIP with in-situ treatment) is the most favorable, while Alternatives 1, 2, 4, and 5 are less favorable. The construction period for Alternative 3 (CIP with in-situ treatment) is expected to be brief and will begin treating groundwater at the unit boundary immediately. Further releases under Alternative 2 (CIP with ISS) and Alternative 5 (CBR with MNA) will not be addressed until construction is complete.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
CATEGORY 2 Effectiveness in controlling the source to reduce further releases					

5.2.3 The Ease or Difficulty of Implementing a Potential Remedy

This balancing criterion takes into consideration technical and logistical challenges required to implement a remedy, including practical considerations such as equipment availability and disposal facility capacity.

5.2.3.1 Degree of difficulty associated with constructing the technology

CIP with a low permeability cap will be straightforward and can be implemented with common construction methods for Alternatives 1 (CIP with MNA), 3 (CIP with in-situ treatment), and 4 (CIP with HC). No construction difficulties are anticipated if Alternatives 1, 3, and 4 are implemented. Specialty equipment or contractors are not required. Alternative 3 may be slightly more difficult to implement should a subsurface trench be required for a permeable barrier. For Alternative 1, no additional treatment technology is needed other than monitoring wells for groundwater monitoring. Installation of an in-situ treatment system (Alternative 3) or groundwater pumping wells with an ex-situ treatment system (Alternative 4) is expected to be straightforward, although with Alternative 4, an additional waste stream will require handling.

Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) will be difficult to implement due to technical and logistical challenges. Alternative 5 will include a deep excavation below the water table, ongoing excavation dewatering, and the transportation of 17.3 MM CY of CCR over local roadways. If an on-site landfill is considered, complex and lengthy design, permitting and construction is required, and litigation is expected. Under Alternative 2, the successful completion of ISS to target depths will be technically challenging and will require field pilot testing to confirm equipment reach. Alternatives 2 and 5 will both

include large-scale construction, specialty equipment and contractors, long project durations, and significant technical challenges.

5.2.3.2 Expected operational reliability of the technologies

Alternative 1 (CIP with MNA) is considered the most favorable from an operational perspective because capping with MNA has a proven track record and requires limited O&M. While Alternative 2 (CIP with ISS) is a proven technology and isolates the ponded material, pilot testing would be required to ensure ISS will be able to solidify CCR at depth and implementation is challenging. The potential for geochemical impact on the groundwater aquifer from the solidification amendments would need to be evaluated. Alternatives 3 and 4 are expected to be reliable but will utilize additional groundwater treatment technologies. Alternative 5 (CBR with MNA) is considered a reliable alternative as all CCR material would be removed, although implementation would be challenging (whether by off-site disposal or a new on-site landfill).

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 3 - Subcriteria ii) Expected operational reliability of the technologies					

5.2.3.3 Need to coordinate with and obtain necessary approvals and permits from other agencies

Alternative 1 (CIP with MNA) is the most favorable since the implementation of the remedy is straightforward and only includes capping and MNA. Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) will require extensive permitting and approvals for large-scale construction whereas the permitting is expected to be straightforward for CIP Alternatives 1, 3, and 4. Alternative 5 in particular, has the potential to present the greatest need for coordination of and obtaining numerous permits and approvals if on-site landfilling is selected. Additional approval and permitting may be required for Alternative 3 (CIP with in-situ treatment) because this alternative may include subsurface treatment via groundwater amendment and permitting would likely be required for Alternative 4 for the construction and installation of the treatment systems and discharge of treated groundwater.

5.2.3.4 Availability of necessary equipment and specialists

Alternative 1 (CIP with MNA) is the most favorable since specialty equipment and specialists will not be required to implement the MNA remedy. For Alternative 3, specialists have already been retained by Ameren. Alternative 4 will require equipment for pumping and treatment and is less favorable than Alternatives 1 and 3 but equipment required should not present great challenge.

Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) are the least favorable since both will require specialty remediation contractors to implement ISS or full removal, respectively, which will include large-scale construction dewatering and effluent management and treatment, deep excavations below the water table, transportation of material to off-site disposal facilities, and implementation of ISS at depth (for Alternative 2 only). Alternative 4 does require the availability of necessary equipment so this Alternative is less favorable than Alternative 1. The specialists for Alternative 3 have already been retained so Alternative 3 is favorable as well.

5.2.3.5 Available capacity and location of needed treatment, storage, and disposal services

The Lochmueller Study assists in the consideration of the CBR alternative (Alternative 5) by evaluating available capacity at landfills reasonably proximate to the LEC that could potentially receive CCR for disposal. Three such landfills were identified. However, as Lochmueller notes, Ameren intends to close ash impoundments at **all** of its energy centers over the next four years and it is uncertain whether these landfills would have sufficient available capacity to accommodate such massive excavation projects in addition to their general municipal solid waste requirements. Due to the disposal requirements, Alternative 5 (CBR with MNA) is the least favorable alternative. Alternative 2 (CIP with ISS), includes amendments such as Portland Cement and would need to be imported to the LEC to solidify the material in-situ.

Because the LCPA will be CIP for Alternatives 1, 2, 3, and 4, storage, and disposal services for CCR material will not be needed. Temporary stockpiling of CCR during regrading and capping can be completed within the current boundaries of the ash unit. Alternative 1 is the most favorable alternative since no active treatment is included. Both Alternatives 2 & 3 include treatment. For Alternative 4, the ex-situ treatment system may generate a concentrated waste stream which would require onsite treatment or off-site transportation and disposal that the other alternatives would not require. For Alternative 5, the existing on-site UWL was designed and permitted to manage ongoing production through the retirement date of the LEC and not ponded CCR material. As such there is no available on-site capacity. Excavated material would need to be transported off-site to a commercial landfill or Ameren Missouri would need to permit and construct a new on-site landfill.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
Category 3 - Subcriteria v) Available capacity and location of needed treatment, storage, and disposal services					

5.2.3.6 Ease or difficulty of implementation summary

The graphic below provides a summary of the ease or difficulty that will be needed to implement each alternative. Alternatives 1 (CIP with MNA) is the most favorable, while Alternatives 2 (CIP with ISS) and 5 (CBR with MNA) are the least favorable.

	Alternative 1 CIP with Cap & MNA	Alternative 2 CIP with Cap, ISS, & MNA	Alternative 3 CIP with Cap & In-Situ GW Treatment	Alternative 4 CIP with Cap & Hydraulic Containment	Alternative 5 CBR with MNA
CATEGORY 3 Ease of implementation					

6. Summary

This Corrective Measures Assessment has evaluated the following alternatives:

- Alternative 1 Closure in Place with Capping and Monitored Natural Attenuation
- Alternative 2 CIP with In-Situ Stabilization, Capping and MNA
- Alternative 3 CIP with Capping and In-Situ Groundwater Treatment
- Alternative 4 CIP with Capping and Hydraulic Containment Through Groundwater Pumping and Ex-situ Treatment
- Alternative 5 Closure by Removal with MNA

In accordance with §257.97, each of these alternatives has been evaluated in the context of the following threshold criteria:

- Be protective of human health and the environment;
- Attain the GWPS;
- Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of COCs to the environment;
- Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, considering factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- Comply with standards (regulations) for waste management.

In addition, in accordance with §257.96, each of the alternatives has been evaluated in the context of the following balancing criteria:

- The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to residual contamination;
- The time required to complete the remedy; and
- The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy.

This Corrective Measures Assessment, and the input received during the public comment period, will be used to identify a final corrective measure for implementation at the LEC.

References

- AECOM 2014, Groundwater and Surface Water Data Demonstrate No Adverse Human Health Impact from Coal Ash Management at the Ameren Labadie Energy Center" https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion/water-quality.
- 2. Golder Associates Inc. 2015. Labadie energy Center Groundwater Modeling Technical Memorandum.
- 3. Golder Associates Inc. 2017. 40 CFR Part 257 Groundwater Monitoring Plan, LCPA, Labadie Energy Center-Franklin County, Missouri, USA.
- 4. Golder Associates Inc. 2018. Technical Memorandum Assessment Monitoring Statistical Evaluation for the LCPA Surface Impoundment, Labadie Energy Center-Franklin County, Missouri.
- 5. Golder Associates Inc. 2018. 2017 Annual Groundwater Monitoring Report, LCPA, Labadie Energy Center-Franklin County, Missouri, USA.
- 6. Golder Associates Inc. 2019. 2018 Annual Groundwater Monitoring and Corrective Action Report, LCPA Surface Impoundment, Labadie Energy Center-Franklin County, Missouri, USA.
- 7. Golder Associates Inc. 2019. Technical Memorandum, Progress Update on LCPA Nature and Extent Investigation, Labadie Energy Center, Missouri.
- 8. Gredell Engineering Resources, Inc. and Reitz & Jens, Inc. 2011, Detailed Site Investigation Report, Proposed Utility Waste Disposal Area Franklin County, Missouri.
- 9. Gredell Engineering Resources, Inc. 2019, Ameren Missouri Labadie Energy Center Bottom Ash Pond Draft Groundwater Model Report.
- Haley & Aldrich, Inc. 2018. Human Health and Ecological Assessment of the Labadie Energy Center https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion/water-quality.
- 11. Kleinfelder 2016. Ground and Surface Water Assessment Labadie Energy Center, June 17, 2016.
- 12. Lochmueller Group 2019. Extraction & Transportation Study: Rush Island Ash Pond Closure Assessment. Rush Island Site, Jefferson County, Missouri and Addendum, Meramec, Labadie and Sioux Ash Pond Closure Extraction & Transportation Assessment.
- 13. NAS. 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Institute of Medicine. National Academy of Sciences. 2001. National Academy Press. Available at: http://www.nap.edu/catalog/10026.html.
- 14. USEPA. 1989. Risk Assessment Guidance for Superfund: Volume I. Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response. U.S. Environmental

Protection Agency, Washington, D.C. EPA 540/1-89/002. Available at: http://www.epa.gov/oswer/riskassessment/ragsa/

- 15. USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance.
- 16. USEPA. 2015. Frequent Questions about the 2015 Coal Ash Disposal Rule. https://www.epa.gov/coalash/frequent-questions-about-2015-coal-ash-disposal-rule
- 17. USEPA. 2015a. Final Rule: Disposal of Coal Combustion Residuals (CCRs) for Electric Utilities. 80 FR 21301-21501. U.S. Environmental Protection Agency, Washington, D.C. Available at: https://www.govinfo.gov/content/pkg/FR-2015-04-17/pdf/2015-00257.pdf.
- 18. USEPA. 2015b. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites.
- 19. USEPA. 2018a. USEPA Regional Screening Levels. November 2018, values for tapwater. U.S. Environmental Protection Agency. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

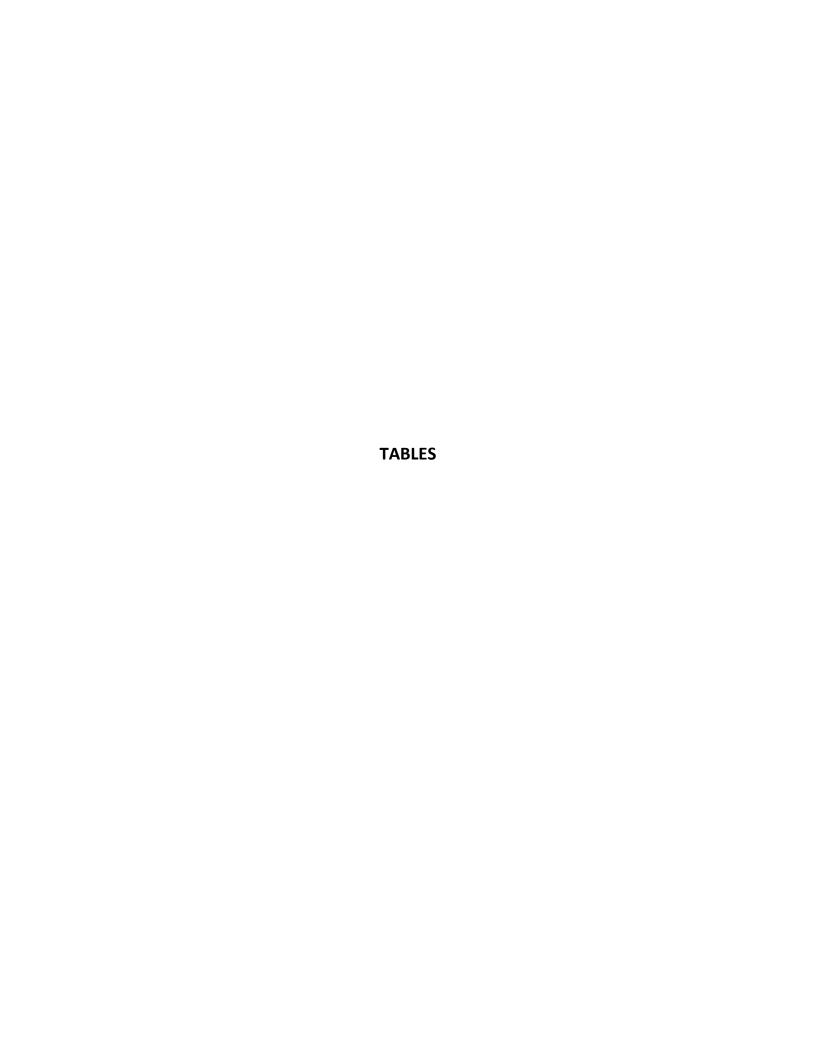


TABLE I GROUNDWATER ANALYTICAL RESULTS - APPENDIX IV CONSTITUENTS CORRECTIVE MEASURES ASSESSMENT AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

								Constitu	ents						
		Antimony	Arsenic,	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Monitoring	Date Sampled		Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Well ID		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	Site GWPS	6	42.6	2000	4	5	100	6	4	15	54.85	2	100	50	2
BMW-1D	3/22/2016	1 U	0.26 J	1120	1 U	0.5 U	0.52 J	5 U	0.18 J	5 U	31.8	0.2 U	1.2 J	1 U	1 U
	5/3/2016	1 U	0.12 J	1210	1 U	0.5 U	0.95 J	5 U	0.18 J	5 U	31.4	0.2 U	1.8 J	1 U	1 U
	7/11/2016	1 U	0.47 J	1150	1 U	0.5 U	1 U	5 U	0.19 J	5 U	30.7	0.2 U	1.2 J	1 U	1 U
	9/13/2016	1 U	0.51 J	1100	1 U	0.5 U	1 U	5 U	0.17 J	5 U	26.9	0.2 U	1.4 J	1 U	1 U
	11/11/2016 1/16/2017	1 U	0.70 J 0.63 J	1170 1290	1 U	0.5 U 0.5 U	0.46 J 1 U	5 U 5 U	0.20 J 0.2	5 U	32.8 30.5	0.2 U 0.2 U	20 U 1.4 J	1 U	1 U
DIVIVV-1D	3/1/2017	0.036 J	0.03 J	1220	1 U	0.5 U	1 U	5 U	0.2 0.19 J	2.9 J	30.9	0.2 U	1.4 J	1 U	1 U
	5/31/2017	1 U	0.85 J	1200	1 U	0.5 U	1 U	5 U	0.18 J	5 U	27.5	0.2 U	1.6 J	1 U	1 U
	4/9/2018	1 U	0.72 J	1160	1 U	0.5 U	1 U	5 U	0.23	3.3 J	30.2	0.2 U	1.3 J	1 U	1 U
	5/21/2018		1.1	1210					0.23		29.9		1.4 J		
	11/7/2018		0.90 J	1160					0.25		29.6		20 U		
	3/22/2016	1 U	28.2	364	1 U	0.5 U	0.54 J	5 U	0.21	5 U	47.4	0.2 U	7.0 J	1 U	1 U
	5/4/2016	1 U	14.7	392	1 U	0.5 U	0.70 J	5 U	0.18 J	5 U	45.1	0.2 U	2.3 J	1 U	1 U
	7/11/2016	1 U	16.2	363	1 U	0.5 U	1 U	5 U	0.2	5 U	44.1	0.2 U	3.3 J	1 U	1 U
	9/9/2016 11/11/2016	1 U	31.6 38.4	377 325	1 U	0.5 U 0.5 U	0.48 J 0.48 J	5 U	0.22 0.27	2.6 J 5 U	43.2 46.1	0.2 U 0.2 U	20 U 20 U	1 U	1 U 1 U
BMW-2D	1/16/2017	1 U	42.6	307	1 U	0.5 U	1 U	5 U	0.27	5 U	40.1	0.2 U	2.7 J	1 U	1 U
	3/1/2017	0.031 J	39.1	306	1 U	0.5 U	1 U	5 U	0.25	5 U	41.5	0.2 U	4.8 J	1 U	1 U
	5/31/2017	1 U	34.7	354	0.17 J	0.5 U	1 U	5 U	0.19 J	5 U	39.2	0.2 U	3.5 J	1 U	1 U
	4/9/2018	1 U	31.3	313	1 U	0.5 U	1 U	5 U	0.26	3.4 J	41.5	0.2 U	2.4 J	1 U	1 U
	5/21/2018		32.7	311					0.26		41.8		2.8 J		
	11/7/2018		33.5	309					0.25		39.3		2.0 J		
	3/22/2016	1 U	25.6	379	1 U	0.5 U	1 U	5 U	0.21	5 U	26.5	0.2 U	1.4 J	1 U	1 U
	5/4/2016 7/12/2016	1 U	14.8 28.5	413 379	1 U	0.5 U 0.5 U	1 U	5 U	0.2	4.9 J 5 U	27.7	0.2 U 0.2 U	1.8 J	1 U	1 U
	9/9/2016	1 U	28.5	421	1 U	0.5 U	2.4	5 U	0.2 0.18 J	5 U	25.1 23.3	0.2 U	1.8 J 20 U	1 U	1 U
	11/14/2016	1 U	31.1	371	1 U	0.5 U	0.36 J	5 U	0.16 3	5 U	24.4	0.2 U	20 U	1 U	1 U
UMW-1D	1/16/2017	1 U	35	410	1 U	0.5 U	1 U	5 U	0.19 J	3.6 J	24.4	0.2 U	1.8 J	1 U	1 U
	3/2/2017	1 U	35.3	398	1 U	0.5 U	1 U	5 U	0.20 J	3.0 J	23.3	0.2 U	1.5 J	1 U	0.039 J
	5/31/2017	0.029 J	30.9	437	1 U	0.5 U	1 U	5 U	0.19 J	5 U	23.8	0.2 U	2.0 J	1 U	0.075 J
	4/9/2018	1 U	47.1	494	1 U	0.5 U	0.061 J	5 U	0.26	3.4 J	26.8	0.2 U	1.2 J	1 U	1 U
	5/21/2018		35.8	386					0.25		21.7		20 U		
	11/7/2018	4.11	69.5	588	4.11	0.5.11	0.00.1	5.11	0.21	5.11	32.6	0.011	1.2 J	411	411
	3/22/2016 5/4/2016	1 U	1.4	127 113	1 U	0.5 U 0.5 U	0.36 J 0.56 J	5 U	0.41	5 U	31.6 29.1	0.2 U 0.2 U	45.2 46.9	1 U	1 U
	7/12/2016	1 U	2	124	1 U	0.5 U	1 U	5 U	0.34	5 U	28.9	0.2 U	44.3	1 U	1 U
	9/9/2016	1 U	2.2	114	1 U	0.5 U	1 U	5 U	0.34	5 U	26.9	0.2 U	45.9	1 U	1 U
	11/11/2016	1 U	2.7	138	1 U	0.5 U	0.47 J	5 U	0.34	5 U	31.3	0.2 U	36.9	1 U	1 U
UMW-2D	1/17/2017	1 U	2.9	105	1 U	0.5 U	1 U	5 U	0.38	3.0 J	24.2	0.2 U	44.4	1 U	1 U
	3/2/2017	1 U	2.8	99	1 U	0.5 U	1 U	5 U	0.37	5 U	24.9	0.2 U	45.4	1 U	1 U
	6/2/2017	1 U	1.7	107	1 U	0.5 U	1 U	5 U	0.37	5 U	25.4	0.2 U	40.6	1 U	1 U
	4/10/2018	1 U	1.9	104	1 U	0.5 U	1 U	5 U	0.46	4.1 J	23.3	0.2 U	44.7	1 U	1 U
	5/21/2018 11/7/2018		2.2 1.8	112 105					0.37 0.42		22.4 21.9		38.4 40.9		
	3/23/2016	1 U	0.57 J	81	1 U	0.5 U	1 U	5 U	0.42 0.13 J	5 U	21.9	0.2 U	195	0.19 J	1 U
	5/5/2016	0.066 J	2.3	114	1 U	0.5 U	1 U	5 U	0.13 J	5 U	24	0.2 U	171	1 U	1 U
	7/12/2016	1 U	2	92	1 U	0.5 U	1 U	5 U	0.13 J	5 U	18.2	0.2 U	192	0.19 J	1 U
	9/13/2016	1 U	1.1	118	1 U	0.5 U	1 U	5 U	0.12 J	5 U	18.8	0.2 U	175	1 U	1 U
	11/14/2016	1 U	1 U	185	1 U	0.5 U	1 U	5 U	0.16 J	5 U	31.4	0.2 U	113	1 U	1 U
UMW-3D	1/17/2017	1 U	0.11 J	136	1 U	0.5 U	1 U	5 U	0.24	3.1 J	26.3	0.2 U	127	1 U	1 U
	3/2/2017	1 U	0.46 J	163	1 U	0.5 U	1 U	5 U	0.17 J	5 U	27.4	0.2 U	116	0.14 J	1 U
	6/1/2017 4/10/2018	1 U	2.4	139 102	1 U	0.5 U 0.036 J	1 U 0.069 J	5 U 5 U	0.2 U 0.18 J	5 U 3.0 J	20.4 18.2	0.2 U 0.2 U	171 200	1 U 0.17 J	1 U
	5/22/2018	1 0	2.4	86.7	1 0	U.U30 J	0.009 J	50	0.18 J 0.17 J	3.U J	17.2	U.Z U	233	U.1/ J	10
	11/9/2018		1.7	82.2					0.17 J		13.4		206		
	12/6/2018	0.14 J	3.2	73.3	1 U	0.082 J	0.57 J	5 U	0.2 U	10 U	16.5	0.2 U	220	0.28 J	1 U
	3/23/2016	1 U	0.26 J	71.4	1 U	0.5 U	0.36 J	5 U	0.35	5 U	35.9	0.2 U	148	1 U	1 U
	5/4/2016	1 U	0.25 J	68.2	1 U	0.5 U	0.55 J	5 U	0.35	5 U	36.2	0.2 U	145	1 U	1 U
	7/13/2016	1 U	1 U	78.6	1 U	0.5 U	1 U	5 U	0.32	5 U	37.6	0.2 U	192	1 U	1 U
	9/13/2016	0.061 J	0.11 J	75.2	1 U	0.5 U	1 U	5 U	0.34	5 U	34.7	0.2 U	156	1 U	1 U
LIMANAY AD	11/14/2016	1 U	1 U	56.5	1 U	0.5 U	1 U	5 U	0.4	5 U	32.1	0.2 U	122	1 U	1 U
UMW-4D	1/17/2017	1 U	1 U	43.3	1 U	0.5 U	1 U	5 U	0.44	5 U	25	0.2 U	98.8	1 U	1 U
	3/3/2017 6/1/2017	1 U	0.12 J 0.10 J	50.6 78.6	1 U	0.5 U 0.5 U	1.8 1 U	5 U 5 U	0.4	5 U	29.3 33.2	0.2 U 0.2 U	116 192	1 U 1 U	1 U
	4/9/2018	1 U	0.10 J 0.088 J	68	1 U	0.5 U	0.11 J	5 U	0.36	10 U	33.2	0.2 U	192	1 U	1 U
	5/22/2018	. 0	1 U	72.1		0.00	0.110	- 50	0.41	.50	29.9	0.20	157	, J	
	11/9/2018		0.16 J	81.5					0.49		33.2		107		

TABLE I GROUNDWATER ANALYTICAL RESULTS - APPENDIX IV CONSTITUENTS CORRECTIVE MEASURES ASSESSMENT AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

								Constitu	uents						
		Antimony	Arsenic,	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium
Monitoring	Date Sampled	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Well ID		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	Site GWPS	6	42.6	2000	4	5	100	6	4	15	54.85	2	100	50	2
	3/23/2016	1 U	17.2	67.8	1 U	0.5 U	0.54 J	5 U	0.081 J	5 U	23.8	0.2 U	109	1 U	1 U
	5/5/2016	0.094 J	27.1	81.5	1 U	0.5 U	0.58 J	5 U	0.075 J	5.1	15.9	0.2 U	130	1 U	1 U
	7/13/2016	0.079 J	19.3	70.6	1 U	0.5 U	1 U	5 U	0.096 J	5 U	19	0.2 U	117	1 U	1 U
	9/9/2016	0.084 J 1 U	17.7	68.9 61.6	1 U 1 U	0.5 U	1 U	5 U	0.082 J	5 U	23.4 26.3	0.2 U 0.2 U	120 122	1 U 1 U	1 U 1 U
UMW-5D	11/14/2016 1/17/2017	1 U	16.4 22.1	54.8	1 U	0.5 U 0.5 U	1 U	5 U	0.13 J 0.11 J	3.6 J	20.8	0.2 U	106	1 U	1 U
OWW OB	3/2/2017	0.10 J	26.2	61.4	1 U	0.5 U	1 U	5 U	0.11 J	5 U	16.6	0.2 U	111	0.15 J	1 U
	6/1/2017	0.10 J	21	69.2	1 U	0.5 U	1 U	5 U	0.2 U	5 U	13.5	0.2 U	136	0.12 J	1 U
	4/9/2018	0.10 J	26	70.8	1 U	0.5 U	0.067 J	5 U	0.15 J	10 U	12.7	0.2 U	152	0.11 J	1 U
	5/22/2018		24.6	70.6					0.13 J		12.6		162		
	11/8/2018		16.1	60					0.2 U		12.9		151		
	3/23/2016	0.11 J	1.8	129	1 U	0.5 U	0.54 J	5 U	0.12 J	5 U	10.1	0.2 U	668	1 U	1 U
	5/4/2016 7/13/2016	1 U 1 U	5.7 9.6	139 123	1 U	0.5 U 0.5 U	0.80 J 1 U	5 U	0.14 J 0.14 J	3.2 J 5 U	7.8 J 6.5 J	0.2 U 0.2 U	634 674	0.20 J 1 U	1 U 1 U
	9/9/2016	1 U	16.6	123	1 U	0.5 U	0.56 J	5 U	0.14 J	5 U	6.6 J	0.2 U	596	0.28 J	1 U
	11/14/2016	1 U	12.9	129	1 U	0.5 U	1 U	5 U	0.12 J	3.6 J	7.0 J	0.2 U	554	0.33 J	1 U
UMW-6D	1/17/2017	1 U	15.2	141	1 U	0.052 J	1 U	5 U	0.11 J	5 U	5.9 J	0.2 U	504	0.22 J	1 U
	3/2/2017	1 U	14	150	1 U	0.5 U	1 U	5 U	0.14 J	5 U	7.4 J	0.2 U	496	0.26 J	1 U
	6/1/2017	1 U	12.8	145	1 U	0.5 U	1 U	5 U	0.11 J	5 U	5.8 J	0.2 U	548	0.21 J	0.092 J
	4/9/2018	1 U	9.4	152	1 U	0.034 J	0.079 J	5 U	0.17 J	10 U	6.9 J	0.2 U	564	0.26 J	1 U
	5/22/2018		8.7	137					0.15 J		5.0 J		534		
	11/9/2018		15.4	114					0.2 U		5.2 J		591		
	3/23/2016	1 U	10.6 9.6	180	1 U	0.5 U	0.54 J	5 U	0.33	5 U	20.2	0.2 U	201	1 U 1 U	1 U
	5/4/2016 7/11/2016	1 U 1 U	13.7	187 159	1 U	0.5 U 0.5 U	0.77 J 0.81 J	5 U	0.28	5 U	21 17.7	0.2 U 0.2 U	182 198	1 U	1 U
	9/12/2016	1 U	21.6	105	1 U	0.5 U	1 U	5 U	0.29	5 U	19.1	0.2 U	205	1 U	1 U
	11/14/2016	1 U	21.1	101	1 U	0.5 U	1 U	5 U	0.29	2.7 J	22.7	0.2 U	191	1 U	1 U
UMW-7D	1/18/2017	1 U	20.9	113	1 U	0.5 U	1 U	5 U	0.28	5 U	18.2	0.2 U	205	1 U	1 U
	3/2/2017	1 U	20.7	123	1 U	0.5 U	1 U	5 U	0.27	2.7 J	20.6	0.2 U	191	1 U	1 U
	6/1/2017	1 U	16.5	164	1 U	0.5 U	1 U	5 U	0.26	5 U	14.6	0.2 U	188	0.091 J	1 U
	4/9/2018	1 U	19.7	157	1 U	0.5 U	0.085 J	5 U	0.28	10 U	19.4	0.2 U	214	0.089 J	1 U
	5/22/2018		17.8	154					0.37		19.9		203		
	11/7/2018	4.11	20.7	121	4.11	0.5.11	0.40.1		0.29	5.11	25	0.011	231	4.11	4.11
	3/22/2016 5/4/2016	1 U 1 U	27.9 28	454 458	1 U	0.5 U 0.5 U	0.48 J 0.62 J	5 U 0.79 J	0.14 J 0.15 J	5 U	34.6 34.8	0.2 U 0.2 U	14.8 J 9.5 J	1 U	1 U
	7/12/2016	1 U	31.2	448	1 U	0.5 U	1 U	5 U	0.16 J	5 U	32	0.2 U	13.6 J	1 U	1 U
	9/12/2016	1 U	31.8	497	1 U	0.5 U	1	5 U	0.15 J	5 U	31.2	0.2 U	14.5 J	1 U	1 U
	11/14/2016	1 U	32.5	481	1 U	0.5 U	1 U	5 U	0.20 J	3.9 J	31.7	0.2 U	11.7 J	1 U	1 U
UMW-8D	1/18/2017	1 U	32.8	492	1 U	0.5 U	1 U	5 U	0.19 J	5 U	30.7	0.2 U	14.5 J	1 U	1 U
	3/2/2017	1 U	35.4	482	1 U	0.5 U	1 U	5 U	0.17 J	4.4 J	32.4	0.2 U	12.2 J	1 U	1 U
	5/31/2017	1 U	27.6	465	1 U	0.5 U	1 U	5 U	0.15 J	5 U	26.4	0.2 U	11.5 J	1 U	1 U
	4/9/2018	1 U	27.9	452	1 U	0.5 U	0.064 J	5 U	0.23	10 U	30.9	0.2 U	11.0 J	0.087 J	1 U
	5/22/2018 11/7/2018		29.5 24.3	449 446					0.22		31.8 31.4		10.7 J 15.5 J		
	3/22/2016	1 U	33.1	516	1 U	0.5 U	0.65 J	5 U	0.23 0.14 J	5 U	18.2	0.2 U	2.0 J	1 U	1 U
	5/4/2016	1 U	32.4	545	1 U	0.5 U	1.1	5 U	0.14 J	3.0 J	20.4	0.2 U	1.6 J	1 U	1 U
	7/12/2016	1 U	33.1	507	1 U	0.5 U	1 U	5 U	0.16 J	5 U	16.6	0.2 U	1.3 J	1 U	1 U
	9/9/2016	1 U	35.4	536	1 U	0.5 U	1 U	5 U	0.15 J	4.8 J	17.2	0.2 U	20 U	1 U	1 U
	11/14/2016	1 U	35.6	506	1 U	0.5 U	1 U	5 U	0.18 J	2.7 J	18.5	0.2 U	0.76 J	1 U	1 U
UMW-9D	1/18/2017	1 U	33.5	520	1 U	0.5 U	1 U	5 U	0.17 J	5 U	15.7	0.2 U	20 U	1 U	1 U
	3/2/2017	1 U	33.2	505	1 U	0.5 U	1 U	5 U	0.17 J	2.5 J	16.9	0.2 U	2.2 J	1 U	1 U
	5/31/2017 4/9/2018	1 U 0.035 J	34.2 31.9	538 515	1 U 1 U	0.5 U	1 U 0.064 J	5 U	0.15 J	5 U	14	0.2 U 0.2 U	2.6 J	1 U	1 U
	5/22/2018	U.U35 J	31.9	515 517	10	0.5 U	0.004 J	อบ	0.21	3.0 J	17.1 15.8	U.Z U	1.3 J 1.1 J	10	1 U
	11/7/2018		34.5	500					0.22		16.4		20 U		-
AM-1D	11/9/2018	1 U	2.7	76.4	1 U	0.14 J	1 U	5 U	0.41	10 U	32.5	0.2 U	375	1 U	1 U
AM-1S	11/9/2018	1 U	4.5	539	1 U	0.5 U	1 U	5.6	0.27	10 U	37	0.2 U	3.6 J	1 U	1 U
									1						
TP-1D	11/8/2018	1 U	1 U	1420	1 U	0.5 U	0.26 J	5 U	0.2 U	10 U	26.4	0.2 U	20 U	1 U	1 U
TP-1M	11/8/2018	1 U	1 U	980	1 U	0.5 U	0.081 J	5 U	0.20 J	10 U	21.8	0.2 U	20 U	1 U	1 U
TP-1S	11/8/2018	1 U	12.8	355	1 U	0.5 U	0.10 J	5 U	0.2 U	10 U	14.3	0.2 U	4.5 J	1 U	1 U

TABLE I
GROUNDWATER ANALYTICAL RESULTS - APPENDIX IV CONSTITUENTS
CORRECTIVE MEASURES ASSESSMENT
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

		Constituents													
Monitoring Well ID	Date Sampled	Antimony Total ug/L	Arsenic, Total ug/L	Barium Total ug/L	Beryllium Total ug/L	Cadmium Total ug/L	Chromium Total ug/L	Cobalt Total ug/L	Fluoride Total mg/L	Lead Total ug/L	Lithium Total ug/L	Mercury Total ug/L	Molybdenum Total ug/L	Selenium Total ug/L	Thallium Total ug/L
	Site GWPS	6	42.6	2000	4	5	100	6	4	15	54.85	2	100	50	2
TP-2D	11/9/2018	1 U	5.9	112	1 U	0.057 J	1 U	5 U	0.43	3.2 J	42.7	0.2 U	125	1 U	1 U
TP-2M	11/9/2018	1 U	0.26 J	115	0.18 J	0.057 J	1 U	5 U	0.47	10 U	34.3	0.2 U	117	1 U	1 U
TP-2S	11/9/2018	1 U	11	315	1 U	0.080 J	1 U	5 U	0.31	10 U	39.7	0.2 U	43	1 U	1 U
TP-3D	11/8/2018	0.10 J	1.8	83.7	1 U	0.5 U	1 U	5 U	0.27	10 U	37.0 J	0.2 U	547	0.14 J	1 U
TP-3M	11/8/2018	1 U	1 U	238	1 U	0.5 U	1 U	5 U	0.22	10 U	26.9	0.2 U	355	1 U	1 U
TP-3S	11/8/2018	0.18 J	0.27 J	246	1 U	0.5 U	1 U	5 U	0.2 U	10 U	22.3	0.2 U	7.3 J	3.5	1 U
TP-4D	11/8/2018	0.097 J	5.2	418	1 U	0.5 U	1 U	5 U	0.2 U	3.6 J	26.1	0.2 U	1.8 J	0.091 J	1 U
TP-4M	11/8/2018	0.084 J	4.5	374	1 U	0.5 U	1 U	5 U	0.24	10 U	12.5	0.2 U	2.2 J	0.11 J	1 U
TP-4S	11/8/2018	0.12 J	24.2	302	1 U	0.5 U	1 U	5 U	0.23	10 U	18.2	0.2 U	20 U	0.19 J	1 U
TP-5D	11/8/2018	1 U	11.8	534	1 U	0.5 U	1 U	5 U	0.2 U	10 U	23.9	0.2 U	1.4 J	1 U	1 U
TP-5M	11/8/2018	1 U	0.72 J	888	1 U	0.5 U	1 U	5 U	0.2 U	3.4 J	26.5	0.2 U	0.98 J	1 U	1 U
TP-5S	11/8/2018	1 U	11.9	431	1 U	0.5 U	1 U	1.4 J	0.2 U	10 U	30.5	0.2 U	1.8 J	0.15 J	1 U

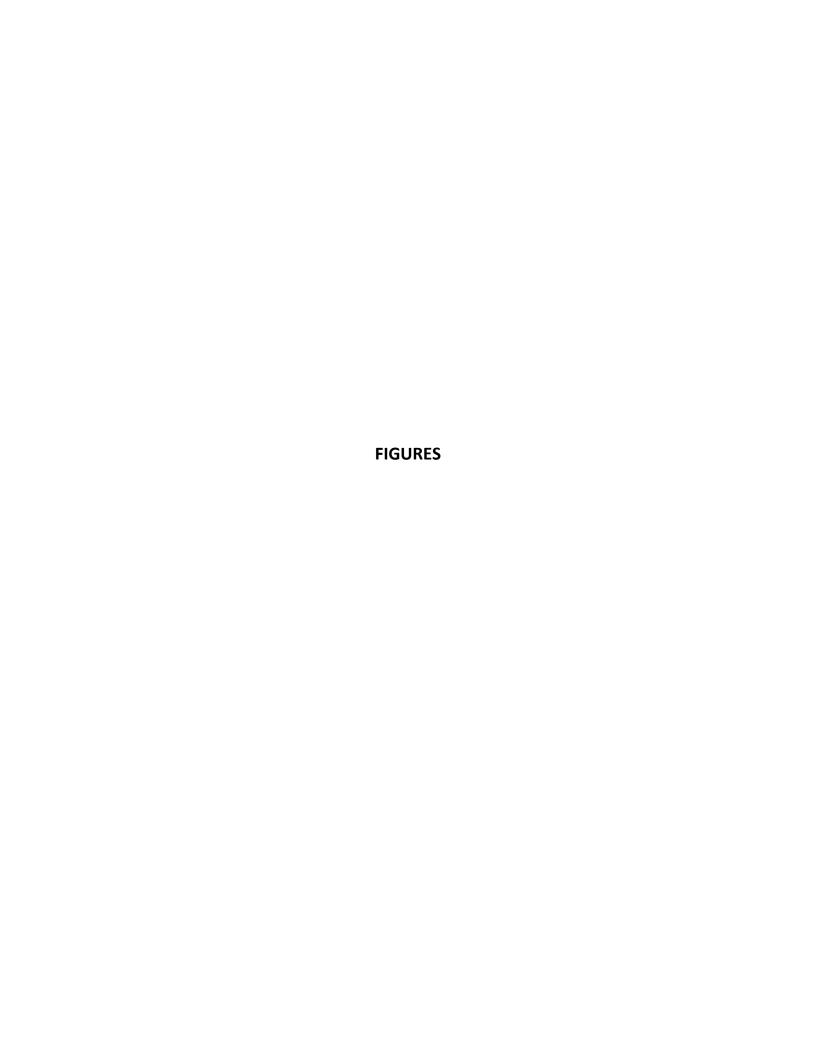
Notes:

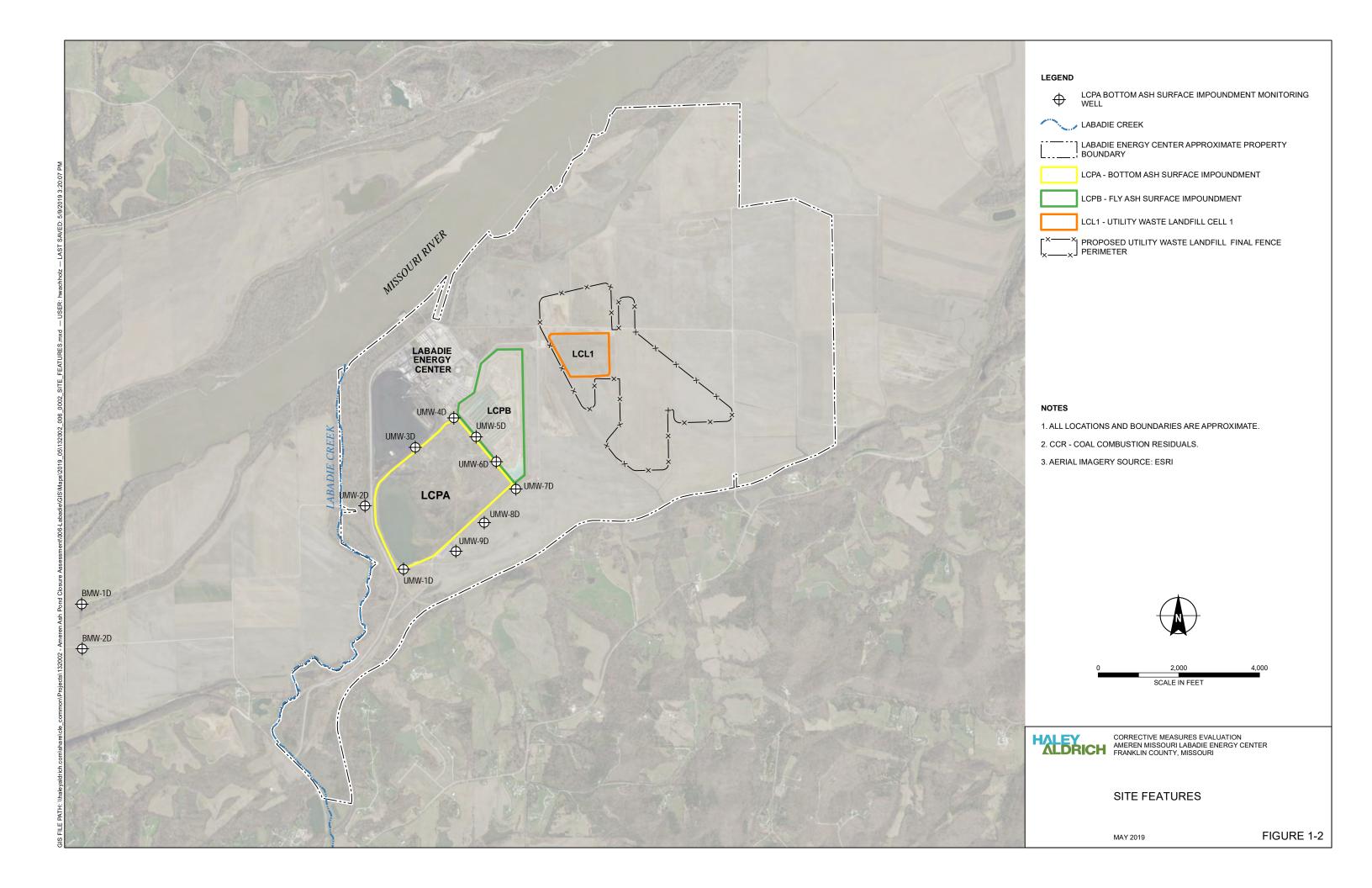
102 Bold denotes concentration exceeding the GWPS

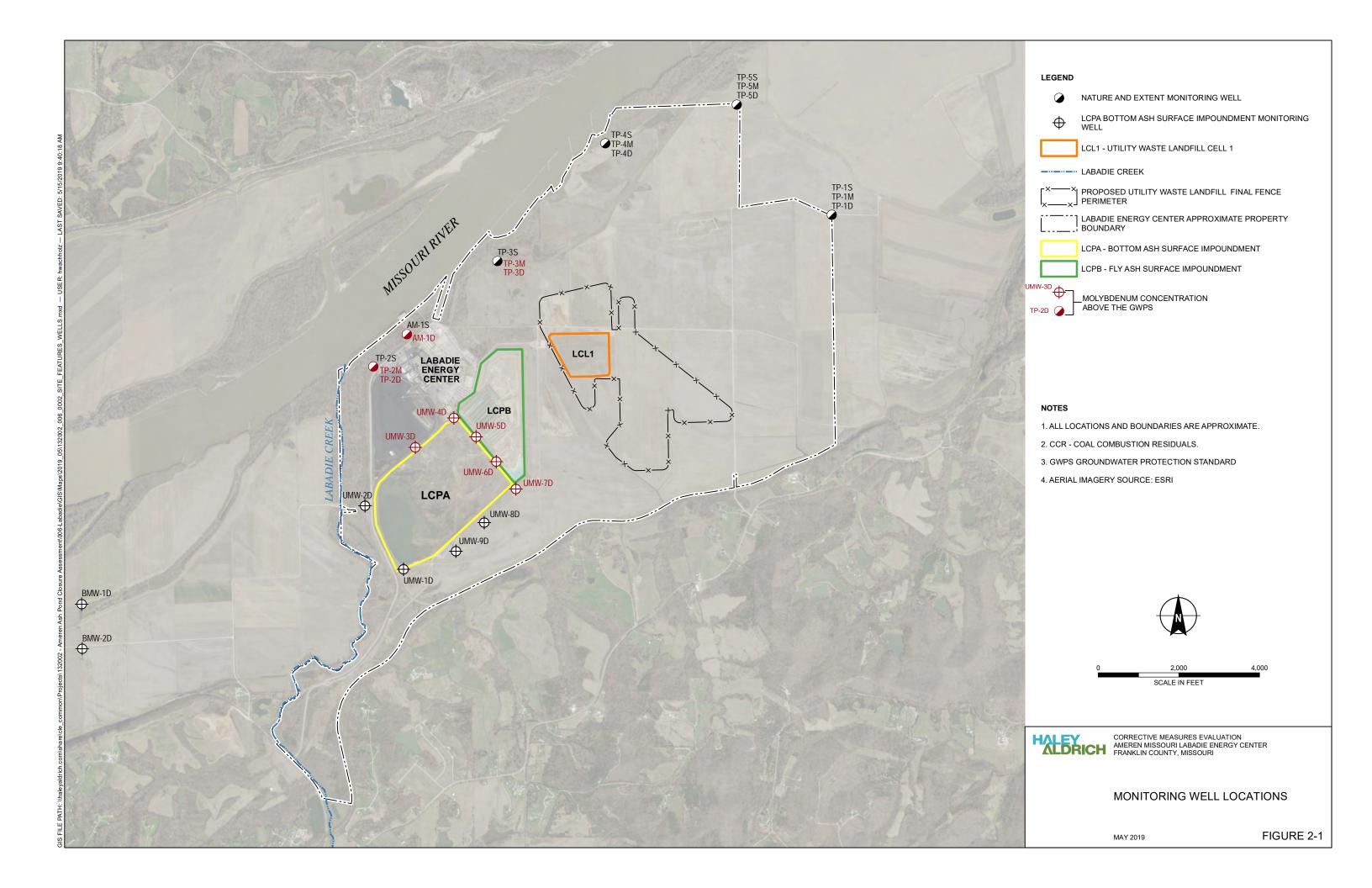
Blank cells - Constituent not included in this analysis.

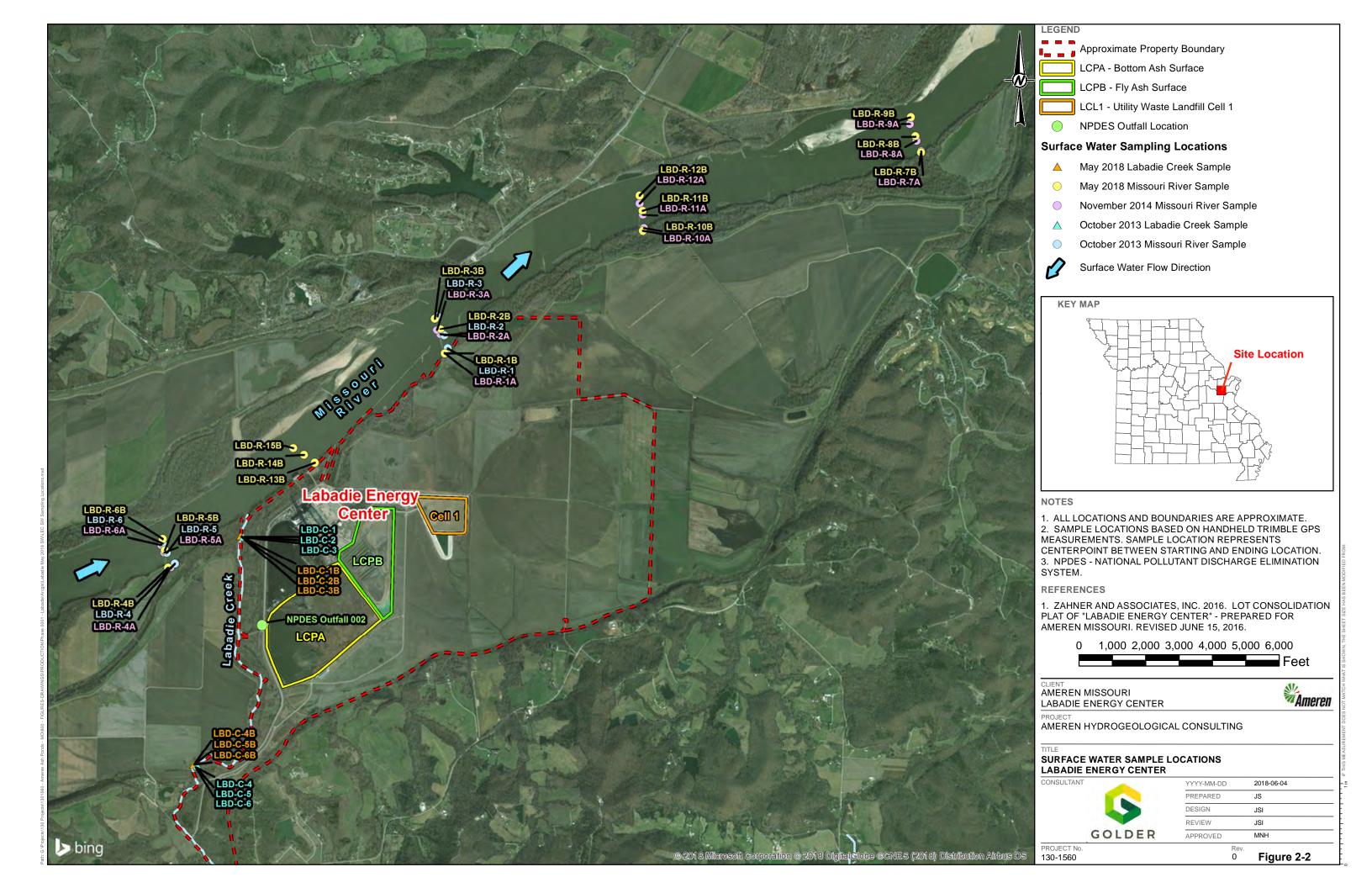
mg/L - milligrams per liter.

ug/L - micrograms per liter.


GWPS - Groundwater Protection Standard.


Qualifiers:


J - Value is estimated.


U - Constituent was not detected, value is the reporting limit.

Site GWPS is either the MCL/Health Based GWPS or based on background levels (calculated as described in the Statistical Analysis Plan for Assessment Monitoring), whichever is higher. GWPS and background values calculated using baseline sampling results from monitoring wells BMW-1D and BMW-2D.

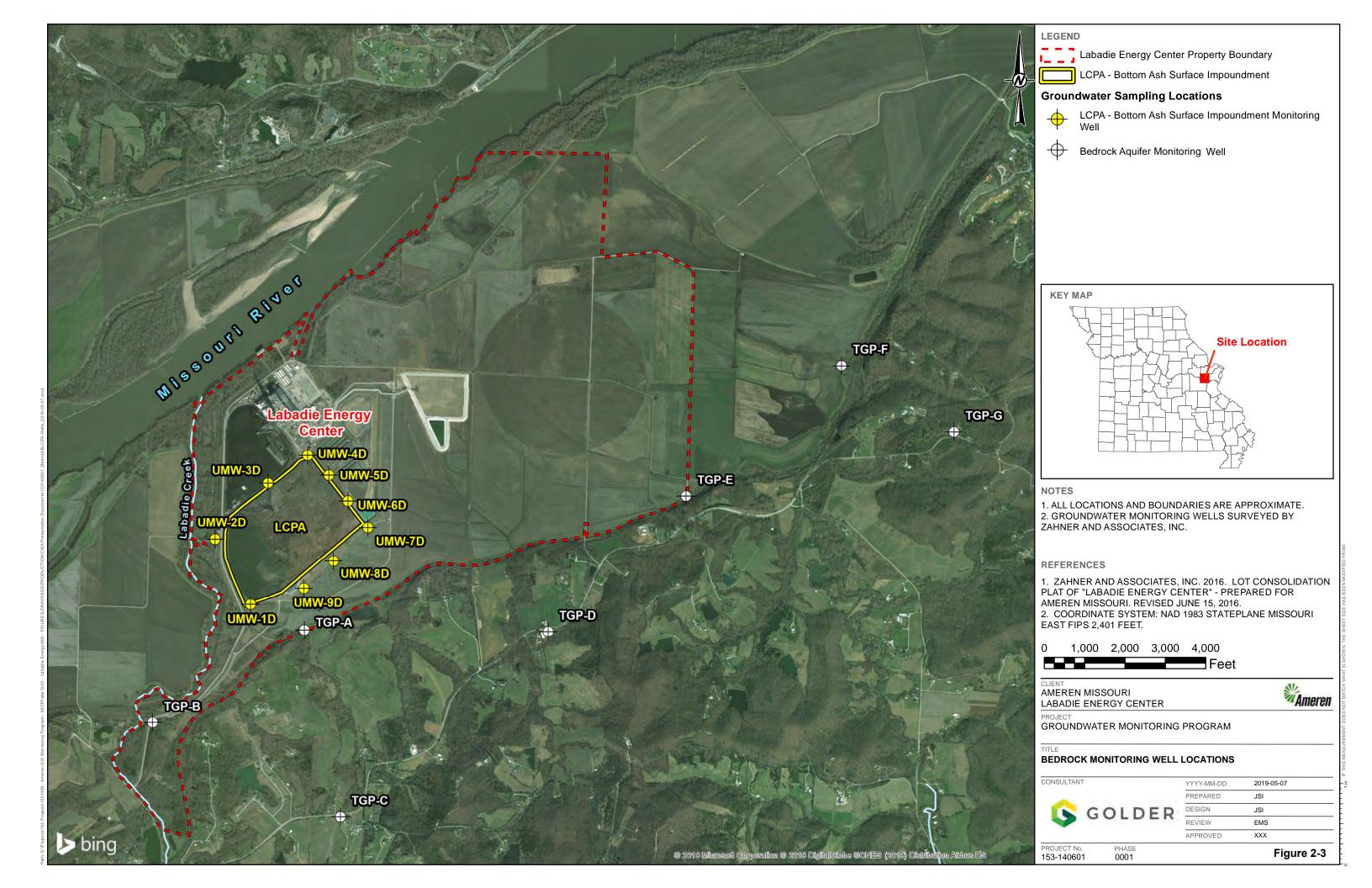
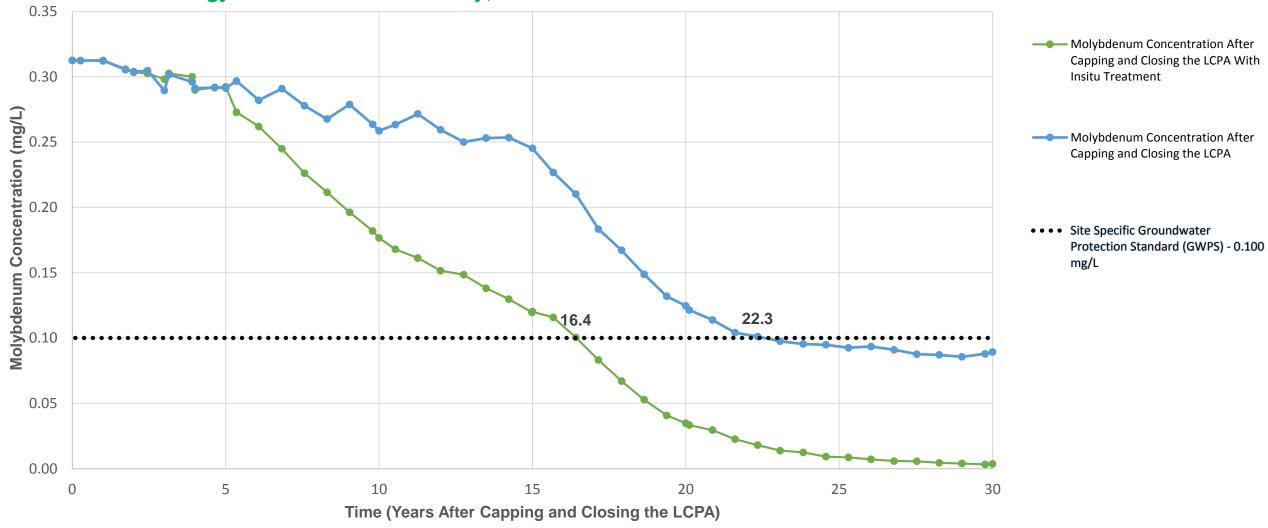



FIGURE 4-1
REMEDIAL ALTERNATIVE ROADMAP
CORRECTIVE MEASURES ASSESSMENT
BOTTOM ASH SURFACE IMPOUNDMENT (LCPA)
LABADIE ENERGY CENTER - FRANKLIN COUNTY, MISSOURI

	Remedial		G	iroundwater Remedy Components	S
Alternative Number	Alternative Description	LCPA Closure Description	A. Groundwater Remedy Approach	B. Groundwater Treatment Method	C. Post-Closure Actions
1	Closure In Place (CIP) with Capping and Monitored Natural Attenuation (MNA)	CIP with Geomembrane and Soil Cap	Natural Attenuation with Monitoring Mitigate off-site migration of groundwater	No Active Treatment No active treatment technologies for	MNA Long-term groundwater monitoring to
2	CIP with In-Situ Stabilization (ISS), Capping and MNA	CIP with ISS, Geomembrane and Soil Cap	with CCR constituents above GWPS through process of natural attenuation	groundwater to address CCR constituents	confirm reduction of CCR constituents
3	CIP with Capping and In- Situ Groundwater Treatment	CIP with Geomembrane and Soil Cap	Subsurface Treatment System Mitigate off-site migration of groundwater with CCR constituents above GWPS using in- situ amendments	In-Situ Treatment Subsurface treatment to reduce Appendix IV constituent concentrations in groundwater	In-Situ Treatment Long-Term Continue periodic in-situ treatment of groundwater to maintain reduction of CCR constituents in groundwater
4	CIP with Capping and Hydraulic Containment through Groundwater Pumping and Ex-Situ Treatment	CIP with Geomembrane and Soil Cap	Hydraulic Containment Mitigate off-site migration of groundwater with CCR constituents above GWPS using extraction wells	Ex-Situ Treatment Treatment system (ion exchange or reverse osmosis) to remove CCR constituents from groundwater	Pump & Treat Long-Term Operate groundwater treatment system long- term to maintain reduction of CCR constituents in groundwater.
5	Closure by Removal (CBR) with MNA	CBR	Natural Attenuation with Monitoring Mitigate off-site migration of groundwater with CCR constituents above GWPS through process of natural attenuation	No Active Treatment No active treatment technologies for groundwater to address CCR constituents	MNA Long-term groundwater monitoring to confirm reduction of CCR constituents

Figure 4-2
Modeled Molybdenum Concentrations After Capping and Closing the LCPA
Labadie Energy Center - Franklin County, Missouri

NOTES:

- 1. mg/L Milligrams per liter.
- 2. GWPS Groundwater Protection Standard.
- 3. Concentrations are representative of the intermediate zone of the alluvial aquifer at Alternative Source Demonstration Location L-ASD-5.

GREDELL Engineering Resources, Inc.

ENVIRONMENTAL ENGINEERING

LAND - AIR - WATER

APPENDIX A

Surface Water Screening Tables

TABLES

1	HUMAN HEALTH SCREENING LEVELS
2	ECOLOGICAL SCREENING LEVELS - MISSOURI RIVER
3	ECOLOGICAL SCREENING LEVELS – LABADIE CREEK
4	SUMMARY OF SCREENING RESULTS
5a	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
5b	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
5c	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
5d	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
5e	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
5f	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
6a	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
6b	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
6c	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
6d	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS

6e	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
6f	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER TO HUMAN HEALTH RECREATIONAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
7a	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
7b	COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
7c	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
7d	COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
7e	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS
7f	COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
8a	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS- TOTAL (UNFILTERED) SAMPLE RESULTS
8b	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
8c	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS- TOTAL (UNFILTERED) SAMPLE RESULTS
8d	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
9a	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVEL- TOTAL (UNFILTERED) SAMPLE RESULTS
9b	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH REACREATIONAL SCREENING LEVEL - DISSOLVED (FILTERED) SAMPLE RESULTS
9c	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVEL- TOTAL (UNFILTERED) SAMPLE RESULTS

9d	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH RECREATIONAL SCREENING LEVEL - DISSOLVED (FILTERED) SAMPLE RESULTS
10a	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS- TOTAL (UNFILTERED) SAMPLE RESULTS
10b	COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
10c	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS- TOTAL (UNFILTERED) SAMPLE RESULTS
10d	COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS
11	COMPARISON OF BLUFF AREA GROUNDWATER MONITORING RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS

TABLE 1 **HUMAN HEALTH SCREENING LEVELS** LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO **AMEREN MISSOURI**

				Drinking Wa	Surface Wa	ater Screeni	ng		
		S	cre	ening Level	s (mg/L)		Leve	ls (mg/L)	
					Novemb 2018 USEP	A			
Constituent	CASRN	MCLs	(b)	SMCLs (b)	Tapwat RSLs (Drinking Water (d)	Recreation Use (a) (e	
Antimony	7440-36-0	0.006	(- ,	NA	0.0078	(m)	0.006	0.64	-,
Arsenic	7440-38-2	0.01		NA	0.000052	٠,	0.01	0.00014	(i)
Barium	7440-39-3	2		NA	3.8		2	NA	(-)
Bervllium	7440-41-7	0.004		NA	0.025		0.004	NA	
Boron	7440-42-8	NA		NA	4		4	NA	
Cadmium	7440-43-9	0.005		NA	0.0092		0.005	NA	
Calcium	7440-70-2	NA		NA	NA		NA	NA	
Chloride	7647-14-5	NA		250	NA		250	NA	
Chromium	16065-83-1 (g)	0.1	(j)	NA	22	(n)	0.1	NA	
Cobalt	7440-48-4	NA		NA	0.006		0.006	NA	
Fluoride	16984-48-8	4		2	0.8		4	NA	
Lead	7439-92-1	0.015	(k)	NA	0.015		0.015	NA	
Lithium	7439-93-2	NA		NA	0.04		0.04	NA	
Mercury	7487-94-7 (h)	0.002	(I)	NA	0.0057	(o)	0.002	NA	
Molybdenum	7439-98-7	NA		NA	0.1		0.1	NA	
Radium 226/228 (pCi/L)	RADIUM226228	5		NA	NA		5	NA	
Selenium	7782-49-2	0.05		NA	0.1		0.05	4.2	
Sulfate	7757-82-6	NA		250	NA		250	NA	
Thallium	7440-28-0	0.002		NA	0.0002	(f)	0.002	0.00047	
Total Dissolved Solids	TDS	NA		500	NA		500	NA	
pH (std)	PHFLD	NA		6.5 - 8.5	NA		6.5 - 8.5	NA	

Notes:

AWQC - Ambient Water Quality Criteria. NA - not available.

CASRN - Chemical Abstracts Service RecpCi/L - picoCurie per liter.

GWPS - Groundwater Protection Standar RSL - Risk-based Screening Levels (USEPA).

HI - Hazard Index (noncancer child). TR - Target Risk (carcinogenic).

MCL - Maximum Contaminant Level. USEPA - United States Environmental Protection Agency.

mg/L - milligram per liter.

- (a) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) Selected Drinking Water Screening Level uses the following hierarchy: Federal USEPA MCL for Drinking Water.

 - Federal USEPA SMCL for Drinking Water.
 - Federal November 2018 USEPA Tapwater RSL.
- (e) The selected Human Health Recreational Use Screening Level is the Federal USEPA AWQC for Human Health Consumption of Organ
- (f) RSL for Thallium (Soluble Salts) used for Thallium.
- (g) CAS number for Trivalent Chromium.
- (h) CAS number for Mercuric Chloride.
- (i) Value applies to inorganic form of arsenic only.
- (j) Value for Total Chromium.
- (k) Lead Treatment Technology Action Level is 0.015 mg/L.
- (I) Value for Inorganic Mercury.
- (m) RSL for Antimony (metallic) used for Antimony.
- (n) RSL for Chromium (III), Insoluble Salts used for Chromium.
- (o) RSL for Mercuric Chloride used for Mercury.

TABLE 2 **ECOLOGICAL SCREENING LEVELS - MISSOURI RIVER** LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO **AMEREN MISSOURI**

			Federal Water Quality Criteria (mg/L)													
		Site-	-Specific	Site-S	pecific	Site-S	pecific	Site-S	Specific							
		USEPA Aqu	atic Life AWQC	USEPA Aquat	ic Life AWQC -	USEPA Aquat	ic Life AWQC -	USEPA Aquatic Life AWQC -								
		2018 Ha	rdness Data	2018 Hard	Iness Data	2013 and 2014	Hardness Data	2013 and 2014 Hardness Data								
		Freshwa	ater Acute (a)	Freshwater	Chronic (a)	Freshwate	er Acute (b)	Freshwater Chronic (b)								
Constituent	CASRN	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved							
Antimony	7440-36-0	NA	NA	NA	NA	NA	NA	NA	NA							
Arsenic	7440-38-2	0.34	0.34	0.15	0.15	0.34	0.34	0.15	0.15							
Barium	7440-39-3	NA	NA	NA	NA	NA	NA	NA	NA							
Beryllium	7440-41-7	NA	NA	NA	NA	NA	NA	NA	NA							
Boron	7440-42-8	NA	NA	NA	NA	NA	NA	NA	NA							
Cadmium	7440-43-9	0.0058 (c)	0.0052 (d)	0.0020 (c)	0.0017 (d)	0.0053 (f)	0.0048 (g)	0.0018 (f)	0.0016 (g)							
Calcium	7440-70-2	NA	NA	NA	NA	NA	NA	NA	NA							
Chloride	16887-00-6	860	NA	230	NA	860	NA	230	NA							
Chromium	7440-47-3	4.6 (e,c)		0.22 (e,c)	0.19 (e,d)	4.2 (e,f)	1.3 (e,g)	0.20 (e,f)	0.17 (e,g)							
Cobalt	7440-48-4	NA	NA	NA	NA	NA	NA	NA	NA							
Fluoride	16984-48-8	NA	NA	NA	NA	NA	NA	NA	NA							
Lead	7439-92-1	0.35 (c)	0.22 (d)	0.014 (c)	0.0085 (d)	0.31 (f)	0.20 (g)	0.012 (f)	0.0077 (g)							
Lithium	7439-93-2	NA	NA	NA	NA	NA	NA	NA	NA							
Mercury	7439-97-6	0.0016	0.0014	0.00091	0.00077	0.0016	0.0014	0.00091	0.00077							
Molybdenum	7439-98-7	NA	NA	NA	NA	NA	NA	NA	NA							
Selenium	7782-49-2	NA	NA	3.1	NA	NA	NA	3.1	NA							
Sulfate	14808-79-8	NA	NA	NA	NA	NA	NA	NA	NA							
Thallium	7440-28-0	NA	NA	NA	NA	NA	NA	NA	NA							
Total Dissolved Solids	TDS	NA	NA	NA	NA	NA	NA	NA	NA							

AWQC - USEPA Ambient Water Quality Criteria.

CASRN - Chemical Abstracts Service Registry Number.

CMC - Criterion Maximum Concentration.

- (a) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology.
 - http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness using hardness data collected in May 2018 see note (c).

- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness using hardness data collected in November 2014 see note (f).
 - USEPA provides AWQC for both total and dissolved results.
- (c) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 313 mg/L as CaCO3 used.
- (d) Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Missouri River of 313 mg/L as CaCO3 used.
- (e) Value for trivalent chromium used.
- (f) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.
- (g) Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

TABLE 3
ECOLOGICAL SCREENING LEVELS - LABADIE CREEK
LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO
AMEREN MISSOURI

			Federal Water Quality Criteria (mg/L)													
		Site-	Specific	Site-S	pecific	Site-S	pecific	Site-S	Specific							
		USEPA Aqu	atic Life AWQC	USEPA Aquat	ic Life AWQC -	USEPA Aquat	ic Life AWQC -	USEPA Aquatic Life AWQC -								
		2018 Ha	rdness Data	2018 Hard	lness Data	2013 Hard	Iness Data	2013 Hardness Data								
		Freshwa	ter Acute (a)	Freshwater	Chronic (a)	Freshwate	er Acute (b)	Freshwater Chronic (b)								
Constituent	CASRN	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved							
Antimony	7440-36-0	NA	NA	NA	NA	NA	NA	NA	NA							
Arsenic	7440-38-2	0.34	0.34	0.15	0.15	0.34	0.34	0.15	0.15							
Barium	7440-39-3	NA	NA	NA	NA	NA	NA	NA	NA							
Beryllium	7440-41-7	NA	NA	NA	NA	NA	NA	NA	NA							
Boron	7440-42-8	NA	NA	NA	NA	NA	NA	NA	NA							
Cadmium	7440-43-9	0.0043 (c)	0.0039 (d)	0.0015 (c)	0.0013 (d)	0.0050 (f)	0.0045 (g)	0.0017 (f)	0.0015 (g)							
Calcium	7440-70-2	NA	NA	NA	NA	NA	NA	NA	NA							
Chloride	16887-00-6	860	NA	230	NA	860	NA	230	NA							
Chromium	7440-47-3	3.6 (e,c)	1.1 (e,d)	0.17 (e,c)	0.15 (e,d)	4.1 (e,f)	1.3 (e,g)	0.19 (e,f)	0.17 (e,g)							
Cobalt	7440-48-4	NA	NA	NA	NA	NA	NA	NA	NA							
Fluoride	16984-48-8	NA	NA	NA	NA	NA	NA	NA	NA							
Lead	7439-92-1	0.24 (c)	0.16 (d)	0.0092 (c)	0.0062 (d)	0.29 (f)	0.19 (g)	0.011 (f)	0.0073 (g)							
Lithium	7439-93-2	NA	NA	NA	NA	NA	NA	NA	NA							
Mercury	7439-97-6	0.0016	0.0014	0.00091	0.00077	0.0016	0.0014	0.00091	0.00077							
Molybdenum	7439-98-7	NA	NA	NA	NA	NA	NA	NA	NA							
Selenium	7782-49-2	NA	NA	3.1	NA	NA	NA	3.1	NA							
Sulfate	14808-79-8	NA	NA	NA	NA	NA	NA	NA	NA							
Thallium	7440-28-0	NA	NA	NA	NA	NA	NA	NA	NA							
Total Dissolved Solids	TDS	NA	NA	NA	NA	NA	NA	NA	NA							

AWQC - USEPA Ambient Water Quality Criteria.

CASRN - Chemical Abstracts Service Registry Number.

CMC - Criterion Maximum Concentration.

- (a) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness using hardness data collected in May 2018 see note (c). USEPA provides AWQC for both total and dissolved results.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness using hardness data collected in October 2013 see note (f). USEPA provides AWQC for both total and dissolved results.
- (c) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Labadie Creek of 231 mg/L as CaCO3 used.
- (d) Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Labadie Creek of 231 mg/L as CaCO3 used.
- (e) Value for trivalent chromium used.
- (f) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Labadie Creek of 270 mg/L as CaCO3 used.
- (g) Hardness dependent value for total metals adjusted for dissolved fraction. Site-specific total recoverable mean hardness value for the Labadie Creek of 270 mg/L as CaCO3 used.

TABLE 4 SUMMARY OF SCREENING RESULTS LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO AMEREN MISSOURI

	a,, a,, b, ,,				Misso	ouri River - Humar	Health Drinking	Water			
	Off-Site Bluff Area Wells -			Dissolved					Total		
Constituent	Drinking Water	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream
Antimony											
Arsenic											
Barium											
Beryllium											
Boron											
Cadmium											
Calcium											
Chloride											
Chromium											
Cobalt											
Fluoride											
Lead											
Lithium								4:5 80%		2:10 20%	
Mercury											
Molybdenum											
pH											
Selenium											
Sulfate											
Thallium											
TDS							7:10 70%	3:5 60%	8:10 80%	9:10 90%	9:10 90%
Radium 226/228											

TABLE 4 SUMMARY OF SCREENING RESULTS LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO AMEREN MISSOURI

				Miss	souri River - Hum	an Health Recreat	ional			
			Dissolved					Total		
Constituent	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream
Antimony										
Arsenic	15 : 15 100%	5 : 5 100%	15 : 15 100%	10 : 10 100%	10 : 10 100%	15 : 15 100%	5 : 5 100%	15 : 15 100%	10 : 10 100%	10:10 100%
Barium										
Beryllium										
Boron										
Cadmium										
Calcium										
Chloride										
Chromium										
Cobalt										
Fluoride										
Lead										
Lithium										
Mercury										
Molybdenum										
pН										
Selenium										
Sulfate										
Thallium										
TDS										
Radium 226/228										

TABLE 4 SUMMARY OF SCREENING RESULTS LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO AMEREN MISSOURI

					Missouri Rive	er - Ecological				
			Dissolved					Total		
Constituent	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream	Upstream	Adjacent	Downstream	Further Downstream	Furthest Downstream
Antimony										
Arsenic										
Barium										
Beryllium										
Boron										
Cadmium										
Calcium										
Chloride										
Chromium										
Cobalt										
Fluoride										
Lead										
Lithium										
Mercury										
Molybdenum										
pH										
Selenium										
Sulfate										
Thallium										
TDS										
Radium 226/228										

TABLE 4 SUMMARY OF SCREENING RESULTS LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO AMEREN MISSOURI

	Laba	die Creek - Humar	Health Drinking	Water	Laba	adie Creek - Huma	n Health Recreat	ional		Labadie Cree	k - Ecological	
	Diss	olved	To	otal	Disse	olved	To	tal	Dissolved		To	tal
Constituent	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
Antimony												
Arsenic					6:6 100%	6:6 100%	6:6 100%	6:6 100%				
Barium												
Beryllium												
Boron												
Cadmium												
Calcium												
Chloride												
Chromium												
Cobalt												
Fluoride												
Lead												
Lithium												
Mercury												
Molybdenum												
pH												
Selenium												
Sulfate			_									
Thallium												
TDS												
Radium 226/228												

TABLE 5a COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			Qua	Quality Carooning Layola		Selected Drinking		Missou	ıri River Up	stream		Missouri River Adjacent					Missour	River Dov	vnstream		
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-R- 4BS	LBD-R- 5BM	LBD-R- 5BS	LBD-R- 6BM	LBD-R- 6BS	LBD-R- 13BS	LBD-R- 14BM	LBD-R- 14BS	LBD-R- 15BM	LBD-R- 15BS	LBD-R- 1BS	LBD-R- 2BM	LBD-R- 2BS	LBD-R- 3BM	LBD-R- 3BS
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006															
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.004	0.0041	0.0044	0.0044	0.0046	0.0042	0.0046	0.0046	0.0047	0.0045	0.0053	0.0041	0.0041	0.0045	0.0046
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.146	0.173	0.18	0.184	0.193	0.173	0.201	0.201	0.198	0.204	0.162	0.181	0.169	0.187	0.192
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004															i l
Boron	7440-42-8	mg/L	NA	NA	4	4	0.0787 J	0.0814 J	0.0824 J	0.0812 J	0.0836 J	0.085 J	0.0903 J	0.0885 J	0.0898 J	0.0916 J	0.0818 J	0.0829 J	0.0813 J	0.0849 J	0.0833 J
Cadmium	7440-43-9	mg/L	0.005	NA	0.0092	0.005						0.00059 J							0.00054 J		i l
Calcium (f)	7440-70-2	mg/L	NA	NA	NA	NA	74.1	75.1	76.8	76.2	79	72.8	77	77.2	78.6	77.8	75.4	76.7	75.9	79.6	78.9
Chloride	16887-00-6	mg/L	NA	250	NA	250	22.5	22.8	22.7	23.5	23.9	23.8	24	24.5	25.1	25.2	22.6	22.8	22.6	23.6	23.3
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 (0.1	0.0024 J	0.005	0.007	0.0064	0.0068	0.0052	0.0071	0.0076	0.0059	0.0075	0.0033 J	0.0067	0.0048 J	0.0061	0.0068
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006	0.002 J	0.0029 J	0.0034 J	0.0037 J	0.0039 J	0.0028 J	0.0038 J	0.0044 J	0.0035 J	0.0033 J	0.0028 J	0.0028 J	0.0028 J	0.0028 J	0.0032 J
Fluoride	16984-48-8	mg/L	4	2	0.8	4	0.36	0.37	0.36	0.38	0.37	0.39	0.42	0.4	0.41	0.41	0.37	0.36	0.36	0.37	0.38
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015		0.0052 J	0.0046 J	0.004 J	0.0046 J	0.0057 J	0.0051 J	0.006 J	0.006 J	0.0054 J	0.0034 J		0.0057 J	0.0079 J	0.0038 J
Lithium	7439-93-2	mg/L	NA	NA	0.04	0.04	0.0354	0.0353	0.0379	0.038	0.0396	0.0379	0.0408	0.0403	0.0414	0.0428	0.0357	0.0377	0.0366	0.0386	0.0398
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (0.002					l	l					1				i l
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0022 J	0.0026 J	0.003 J	0.0025 J	0.003 J	0.0021 J	0.0024 J	0.002 J	0.002 J	0.0026 J	0.0026 J	0.0026 J	0.0027 J	0.0029 J	0.0028 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0074 J	0.007 J	0.0077 J	0.0076 J					1		0.009 J	1			i l
Sulfate	14808-79-8	mg/L	NA	250	NA	250	176	178	177	183	180	172	173	174	179	180	175	178	179	185	186
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002															i l
Total Hardness as CaCO3 (f)	471-34-1	mg/L	NA	NA	NA	NA	301	304	310	308	319	302	316	316	319	319	304	311	307	320	318
Total Dissolved Solids	TDS	mg/L	NA	500	NA	500	506	507	491	491	488	479	505	506	517	523	500	505	509	519	522

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Estimated value. MCL - Maximum Contaminant Level. mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is

ont a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy: Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 5a
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			Qua	Federal Wat		Selected Drinking	N	lissouri Riv	er Further	Downstrea	am	М	issouri Riv	er Furthest	t Downstre	am
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-R- 10BS	LBD-R- 11BM	LBD-R- 11BS	LBD-R- 12BM	LBD-R- 12BS	LBD-R- 7BS	LBD-R- 8BM	LBD-R- 8BS	LBD-R- 9BM	LBD-R- 9BS
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006										
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0039	0.0041	0.0042	0.0045	0.0044	0.0034	0.0046	0.0043	0.0044	0.0045
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.17	0.163	0.158	0.18	0.194	0.128	0.178	0.19	0.188	0.174
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004								l		
Boron	7440-42-8	mg/L	NA	NA	4	4	0.0825 J	0.0825 J	0.0818 J	0.0873 J	0.0854 J	0.0814 J	0.0879 J	0.0869 J	0.0875 J	0.0899 J
Cadmium	7440-43-9	mg/L	0.005	NA	0.0092	0.005	0.0005 J							l		
Calcium (f)	7440-70-2	mg/L	NA	NA	NA	NA	76.6	76	78.5	75.7	79.8	72.5	78.6	80.2	78.9	82.6
Chloride	16887-00-6	mg/L	NA	250	NA	250	22.8	22.4	22.7	23	22.9	22.5	23	23	23.5	23.8
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 (0.1	0.0051	0.0042 J	0.0023 J	0.0054	0.0066	0.0016 J	0.0047 J	0.0073	0.0064	0.0048 J
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006	0.0024 J	0.0027 J	0.0024 J	0.0029 J	0.0037 J	0.0013 J	0.0036 J	0.0036 J	0.0033 J	0.0024 J
Fluoride	16984-48-8	mg/L	4	2	0.8	4	0.36	0.36	0.36	0.37	0.37	0.36	0.37	0.37	0.37	0.39
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015		0.0034 J	0.0043 J	0.0051 J	0.005 J		0.003 J	0.0048 J	0.0046 J	0.0057 J
Lithium	7439-93-2	mg/L	NA	NA	0.04	0.04	0.0368	0.0349	0.036	0.0412	0.0415	0.0342	0.039	0.0396	0.0379	0.04
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (0.002										
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0028 J	0.0023 J	0.0023 J	0.0021 J	0.0028 J	0.0024 J	0.0029 J	0.0028 J	0.0029 J	0.0025 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0088 J						0.0102 J	0.0065 J	0.0089 J	0.0063 J
Sulfate	14808-79-8	mg/L	NA	250	NA	250	175	178	178	181	179	176	180	181	187	187
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002					-	-			-	-
Total Hardness as CaCO3 (f)	471-34-1	mg/L	NA	NA	NA	NA	310	307	315	308	323	296	317	325	319	331
Total Dissolved Solids	TDS	mg/L	NA	500	NA	500	492	519	486	517	508	481	512	513	525	519

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water. Federal USEPA SMCL for Drinking Water.

Federal November 2018 USEPA Tapwater RSL.

Haley & Aldrich, Inc.

TABLE 5b COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Federal W ty Screenii		Selected Drinking		Missou	ıri River Up	stream			Missou	uri River Ad	ljacent			Missouri	River Dow	nstream	
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-R- 4BS	LBD-R- 5BM	LBD-R- 5BS	LBD-R- 6BM	LBD-R- 6BS	LBD-R- 13BS	LBD-R- 14BM	LBD-R- 14BS	LBD-R- 15BM	LBD-R- 15BS	LBD-R- 1BS	LBD-R- 2BM	LBD-R- 2BS	LBD-R- 3BM	LBD-R- 3BS
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006															
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0031	0.003	0.003	0.003	0.0029	0.0029	0.0029	0.0032	0.003	0.0029	0.003	0.003	0.0029	0.0032	0.003
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.111	0.108	0.11	0.111	0.111	0.109	0.106	0.108	0.103	0.111	0.107	0.109	0.103	0.113	0.109
Beryllium	7440-41-7	mg/L	0.004	NA	0.025	0.004						0.00017 J									i l
Boron	7440-42-8	mg/L	NA	NA	4	4	0.081 J	0.0806 J	0.0785 J	0.0846 J	0.0837 J	0.0817 J	0.0798 J	0.0777 J	0.0765 J	0.0805 J	0.079 J	0.0859 J	0.078 J	0.0842 J	0.0836 J
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005															i l
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	71.7	71.5	71.1	72.2	73	70.5	69.3	70.4	67.4	71.5	68.5	72	68.1	72.4	71
Chromium*	7440-47-3	mg/L	0.1 (e)	NA	22 (f)	0.1															1
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006								0.00099 J							i l
Lead*	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015															i l
Lithium	7439-93-2	mg/L	NA	NA	0.04	0.04	0.0328	0.0334	0.0361	0.0357	0.036	0.038	0.0348	0.0371	0.0355	0.0362	0.0331	0.0335	0.0314	0.0359	0.0351
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002															i l
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0026 J	0.0029 J	0.0029 J	0.0031 J	0.0026 J	0.0028 J	0.0028 J	0.0025 J	0.0024 J	0.0029 J	0.003 J	0.0028 J	0.0027 J	0.003 J	0.0026 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0069 J	0.007 J	0.0103 J	1	1			1		1					i l
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002															1

Notes:

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.
CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is

not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 5b COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Quali	Federal W		Selected Drinking	М	issouri Riv	er Further	Downstrea	am	Mi	ssouri Riv	er Furthest	Downstre	am
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-R- 10BS	LBD-R- 11BM	LBD-R- 11BS	LBD-R- 12BM	LBD-R- 12BS	LBD-R- 7BS	LBD-R- 8BM	LBD-R- 8BS	LBD-R- 9BM	LBD-R- 9BS
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006										
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0027	0.0028	0.0028	0.003	0.003	0.0028	0.003	0.0028	0.0028	0.003
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.107	0.112	0.112	0.109	0.11	0.114	0.107	0.105	0.112	0.114
Beryllium	7440-41-7	mg/L	0.004	NA	0.025	0.004										
Boron	7440-42-8	mg/L	NA	NA	4	4	0.0793 J	0.0838 J	0.0812 J	0.0777 J	0.0828 J	0.0825 J	0.082 J	0.0798 J	0.0849 J	0.0869 J
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005										
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	68.8	72.4	71.4	71	69.4	73.2	68.6	67.6	72.7	73.5
Chromium*	7440-47-3	mg/L	0.1 (e)	NA	22 (f)	0.1										
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006										
Lead*	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015										
Lithium	7439-93-2	mg/L	NA	NA	0.04	0.04	0.035	0.0385	0.0354	0.0366	0.0328	0.0368	0.0344	0.0341	0.0363	0.0378
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002										
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0028 J	0.0029 J	0.0026 J	0.0021 J	0.0026 J	0.0027 J	0.0028 J	0.0031 J	0.003 J	0.0031 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05			0.0065 J				0.0074 J			
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002	1			1	1			ĺ		

Notes:

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter.

NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.
- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			1	E . 1 1 14/		Selected			lissouri Riv					issouri Riv					lissouri Riv				N.4:	issouri Riv		
				Federal Wa																						
			Qual	ity Screenin		Drinking		R	iver Upstrea	am			Riv	er Downstre	eam			River F	urther Dow	nstream			River Fu	rthest Dow	nstream	
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-R- 4AS Total	LBD-R- 5AS Total	LBD-R- 5AM Total	LBD-R- 6AS Total	LBD-R- 6AM Total	LBD-R- 1AS Total	LBD-R- 2AS Total	LBD-R- 2AM Total	LBD-R- 3AS Total	LBD-R- 3AM Total	LBD-R- 10S Total	LBD-R- 11S Total	LBD-R- 11M Total	LBD-R- 12S Total	LBD-R- 12M Total	LBD-R-7S Total	LBD-R- 8S Total	LBD-R- 8M Total	LBD-R- 9S Total	LBD-R- 9M Total
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006																				
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0033	0.0032	0.0035	0.003	0.0031	0.0038	0.0032	0.0034	0.0034	0.0028	0.0037	0.0033	0.0032	0.0035	0.0035	0.0046	0.0034	0.0034	0.0035	0.0037
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.124	0.131	0.128	0.132	0.118	0.134	0.124	0.129	0.13	0.131	0.135	0.132	0.13	0.129	0.127	0.17	0.13	0.13	0.135	0.135
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004																				1
Boron	7440-42-8	mg/L	NA	NA	4	4	0.111	0.112	0.109	0.111	0.109	0.115	0.111	0.113	0.11	0.11	0.111	0.11	0.111	0.11	0.111	0.115	0.111	0.11	0.111	0.109
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005																				1
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	69.9	71.7	70.7	70	66.2	70.7	69.2	70.8	70.2	71.4	70.5	69.5	69.5	69.4	70.2	71.6	70.1	69.6	70.8	70.2
Chloride	16887-00-6	mg/L	NA	250	NA	250	19.5	20.2	20.1	20.9	18.6	20.5	20.4	19.9	18.6	20.8	18.8	20.4	20.5	20.9	18.7	16.6	18.5	18.4	17.7	19.4
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 (f)	0.1	0.0015 J	0.0025 J	0.0016 J	0.0019 J	0.0023 J	0.0024 J	0.0019 J	0.0016 J	0.0019 J	0.0023 J	0.0025 J	0.0024 J	0.0018 J	0.002 J	0.0018 J	0.0056 J	0.0017 J	0.0018 J	0.003 J	0.0019 J
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006											0.0012 J	0.001 J				0.0022 J		0.001 J	0.0011 J	1
Fluoride	16984-48-8	mg/L	4	2	0.8	4	0.52	0.55	0.52	0.55	0.52	0.54	0.55	0.52	0.5 J	0.57		0.5	0.53	0.54	0.5 J		0.37 J			0.31 J
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015	0.00056 J	0.00076 J	0.00072 J	0.0011	0.0011	0.001	0.00062 J	0.00068 J	0.00088 J	0.00098 J	0.0013	0.0012	0.001	0.00088 J	0.00077 J	0.0033	0.0011	0.0011	0.0013	0.0015
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002																				1
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0033 J	0.0031 J	0.0028 J	0.0036 J	0.0029 J	0.0035 J	0.0035 J	0.0031 J	0.0031 J	0.0029 J	0.0036 J	0.0033 J	0.0031 J	0.0034 J	0.0032 J	0.0062 J	0.0038 J	0.003 J	0.003 J	0.0032 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0015 J	0.0017 J	0.0018 J	0.0018 J	0.0017 J	0.0015 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J	0.0018 J	0.0017 J	0.0017 J	0.0017 J	0.0017 J	0.0019 J	0.0019 J	0.0019 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA	250	NA	250	209	210	203	212	210	209	210	213	208	205	215	210	210	213	211	208	210	224	206	211
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002										ĺ		1								
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA	NA	284,000	291,000	287,000	285,000	268,000	287,000	281,000	287,000	285,000	289,000	286,000	282,000	283,000	283,000	285,000	291,000	285,000	283,000	287,000	284,000
Total Dissolved Solids	TDS	mg/L	NA	500	NA	500	539	553	548	550	544	532	541	531	540	541	550	543	546	516	555	524	538	551	547	551

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Value is estimated.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

- (a) Surface water samples collected in November 2014.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018. (b) - USEPA 2016 Edition of the Unitarity Water Standards and relatin Advisories. Spring 2018. http://water.epa.gov/drink/contaminants/index.cfm
 (c) - USEPA Regional Screening Levels (November 2018). Values for tapwater. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.
- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

		,		Federal Wa	ter			N	Missouri Riv	/er			М	issouri Rive	er	, and the second		М	issouri Riv	er	, and the second second	·	М	issouri Ri	ver	,
			Qual	ity Screenin	g Levels	Selected		R	iver Upstre	am			Rive	er Downstre	eam			River F	urther Dow	nstream			River Fu	rthest Do	wnstream	1
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Drinking Water Screening Level (h)	LBD-R- 4AS Filtered	LBD-R- 5AS Filtered	LBD-R- 5AM Filtered	LBD-R- 6AS Filtered	LBD-R- 6AM Filtered	LBD-R- 1AS Filtered	LBD-R- 2AS Filtered	LBD-R- 2AM Filtered	LBD-R- 3AS Filtered	LBD-R- 3AM Filtered	LBD-R- 10S Filtered	LBD-R- 11S Filtered	LBD-R- 11M Filtered	LBD-R- 12S Filtered	LBD-R- 12M Filtered	LBD-R- 7S Filtered	88	LBD-R- 8M Filtered	98	LBD-R- 9M Filtered
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006																				
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0024	0.0027	0.0023	0.0026	0.0026	0.0028	0.0024	0.0022	0.0026	0.0026	0.0026	0.0027	0.0025	0.0026	0.0023	0.0027	0.0028	0.0026	0.0025	0.0027
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.111	0.108	0.11	0.11	0.0999	0.111	0.113	0.11	0.109	0.109	0.112	0.111	0.111	0.11	0.109	0.113	0.111	0.111	0.109	0.111
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004																				
Boron	7440-42-8	mg/L	NA	NA	4	4	0.109	0.107	0.108	0.108	0.103	0.113	0.113	0.111	0.108	0.11	0.11	0.109	0.11	0.109	0.11	0.11	0.108	0.108	0.105	0.108
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005																				
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	70.2	67.8	68.7	67.8	62.5	70.7	69.8	69.4	68.6	69.4	68.6	68.4	68.5	69.4	69.2	69	67.8	68.7	68.7	69.1
Chromium	7440-47-3	mg/L	0.1 (e)	NA NA	22 (f) 0.1																				
Cobalt	7440-48-4	mg/L	NA	NA	0.006	0.006																				
Lead	7439-92-1	mg/L	0.015 (g)	NA NA	0.015	0.015																				
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d) 0.002																				
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0036 J	0.0038 J	0.0037 J	0.0041 J	0.0027 J	0.0031 J	0.0035 J	0.0036 J	0.0034 J	0.0037 J	0.0037 J	0.004 J	0.0048 J	0.004 J	0.0034 J	0.0059 J	0.0038 J	0.004 J	0.0035 J	0.0036 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0016 J	0.0017 J	0.0017 J	0.0018 J	0.0016 J	0.0015 J	0.0017 J	0.0016 J	0.0015 J	0.0016 J	0.0015 J	0.0016 J	0.0017 J	0.0015 J	0.0017 J	0.0016 J	0.0017 J	0.0015 J	0.0019 J	0.0017 J
Thallium*	7440-28-0	ma/L	0.002	NA	0.0002	0.002	1	1	1	1	1			I	l	1			1	l	l			l	l	1

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Value is estimated.

MCL - Maximum Contaminant Level. mg/L - milligrams per liter.

mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

- (a) Surface water samples collected in November 2014.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.
- http://water.epa.gov/drink/contaminants/index.cfm
- (c) USEPA Regional Screening Levels (November 2018). Values for tapwater.
- http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm
- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is
 - not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.
- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 5e COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Federal Wa		Selected			lissouri Riv					lissouri Riv		
			Qual	ity Screenin		Drinking		R	iver Upstrea	am	1		Riv	er Downstre	eam	
Constituent	CAS	Units	USEPA	USEPA SMCLs (b)	USEPA Tapwater	Water Screening	LBD-R-4S Total	LBD-R-5S Total	LBD-R-5M Total	LBD-R-6S Total	LBD-R-6M Total	LBD-R-1S Total	LBD-R-2S Total	LBD-R-2M Total	LBD-R-3S Total	LBD-R-3M Total
			. ,		. ,	Level (h)										
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006										
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.005	0.005	0.0048	0.0047	0.0047	0.0044	0.0045	0.0047	0.0048	0.0049
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.113	0.119	0.12	0.123	0.119	0.113	0.122	0.123	0.123	0.124
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004										
Boron	7440-42-8	mg/L	NA	NA	4	4	0.111	0.114	0.114	0.115	0.113	0.12	0.121	0.123	0.118	0.119
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005										
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	62.3	63.5	63.4	65.1	64.5	63.8	64.7	63.6	64.2	65.5
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 (f)	0.1	0.0022 J	0.0026 J	0.0029 J	0.0031 J	0.0023 J	0.0023 J	0.0027 J	0.0031 J	0.0029 J	0.0032 J
Cobalt*	7440-48-4	mg/L	NA	NA	0.006	0.006										
Fluoride	16984-48-8	mg/L	4	2	0.8	4	0.41 J	0.48 J	0.45 J	0.51 J	0.44 J	0.5 J	0.47 J	0.48 J	0.47 J	0.43 J
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015	0.0015	0.0018	0.0018	0.0019	0.0019	0.0015	0.0018	0.0018	0.0019	0.0019
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002										
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.004 J	0.0044 J	0.0042 J	0.0043 J	0.0041 J	0.0044 J	0.0044 J	0.0044 J	0.0044 J	0.0041 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05	0.0016 J	0.0018 J	0.0016 J	0.0017 J	0.0018 J	0.0017 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA	250	NA	250	194	194	193	194	197	174	187	193	189	192
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002										
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA	NA	249	254	253	260	257	255	258	254	256	261

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

-- - Constituent not included in this analysis.

CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter. NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in October 2013.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium

that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

			Qual	Federal Wa		Selected Drinking			Missouri Rive					Missouri Rive		
Constituent	CAS	Units	USEPA	USEPA SMCLs (b)	USEPA Tapwater	Water Screening Level (h)	LBD-R-4S Filtered	LBD-R-5S Filtered	LBD-R-5M Filtered	LBD-R-6S Filtered	LBD-R-6M Filtered	LBD-R-1S Filtered	LBD-R-2S Filtered	LBD-R-2M Filtered	LBD-R-3S Filtered	LBD-R-3M Filtered
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006										
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0035	0.0035	0.0038	0.0037	0.0034	0.004	0.0037	0.0036	0.0033	0.0035
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.0928	0.0906	0.0917	0.0907	0.0886	0.0936	0.0912	0.0914	0.0915	0.0938
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004										
Boron	7440-42-8	mg/L	NA	NA	4	4	0.12	0.115	0.118	0.115	0.113	0.123	0.122	0.123	0.116	0.119
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005										
Calcium	7440-70-2	mg/L	NA	NA	NA	NA										
Chromium*	7440-47-3	mg/L	0.1 (e)	NA	22 (f)	0.1										
Cobalt*	7440-48-4	mg/L	NA	NA	0.006	0.006										
Fluoride	16984-48-8	3	4	2	0.8	4										
Lead*	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015										
Mercury*	7439-97-6	mg/L	0.002	NA NA	0.0057 (d)		0.0005 1	0.0005 1	0.0044	0.0000 1	0.0000 1	0.0040.1	0.0000 1	0.0040.1	0.0000 1	0.0007.1
Molybdenum	7439-98-7	mg/L	NA 0.05		0.1	0.1	0.0035 J	0.0035 J	0.0041 J	0.0038 J	0.0036 J	0.0042 J	0.0039 J	0.0042 J	0.0036 J	0.0037 J
Selenium	7782-49-2	mg/L	0.05	NA oso	0.1	0.05	0.0016 J	0.0015 J	0.0015 J	0.0016 J	0.0014 J	0.0016 J				
Sulfate	14808-79-8	mg/L	NA	250	NA	250										
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002										
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA	NA										

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

-- - Constituent not included in this analysis.

CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter.

NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

- (a) Surface water samples collected in October 2013.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium

that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (f) Screening levels from the presented sources are not available for this constituent.
- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 6a
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH AWQC SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			USEPA		Missou	ıri River Up	ostream			Misso	uri River A	djacent			Missour	i River Dov	vnstream	
Constituent	CAS	Units	AWQC (b)	LBD-R- 4BS	LBD-R- 5BM	LBD-R- 5BS	LBD-R- 6BM	LBD-R- 6BS	LBD-R- 13BS	LBD-R- 14BM	LBD-R- 14BS	LBD-R- 15BM	LBD-R- 15BS	LBD-R- 1BS	LBD-R- 2BM	LBD-R- 2BS	LBD-R- 3BM	LBD-R- 3BS
Antimony*	7440-36-0	mg/L	0.64															,
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.004	0.0041	0.0044	0.0044	0.0046	0.0042	0.0046	0.0046	0.0047	0.0045	0.0053	0.0041	0.0041	0.0045	0.0046
Barium	7440-39-3	mg/L	NA	0.146	0.173	0.18	0.184	0.193	0.173	0.201	0.201	0.198	0.204	0.162	0.181	0.169	0.187	0.192
Beryllium*	7440-41-7	mg/L	NA															
Boron	7440-42-8	mg/L	NA	0.0787 J	0.0814 J	0.0824 J	0.0812 J	0.0836 J	0.085 J	0.0903 J	0.0885 J	0.0898 J	0.0916 J	0.0818 J	0.0829 J	0.0813 J	0.0849 J	0.0833 J
Cadmium	7440-43-9	mg/L	NA						0.00059 J							0.00054 J		
Calcium	7440-70-2	mg/L	NA	74.1	75.1	76.8	76.2	79	72.8	77	77.2	78.6	77.8	75.4	76.7	75.9	79.6	78.9
Chloride	16887-00-6	mg/L	NA	22.5	22.8	22.7	23.5	23.9	23.8	24	24.5	25.1	25.2	22.6	22.8	22.6	23.6	23.3
Chromium	7440-47-3	mg/L	NA	0.0024 J	0.005	0.007	0.0064	0.0068	0.0052	0.0071	0.0076	0.0059	0.0075	0.0033 J	0.0067	0.0048 J	0.0061	0.0068
Cobalt	7440-48-4	mg/L	NA	0.002 J	0.0029 J	0.0034 J	0.0037 J	0.0039 J	0.0028 J	0.0038 J	0.0044 J	0.0035 J	0.0033 J	0.0028 J	0.0028 J	0.0028 J	0.0028 J	0.0032 J
Fluoride	16984-48-8	mg/L	NA	0.36	0.37	0.36	0.38	0.37	0.39	0.42	0.4	0.41	0.41	0.37	0.36	0.36	0.37	0.38
Lead	7439-92-1	mg/L	NA		0.0052 J	0.0046 J	0.004 J	0.0046 J	0.0057 J	0.0051 J	0.006 J	0.006 J	0.0054 J	0.0034 J		0.0057 J	0.0079 J	0.0038 J
Lithium	7439-93-2	mg/L	NA	0.0354	0.0353	0.0379	0.038	0.0396	0.0379	0.0408	0.0403	0.0414	0.0428	0.0357	0.0377	0.0366	0.0386	0.0398
Mercury*	7439-97-6	mg/L	NA															
Molybdenum	7439-98-7	mg/L	NA	0.0022 J	0.0026 J	0.003 J	0.0025 J	0.003 J	0.0021 J	0.0024 J	0.002 J	0.002 J	0.0026 J	0.0026 J	0.0026 J	0.0027 J	0.0029 J	0.0028 J
Selenium	7782-49-2	mg/L	4.2	0.0074 J	0.007 J	0.0077 J	0.0076 J							0.009 J				
Sulfate	14808-79-8	mg/L	NA	176	178	177	183	180	172	173	174	179	180	175	178	179	185	186
Thallium*	7440-28-0	mg/L	0.00047															
Total Hardness as CaCO3	471-34-1	mg/L	NA	301	304	310	308	319	302	316	316	319	319	304	311	307	320	318
Total Dissolved Solids	TDS	mg/L	NA	506	507	491	491	488	479	505	506	517	523	500	505	509	519	522

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria. CAS - Chemical Abstracts Service.

Detected Concentration > AWQC.

(a) - Surface water samples collected in May 2018. (b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

(c) - Value applies to inorganic form of arsenic only.

J - Estimated value.

mg/L - milligrams per liter. NA - Not Available.

USEPA - United States Environmental Protection Agency.

TABLE 6a
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH AWQC SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			USEPA	M	issouri Riv	er Further	Downstrea	ım	Mi	ssouri Riv	er Furthest	Downstre	am
Constituent	CAS	Units	AWQC (b)	LBD-R- 10BS	LBD-R- 11BM	LBD-R- 11BS	LBD-R- 12BM	LBD-R- 12BS	LBD-R- 7BS	LBD-R- 8BM	LBD-R- 8BS	LBD-R- 9BM	LBD-R- 9BS
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0039	0.0041	0.0042	0.0045	0.0044	0.0034	0.0046	0.0043	0.0044	0.0045
Barium	7440-39-3	mg/L	NA	0.17	0.163	0.158	0.18	0.194	0.128	0.178	0.19	0.188	0.174
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.0825 J	0.0825 J	0.0818 J	0.0873 J	0.0854 J	0.0814 J	0.0879 J	0.0869 J	0.0875 J	0.0899 J
Cadmium	7440-43-9	mg/L	NA	0.0005 J									
Calcium	7440-70-2	mg/L	NA	76.6	76	78.5	75.7	79.8	72.5	78.6	80.2	78.9	82.6
Chloride	16887-00-6	mg/L	NA	22.8	22.4	22.7	23	22.9	22.5	23	23	23.5	23.8
Chromium	7440-47-3	mg/L	NA	0.0051	0.0042 J	0.0023 J	0.0054	0.0066	0.0016 J	0.0047 J	0.0073	0.0064	0.0048 J
Cobalt	7440-48-4	mg/L	NA	0.0024 J	0.0027 J	0.0024 J	0.0029 J	0.0037 J	0.0013 J	0.0036 J	0.0036 J	0.0033 J	0.0024 J
Fluoride	16984-48-8	mg/L	NA	0.36	0.36	0.36	0.37	0.37	0.36	0.37	0.37	0.37	0.39
Lead	7439-92-1	mg/L	NA		0.0034 J	0.0043 J	0.0051 J	0.005 J		0.003 J	0.0048 J	0.0046 J	0.0057 J
Lithium	7439-93-2	mg/L	NA	0.0368	0.0349	0.036	0.0412	0.0415	0.0342	0.039	0.0396	0.0379	0.04
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0028 J	0.0023 J	0.0023 J	0.0021 J	0.0028 J	0.0024 J	0.0029 J	0.0028 J	0.0029 J	0.0025 J
Selenium	7782-49-2	mg/L	4.2	0.0088 J						0.0102 J	0.0065 J	0.0089 J	0.0063 J
Sulfate	14808-79-8	mg/L	NA	175	178	178	181	179	176	180	181	187	187
Thallium*	7440-28-0	mg/L	0.00047										
Total Hardness as CaCO3	471-34-1	mg/L	NA	310	307	315	308	323	296	317	325	319	331
Total Dissolved Solids	TDS	mg/L	NA	492	519	486	517	508	481	512	513	525	519

Blank cells - Non-detect value.
* - Constituent was not detected in any samples. AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value. mg/L - milligrams per liter. NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in May 2018. (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (c) Value applies to inorganic form of arsenic only.

TABLE 6b
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS
TO HUMAN HEALTH AWQC SCREENING LEVELS DISSOLVED (FILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			USEPA		Missou	ıri River Up	stream			Misso	uri River Ad	ljacent			Missour	i River Dov	vnstream	
	0.0		A14(0.0 (l-)	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-
Constituent	CAS	Units	AWQC (b)	4BS	5BM	5BS	6BM	6BS	13BS	14BM	14BS	15BM	15BS	1BS	2BM	2BS	3BM	3BS
Antimony*	7440-36-0	mg/L	0.64															
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0031	0.003	0.003	0.003	0.0029	0.0029	0.0029	0.0032	0.003	0.0029	0.003	0.003	0.0029	0.0032	0.003
Barium	7440-39-3	mg/L	NA	0.111	0.108	0.11	0.111	0.111	0.109	0.106	0.108	0.103	0.111	0.107	0.109	0.103	0.113	0.109
Beryllium	7440-41-7	mg/L	NA						0.00017 J									i l
Boron	7440-42-8	mg/L	NA	0.081 J	0.0806 J	0.0785 J	0.0846 J	0.0837 J	0.0817 J	0.0798 J	0.0777 J	0.0765 J	0.0805 J	0.079 J	0.0859 J	0.078 J	0.0842 J	0.0836 J
Cadmium*	7440-43-9	mg/L	NA															1
Calcium	7440-70-2	mg/L	NA	71.7	71.5	71.1	72.2	73	70.5	69.3	70.4	67.4	71.5	68.5	72	68.1	72.4	71
Chromium*	7440-47-3	mg/L	NA															i l
Cobalt	7440-48-4	mg/L	NA								0.00099 J							i l
Lead*	7439-92-1	mg/L	NA															i l
Lithium	7439-93-2	mg/L	NA	0.0328	0.0334	0.0361	0.0357	0.036	0.038	0.0348	0.0371	0.0355	0.0362	0.0331	0.0335	0.0314	0.0359	0.0351
Mercury*	7439-97-6	mg/L	NA															i l
Molybdenum	7439-98-7	mg/L	NA	0.0026 J	0.0029 J	0.0029 J	0.0031 J	0.0026 J	0.0028 J	0.0028 J	0.0025 J	0.0024 J	0.0029 J	0.003 J	0.0028 J	0.0027 J	0.003 J	0.0026 J
Selenium	7782-49-2	mg/L	4.2	0.0069 J	0.007 J	0.0103 J												i l
Thallium*	7440-28-0	mg/L	0.00047															i

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria. CAS - Chemical Abstracts Service. J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (c) Value applies to inorganic form of arsenic only.

TABLE 6b
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS
TO HUMAN HEALTH AWQC SCREENING LEVELS DISSOLVED (FILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			USEPA	IV	lissouri Riv	er Further	Downstrea	m	Miss	ouri River	Furthest Do	ownstream	
0	040	11-11-	AMOC (b)	LBD-R-	LBD-R-	LBD-R-	LBD-R-	LBD-R-		LBD-R-	LBD-R-	LBD-R-	LBD-R-
Constituent	CAS	Units	AWQC (b)	10BS	11BM	11BS	12BM	12BS	LBD-R-7BS	8BM	8BS	9BM	9BS
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0027	0.0028	0.0028	0.003	0.003	0.0028	0.003	0.0028	0.0028	0.003
Barium	7440-39-3	mg/L	NA	0.107	0.112	0.112	0.109	0.11	0.114	0.107	0.105	0.112	0.114
Beryllium	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.0793 J	0.0838 J	0.0812 J	0.0777 J	0.0828 J	0.0825 J	0.082 J	0.0798 J	0.0849 J	0.0869 J
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	68.8	72.4	71.4	71	69.4	73.2	68.6	67.6	72.7	73.5
Chromium*	7440-47-3	mg/L	NA										
Cobalt	7440-48-4	mg/L	NA										
Lead*	7439-92-1	mg/L	NA										
Lithium	7439-93-2	mg/L	NA	0.035	0.0385	0.0354	0.0366	0.0328	0.0368	0.0344	0.0341	0.0363	0.0378
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0028 J	0.0029 J	0.0026 J	0.0021 J	0.0026 J	0.0027 J	0.0028 J	0.0031 J	0.003 J	0.0031 J
Selenium	7782-49-2	mg/L	4.2			0.0065 J				0.0074 J			
Thallium*	7440-28-0	mg/L	0.00047										

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

J - Estimated value. mg/L - milligrams per liter.

CAS - Chemical Abstracts Service.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

(a) - Surface water samples collected in May 2018.

(b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

Page 1 of 2

TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

						Missouri Rive					Missouri Rive		
			USEPA		F	River Upstrear	n			Ri	ver Downstre	am	
Constituent	CAS	Units	AWQC (b)	LBD-R-4AS	LBD-R-5AS	LBD-R-5AM	LBD-R-6AS	LBD-R-6AM	LBD-R-1AS	LBD-R-2AS	LBD-R-2AM	LBD-R-3AS	LBD-R-3AM
Constituent	CAS	Office	AWGC (b)	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0033	0.0032	0.0035	0.003	0.0031	0.0038	0.0032	0.0034	0.0034	0.0028
Barium	7440-39-3	mg/L	NA	0.124	0.131	0.128	0.132	0.118	0.134	0.124	0.129	0.13	0.131
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.111	0.112	0.109	0.111	0.109	0.115	0.111	0.113	0.11	0.11
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	69.9	71.7	70.7	70	66.2	70.7	69.2	70.8	70.2	71.4
Chloride	16887-00-6	mg/L	NA	19.5	20.2	20.1	20.9	18.6	20.5	20.4	19.9	18.6	20.8
Chromium	7440-47-3	mg/L	NA	0.0015 J	0.0025 J	0.0016 J	0.0019 J	0.0023 J	0.0024 J	0.0019 J	0.0016 J	0.0019 J	0.0023 J
Cobalt	7440-48-4	mg/L	NA										
Fluoride	16984-48-8	mg/L	NA	0.52	0.55	0.52	0.55	0.52	0.54	0.55	0.52	0.5 J	0.57
Lead	7439-92-1	mg/L	NA	0.00056 J	0.00076 J	0.00072 J	0.0011	0.0011	0.001	0.00062 J	0.00068 J	0.00088 J	0.00098 J
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0033 J	0.0031 J	0.0028 J	0.0036 J	0.0029 J	0.0035 J	0.0035 J	0.0031 J	0.0031 J	0.0029 J
Selenium	7782-49-2	mg/L	4.2	0.0015 J	0.0017 J	0.0018 J	0.0018 J	0.0017 J	0.0015 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA	209	210	203	212	210	209	210	213	208	205
Thallium*	7440-28-0	mg/L	0.00047										
Total Hardness as CaCO3	471-34-1	mg/L	NA	284,000	291,000	287,000	285,000	268,000	287,000	281,000	287,000	285,000	289,000
Total Dissolved Solids	TDS	mg/L	NA	539	553	548	550	544	532	541	531	540	541

Notes: Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

(a) - Surface water samples collected in November 2014. (b) - USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH AWQC SCREENING LEVELS -

TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

						Missouri Rive	1				Missouri Rive	r	
			USEPA		River	Further Down:	stream			River	urthest Down	stream	
Constituent	CAS	Units	AWQC (b)	LBD-R-10S	LBD-R-11S	LBD-R-11M	LBD-R-12S	LBD-R-12M	LBD-R-7S	LBD-R-8S	LBD-R-8M	LBD-R-9S	LBD-R-9M
Constituent	CAS	Uiilo	AWQC (b)	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0037	0.0033	0.0032	0.0035	0.0035	0.0046	0.0034	0.0034	0.0035	0.0037
Barium	7440-39-3	mg/L	NA	0.135	0.132	0.13	0.129	0.127	0.17	0.13	0.13	0.135	0.135
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.111	0.11	0.111	0.11	0.111	0.115	0.111	0.11	0.111	0.109
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	70.5	69.5	69.5	69.4	70.2	71.6	70.1	69.6	70.8	70.2
Chloride	16887-00-6	mg/L	NA	18.8	20.4	20.5	20.9	18.7	16.6	18.5	18.4	17.7	19.4
Chromium	7440-47-3	mg/L	NA	0.0025 J	0.0024 J	0.0018 J	0.002 J	0.0018 J	0.0056 J	0.0017 J	0.0018 J	0.003 J	0.0019 J
Cobalt	7440-48-4	mg/L	NA	0.0012 J	0.001 J				0.0022 J		0.001 J	0.0011 J	
Fluoride	16984-48-8	mg/L	NA		0.5	0.53	0.54	0.5 J		0.37 J			0.31 J
Lead	7439-92-1	mg/L	NA	0.0013	0.0012	0.001	0.00088 J	0.00077 J	0.0033	0.0011	0.0011	0.0013	0.0015
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0036 J	0.0033 J	0.0031 J	0.0034 J	0.0032 J	0.0062 J	0.0038 J	0.003 J	0.003 J	0.0032 J
Selenium	7782-49-2	mg/L	4.2	0.0018 J	0.0017 J	0.0017 J	0.0017 J	0.0017 J	0.0019 J	0.0019 J	0.0019 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA	215	210	210	213	211	208	210	224	206	211
Thallium*	7440-28-0	mg/L	0.00047										
Total Hardness as CaCO3	471-34-1	mg/L	NA	286,000	282,000	283,000	283,000	285,000	291,000	285,000	283,000	287,000	284,000
Total Dissolved Solids	TDS	mg/L	NA	550	543	546	516	555	524	538	551	547	551

Notes: Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

(a) - Surface water samples collected in November 2014.
 (b) - USEPA National Recommended Water Quality Criteria.
 USEPA Office of Water and Office of Science.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH AWQC SCREENING LEVELS -

DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

						Missouri Rive	r				Missouri Rive	r	
			USEPA		F	River Upstrear	n			Ri	ver Downstrea	am	
Comptituent	CAS	Units	AWQC (b)	LBD-R-4AS	LBD-R-5AS	LBD-R-5AM	LBD-R-6AS	LBD-R-6AM	LBD-R-1AS	LBD-R-2AS	LBD-R-2AM	LBD-R-3AS	LBD-R-3AM
Constituent	CAS	Units	AVVQC (b)	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0024	0.0027	0.0023	0.0026	0.0026	0.0028	0.0024	0.0022	0.0026	0.0026
Barium	7440-39-3	mg/L	NA	0.111	0.108	0.11	0.11	0.0999	0.111	0.113	0.11	0.109	0.109
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.109	0.107	0.108	0.108	0.103	0.113	0.113	0.111	0.108	0.11
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	70.2	67.8	68.7	67.8	62.5	70.7	69.8	69.4	68.6	69.4
Chromium*	7440-47-3	mg/L	NA										
Cobalt*	7440-48-4	mg/L	NA										
Lead*	7439-92-1	mg/L	NA										
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0036 J	0.0038 J	0.0037 J	0.0041 J	0.0027 J	0.0031 J	0.0035 J	0.0036 J	0.0034 J	0.0037 J
Selenium	7782-49-2	mg/L	4.2	0.0016 J	0.0017 J	0.0017 J	0.0018 J	0.0016 J	0.0015 J	0.0017 J	0.0016 J	0.0015 J	0.0016 J
Thallium*	7440-28-0	mg/L	0.00047										

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in November 2014.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

TABLE 6d COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO HUMAN HEALTH AWQC SCREENING LEVELS -

DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

						Missouri Rive	r				Missouri Rive	r	
			USEPA		River	Further Downs	stream			River F	urthest Down	stream	
Comptituent	CAS	Units	AWQC (b)	LBD-R-10S	LBD-R-11S	LBD-R-11M	LBD-R-12S	LBD-R-12M	LBD-R-7S	LBD-R-8S	LBD-R-8M	LBD-R-9S	LBD-R-9M
Constituent	CAS	Units	AVVQC (b)	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0026	0.0027	0.0025	0.0026	0.0023	0.0027	0.0028	0.0026	0.0025	0.0027
Barium	7440-39-3	mg/L	NA	0.112	0.111	0.111	0.11	0.109	0.113	0.111	0.111	0.109	0.111
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.11	0.109	0.11	0.109	0.11	0.11	0.108	0.108	0.105	0.108
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	68.6	68.4	68.5	69.4	69.2	69	67.8	68.7	68.7	69.1
Chromium*	7440-47-3	mg/L	NA										
Cobalt*	7440-48-4	mg/L	NA										
Lead*	7439-92-1	mg/L	NA										
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0037 J	0.004 J	0.0048 J	0.004 J	0.0034 J	0.0059 J	0.0038 J	0.004 J	0.0035 J	0.0036 J
Selenium	7782-49-2	mg/L	4.2	0.0015 J	0.0016 J	0.0017 J	0.0015 J	0.0017 J	0.0016 J	0.0017 J	0.0015 J	0.0019 J	0.0017 J
Thallium*	7440-28-0		0.00047										

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in November 2014.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

TABLE 6e COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO AWQC SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

						lissouri Riv					lissouri Riv		
			USEPA		R	iver Upstrea	ım			Riv	er Downstr	eam	
Constituent	CAS	Units	AWQC (b)	LBD-R-4S Total	LBD-R-5S Total	LBD-R-5M Total	LBD-R-6S Total	LBD-R-6M Total	LBD-R-1S Total	LBD-R-2S Total	LBD-R-2M Total	LBD-R-3S Total	LBD-R-3M Total
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.005	0.005	0.0048	0.0047	0.0047	0.0044	0.0045	0.0047	0.0048	0.0049
Barium	7440-39-3	mg/L	NA	0.113	0.119	0.12	0.123	0.119	0.113	0.122	0.123	0.123	0.124
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.111	0.114	0.114	0.115	0.113	0.12	0.121	0.123	0.118	0.119
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA	62.3	63.5	63.4	65.1	64.5	63.8	64.7	63.6	64.2	65.5
Chromium	7440-47-3	mg/L	NA	0.0022 J	0.0026 J	0.0029 J	0.0031 J	0.0023 J	0.0023 J	0.0027 J	0.0031 J	0.0029 J	0.0032 J
Cobalt*	7440-48-4	mg/L	NA										
Fluoride	16984-48-8	mg/L	NA	0.41 J	0.48 J	0.45 J	0.51 J	0.44 J	0.5 J	0.47 J	0.48 J	0.47 J	0.43 J
Lead	7439-92-1	mg/L	NA	0.0015	0.0018	0.0018	0.0019	0.0019	0.0015	0.0018	0.0018	0.0019	0.0019
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.004 J	0.0044 J	0.0042 J	0.0043 J	0.0041 J	0.0044 J	0.0044 J	0.0044 J	0.0044 J	0.0041 J
Selenium	7782-49-2	mg/L	4.2	0.0016 J	0.0018 J	0.0016 J	0.0017 J	0.0018 J	0.0017 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA	194	194	193	194	197	174	187	193	189	192
Thallium*	7440-28-0	mg/L	0.00047										,_
Total Hardness as CaCO3	471-34-1	mg/L	NA	249	254	253	260	257	255	258	254	256	261

Notes:

Blank cells - Non-detect value.

-- - Constituent not included in this analysis.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Scienceand Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

^{*} Constituent was not detected in any samples.

TABLE 6f COMPARISON OF OCTOBER 2013 MISSOURI RIVER SURFACE WATER RESULTS TO AWQC SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			USEPA			lissouri Rive					Missouri Rive ver Downstre		
Constituent	CAS	Units	AWQC (b)	LBD-R-4S Filtered	LBD-R-5S Filtered	LBD-R-5M Filtered	LBD-R-6S Filtered	LBD-R-6M Filtered	LBD-R-1S Filtered	LBD-R-2S Filtered	LBD-R-2M Filtered	LBD-R-3S Filtered	LBD-R-3M Filtered
Antimony*	7440-36-0	mg/L	0.64										
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0035	0.0035	0.0038	0.0037	0.0034	0.004	0.0037	0.0036	0.0033	0.0035
Barium	7440-39-3	mg/L	NA	0.0928	0.0906	0.0917	0.0907	0.0886	0.0936	0.0912	0.0914	0.0915	0.0938
Beryllium*	7440-41-7	mg/L	NA										
Boron	7440-42-8	mg/L	NA	0.12	0.115	0.118	0.115	0.113	0.123	0.122	0.123	0.116	0.119
Cadmium*	7440-43-9	mg/L	NA										
Calcium	7440-70-2	mg/L	NA										
Chromium*	7440-47-3	mg/L	NA										
Cobalt*	7440-48-4	mg/L	NA										
Fluoride	16984-48-8	mg/L	NA										
Lead*	7439-92-1	mg/L	NA										
Mercury*	7439-97-6	mg/L	NA										
Molybdenum	7439-98-7	mg/L	NA	0.0035 J	0.0035 J	0.0041 J	0.0038 J	0.0036 J	0.0042 J	0.0039 J	0.0042 J	0.0036 J	0.0037 J
Selenium	7782-49-2	mg/L	4.2	0.0016 J	0.0015 J	0.0015 J	0.0016 J	0.0014 J	0.0016 J	0.0016 J	0.0016 J	0.0016 J	0.0016 J
Sulfate	14808-79-8	mg/L	NA										
Thallium*	7440-28-0	mg/L	0.00047										
Total Hardness as CaCO3	471-34-1	mg/L	NA		-								

Notes:

Blank cells - Non-detect value.

-- - Constituent not included in this analysis.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in October 2013. (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Scienceand Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

^{*} Constituent was not detected in any samples.

TABLE 7a
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS
TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			Federal	Water (Quality Crite	eria		Missou	ri River U	pstream			Missou	ıri River A	djacent			Missouri	River Dov	vnstream	
Constituent	CAS	Units	USEPA Aq Life AW Freshwater (b)	QC	USEPA Ad Life AW Freshwa Chronic	QC ater	LBD-R- 4BS	LBD-R- 5BM	LBD-R- 5BS	LBD-R- 6BM	LBD-R- 6BS	LBD-R- 13BS	LBD-R- 14BM	LBD-R- 14BS	LBD-R- 15BM	LBD-R- 15BS	LBD-R- 1BS	LBD-R- 2BM	LBD-R- 2BS	LBD-R- 3BM	LBD-R- 3BS
Antimony*	7440-36-0	mg/L	NA		NA																
Arsenic	7440-38-2	mg/L	0.34		0.15		0.004	0.0041	0.0044	0.0044	0.0046	0.0042	0.0046	0.0046	0.0047	0.0045	0.0053	0.0041	0.0041	0.0045	0.0046
Barium	7440-39-3	mg/L	NA		NA		0.146	0.173	0.18	0.184	0.193	0.173	0.201	0.201	0.198	0.204	0.162	0.181	0.169	0.187	0.192
Beryllium*	7440-41-7	mg/L	NA		NA																
Boron	7440-42-8	mg/L	NA		NA		0.0787 J	0.0814 J	0.0824 J	0.0812 J	0.0836 J	0.085 J	0.0903 J	0.0885 J	0.0898 J	0.0916 J	0.0818 J	0.0829 J	0.0813 J	0.0849 J	0.0833 J
Cadmium*	7440-43-9	mg/L	0.0058	(d)	0.0020	(d)						0.00059 J							0.00054 J		
Calcium	7440-70-2	mg/L	NA		NA		74.1	75.1	76.8	76.2	79	72.8	77	77.2	78.6	77.8	75.4	76.7	75.9	79.6	78.9
Chloride	16887-00-6	mg/L	860		230		22.5	22.8	22.7	23.5	23.9	23.8	24	24.5	25.1	25.2	22.6	22.8	22.6	23.6	23.3
Chromium	7440-47-3	mg/L	4.59	(c,d)	0.219	(c,d)	0.0024 J	0.005	0.007	0.0064	0.0068	0.0052	0.0071	0.0076	0.0059	0.0075	0.0033 J	0.0067	0.0048 J	0.0061	0.0068
Cobalt	7440-48-4	mg/L	NA		NA		0.002 J	0.0029 J	0.0034 J	0.0037 J	0.0039 J	0.0028 J	0.0038 J	0.0044 J	0.0035 J	0.0033 J	0.0028 J	0.0028 J	0.0028 J	0.0028 J	0.0032 J
Fluoride	16984-48-8	mg/L	NA		NA		0.36	0.37	0.36	0.38	0.37	0.39	0.42	0.4	0.41	0.41	0.37	0.36	0.36	0.37	0.38
Lead	7439-92-1	mg/L	0.35	(d)	0.014	(d)		0.0052 J	0.0046 J	0.004 J	0.0046 J	0.0057 J	0.0051 J	0.006 J	0.006 J	0.0054 J	0.0034 J		0.0057 J	0.0079 J	0.0038 J
Lithium	7439-93-2	mg/L	NA		NA		0.0354	0.0353	0.0379	0.038	0.0396	0.0379	0.0408	0.0403	0.0414	0.0428	0.0357	0.0377	0.0366	0.0386	0.0398
Mercury*	7439-97-6	mg/L	0.0016		0.001																
Molybdenum	7439-98-7	mg/L	NA		NA		0.0022 J	0.0026 J	0.003 J	0.0025 J	0.003 J	0.0021 J	0.0024 J	0.002 J	0.002 J	0.0026 J	0.0026 J	0.0026 J	0.0027 J	0.0029 J	0.0028 J
Selenium	7782-49-2	mg/L	NA		3.1		0.0074 J	0.007 J	0.0077 J	0.0076 J							0.009 J				
Sulfate	14808-79-8	mg/L	NA		NA		176	178	177	183	180	172	173	174	179	180	175	178	179	185	186
Thallium*	7440-28-0	mg/L	NA		NA																
Total Hardness as CaCO3	471-34-1	mg/L	NA		NA		301	304	310	308	319	302	316	316	319	319	304	311	307	320	318
Total Dissolved Solids	TDS	mg/L	NA		NA		506	507	491	491	488	479	505	506	517	523	500	505	509	519	522

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria. CAS - Chemical Abstracts Service. J - Estimated value. mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.
Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

Detected Cont

(a) - Surface water samples collected in May 2018.

(b) - USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d). USEPA provides AWQC for both total and dissolved results.

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value

for the Missouri River of 313 mg/L as CaCO3 used.

TABLE 7a
COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			Federal	Water (Quality Crite	eria	M	issouri Ri	ver Further	r Downstre	am	Mi	issouri Riv	er Furthest	Downstre	am
Constituent	CAS	Units	USEPA Ad Life AW Freshwater (b)	QC	USEPA Ad Life AW Freshwa Chronic	QC ater	LBD-R- 10BS	LBD-R- 11BM	LBD-R- 11BS	LBD-R- 12BM	LBD-R- 12BS	LBD-R- 7BS	LBD-R- 8BM	LBD-R- 8BS	LBD-R- 9BM	LBD-R- 9BS
Antimony*	7440-36-0	mg/L	NA		NA											
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0039	0.0041	0.0042	0.0045	0.0044	0.0034	0.0046	0.0043	0.0044	0.0045
Barium	7440-39-3	mg/L	NA		NA		0.17	0.163	0.158	0.18	0.194	0.128	0.178	0.19	0.188	0.174
Beryllium*	7440-41-7	mg/L	NA		NA											
Boron	7440-42-8	mg/L	NA		NA		0.0825 J	0.0825 J	0.0818 J	0.0873 J	0.0854 J	0.0814 J	0.0879 J	0.0869 J	0.0875 J	0.0899 J
Cadmium*	7440-43-9	mg/L	0.0058	(d)	0.0020	(d)	0.0005 J									
Calcium	7440-70-2	mg/L	NA		NA		76.6	76	78.5	75.7	79.8	72.5	78.6	80.2	78.9	82.6
Chloride	16887-00-6	mg/L	860		230		22.8	22.4	22.7	23	22.9	22.5	23	23	23.5	23.8
Chromium	7440-47-3	mg/L	4.59	(c,d)	0.219	(c,d)	0.0051	0.0042 J	0.0023 J	0.0054	0.0066	0.0016 J	0.0047 J	0.0073	0.0064	0.0048 J
Cobalt	7440-48-4	mg/L	NA		NA		0.0024 J	0.0027 J	0.0024 J	0.0029 J	0.0037 J	0.0013 J	0.0036 J	0.0036 J	0.0033 J	0.0024 J
Fluoride	16984-48-8	mg/L	NA		NA		0.36	0.36	0.36	0.37	0.37	0.36	0.37	0.37	0.37	0.39
Lead	7439-92-1	mg/L	0.35	(d)	0.014	(d)		0.0034 J	0.0043 J	0.0051 J	0.005 J		0.003 J	0.0048 J	0.0046 J	0.0057 J
Lithium	7439-93-2	mg/L	NA		NA		0.0368	0.0349	0.036	0.0412	0.0415	0.0342	0.039	0.0396	0.0379	0.04
Mercury*	7439-97-6	mg/L	0.0016		0.001											
Molybdenum	7439-98-7	mg/L	NA		NA		0.0028 J	0.0023 J	0.0023 J	0.0021 J	0.0028 J	0.0024 J	0.0029 J	0.0028 J	0.0029 J	0.0025 J
Selenium	7782-49-2	mg/L	NA		3.1		0.0088 J						0.0102 J	0.0065 J	0.0089 J	0.0063 J
Sulfate	14808-79-8	mg/L	NA		NA		175	178	178	181	179	176	180	181	187	187
Thallium*	7440-28-0	mg/L	NA		NA											
Total Hardness as CaCO3	471-34-1	mg/L	NA		NA		310	307	315	308	323	296	317	325	319	331
Total Dissolved Solids	TDS	mg/L	NA		NA		492	519	486	517	508	481	512	513	525	519

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria. CAS - Chemical Abstracts Service.

J - Estimated value. mg/L - milligrams per liter. NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria.
 - USEPA Office of Water and Office of Science and Technology.
 - http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness see note (d).
 - USEPA provides AWQC for both total and dissolved results.
- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 313 mg/L as CaCO3 used.

COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a)

AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Federal	Water	Quality Criteria			Missou	ri River Up	ostream			Missou	ıri River Ad	djacent			Missouri	River Dov	vnstream	
Constituent	CAS	Units	USEPA Aquat AWQC Fresh Acute (b	water	USEPA Aquat AWQC Fresh Chronic (water	LBD-R- 4BS	LBD-R- 5BM	LBD-R- 5BS	LBD-R- 6BM	LBD-R- 6BS	LBD-R- 13BS	LBD-R- 14BM	LBD-R- 14BS	LBD-R- 15BM	LBD-R- 15BS	LBD-R- 1BS	LBD-R- 2BM	LBD-R- 2BS	LBD-R- 3BM	LBD-R- 3BS
Antimony*	7440-36-0	mg/L	NA		NA																
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0031	0.003	0.003	0.003	0.0029	0.0029	0.0029	0.0032	0.003	0.0029	0.003	0.003	0.0029	0.0032	0.003
Barium	7440-39-3	mg/L	NA		NA		0.111	0.108	0.11	0.111	0.111	0.109	0.106	0.108	0.103	0.111	0.107	0.109	0.103	0.113	0.109
Beryllium	7440-41-7	mg/L	NA		NA							0.00017 J									
Boron	7440-42-8	mg/L	NA		NA		0.081 J	0.0806 J	0.0785 J	0.0846 J	0.0837 J	0.0817 J	0.0798 J	0.0777 J	0.0765 J	0.0805 J	0.079 J	0.0859 J	0.078 J	0.0842 J	0.0836 J
Cadmium*	7440-43-9	mg/L	0.0052	(d)	0.0017	(d)															
Calcium	7440-70-2	mg/L	NA		NA		71.7	71.5	71.1	72.2	73	70.5	69.3	70.4	67.4	71.5	68.5	72	68.1	72.4	71
Chromium*	7440-47-3	mg/L	1.45	(c,d)	0.19	(c,d)															
Cobalt	7440-48-4	mg/L	NA		NA									0.00099 J							
Lead*	7439-92-1	mg/L	0.218	(d)	0.0085	(d)															
Lithium	7439-93-2	mg/L	NA		NA		0.0328	0.0334	0.0361	0.0357	0.036	0.038	0.0348	0.0371	0.0355	0.0362	0.0331	0.0335	0.0314	0.0359	0.0351
Mercury*	7439-97-6	mg/L	0.0014		0.00077																
Molybdenum	7439-98-7	mg/L	NA		NA		0.0026 J	0.0029 J	0.0029 J	0.0031 J	0.0026 J	0.0028 J	0.0028 J	0.0025 J	0.0024 J	0.0029 J	0.003 J	0.0028 J	0.0027 J	0.003 J	0.0026 J
Selenium	7782-49-2	mg/L	NA		NA		0.0069 J	0.007 J	0.0103 J												
Thallium*	7440-28-0	mg/L	NA		NA																

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.
Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 313 mg/L as CaCO3 used.

COMPARISON OF MAY 2018 MISSOURI RIVER SURFACE WATER RESULTS
TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER

Federal Water Quality Criteria Missouri River Further Downstream Missouri River Furthest Downstream **USEPA Aquatic Life USEPA Aquatic Life** Constituent CAS Units LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-LBD-R-**AWQC Freshwater AWQC Freshwater** 10BS 11BM 11BS 12BM 12BS 7BS 8BM 8BS 9BM 9BS Acute (b) Chronic (b) Antimony 7440-36-0 mg/L Arsenic 7440-38-2 0.34 0.15 0.0027 0.0028 0.0028 0.003 0.0028 0.003 0.0028 0.0028 0.003 mg/L 0.003 7440-39-3 Barium mg/L NA NA 0.107 0.112 0.112 0.109 0.11 0.114 0.107 0.105 0.112 0.114 7440-41-7 Beryllium mg/L NA NA 7440-42-8 0.0793 J 0.0828 J 0.0825 J 0.0869 J Boron mg/L NA NA 0.0838 0.0812 J 0.0777 J 0.082 J 0.0798 J 0.0849 J Cadmium* 7440-43-9 mg/L 0.0052 (d) 0.0017 (d) Calcium 7440-70-2 mg/L NA NA 68.8 72.4 71.4 71 69.4 73.2 68.6 67.6 72.7 73.5 Chromium* 7440-47-3 mg/L 1.45 (c,d) 0.19 (c,d) Cobalt 7440-48-4 NA NA mg/L Lead* 7439-92-1 mg/L 0.218 (d) 0.0085 (d) Lithium 7439-93-2 NA NA 0.035 0.0385 0.0354 0.0366 0.0328 0.0368 0.0344 0.0363 0.0378 mg/L

0.0028 J

0.0029

0.0026 J

0.0065 J

0.0021 J

0.0026 J

0.0027 J

0.0028 J

0.0074 J

0.0031 J

0.003 J

0.0031 J

0.00077

NA

NA

NA

Thallium*

Mercury*

Selenium

Molybdenum

Blank cells - Non-detect value.

FRANKLIN COUNTY, MISSOURI

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

0.0014

NA

NA

NA

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

7439-97-6

7439-98-7

7782-49-2

7440-28-0

mg/L

mg/L

mg/L

mg/L

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 313 mg/L as CaCO3 used.

TABLE 7c
COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS
TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			Federal	Water	Quality Crite	ria			Missouri Rive	er				Missouri Rive	r	
			USEPA Ac		USÉPA Ac			F	iver Upstrea	m			Ri	ver Downstre	am	
Constituent	CAS	Units				QC iter (b)	LBD-R-4AS Total	LBD-R-5AS Total	LBD-R-5AM Total	LBD-R-6AS Total	LBD-R-6AM Total	LBD-R-1AS Total	LBD-R-2AS Total	LBD-R-2AM Total	LBD-R-3AS Total	LBD-R-3AM Total
Antimony*	7440-36-0	mg/L	NA		NA											
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0033	0.0032	0.0035	0.003	0.0031	0.0038	0.0032	0.0034	0.0034	0.0028
Barium	7440-39-3	mg/L	NA		NA		0.124	0.131	0.128	0.132	0.118	0.134	0.124	0.129	0.13	0.131
Beryllium*	7440-41-7	mg/L	NA		NA											
Boron	7440-42-8	mg/L	NA		NA		0.111	0.112	0.109	0.111	0.109	0.115	0.111	0.113	0.11	0.11
Cadmium*	7440-43-9	mg/L	0.0053	(d)	0.0018	(d)										
Calcium	7440-70-2	mg/L	NA		NA		69.9	71.7	70.7	70	66.2	70.7	69.2	70.8	70.2	71.4
Chloride	16887-00-6	mg/L	860		230		19.5	20.2	20.1	20.9	18.6	20.5	20.4	19.9	18.6	20.8
Chromium	7440-47-3	mg/L	4.2	(c,d)	0.20	(c,d)	0.0015 J	0.0025 J	0.0016 J	0.0019 J	0.0023 J	0.0024 J	0.0019 J	0.0016 J	0.0019 J	0.0023 J
Cobalt	7440-48-4	mg/L	NA		NA											
Fluoride	16984-48-8	mg/L	NA		NA		0.52	0.55	0.52	0.55	0.52	0.54	0.55	0.52	0.5 J	0.57
Lead	7439-92-1	mg/L	0.31	(d)	0.012	(d)	0.00056 J	0.00076 J	0.00072 J	0.0011	0.0011	0.001	0.00062 J	0.00068 J	0.00088 J	0.00098 J
Mercury*	7439-97-6	mg/L	0.0016		0.00091											
Molybdenum	7439-98-7	mg/L	NA		NA		0.0033 J	0.0031 J	0.0028 J	0.0036 J	0.0029 J	0.0035 J	0.0035 J	0.0031 J	0.0031 J	0.0029 J
Selenium	7782-49-2	mg/L	NA		3.1		0.0015 J	0.0017 J	0.0018 J	0.0018 J	0.0017 J	0.0015 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA		NA		209	210	203	212	210	209	210	213	208	205
Thallium*	7440-28-0	mg/L	NA		NA					1						
Total Hardness as CaCO3	471-34-1	mg/L	NA		NA		284,000	291,000	287,000	285,000	268,000	287,000	281,000	287,000	285,000	289,000
Total Dissolved Solids	TDS	mg/L	NA		NA		539	553	548	550	544	532	541	531	540	541

Blank cells - Non-detect value.

 * Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

(a) - Surface water samples collected in November 2014.

(b) - USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

TABLE 7c
COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS
TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			Federa	l Water	Quality Crite	ria			Missouri Rive	er			N	lissouri Riv	er	
			USEPA Ad	quatic	USEPA Ac	uatic		River I	urther Down	nstream			River F	urthest Dow	nstream	
Constituent	CAS	Units	Life AW Freshwater (b)		Life AW Freshwa Chronic	ater	LBD-R-10S Total	LBD-R-11S Total	LBD-R-11M Total	LBD-R-12S Total	LBD-R-12M Total	LBD-R-7S Total	LBD-R-8S Total	LBD-R-8M Total	LBD-R-9S Total	LBD-R-9M Total
Antimony*	7440-36-0	mg/L	NA		NA											
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0037	0.0033	0.0032	0.0035	0.0035	0.0046	0.0034	0.0034	0.0035	0.0037
Barium	7440-39-3	mg/L	NA		NA		0.135	0.132	0.13	0.129	0.127	0.17	0.13	0.13	0.135	0.135
Beryllium*	7440-41-7	mg/L	NA		NA											ı
Boron	7440-42-8	mg/L	NA		NA		0.111	0.11	0.111	0.11	0.111	0.115	0.111	0.11	0.111	0.109
Cadmium*	7440-43-9	mg/L	0.0053	(d)	0.0018	(d)										1
Calcium	7440-70-2	mg/L	NA		NA		70.5	69.5	69.5	69.4	70.2	71.6	70.1	69.6	70.8	70.2
Chloride	16887-00-6	mg/L	860		230		18.8	20.4	20.5	20.9	18.7	16.6	18.5	18.4	17.7	19.4
Chromium	7440-47-3	mg/L	4.2	(c,d)	0.20	(c,d)	0.0025 J	0.0024 J	0.0018 J	0.002 J	0.0018 J	0.0056 J	0.0017 J	0.0018 J	0.003 J	0.0019 J
Cobalt	7440-48-4	mg/L	NA		NA		0.0012 J	0.001 J				0.0022 J		0.001 J	0.0011 J	ı
Fluoride	16984-48-8	mg/L	NA		NA			0.5	0.53	0.54	0.5 J		0.37 J			0.31 J
Lead	7439-92-1	mg/L	0.31	(d)	0.012	(d)	0.0013	0.0012	0.001	0.00088 J	0.00077 J	0.0033	0.0011	0.0011	0.0013	0.0015
Mercury*	7439-97-6	mg/L	0.0016		0.00091											1
Molybdenum	7439-98-7	mg/L	NA		NA		0.0036 J	0.0033 J	0.0031 J	0.0034 J	0.0032 J	0.0062 J	0.0038 J	0.003 J	0.003 J	0.0032 J
Selenium	7782-49-2	mg/L	NA		3.1		0.0018 J	0.0017 J	0.0017 J	0.0017 J	0.0017 J	0.0019 J	0.0019 J	0.0019 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA		NA		215	210	210	213	211	208	210	224	206	211
Thallium*	7440-28-0	mg/L	NA		NA		1		1				l	1	1	i
Total Hardness as CaCO3	471-34-1	mg/L	NA		NA		286,000	282,000	283,000	283,000	285,000	291,000	285,000	283,000	287,000	284,000
Total Dissolved Solids	TDS	mg/L	NA		NA		550	543	546	516	555	524	538	551	547	551

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.
Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in November 2014.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- USEPA provides AWQC for both total and dissolved results.
- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Federa USEPA A		Quality Crite				Missouri Rive					Missouri Rive		
Constituent	CAS	Units	Life AW Freshw Acute	ater	Life AW Freshwa Chronic	ater	LBD-R-4AS Filtered	LBD-R-5AS Filtered	LBD-R-5AM Filtered	LBD-R-6AS Filtered	LBD-R-6AM Filtered	LBD-R-1AS Filtered	LBD-R-2AS Filtered	LBD-R-2AM Filtered	LBD-R-3AS Filtered	LBD-R-3AM Filtered
Antimony*	7440-36-0	mg/L	NA		NA											
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0024	0.0027	0.0023	0.0026	0.0026	0.0028	0.0024	0.0022	0.0026	0.0026
Barium	7440-39-3	mg/L	NA		NA		0.111	0.108	0.11	0.11	0.0999	0.111	0.113	0.11	0.109	0.109
Beryllium*	7440-41-7	mg/L	NA		NA											
Boron	7440-42-8	mg/L	NA		NA		0.109	0.107	0.108	0.108	0.103	0.113	0.113	0.111	0.108	0.11
Cadmium*	7440-43-9	mg/L	0.0048	(d)	0.0016	(d)										
Calcium	7440-70-2	mg/L	NA		NA		70.2	67.8	68.7	67.8	62.5	70.7	69.8	69.4	68.6	69.4
Chromium*	7440-47-3	mg/L	1.3	(c,d)	0.17	(c,d)										
Cobalt*	7440-48-4	mg/L	NA		NA											
Lead*	7439-92-1	mg/L	0.20	(d)	0.0077	(d)										
Mercury*	7439-97-6	mg/L	0.0014		0.00077											
Molybdenum	7439-98-7	mg/L	NA		NA		0.0036 J	0.0038 J	0.0037 J	0.0041 J	0.0027 J	0.0031 J	0.0035 J	0.0036 J	0.0034 J	0.0037 J
Selenium	7782-49-2	mg/L	NA		NA		0.0016 J	0.0017 J	0.0017 J	0.0018 J	0.0016 J	0.0015 J	0.0017 J	0.0016 J	0.0015 J	0.0016 J
Thallium*	7440-28-0	mg/L	NA		NA											

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in November 2014.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

TABLE 7d

COMPARISON OF NOVEMBER 2014 MISSOURI RIVER SURFACE WATER RESULTS

TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a)

AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Federa USEPA A		Quality Crite				Missouri Rive					Missouri Rive		
Constituent	CAS	Units	Life AW Freshw Acute	ater	Life AW Freshwa Chronic	ater	LBD-R-10S Filtered	LBD-R-11S Filtered	LBD-R-11M Filtered	LBD-R-12S Filtered	LBD-R-12M Filtered	LBD-R-7S Filtered	LBD-R-8S Filtered	LBD-R-8M Filtered	LBD-R-9S Filtered	LBD-R-9M Filtered
Antimony*	7440-36-0	mg/L	NA		NA											
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0026	0.0027	0.0025	0.0026	0.0023	0.0027	0.0028	0.0026	0.0025	0.0027
Barium	7440-39-3	mg/L	NA		NA		0.112	0.111	0.111	0.11	0.109	0.113	0.111	0.111	0.109	0.111
Beryllium*	7440-41-7	mg/L	NA		NA											
Boron	7440-42-8	mg/L	NA		NA		0.11	0.109	0.11	0.109	0.11	0.11	0.108	0.108	0.105	0.108
Cadmium*	7440-43-9	mg/L	0.0048	(d)	0.0016	(d)										
Calcium	7440-70-2	mg/L	NA		NA		68.6	68.4	68.5	69.4	69.2	69	67.8	68.7	68.7	69.1
Chromium*	7440-47-3	mg/L	1.3	(c,d)	0.17	(c,d)										
Cobalt*	7440-48-4	mg/L	NA		NA											
Lead*	7439-92-1	mg/L	0.20	(d)	0.0077	(d)										
Mercury*	7439-97-6	mg/L	0.0014		0.00077											
Molybdenum	7439-98-7	mg/L	NA		NA		0.0037 J	0.004 J	0.0048 J	0.004 J	0.0034 J	0.0059 J	0.0038 J	0.004 J	0.0035 J	0.0036 J
Selenium	7782-49-2	mg/L	NA		NA		0.0015 J	0.0016 J	0.0017 J	0.0015 J	0.0017 J	0.0016 J	0.0017 J	0.0015 J	0.0019 J	0.0017 J
Thallium*	7440-28-0	mg/L	NA		NA											

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Value is estimated.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in November 2014.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

			Federal \	Water (Quality Crite	eria		N	lissouri Riv	er			M	lissouri Riv	er	
			USEPA Aq	luatic	USEPA A	quatic		R	ver Upstrea	am			Riv	er Downstre	eam	
Constituent	CAS	Units	Life AW0 Freshwater (b)		Life AW Freshwa Chronic	ater	LBD-R-4S Total	LBD-R-5S Total	LBD-R-5M Total	LBD-R-6S Total	LBD-R-6M Total	LBD-R-1S Total	LBD-R-2S Total	LBD-R-2M Total	LBD-R-3S Total	LBD-R-3M Total
Antimony*	7440-36-0	mg/L	NA		NA	,										
Arsenic	7440-38-2	mg/L	0.34		0.15		0.005	0.005	0.0048	0.0047	0.0047	0.0044	0.0045	0.0047	0.0048	0.0049
Barium	7440-39-3	mg/L	NA		NA		0.113	0.119	0.12	0.123	0.119	0.113	0.122	0.123	0.123	0.124
Beryllium*	7440-41-7	mg/L	NA		NA											
Boron	7440-42-8	mg/L	NA		NA		0.111	0.114	0.114	0.115	0.113	0.12	0.121	0.123	0.118	0.119
Cadmium*	7440-43-9	mg/L	0.0053	(d)	0.0018	(d)										
Calcium	7440-70-2	mg/L	NA		NA		62.3	63.5	63.4	65.1	64.5	63.8	64.7	63.6	64.2	65.5
Chromium	7440-47-3	mg/L	4.2	(c,d)	0.20	(c,d)	0.0022 J	0.0026 J	0.0029 J	0.0031 J	0.0023 J	0.0023 J	0.0027 J	0.0031 J	0.0029 J	0.0032 J
Cobalt*	7440-48-4	mg/L	NA		NA											
Fluoride	16984-48-8	mg/L	NA		NA		0.41 J	0.48 J	0.45 J	0.51 J	0.44 J	0.5 J	0.47 J	0.48 J	0.47 J	0.43 J
Lead	7439-92-1	mg/L	0.31	(d)	0.012	(d)	0.0015	0.0018	0.0018	0.0019	0.0019	0.0015	0.0018	0.0018	0.0019	0.0019
Mercury*	7439-97-6	mg/L	0.0016		0.00091											
Molybdenum	7439-98-7	mg/L	NA		NA		0.004 J	0.0044 J	0.0042 J	0.0043 J	0.0041 J	0.0044 J	0.0044 J	0.0044 J	0.0044 J	0.0041 J
Selenium	7782-49-2	mg/L	NA		3.1		0.0016 J	0.0018 J	0.0016 J	0.0017 J	0.0018 J	0.0017 J	0.0016 J	0.0017 J	0.0017 J	0.0017 J
Sulfate	14808-79-8	mg/L	NA		NA		194	194	193	194	197	174	187	193	189	192
Thallium*	7440-28-0	mg/L	NA		NA											

Notes:

Blank cells - Non-detect value.

Total Hardness as CaCO3

FRANKLIN COUNTY, MISSOURI

J - Estimated value.

NA

* Constituent was not detected in any samples.

mg/L - milligrams per liter.

-- - Constituent not included in this analysis.

NA - Not Available.

AWQC - USEPA Ambient Water Quality Criteria.

USEPA - United States Environmental Protection Agency.

CAS - Chemical Abstracts Service.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
 - Total values provided. Values adjusted for site-specific hardness see note (d).

mg/L

USEPA provides AWQC for both total and dissolved results.

471-34-1

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

AMEREN MISSOURI LABADIE ENEF FRANKLIN COUNTY, MISSOURI	RGY CENTER		
	Federal Water Quality	Missouri River	Mis

			Federal V	Vater Quality			Missouri Rive					Missouri Rive	er	
			USEPA	USEPA		F	River Upstrea	m			Riv	ver Downstre	am	
			Aquatic Life	Aquatic Life										
Compatituent	CAS	I India	AWQC	AWQC	LBD-R-4S	LBD-R-5S	LBD-R-5M	LBD-R-6S	LBD-R-6M	LBD-R-1S	LBD-R-2S	LBD-R-2M	LBD-R-3S	LBD-R-3M
Constituent	CAS	Units	Freshwater	Freshwater	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered	Filtered
			Acute (b)	Chronic (b)										
Antimony*	7440-36-0	mg/L	NA	NA										
Arsenic	7440-38-2	mg/L	0.34	0.15	0.0035	0.0035	0.0038	0.0037	0.0034	0.004	0.0037	0.0036	0.0033	0.0035
Barium	7440-39-3	mg/L	NA	NA	0.0928	0.0906	0.0917	0.0907	0.0886	0.0936	0.0912	0.0914	0.0915	0.0938
Beryllium*	7440-41-7	mg/L	NA	NA										
Boron	7440-42-8	mg/L	NA	NA	0.12	0.115	0.118	0.115	0.113	0.123	0.122	0.123	0.116	0.119
Cadmium*	7440-43-9	mg/L	0.0048 (d)	0.0016 (d)										
Calcium	7440-70-2	mg/L	NA	NA										
Chromium*	7440-47-3	mg/L	1.3 (c,d)	0.17 (c,d)									
Cobalt*	7440-48-4	mg/L	NA	NA										
Fluoride	16984-48-8	mg/L	NA	NA										
Lead*	7439-92-1	mg/L	0.20 (d)	0.0077 (d)										
Mercury*	7439-97-6	mg/L	0.0014	0.00077										
Molybdenum	7439-98-7	mg/L	NA	NA	0.0035 J	0.0035 J	0.0041 J	0.0038 J	0.0036 J	0.0042 J	0.0039 J	0.0042 J	0.0036 J	0.0037 J
Selenium	7782-49-2	mg/L	NA	NA	0.0016 J	0.0015 J	0.0015 J	0.0016 J	0.0014 J	0.0016 J	0.0016 J	0.0016 J	0.0016 J	0.0016 J
Sulfate	14808-79-8	mg/L	NA	NA										
Thallium*	7440-28-0	mg/L	NA	NA										
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA										

Notes:

Blank cells - Non-detect value.

J - Estimated value. * Constituent was not detected in any samples. mg/L - milligrams per liter.

-- - Constituent not included in this analysis. AWQC - USEPA Ambient Water Quality Criteria.

USEPA - United States Environmental Protection Agency.

CAS - Chemical Abstracts Service.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

NA - Not Available.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for the Missouri River of 284.5 mg/L as CaCO3 used.

TABLE 8a COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Federal Water			Selected Drinking	Labadi	e Creek Up	stream	Labadie	Creek Dow	vnstream
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)		Water Screening Level (h)	LBD-C- 4BS 5/17/2018	LBD-C- 5BS 5/17/2018	LBD-C- 6BS 5/17/2018	LBD-C- 1BS 5/17/2018	LBD-C- 2BS 5/17/2018	LBD-C- 3BS 5/17/2018
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078		0.006						
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052		0.01	0.0036	0.0036	0.0032	0.0044	0.0045	0.0045
Barium	7440-39-3	mg/L	2	NA	3.8		2	0.136	0.136	0.132	0.168	0.17	0.171
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025		0.004						
Boron	7440-42-8	mg/L	NA	NA	4		4	0.0736 J	0.0731 J	0.0711 J	0.0955 J	0.0997 J	0.099 J
Cadmium	7440-43-9	mg/L	0.005	NA	0.0092		0.005					0.00089 J	
Calcium	7440-70-2	mg/L	NA	NA	NA		NA	48.3	47.8	46.7	53.7	54.3	54.7
Chloride	16887-00-6	mg/L	NA	250	NA		250	28.8	28.6	28.6	29.9	30.1	30
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 ((f)	0.1				0.0013 J	0.0013 J	0.0013 J
Cobalt	7440-48-4	mg/L	NA	NA	0.006		0.006		0.00089 J		0.0016 J	0.0013 J	0.0016 J
Fluoride	16984-48-8	mg/L	4	2	0.8		4	0.24	0.24	0.23	0.27	0.26	0.26
Lead*	7439-92-1	mg/L	0.015 (g)	NA	0.015		0.015				l		
Lithium*	7439-93-2	mg/L	NA	NA	0.04		0.04						
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002						
Molybdenum	7439-98-7	mg/L	NA	NA	0.1		0.1	0.002 J	0.0019 J	0.0019 J	0.0034 J	0.0036 J	0.0036 J
Selenium*	7782-49-2	mg/L	0.05	NA	0.1		0.05				l		
Sulfate	14808-79-8	mg/L	NA	250	NA		250	19	19.1	19.1	26.4	25.4	24.8
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002		0.002				1	ĺ	
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA		NA	225	222	218	237	240	242
Total Dissolved Solids	TDS	mg/L	NA	500	NA		500	309	304	304	350	342	334

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

CAS - Chemical Abstracts Service.

J - Estimated value.

MCL - Maximum Contaminant Level.

mg/L - milligrams per liter.

NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

U - Constituent was not detected.

USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is

not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water. Federal USEPA SMCL for Drinking Water.

TABLE 8b

COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS

TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

				Federal Water			Selected Drinking	Labadi	e Creek Up	ostream	Labadie	Creek Dov	vnstream
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)		Water Screening	LBD-C- 4BS 5/17/2018	LBD-C- 5BS 5/17/2018	LBD-C- 6BS 5/17/2018	LBD-C- 1BS 5/17/2018	LBD-C- 2BS 5/17/2018	LBD-C- 3BS 5/17/2018
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078		0.006						
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052		0.01	0.003	0.003	0.0016	0.0033	0.0036	0.0037
Barium	7440-39-3	mg/L	2	NA	3.8		2	0.13	0.121	0.09	0.155	0.156	0.156
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025		0.004						
Boron	7440-42-8	mg/L	NA	NA	4		4	0.0723 J	0.0797	0.0478 J	0.0995 J	0.098 J	0.097 J
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092		0.005						
Calcium	7440-70-2	mg/L	NA	NA	NA		NA	51	51	61.7	57.8	57.4	57.6
Chromium*	7440-47-3	mg/L	0.1 (e)	NA	22	(f)	0.1						
Cobalt*	7440-48-4	mg/L	NA	NA	0.006		0.006				0.00098 J		
Lead*	7439-92-1	mg/L	0.015 (g)	NA	0.015		0.015						
Lithium*	7439-93-2	mg/L	NA	NA	0.04		0.04						
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d)	0.002						
Molybdenum	7439-98-7	mg/L	NA	NA	0.1		0.1	0.0024 J			0.004 J	0.0039 J	0.0041 J
Selenium*	7782-49-2	mg/L	0.05	NA	0.1		0.05						
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002		0.002						

Notes:

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

CAS - Chemical Abstracts Service. RSL - Regional Screening Level.

J - Estimated value. SMCL - Secondary Maximum Contaminant Level.

MCL - Maximum Contaminant Level. U - Constituent was not detected.

mg/L - milligrams per liter. USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

NA - Not Available.

(a) - Surface water samples collected in May 2018.

(b) - USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

(d) - RSL for Mercuric Chloride used for Mercury.

(e) - The drinking water standard or MCL for chromium is based on total chromium.

(f) - Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium that is

not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

(g) - The Action Level presented is recommended in the USEPA Drinking Water Standards.

(h) - Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 8c COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Federal Wa	ter	Selecte	d		Labadi	e Creek		
			Qual	ity Screenin	g Levels	Drinking	g C	reek Upstre	am	Cre	ek Downstr	eam
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screenir Level (h	- Intal	LBD-C-5 Total	LBD-C-6 Total	LBD-C-1 Total	LBD-C-2 Total	LBD-C-3 Total
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006						
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0056	0.0055	0.0061	0.0065	0.0061	0.0066
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.124	0.122	0.125	0.161	0.164	0.172
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004						
Boron	7440-42-8	mg/L	NA	NA	4	4	0.166	0.164	0.167	0.0978	0.0959	0.0999
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005						
Calcium	7440-70-2	mg/L	NA	NA	NA	NA	65.6	64.4	65.7	56.1	55.4	57.7
Chromium	7440-47-3	mg/L	0.1 (e)	NA	22 (0.1				0.0026 J	0.0027 J	0.0031 J
Cobalt*	7440-48-4	mg/L	NA	NA	0.006	0.006						
Fluoride*	16984-48-8	mg/L	4	2	0.8	4						
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015	0.00014 J	0.00013 J	0.0002 J	0.0017	0.0018	0.0021
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (0.002						
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0029 J	0.0024 J	0.0024 J	0.0092 J	0.0055 J	0.0046 J
Selenium*	7782-49-2	mg/L	0.05	NA	0.1	0.05						
Sulfate	14808-79-8	mg/L	NA	250	NA	250	17.8 J	17.6 J	16.6 J	19.4 J	16.3 J	15.3 J
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002						
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA	NA	291	286	291	249	246	256

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

-- - Constituent not included in this analysis.

CAS - Chemical Abstracts Service.

 $\label{eq:MCL-Maximum Contaminant Level.} MCL - Maximum Contaminant Level.$

J - Estimated value.

NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level.

USEPA - United States Environmental Protection Agency.

mg/L - milligrams per liter.

Detected Concentration > Selected Drinking Water Screening Level.

- (a) Surface water samples collected in October 2013.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium

that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 8d COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Federal Wa		Selected		abadie Cree			abadie Cree	
			Qua	ity Screening	•	Drinking	С	reek Upstrea	ım	Cre	ek Downstre	am
Constituent	CAS	Units	USEPA MCLs (b)	USEPA SMCLs (b)	USEPA Tapwater RSLs (c)	Water Screening Level (h)	LBD-C-4 Filtered	LBD-C-5 Filtered	LBD-C-6 Filtered	LBD-C-1 Filtered	LBD-C-2 Filtered	LBD-C-3 Filtered
Antimony*	7440-36-0	mg/L	0.006	NA	0.0078	0.006						
Arsenic	7440-38-2	mg/L	0.01	NA	0.000052	0.01	0.0056	0.0051	0.0051	0.0039	0.0039	0.0043
Barium	7440-39-3	mg/L	2	NA	3.8	2	0.116	0.118	0.12	0.141	0.145	0.146
Beryllium*	7440-41-7	mg/L	0.004	NA	0.025	0.004						
Boron	7440-42-8	mg/L	NA	NA	4	4	0.165	0.169	0.17	0.108	0.1	0.0994
Cadmium*	7440-43-9	mg/L	0.005	NA	0.0092	0.005						
Calcium	7440-70-2	mg/L	NA	NA	NA	NA						
Chromium*	7440-47-3	mg/L	0.1 (e)	NA	22 (1	0.1						
Cobalt*	7440-48-4	mg/L	NA	NA	0.006	0.006						
Fluoride	16984-48-8	mg/L	4	2	0.8	4						
Lead	7439-92-1	mg/L	0.015 (g)	NA	0.015	0.015				0.0001 J		
Mercury*	7439-97-6	mg/L	0.002	NA	0.0057 (d	0.002						
Molybdenum	7439-98-7	mg/L	NA	NA	0.1	0.1	0.0018 J	0.0022 J	0.002 J	0.0036 J	0.0031 J	0.003 J
Selenium	7782-49-2	mg/L	0.05	NA	0.1	0.05						
Sulfate	14808-79-8	mg/L	NA	250	NA	250						
Thallium*	7440-28-0	mg/L	0.002	NA	0.0002	0.002						
Total Hardness as CaCO3	471-34-1	mg/L	NA	NA	NA	NA						

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

-- - Constituent not included in this analysis.

CAS - Chemical Abstracts Service. MCL - Maximum Contaminant Level.

mg/L - milligrams per liter.

J - Estimated value.

NA - Not Available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level. USEPA - United States Environmental Protection Agency.

Detected Concentration > Selected Drinking Water Screening Level.

- (a) Surface water samples collected in October 2013.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories. Spring 2018.

http://water.epa.gov/drink/contaminants/index.cfm

(c) - USEPA Regional Screening Levels (November 2018). Values for tapwater.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm

- (d) RSL for Mercuric Chloride used for Mercury.
- (e) The drinking water standard or MCL for chromium is based on total chromium.
- (f) Value for trivalent chromium used. USEPA provides a screening level for hexavalent chromium

that is not a drinking water standard, the basis of which has been questioned by USEPA's Science Advisory Board.

- (g) The Action Level presented is recommended in the USEPA Drinking Water Standards.
- (h) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

TABLE 9a
COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS
TO HUMAN HEALTH AWOC SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			USEPA	Labadi	e Creek Up	stream	Labadie	Creek Dov	nstream
Constituent	CAS	Units	AWQC (b)	LBD-C- 4BS 5/17/2018	LBD-C- 5BS 5/17/2018	LBD-C- 6BS 5/17/2018	LBD-C- 1BS 5/17/2018	LBD-C- 2BS 5/17/2018	LBD-C- 3BS 5/17/2018
Antimony*	7440-36-0	mg/L	0.64						
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0036	0.0036	0.0032	0.0044	0.0045	0.0045
Barium	7440-39-3	mg/L	NA	0.136	0.136	0.132	0.168	0.17	0.171
Beryllium*	7440-41-7	mg/L	NA						
Boron	7440-42-8	mg/L	NA	0.0736 J	0.0731 J	0.0711 J	0.0955 J	0.0997 J	0.099 J
Cadmium	7440-43-9	mg/L	NA					0.00089 J	
Calcium	7440-70-2	mg/L	NA	48.3	47.8	46.7	53.7	54.3	54.7
Chloride	16887-00-6	mg/L	NA	28.8	28.6	28.6	29.9	30.1	30
Chromium	7440-47-3	mg/L	NA				0.0013 J	0.0013 J	0.0013 J
Cobalt	7440-48-4	mg/L	NA		0.00089 J	0.0011 J	0.0016 J	0.0013 J	0.0016 J
Fluoride	16984-48-8	mg/L	NA	0.24	0.24	0.23	0.27	0.26	0.26
Lead*	7439-92-1	mg/L	NA						
Lithium*	7439-93-2	mg/L	NA						
Mercury*	7439-97-6	mg/L	NA						
Molybdenum	7439-98-7	mg/L	NA	0.002 J	0.0019 J	0.0019 J	0.0034 J	0.0036 J	0.0036 J
Selenium*	7782-49-2	mg/L	4.2						
Sulfate	14808-79-8	mg/L	NA	19	19.1	19.1	26.4	25.4	24.8
Thallium*	7440-28-0	mg/L	0.00047		1				
Total Hardness as CaCO3	471-34-1	mg/L	NA	225	222	218	237	240	242
Total Dissolved Solids	TDS	mg/L	NA	309	304	304	350	342	334

Notes:

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

U - Constituent was not detected.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitec/hswguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (c) Value applies to inorganic form of arsenic only.

TABLE 9b
COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS
TO HUMAN HEALTH AWQC SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a)
AMEREN MISSOURI LABADIE ENERGY CENTER
FRANKLIN COUNTY, MISSOURI

			USEPA	Labadi	e Creek Up	stream	Labadie	Creek Dow	nstream
Constituent	CAS	Units	AWQC (b)	LBD-C- 4BS 5/17/2018	LBD-C- 5BS 5/17/2018	LBD-C- 6BS 5/17/2018	LBD-C- 1BS 5/17/2018	LBD-C- 2BS 5/17/2018	LBD-C- 3BS 5/17/2018
Antimony*	7440-36-0	mg/L	0.64						
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.003	0.003	0.0016	0.0033	0.0036	0.0037
Barium	7440-39-3	mg/L	NA	0.13	0.121	0.09	0.155	0.156	0.156
Beryllium*	7440-41-7	mg/L	NA						
Boron	7440-42-8	mg/L	NA	0.0723 J	0.0797	0.0478 J	0.0995 J	0.098 J	0.097 J
Cadmium*	7440-43-9	mg/L	NA						
Calcium	7440-70-2	mg/L	NA	51	51	61.7	57.8	57.4	57.6
Chromium*	7440-47-3	mg/L	NA						
Cobalt*	7440-48-4	mg/L	NA				0.00098 J		
Lead*	7439-92-1	mg/L	NA						
Lithium*	7439-93-2	mg/L	NA						
Mercury*	7439-97-6	mg/L	NA						
Molybdenum	7439-98-7	mg/L	NA	0.0024 J			0.004 J	0.0039 J	0.0041 J
Selenium*	7782-49-2	mg/L	4.2						
Thallium*	7440-28-0	mg/L	0.00047						

Notes:

Blank cells - Non-detect value.

* - Constituent was not detected in any samples.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

U - Constituent was not detected.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (c) Value applies to inorganic form of arsenic only.

TABLE 9c COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO AWQC SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

				Labadie Creek							
			USEPA	Cr	Creek Upstream Creek Downstream						
Constituent	CAS	Units	AWQC (b)	LBD-C-4 Total	LBD-C-5 Total	LBD-C-6 Total	LBD-C-1 Total	LBD-C-2 Total	LBD-C-3 Total		
Antimony*	7440-36-0	mg/L	0.64								
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0056	0.0055	0.0061	0.0065	0.0061	0.0066		
Barium	7440-39-3	mg/L	NA	0.124	0.122	0.125	0.161	0.164	0.172		
Beryllium*	7440-41-7	mg/L	NA								
Boron	7440-42-8	mg/L	NA	0.166	0.164	0.167	0.0978	0.0959	0.0999		
Cadmium*	7440-43-9	mg/L	NA								
Calcium	7440-70-2	mg/L	NA	65.6	64.4	65.7	56.1	55.4	57.7		
Chromium	7440-47-3	mg/L	NA				0.0026 J	0.0027 J	0.0031 J		
Cobalt*	7440-48-4	mg/L	NA								
Fluoride*	16984-48-8	mg/L	NA								
Lead	7439-92-1	mg/L	NA	0.00014 J	0.00013 J	0.0002 J	0.0017	0.0018	0.0021		
Mercury*	7439-97-6	mg/L	NA								
Molybdenum	7439-98-7	mg/L	NA	0.0029 J	0.0024 J	0.0024 J	0.0092 J	0.0055 J	0.0046 J		
Selenium*	7782-49-2	mg/L	4.2								
Sulfate	14808-79-8	mg/L	NA	17.8 J	17.6 J	16.6 J	19.4 J	16.3 J	15.3 J		
Thallium*	7440-28-0	mg/L	0.00047								
Total Hardness as CaCO3	471-34-1	mg/L	NA	291	286	291	249	246	256		

Notes:

Blank cells - Non-detect value.

- * Constituent was not detected in any samples.
- -- Constituent not included in this analysis.

AWQC - Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. Accessed November 2014. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.
- (c) Value applies to inorganic form of arsenic only.

TABLE 9d COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO AWQC SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			USEPA	Labadie Creek Creek Upstream				abadie Cree ek Downstre	
Constituent	CAS	Units	AWQC (b)	LBD-C-4 Filtered	LBD-C-5 Filtered	LBD-C-6 Filtered	LBD-C-1 Filtered	LBD-C-2 Filtered	LBD-C-3 Filtered
Antimony*	7440-36-0	mg/L	0.64						
Arsenic	7440-38-2	mg/L	0.00014 (c)	0.0056	0.0051	0.0051	0.0039	0.0039	0.0043
Barium	7440-39-3	mg/L	NA	0.116	0.118	0.12	0.141	0.145	0.146
Beryllium*	7440-41-7	mg/L	NA						
Boron	7440-42-8	mg/L	NA	0.165	0.169	0.17	0.108	0.1	0.0994
Cadmium*	7440-43-9	mg/L	NA						
Calcium (f)	7440-70-2	mg/L	NA						
Chromium*	7440-47-3	mg/L	NA						
Cobalt*	7440-48-4	mg/L	NA						
Fluoride	16984-48-8	mg/L	NA						
Lead	7439-92-1	mg/L	NA				0.0001 J		
Mercury*	7439-97-6	mg/L	NA						
Molybdenum	7439-98-7	mg/L	NA	0.0018 J	0.0022 J	0.002 J	0.0036 J	0.0031 J	0.003 J
Selenium	7782-49-2	mg/L	4.2						
Sulfate	14808-79-8	mg/L	NA						
Thallium*	7440-28-0	mg/L	0.00047						
Total Hardness as CaCO3 (f)	471-34-1	mg/L	NA						

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

-- - Constituent not included in this analysis.

AWQC Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

Detected Concentration > AWQC.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. Accessed November 2014.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

USEPA AWQC Human Health for the Consumption of Organism Only apply to total concentrations.

(c) - Value applies to inorganic form of arsenic only.

TABLE 10a COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			Federa	l Water	r Quality Crite	ria	Laba	die Creek Ups	tream	Labadi	ie Creek Down	stream
Constituent	CAS	Units	USEPA Ad Life AW Freshwater (b)	QC	USEPA Aqua AWQC Fres Chronic	hwater	LBD-C-4BS 5/17/2018	LBD-C-5BS 5/17/2018	LBD-C-6BS 5/17/2018	LBD-C-1BS 5/17/2018	LBD-C-2BS 5/17/2018	LBD-C-3BS 5/17/2018
Antimony*	7440-36-0	mg/L	NA		NA							
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0036	0.0036	0.0032	0.0044	0.0045	0.0045
Barium	7440-39-3	mg/L	NA		NA		0.136	0.136	0.132	0.168	0.17	0.171
Beryllium*	7440-41-7	mg/L	NA		NA							
Boron	7440-42-8	mg/L	NA		NA		0.0736 J	0.0731 J	0.0711 J	0.0955 J	0.0997 J	0.099 J
Cadmium	7440-43-9	mg/L	0.0043	(d)	0.0015	(d)					0.00089 J	
Calcium	7440-70-2	mg/L	NA		NA		48.3	47.8	46.7	53.7	54.3	54.7
Chloride	16887-00-6	mg/L	860		230		28.8	28.6	28.6	29.9	30.1	30
Chromium	7440-47-3	mg/L	3.6	(c,d)	0.17	(c,d)				0.0013 J	0.0013 J	0.0013 J
Cobalt	7440-48-4	mg/L	NA		NA			0.00089 J	0.0011 J	0.0016 J	0.0013 J	0.0016 J
Fluoride	16984-48-8	mg/L	NA		NA		0.24	0.24	0.23	0.27	0.26	0.26
Lead*	7439-92-1	mg/L	0.24	(d)	0.0092	(d)						
Lithium*	7439-93-2	mg/L	NA		NA							
Mercury*	7439-97-6	mg/L	0.0016		0.00091							
Molybdenum	7439-98-7	mg/L	NA		NA		0.002 J	0.0019 J	0.0019 J	0.0034 J	0.0036 J	0.0036 J
Selenium*	7782-49-2	mg/L	NA		3.1							
Sulfate	14808-79-8	mg/L	NA		NA		19	19.1	19.1	26.4	25.4	24.8
Thallium*	7440-28-0	mg/L	NA		NA							
Total Hardness as CaCO3	471-34-1	mg/L	NA		NA		225	222	218	237	240	242
Total Dissolved Solids	TDS	mg/L	NA		NA		309	304	304	350	342	334

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

AWQC - USEPA Ambient Water Quality Criteria.

CAS - Chemical Abstracts Service.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Analyzed/Not Available.

U - Constituent was not detected.

USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

(a) - Surface water samples collected in May 2018. (b) - USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for Labadie Creek of 231 mg/L as CaCO3 used.

COMPARISON OF MAY 2018 LABADIE CREEK SURFACE WATER RESULTS

TO ECOLOGICAL SCREENING LEVELS - DISSOLVED (FILTERED) SAMPLE RESULTS (a)

AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Federal '	Water	Quality Crite	eria	Labadi	ie Creek Up	stream	Labadi	e Creek Down	stream
Constituent	CAS	Units	USEPA Ac Life AW Freshwa Acute (QC ater	USEPA Aq Life AW0 Freshwa Chronic	QC ter	LBD-C- 4BS 5/17/2018	LBD-C- 5BS 5/17/2018	LBD-C- 6BS 5/17/2018	LBD-C-1BS 5/17/2018	LBD-C-2BS 5/17/2018	LBD-C-3BS 5/17/2018
Antimony*	7440-36-0	mg/L	NA		NA							
Arsenic	7440-38-2	mg/L	0.34		0.15		0.003	0.003	0.0016	0.0033	0.0036	0.0037
Barium	7440-39-3	mg/L	NA		NA		0.13	0.121	0.09	0.155	0.156	0.156
Beryllium*	7440-41-7	mg/L	NA		NA							
Boron	7440-42-8	mg/L	NA		NA		0.0723 J	0.0797	0.0478 J	0.0995 J	0.098 J	0.097 J
Cadmium*	7440-43-9	mg/L	0.0039	(d)	0.0013	(d)						
Calcium	7440-70-2	mg/L	NA		NA		51	51	61.7	57.8	57.4	57.6
Chromium*	7440-47-3	mg/L	1.1	(c,d)	0.15	(c,d)						
Cobalt*	7440-48-4	mg/L	NA		NA					0.00098 J		
Lead*	7439-92-1	mg/L	0.16	(d)	0.0062	(d)						
Lithium*	7439-93-2	mg/L	NA		NA							
Mercury*	7439-97-6	mg/L	0.0014		0.00077							
Molybdenum	7439-98-7	mg/L	NA		NA		0.0024 J			0.004 J	0.0039 J	0.0041 J
Selenium*	7782-49-2	mg/L	NA		NA							
Thallium*	7440-28-0	mg/L	NA		NA							

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples. mg/L - milligrams per liter.

AWQC - USEPA Ambient Water Quality Criteria. NA - Not Available.

CAS - Chemical Abstracts Service. U - Constituent was not detected.

J - Estimated value. USEPA - United States Environmental Protection Agency.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in May 2018.
- (b) USEPA National Recommended Water Quality Criteria.

USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for Labadie Creek of 231 mg/L as CaCO3 used.

TABLE 10c COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS - TOTAL (UNFILTERED) SAMPLE RESULTS (a) AMEREN MISSOURI LABADIE ENERGY CENTER FRANKLIN COUNTY, MISSOURI

			Federal Water Quality Criteria		Labadie Creek							
			USEF		USEP		Creek Upstream			Creek Downstream		
Constituent	CAS	Units	Aquatic AWQ Freshw	C	Aquatic AWQ Freshw	С	LBD-C-4 Total	LBD-C-5 Total	LBD-C-6 Total	LBD-C-1 Total	LBD-C-2 Total	LBD-C-3 Total
Antimony*	7440-36-0	mg/L	NA		NA							
Arsenic	7440-38-2	mg/L	0.34		0.15		0.0056	0.0055	0.0061	0.0065	0.0061	0.0066
Barium	7440-39-3	mg/L	NA		NA		0.124	0.122	0.125	0.161	0.164	0.172
Beryllium*	7440-41-7	mg/L	NA		NA							
Boron	7440-42-8	mg/L	NA		NA		0.166	0.164	0.167	0.0978	0.0959	0.0999
Cadmium*	7440-43-9	mg/L	0.0050	(g)	0.0017	(g)						
Calcium (h)	7440-70-2	mg/L	NA		NA		65.6	64.4	65.7	56.1	55.4	57.7
Chromium	7440-47-3	mg/L	4.1	(e,g)	0.19	(e,g)				0.0026 J	0.0027 J	0.0031 J
Cobalt*	7440-48-4	mg/L	NA		NA							
Fluoride*	16984-48-8	mg/L	NA		NA							
Lead	7439-92-1	mg/L	0.29	(g)	0.011	(g)	0.00014 J	0.00013 J	0.0002 J	0.0017	0.0018	0.0021
Mercury*	7439-97-6	mg/L	0.0016		0.00091							
Molybdenum	7439-98-7	mg/L	NA		NA		0.0029 J	0.0024 J	0.0024 J	0.0092 J	0.0055 J	0.0046 J
Selenium*	7782-49-2	mg/L	NA		3.1							
Sulfate	14808-79-8	mg/L	NA		NA		17.8 J	17.6 J	16.6 J	19.4 J	16.3 J	15.3 J
Thallium*	7440-28-0	mg/L	NA		NA							
Total Hardness as CaCO3 (h)	471-34-1	mg/L	NA		NA		291	286	291	249	246	256

Notes:

Blank cells - Non-detect value.

J - Estimated value. mg/L - milligrams per liter.

* Constituent was not detected in any samples.

A Not Assistant

--- Constituent not included in this analysis.

NA - Not Available.

AWQC - USEPA Ambient Water Quality Criteria.

USEPA - United States Environmental Protection Agency.

CAS - Chemical Abstracts Service.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology. http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for Labadie Creek of 270 mg/L as CaCO3 used.

COMPARISON OF OCTOBER 2013 LABADIE CREEK SURFACE WATER RESULTS TO ECOLOGICAL SCREENING LEVELS

- DISSOLVED (FILTERED) SAMPLE RESULTS (a)

AMEREN MISSOURI LABADIE ENERGY CENTER

FRANKLIN COUNTY, MISSOURI

			Federal Water Quality Criteria		l	_abadie Cree	k	Labadie Creek			
			USEPA	USEPA	С	reek Upstrea	ım	Cre	ek Downstre	am	
Constituent	CAS	Units	Aquatic Life AWQC Freshwater	Aquatic Life AWQC Freshwater	LBD-C-4 Filtered	LBD-C-5 Filtered	LBD-C-6 Filtered	LBD-C-1 Filtered	LBD-C-2 Filtered	LBD-C-3 Filtered	
A .:	17440.00.0		Acute (b)	Chronic (b)							
Antimony*	7440-36-0	mg/L	NA	NA						0.0040	
Arsenic	7440-38-2	mg/L	0.34	0.15	0.0056	0.0051	0.0051	0.0039	0.0039	0.0043	
Barium	7440-39-3	mg/L	NA	NA	0.116	0.118	0.12	0.141	0.145	0.146	
Beryllium*	7440-41-7	mg/L	NA	NA	0.405	0.400		0.400			
Boron	7440-42-8	mg/L	NA	NA	0.165	0.169	0.17	0.108	0.1	0.0994	
Cadmium*	7440-43-9	mg/L	0.0045 (d)	0.0015 (d)							
Calcium	7440-70-2	mg/L	NA	NA							
Chromium*	7440-47-3	mg/L	1.3 (c,d)	0.17 (c,d)							
Cobalt*	7440-48-4	mg/L	NA	NA							
Fluoride	16984-48-8	mg/L	NA (I)	NA				0.0004.1			
Lead	7439-92-1	mg/L	0.19 (d)	0.0073 (d)				0.0001 J			
Mercury*	7439-97-6	mg/L	0.0014	0.00077	0.0040.1	0.0000 1	0.000 1	0.0000 1	0.0004	0.000 1	
Molybdenum	7439-98-7	mg/L	NA	NA	0.0018 J	0.0022 J	0.002 J	0.0036 J	0.0031 J	0.003 J	
Selenium	7782-49-2	mg/L	NA	NA							
Sulfate	14808-79-8	mg/L	NA	NA							
Thallium*	7440-28-0	mg/L	NA	NA							
Total Hardness as CaCO3	HARDNESS	mg/L	NA	NA							

Notes:

Blank cells - Non-detect value.

* Constituent was not detected in any samples.

--- Constituent not included in this analysis.

AWQC - USEPA Ambient Water Quality Criteria.

J - Estimated value.

mg/L - milligrams per liter.

NA - Not Available.

USEPA - United States Environmental Protection Agency.

CAS - Chemical Abstracts Service.

Detected Concentration> USEPA Aquatic Life AWQC Chronic.

Detected Concentration> USEPA Aquatic Life AWQC Acute and Chronic.

- (a) Surface water samples collected in October 2013.
- (b) USEPA National Recommended Water Quality Criteria. USEPA Office of Water and Office of Science and Technology.

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm

Total values provided. Values adjusted for site-specific hardness - see note (d).

- (c) Value for trivalent chromium used.
- (d) Hardness dependent value for total metals. Site-specific total recoverable mean hardness value for Labadie Creek of 270 mg/L as CaCO3 used.

TABLE 11
COMPARISON OF BLUFF AREA GROUNDWATER MONITORING RESULTS TO HUMAN HEALTH DRINKING WATER SCREENING LEVELS (a)
LABADIE ENERGY CENTER, FRANKLIN COUNTY, MO
AMEREN MISSOURI

		Boron	Calcium	Chloride	Fluoride	Sulfate	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Mercury	Molybdenum	Selenium	Thallium
Monitoring Well ID (e)	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	MCL (b)	NA	NA	NA	4	NA	0.006	0.01	2	0.004	0.005	0.1	NA	0.015	0.002	NA	0.05	0.002
	SMCL (b)	NA	NA	250	2	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	RSL (c)	4	NA	NA	0.8	NA	0.0078	0.000052	3.8	0.025	0.0092	22	0.006	0.015	0.0057	0.1	0.1	0.0002
Selected Drinkin	_																	
Screening L	evel (d)	4	NA	250	4	250	0.006	0.01	2	0.004	0.005	0.1	0.006	0.015	0.002	0.1	0.05	0.002
	Apr-12			5.8	0.2	13			0.21			0.0029		0.0031				
TGP-A	Mar-14	0.0094	70.9			15.3		0.00087	0.211			0.0034		0.00062		0.002	0.00064	
	Sep-14	0.009	69.4			15.1		0.0011	0.216			0.0036		0.00055	0.000063		0.00062	
DUP-1 (f)	Apr-12			5.7	0.18	14			0.22			0.0034		0.0037				
DUF-1 (I)	Mar-14		71.2			15.4		0.00085	0.214			0.0048		0.0005			0.00062	
	Apr-12			29	0.25	25	0.0026		0.1			0.0025		0.0036				
TGP-B	Mar-14	0.0164	77.6			22.5		0.0021	0.106			0.0029		0.00015		0.0024		
	Sep-14	0.0168	73.8		0.34	23.2		0.00089	0.105			0.0027				0.0021		
DUP-1 (g)	Sep-14	0.0159	72.4			23.7		0.00095	0.102			0.0029			0.000097			
(0)	Apr-12			43	0.16	34			0.15			0.0013		0.0044				
TGP-C	Mar-14	0.0088	79.1			27.8		0.00082	0.177					0.0011			0.00087	
	Sep-14	0.0531	73.9			28.8		0.00088	0.202			0.0022		0.0013			0.0012	
	Mar-14	0.0144	72.0			14.1		0.0000	0.147			0.0017		0.00015		0.002	0.0012	
TGP-D	Sep-14	0.0114	66.4			15.9			0.151					0.00027		****	0.0013	
	Mar-14	0.0465	79.5			21.8		0.0016	0.122					0.00016		0.0022	2.2010	
TGP-E	Sep-14	0.0399	77.2		0.34	23.1		0.0010	0.127			0.0016		0.00010		0.0022		
TGP-F	Sep-14	0.0333	76.2		0.34	25.2		0.0061	0.127			0.0010		0.0036		0.002	0.00072	
TGP-G	Sep-14	0.0063	93.6		0.32	27.7		0.0001	0.114			0.0029		0.0000		0.0032	0.00072	

Notes:

-- Constituent not sampled.

Blank data cells indicate a non-detect value.

HI - Hazard Index.

MCL - Maximum Contaminant Level.

mg/L - Milligrams per liter.

NA - Not available.

RSL - Regional Screening Level.

SMCL - Secondary Maximum Contaminant Level. Value used if no MCL available.

USEPA - United States Environmental Protection Agency.

- (a) Numerical values were obtained from the Ameren Missouri Labadie Energy Center Utility Waste Landfill, Solid Waste Disposal Area, Franklin County, Missouri, Solid Waste Disposal Area, Franklin County, Laboratory Analytical Results for Groundwater Monitoring Samples Collected on April 12-13, 2012, March 12th and 25th, 2014, and September 3rd through October 6th 2014 from Temporary Groundwater Piezometers Installed Near Labadie Plant.
- (b) USEPA 2018 Edition of the Drinking Water Standards and Health Advisories.

https://www.epa.gov/dwstandardsregulations/2018-drinking-water-standards-and-advisory-tables

- (c) USEPA Regional Screening Levels (November 2018). Values for tapwater. HI = 1. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
- (d) Selected Drinking Water Screening Level uses the following hierarchy:

Federal USEPA MCL for Drinking Water.

Federal USEPA SMCL for Drinking Water.

Federal November 2018 USEPA Tapwater RSL.

- (e) Piezometers are screened in bedrock.
- (f) Duplicate sample from TGP-A.
- g) Duplicate sample from TGP-B.

Detected Concentration > Selected Drinking Water Screening Level.

APPENDIX B

What You Need to Know About Molybdenum

WHAT YOU NEED TO KNOW ABOUT MOLYBDENUM

Molybdenum is the one constituent that is present in at least one groundwater sample at each of the four Ameren energy centers in Missouri above the screening level used by the U.S. Environmental Protection Agency (USEPA) under the Coal Combustion Residuals (CCR) Rule. The purpose of this fact sheet is to provide information on molybdenum so that data can be considered in context. There is no public exposure to groundwater at the Ameren energy centers and concentration levels of molybdenum in adjacent surface waters are all well below health-based regulatory standards.

SOURCES OF INFORMATION ON MOLYBDENUM

Molybdenum had been evaluated by regulatory and health agencies in the U.S. As discussed below, molybdenum is an essential nutrient for humans, and the Institute of Medicine of the U.S. National Academy of Sciences (NAS) has provided recommended daily allowances and tolerable upper limits to be used as guidelines for vitamins and supplements and other exposures (NAS, 2001).

The Agency for Toxic Substances and Disease Registry (ATSDR) is a federal public health agency within the U.S. Department of Health and Human Services. The ATSDR Toxicological Profile for Molybdenum (ATSDR, 2017) provides a comprehensive summary and interpretation of available toxicological and epidemiological information on molybdenum and provides information on the naturally occurring levels in our environment and in our diet.

The U.S. Environmental Protection Agency (USEPA) published an oral toxicity value for molybdenum in 1992 (USEPA, 1992); this value serves as the basis for the tapwater screening level for molybdenum of 0.1 milligrams per liter (mg/L) or 100 micrograms per liter (ug/L) that was included in the Phase 1 Part update to the CCR Rule (USEPA, 2018a).

MOLYBDENUM IS NATURALLY OCCURRING AND AN ESSENTIAL NUTRIENT FOR PLANTS AND HUMANS

Molybdenum is a naturally occurring trace element that can be found extensively in nature. Biologically, molybdenum plays an important role as a micronutrient in plants and animals, including humans.

Molybdenum in Our Natural Environment

Molybdenum naturally accumulates in poorly drained soils and soils with high organic content (for example, peat bogs and wetlands). It is also present at high concentrations in "black shales," which are shale deposits with high organic content. The U.S. Geological Survey (USGS, 2013) reports that the average concentration in U.S. soils is approximately 1 milligram per kilogram of soil (mg/kg). USGS (2011) estimates the median concentration of molybdenum in groundwater is 0.001 milligrams per liter (mg/L), with most concentrations below 0.008 mg/L.

Molybdenum in Our Diet

Molybdenum is considered an essential nutrient or trace element for living beings. It is required in several mammalian enzyme systems and is present in most adult multi-vitamins. A deficiency syndrome has only been seen in people with a genetic defect that prevents the synthesis of a specific enzyme for which molybdenum is a cofactor. The deficiency leads to severe neurological damage and early death.

Because it is present in soils, it is also present in our diet. Food derived from above ground plants, such as legumes, leafy vegetables, and cauliflower generally has a relatively higher concentration of molybdenum in comparison to food from tubers or animals. Beans, cereal grains, leafy vegetables, legumes, liver, and milk are reported as the richest sources of molybdenum in the average diet (ATSDR, 2017). The amount of molybdenum in plants varies according to the amount in the soil. The National Academy of Sciences (NAS) has estimated that the average dietary intakes of molybdenum by adult men and women are 0.109 and 0.076 milligrams per day (mg/day), respectively. A study of the dietary intake of adult residents in Denver, Colorado reported a mean molybdenum ingestion rate of 180 μ g/day (range 120–240 μ g/day) (ATSDR, 2017).

Molybdenum for Health

How Much Do You Need - Daily Allowance:

The Institute of Medicine of the NAS sets dietary intake values for essential nutrients. The recommended dietary allowance (RDA) for a nutrient is "the average daily dietary nutrient intake level sufficient to meet the nutrient requirement of nearly all (97 to 98 percent) health individuals" (NAS, 2001). The RDA for molybdenum for adults set by the NAS in 2001 is 0.045 milligram per day (mg/day) and is based on the amount of molybdenum needed to achieve a steady healthy balance in the body for the majority of the population.

How Much is Too Much - Upper Limits:

In addition to the RDA, the NAS also defines a Tolerable Upper Intake Level (UL) for essential nutrients. The UL is "the highest average daily nutrient intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population." Thus, the RDA is a level that is considered to be <u>sufficient</u> for the health of the general population, while intake can be as high as the UL and pose no adverse health effects.

The UL for molybdenum set by the NAS is 2 mg/day. This level is based on an evaluation of the potential toxicity of molybdenum at high levels of intake. The most sensitive effect in the literature is associated with reproductive outcomes in rats, and the study was used to develop an oral toxicity value for humans of 0.03 milligrams of molybdenum ingested per day per kilogram of body weight (mg/kg-day). This value is used with an average adult body weight of 68-70 kg (154 lbs) to set the UL¹.

¹ The oral toxicity value identifies a level of intake in terms of milligrams of constituent per kilogram of body weight per day (mg/kg-day) that is considered to be safe for daily exposure for a lifetime. The oral toxicity value is used to calculate a safe drinking water level as follows: if the oral toxicity value is 0.03 mg/kg-day, and a 70 kg adult that consumes 2 liters of water per day, then the safe drinking water level = $(0.03 \text{ mg/kg-day}) \times (70 \text{ kg}) \div (2 \text{ liters water/day}) = 1.05 \text{ milligrams per liter (mg/L)}$.

USEPA'S ORAL TOXICITY VALUE FOR MOLYBDENUM

USEPA developed a lower oral toxicity value for molybdenum of 0.005 mg/kg-day (USEPA, 1992) based on a 1962 study of a small population (52 exposure subjects) in Armenia that had a high level of molybdenum in their diet. This population had high levels of uric acid and experienced gout. The findings from the Armenian study have not been replicated, and other regulatory bodies such as the NAS and ATSDR have rejected the study due to its many deficiencies. [It is likely that the observance of gout in the Armenian population had some other cause.]

The NAS concluded that there were "serious methodological difficulties with the [Armenian] study" and noted that no other studies in humans or animals have replicated this effect. The NAS toxicity value is 0.03 mg/kg-day, six-fold higher than the USEPA value. Based on the NAS toxicity value and USEPA assumptions (for body weight and drinking water intake) results in a calculated safe drinking water level of 0.6 mg/L or 600 ug/L.

ATSDR noted the study of the Armenian population was not considered suitable for derivation of a chronic-duration oral toxicity value for molybdenum due to deficiencies in the control group size and composition, and a lack of controlling for confounders, such as diet and alcohol, that could affect the results. ATSDR developed an oral toxicity value of 0.008 mg/kg-day, using the same study reproductive outcomes in rats as the NAS, but applying different assumptions, most notably a 3-fold higher uncertainty factor. Based on the ATSDR toxicity value and USEPA assumptions (for body weight and drinking water intake) results in a calculated safe drinking water level of 0.16 mg/L or 160 ug/L.

MOLYBDENUM UNDER THE CCR RULE

When the CCR Rule was published in 2015, groundwater standards were provided only for those Appendix IV constituents that have primary drinking water standards published by the USEPA under the Safe Drinking Water Act – values known as MCLs or maximum contaminant levels. Molybdenum does not have an MCL². In a subsequent 2018 CCR rule-making, USEPA designated a health-based groundwater protection standard for molybdenum of 0.1 mg/L or 100 ug/L. That is the value used to evaluate groundwater at the Ameren facilities. This level is very conservative and could be much higher and still protective of human health, as described above. [Note that in its March 3, 2019 report the Environmental Integrity Project used a screening level for molybdenum of 0.04 mg/L (or 40 ug/L), which is not the level USEPA has required in the CCR Rule.]

However, based on the USEPA toxicity value, the drinking water levels USEPA has developed for molybdenum are:

² USEPA is in the process of gathering information on the occurrence of molybdenum in public drinking water systems. The decision to develop an MCL (which is a multi-year process) is based on occurrence in public drinking water systems, the severity of adverse health effects, whether the constituent is present in public drinking water systems at levels of public health concern, and whether regulation would provide a meaningful opportunity for health risk reduction. No decision has yet been made as to whether molybdenum will be a candidate for the development of a drinking standard. Note that when USEPA included molybdenum for public water supply testing, it cited USEPA 1992, ATSDR 2017, and NAS 2001 as toxicity references. No mention was made of the differences in toxicity studies used or the values developed.

B-3

- 0.1 mg/L The USEPA tapwater value in its Regional Screening Level (RSL) table and the value identified by USEPA for the CCR Rule (USEPA, 2018b). This is the value USEPA uses in the CCR Rule (USEPA, 2018a).
- 0.2 mg/L The USEPA Office of Water value for the Drinking Water Equivalent Level (DWEL), which is a *lifetime exposure* concentration protective of adverse, non-cancer health effects, that assumes all of the exposure to a constituent is from drinking water (USEPA, 2018c).
- 0.04 mg/L The USEPA Office of Water value for the Health Advisory Level (HA), which is based on the DWEL, but using a default assumption that only 20% of intake can come from water (USEPA, 2018c).

Therefore, drinking water concentrations of molybdenum up to 0.2 mg/L to are expected to be **without** adverse health effects. Based on the NAS review, daily exposure to drinking water concentrations of molybdenum up to 0.6 mg/L would be **without** adverse health effects.

WHAT THIS MEANS FOR THE AMEREN ENERGY CENTERS

This information from the NAS has been used to evaluate the levels of molybdenum in groundwater at the Ameren Energy Centers and in nearby surface waters. A total of 930 groundwater and surface water samples were collected from the four energy centers. The concentration levels in approximately 866 samples were below the screening level based on the National Academy of Science Tolerable Upper Intake Level (UL), while 241 are above the GWPS established by USEPA in the CCR Rule.

	Labadie	Meramec	Rush Island	Sioux
Groundwater				
Groundwater				
Number of Samples	208	88	77	244
Molybdenum greater than CCR GWPS of				
0.1 mg/L (a)	81	35	38	77
Molybdenum greater than NAS standard				
	3	1	11	49
of 0.6 mg/L (b)	3	1	11	49
Surface Water				
Surface water				
Number of Samples	67	74	50	80
Molybdenum greater than 0.1 mg/L (a)	0	0	0	0

Notes:

mg/L - milligrams per liter.

- (a) Drinking water-based groundwater protection standard specified in the Coal Combustion Residuals Rule.
- (b) Alternative health-protective drinking water screening level based on the National Academy of Sciences review of molybdenum.

The groundwater results were collected from monitoring wells placed as close as practical to the ash basins' boundaries and provide near-source groundwater monitoring results. The groundwater downgradient of each of the Ameren ash basins is <u>not</u> used as a source of drinking water. Deep bedrock groundwater used as drinking water in the vicinity of Labadie and in the vicinity of Rush Island was sampled and demonstrated no impacts from CCR.

Surface water adjacent to each of the energy centers was sampled and all results for molybdenum in surface water are well below the USEPA drinking water screening level of 0.1 mg/L.

Thus, although there are some results for molybdenum in groundwater that are above the USEPA drinking water screening level, the groundwater at these facilities is not used as a source of drinking water, and molybdenum is not present in any of the adjacent water bodies above the drinking water screening level. These results confirm that molybdenum does not pose a risk to human health or the environment at any of the Ameren facilities.

REFERENCES

ATSDR. 2017. Toxicological Profile for Molybdenum. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=1482&tid=289

NAS. 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Institute of Medicine. National Academy of Sciences. 2001. National Academy Press. Available at: http://www.nap.edu/catalog/10026.html

USEPA. 1992. Chemical Assessment Summary for Molybdenum. Integrated Risk Information System (IRIS). National Center for Environmental Assessment. U.S. Environmental Protection Agency. Available at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?&substance_nmbr=425

USEPA. 2018a. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One). Available at: https://www.federalregister.gov/documents/2018/07/30/2018-16262/hazardous-and-solid-waste-management-system-disposal-of-coal-combustion-residuals-from-electric

USEPA. 2018b. USEPA Regional Screening Levels. U.S. Environmental Protection Agency. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls

USEPA. 2018c. 2018 Edition of the Drinking Water Standards and Health Advisories. March 2018. EPA 822-F-18-001. Office of Water. U.S. Environmental Protection Agency Washington, DC. Available at: https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf

USGS. 2011. Trace Elements National Synthesis Project: Trace Elements and Radon in Groundwater Across the United States, 1992-2003. U.S. Department of the Interior. U.S. Geological Survey (USGS). Scientific Investigations Report 2011-5059. Available at:

https://water.usgs.gov/nawqa/trace/pubs/sir2011-5059/index.html

USGS. 2013. Geochemical and mineralogical data for soils of the conterminous United States: U.S. Geological Survey Data Series 801, 19 p. Available at: http://pubs.usgs.gov/ds/801/

APPENDIX C

Extraction and Transportation Study

ADDENDUM

Meramec, Labadie and Sioux Ash Pond Closure: Extraction and Transportation Assessment

Lochmueller Group applied the methodology from the Extraction and Transportation Study for the Rush Island Energy Center to develop high-level estimates of the costs and timeframes associated with hypothetical CCR excavation processes at the Labadie, Sioux and Meramec Energy Centers. Specifically, the formula used to estimate daily productivity (i.e. number of trucks hauling excavated material offsite) was adapted for use at Labadie, Sioux and Meramec along with site-specific considerations.

Estimates from the Rush Island Study assumed a maximum of 192 truck loads per day over an 8-hour work day (24 per hour), with 155 to 193 days of annual operation. Once loaded, trucks would make multiple roundtrips to the closest available commercial landfill. Such estimates assume that the excavation, staging, and loading process is capable of accommodating a steady stream of trucks loading **every 2.5 minutes** and that such material can be quickly unloaded at the receiving commercial landfill without significant delay. While such productivity rates are undoubtedly optimistic, the resulting estimates nevertheless are useful in capturing the enormity of such projects and are sufficient at a planning-level.

It is important to note that the existing onsite utility waste landfills (UWLs) at Labadie and Sioux were designed and permitted to manage production needs of the energy centers through each facility's retirement date. To facilitate permanent storage, excavated CCR material would need to be transported offsite to a commercial landfill <u>or</u> Ameren Missouri would need to permit and construct new onsite landfills. Given the absence of an existing utility waste landfill at Meramec, onsite disposal options were considered for the Labadie and Sioux locations only.

Each facility presents unique challenges that are likely to impact cost estimates and closure times beyond the scope of this assessment. For example, the regulatory process for construction of an onsite landfill would require multiple levels of approval, including environmental permits, zoning or land use authorization, and potentially a certificate of issuance from the Missouri Public Service Commission. Opposition to such projects may further delay the regulatory approval process such that it would be years *before* construction could commence.¹

411 North 10th Street, Suite 200 St. Louis, Missouri 63101 PHONE: 314.621.3395

¹ Efforts to permit and construct the Labadie UWL commenced in 2008 with the completion of Preliminary Site Investigation (PSI). The landfill was placed in service in 2016 after years of opposition from environmental groups and litigation. See Petition for Writ of Certiorari [to invalidate county landfill ordinance] Franklin County Circ. Ct., 11/23/11, Case # 11AB-C286; Appeal to Franklin County Board of Adjustment, #14-00002, Filed 1/8/14 (of Land Use Administrator 10/10/13 and 12/10/13 Decisions), Denied by BZA 6/24/14; Appealed to Circ. Ct. by Writ of Certiorari, Cause # 14AB-CC00155, 7/24/14; Intervention and Motion to Dismiss in PSC Case EA 2012-0281, Ameren Application to PSC for CCN to operate landfill (PSC overruled Motion to Dismiss on 4/17/13); Administrative Hearing Commission Petition for Review [of MDNR Solid Waste Disposal Construction Permit], Filed 1-30-15, #15-0136, dismissed by AHC 3/5/15. See also Campbell v. County Commission of Franklin County, 453 S.W.3d 762 (Mo. banc 2015).

Based on experience, it would be virtually impossible to sustain productivity at the planning level rate over extended, multi-year timeframe due to a variety of unpredictable factors. Excavation activities could be limited or precluded for several days following weather events. Other potential disruptions could include:

- loading equipment failure
- site restrictions that limit the number of excavation equipment
- traffic congestion on travel route
- truck breakdown
- staffing
- weather conditions
- commercial landfill available capacity in Illinois and Missouri
- landfill unloading equipment failure

In addition, site specific conditions can impact productivity. For example, an elementary school is located along Fine Road between the Meramec Energy Center and Telegraph Road. To accommodate local safety concerns, the hauling company would likely limit trips during the beginning and end of the school day, thereby limiting effective hauling hours to 5-6 per day during the school year.

Route 94 east of the Sioux Energy Center travels beneath multiple narrow, low-clearance railroad overpasses in the West Alton area. An entirely new roadway by-passing West Alton would avoid the railroad entirely, but would require regulatory approvals, land acquisition, and potentially eminent domain. Assumptions were adjusted to account for these impacts, but it is not possible to foresee every challenge and quantify every impact likely to surface.

Scenarios:

The following summarizes the assessment of five scenarios for CCR removal for the Meramec, Labadie and the Sioux Energy Centers. The assessment utilized the same methodology, assumptions, and unit costing information as for Rush Island. The volume of ash, hauling distances, and the anticipated infrastructure upgrades were adjusted for each site.

For each scenario, the total volume of excavated ash, total cost of removal, and closure duration are summarized. The reported volume of ash incorporates a swell factor. The closure duration is measured from the time the decision is made to close the ponds (i.e. removal from service) until such time that the CCR material is fully removed. It was assumed that 5 years of preparation time would be needed in advance of starting an offsite removal operation, whereas an onsite removal operation would require 10 years of preparation time to account for the regulatory process to secure approvals for construction of new onsite landfills.

The five scenarios are as follows:

- 1. Labadie Bottom Ash and Fly Ash Pond CCR Removal to an Offsite Landfill
- 2. Labadie Bottom Ash and Fly Ash Pond CCR Removal to an Onsite Landfill

- 3. Sioux Bottom Ash and Fly Ash Pond CCR Removal to an Offsite Landfill
- 4. Sioux Bottom Ash and Fly Ash Pond CCR Removal to an Onsite Landfill
- 5. Meramec Bottom Ash and Fly Ash Pond CCR Removal to an Offsite Landfill

Scenario 1: Offsite CCR Removal for Labadie

This scenario assumes offsite removal for the Labadie ash pond sites and includes the following:

- Pre-CCR removal preparation (5 years, included on a prorated basis in the Closure Duration for each pond);
- Stabilization, loading, and pond restoration;
- Seasonal impacts from wet and winter weather conditions impeding productivity;
- Hauling to an offsite landfill in Missouri;
- Landfill placement; and
- Loading and transportation infrastructure.

Labadie Energy	Estimated Ash	Estimated Total Removal	Closure Duration
Center	Volume (CY) ²	Cost	(Years)
	17,325,126	\$2,440 M – \$2,930 M	35 plus years

Scenario 2: Onsite CCR Removal for Labadie

This scenario assumes onsite disposal the Labadie ash pond sites and includes the following:

- Pre-CCR removal preparation (10 years, included on a prorated basis in the Closure Duration for each pond);
- Stabilization, loading, and pond restoration;
- Hauling to an onsite landfill located near the existing ponds;
- Seasonal impacts from wet and winter weather conditions impeding productivity;
- Landfill placement; and
- Loading infrastructure.

Labadie Energy	Estimated Ash	Estimated Total Removal	Closure Duration
Center	Volume (CY)	Cost	(Years)
	17,325,126	\$1,270 M - \$1,520 M	40 plus years

²Estimated volumes do not include any dry amendment materials.

Scenario 3: Offsite CCR Removal for Sioux

This scenario assumes offsite removal for the Sioux ash pond sites and includes the following:

- Pre-CCR removal preparation (5 years, included on a prorated basis in the Closure Duration for each pond);
- Stabilization, loading, and pond restoration;
- Hauling to an offsite landfill in Illinois³;
- Seasonal impacts from wet and winter weather conditions impeding productivity;
- Landfill placement; and
- Loading and transportation infrastructure.

Sioux Energy Center	Estimated Ash	Estimated Total Removal	Closure Duration
	Volume (CY)	Cost	(Years)
	6,079,808	\$890 M - \$1,060 M	15 plus years

Scenario 4: Onsite CCR Removal for Sioux

This scenario assumes onsite disposal the Sioux ash pond sites and includes the following:

- Pre-CCR removal preparation (10 years, included on a prorated basis in the Closure Duration for each pond);
- Stabilization, loading, and pond restoration;
- Hauling to an onsite landfill located near the existing ponds;
- Seasonal impacts from wet and winter weather conditions impeding productivity;
- Landfill placement; and
- Loading infrastructure.

Sioux Energy Center	Estimated Ash	Estimated Total Removal	Closure Duration
	Volume (CY)	Cost	(Years)
	6,079,808	\$470 M - \$570 M	20 plus years

Scenario 5: Onsite CCR Removal for Meramec

This scenario assumes offsite removal for the Meramec ash pond sites and includes the following:

• Pre-CCR removal preparation (5 years, included on a prorated basis in the Closure Duration for each pond);

³ Lochmueller did not review local siting requirements but many Illinois counties contain such restrictions.

- Stabilization, loading, and pond restoration;
- Hauling to an offsite landfill in Illinois;
- Seasonal impacts from wet and winter weather conditions impeding productivity;
- Site specific constraints with transportation access and associated limitations;
- Landfill placement; and
- Loading and transportation infrastructure.

Meramec Energy Center	Estimated Ash Volume (CY)	Estimated Total Removal Cost	Closure Duration (Years)
	5,194,923	\$740 M - \$890 M	20 plus years

APRIL 29, 2019

EXTRACTION & TRANSPORTATION STUDY: Rush Island Ash Pond Closure Assessment

Rush Island Site

Jefferson County, Missouri

Prepared for:

AMEREN 1901 Chouteau Avenue St. Louis, Missouri 63103

Prepared by:

314.621.3222

Lochmueller Group
411 N. 10th Street
Suite 200
St. Louis, MO 63101
314.621.3395

Table of Contents

Introduction	2
Extraction & Stabilization	3
Description of Method	3
Dry Extraction:	3
Partially Wet Extraction:	3
Fully Submerged Extraction:	3
Site Restoration:	4
Extraction and Stabilization Impacts	5
Safety	5
Accidents	5
Exposure	5
Environment	5
Floodplain	5
River Embankment	5
Emissions	5
Fugitive Ash Particulate	5
Capital Projects	5
Onsite Access Roads	5
Geotube Staging Areas	6
Water Treatment Facilities	6
Loading Areas	θ
Restoration of Former Ash Ponds	6
Transportation & Disposal	7
Modal Options (Truck, Rail, Barge)	
Truck Hauling	
Landfill Options	8
Transportation Route	g
Transportation Impacts	10
Traffic Flow	10
Safety & Environment	11
Pavement	11
Conclusion	12

Introduction

Lochmueller Group completed the following planning-level assessment of the costs and logistics associated with extracting, stabilizing, and transporting coal combustion residuals (CCR) from the existing ash pond system at the Rush Island Power Generation Center to existing offsite, commercially available landfill facilities. The Rush Island site is located along the Mississippi River in Jefferson County, Missouri approximately nine (9) miles southeast of Festus, Missouri. The purpose of this assessment is to describe the methods, determine the impacts, and quantify the order-of-magnitude costs associated with removing and transporting all CCR from its current disposal location at the Rush Island site to a private landfill for permanent storage.

Extraction & Stabilization

Description of Method

Extraction and stabilization of the CCR material from the CCR unit at Rush Island Energy Center is complicated due to its depth and location. In addition, the CCR unit contains both Class C and F fly ash that complicates excavation methods. CCR material from the unit would need to be excavated at depths of up to 100 feet, dewatered, dried and conditioned, before being and loaded into trucks and transported offsite.

Removal of the CCR material would require multiple phases including dry extraction, partially wet extraction and fully submerged extraction. The various phases are described below:

Dry Extraction:

This phase includes the handling and removal of the existing CCR material from the current surface elevation down to the groundwater elevation (approximately 18' below the ground surface (BGS) elevation) (Geotechnical Investigation and Report, prepared by CEC and dated December 20, 2011). Generally, it is assumed that this material can be direct loaded and transported without additional drying or conditioning procedures (moisture content between approximately 25% and 35%). The work associated with this phase includes the extraction, on-site transportation to Staging/Loading Areas, storage, and loading onto transportation for off-site removal. Standard earth-moving equipment and procedures would be utilized including dozers, loaders, and excavators. In general, dozers would be used to excavate and move the CCR material into piles and loaders would be used to load the CCR material into the waiting trucks for transport off-site. Excavators would be used in a support role to dig in areas where dozers are not efficient. Sub-areas of the pond area would need to be established to facilitate extraction operations. The general size of these sub-areas, laterally and vertically, will be determined based on on-site conditions as the operation progresses and the CCR material is removed.

Partially Wet Extraction:

This phase includes the handling and removal of the existing CCR material from the groundwater elevation to a point in which hydraulic excavation is feasible (18' below ground surface to 28' below ground surface). This material is assumed to be in acceptable condition for loading and transportation with no additional drying and conditioning after the dewatering procedure described below is completed.

Dewatering of this material would involve excavation of channels to promote material drying prior to excavation and transportation. Water would be diverted from excavated depressions utilizing pumps and piping systems to transport the water away from the material excavation area. After sufficient dewatering and drying time, the CCR materials would be removed using the same means as described for dry excavation.

Fully Submerged Extraction:

CCR materials located further down in the pond (28' below ground surface to 100' below ground surface) may be saturated and would require drying and conditioning prior to off-site transport. Such materials would need to be extracted via hydraulic dredging methods. The complexities and potential costs associated with such dredging efforts are significantly higher per unit volume than the "Dry Extraction" and "Partially Wet Extraction" phases. In fact, successful pond closures at the depths

required for the Rush Island site could were not discovered. Removal operations for CCR ponds with depths up to 50 feet were found.

This method employs equipment that removes the CCR material directly from the bottom of the CCR unit and pumps the "slurry" through a piping system to "geotubes" located in nearby drying areas. Geotubes are a geotextile filtration "bag" manufactured by sewing together multiple sheets of geotextiles using polyester or polypropylene. As the dredged water enters the geotubes, the geotextile captures the CCR materials as the water drains. Chemical addition during the pumping and piping operation using coagulants and flocculants will be necessary to aid in the dewatering process. The specific makeup of CCR materials are site specific. Therefore, selection of the most effective and efficient coagulants and flocculants will require bench testing. Maintenance of the dredging equipment, piping system, drying areas, settling ponds, and temporary roads will be necessary to facilitate the operation.

Significantly large drying areas will be required to accommodate the multi-week week drying procedure. After dewatering is complete, the geotubes are opened and the CCR material is loaded onto transportation for off-site removal. The transportation of material for off-site removal was the assumed limiting factor for the overall CCR disposal process flow based on the analysis performed in this study. However, extended, unforeseen weather conditions can contribute to additional lost working time due to icy conditions, mechanical system freeze-ups, or flooding.

Site Restoration:

This phase includes the final restoration of the site. This would include removal of all temporary access roads and residual ash in project area. Backfilling would likely need to occur for at least some volume of the remaining pond in conjunction with excavation activities to minimize infiltration from the Mississippi River. The closest source of backfill material would be sand dredged from the Mississippi River. Stabilization of the site with vegetative practices would be required for erosion control. The river banks and the remaining embankment along the river would require additional analysis and appropriate stabilization, but may include a combination of vegetation, large rocks or manufactured concrete products.

Extraction and Stabilization Impacts

Safety

Accidents

Workforce safety during the operation is a significant risk factor. With several unit processes operating with heavy machinery, proper safety planning is important. Accidents can be minimized during operations, but the planning and implementation of a safety plan will have significant costs associated with the effort.

Exposure

There is not only immediate physical injury risks, but there is also exposure risk to the people working on the site. Proper safety equipment will be necessary to limit exposure to potentially harmful substances in the CCR material removal process such as flocculants and coagulant used for the dewatering process.

Environment

Floodplain

The project area is currently shown within the 100 year floodplain for both the current and pending FIRM maps. The potential for the area to experience flooding during excavation activities creates additional risk to the extraction and stabilization operations.

River Embankment

The existing ash ponds are adjacent to the Mississippi River. There is a strip of land that separates these surface water bodies and serves and an embankment that separates the pond from the river. Proper excavation techniques and monitoring will need to be employed to ensure the land between the two surface water bodies remains stable during excavation and dredging activities. After dredging activities are complete, the embankment will require analysis to confirm stability. Removal of the embankment and/or significant re-stabilization may be necessary for the restoration of the site.

Emissions

The heavy equipment used during the extraction and stabilization phase of the project includes dozers, loaders, excavators, hydraulic dredges, and onsite hauling trucks. These types of equipment typically utilize diesel fuel and would generate emissions during operations. These emissions are in addition to the emissions discussed in the transportation impacts section of this assessment.

Fugitive Ash Particulate

As the CCR material is being extracted and stabilized, fugitive ash particulate will be created and would need to be managed through an ash management plan.

Capital Projects

Onsite Access Roads

The onsite access road utilized for the offsite hauling trucks is discussed in the transportation section of this assessment. The construction of temporary on-site hauling roads will be required throughout the extraction and stabilization process. These haul roads will need to be modified frequently in order to provide efficient transportation of the CCR to the stabilization and loading areas and to maintain dust control.

Geotube Staging Areas

Geotube staging areas will need to be constructed within the project area that are relatively flat to allow for proper dewatering of the CCR. These staging areas will be temporary and will need to be moved throughout the closure process as CCR is removed during different phases of the operation. Filtrate from the geotubes would be directed back to the settling ponds for treatment.

Water Treatment Facilities

The existing ponds could be utilized throughout the CCR removal process for settling any remaining solids from the filtrate from the drying process. There may be a need for the construction of new settling ponds toward the end of the process to fully remove CCR from the existing ponds. The filtrate will likely contain suspended solids and some form of treatment or settling may need to be evaluated depending on the final characteristics of the filtrate.

Loading Areas

Once the CCR is stabilized, the material may require some additional layout and loading area to ensure the material is dry enough for offsite hauling and ultimate placement in a landfill. The loading areas will need to be constructed as appropriate for the CCR removal areas that are active. The loading areas will require the construction of scales for measuring the weight of trucks and truck washing facilities to wash down tires of residual ash material.

Restoration of Former Ash Ponds

The post-CCR-removal condition of the ponds will be dependent on the final planned use of the area. Some options may include backfilling, removing embankment, creating or restoring habitat, etc. Achieving the desired future use may include utilizing the soil material that would remain between the pond and the river to backfill some of the remaining pond area. Sand backfill material could also be dredged from the Mississippi river for additional backfill material. Overall stabilization of the site would be required and would include vegetative, natural rock, and manufactured products to meet regulatory requirements.

Transportation & Disposal

This section addresses the transportation of CCR material from the site and its permanent disposal at a private landfill.

Modal Options (Truck, Rail, Barge)

The Rush Island site is located along the Mississippi River. Additionally, a BNSF rail line runs adjacent to the site. Therefore, the ability to haul CCR by barge and rail from Rush Island may be possible. However, significant infrastructure improvements would be required at the Rush Island site to provide ash loading capabilities for these modes.

The preferred landfill locations are all located within 80 miles of Rush Island. None of the sites have direct water access. Therefore, any CCR transported by barge from Rush Island would need to be transferred from barge to truck to reach the landfill destinations. The inefficiency of this transfer would render barge transportation considerably more costly than truck hauling. Moreover, most of the landfill sites are located further inland (east or west) from Rush Island such that north-south travel along the Mississippi River would not be beneficial.

With regards to rail, none of the preferred landfill sites have direct rail access. Several sites are located adjacent to rail corridors but spurs would need to be constructed to facilitate direct landfill access and allow for the temporary storage and unloading of rail cars. Additionally, three of the four preferred landfill sites are located in Illinois, which would require trains to travel through the congested St. Louis rail network to cross the Mississippi River. Rail is most efficient when transporting bulk materials over long distances. Given the relatively short travel distance to each landfill site, rail would not be cost-competitive with truck hauling.

This assessment assumed truck hauling to be the most cost-effective and feasible mode of transport. All subsequent analyses reflect truck hauling.

Truck Hauling

To determine a timeframe for extraction and removal of all CCR from its current, impounded location, the following was assumed:

- Truck hauling via 40-foot end load dump trucks loaded via conventional equipment each trailer has a payload capacity of 25 tons based on a typical 80,000 lb. gross loaded maximum;
- 8-hour daily operation and a range of 155 to 193 days of annual operation (accounting for weekends, holidays, and time lost due to weather and imperfect execution);
- Loading operations on the Rush Island site occur adjacent to the impoundment and on the south portion of the site; and
- A maximum daily haul rate of 5,000 tons.

The resulting transportation haul assumptions are summarized in **Table 1**.

Table 1: Transportation Haul Summary

Total Tons of CCR Removed	Annual Tons of CCR Removed	Closure Duration*
21.6 million	742,772 to 928,465	28-34 Years

^{*}Measured from the decision to begin extraction until fully removed

To accommodate the volume of truck traffic identified in **Table 1**, roadways internal to the Rush Island site would need to be improved. Specifically, a heavy-duty concrete roadway would need to be constructed along the western perimeter of the site extending from Big Hollow Road south to the ash pond area. Multiple at-grade railroad crossings with the site's rail spur would be required.

In the vicinity of the pond area, staging would need to be provided to accommodate several trucks in queue for multiple loading stations. Hence, a large loading station would need to be constructed. Once loaded, trucks would need to proceed to a washout area and scaled to verify the truck is loaded properly. A quick route back to the loading pad from the scale area would be needed for any overweight trucks.

Landfill Options

Four preferred landfills were identified as potential destinations for the CCR removed from the Rush Island site as shown in **Table 2**. Landfill disposal costs supplied by Ameren are similar across the four locations. With costs paid to the landfill being essentially equal, transportation costs would drive the landfill location decision. Assumed haul rates per ton to each landfill location were also supplied by Ameren. The lowest cost haul rate would be to the Progressive Waste site in Richwoods, which is also significantly closer to Rush Island than the other sites. Therefore, this assessment prioritized CCR disposal at the Progressive Waste landfill.

Table 2: Preferred Landfill Locations

Table 211 Teleffed Editatil Educations							
Landfill Site	Address	Distance to Site	Travel Time to				
		(mi)	Site (min)				
Progressive Waste	12581 State Hwy H, Richwoods, MO	34.7	44				
Republic Services	4601 Cahokia Road, Roxana, IL	67.3	67				
Waste Management	10400 Hillstown Road, Marissa, IL	73.4	82				
Perry Ridge	6305 Sacred Heart Road, DuQuoin, IL	79.8	97				

Capacity calculations were performed to determine the total space available for CCR disposal in aggregate. The annual disposal amount currently received by the landfill was assumed to remain constant over time and the incremental annual disposal amount due to the Rush Island CCR was added. Based on the capacity of the Progressive Waste site, at the combined disposal volume, it was estimated that the Progressive Waste landfill would become full upon receiving approximately 80 percent of the total CCR from Rush Island.

It was also assumed that the Progressive Waste site could feasibly accept the maximum daily load of trucks (192) and that Progressive Waste would be willing to receive the maximum amount of CCR possible and dedicate the necessary space on site for monofill construction to isolate the CCR material from other waste on site.

Given these assumptions, the calculations indicate that a second landfill site with available capacity would need to receive the final 20 percent of Rush Island CCR material once Progressive Waste reaches capacity. However, for purposes of the subsequent routing and transportation evaluations, it was assumed that the entire Rush Island CCR volume would be disposed at Progressive Waste.

Transportation Route

Many factors were considered when establishing a preferred route suitable for the removal of the CCR from the Rush Island site to the Progressive Waste landfill, including roadway functional classification and the available connectivity between the two sites using the existing roadway network. The selected route is approximately 36.5 miles long and utilizes the following roadways:

- Begin at the Rush Island site on Big Hollow Road
- Johnson Road west
- Danby Road west
- Highway 61 south
- Highway TT west
- Interstate 55 north
- Highway 67 south
- MO-110 west
- MO-21 south
- Highway H west
- End off Highway H at Progressive Waste

This route prioritizes roadways with the highest functional classifications along a reasonably direct line of travel. While a shorter route may be possible, it would rely upon roadways less suitable for truck traffic and therefore was not considered. The selected route emphasizes major numbered state routes, with the exception of leaving the Rush Island site (via Big Hollow Road, Johnson Road, and Danby Road) and accessing Progressive Waste (via Highway H).

The egress route from the Rush Island site utilizes Johnson Road and Danby Road instead of remaining on Big Hollow Road to Drury Road. Johnson Road/Danby Road is the designated route for truck traffic in and out of the Rush Island site. This route also promotes use of the half diamond interchange on Interstate 55 at Route TT, which was constructed approximately 10 years ago for purposes of serving truck traffic to/from the nearby Holcim Cement Plant.

Transportation Impacts

The following transportation impacts would be anticipated as a result of the hauling operation.

Traffic Flow

The selected route between Rush Island and Progressive Waste was evaluated in terms of its ability to accommodate the additional truck traffic, including both loaded and unloaded trucks. Overall, the truck volume distributed over the course of the day would not be expected to generate significant traffic flow impacts. The route emphasizes major roadways, which would be capable of handling the additional traffic. In fact, no improvements were assumed for Interstate 55 or Highway 67.

That said, the following transportation improvements would be recommended to mitigate anticipated impacts of the additional truck traffic at select locations:

- Big Hollow Road, Johnson Road, and Danby Road, which connect the Rush Island site with Highway 61, are not suitable for the volume of truck traffic anticipated. These roadways typically have 11-foot lanes and no shoulders. The horizontal and vertical geometry is substandard in places. The existing asphalt pavement would not likely withstand the effects of heavy truck traffic. It is recommended that this corridor be upgraded to provide an appropriate truck route between Rush Island and Highway 61. The assumed improvements consist of heavy-duty concrete pavement and alignment corrections along the existing roadway.
- The intersection of Danby Road with Highway 61 should be improved to include a dedicated northbound right-turn lane on Highway 61 and enlarged right-turn radius. This turn lane would serve trucks en route to Rush Island from Interstate 55. This intersection would be expected to remain unsignalized.
- The intersection of Route TT with Highway 61 should be improved to include a dedicated southbound right-turn lane on Highway 61 and enlarged right-turn radius. This turn lane would serve trucks en route to Progressive Waste. This intersection would be expected to remain unsignalized.
- The intersection of Highway 21 and Highway 110 was recently realigned and upgraded to current standards, so it should be well-equipped to serve truck turning maneuvers. However, the intersection remains unsignalized. Installation of a signal would be recommended in order to safely and efficiently serve trucks turning from westbound Highway 110 to southbound Highway 21 en route to Progressive Waste.
- The intersection of Highway 21 with Route H is signalized and currently includes a dedicated southbound right-turn lane and dedicated eastbound left-turn lane to serve truck turning movements along the selected route. It is recommended that the eastbound left-turn lane be extended to provide additional storage capacity. The existing turn lane is approximately 75 feet in length, which would accommodate only a single truck and possibly one additional vehicle.
- Route H is a low-volume and narrow two-lane highway with lane widths of approximately 10 feet, low shoulders, and substandard alignment in select areas. While upgrades to this corridor would be beneficial, given the length of the route, significant upgrades for purposes of the hauling operation would likely be deemed cost prohibitive.

Safety & Environment

The safety implications of the truck hauling operation were evaluated using information provided in the Highway Safety Manual (HSM), published by the American Association of State Highway and Transportation Officials (AASHTO). The HSM relates traffic volumes and roadway character to crash expectancy. Changes in volumes would then cause an increase or decrease in the crash expectancy. It is anticipated that the additional truck traffic would result in an increase of 6 crashes total on an annual basis along the entirety of the haul route, as follows:

- Net increase of 2 Severe (Fatal or Injury) Crashes per year
- Net increase of 4 PDO (Property Damage Only) Cashes per year

Additional environmental costs would also be incurred as a result of the hauling operation. In total, transportation safety and environmental costs are estimated to be approximately \$490 million to \$611 million over the duration of the hauling operation. These costs would not be borne directly by Ameren but instead would be incurred by the general population.

Pavement

The additional truck volume would depreciate the pavement design life and accelerate pavement deterioration along the selected route. To compensate for the increased wear, pavement mill and overlay were assumed at 5-year increments along all segments of the route, with the exception of Interstate 55 (which as an interstate should be build to withstand truck traffic) and the upgraded access route to the Rush Island site (which would be reconstructed with heavy duty concrete).

¹ According to the Environmental Protection Agency's (EPA) publication on National Average In-Use Emissions from Heavy-Duty Trucks, semi-tractor trailer rigs are responsible for emitting 12.5 grams of pollutants per mile into the air. The economic cost attributable to truck emissions using EPA's methodology was estimated to be \$434M. This accounts for increased healthcare costs, lost productivity, welfare costs, environmental remediation, etc.

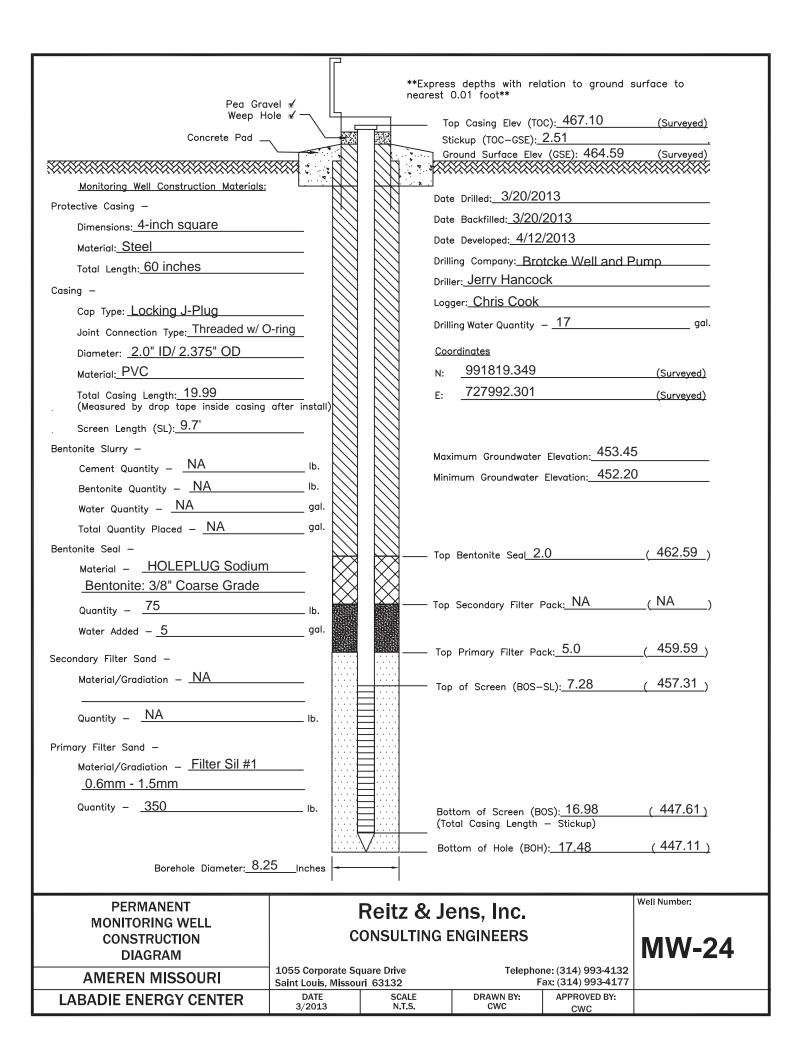
Conclusion

Lochmueller Group completed the preceding planning-level assessment of the methods and impacts associated with extracting, stabilizing, and transporting CCR from the existing Rush Island Power Generation Center. The purpose of this assessment was to determine the impacts and quantify the order-of-magnitude costs associate with completely removing all CCR from the Rush Island site and transporting it to a private landfill for permanent storage. The information contained herein is provided at a planning-level.

This study assumed that 12,725,000 cubic yards of coal combustion residuals would ultimately need to be removed from the Rush Island site. This would equate to approximately 21,650,000 tons of material to transport. This transport weight was calculated by multiplying the in place cubic yards by a swell factor to account for the uncompacted volume after excavation. The weight of the uncompacted unit volume was established from geotechnical testing data that provided the pounds per cubic foot and the percent moisture content. Based on a range of operating days per calendar year, it would take from 28 to 34 years to extract all material from the site.

Restoration of the site would include backfilling and stabilization with vegetative and structural practices. Restoration costs could be significant in that the resulting 70 - 100 foot depression may need to be backfilled via a dredging operation within the Mississippi River.

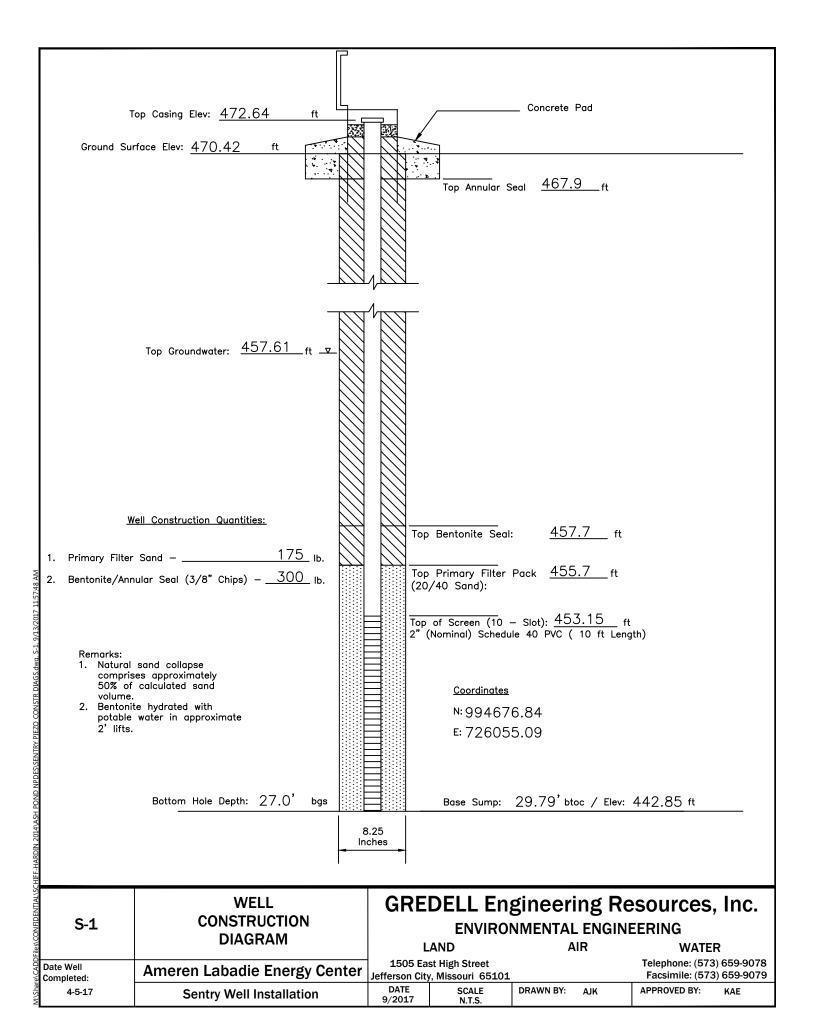
The total cost to extract, stabilize, transport, and dispose of the CCR material is summarized below in 2019 dollars. The total cost to Ameren could range from \$1.9 to \$2.1 Billion, depending upon the total period of removal operations. This includes transportation infrastructure upgrades both internal and external to the Rush Island site as discussed.

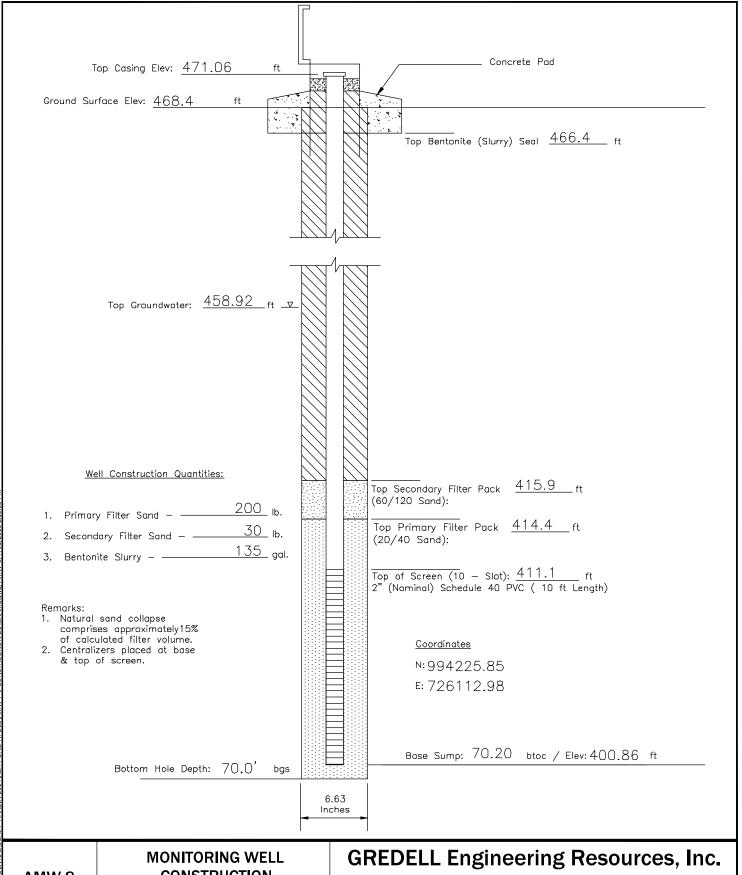

Extraction of CCR and Transport to Offsite Landfill						
Ameren Project Costs						
Extraction, Stabilization, Loading, and Restoration	\$773-891 Million					
Hauling	\$372-375 Million					
Landfill Placement Costs	\$691-757 Million					
Transportation Infrastructure (on and off-site)	\$66-77 Million					
Project Cost Total	\$1.9-\$2.1 Billion					

Costs in 2019 Dollars

January 31, 2020 Project No. 153-140601

APPENDIX B


Well Construction Diagrams



	r				
			ss depths with rel 0.01 foot**	lation to ground :	surface to
Pea Gra Weep Ho				<i>1</i> 72 15	
· ·			op Casing Elev (TC		(Surveyed)
Concrete Pad			tickup (TOC-GSE):_	/ (GSE): 469.39	(Surveyed)
	× :	, , , , , , , , , , , , , , , , , , , 			*****
Monitoring Well Construction Materials:			e Drilled: 3/5-6/20	01 <i>4</i>	
Protective Casing —		1 1/ 1/1			
Dimensions: 4-inch square		1 1//1	e Backfilled: 3/6/2		
_{Material:} Steel	— <i>[[]</i>	1 1//1	e Developed: 3/11/		
Total Length: 60-inches		1 1/1		tcke Well and P	итр
Casing —		1 // /	_{ler:} Sam Tipp		
Cap Type: Locking U-Plug		1 ///	_{iger:} Daniel L. Bi		
Joint Connection Type: threaded w/ C	o-ring	Dri	ling Water Quantity		950 gal.
Diameter: 2" ID			<u>ordinates</u>		
Material: PVC Sch 40		N:	995742		(Surveyed)
Total Casing Length: 80.30		F:	727409		(Surveyed)
(Measured by drop tape inside casing	after install)				(64, 10, 104)
Screen Length (SL): 10 ft (9.7 ft actu	ıal)				
Bentonite Slurry -		Ma Ma	kimum Groundwater	Elevation: 449.89)
Cement Quantity — <u>N/A</u>	N N N	1 ///		Elevation: 449.76	
Bentonite Quantity — <u>N/A</u>			mam ordanawater	Liovation.	
Water Quantity — <u>N/A</u>	gal.				
Total Quantity Placed — <u>N/A</u>	gal.				
Bentonite Seal —		Тој	Bentonite Sea <u>l 2.</u>	50	_(466.89_ ₎
Material - Hole Plug Sodium	$$ \otimes				
Bentonite 3/8" 50# bags	 🚫			NΔ	(NA)
Quantity —	1200 _{lb.}	Top	Secondary Filter	_{Pack:} NA	<u>(IVA</u>)
Water Added —	5_ gal.				
Secondary Filter Sand -		То	o Primary Filter Po	_{ick:} 65.0	<u>(404.39</u>)
Material/Gradiation - N/A		_		67.24	(402.05)
		To	p of Screen (BOS-	-SL): <u>67.34</u>	(402.05)
Quantity — <u>N/A</u>	lb.				
Primary Filter Sand — Material/Gradiation — FilterSil #1					
quartz sand 0.6 to 1.5 mm 50# l	nag ·····				
	100			77.54	004.05
Quantity —	+00 lb. · · · · ·	Bo (To	ttom of Screen (B otal Casing Length	90S): <u>//.54</u> - Stickup)	(391.85)
		\ 	ottom of Hole (BOI		(390.89)
Borehole Diameter: 9.5	/ 6 Inches -		ottorii oi noie (BOF	1)	(000.00)
borenole Diameter:	niches	-			
PERMANENT		Reitz & J	one Inc		Well Number:
MONITORING WELL			•		
CONSTRUCTION		ONSULTING	ENGINEERS		MW-33D
DIAGRAM	1055 Corporate S	quare Drive	Telepho	ne: (314) 993-4132	
AMEREN MISSOURI	Saint Louis, Misso	uri 63132	F	ax: (314) 993-4177	
LABADIE ENERGY CENTER	DATE 3/2014	SCALE N.T.S.	DRAWN BY: DLB	APPROVED BY: JLF	

	Γ				
			s depths with rel 0.01 foot**	lation to ground s	surface to
Pea Gra Weep Ho				470.40	
·	- \ L		p Casing Elev (TC	_{0C):} 470.19	(Surveyed)
Concrete Pad			ickup (TOC-GSE):_	2.79 II. / (GSE): 467.40	(Surveyed)
***************************************				/ (<u>03</u> _):	
Monitoring Well Construction Materials:	L		2/20 21	/2014	
Protective Casing —		VI 17.X1	Drilled: 2/20-21		
Dimensions: 4-inch square		1 [/]		25/2014	
_{Material:} Steel		/ / / / / / / / / / / / / / / / / / /	e Developed: 3/10		
Total Length: 60-inches		1 K/V		tcke Well and P	ump
Casing —		<i>Y </i>	_{er:} Sam Tripp		
Cap Type: Locking U-Plug		Log	_{ger:} Daniel L.Bi	nz, R.G.	
Joint Connection Type: threaded w/ C	p-ring	Drill	ing Water Quantity		1355 gal.
Diameter: 2" ID			ordinates		
Material: PVC Sch 40	1//) /// [005561		(6 1)
	— <i> </i>	N:			
Total Casing Length: 78.9 (Measured by drop tape inside casing	after install)	E:	728820		(Surveyed)
Screen Length (SL): 10 ft (9.7 ft actu					
Bentonite Slurry -				454.00	
Cement Quantity - N/A	ıb.	<i>N K/N</i>		Elevation: 451.30	
Bentonite Quantity - N/A		Mini	mum Groundwater	Elevation: 450.17	/
Water Quantity - N/A	1/ /				
Total Quantity Placed - N/A	1//				
Bentonite Seal –			0	00	405.40
Material – Hole Plug Sodium	\searrow	→ Top	Bentonite Seal 2.	.00	<u>(465.40</u>)
Bentonite 3/8" 50# bags	— X				
	975 _{lb.}	Тор	Secondary Filter	Pack: NA	(NA)
Quantity =	1D. 5 gal.		•		
Water Added -	gui.			. 62.8	(404.60)
Secondary Filter Sand —		· · · · · · - · · · lop	Primary Filter Po	ick: 02.0	(404.00)
Material/Gradiation — N/A		To.	of Screen (BOS-	-SL): 65.91	(401.49)
		·=:::: '°'	0. 00.00 (200	<u> </u>	/
Quantity — <u>N/A</u>	lb.				
Primary Filter Sand —					
Material/Gradiation - FilterSil #1		· = ·::::			
quartz sand 0.6 to 1.5 mm 50# k	—— oag ∵∵				
	350 _{lb.}			76 11	201 20
	IB•	Bo·	tom of Screen (B tal Casing Length	0S): <u>70.11</u> - Stickup)	(391.29)
		· 	tom of Hole (BOH		(385.40)
Borehole Diameter: 9.5	/ 6 -	Bo	TOIL OF HOSE (BO)	17	(555.10)
Borenole Diameter:_0.0	inches -				
PERMANENT		Doitz 9. L	ne les		Well Number:
MONITORING WELL	Reitz & Jens, Inc.				
CONSTRUCTION	'	CONSULTING I	NGINEERS		MW-34D
DIAGRAM	1055 Corporate Square Drive Telephone: (314) 993-4132				
AMEREN MISSOURI	Saint Louis, Misse	ouri 63132	F	ax: (314) 993-4177	
LABADIE ENERGY CENTER	DATE 3/2014	SCALE N.T.S.	DRAWN BY: DLB	APPROVED BY: JLF	

	r				
			s depths with rel 0.01 foot**	lation to ground s	surface to
Pea Gra Weep Ho	vel 🛛 📗			100.50	
		To	p Casing Elev (TO	OC): 468.59	(Surveyed)
Concrete Pad			ickup (TOC-GSE):_		· · · · · · · · · · · · · · · · · · ·
			ound Surface Elev	/ (GSE): 465.88	(Surveyed)
Monitoring Well Construction Materials:	****				**************************************
Protective Casing -		Date	Drilled: 3/7-8/20	014	
Dimensions: 4-inch square		Date	Backfilled: 3/8/2	014	
Material: Steel		Date	Developed: 3/10)/2014	
Total Length: 60-inches		Drill	ing Company: Bro	tcke Well and P	ump
•		Drill	_{er:} Sam Tripp/J	erry Hardcourt	
Casing —		Log	_{ger:} Daniel L. Bi	nz, R.G.	
Cap Type: Locking U-Plug		Drill	ina Water Quantity	_	550 gal.
Joint Connection Type: threaded w/ C					
Diameter: 2" ID	1 \ \		ordinates		
Material: PVC Sch 40	— N	N:	992693		(Surveyed)
Total Casing Length: 80.3 (Measured by drop tape inside casing	after install)	E:	727536		(Surveyed)
Screen Length (SL): 10 ft (9.7 ft actu					
Bentonite Slurry -				450.00	
Cement Quantity - N/A	lb.	$N = N \times N$		Elevation: 450.88	
Bentonite Quantity – N/A	I/ /	Mini	mum Groundwater	Elevation: 450.42	2
Water Quantity – N/A	1/ /				
Total Quantity Placed - N/A					
Bentonite Seal -			0	00	400.00
Material – Hole Plug Sodium	\triangleright	Top	Bentonite Seal 2.	.00	<u>(463.88</u>)
Bentonite 3/8" 50# bags	— ×				
	1075 _{lb.}	— Тор	Secondary Filter	_{Pack:} NA	<u>(NA)</u>
Water Added —	25 gal.				
		Тор	Primary Filter Po	_{ick:} 62.59	(403.29)
Secondary Filter Sand — Material/Gradiation — N/A					,
material/Gradiation — 1471		Тор	of Screen (BOS-	- _{SL):} 67.39	(398.49)
Quantity - N/A					
Primary Filter Sand —					
Material/Gradiation - FilterSil #1 quartz sand 0.6 to 1.5 mm 50# k	220				
	200				
Quantity —	1b	Bot (To	tom of Screen (B tal Casing Length	30S): 77.59	(388.29)
		· 	ttom of Hole (BOH		(385.49)
Borehole Diameter <u>: </u> 6-9	.5/6	Bo	ttom of Hole (BUF	1):	(000.10)
Borenole Diameter:	inches				
PERMANENT		Reitz & Je	ane Inc		Well Number:
MONITORING WELL			•		
CONSTRUCTION		CONSULTING E	NGINEERS		MW-35D
DIAGRAM	1055 Corporate Square Drive Telephone: (314) 993-4132				
AMEREN MISSOURI	Saint Louis, Miss	ouri 63132		Fax: (314) 993-4177 APPROVED BY:	
LABADIE ENERGY CENTER	3/2014	SCALE N.T.S.	DRAWN BY: DLB	JLF	

CONFIDENTI	AMW-8	CONSTRUCTION	ENVIRONMENTAL ENGINEERING					
)Files/(DIAGRAM	_	AND	AIR	- ·	/ATER	
()	Date Well Installed:	Ameren Labadie Energy Center		st High Street /, Missouri 65101		Telephone	e: (573) 659 - 9078	
M:\Shar	6-13-18	ASH POND NPDES MONITORING	DATE 7/2018	SCALE N.T.S.	DRAWN BY: CP	CHECKED BY: KE	APPROVED BY: MCC	

January 31, 2020 Project No. 153-140601

APPENDIX C

Laboratory Analytical Data

December 28, 2018

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on November 10, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates Eric Schneider, Golder Associates

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040 Guam Certification

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Iowa Certification #: 391 Kansas/TNI Certification #: E-10358

Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

New Jersey/TNI Certification #: PA051

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Arkansas Drinking Water

Missouri Certification Number: 10090 WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0 Arkansas Drinking Water

Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60286215026	L-AM-1S	Water	11/09/18 11:40	11/10/18 06:25
60286215027	L-AM-1D	Water	11/09/18 12:45	11/10/18 06:25

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60286215026	L-AM-1S	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
60286215027	L-AM-1D	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	ZMH	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K

ANALYTICAL RESULTS

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

Sample: L-AM-1S Lab ID: 60286215026 Collected: 11/09/18 11:40 Received: 11/10/18 06:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 539 5.0 1.5 11/26/18 18:00 11/27/18 14:01 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 18:00 11/27/18 14:01 7440-41-7 12.5 Boron 494 ug/L 100 1 11/26/18 18:00 11/27/18 14:01 7440-42-8 Calcium 157000 ug/L 200 53.5 11/26/18 18:00 11/27/18 14:01 7440-70-2 1 Cobalt 11/27/18 14:01 7440-48-4 5.6 ug/L 5.0 0.87 11/26/18 18:00 1 5600 50.0 6.1 11/27/18 14:01 7439-89-6 Iron ug/L 11/26/18 18:00 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 18:00 11/27/18 14:01 Lithium 37.0 ug/L 10.0 4.6 1 11/26/18 18:00 11/27/18 14:01 7439-93-2 Magnesium 34600 ug/L 50.0 14.0 1 11/26/18 18:00 11/27/18 14:01 7439-95-4 Manganese 1840 ug/L 5.0 0.73 1 11/26/18 18:00 11/27/18 14:01 7439-96-5 Molybdenum ug/L 20.0 0.90 11/26/18 18:00 11/27/18 14:01 7439-98-7 3.6J 1 79.3 Potassium 6700 ug/L 500 11/26/18 18:00 11/27/18 14:01 7440-09-7 59700 Sodium ug/L 500 157 11/26/18 18:00 11/27/18 14:01 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 11/23/18 15:05 11/27/18 11:04 7440-36-0 0.065 Arsenic 4.5 ug/L 1.0 1 11/23/18 15:05 11/26/18 16:12 7440-38-2 <0.033 Cadmium ug/L 0.50 0.033 1 11/23/18 15:05 11/26/18 16:12 7440-43-9 Chromium 0.43J 0.078 11/26/18 16:12 7440-47-3 ug/L 1.0 1 11/23/18 15:05 R Selenium <0.085 ug/L 1.0 0.085 11/23/18 15:05 11/26/18 16:12 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 15:05 11/26/18 16:12 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/30/18 15:30 12/03/18 11:23 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 449 20.0 4.9 11/20/18 11:15 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 725 mg/L 5.0 5.0 11/15/18 14:12 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 2.7 11/30/18 15:46 7439-89-6 mg/L 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.20 0.012 H6 Iron, Ferrous 2.9 mg/L 1 11/10/18 13:51 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 157 mg/L 20.0 5.8 20 11/27/18 00:54 16887-00-6 Fluoride 0.20 11/27/18 00:38 16984-48-8 0.27 mg/L 0.19 1 11/27/18 00:38 14808-79-8 Sulfate 18.7 mg/L 1.0 0.24 1 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.140.10 0.050 11/15/18 11:20 7723-14-0 mg/L 1

ANALYTICAL RESULTS

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

Sample: L-AM-1D Lab ID: 60286215027 Collected: 11/09/18 12:45 Received: 11/10/18 06:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 76.4 5.0 1.5 11/26/18 18:00 11/27/18 14:04 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 18:00 11/27/18 14:04 7440-41-7 7410 12.5 Boron ug/L 100 1 11/26/18 18:00 11/27/18 14:04 7440-42-8 Calcium 79300 ug/L 200 53.5 11/26/18 18:00 11/27/18 14:04 7440-70-2 1 Cobalt <0.87 ug/L 5.0 0.87 11/26/18 18:00 11/27/18 14:04 7440-48-4 1 50.0 6.1 11/26/18 18:00 11/27/18 14:04 7439-89-6 Iron 4210 ug/L 1 10.0 3.0 11/27/18 14:04 7439-92-1 Lead <3.0 ug/L 1 11/26/18 18:00 Lithium 32.5 ug/L 10.0 4.6 1 11/26/18 18:00 11/27/18 14:04 7439-93-2 Magnesium 11600 ug/L 50.0 14.0 1 11/26/18 18:00 11/27/18 14:04 7439-95-4 Manganese 210 ug/L 5.0 0.73 1 11/26/18 18:00 11/27/18 14:04 7439-96-5 Molybdenum 375 ug/L 20.0 0.90 11/26/18 18:00 11/27/18 14:04 7439-98-7 1 79.3 Potassium 7120 ug/L 500 11/26/18 18:00 11/27/18 14:04 7440-09-7 113000 Sodium ug/L 500 157 11/26/18 18:00 11/27/18 14:04 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 11/23/18 15:05 11/27/18 11:05 7440-36-0 0.065 Arsenic 2.7 ug/L 1.0 1 11/23/18 15:05 11/26/18 16:14 7440-38-2 Cadmium 0.14J ug/L 0.50 0.033 1 11/23/18 15:05 11/26/18 16:14 7440-43-9 Chromium 0.36J 0.078 11/26/18 16:14 7440-47-3 ug/L 1.0 1 11/23/18 15:05 R <0.085 Selenium ug/L 1.0 0.085 11/23/18 15:05 11/26/18 16:14 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 15:05 11/26/18 16:14 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/30/18 15:30 12/03/18 11:25 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 138 20.0 4.9 11/20/18 11:19 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 700 5.0 5.0 11/15/18 14:12 mg/L 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 0.012 12/03/18 14:32 7439-89-6 3.9 mg/L 0.050 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.20 0.012 H6 Iron, Ferrous 0.31 mg/L 1 11/10/18 13:52 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 33.6 mg/L 5.0 1.4 5 11/27/18 01:26 16887-00-6 Fluoride 0.41 0.20 11/27/18 01:10 16984-48-8 mg/L 0.19 1 11/27/18 02:14 14808-79-8 Sulfate 336 mg/L 50.0 12.0 50 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.34 0.10 0.050 11/15/18 11:21 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

QC Batch: 557799 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2288401 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L <0.090 0.20 0.090 12/03/18 11:00

LABORATORY CONTROL SAMPLE: 2288402

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.8 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2288403 2288404

MS MSD 60285459024 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 5 5 4.9 4.9 97 75-125 0 20 Mercury ug/L < 0.090 98

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

QC Batch: 556876 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2284987 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/27/18 13:48	
Beryllium	ug/L	<0.16	1.0	0.16	11/27/18 13:48	
Boron	ug/L	<12.5	100	12.5	11/27/18 13:48	
Calcium	ug/L	<53.5	200	53.5	11/27/18 13:48	
Cobalt	ug/L	<0.87	5.0	0.87	11/27/18 13:48	
Iron	ug/L	<6.1	50.0	6.1	11/27/18 13:48	
Lead	ug/L	<3.0	10.0	3.0	11/27/18 13:48	
Lithium	ug/L	<4.6	10.0	4.6	11/27/18 13:48	
Magnesium	ug/L	<14.0	50.0	14.0	11/27/18 13:48	
Manganese	ug/L	0.80J	5.0	0.73	11/27/18 13:48	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/27/18 13:48	
Potassium	ug/L	<79.3	500	79.3	11/27/18 13:48	
Sodium	ug/L	<157	500	157	11/27/18 13:48	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Beryllium	ug/L	1000	987	99	85-115	
Boron	ug/L	1000	979	98	85-115	
Calcium	ug/L	10000	9940	99	85-115	
Cobalt	ug/L	1000	1020	102	85-115	
Iron	ug/L	10000	10000	100	85-115	
Lead	ug/L	1000	984	98	85-115	
Lithium	ug/L	1000	989	99	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1000	100	85-115	
Molybdenum	ug/L	1000	1000	100	85-115	
Potassium	ug/L	10000	10000	100	85-115	
Sodium	ug/L	10000	10400	104	85-115	

MATRIX SPIKE SAMPLE:	2284989						
Parameter	Units	60286215023 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Farameter	Offics				70 KeC		Qualifiers
Barium	ug/L	82.2	1000	1060	98	70-130	
Beryllium	ug/L	<0.16	1000	999	100	70-130	
Boron	ug/L	9300	1000	10400	112	70-130	
Calcium	ug/L	84400	10000	94400	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

MATRIX SPIKE SAMPLE:	2284989						
		60286215023	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cobalt	 ug/L	<0.87	1000	1010	101	70-130	
Iron	ug/L	64.8	10000	10100	101	70-130	
Lead	ug/L	<3.0	1000	975	97	70-130	
Lithium	ug/L	13.4	1000	987	97	70-130	
Magnesium	ug/L	5160	10000	15000	98	70-130	
Manganese	ug/L	113	1000	1100	99	70-130	
Molybdenum	ug/L	206	1000	1220	101	70-130	
Potassium	ug/L	9650	10000	19700	100	70-130	
Sodium	ug/L	75600	10000	85100	96	70-130	

MATRIX SPIKE & MATRIX SPIKE	CATE: 228499	90		2284991								
			MS	MSD								
		60286372001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	375	1000	1000	1360	1360	99	98	70-130	0	20	
Beryllium	ug/L	< 0.16	1000	1000	1000	1000	100	100	70-130	0	20	
Boron	ug/L	124	1000	1000	1140	1140	101	102	70-130	0	20	
Calcium	ug/L	162000	10000	10000	174000	173000	118	107	70-130	1	20	
Cobalt	ug/L	4.2J	1000	1000	1000	1000	100	100	70-130	0	20	
Iron	ug/L	368	10000	10000	10400	10300	100	100	70-130	0	20	
Lead	ug/L	3.2J	1000	1000	973	968	97	96	70-130	1	20	
Lithium	ug/L	40.3	1000	1000	1040	1030	100	99	70-130	0	20	
Magnesium	ug/L	44100	10000	10000	54700	54300	106	102	70-130	1	20	
Manganese	ug/L	4550	1000	1000	5620	5590	106	104	70-130	0	20	
Molybdenum	ug/L	< 0.90	1000	1000	1020	1020	102	102	70-130	0	20	
Potassium	ug/L	5880	10000	10000	16100	16000	102	102	70-130	0	20	
Sodium	ug/L	11500	10000	10000	21900	21800	104	103	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

QC Batch: 556679 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2283974 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	11/27/18 10:58	
Arsenic	ug/L	< 0.065	1.0	0.065	11/26/18 16:00	
Cadmium	ug/L	< 0.033	0.50	0.033	11/26/18 16:00	
Chromium	ug/L	0.22J	1.0	0.078	11/26/18 16:00	
Selenium	ug/L	< 0.085	1.0	0.085	11/26/18 16:00	
Thallium	ug/L	< 0.099	1.0	0.099	11/26/18 16:00	

LABORATORY CONTROL SAMPLE:	2283975	Cnika	1.00	1.00	0/ Doo	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	40	38.4	96	85-115	
rsenic	ug/L	40	39.4	98	85-115	
admium	ug/L	40	39.3	98	85-115	
romium	ug/L	40	40.9	102	85-115	
elenium	ug/L	40	37.7	94	85-115	
hallium	ug/L	40	38.4	96	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 22839	76		2283977							
Parameter	e Units	60286215023 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	0.078J	40	40	39.0	39.3	97	98	70-130	1	20	
Arsenic	ug/L	1.7	40	40	41.3	41.2	99	99	70-130	0	20	
Cadmium	ug/L	0.079J	40	40	38.7	38.9	97	97	70-130	0	20	
Chromium	ug/L	0.46J	40	40	39.6	39.4	98	97	70-130	1	20	
Selenium	ug/L	0.20J	40	40	36.4	36.0	90	89	70-130	1	20	
Thallium	ug/L	< 0.099	40	40	38.7	38.7	97	97	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 556192 Analysis Method: SM 2320B QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

60286215026, 60286215027 Associated Lab Samples:

METHOD BLANK: 2282069 Matrix: Water

2282070

Associated Lab Samples: 60286215026, 60286215027

Blank Reporting Limit MDL Parameter Result Qualifiers Units Analyzed

Alkalinity, Total as CaCO3 <4.9 20.0 4.9 11/20/18 10:40 mg/L

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 513 103 90-110

SAMPLE DUPLICATE: 2282071

LABORATORY CONTROL SAMPLE:

60286215025 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 58.8 10 Alkalinity, Total as CaCO3 64.8 10 mg/L

SAMPLE DUPLICATE: 2282072

Date: 12/28/2018 09:03 AM

60286372001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 534 Alkalinity, Total as CaCO3 mg/L 545 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 555353 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2278151 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 11/15/18 14:12

LABORATORY CONTROL SAMPLE: 2278152

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2278153

60286488009 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 697 2 10 **Total Dissolved Solids** 710 mg/L

SAMPLE DUPLICATE: 2278161

Date: 12/28/2018 09:03 AM

60286668008 Dup Max RPD RPD Parameter Units Result Result Qualifiers 620 **Total Dissolved Solids** mg/L 601 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 554544 Analysis Method: SM 3500-Fe B#4
QC Batch Method: SM 3500-Fe B#4 Analysis Description: Iron, Ferrous

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2274532 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

 Parameter
 Units
 Blank Reporting Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Iron, Ferrous
 mg/L
 <0.012</td>
 0.20
 0.012
 11/10/18 13:31
 H6

LABORATORY CONTROL SAMPLE: 2274533

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Ferrous mg/L 2 2.0 100 90-110 H6

SAMPLE DUPLICATE: 2274535

 Parameter
 Units
 60286215010 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 Iron, Ferrous
 mg/L
 <0.012</td>
 <0.012</td>
 20 H6

SAMPLE DUPLICATE: 2274537

Date: 12/28/2018 09:03 AM

 Parameter
 Units
 60286372001 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 Iron, Ferrous
 mg/L
 <0.012</td>
 <0.012</td>
 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

QC Batch: 556826 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2284823 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.29	1.0	0.29	11/26/18 17:58	
Fluoride	mg/L	<0.19	0.20	0.19	11/26/18 17:58	
Sulfate	mg/L	<0.24	1.0	0.24	11/26/18 17:58	

LABORATORY CONTROL SAMPLE:	2284824					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.0	100	90-110	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	ATE: 228482	25		2284826							
_		60286358005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.7	5	5	9.7	9.7	99	100	90-110	1	15	
Fluoride	mg/L	0.22	2.5	2.5	2.9	2.9	106	109	90-110	2	15	
Sulfate	mg/L	10.1	5	5	15.3	15.3	103	105	90-110	1	15	

MATRIX SPIKE SAMPLE:	2284827						
_		60286372001	Spike	MS	MS	% Rec	G 11/1
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	3.7	5	5.7	38	90-110	M1
Fluoride	mg/L	0.29	2.5	1.3	40	90-110	M1
Sulfate	mg/L	96.8	50	115	37	90-110	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 554983 Analysis Method: EPA 365.4

QC Batch Method: EPA 365.4 Analysis Description: 365.4 Phosphorus

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 2276689 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Phosphorus mg/L <0.050 0.10 0.050 11/15/18 10:53

LABORATORY CONTROL SAMPLE: 2276690

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Phosphorus mg/L 2 1.9 97 90-110

MATRIX SPIKE SAMPLE: 2276691

60286318014 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 2 1.9 96 90-110 Phosphorus mg/L

MATRIX SPIKE SAMPLE: 2276693

60286270003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 2.9 Phosphorus mg/L 2 4.8 91 90-110

SAMPLE DUPLICATE: 2276692

Date: 12/28/2018 09:03 AM

ParameterUnits60286214007 ResultDup ResultMax RPDQualifiersPhosphorusmg/L0.36310

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Sample: L-AM-1S Lab ID: 60286215026 Collected: 11/09/18 11:40 Received: 11/10/18 06:25 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.694 ± 0.508 (0.568) C:NA T:92%	pCi/L	12/12/18 10:16	13982-63-3	
Radium-228	EPA 904.0	0.374 ± 0.346 (0.706) C:77% T:90%	pCi/L	12/06/18 11:05	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Sample: L-AM-1D Lab ID: 60286215027 Collected: 11/09/18 12:45 Received: 11/10/18 06:25 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.287 ± 0.622 (1.15) C:NA T:80%	pCi/L	12/12/18 10:16	13982-63-3	
Radium-228	EPA 904.0	0.917 ± 0.444 (0.769) C:72% T:87%	pCi/L	12/06/18 11:05	15262-20-1	

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 321152 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples:

METHOD BLANK: 1566304 Matrix: Water

Associated Lab Samples:

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.436 ± 0.396 (0.801) C:80% T:65%
 pCi/L
 12/06/18 12:32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 321153 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 1566305 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

 Parameter
 Act \pm Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.196 \pm 0.321 (0.697) C:82% T:78%
 pCi/L
 12/06/18 11:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 321138 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples:

METHOD BLANK: 1566284 Matrix: Water

Associated Lab Samples:

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.119 ± 0.271 (0.437) C:NA T:88%
 pCi/L
 12/06/18 20:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 321140 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60286215026, 60286215027

METHOD BLANK: 1566289 Matrix: Water

Associated Lab Samples: 60286215026, 60286215027

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.323 ± 0.449 (0.749) C:NA T:95%
 pCi/L
 12/12/18 10:00

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

QC Batch: 321154 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples:

METHOD BLANK: 1566306 Matrix: Water

Associated Lab Samples:

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.125 ± 0.292 (0.652) C:80% T:79%
 pCi/L
 12/07/18 11:19

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 12/28/2018 09:03 AM

B Analyte was detected in the associated method blank.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE LCPA / LEC N&E

Pace Project No.: 60290639

Date: 12/28/2018 09:03 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60286215026	L-AM-1S	EPA 200.7	556876	EPA 200.7	556951
60286215027	L-AM-1D	EPA 200.7	556876	EPA 200.7	556951
60286215026	L-AM-1S	EPA 200.8	556679	EPA 200.8	556837
60286215027	L-AM-1D	EPA 200.8	556679	EPA 200.8	556837
60286215026	L-AM-1S	EPA 7470	557799	EPA 7470	557857
60286215027	L-AM-1D	EPA 7470	557799	EPA 7470	557857
60286215026	L-AM-1S	EPA 903.1	321140		
60286215027	L-AM-1D	EPA 903.1	321140		
60286215026	L-AM-1S	EPA 904.0	321153		
60286215027	L-AM-1D	EPA 904.0	321153		
60286215026	L-AM-1S	SM 2320B	556192		
60286215027	L-AM-1D	SM 2320B	556192		
60286215026	L-AM-1S	SM 2540C	555353		
60286215027	L-AM-1D	SM 2540C	555353		
60286215026	L-AM-1S	SM 3500-Fe B#4	557770		
60286215027	L-AM-1D	SM 3500-Fe B#4	558081		
60286215026	L-AM-1S	SM 3500-Fe B#4	554544		
60286215027	L-AM-1D	SM 3500-Fe B#4	554544		
60286215026	L-AM-1S	EPA 300.0	556826		
60286215027	L-AM-1D	EPA 300.0	556826		
60286215026	L-AM-1S	EPA 365.4	554983		
60286215027	L-AM-1D	EPA 365.4	554983		

Sample Condition Upon Receipt

Client Name: Golder		
Courier: FedEx UPS VIA Clay PE	EX 🗆 ECI 🗅	Pace □ Xroads 🛕 Client □ Other □
•	Shipping Label	·
Custody Seal on Cooler/Box Present: Yes ☑ No □	Seals intact: Ye	
Packing Material: Bubble Wrap □ Bubble Bags □	Foam	*•
Thermometer Used: 301 Type of I		None
Cooler Temperature (°C): As-read 2,0 412 Corr. Factor		rected 3.0 4.2 Date and initials of person examining contents:
Temperature should be above freezing to 6°C	1	35
Chain of Custody present:	∭Yes □No □	N/A
Chain of Custody relinquished:	Yes No 🗆	N/A
Samples arrived within holding time:	V Yes □No □	N/A
Short Hold Time analyses (<72hr):	Mayes □No □	N/A Fezt
Rush Turn Around Time requested:	□Yes V ÎNo □	N/A
Sufficient volume	MYes □No □	N/A
Correct containers used:	Ø Yes □No □	N/A
Pace containers used:	¶Yes □No □	N/A
Containers intact:	Mayes □No □	N/A
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 🏚	N/A
Filtered volume received for dissolved tests?	□Yes □No 💆	N/A
Sample labels match COC: Date / time / ID / analyses	X Yes □No □	N/A
Samples contain multiple phases? Matrix: M	□Yes Q No □	N/A
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	L Yes □No □	N/A List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No Ø	N/A
Headspace in VOA vials (>6mm).	□Yes □No 🙋	N/A
Samples from USDA Regulated Area: State:	□Yes □No /	N/A
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No 💆	N/A
Client Notification/ Resolution: Copy COC to C	Client? Y / 1	N Field Data Required? Y / N
Person Contacted: Date/Tir	me:	
Comments/ Resolution:		
		11/12/18
Project Manager Review:		Date:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Prince P	Company: Golder Address: 13515 B				dion.											ſ			4		١		
13915 Barrett Patkray Drive, Sig 200 Conf Te, Leffrey Ingram	L	sociates	Report To: Mark	k Hado	dock (mhac	3dock@g	older.com	(Attention	ë													
Ballwin, NO GROZI	Ballwin			ey Ing	ıram				Compai	y Name						R	EGULAT	ORY A	GENCY				
The control of the		MO 63021							Address							_	NPDE		GROUN	D WATER		RINKING	WATER
Secretion D	Email To: maddoc		Purchase Order I	No.:					Pace Qu Reference	ote e:						-	UST	L	RCRA		0 L	THER	
Strated Project Number 153-1406 00010 (COC#1) Prosection # 12265 Project Number 153-1406 00010 (COC#1) Prosection # 12265 Project Number 153-1406 00010 (COC#1) Prosection # 153-1406 00010 (COC#1) Pros	-989	Fax: 636-724-9323		Amer	en Labadi e	S EC LCF	A N&E		Pace Pr		lamie (Shurch				07	Site Loca	tion	S				
Let Mark Code Control Control Control Code	quested Due Date/TA	Standard	Project Number:	153-1	1406.0001E	# 000) (5		Page Pn	44	3285						STA	ITE:					
Wild Marks Codes Mark Codes														Œ.	senbe	ted An	alysis F	iltered	(N/N)				
### FID OF CONTAINER WINSTER WINSTER WINDS TO BE SHARM SD WITE THE THE THE THE THE THE THE THE THE T	Section D Required Client In			(AMP)		COLLEC	TED			۵	reserva	atives	4-40	-		z							
## 10 ## 10			WW d	VB C=CC	COMPOSITI	ш	COMPOSITE END/GRAB							1	ejsiluš					(N/X			
L-UMW-2D		TIO DIFFERENCE OF THE PROPERTY	SL ODL AR AR TS	SAMPLE TYPE (G=GR.	DATE	JAC .				[⊅] OS ^z H	HCI	LO _S O _S O _S	Ofher		Chloride/Fluoride/S	82S muibsA	OZZ (Ilining)			Residual Chlorine (Pace P	roject N	./ Lab I.D.
L-UMW-2D WT G	-	L-UMW-1D	WT																	1	1		
L-UMW-4D		L-UMW-2D	- M	1	_	1							1			1				-			. 3
L-UMW-5D	1 67	L-UMW-3D	W		11/4/18			Sis		~	M			7	1	2	3			77	- 1		3
L-UMW-5D	4	L-UMW-4D	TW	Ö	8/5			315	٥	_	W			7	1	1	3	1			1	*	
L-UMW-2D WT G	5	L-UMW-5D	TW	ပ			-	- 1			1	-		T		ľ						-0	
L-UMW-8D	9	L-UMW-6D	TW	ŋ	_	502	-	IN		7	1		-	2	2	7	2	1					
L-UMW-8D	7	L-UMW-7D	TW							-	+			1				1					
L-BMW-1D WT G WT	8	L-UMW-8D	TW										+	_		1	+	+					
L-BMW-1D WT 6	6	L-UMW-9D	TW	_	5	-	1			-	+			1	J.								
L-BMW-2D WT G	10	L-BMW-1D	TW	-	*	-			1			1	1	1	+			-					
L-AM-1S WIT G 1/9/18 1/19/18 1/	11	L-BMW-2D	TW.			-	_	-	I	-			1				-	+		-	1	-	
AL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAIL COMMENTS ACCEPTED BY AFFILIATION DATE TIME SAIL COMMENTS ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILI	12	L-AM-1S	LW.	ŋ	81/6/11	7	81/6	140	Ü	-	7			7	7	2 2	1	+	1	-	CAMDI	FIGNOS	SNC
11/2/12/14/18/19/20 14/14/18/19/20 14/14/20 14/14/20 14/1	ADIC	DITIONAL COMMENTS	REL	INON	SHED BY / A	FFILIATIO	2	DATE	٢	WE STATE	1	ACC	CEP TEL	BY / A	FILMIN	No.	3	2	I IME		Openin L		
1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PA 200 7: B, Ca, Ba, PA 200 8: As	Li, Мо	19	24	list.	-		1/8/1	37	0	1		1	7	7	4	5/11	30	22	-	1	1	3
<i>y y y y y y y y y y</i>			100	T	- AR	在	IAI	9118	2	6		T	4	M			11/1	_	353	_		>>	> >
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									_		1	1					-			-		>	, 5
											1						_			+	1	P	×
	ige 2				1	ď	SINT Name	of SAMPLE!	ii.	Ber	21	160	ahuj	7				+		ni qme	oeiveo (Y) ea	lody S	N/A) səjdu
PRINT Name of SAMPLER: They Wanty Coelve Coe	26 o					S	SIGNATURE of SAMPLER:	of SAMPLE	ė,	1	1	Z	1		DATE Signed (MIM/DD/YY):	yw);	143	118				lsu0 o0	San

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical"

Pace Project No./ Lab I.D. DRINKING WATER SAMPLE CONDITIONS OTHER ğ 2 **GROUND WATER** S Residual Chlorine (Y/N) 3 Page: 9 REGULATORY AGENCY RCRA TIME 200 Requested Analysis Filtered (Y/N) 30 Site Location STATE DATE NPDES 16 UST Radium 228 Z 7 322 muiba5 ACCEPTED BY AFFILIATION DS Z Shloride/Fluoride/Sulfate z Analysis Test N/A Other Methanol Jamie Church Preservatives COSSSEN NaOH HCI 9285 HNO³ Invoice Information Company Name POS2H ace Profile # TIME 920 Reference: Paca Project Section C Unpreserved ace Quote Address # OF CONTAINERS SAMPLE TEMP AT COLLECTION DATE 11/9/15/1245 TIME Report To: Mark Haddock (mhaddock@golder.com) DATE COLLECTED Ameren Labadie EC LCPA 153-1406.0001D (COC #1) RELINQUISHED BY I AFFILIATION TIME COMPOSITE DATE Required Project Information: Jeffrey Ingram O O O O ഗ O O O O O O O **34YT 319MA2** (G=CRAB C=COMP) urchase Order No.: Ž Y ¥ ₹ Ş 5 Y 5 Ş M ¥ 5 roject Number: **AMATRIX CODE** (see valid codes to left) project Name: Copy To: Valid Matrix Codes DW WW SIL OL WP AR OT TS DRINKING WATER
WASTE WATER
PRODUCT
SOIL/SOLID 13515 Barrett Parkway Drive, Ste 260 Fax 636-724-9323 L-UMW-DUP-2 L-UMW-DUP-1 L-UMW-FB-2 L-UMW-FB-1 L-AM-1D ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE maddock@qolder.com SAMPLE ID Ballwin, MO 63021 Golder Associates 200.7: B, Ca, Ba, Li, Mo Required Client Information Requested Due Date/TAT: 636-724-9191 Section D EPA 200 8: As Section A Address 10 1 12 4 ц 9 Ø 6 67 2 # M3TI

F-ALL-Q-020rev 08, 12-Oct-2007

Samples Intact (V/V)

Cooler (Y/N)

Sustady Sealed

Ice (Y/N)

Received on

O° ni qmaT

1/4/18

DATE Signed (MM/DD/YY);

16 mm

SAMPLER NAME AND SIGNATURE
PRINT Name of SAMPLER:
SIGNATURE of SAMPLER:

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

Page 27 of 30

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

## Golder Associates 13515 Barrett Parkway Drive, Ste 260 Ballwin, MO 63021 maddock@golder.com 636-724-9191 Fax: 636-724-9323 ed Due DaterTAT: Standard MATRIX Required Client Information Sample ID CAZ, 0-9 / -) Sample IDs MUST BE UNIQUE L-AMI-1D L-AMI-1D	Copy To: Jeffrey Ingram Copy To: Jeffrey Ingram Purchase Order No.: Project Name: Ameren Labadie EC LEC N&E Project Number: 153-1406.00011 (COC #2) WW CODE OF	Pany Name: Coulouse ance: Duote ance: Profile #: 9285 Profile #: 9285 Profile #: 9285	REGULATORY AGENCY NPDES GROU UST RCRA Site Location MC STATE:	GENCY GROUND WATER RCRA	DRINKING WATER
13515 Barrett Parkway Drive, Ste 260 Copy To: Jeff Ballwin, MO 63021 Purchase Order Name: 636-724-9191 Fax 636-724-9323 Project Name: ed Due Date/TAT: Standard Project Number: Standard Project Number: Codes Project Number: Name Naviet	abadie EC LEC. O0011 (COC #2) COLLEC' START	Address: Address: Address: Pace Quote Reference: Pace Project Jamie Church Manager:	NPDES UST Site Location STATE:	GROUND WATER	DRINKING WATER
Ballwin, MO 63021 Purchase Order Name: 636-724-9323 Project Name: ed Due Date/TAT: Standard Project Number: ed Due Date/TAT: ed Due Due Due Due Date/TAT: ed Due Due Date/TAT: ed D	No.: Ameren Labadie EC LEC N&E 153-1406.00011 (COC #2) COLLECTED COMPOSITE ENDIGRAB START COMPOSITE ENDIGRAB E	Address: Pace Quote Reference: Pace Profile # 9285 Pace Profile # 9285 ANN ANN ANN ANN ANN ANN ANN ANN ANN AN	NPDES UST Site Location STATE:	GROUND WATER RCRA	DRINKING WATER
To: maddock@golder.com	No: Ameren Labadie EC LEC N&E 153-1406.00011 (COC #2) COLLECTED COMPOSITE ENDIGRAB START COMPOSITE ENDIGRAB E	Pace Quote Reference: Reservatives Pace Profile # 9285 Pace Profile # 9285 AIN 4	Site Location STATE:	RCRA	
Section D	Ameren Labadie EC LEC N&E 153-1406.00011 (COC #2) COLLECTED COMPOSITE START	Pace Project Jamie Church Manager: Pace Profile # 9285 AIN Preservatives N'N N N N N N N N N N N N N N N N N N N	Site Location STATE:		OTHER
Valid Matrix Co Water WASTE WATER WASTE WATER WASTE WATER WASTE WATER WASTE WATER PRODUCT SOU SOLD OIL L-AM-1D L-AM-1D L-AM-1D L-AM-1D	153-1406.00011 (COC #2) Page	Pace Profile # 9285 Pace Profile # 9285 Preservatives L N N U S Test a	STATE:	OM	
Section D Required Client Information MATRIX CODE Required Client Information MATRIX CODE DENINGING WATER WATER WASTER WIN WASTER WIN SAMPLE ID SOLUSOUD OL SOLUSOUD OL CAZ. 0-9/ -) Sample IDs MUST BE UNIQUE L-AM-1D L-AM-1D	COLLECT START STAR	Preservatives by Inviv 1 set 1	bought and bearing		
Section D Required Client Information Required Client Information Delivering WATER OODE DELIVERING OODE DELIVERING OODE DELIVERING OODE SOULSOULD SOULSOULD SAMPLE ID SOULSOULD SAMPLE ID SOULSOULD OL WATER WATER OL WATER OT SAMPLE ID L-AM-1D L-AM-1D L-AM-1D	COLLECTORPS C=COMPOSITE START THE ST	Preservatives You I test to the servatives You I test to the servatives Test I test to the servatives	Requested Analysis Filtered (1/N)	(NIX)	
SAMPLE ID Sample IDs MUST BE UNIQUE CA-Z, 0-9/-; Sample IDs MUST BE UNIQUE L-AM-1D L-AM-1D	YPE (G=GRAB C=COI	Piners be	z z z z		
SAMPLE ID OIL WP AR (A-Z, 0-9/-) Sample IDs MUST BE UNIQUE L-AM-1D L-UMW-DUP-1		AINERS Test		(N/A)	
L-AM-1D L-UMW-DUP-1	T 3J9MAX	# OF CONTAINSPERSE And	NOR App IV Meta Alkalinity Fetrous Iron Fetric Iron	Residual Chlorine (Pace Project No./ Lab I.D.
L-UMW-DUP-1	G \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V 5123	7		
	ا و				
3 L-UMW-DUP-2 WT	9				
4 L-UMW-FB-1 wr	0				
5 L-UMW-FB-2 WT	O				
MT WT	0				
7	9				
WT W	9 1				
	_				
10 WT					
WT WT	9 8				
ADDITIONAL COMMENTS	-1 Z	TIME ACCEPTED BY I AFFILIATION	DATE	TIME	SAMPLE CONDITIONS
EPA 200 7: Fe, Mg, Mn, K, Na	Meli Malland	1 - 1-73 · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	174CS 119/18 14	CZhi	
**EPA 200 77: Be, Co, Pb **EPA 200 8: Sb, Cd, Cr, Se, Tl	1/6/11	(my	eilla	व्यक	
			-		
	CAMPI ED MAME AND CICNATIDE			;	led ()
Page 28 0		LER: Thirty Colo		O° ni qn	elved o (V/Y) = (V/Y) Sea ler (V/Y)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		redailed i bjed illionilation.							INVOK	Invoice Information:	ation:						1							
Company: Golder Associates		Report To: Mark Haddock (mhaddock@golder	ırk Ha	ddock (i	mhaddo	ck@gold	er.com)		Attention:	ion:														
Address: 13515 Barrel	13515 Barrett Parkway Drive, Ste 260	Copy To: Jel	Jeffrey Ingram	ngram					Сомр	Company Name:	Je:						<u> </u>	REGUL	ATOR	REGULATORY AGENCY	<u></u> ≿			
Ballwin, MO 63021	63021								Address:	SS:								ď	NPDES	GRC	GROUND WATER	띮	DRINK	DRINKING WATER
Email To: maddock@golder.com	older.com	Purchase Order No :	r No.:						Pace (Suote								UST	L	RCRA	¥		OTHER	
Phone: 636-724-9191	Fax: 636-724-9323	Project Name:	Amk	eren Lai	Ameren Labadie EC LEC N&	LECN	Щ		Pace Project Manager:	roject er:	Jamik	Jamie Church	년 년			M		Site Location	cation					
Requested Due Date/TAT:	Standard	Project Number:	153	1406.0	153-1406.00011 (COC #2)	C #2)			Pace	4.	9285						Π	S	STATE:		MO			
													П	H	Ř	senbe	ted A	nalysis	Filter	Requested Analysis Filtered (Y/N)				
Section D Required Client Information	Valid Matrix C. MATRIX	W)	_		8	COLLECTED		- 7			Prese	Preservatives	SE	₽ N /A	z	z	z	z						
	DRINKING WATER WASTE WATER PRODUCT SOI! /SO! IN	or ve	VB C=CC	COMI	COMPOSITE	EN CO	COMPOSITE END/GRAB	ECTION						1		6H+**					(N/			
SAMPLE ID (A-Z, 0-9/) Sample IDs MUST BE UNIQUE	ال المارية	유유 중 유 문 문 Resevence (seevence (seevence seevence seeve		DATE	TIME	DATE	TIME	n SAMPLE TEMP AT COLL	# OF CONTAINERS	Unpreserved 42SO₄	HCI HNO ³	HOaN	Na ₂ S ₂ O ₃ Methanol	TesT sisylsnA	*slsfalv	CCR App IV Metals Alkalinity	Total Phosphorus	Ferrous Iron Ferric Iron			Y) eniroldO leubiseЯ		e Projec	Pace Project No./ Lab I.D.
1	L-UMW-1D	W	G		_									-	-									
2	L-UMW-2D	W	_																	_				
3	L-UMW-3D	TW	T G			11/2/11	5121 81	5	6	12	W				1	7	2	2						
4	L-UMW-4D	TW	T G	_		21/N115	80915	V	9	7,2	3~				2	7	2	2						
ro	L-UMW-5D	TW	<u>ق</u> ۲																_					
9	L-UMW-6D	₩	υ Ε			1/2/11	8 1035	Ŋ	Ú	17.	'n			1	>	7	2	>						
7	L-UMW-7D	TW	<u>و</u>																					
80	L-UMW-8D	TW	υ Ε		_											-								
on.	L-UMW-9D	TW	<u>ق</u>		-									1										
10	L-BMW-1D	TW	<u>ق</u>																					
11	L-BMW-2D	TW	٥ ۲											T										
12	L-AM-1S	TW	T G			111/2	18 11 40	9	9	17	2				ン	2	2	7					١	
ADDITION	ADDITIONAL COMMENTS	RE	LINOU	ISHED BY	RELINQUISHED BY I AFFILATION	MOLL		DATE	_	TIME	11	1.1	CCEPTED BY / AFFILIATION	TEPBY	' / AFFI	LIATIO	Z	0.	DATE	TIME		SA	SAMPLE CONDITIONS	SNOILIO
EPA 200 7: Fe, Mg, Mn, K, Na		de	July	Alex	1	79/	16/1 7	81/6	11	1436	R	THE REAL PROPERTY.	*	B	1	346	W	5/11	81/6	06p	^			
~EPA 200.7: Be, Co, Pb *EPA 200.8: Sb, Cd, Cr, Se, TI	r.	COLORE	B	SEA SEA	MA	NGE.	6/11	U.	17	3		M	1	The	1				03)	Ses				
												1												
F					SAMP	LER NAM	SAMPLER NAME AND SIGNATURE	SNATUE	<u>#</u>	70	1 Same	R	1	1				_			2		rled ()	toe
Page 2						PRINT	PRINT Name of SAMPLER:	AMPLEF		7	Sperie	5	100	12	A		П	П	П		o, uị du	bevie (N\Y) ∈	idy Ses let (Y/I	oles Int
29 o)													

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

PaceAr	Pace Analytical				The Chain-of-Custody is	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	ds must be completed a	accurately			
www	www.pacelabs.com										
Section A		Section B				Section C			Page:		of
Required Client Information:	_	Required Project Information:	yect Info	ormation:		Invoice Information:			,		
Company: Golder Associates		Report To: N	lark Ha	Report To: Mark Haddock (mhaddock@golder.com)	@golder.com)	Attention:					
Address: 13515 Barrett P	13515 Barrett Parkway Drive, Ste 260 Copy To: Jeffrey Ingram	Copy To: J	effrey	Ingram		Company Name:		REGULATORY AGENCY	AGENCY		
Ballwin, MO 6302	021					Address:		NPDES	GROUND WATER		DRINKING WAT
Email To: maddock@golder.com		Purchase Order No.	der No	3		Pace Quote Reference:		UST	RCRA	-TO	OTHER —
Phone: 636-724-9191	Fax: 636-724-9323	Project Name	.: An	Project Name: Ameren Labadie EC LCPA	LCPA	Pace Project Jamie Church Manager:		Site Location	Q		
Requested Due Date/TAT:	Standard	Project Numb	ser. 15;	Project Number: 153-1406.0001D (COC #1)	C #1)	Pace Profile #: 9285		STATE:			
							Requested	Requested Analysis Filtered (Y/N)	(X/N)		
Section D	Valid Matrix Codes		(f) e			Dracamativas	2 2 2 2 1 N I/	z			

				-				t	-	-						
Section D Valid Matrix Codes Required Client Information MATRIX COL	odes CODE		COLLECTED			Presi	Preservatives	Z N/A	z	z						
DRINKING WATER WASTER WASSTE WATER PRODUCT SQUISGUID	있 고 XX valid codes to	COMPOSITE	COMPOSITE					î	Sulfate				(N/A	(5)(1)		
SAMPLE ID (A-Z, 0-9/,-) Sample IDs MUST BE UNIQUE	VWP A A R T S			MPLE TEMP AT COL	ОЕ СОИТАІИЕВЗ	NO ³ S2O ⁴ ubieseived	CI a ₂ S ₂ O ₃ ethanol	ther Analysis Test	etals* hloride\Fluoride\ [;] 2C	SC 82S muibs 82S muibs	סטומונו בבס		(esidual Chlorine)			4
01-MA-1	-	DATE	TIME DATE	1 245	# 🕲	H ~	N N		5. C	R 2					race rioject no., Lab	0.1 Lab 1.D.
L-UMW-DUP-1	-	0 0														
L-UMW-DUP-2		 														
L-UMW-FB-1	WT G	0														
L-UMW-FB-2	W	0						1				8				
	M I	0														
	WT	9														
	WT N	9														
	WT	0	1													
	WT O	9														
	NT O	9														
	MT N	9														
ADDITIONAL COMMENTS	RELING	RELINQUISHED BY I AFFILIATION	ILIATION	DATE	TIME	IE 0	, h AGCEP	ACCEPTED BY ! AFFILIATION	AFFILIATI	NO	DATE	E TIME		SAM	SAMPLE CONDITIONS	SNC
°ЕРА 200.7: В, Са, Ва, Li, Мо °ЕРА 200.8: As	Mary 1	100/160	the	Wally	1430	3	A TOTAL	A	-(4m	\$	116/11	8/18	0			
	N. Markey	Company	AS SEE	3//6///	08/	0										
		ď	SAMPI FR NAME A	AND SIGNATURE		-										joe;
		5	PRINT Nar	PRINT Name of SAMPLER:		16 mm 1	. dei	1					o ni qı	bevie (N/Y)	dy Ses	les Ini Y/N)
			SIGNATUR	RE of SAMPLER	, Lu	M	1		DATE Signed	gned	49/16		Ten		otsuO looO	gms2)

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

MEMORANDUM

DATE January 7, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC

FROM Tommy Goodwin EMAIL tgoodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – NOVEMBER 2018 – N&E – DATA PACKAGE 60290639

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- Analysis of Ferrous Iron for all samples was initiated outside of the 15-minute EPA required holding time, the detections in samples were qualified as estimates (J).
- When analytes exceeded the recovery criteria for MS/MSD of a sample, the sample result was not qualified on MS/MSD data alone.
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was detected in a blank (i.e. method, field, rinsate), and the sample results were greater than the MDL and less than the PQL the results were recorded at the PQL value and qualified as non-detects (U).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Reviewer: T Goodwin Validation Date: 1/7/19	
Laboratory: Pace Analytical SDG #: 60290639 Analytical Method (type and no.): Metals (200.7+200.5), Hs (7470), Ra (705.1+704.0), Mtk (2320), TDS (25100), Fe 24/5 (35 Matrix: Air Soil/Sed. Water Waste Sample Names L-AM-IS, L-AM-ID NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comm	
Field Information YES NO NA COMMEN	
a) Sampling dates noted?	
b) Sampling team indicated?	
c) Sample location noted?	
d) Sample depth indicated (Soils)?	
e) Sample type indicated (grab/composite)?	
f) Field QC noted?	
g) Field parameters collected (note types)?	DO, ORP, Flow, DTW
h) Field Calibration within control limits?	
i) Notations of unacceptable field conditions/performances from field logs or field notes?	
j) Does the laboratory narrative indicate deficiencies? Note Deficiencies:	
Chain-of-Custody (COC) YES NO NA COMMEN	ITS
a) Was the COC properly completed?	
b) Was the COC signed by both field and laboratory personnel?	
c) Were samples received in good condition?	
General (reference QAPP or Method) YES NO NA COMMEN	ITS
a) Were hold times met for sample pretreatment?	
b) Were hold times met for sample analysis?	
c) Were the correct preservatives used?	
d) Was the correct method used?	
e) Were appropriate reporting limits achieved?	
f) Were any sample dilutions noted?	
g) Were any matrix problems noted?	

Revised May 2004

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blank	5	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	ot Z			Ma (0.80), Cr(0.22),
b)	Were analytes detected in the field blank(s)?			Ø	
c)	Were analytes detected in the equipment blank(s)?			X	
d)	Were analytes detected in the trip blank(s)?			$\overline{\mathbf{x}}$	
Labora	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	X			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	ø			
Duplic		YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	plicate s ش		ames)?	Dup-1@ DA
			Ø.		FB-1@ V A
b)	Were field dup. precision criteria met (note RPD)?			口	
c)	Were lab duplicates analyzed (note original and dup	olicate sa	mples)?		
		X			
d)	Were lab dup. precision criteria met (note RPD)?	内			
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			\mathbf{x}	O O INNIERY O
,	analytes included and concentrations)?			لما	
b)	Was the %D within control limits?			X	-
,			L1		
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		$ ot \square$		er, su, 2-, F
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
b)	Was MSD accuracy criteria met?	Ø			
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
c)	Were MS/MSD precision criteria met?	Ø			
		,			
Comm	ents/Notes:				
		-			
-					
0					

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-AM-15	Fourous Iron (Fe 2+)	2.9	J	
上	Change total (Cat)		Ü	Analyzed Onkide EPA hold time Detected in Hethod Blank; MDL <resulte hold="" l="" pql="" td="" time<=""></resulte>
L-AM-ID	Fe ²⁺	1.0	U	1
L	Fe ²⁺	0.31	J	Hold Time
				The the
				\
Signature:	my / Soot /			Date:

Revised May 2004

December 27, 2018

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory between November 08, 2018 and November 09, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV-1, 12/27/18: Metals list trimmed.

REV-2, 12/27/18: Arsenic, Barium, Lithium, Molybdenum only reported.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01

Arkansas Certification #: 18-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60286214001	L-LMW-1S	Water	11/07/18 13:10	11/08/18 04:02
60286214002	L-LMW-3S	Water	11/07/18 15:30	11/08/18 04:02
60286214003	L-BMW-1S	Water	11/07/18 10:00	11/08/18 04:02
60286214004	L-BMW-2S	Water	11/07/18 12:25	11/08/18 04:02
60286214005	L-LMW-FB-1	Water	11/07/18 15:25	11/08/18 04:02
60286214007	L-LMW-4S	Water	11/08/18 15:15	11/09/18 03:12
60286214008	L-LMW-5S	Water	11/08/18 13:35	11/09/18 03:12
60286214009	L-LMW-6S	Water	11/08/18 12:25	11/09/18 03:12
60286214010	L-LMW-7S	Water	11/08/18 10:55	11/09/18 03:12
60286214011	L-LMW-8S	Water	11/08/18 09:15	11/09/18 03:12
60286214017	L-LMW-DUP-1	Water	11/08/18 08:00	11/09/18 03:12
60286214018	L- LMW-2S	Water	11/08/18 14:45	11/09/18 03:12

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

EPA 200.8 JDH 1 PASI-K 60286214002 L-LMW-3S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60286214002 L-LMW-3S	60286214001	L-LMW-1S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 L-BMW-1S EPA 200.7 EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH J PASI-K EPA 200.8 J			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K	60286214002	L-LMW-3S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214004 L-BMW-2S EPA 200.7 JGP 3 PASI-K 60286214005 L-LMW-FB-1 EPA 200.8 JDH 1 PASI-K 60286214007 L-LMW-4S EPA 200.7 JGP 3 PASI-K 60286214007 L-LMW-SS EPA 200.7 JGP 3 PASI-K 60286214008 L-LMW-5S EPA 200.7 JGP 3 PASI-K 60286214009 L-LMW-6S EPA 200.7 JGP 3 PASI-K 60286214000 L-LMW-6S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-BS EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-BS EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K	60286214003	L-BMW-1S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214005 L-LMW-FB-1 EPA 200.7 JGP 3 PASI-K 60286214007 L-LMW-4S EPA 200.8 JDH 1 PASI-K 60286214008 L-LMW-5S EPA 200.8 JDH 1 PASI-K 60286214009 L-LMW-6S EPA 200.8 JDH 1 PASI-K 60286214009 L-LMW-6S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-BS EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214011 EPA 200.8 JDH 1 PASI-K 60286214011 EPA 200.8 JDH 1 PASI-K			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K	60286214004	L-BMW-2S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 L-LMW-4S EPA 200.7 EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214008 L-LMW-5S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214009 L-LMW-6S EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-8S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.7 JGP 3 PASI-K EPA 200.7 EPA 200.7 JGP 3 PASI-K EPA 200.7 EPA 2			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3	60286214005	L-LMW-FB-1	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214008 L-LMW-5S EPA 200.7 JGP 3 PASI-K 60286214009 L-LMW-6S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214018 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K 60286214018 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K 60286214018 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K	60286214007	L-LMW-4S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214009 L-LMW-6S EPA 200.7 JGP 3 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 3 PASI-K	60286214008	L-LMW-5S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214010 L-LMW-7S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K 60286214011 L-LMW-BS EPA 200.7 JGP 3 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.8 JDH 1 PASI-K 60286214017 EPA 200.8 JDH 1 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
EPA 200.7 JGP 3 PASI-K	60286214009	L-LMW-6S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 1 PASI-K EPA 200.8 JDH 3 PASI-K EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
60286214011 L-LMW-8S EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K	60286214010	L-LMW-7S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214017 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214018 L-LMW-2S EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
60286214017 L-LMW-DUP-1 EPA 200.7 JGP 3 PASI-K EPA 200.8 JDH 1 PASI-K 60286214018 L- LMW-2S EPA 200.7 JGP 3 PASI-K	60286214011	L-LMW-8S	EPA 200.7	JGP	3	PASI-K
EPA 200.8 JDH 1 PASI-K 60286214018 L- LMW-2S EPA 200.7 JGP 3 PASI-K			EPA 200.8	JDH	1	PASI-K
50286214018 L- LMW-2S EPA 200.7 JGP 3 PASI-K	60286214017	L-LMW-DUP-1	EPA 200.7	JGP	3	PASI-K
			EPA 200.8	JDH	1	PASI-K
EPA 200.8 JDH 1 PASI-K	60286214018	L- LMW-2S	EPA 200.7	JGP	3	PASI-K
			EPA 200.8	JDH	1	PASI-K

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-1S	Lab ID:	Collecte	d: 11/07/18	3 13:10	Received: 11/08/18 04:02 Matrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	180	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:02	7440-39-3	
Lithium	31.0	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:02	7439-93-2	
Molybdenum	6.1J	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:02	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	26.4	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:20	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-3S	Lab ID: 60286214002		Collecte	Collected: 11/07/18 15:30			Received: 11/08/18 04:02 Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	67.4	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:09	7440-39-3	
Lithium	19.6	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:09	7439-93-2	
Molybdenum	145	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:09	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.8	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:26	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-BMW-1S	Lab ID:	Lab ID: 60286214003		Collected: 11/07/18 10:00			Received: 11/08/18 04:02 Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	323	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:11	7440-39-3	
Lithium	17.3	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:11	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:11	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	38.5	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:33	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-BMW-2S	Lab ID:	60286214004	Collecte	d: 11/07/18	3 12:25	Received: 11/	08/18 04:02 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	287	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:13	7440-39-3	
Lithium	18.4	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:13	7439-93-2	
Molybdenum	1.9J	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:13	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.44J	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:35	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-FB-1	Lab ID: 60286214005		Collecte	Collected: 11/07/18 15:25			Received: 11/08/18 04:02 Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	<1.5	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:16	7440-39-3	
Lithium	<4.6	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:16	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:16	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	<0.065	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:37	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-4S	Lab ID: 60286214007		Collecte	Collected: 11/08/18 15:15			Received: 11/09/18 03:12 Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	150	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:50	7440-39-3	
Lithium	39.9	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 11:50	7439-93-2	
Molybdenum	83.2	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:50	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	18.8	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:35	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-5S	Lab ID:	60286214008	Collecte	d: 11/08/18	3 13:35	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	349	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:53	7440-39-3	
Lithium	9.6J	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 11:53	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:53	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.58J	ua/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:36	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-6S	Lab ID:	60286214009	Collecte	d: 11/08/18	3 12:25	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	387	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:55	7440-39-3	
Lithium	43.9	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 11:55	7439-93-2	
Molybdenum	25.6	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:55	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	25.8	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:37	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-7S	Lab ID:	60286214010	Collecte	d: 11/08/18	10:55	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	287	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:57	7440-39-3	
Lithium	37.9	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 11:57	7439-93-2	
Molybdenum	111	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:57	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	20.7	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:38	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-8S	Lab ID:	60286214011	Collecte	d: 11/08/18	3 09:15	Received: 11/	09/18 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	222	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 12:08	7440-39-3	
Lithium	30.9	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 12:08	7439-93-2	
Molybdenum	157	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 12:08	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	9.3	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:39	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L-LMW-DUP-1	Lab ID:	60286214017	Collecte	d: 11/08/18	8 08:00	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	222	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 12:11	7440-39-3	
Lithium	24.3	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 12:11	7439-93-2	
Molybdenum	156	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 12:11	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	9.2	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:40	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Sample: L- LMW-2S	Lab ID:	Collecte	d: 11/08/18	14:45	Received: 11/09/18 03:12 Matrix: Water				
Parameters	Results	Units	PQL .	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	34.4	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 12:13	7440-39-3	
Lithium	12.8	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 12:13	7439-93-2	
Molybdenum	97.5	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 12:13	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	36.9	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:41	7440-38-2	

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Date: 12/27/2018 12:23 PM

 QC Batch:
 554744
 Analysis Method:
 EPA 200.7

 QC Batch Method:
 EPA 200.7
 Analysis Description:
 200.7 Metals, Total

 Associated Lab Samples:
 60286214001, 60286214002, 60286214003, 60286214004, 60286214005

METHOD BLANK: 2275800 Matrix: Water

Associated Lab Samples: 60286214001, 60286214002, 60286214003, 60286214004, 60286214005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/20/18 20:58	
Lithium	ug/L	<4.6	10.0	4.6	11/20/18 20:58	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/20/18 20:58	

LABORATORY CONTROL SAMPLE:	2275801					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Lithium	ug/L	1000	951	95	85-115	
Molybdenum	ug/L	1000	980	98	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275802					2275803							
			MS	MSD								
	6	0286214001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	180	1000	1000	1140	1140	96	96	70-130	1	20	
Lithium	ug/L	31.0	1000	1000	981	966	95	94	70-130	1	20	
Molybdenum	ug/L	6.1J	1000	1000	971	961	96	95	70-130	1	20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275804					2275805							
Parameter	0 Units	60286215003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	ug/L	121	1000	1000	1100	1100	98	98	70-130	0	20	
Lithium	ug/L	25.0	1000	1000	977	980	95	96	70-130	0	20	
Molybdenum	ug/L	231	1000	1000	1220	1210	98	98	70-130	0	20	

MATRIX SPIKE SAMPLE:	2275806						
		60286215005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	500	1000	1460	96	70-130	
Lithium	ug/L	16.4	1000	973	96	70-130	
Molybdenum	ug/L	<0.90	1000	972	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Date: 12/27/2018 12:23 PM

QC Batch: 556667 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286214007, 60286214008, 60286214009, 60286214010, 60286214011, 60286214017, 60286214018

METHOD BLANK: 2283926 Matrix: Water

Associated Lab Samples: 60286214007, 60286214008, 60286214009, 60286214010, 60286214011, 60286214017, 60286214018

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/27/18 11:10	
Lithium	ug/L	<4.6	10.0	4.6	11/27/18 11:10	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/27/18 11:10	

LABORATORY CONTROL SAMPLE:	2283927					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	984	98	85-115	
Lithium	ug/L	1000	993	99	85-115	
Molybdenum	ug/L	1000	1010	101	85-115	

SAMPLE DUPLICATE: 2285840		60286318005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Barium	ug/L	83.7	83.7	0	20	
Lithium	ug/L	37.0	27.2	30	20	D6
Molybdenum	ug/L	547	520	5	20	

SAMPLE DUPLICATE: 2285841						
		60286318009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Barium	ug/L	431	425	2	20	
Lithium	ug/L	30.5	25.8	17	20	
Molybdenum	ug/L	1.8J	2.0J		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

 QC Batch:
 554584
 Analysis Method:
 EPA 200.8

 QC Batch Method:
 EPA 200.8
 Analysis Description:
 200.8 MET

 Associated Lab Samples:
 60286214001, 60286214002, 60286214003, 60286214004, 60286214005

METHOD BLANK: 2275036 Matrix: Water

Associated Lab Samples: 60286214001, 60286214002, 60286214003, 60286214004, 60286214005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 11/14/18 16:42

LABORATORY CONTROL SAMPLE: 2275037

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 40.2 101 85-115

MATRIX SPIKE SAMPLE: 2275038

Date: 12/27/2018 12:23 PM

60285994001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.4 70-130 40 38.6 93 Arsenic ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275039 2275040

MS MSD Max 60286214001 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result % Rec % Rec Limits RPD RPD Qual Result 2 Arsenic ug/L 26.4 40 40 58.4 57.3 80 77 70-130 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE LCPB / LCPA N&E Project:

Pace Project No.: 60286214

Date: 12/27/2018 12:23 PM

QC Batch: 555794 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

60286214007, 60286214008, 60286214009, 60286214010, 60286214011, 60286214017, 60286214018 Associated Lab Samples:

2280347 METHOD BLANK: Matrix: Water

Associated Lab Samples: 60286214007, 60286214008, 60286214009, 60286214010, 60286214011, 60286214017, 60286214018

> Blank Reporting

Limit MDL Parameter Units Result Analyzed Qualifiers Arsenic < 0.065 1.0 0.065 11/20/18 15:33 ug/L

LABORATORY CONTROL SAMPLE: 2280348

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 40.0 100 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2280349 2280350

ug/L

MS MSD 60286372001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 70-130 20 Arsenic ug/L 1.8 40 40 42.3 42.8 101 103

MATRIX SPIKE SAMPLE: 2280351 MS 60287127001 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.4 70-130 Arsenic 40 42.6 103

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 12/27/2018 12:23 PM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE LCPB / LCPA N&E

Pace Project No.: 60286214

Date: 12/27/2018 12:23 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60286214001	L-LMW-1S	EPA 200.7	 554744	EPA 200.7	554814
60286214002	L-LMW-3S	EPA 200.7	554744	EPA 200.7	554814
60286214003	L-BMW-1S	EPA 200.7	554744	EPA 200.7	554814
60286214004	L-BMW-2S	EPA 200.7	554744	EPA 200.7	554814
60286214005	L-LMW-FB-1	EPA 200.7	554744	EPA 200.7	554814
60286214007	L-LMW-4S	EPA 200.7	556667	EPA 200.7	556947
60286214008	L-LMW-5S	EPA 200.7	556667	EPA 200.7	556947
60286214009	L-LMW-6S	EPA 200.7	556667	EPA 200.7	556947
60286214010	L-LMW-7S	EPA 200.7	556667	EPA 200.7	556947
60286214011	L-LMW-8S	EPA 200.7	556667	EPA 200.7	556947
0286214017	L-LMW-DUP-1	EPA 200.7	556667	EPA 200.7	556947
0286214018	L- LMW-2S	EPA 200.7	556667	EPA 200.7	556947
0286214001	L-LMW-1S	EPA 200.8	554584	EPA 200.8	554713
60286214002	L-LMW-3S	EPA 200.8	554584	EPA 200.8	554713
0286214003	L-BMW-1S	EPA 200.8	554584	EPA 200.8	554713
60286214004	L-BMW-2S	EPA 200.8	554584	EPA 200.8	554713
0286214005	L-LMW-FB-1	EPA 200.8	554584	EPA 200.8	554713
60286214007	L-LMW-4S	EPA 200.8	555794	EPA 200.8	556335
60286214008	L-LMW-5S	EPA 200.8	555794	EPA 200.8	556335
0286214009	L-LMW-6S	EPA 200.8	555794	EPA 200.8	556335
0286214010	L-LMW-7S	EPA 200.8	555794	EPA 200.8	556335
0286214011	L-LMW-8S	EPA 200.8	555794	EPA 200.8	556335
0286214017	L-LMW-DUP-1	EPA 200.8	555794	EPA 200.8	556335
0286214018	L- LMW-2S	EPA 200.8	555794	EPA 200.8	556335

Sample Condition Upon Receipt

Client Name: Golder		
Courier: FedEx [] UPS [] VIA [] Clay []	PEX 🗆 ECI 🗆	Pace Xroads Client Other
Tracking #: Pa	ce Shipping Label User	d? Yes□ No Ø
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals intact: Yes	No E X5
Packing Material: Bubble Wrap Bubble Bags	,	None Other TOIC X 5
T	of Ice: Wet Blue No	N
Cooler Temperature (°C): As-read0.9/2.2 Corr. Fac		Date and initials of person
Temperature should be above freezing to 6°C 0.4/0.5/2.3	(5/0,6/2,4
Chain of Custody present:	AYes ONO ON/A	
Chain of Custody relinquished:	Yes ONO ON/A	
Samples arrived within holding time:	Ayes ONO ON/A	
	□Yes ØNo □N/A	
Short Hold Time analyses (<72hr):	,	·
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	ØYes □No □N/A	
Correct containers used:	Yes ONO ON/A	
Pace containers used:	Yes No N/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes ZNo □N/A	
Filtered volume received for dissolved tests?	□Yes No □N/A	
Sample labels match COC: Date / time / ID / analyses	Yes No N/A	:
Samples contain multiple phases? Matrix: WT	OYes No ONIA	
Containers requiring pH preservation in compliance?	Yes DNo DN/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	•	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes ØNo □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
Samples from USDA Regulated Area: State:	□Yes □No ØN/A	
Additional labels attached to 5035A / TX1005 vials in the field	-	
Client Notification/ Resolution: Copy COC t		Field Data Required? Y / N
Person Contacted: Date/		
Comments/ Resolution:		
Jam Churk		11/9/18
Project Manager Review:	Date	3.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Pace Analytical

		TER DRINKING WATER	OTHER					6028024	Residual Chlorine Pace Project No./ Lab I.D.	12	*	3N 892				SIU					300	SAMPLE CONDITIONS	> > >				(IV/	eived (Y/N eS dy SeS (Y, y) nes In	
	REGULATORY AGENCY	NPDES (GROUND WATER	UST RCRA	Site Location	STATE:	Requested Analysis Filtered (YIN)		(N/A)		RBP21 BP35 RD2		2,8PZU BP35 BP3				RBPZU BR3S BP3N			> > >		RBRZU BP3S BP3A	TIME	11.8.18 0402 1.0	2.3	0.5	9,0	7.A	u du	
1	L					Requeste	Z Z Z		Anslysis Test Metals* Chloride/Fluoride	1/1/		///				1/1	1//	7 7 7	1	D-1	1///	ACCEPTED BY / AFFILIATION	revely Das.						The desired on the
	:er			Jamie Church	9285	*	Preservatives		Other Methanol Na ₂ S ₂ O ₃ HCI HCI HHO3							1	1	1		N N	1	ACCEPTE	Houy 7	/				chody	
Invoice Information Attention:	Company Nr	Address:	Pace Quote Reference:	Paca Project	Pace Profile #				SAMPLE TEMP AT C # OF CONTAINERS Unpreserved P2SGA	1 2 7		1421				12 4	2 11	124	76 7		12/	TIME	SEL1 811				ATURE	LER: EncSchoon	
k@golder.com)				LCPB	OC #4)		COLLECTED	COMPOSITE END/GRAB	DATE	11/18 1310		14/18 1530				11/4/18 1310	015/18/13/10	N/7/18 1000	11/2 10 25		11/18 1525	HON DATE	14/11				SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	
Required Project information: Report To: Mark Haddock (mhaddock@golder.com)	ngram			Ameren Labadie EC LCPB	153-1406.0001E (COC #4)		COFI	COMPOSITE START	DATE													RELINQUISHED BY / AFFILIATION	Made				SAMPL		
Required Project information: Report To: Mark Haddock	Copy To: Jeffrey Ingram		Purchase Order No :	Project Name: Am	Project Number: 153		io leti)	등 valid codes i	s) BOOD XIATAM	WT G	WT G	WT G	WT G	WT	WT G	S TW	. WT G	WT G	WT G	WT G	WT G	RELINGU	and						
	way Drive, Ste 260	63021		Fax: 636-724-9323 P	Standard	*	Valid Matrix Co	DRINKINS WATER WASTER WASSE WATER PRODUCT SOL/SOLED OIL		L-LMW-1S	L-LMW-2S	L-LMW-3S	L-LMW-4S	L-LMW-5S	L-LMW-6S	- 57-7 C-12-1	-USN-7 88 11-WSD-	L-BMW-1S	L-BMW-2S	L-LMW-DUP-1	L-LMW-FB-1	ADDITIONAL COMMENTS	ct						
Required Client Information: Company: Golder Associates		Ballwin, MO 63021	o: maddock@golder.com	636-724-9191	Requested Due Date/TAT:		Section D Required Clent Information		SAMPLE ID (A-Z, 0-9 () Sample IDs MUST BE UNIQUE													ADDITIONA	TOTAL BUTTON HAB.						
Required Company:	A,ddress		Email To:	Phone:	Reque				# Mati	-	2	60	4	ю	9	7	00	on .	10	1	12		4. 0. 0.			Pa	ige 2	24 o	ſ

Sample Condition Upon Receipt

WO#:60286214

Client Name: Golder		
Courier: FedEx 🗆 UPS 🗆 VIA 🗆 Clay 🗀 P	EX 🗆 ECI 🗆	Pace □ Xroads ♥□ Client □ Other □
Tracking #: Pace	Shipping Label Used	d? Yes□ No.14)
Custody Seal on Cooler/Box Present: Yes △ No □	Seals intact: Yes 🗅	No □
Packing Material: Bubble Wrap □ Bubble Bags □	Foam □	None △ Other □
	Ice We Blue No	
Cooler Temperature (°C): As-read 2.7,2 cor. Factor Temperature should be above freezing to 6°C	or <u>+0.0</u> Correct	ted 2.7, 2.9 Date and initials of person 11/9
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	∑Yes □No □N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	Yes No N/A	Ferrous Iron
Rush Turn Around Time requested:	□Yes □N/O □N/A	
Sufficient volume:	ŊYes □No □N/A	
Correct containers used:	MYes □No □N/A	
Pace containers used:	Yes No N/A	
Containers intact:	Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No N/A	
Filtered volume received for dissolved tests?	□Yes □No 🐧N/A	
Sample labels match COC: Date / time / ID / analyses	es 🗆 No 🗆 N/A	
Samples contain multiple phases? Matrix:	□Yes 🐧No □N/A	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		
Cyanide water sample checks:	- A	
Lead acetate strip turns dark? (Record only)	□Yes □\No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ឯN/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Ti	ime:	
Comments/ Resolution:		
, 01 ,		11/9/18
Project Manager Review: Janu Chush	Dat	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT_All relevant fields must be completed accurately

Project Name 1957 1969	10 10 10 10 10 10 10 10	Golder Associates 13515 Barrett Parkway Drive, Ste 260	Section B Segured Project Information: Report To: Mark Haddock (mhaddock@golder.com) Copy To: Jeffrey Ingram		Section C Invoice information: Attention Company Name:		REGULATORY AGENCY	ENCY	of of ATTENNION OF ATTENDED	ů L
Process Proc	State Country Countr		Purchase Order No :	<u>a. a.</u>	ce Quote		3	Some march	OTHER	
10 10 10 10 10 10 10 10	SAME		Ameren Labadi		1	e Church				
Programmer Pro	August A			ů.			ı	OM OM		
	Search Color 1967 1960	Matrix Co	(4N)		- Araga	↑ND	nalysis Filtered (YIII)			
		N WATER V V V WATER V V V V V V V V V V V V V V V V V V V	of 200=0 Blev 692) = GOOPIN CO000 Blev 6922) = GYYP = GOOPIN Blev 6925) = GYYP = GOOPIN Blev 6925 Blev 692	WINDLE TEMP AT COLLECTION	I ⁵ 2O ⁴	Methanol Other Analysis Test 1 Relinity otal Phosphorus	erric Iron		**************************************	<u>-</u>
WT G	WT C		9			V V				
WT G	WT G		9	1445					35	000
WT G 17876750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WT G 11/8/18 123-50 1.1			1515						
WT G 128/1050 C	WT G 17670500 1 17670500 1 17670500 1 17670500 1 17670500 1 17670500 1 17670500 1 17670500 1 17670500 1 1767050 1 1767050 1 17670		8/11	200				PSN	BPSS	181
WT G 1055 LLLL LLLL <td< td=""><td>WT G 1055 LL L L L L L L L L L L L L L L L L L</td><td></td><td>9</td><td>2755</td><td></td><td></td><td></td><td></td><td></td><td>290-</td></td<>	WT G 1055 LL L L L L L L L L L L L L L L L L L		9	2755						290-
WT G L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L	WT G L L L L WT G L L L L WT G		U	(3)CC 01 92					-	8
WT G	WIT G NIME AND SIGNATURE S		-	(25.5 7.85				->	-	2001
WT G	WT G WT C				4		>	-	,	
WT G	WT G									
TELINOUISHED BY I AFFILIATION DATE TIME SAMPLE CONDITION CLOSE CONTROL CONTRO	WT G	1	9	1	-		2BP2U	13P3n		
5/60 chr 11/8/18 1735 White CIT post "19/18 03:12 8.7 4 4			RELINQUISHED BY / AFFILIATION	DATE	TIME	ACCEPTED BY / AFFILIATION			PLE CONDITION	
<u>ح</u>	DATE Signary Temp in Custody Custody Custody Custody Custody Custody Samples Inlact		5/60	100	735	Win CI pust	11/9/18 03:1	2.7		7
	DATE Signature of the state of		5			1/				7
	DATE Signature of the control of the					0				
	DATE Signature of Control of Cont									
	DATE Signed Tem Colored (Colored Colored Color		PRINT	lame of SAMPLER:		*		pavie	nstod:	ni sek (V/V)
np in an			SIGNAT	URE of SAMPLER:		DATE Signed		3954))))	dins:

Pace Analytical 119 114

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

710-900-500 1010 1003 18 10 Pace Project No./ Lab I.D. Samples Intact (V/V) DRINKING WATER SAMPLE CONDITIONS Coolet (Y/N) OTHER õ Ice (Y/N) Received on Page: Residual Chlorine (Y/N) Temp in "C GROUND 0 REGULATORY AGENCY RCRA TIME Requested Analysis Filtered (Y/N) STATE: Site Location DATE NPDES 180 ACCEPTED BY / AFFILIATION SOI Chloride/Fluoride/Sulfate Netals* N/A Analysis Test Other Methanol Jamie Church Preservatives Ua_sS_s6N HOSN HCI 9285 HNO [†]OS[₹]H - 2 3 Section C TIME Unpreserved 2 2 sadress: 世 1 5 # OF CONTAINERS 7 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 18/1 11/8/18 1515 11/8/11/8/1055 TIME SHAL 3//3/11 118/18 1335 11/8/11 1/2/1809K Report To: Mark Haddock (inhaddock@goider.com) COMPOSITE 8/18/1 DATE COLLECTED Ameren Labadie EC LCPB 153-1406.0001E (COC #4 OLL RELINQUISHED BY / AFFILIATION 0 DATE Section B Required Project Information: Jeffrey Ingram O O O O () () O O 0 () () SAMPLE TYPE (G=GRAB C=COMP) urchase Order No T\ WT TV. M W LM M W 5 EM 5 5 MATRIX CODE (see valid codes to left) roject Number Project Name: Copy To: Valid Matrix Codes
MATRIX CODE
DEPINIONS WATER DW
WATER WW
WATER WW
SOULSOULD SL
OIL OIL
OIL
TS 13515 Barrett Parkway Drive, Ste 260 Fax 636-724-9323 -LMW-DUP-1 L-LMW-FB-1 L-BMW-1S L-BMW-2S L-LIMW-4S L-LMW-6S L-LIMW-7S L-LMW-1S L-LMW-2S L-LMW-3S L-LMW-5S L-LMW-8S ADDITIONAL COMMENTS (A-Z, 0-9 / .-) Sample IDs MUST BE UNIQUE maddock@golder.com SAMPLEID Golder Associates Section A Required Client Information: 636-724-9191 Requested Due Date/TAT Section D mpany. Page 27 of 28 dress 10 -12 0 63 47 40 ~ 90 ග # MaTi

F-ALL-Q-020rev 08, 12-Oct-2007

mportant Note: By signing this form you are accepting Paces NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 10 days

SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

			WATER							Pace Project No./ Lab I.D.	00°		0101				010-1	100	Toll	012	-6110	W.				ון שכן	les li) dយខទូ
			DRINKING WATER	OTHER						Project N				١								SAMPLE CONDITIONS				1910	stod stod	aleas
-			200							Pace												SAM					DBVI A\Y)	909A 90l
			GROUND WATER		220	1			(N/Y) ər	Residual Chlorin		-		-	-	-	-	1	-		-	-				0	uj d	пэТ
_		GENCY	SROUN	PICER	3	25	(VIIV)					1										TIME						
		REGULATORY AGENCY	NPDES	UST	Site Location	STATE	sis Filtered															at An	7110					
		REG			Site		Requested Analysis Filtered (Y/N)	z z z	sn	Total Phosphor Ferric Iron Ferric Iron	111		///				/ / /			4	111		NO.					DATE Signed
			(Regu	2		Metals*	11		1	1	1	1	1	-		4	-	V. ACELLY	T. Darrier					DATE
					Jamie Church	9285	-	Preservatives X	13:	HCI Na ₂ S ₂ O ₃ Methanol Olher												NOTE OF THE PARTY	Accerted					
invoice information.	Attention:	Company Name:	Address:	Pace Quote	Pace Project Ja	100		n _q	Si	HNO ₃ Nopreserved # OF CONTAINER	11217		1 2 7				11217			171	1 2 1 1			1732				
										M TA 9M91 BJ9MA2	310		1530				1310	13.10	1000	125	17.75	200	DAIE	11/8/18		D SIGNATUR	of SAMPLER	
	haddock@golder com)				CPA N&E	(58)		COLLECTED	COMPOSITE	E E E	1 8/12/11		11/7/18				177/8			1		1118	1	(de)		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	
Л	(mhaddock@				Ameren Labadle EC LCPA N&E	Project Number: 153-1406.0001 (COC #5		COLLI	COMPOSITE START	TE					_		_		_	+	+		BY / AFFILIATION	100		SAMPLI		
HIUSHIEGHUM.	Haddock	Jeffrey Ingram		0.0	Ameren L	153-1406		(aw	oo≕o <u>a</u> ∧яอ=	and allowed and a second a second and a second a second and a second and a second and a second and a second a	9	5	0	9	Ø	9	O	O	g	Ø	o i	ŋ	RELINGUISHED BY	M.)			
Required Project Intorniation.	Report To: Mark Haddock (m	Copy To: Jeffre		Purchase Order No.	Project Name.	oct Number:		Ы	seboo bilev ess) BOOD XIATAM	WT	W	WT	TW.	W	WE	3-1 WT	1-1 WE	WT	TW	I.W.	W	RELI	de)			
ьем	Kep	-		Purc	T	Prog		Valid Matrix Codes	AATER ATER D	ያ <u>የ</u> የ የ ዩ	-15	-28	-3S	-4S	-58	-6S	- SM - MA- 182-	BS MW-MM	-18	-2S	JUP-1	FB-1	TS					
an:	Golder Associates	13515 Barrett Perkway Drive, Ste 260	Ballwin, MO 63021	maddock@golder.com	Fax 636-724-9323	T; Standard		ใจการเราตา		Sample IDs AUST BE UNIQUE	L-LMW-1S	L-LMW-2S	L-LMW-3S	L-LMW-4S	L-LMW-58	L-LMW-6S	SC-PARACI-1	SB WWW BS	L-BMW-1S	L-BMW-2S	L-LMW-DUP-1	L-LMW-FB-1	ADDITIONAL COMMENTS	e Mg Mn, K Na				
Required Cilent Information:			Ballwin, N		636-724-9191	Recuested Dum Date/TAT:		Section D Required Client Information		Sample IDs M													ADDI	*EPA 2007; Ba, Li Mo, Fe Mg Mn, K. Na *EPA 2008; As				
ednire	dempant.	ddiesa:		Emini To	Pitterie	Recuest				# M3T	-	2	60	4	10	10	7.	80	o	10	Ξ	12		EPA 2				

MEMORANDUM

DATE January 3, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – NOVEMBER 2018 - DATA PACKAGE 60286214R2

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a field duplicate RPD was not met, associated samples were qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Project	ny Name: Golder Associates Name: Ameren-Labadie-LMW- Vov 2018 er: T Goodwin	—> ———————————————————————————————————	Proje	ect Numbe	er: <u>JIngram</u> er: <u>1531406.0001B</u> e: <u>' ½//8</u>
Analytic Matrix: Sample L-LMW-	ory: Pace Analytical cal Method (type and no.): Metals 200.7&200.8, F Air Soil/Sed. Water Waste Names L-LMW1S, L-LMW-2S, L-LMW-3S, L-LMW DUP-1, L-LMW-FB-1, L-LMW-1S MS, L-LMW-1S MSD Please provide calculation in Comment areas of	☐ /-4S, L-L	, TDS 25	540C, pH L-LMW-68	S, L-LMW-7S, L-LMW-8S, L-BMW-1S, L-BMW-2S
	iformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	X			
b)	Sampling team indicated?	X			
c)	Sample location noted?	x			
d)	Sample depth indicated (Soils)?			x	
e)	Sample type indicated (grab/composite)?	x			Grab
f)	Field QC noted?	x			
g)	Field parameters collected (note types)?	\mathbf{x}			pH, Cond, Turb, Temp, DO, ORP, Flow, DTW
h)	Field Calibration within control limits?	X			
i)	Notations of unacceptable field conditions/perform	ances fro	om field le	ogs or field	d notes?
·	·		x		
j)	Does the laboratory narrative indicate deficiencies Note Deficiencies:			X	
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	x		П	
b)	Was the COC signed by both field		-	_	
,	and laboratory personnel?	X			
c)	Were samples received in good condition?	Image: Control of the			0.4/0.5/2.3/2.7/2.9
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?			X	
b)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?	X			
d)	Was the correct method used?	x			18
e)	Were appropriate reporting limits achieved?	x			
f)	Were any sample dilutions noted?		<u>I</u>		
g)	Were any matrix problems noted?		d		

Revised May 2004

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks	ş	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		Ø		
b)	Were analytes detected in the field blank(s)?		Ø		
c)	Were analytes detected in the equipment blank(s)?			x	
d)	Were analytes detected in the trip blank(s)?			\mathbf{x}	
Lobore	stom, Control County (LCC)	\/F0			
	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	,				
b)	Were the proper analytes included in the LCS?	团			
c)	Was the LCS accuracy criteria met?	Q			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample n	ames)?	Dup-1@ 85
					FB-1@ 3 \$
b)	Were field dup. precision criteria met (note RPD)?		□		L:(23.9)
c)	Were lab duplicates analyzed (note original and du	plicate s	samples)?	•	
		d			
d)	Were lab dup. precision criteria met (note RPD)?				L: (36)
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			x	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			X	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	1			COMMETALS
۵,	Recovery could not be calculated since sample	ت		_	
	contained high concentration of analyte?				
b)	Was MSD accuracy criteria met?				
	Recovery could not be calculated since sample contained high concentration of analyte?				
c)	Were MS/MSD precision criteria met?				-
Comm	ents/Notes:				
ili -					
		-			
		-			-

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier		Reason
L-LMW-85	Lithium (Li)	30.9)	RPD exceeded	limits: Result > MDL
L-LMW-85 L-LMW-DUP-1	11	24.3	7	1(1:mits; Result > MDL
				_	
					1
					\n_

Signature:	Town	A South		Date:	1/3/19	

Revised May 2004

December 28, 2018

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory between November 08, 2018 and November 10, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV-1, 12/28/18: L-BMW-1S and L-BMW-2S added. Metals list trimmed.

REV-2, 12/28/18: Reported trimmed to only report As, Ba, Li, Mo.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01

Arkansas Certification #: 18-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055
Nevada Certification #: KS000212018-1
Oklahoma Certification #: 9205/9935
Texas Certification #: T104704407-18-11
Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60286372001	L-TMW-1	Water	11/09/18 09:00	11/10/18 06:25
60286372002	L-TMW-2	Water	11/09/18 10:05	11/10/18 06:25
60286372003	L-TMW-3	Water	11/09/18 11:40	11/10/18 06:25
60286372004	L-MW-26	Water	11/09/18 12:45	11/10/18 06:25
60286372005	L-UWL-DUP-1	Water	11/09/18 09:00	11/10/18 06:25
60286372006	L-UWL-FB-1	Water	11/09/18 11:27	11/10/18 06:25
60286214003	L-BMW-1S	Water	11/07/18 10:00	11/08/18 04:02
60286214004	L-BMW-2S	Water	11/07/18 12:25	11/08/18 04:02

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60286372001	L-TMW-1	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286372002	L-TMW-2	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286372003	L-TMW-3	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286372004	L-MW-26	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286372005	L-UWL-DUP-1	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286372006	L-UWL-FB-1	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286214003	L-BMW-1S	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K
60286214004	L-BMW-2S	EPA 200.7	JGP	3	PASI-K
		EPA 200.8	JDH	1	PASI-K

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-TMW-1	Lab ID:	60286372001	Collecte	d: 11/09/18	09:00	Received: 11/	10/18 06:25 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	375	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:17	7440-39-3	
Lithium	40.3	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:17	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:17	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.8	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:42	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-TMW-2	Lab ID:	60286372002	Collecte	d: 11/09/18	3 10:05	Received: 11/	10/18 06:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	203	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:23	7440-39-3	
Lithium	43.7	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:23	7439-93-2	
Molybdenum	1.1J	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:23	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	2.0	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:47	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-TMW-3	Lab ID:	Lab ID: 60286372003		Collected: 11/09/18 11:40			Received: 11/10/18 06:25 Mar		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	313	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:26	7440-39-3	
Lithium	52.0	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:26	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:26	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	16.1	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:48	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-MW-26	Lab ID:	60286372004	Collected: 11/09/18 12:45			Received: 11/10/18 06:25 Matrix: Water				
Parameters	Results	Units	PQL .	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7				
Barium	186	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:28	7440-39-3		
Lithium	29.1	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:28	7439-93-2		
Molybdenum	1.1J	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:28	7439-98-7		
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8				
Arsenic	0.52J	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:49	7440-38-2		

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-UWL-DUP-1	Lab ID:	Lab ID: 60286372005		Collected: 11/09/18 09:00			Received: 11/10/18 06:25 Matrix		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	206	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:30	7440-39-3	
Lithium	45.4	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:30	7439-93-2	
Molybdenum	1.1J	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:30	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	2.2	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:50	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Date: 12/28/2018 11:07 AM

Sample: L-UWL-FB-1	Lab ID:	Lab ID: 60286372006			11:27	Received: 11/			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	<1.5	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:32	7440-39-3	
Lithium	<4.6	ug/L	10.0	4.6	1	11/26/18 18:00	11/27/18 14:32	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:32	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	<0.065	ug/L	1.0	0.065	1	11/20/18 10:02	11/20/18 15:51	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-BMW-1S	Lab ID:	Lab ID: 60286214003		Collected: 11/07/18 10:00			Received: 11/08/18 04:02 Mat		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	323	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:11	7440-39-3	
Lithium	17.3	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:11	7439-93-2	
Molybdenum	<0.90	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:11	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	38.5	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:33	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Sample: L-BMW-2S	Lab ID:	Lab ID: 60286214004		Collected: 11/07/18 12:25			Received: 11/08/18 04:02 Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	287	ug/L	5.0	1.5	1	11/12/18 18:25	11/20/18 21:13	7440-39-3	
Lithium	18.4	ug/L	10.0	4.6	1	11/12/18 18:25	11/20/18 21:13	7439-93-2	
Molybdenum	1.9J	ug/L	20.0	0.90	1	11/12/18 18:25	11/20/18 21:13	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.44J	ug/L	1.0	0.065	1	11/12/18 00:00	11/14/18 17:35	7440-38-2	

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Date: 12/28/2018 11:07 AM

QC Batch: 554744 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286214003, 60286214004

METHOD BLANK: 2275800 Matrix: Water

Associated Lab Samples: 60286214003, 60286214004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/20/18 20:58	
Lithium	ug/L	<4.6	10.0	4.6	11/20/18 20:58	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/20/18 20:58	

LABORATORY CONTROL SAMPLE:	2275801					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Lithium	ug/L	1000	951	95	85-115	
Molybdenum	ug/L	1000	980	98	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275802 2275803												
			MS	MSD								
	6	0286214001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	180	1000	1000	1140	1140	96	96	70-130	1	20	
Lithium	ug/L	31.0	1000	1000	981	966	95	94	70-130	1	20	
Molybdenum	ug/L	6.1J	1000	1000	971	961	96	95	70-130	1	20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275804 2275805												
			MS	MSD								
		60286215003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	121	1000	1000	1100	1100	98	98	70-130	0	20	
Lithium	ug/L	25.0	1000	1000	977	980	95	96	70-130	0	20	
Molybdenum	ug/L	231	1000	1000	1220	1210	98	98	70-130	0	20	

MATRIX SPIKE SAMPLE:	2275806						
_		60286215005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	500	1000	1460	96	70-130	
Lithium	ug/L	16.4	1000	973	96	70-130	
Molybdenum	ug/L	<0.90	1000	972	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Date: 12/28/2018 11:07 AM

QC Batch: 556876 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286372001, 60286372002, 60286372003, 60286372004, 60286372005, 60286372006

METHOD BLANK: 2284987 Matrix: Water

Associated Lab Samples: 60286372001, 60286372002, 60286372003, 60286372004, 60286372005, 60286372006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/27/18 13:48	
Lithium	ug/L	<4.6	10.0	4.6	11/27/18 13:48	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/27/18 13:48	

LABORATORY CONTROL SAMPLE:	2284988					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Lithium	ug/L	1000	989	99	85-115	
Molybdenum	ug/L	1000	1000	100	85-115	

MATRIX SPIKE SAMPLE:	2284989						
Parameter	Units	60286215023 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	82.2	1000	1060	98	70-130	
Lithium	ug/L	13.4	1000	987	97	70-130	
Molybdenum	ug/L	206	1000	1220	101	70-130	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	CATE: 228499	90		2284991							
			MS	MSD								
		60286372001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	375	1000	1000	1360	1360	99	98	70-130	0	20	
Lithium	ug/L	40.3	1000	1000	1040	1030	100	99	70-130	0	20	
Molybdenum	ug/L	<0.90	1000	1000	1020	1020	102	102	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE LCL1 / LCPA N&E Project:

Pace Project No.: 60286372

QC Batch: 554584 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286214003, 60286214004

METHOD BLANK: 2275036 Matrix: Water

Associated Lab Samples: 60286214003, 60286214004

Reporting Blank MDL Limit Qualifiers Parameter Units Result Analyzed

Arsenic < 0.065 1.0 0.065 11/14/18 16:42 ug/L

LABORATORY CONTROL SAMPLE:

Date: 12/28/2018 11:07 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 40.2 101 85-115

MATRIX SPIKE SAMPLE: 2275038

60285994001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.4 70-130 40 38.6 93 Arsenic ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2275039 2275040

2275037

MS MSD 60286214001 Spike Spike MS MSD MS MSD % Rec Max % Rec RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec Limits Qual 40 2 Arsenic ug/L 26.4 40 58.4 57.3 80 77 70-130 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Date: 12/28/2018 11:07 AM

QC Batch: 555794 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286372001, 60286372002, 60286372003, 60286372004, 60286372005, 60286372006

METHOD BLANK: 2280347 Matrix: Water

Associated Lab Samples: 60286372001, 60286372002, 60286372003, 60286372004, 60286372005, 60286372006

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Arsenic
 ug/L
 <0.065</td>
 1.0
 0.065
 11/20/18 15:33

LABORATORY CONTROL SAMPLE: 2280348

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 40.0 100 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2280349 2280350

MS MSD 60286372001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 70-130 20 Arsenic ug/L 1.8 40 40 42.3 42.8 101 103

MATRIX SPIKE SAMPLE: 2280351 60287127001 Spike MS MS % Rec

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Arsenic ug/L 1.4 40 42.6 103 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 12/28/2018 11:07 AM

PASI-K Pace Analytical Services - Kansas City

QUALITY CONTROL DATA CROSS REFERENCE TABLE

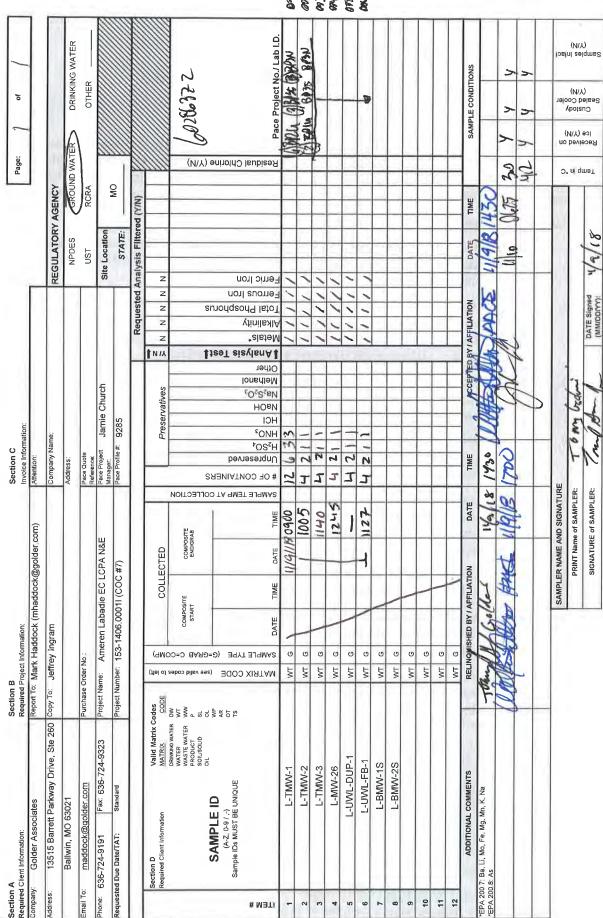
Project: AMEREN LABADIE LCL1 / LCPA N&E

Pace Project No.: 60286372

Date: 12/28/2018 11:07 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60286214003	L-BMW-1S	EPA 200.7	554744	EPA 200.7	 554814
60286214004	L-BMW-2S	EPA 200.7	554744	EPA 200.7	554814
60286372001	L-TMW-1	EPA 200.7	556876	EPA 200.7	556951
60286372002	L-TMW-2	EPA 200.7	556876	EPA 200.7	556951
60286372003	L-TMW-3	EPA 200.7	556876	EPA 200.7	556951
60286372004	L-MW-26	EPA 200.7	556876	EPA 200.7	556951
60286372005	L-UWL-DUP-1	EPA 200.7	556876	EPA 200.7	556951
60286372006	L-UWL-FB-1	EPA 200.7	556876	EPA 200.7	556951
60286214003	L-BMW-1S	EPA 200.8	554584	EPA 200.8	554713
60286214004	L-BMW-2S	EPA 200.8	554584	EPA 200.8	554713
60286372001	L-TMW-1	EPA 200.8	555794	EPA 200.8	556335
60286372002	L-TMW-2	EPA 200.8	555794	EPA 200.8	556335
60286372003	L-TMW-3	EPA 200.8	555794	EPA 200.8	556335
60286372004	L-MW-26	EPA 200.8	555794	EPA 200.8	556335
60286372005	L-UWL-DUP-1	EPA 200.8	555794	EPA 200.8	556335
60286372006	L-UWL-FB-1	EPA 200.8	555794	EPA 200.8	556335

Sample Condition Upon Receipt


\wedge 1.		
Client Name: Golde		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗀	Pace ☐ Xroads / Client ☐ Other ☐
Tracking #	ace Shipping Label Use	Other L
Custody Seal on Cooler/Box Present: Yes 🔼 No 🗆	Seals intact: Yes	
Packing Material: Bubble Wrap □ Bubble Bags		44
Thormometer III I 704	of Ice. Web Blue No	
Cooler Temperature (°C): As-read 30 42 Corr. Fac	tor LOO Comme	Date and initials of person.
Temperature should be above freezing to 6°C	conec	examining contents: USI(6)
Chain of Custody present:	MYes □No □N/A	
Chain of Custody relinquished:	Maryes □No □N/A	
Samples arrived within holding time:	ØYes □No □N/A	
Short Hold Time analyses (<72hr):	Yes No NA	Fe24
Rush Turn Around Time requested:	□Yes No □N/A	10
Sufficient volume:	Yes Ono On/A	
Correct containers used:	ØYes □No □N/A	
Pace containers used:	€Yes □No □N/A	
Containers intact:	Meres □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No DN/A	
Filtered volume received for dissolved tests?	□Yes □No M N/A	
Sample labels match COC: Date / time / ID / analyses	KYes □No □N/A	
Samples contain multiple phases? Matrix: MT	□Yes QNo □N/A	
Containers requiring pH preservation in compliance?		List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H₂SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cvanide)		date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
_ead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
rip Blank present:	□Yes □No MN/A	
leadspace in VOA vials (>6mm):	□Yes □No ØN/A	
Samples from USDA Regulated Area: State:	□Yes □No WN/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Copy COC to		Eller
Person Contacted: Date/Til		Field Data Required? Y / N
comments/ Resolution:	iic.	-
raiget Manager Paris		11/12/18
roject Manager Review:	Date:	-

8 3 3 3 3 8

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

rett Parkway Drive, Ste 260 0 63021 0 63021 200lder.com Par 636-724-9323 Standard Standard Normer WATRIX NORMER WASTE WATER WASTE WATER PRODUCT SOULSOULD OLL-TMW-2 L-TMW-2 L-	Section A Required C	Section A Required Client Information:	Section B Required Project Information:	Information:				Section C Invoice Information	mation:							Page:	-	of	
The Parkway Dive, Sie 250 Crop* 1/4 Colores Colore	Сотрап		Report To: Mark	Haddock (mhaddock@	golder.com		Attention:											
Part	Address		Copy To:	sy Ingram				Company No	ame:				REGUI	ATORY,	AGENCY				
The part		Ballwin, MO 63021						Address:					Ŗ	DES	/GROUNE) WATER		RINKING W	ATER
The Color The	Email To		Purchase Order N	: 0				Pace Quote Reference:					š	T	RCRA		J	THER .	
Paradead Properties Paradead Properties Paradead Properties Paradead Properties Paradead Properties Paradead	Phone:			Ameren La	badie EC LC	Ë		Pace Project Manager:		Church			Site Lo	cation	2				
SAMPLE ID LETTING OF STATE ID	Request		Project Number.	153-1406 (3001F (COC	(9#		Pace Profile #					·,	TATE:					
A												Requeste	d Analysi	s Filtered	(A/A)				
SAMPLE ID CALCAST-			code	(aw	COLLE	CTED			Preserv	ratives		z							
Chicago Control Chicago Chic		DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID	DW WT WWW SL		MPOSITE	COMPOSITE					1	-Sulfate				(N/A)			
L-TMW-1	# W		TS TT	MPLE TYPE (G=C			DO TA 9MBT BJ9M	breserved) (10°3	cO _s O _s lonarite	haalysis Test	loride/Fluoride				ssidual Chlorine			
L-TMW-2	311		4M	+	+	DATE	_	ın -	H C	N N	1	CP			ļ	Ы	Pace Pr	oject No/	Lab I.D.
L-TMAV-2	-	L-TMW-1	Ŋ	g		10/16/	2002	4	-		T	1	-	-		ļ			
L-IMW-36	2	L-TMW-2	TW	O		9	50				T								
L-UML-EB-1	က	L-TMW-3	TW	g			9												
L-UML-FB-1	4	L-MW-26	TW	O			522	>											
L-BMW-1S WT C L-BMW-2S WT C WT C	ĸ	L-UWL-DUP-1	TW	g			1	7											
L-BMW-1S	ø	L-UWL-FB-1	TW	ŋ		1	12)	-1	-/		-	4							
L-BMW-2S wit c wit c with c with c with c with c with c with comments relationships of amples of samples. The conditions someter name of samples. The conditions someter was signature of samples. The conditions someter was signature of samples.	7	L-BMW-1S	TW	9															
WIT G WIT G WIT G WIT G ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS Ca SAMPLER INFO CONDITIONS SAMPLER NAME AND SIGNATURE FRUIT Name of SAMPLER: FRUIT Name of SAMPLER: FRUIT Name of SAMPLER: FRUIT NAME OF CONDITIONS SAMPLER: FRUIT NAME OF CONDITIONS SAMPLER NAME AND SIGNATURE FRUIT NAME OF SAMPLER: FRUIT NAME O	80	L-BMW-2S	TW	ŋ															
WIT G WI	6		TW	g										3			۱		
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLE	10		TW.	U															
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY IAFFILLATION DATE TIME SAMPLE CONDITIONS Ca SAMPLE RONDITIONS Ca SAMPLE RONDITIONS SAMPLER CONDITIONS SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: TEMPORALISM (IMMDDIVING) SAMPLER CONDITIONS SAMPLER TIME THE ACCEPTED BY IAFFILLATION DATE SIGNATURE SAMPLER CONDITIONS SAMPLER TIME SAMPLER CONDITIONS SAMPLER TIME SAMPLER CONDITIONS SAMPLER CONDITIONS SAMPLER TIME SAMPLER CONDITIONS SAMPLER TIME SAMPLER CONDITIONS SAMPLER TIME SAMPLER	1		₩	g												1			
ADDITIONAL COMMENTS RELINGUISHED BY JAFFILLATION DATE TIME THE TIME THE THE THE THE THE THE THE T	12		₩	_o															
Ca 1/4/16 14-50		ADDITIONAL COMMENTS	RELII	NOUISHED E	Y / AFFILIATIO	NC	DATE	TIME	, 1 a.	, MASGEP)	PEP BY ! A	VEFILIATION		DATE	TIME		SAMPLE	CONDITIONS	
Samples inlect Samples inlect Samples inlect Samples inlect	'EPA 20	00.7: B, Ca	1	the de	12/20		81/2/11	1430	1	TANK TO THE PERSON TO THE PERS	100	PAS	111 2	11181	de				
Samples Infact Cualody Received on Temp in °C Received on (V:N) (W:N) (W:N)			(VICTORY	THE WAY	J TH	7.0	0	701		7	1	1	=	BIVI	25				
DATE Signed Temp In °C Received on Ice (V/V) Custody Sealed Cooler (Y/V) Sealed Cooler (Y/V)			1							1/6			=	1	***	ッデ	70		
DATE Signed Temp in °C Gualody Geseled Cooler (PVN) (IMMDD/PVH) (PVN)										Λ						Ŧ	F		
DATE Signed (MMDD/RY) (MMDD/RY) Samples I					SAMPLEF	R NAME AND	SIGNATUR	נען									(1)	16[00	nlaci
DATE Signed (MANDDATCH)					O.	RINT Name o	SAMPLER	7	Samuel	Gans	J						1/X) e:	O bai	(N/N)
					un un	SIGNATURE o	f SAMPLER:		M	K		DATE Signe	6	20			oj	lse2	твг

Sample Condition Upon Receipt

Client Name: Golder		
Courier: FedEx [] UPS [] VIA [] Clay []	PEX 🗆 ECI 🗆	Pace Xroads Client Other
Tracking #:	ace Shipping Label Use	d? Yes □ No D
Custody Seal on Cooler/Box Present: Yes D No D	Seals intact: Yes	h No (1 x 5'
Packing Material: Bubble Wrap Bubble Bags	,	None Other & TOIC X 5
-	of Ice: Wet Blue No	
Cooler Temperature (°C): As-read 0.9/2.2 Corr. Fa		Data and initials of norsen
Temperature should be above freezing to 6°C 0.4 0.5 2.3		0.5/0.6/2.4
Chain of Custody present:	AYes ONO ON/A	
Chain of Custody relinquished:	Yes ONO ON/A	
Samples arrived within holding time:	Yes ONO ON/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	Yes ONO ON/A	
Pace containers used:	Yes ONO ON/A	
Containers intact:	✓Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes ☑No □N/A	
Filtered volume received for dissolved tests?	□Yes No □N/A	
Sample labels match COC: Date / time / ID / analyses	Yes DNo DN/A	
Samples contain multiple phases? Matrix: WT	DYes No DN/A	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes ZNo □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ☑N/A	
Samples from USDA Regulated Area: State:	□Yes □No ØN/A	
Additional labels attached to 5035A / TX1005 vials in the fiel	Id? DYes DNo ZNIA	
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
Person Contacted: Date	/Time:	
Comments/ Resolution:		
		14/0/49
Jam Churk		11/9/18
Project Manager Review:	Dat	e:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Pace Analytical

Golder Associates 13515 Barrett Parkway Drive, Ste 260 FC	Kepart 10: Mark Haddock Copy To: Jeffrey Ingram	Report To: Mark Haddock (mhaddock@golder.co Copy To: Jeffrey Ingram	der.com)	Attention: Company NFT	jej.	LL	REGULATO	REGULATORY AGENCY		
				Address:			NPDES	GROUND WATER	h	DRINKING WATER
maddock@golder.com Pr	Purchase Order No :			Pace Quote			LIST	RCRA	OTHER	α.
Fax: 636-724-9323 Pr	Project Name: Amere	Ameren Labadie EC LCPB		Paca Project	Jamie Church		Site Location	L		
Standard	Project Number: 153-14	153-1406.0001E (COC #4)		Pace Profile #:	9285		STATE	OW I		
						Requeste	Requested Analysis Filtered (Y/N)	ered (Y/N)		
	(fiel to	COLLECTED	Q		Preservatives	Z Z Z				
SAMPLE ID SAMPLE 10 OLL WASTEWATER DAY WASTEWATER DAY SOLUSOUGT OLL WASTEWATER DAY SOLUSOUGT OUT OUT OUT OUT OUT OUT OUT		COMPOSITE CO	COMPOSITE ENDYGRAB		and the second s	↓ tesT and test test test test test test test tes	- Alts	(V\Y) əninolr	6028024	7
	OO XIRTAM AYT BJAMAS	DATE TIME DATE	E E	# OF CONT. Unpreserve # SO	Other Methanol Na ₂ S ₂ O ₃ HCI HUO ₃	siaylan A ↓ Vetals*		 ⊃ IsubisəЯ	Pace Proje	Pace Project No./Labi.D.
L-LMW-1S	WT 6	81/4 ₁₁	1310	12 5		111	R8P2U	RP25 RD2		160
L-LMW-2S	WT								•	
L-LMW-3S	WT G	811/18	18 1536	1 2 1	V	111	288211	RPBS BA3N		208
L-LMW-4S	WT G									
L-LMW-5S	WT G									
L-LMW-6S	WT G									
1-5M-7-7-112-1	WT G	81/4/1	18 310	12 4		111	28P2U	BR3S BP3N	ſ	
-USM-788- 4-MSD-	WT G	21/17/11	Comp	12 11	1	1//	-	-		
L-BMW-1S	WT G	81/5/11	_	124	1	1 1 1				800
L-BMW-2S	WT G	761	-	127		1//	>	> >		heo
L-LMW-DUP-1	WT G				1					,
E-LMW-FB-1	WT G	3/14/11	1525	12h	1	1//	2.8 P.Z.U	8P35 BP31	>	000
ADDITIONAL COMMENTS	RELINQUISH	RELINQUISHED BY / AFFILIATION	DATE	TIME	ACCEPTE	ACCEPTED BY / AFFILIATION	DATE	TIME	SAMPLE CONDITIONS	UDITIONS
	and ha	Made	81/2/11	Stil	Houy 7.	rolu Das.	11.8.18	04021.0	>-	>-
								0,5		
		SAMPI ER NAME AN	HALLANDIS ONE HA	'n			_	0.00	7	7
		PRINT Name	Name of SAMPLER:	En Silva	Land of			D3 W C	(N/Y) (BeS y	sini se (N/
				-	11.11	DATE Signed		tula T	eol:	

Sample Condition Upon Receipt

WO#: 60286214

Client Name: Golder		
Courier: FedEx □ UPS □ VIA □ Clay □ P	EX 🗆 ECI 🗆	Pace □ Xroads ♥□ Client □ Other □
Tracking #: Pace	Shipping Label Used	d? Yes□ No ဩ
Custody Seal on Cooler/Box Present: Yes △ No □	Seals intact: Yes 🗅	No □
Packing Material: Bubble Wrap □ Bubble Bags □	Foam □	None △ Other □
	lce We Blue No	
Cooler Temperature (°C): As-read 2.7,2 corr. Facto	r +0.0 Correct	ted 2.7, 2.9 Date and initials of person 11/9
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	Yes □No □N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	Yes No N/A	Ferrous Iron
Rush Turn Around Time requested:	□Yes □N/O □N/A	
Sufficient volume:	Yes ONo ON/A	
Correct containers used:	Yes ONo ON/A	
Pace containers used:	Yes ONo ON/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No dN/A	
Sample labels match COC: Date / time / ID / analyses	es 🗆 No 🗆 N/A	
Samples contain multiple phases? Matrix: LIT	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	'	date/unic added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □\No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Ycs □No	
Trip Blank present:	□Yes □No ŪN/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field? Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Ti		
Comments/ Resolution:		
		11/9/18
Project Manager Review: Janu Churk	Date	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT_All relevant fields must be completed accurately

		Required Project Information:	Constitution Colonial		invoice information.	stion:			Г			-		
	Golder Associates	Report 19: Mark Haddock (mhaddock@golder.com)	mnaddock@golder.cc		Andrew!									
	13515 Barrett Parkway Drive, Ste 260	Copy To: Jeffrey Ingram			Company Name	ن <u>ا</u>			REGULA	REGULATORY AGENCY	NCY	0		
	Bailwin, MO 63021				Address:				NPDES	1	SHOODIND WATER	ER	DRINKING WATER	VATER
Edidal so.	maddock@qolder.com	Purchase Order No :			Pace Quote Reference:				UST	Ri:	1	\	OTHER	
Phone: 636-724-9191	Fax: 636-724-9323	Project Name: Ameren Labadi	padie EC LCPA N&E			Jamie Church			Site Location	noite				
Requested Due Date/TAT:	Standard	Project (Number: 153-1406 0001)	0011 (COC #5)		## ##	9285			STA	STATE:	MO			
								Requested	Requested Analysis Filtered (YIN)	-iltered (YR	11			
Section D Required C	Valid Matrix C	CODE (Mal of	COLLECTED			Preservatives	 ↑N/A	z z	z					
	MATER WATER WASE WATER PREDUCT PREDUCT SOUGSOURS	Seboo bilev e	CCMPCSITE COMPCSITE START			2000	1	9			(N/Y)			
	SAMPLE ID OIL (A-Z. 0-9.1) Sample IDs MUST BE UNIQUE	48321		E TEMP AT CC		°O	lysis Test	nity Phosphorus	a. Iron Iron		eninolhO leu			
(TEM #			TIME DATE	I I I I I I I I I I I I I I I I I I I	Unpre H ₂ SQ,	Merna Na ⁵ 2 ⁵ NaOH HCI HNO ³	Olher		oinea		Resid	Pace	Pace Project No./ Lab f.D.	./ Lab I.D.
1	L-LMW-1S	WT G												
2	L-LMW-2S	WT G	11/8/11	1445	17 4				28	2BP24	8830	6P3S	S	900
63	L-LMW-3S	WT 6		1515							-			
4	L-LMW-4S	WT G	8//8/11	19.70 19.70	17 4				7	213821	0	PSN B	BP3S	181
ın.	L-LMW-5S	WTG	1133	1827.20										200-
9	L-LMW-6S	WT G	921	C3CC 01 921									_	189
7	L-LMW-7S	WT G		1055									4	010-
60	L-LMW-8S	WE G	1	09.15	117					۷	>		>	10
6	L-BMW-1S	WT G	_											
10	L-BMW-2S	W			_				9		1			(
11	L-LMW/-DUP-1	WI G	8//8/18	1	7 7	1			7	213 P Z L	132	30	323	2 101
12	L-LMW-FB-1	WT G					T)							
	ADDITIONAL COMMENTS	RELINQUISHED BY ! A	Y I AFFILIATION	DATE	TIME	ACCEP	TED BY ! A	ACCEPTED BY / AFFILIATION	DATE	TE TIME	ш	SAMP	SAMPLE CONDITIONS	NS
A 200 7: Ba, A 200 8: As	EPA 200 7: Ba, U. Mo, Fe Mg, Mn, K, Na EPA 200 8: As	all salles !	Cotter	51/8/11	1735	The second	3	Loca 1	6/11	118 03:12	0)	5	5	5
)				1	1	,			2.9	7	٦	5
						0								
			SAMPLER NAME AND SIGNATURE	ND SIGNATURE	,,,						0		ocjet jà	เอยเบ
			PRINT Nam	PRINT Name of SAMPLER:							u du	oevie: IV) e:	instod (V/V)	l səlq (M/Y)
			SIGNATURE	SIGNATURE of SAMPLER:				DATE Signed			ЭŢ		eas S	ms2

Pace Analytical 119 114

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

710-900-500 1010 1003 18 10 Pace Project No./ Lab I.D. Samples Intact (V/V) DRINKING WATER SAMPLE CONDITIONS Coolet (Y/N) OTHER õ Ice (Y/N) Received on Page: Residual Chlorine (Y/N) Temp in "C GROUND 0 REGULATORY AGENCY RCRA TIME Requested Analysis Filtered (Y/N) STATE: Site Location DATE NPDES 180 ACCEPTED BY / AFFILIATION SOI Chloride/Fluoride/Sulfate Netals* N/A Analysis Test Other Methanol Jamie Church Preservatives Ua_sS_s6N HOSN HCI 9285 HNO [†]OS[₹]H - 2 3 Section C TIME Unpreserved 2 2 sadress: 世 1 5 # OF CONTAINERS 7 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION 11/8/18 DATE 11/8/18 1515 11/8/11/8/1055 TIME SHAL 3//3/11 118/18 1335 11/8/11 1/2/1809K Report To: Mark Haddock (inhaddock@goider.com) COMPOSITE 8/18/1 DATE COLLECTED Ameren Labadie EC LCPB 153-1406.0001E (COC #4 OLL RELINQUISHED BY / AFFILIATION 0 DATE Section B Required Project Information: Jeffrey Ingram O O O O () () O O 0 () () SAMPLE TYPE (G=GRAB C=COMP) urchase Order No T\ WT TV. M W LM M W 5 EM 5 5 MATRIX CODE (see valid codes to left) roject Number Project Name: Copy To: Valid Matrix Codes
MATRIX CODE
DEPINIONS WATER DW
WATER WW
WATER WW
SOULSOULD SL
OIL OIL
OIL
TS 13515 Barrett Parkway Drive, Ste 260 Fax 636-724-9323 -LMW-DUP-1 L-LMW-FB-1 L-BMW-1S L-BMW-2S L-LIMW-4S L-LMW-6S L-LIMW-7S L-LMW-1S L-LMW-2S L-LMW-3S L-LMW-5S L-LMW-8S ADDITIONAL COMMENTS (A-Z, 0-9 / .-) Sample IDs MUST BE UNIQUE maddock@golder.com SAMPLEID Golder Associates Section A Required Client Information: 636-724-9191 Requested Due Date/TAT Section D mpany. Page 26 of 27 dress 10 -12 0 63 47 40 ~ 90 ග # MaTi

F-ALL-Q-020rev 08, 12-Oct-2007

mportant Note: By signing this form you are accepting Paces NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 10 days

SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

Section A Required Client Information:		Section B Required Project Information:	oct Inform	nation:					Invoice Info	Invoice Information:	إ			1		Г			Page	-	\$	_
Company Golder Associates	intes	Report To: Mark Haddock	r Had		(mhaddock@golder com)	golder c	om)		Attention						Н							
Address: 13515 Barrell	13515 Barrett Perkway Drive, Ste 260	Copy To:	Jeffrey Ingram	gram					Company Name:	лаше:						REGI	JLATOR	REGULATORY AGENCY	7			
Ballwin, MO 63021	33021								Address								NPDES	ORO.	GROUND WATER	3	DRINK	DRINKING WATER
Email To: maddock@golder.com	older.com	Purchase Order No.	r 140.						Pace Quote	بد.							UST	RCRA			OTHER	
Piteter 636-724-9191	Fax 636-724-9323	Project Name.	Ame	Ameren Labad	abadle EC LCPA N&E	PA N&E			Pace Proj. Manager:		Jamie Church	urch				Site	Site Location	2	OM.			
Requested Dun Date/TAT:	Stondard	Project Number: 153-1406	r. 153-	1406.0001	00011 (000 報	10			Pace Profile #:	le#: 9285	85						STATE:					
												1		Req	neste	Analy	Requested Analysis Filtered (Y/N)	ed (Y/W)				
Section D Required Cilent Information		CODE	-		COLLECTED	стер				Pre	Preservatives	ves	↑N/A	z	z	2						
	PANKING WATER WASTE WATER PRODUCT PRODUCT SOUGSOUR	Seboo bilev		COMPOSITE	2	COMPOSITE	RAB	ггеслои			N.III		1						(N/Y)			
SAMPLE ID (A-Z. 0-9.1.7) Sample IDs MUST BE UNIQUE		2 % C 5.	e=e) Bakı					OD TA 9M91	REPSINERS		+5 - -		ļ tesT eis≀		snjoydsou				eninolhO le			
# M∋T		XIATAM		DATE	T.W.	₩ Q	TIME	∃ J⊲IMAS	# OF CC	HNO ³	N®OH HCI	O _s S _s bN nsdtaM	¶ ¥ugl ì	Metals* Alkalinii	Iq lejoT	Ferric II			Residu	Pac	e Projeci	Pace Project No./ Lab I.D.
-	L-LMW-1S	TW	0	-		8/12/1	1310		7 17	117				11	/	1						CD-
	L-LMW-2S	₩																				
60	L-LMW-3S	Ŀψ	o F	_		8/11/11	1530		7	1 1 7				1	-	7			1			10
4	L-LMW-4S	EW.	დ 																			
22	L-LMW-58	W	9										1	1			1		+			
48	L-LMW-6S	WI	9										T									
7.	,	1 - 5/1 - UM	o E			= 17-1/8			7 17	-			T			\	1		+			Clo-1
8	THAM BE THE	MW-MX)-1 WT	() [12.5						T		1	-	1					1
6	L-BMW-1S	WT	0		1	-	1000		-				1				+		+			1
10	L-BMW-2S	TW.	O E		_	4	123		1	1			T	1		1			+			10
11	L-LMW-DUP-1	EW.	ڻ ات		+	1							T			-	1		+			
12	L-LMW-FB-1	W	ڻ اس		1	17/18	₹.	_	7	1 17			-						1			101
ADDITION	ADDITIONAL COMMENTS	RE	RELINQUISHED		BY ! AFFILIATION	NO	DATE	Ē	TIME	ш		ACCEP	ACCEPTED BY / AFFILIATION	/ AFFIL	IATION		DATE	TIME		SAM	SAMPLE CONDITIONS	SNOILIO
*EPA 200 7; Ba, Li Mo, Fe Mg Mn, K Na *EPA 200 8; As	Mn, K Na	de	B	N.	00	de	11/3	2/18	173	N												
)		5																		
					SAMPLE	RNAME	SAMPLER NAME AND SIGNATURE	ATURI											ο,	10 U	oolet }	าวเก
					-	RINT Nar	PRINT Name of SAMPLER:	PLER											uj du	6 (XI)	ustod ed Cc (VV)	(A/A) bles l
				Ç		SIGNATUR	SIGNATURE of SAMPLER:	PLER:						DAT (MM)	DATE Signed (MM/DD/YY):	v			θŢ	ว9A วไ	D D	
													1									

MEMORANDUM

DATE January 7, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – NOVEMBER 2018 – CCR – DATA PACKAGE 60286372R2

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

■ When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Project	ny Name: Golder Associates Name: Ameren - LULI - NHE	Joy 2018	Proj	ect Numb	ger: <u>J Ingram</u> per: <u>1531406</u> te: <u>1/7/19</u>
Analytic Matrix: Sample	tory: _Pace Analytical cal Method (type and no.): _Methods/200.7 + 200.8 Air _ Soil/Sed Water _ Waste Names _L-Tmw-1, L-Tmw-2, L-Tmw-3, L- mw-25				1288372,2 L-UWL-DUP-1, L-UWL-FB-1, L-BMW-
NOTE:	Please provide calculation in Comment areas of	or on the	back (if	on the ba	ack please indicate in comment areas).
Field Ir	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	X			14+149/18
b)	Sampling team indicated?	X			
c)	Sample location noted?	\mathbf{x}			
d)	Sample depth indicated (Soils)?			x	
e)	Sample type indicated (grab/composite)?	x			Grab
f)	Field QC noted?	x			
g)	Field parameters collected (note types)?	\mathbf{x}			pH, Cond, Turb, Temp, DO, ORP, Flow, DTV
h)	Field Calibration within control limits?	X			
i)	Notations of unacceptable field conditions/perform	nances fro	om field le	ogs or fiel	ld notes?
			\mathbf{x}		
j)	Does the laboratory narrative indicate deficiencies Note Deficiencies:			x	
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	X			
b)	Was the COC signed by both field	FE 1	5	_	
c)	and laboratory personnel? Were samples received in good condition?	X X			
Genera	il (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?			X	
b)	Were hold times met for sample analysis?	Ø			
c)	Were the correct preservatives used?	X			MI F
d)	Was the correct method used?	x			1
e)	Were appropriate reporting limits achieved?	x			
f)	Were any sample dilutions noted?		Ø		
g)	Were any matrix problems noted?		'		

Revised May 2004

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blank	S	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		ø		
b)	Were analytes detected in the field blank(s)?		Ø		
c)	Were analytes detected in the equipment blank(s)?			x	
d)	Were analytes detected in the trip blank(s)?			x	
Labor	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	X			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	Ø			
		·			
Duplio		YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	-	<u> </u>		Dup-1@ /-Tnw-2
		\Box			FB-1@ 2-TMV-3
b)	()	Ø	Ш		
c)	Were lab duplicates analyzed (note original and du			_	- X
		X			
d)	Were lab dup. precision criteria met (note RPD)?	Ø			
Blind	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,	П		\mathbf{x}	3 SIMMENTO
,	analytes included and concentrations)?			لما	
b)				X	
,				LI	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	$\not\Box$			
	Recovery could not be calculated since sample contained high concentration of analyte?	<i>'</i>		X	
b)	Was MSD accuracy criteria met?	$\not\square$			
	Recovery could not be calculated since sample contained high concentration of analyte?	<i>'</i>		x	
c)	Were MS/MSD precision criteria met?	\not			
		,			
Comm	ents/Notes:				
				A	
			79.27		
4					

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None -				
				9
-				
(Speeds)				
			_	
			-	
	[] [] []			

Revised May 2004

December 05, 2018

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory between November 09, 2018 and November 10, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates John Suozzi, Golder Associates

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090

Arkansas Drinking Water
WY STR Certification #: 2456.01

Arkansas Certification #: 18-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-18-11

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

Utah Certification #: KS000212018-8

SAMPLE SUMMARY

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60286318001	L-TP-1S	Water	11/08/18 14:40	11/09/18 03:12
60286318002	L-TP-1M	Water	11/08/18 14:00	11/09/18 03:12
60286318003	L-TP-1D	Water	11/08/18 13:10	11/09/18 03:12
60286318004	L-TP-3M	Water	11/08/18 10:40	11/09/18 03:12
60286318005	L-TP-3D	Water	11/08/18 09:45	11/09/18 03:12
60286318006	L-TP-4S	Water	11/08/18 11:10	11/09/18 03:12
60286318007	L-TP-4M	Water	11/08/18 10:35	11/09/18 03:12
60286318008	L-TP-4D	Water	11/08/18 09:40	11/09/18 03:12
60286318009	L-TP-5S	Water	11/08/18 13:50	11/09/18 03:12
60286318010	L-TP-5M	Water	11/08/18 13:15	11/09/18 03:12
60286318011	L-TP-5D	Water	11/08/18 12:25	11/09/18 03:12
60286318012	L-NE-DUP-1	Water	11/08/18 08:00	11/09/18 03:12
60286318013	L-NE-DUP-2	Water	11/08/18 08:00	11/09/18 03:12
60286318014	L-NE-FB-1	Water	11/08/18 10:30	11/09/18 03:12
60286318015	L-NE-FB-2	Water	11/08/18 13:00	11/09/18 03:12
60286318016	L-TP-3S	Water	11/08/18 11:20	11/09/18 03:12
60286318017	L-TP-2S	Water	11/09/18 10:10	11/10/18 06:25
60286318018	L-TP-2M	Water	11/09/18 10:50	11/10/18 06:25
60286318019	L-TP-2D	Water	11/09/18 09:40	11/10/18 06:25

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60286318001	L-TP-1S	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318002	L-TP-1M	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318003	L-TP-1D	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB, WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318004	L-TP-3M	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318005	L-TP-3D	EPA 200.7	JGP	13	PASI-K

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318006	L-TP-4S	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318007	L-TP-4M	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318008	L-TP-4D	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60286318009	L-TP-5S	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318010	L-TP-5M	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318011	L-TP-5D	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318012	L-NE-DUP-1	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB, WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318013	L-NE-DUP-2	EPA 200.7	JGP	13	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB, WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318014	L-NE-FB-1	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318015	L-NE-FB-2	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318016	L-TP-3S	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	LDB, WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318017	L-TP-2S	EPA 200.7	JGP	13	PASI-K
			JDH		PASI-K

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318018	L-TP-2M	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K
0286318019	L-TP-2D	EPA 200.7	JGP	13	PASI-K
		EPA 200.8	JDH	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	RLG	1	PASI-K
		SM 3500-Fe B#4	ZMH	1	PASI-K
		SM 3500-Fe B#4	RMT	1	PASI-K
		EPA 300.0	WNM	3	PASI-K
		EPA 365.4	BLA	1	PASI-K

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-1S Lab ID: 60286318001 Collected: 11/08/18 14:40 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF Results Units Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 355 5.0 1.5 11/12/18 18:25 11/20/18 22:00 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/12/18 18:25 11/20/18 22:00 7440-41-7 12.5 Boron 105 ug/L 100 1 11/12/18 18:25 11/20/18 22:00 7440-42-8 Calcium 152000 ug/L 200 53.5 11/12/18 18:25 11/20/18 22:00 7440-70-2 1 Cobalt 11/20/18 22:00 7440-48-4 < 0.87 ug/L 5.0 0.87 11/12/18 18:25 24500 ug/L 50.0 6.1 11/12/18 18:25 11/20/18 22:00 7439-89-6 Iron 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/12/18 18:25 11/20/18 22:00 Lithium 14.3 ug/L 10.0 4.6 1 11/12/18 18:25 11/20/18 22:00 7439-93-2 Magnesium 30700 ug/L 50.0 14.0 1 11/12/18 18:25 11/20/18 22:00 7439-95-4 Manganese 1710 ug/L 5.0 0.73 1 11/12/18 18:25 11/20/18 22:00 7439-96-5 Molybdenum ug/L 20.0 0.90 11/12/18 18:25 11/20/18 22:00 7439-98-7 4.5J 1 4760 79.3 Potassium ug/L 500 11/12/18 18:25 11/20/18 22:00 7440-09-7 10100 Sodium ug/L 500 157 11/12/18 18:25 11/20/18 22:00 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 11/15/18 11:26 11/16/18 14:51 7440-36-0 0.065 Arsenic 12.8 ug/L 1.0 1 11/15/18 11:26 11/16/18 14:51 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 11/15/18 11:26 11/16/18 14:51 7440-43-9 Chromium 0.10J 0.078 11/16/18 14:51 7440-47-3 ug/L 1.0 1 11/15/18 11:26 <0.085 Selenium ug/L 1.0 0.085 11/15/18 11:26 11/16/18 14:51 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/15/18 11:26 11/16/18 14:51 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 16:44 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 511 20.0 4.9 11/16/18 21:03 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 556 mg/L 5.0 5.0 11/14/18 13:57 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 22.3 mg/L 11/26/18 10:46 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.20 0.012 H6 Iron, Ferrous 2.2 mg/L 1 11/10/18 15:45 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 4.3 mg/L 1.0 0.29 1 11/24/18 20:16 16887-00-6 Fluoride <0.19 0.20 0.19 11/24/18 20:16 16984-48-8 mg/L 1 11/24/18 20:32 14808-79-8 Sulfate 39.2 mg/L 10.0 2.4 10 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.22 0.10 0.050 11/15/18 10:32 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-1M Lab ID: 60286318002 Collected: 11/08/18 14:00 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 980 5.0 1.5 11/12/18 18:25 11/20/18 22:02 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 11/12/18 18:25 11/20/18 22:02 7440-41-7 12.5 Boron 69.4J ug/L 100 1 11/12/18 18:25 11/20/18 22:02 7440-42-8 Calcium 129000 ug/L 200 53.5 11/12/18 18:25 11/20/18 22:02 7440-70-2 1 Cobalt 11/20/18 22:02 7440-48-4 <0.87 ug/L 5.0 0.87 11/12/18 18:25 8520 ug/L 50.0 6.1 11/12/18 18:25 11/20/18 22:02 7439-89-6 Iron 1 10.0 3.0 11/20/18 22:02 7439-92-1 Lead <3.0 ug/L 1 11/12/18 18:25 Lithium 21.8 ug/L 10.0 4.6 1 11/12/18 18:25 11/20/18 22:02 7439-93-2 Magnesium 34100 ug/L 50.0 14.0 1 11/12/18 18:25 11/20/18 22:02 7439-95-4 Manganese 586 ug/L 5.0 0.73 1 11/12/18 18:25 11/20/18 22:02 7439-96-5 Molybdenum < 0.90 ug/L 20.0 0.90 11/12/18 18:25 11/20/18 22:02 7439-98-7 1 79.3 Potassium 4020 ug/L 500 11/12/18 18:25 11/20/18 22:02 7440-09-7 8780 Sodium ug/L 500 157 11/12/18 18:25 11/20/18 22:02 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/15/18 11:26 11/16/18 14:53 7440-36-0 0.065 11/16/18 14:53 7440-38-2 Arsenic 0.18J ug/L 1.0 1 11/15/18 11:26 В Cadmium < 0.033 ug/L 0.50 0.033 1 11/15/18 11:26 11/16/18 14:53 7440-43-9 Chromium 0.081J 0.078 11/16/18 14:53 7440-47-3 ug/L 1.0 1 11/15/18 11:26 <0.085 Selenium ug/L 1.0 0.085 11/15/18 11:26 11/16/18 14:53 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/15/18 11:26 11/16/18 14:53 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 16:46 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 467 20.0 4.9 11/16/18 21:09 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 528 mg/L 5.0 5.0 11/14/18 13:57 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric mg/L 11/26/18 10:46 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 Iron, Ferrous 0.17J 0.20 0.012 H6 mg/L 1 11/10/18 15:45 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 3.5 mg/L 1.0 0.29 1 11/24/18 20:48 16887-00-6 Fluoride 0.20J 0.20 0.19 11/24/18 20:48 16984-48-8 mg/L 1 11/24/18 21:04 14808-79-8 Sulfate 29.0 mg/L 5.0 12 5 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.64 0.10 0.050 11/15/18 10:35 7723-14-0 mg/L 1

Date: 12/05/2018 04:19 PM

ANALYTICAL RESULTS

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318 Sample: L-TP-1D Lab ID: 60286318003 Collected: 11/08/18 13:10 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF Results Units Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 1420 5.0 1.5 11/12/18 18:25 11/20/18 22:04 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 11/12/18 18:25 11/20/18 22:04 7440-41-7 69.6J 12.5 Boron ug/L 100 1 11/12/18 18:25 11/20/18 22:04 7440-42-8 Calcium 136000 ug/L 200 53.5 11/12/18 18:25 11/20/18 22:04 7440-70-2 1 Cobalt 11/20/18 22:04 7440-48-4 <0.87 ug/L 5.0 0.87 11/12/18 18:25 8090 ug/L 50.0 6.1 11/12/18 18:25 11/20/18 22:04 7439-89-6 Iron 1 10.0 3.0 11/20/18 22:04 7439-92-1 Lead <3.0 ug/L 1 11/12/18 18:25 Lithium 26.4 ug/L 10.0 4.6 1 11/12/18 18:25 11/20/18 22:04 7439-93-2 Magnesium 35000 ug/L 50.0 14.0 1 11/12/18 18:25 11/20/18 22:04 7439-95-4 Manganese 230 ug/L 5.0 0.73 1 11/12/18 18:25 11/20/18 22:04 7439-96-5 Molybdenum < 0.90 ug/L 20.0 0.90 11/12/18 18:25 11/20/18 22:04 7439-98-7 1 79.3 Potassium 4230 ug/L 500 11/12/18 18:25 11/20/18 22:04 7440-09-7 Sodium 11400 ug/L 500 157 11/12/18 18:25 11/20/18 22:04 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/15/18 11:26 11/16/18 14:59 7440-36-0 0.065 Arsenic 0.66J ug/L 1.0 1 11/15/18 11:26 11/16/18 14:59 7440-38-2 В Cadmium < 0.033 ug/L 0.50 0.033 1 11/15/18 11:26 11/16/18 14:59 7440-43-9 Chromium 0.26J 0.078 11/16/18 14:59 7440-47-3 ug/L 1.0 1 11/15/18 11:26 Selenium < 0.085 ug/L 1.0 0.085 11/15/18 11:26 11/16/18 14:59 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/15/18 11:26 11/16/18 14:59 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 16:53 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 489 20.0 4.9 11/16/18 21:15 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 520 mg/L 5.0 5.0 11/14/18 13:57 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric mg/L 11/26/18 10:46 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 Iron, Ferrous 0.20 0.012 H6 0.21 mg/L 1 11/10/18 15:42 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 4.9 mg/L 1.0 0.29 1 11/24/18 21:20 16887-00-6 Fluoride <0.19 0.20 0.19 11/24/18 21:20 16984-48-8 mg/L 1 11/26/18 20:23 14808-79-8 Sulfate 25.7 mg/L 2.0 0.48 2 M1 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.47 0.10 0.050 11/15/18 10:36 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-3M Lab ID: 60286318004 Collected: 11/08/18 10:40 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 238 5.0 1.5 11/26/18 16:15 11/27/18 11:15 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 11:15 7440-41-7 12.5 Boron 6210 ug/L 100 1 11/26/18 16:15 11/27/18 11:15 7440-42-8 Calcium 101000 ug/L 200 53.5 11/26/18 16:15 11/27/18 11:15 7440-70-2 1 Cobalt 11/27/18 11:15 7440-48-4 <0.87 ug/L 5.0 0.87 11/26/18 16:15 1 7500 50.0 6.1 7439-89-6 Iron ug/L 11/26/18 16:15 11/27/18 11:15 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 16:15 11/27/18 11:15 Lithium 26.9 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 11:15 7439-93-2 Magnesium 22300 ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 11:15 7439-95-4 Manganese 1070 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 11:15 7439-96-5 Molybdenum 355 ug/L 20.0 0.90 11/26/18 16:15 11/27/18 11:15 7439-98-7 1 79.3 Potassium 5320 ug/L 500 11/26/18 16:15 11/27/18 11:15 7440-09-7 60300 Sodium ug/L 500 157 11/26/18 16:15 11/27/18 11:15 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/15/18 11:26 11/16/18 15:01 7440-36-0 0.065 Arsenic 0.27J ug/L 1.0 1 11/15/18 11:26 11/16/18 15:01 7440-38-2 В Cadmium 0.096J ug/L 0.50 0.033 1 11/15/18 11:26 11/16/18 15:01 7440-43-9 В Chromium < 0.078 0.078 11/16/18 15:01 7440-47-3 ug/L 1.0 1 11/15/18 11:26 Selenium < 0.085 ug/L 1.0 0.085 11/15/18 11:26 11/16/18 15:01 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/15/18 11:26 11/16/18 15:01 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 16:55 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 250 20.0 4.9 11/16/18 21:21 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 585 mg/L 5.0 5.0 11/14/18 13:57 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric mg/L 11/27/18 17:33 7439-89-6 6.5 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.95 0.20 0.012 H6 Iron, Ferrous mg/L 1 11/10/18 15:36 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 18.4 mg/L 1.0 0.29 1 11/24/18 21:36 16887-00-6 Fluoride 0.22 0.20 0.19 11/24/18 21:36 16984-48-8 mg/L 1 11/24/18 21:52 14808-79-8 Sulfate 205 mg/L 20.0 4.8 20 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.30 0.10 0.050 11/15/18 10:37 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-3D	Lab ID:	60286318005	Collecte	d: 11/08/18	8 09:45	Received: 11/	09/18 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	aration Meth	od: EP/	A 200.7			
Barium	83.7	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:17	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:17	7440-41-7	
Boron	10600	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:17		
Calcium	99600	ug/L	200	53.5	1		11/27/18 11:17		
Cobalt	<0.87	ug/L	5.0	0.87	1		11/27/18 11:17		
Iron	5620	ug/L	50.0	6.1	1		11/27/18 11:17		
Lead	<3.0 37.0	ug/L	10.0	3.0	1		11/27/18 11:17		De
Lithium	22500	ug/L	10.0 50.0	4.6 14.0	1 1		11/27/18 11:17 11/27/18 11:17		D6
Magnesium Manganese	195	ug/L ug/L	5.0	0.73	1		11/27/18 11:17		
Molybdenum	547	ug/L ug/L	20.0	0.73	1		11/27/18 11:17		
Potassium	6760	ug/L	500	79.3	1	11/26/18 16:15	11/27/18 11:17		
Sodium	117000	ug/L	500	157	1		11/27/18 11:17		
200.8 MET ICPMS		Method: EPA 2					11,21,10 11.11	7 1 10 20 0	
	-						44/00/40 40 57	7440.00.0	
Antimony	0.10J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 10:57		
Arsenic Cadmium	1.8 0.20J	ug/L	1.0 0.50	0.065 0.033	1	11/23/18 16:00 11/23/18 16:00	11/26/18 10:57 11/26/18 10:57		D
Chromium	0.20J 0.37J	ug/L ug/L	1.0	0.033	1 1	11/23/18 16:00	11/26/18 10:57		B B
Selenium	0.373 0.14J	ug/L ug/L	1.0	0.078	1		11/26/18 10:57		Ь
Thallium	< 0.099	ug/L ug/L	1.0	0.083	1	11/23/18 16:00	11/26/18 10:57		
7470 Mercury		Method: EPA 7					11/20/10 10.57	7440 20 0	
-	-								
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 16:58	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	115	mg/L	20.0	4.9	1		11/17/18 19:16		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	858	mg/L	5.0	5.0	1		11/14/18 13:57		
Iron, Ferric (Calculation)	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferric	26.8	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferrous	0.19J	mg/L	0.20	0.012	1		11/10/18 15:34		H6
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0						
Chloride	24.4	mg/L	5.0	1.4	5		11/24/18 23:12	16887-00-6	M1
Fluoride	0.27	mg/L	0.20	0.19	1		11/24/18 22:40		M1
Sulfate	441	mg/L	50.0	12.0	50		11/24/18 23:44		M1
		Method: EPA 3		3					****
365.4 Total Phosphorus	•			0.0=5	,		44/45/40 10	7700	
Phosphorus	0.19	mg/L	0.10	0.050	1		11/15/18 10:38	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-4S	Lab ID:	60286318006	Collected:	: 11/08/18	11:10	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	302	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:24	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:24	7440-41-7	
Boron	131	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:24	7440-42-8	
Calcium	110000	ug/L	200	53.5	1		11/27/18 11:24		
Cobalt	<0.87	ug/L	5.0	0.87	1	11/26/18 16:15	11/27/18 11:24		
Iron	12200	ug/L	50.0	6.1	1	11/26/18 16:15	11/27/18 11:24		
Lead	<3.0	ug/L	10.0	3.0	1		11/27/18 11:24		
Lithium	18.2	ug/L	10.0	4.6	1		11/27/18 11:24		
Magnesium	23100	ug/L	50.0	14.0	1		11/27/18 11:24		
Manganese	1160	ug/L	5.0	0.73	1		11/27/18 11:24		
Molybdenum	< 0.90	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:24		
Potassium Sodium	5420 23500	ug/L	500 500	79.3 157	1 1		11/27/18 11:24 11/27/18 11:24		
		ug/L					11/21/10 11.24	7440-23-3	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP	A 200.8			
Antimony	0.12J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:02	7440-36-0	
Arsenic	24.2	ug/L	1.0	0.065	1	11/23/18 16:00	11/26/18 11:02	7440-38-2	
Cadmium	0.057J	ug/L	0.50	0.033	1	11/23/18 16:00	11/26/18 11:02	7440-43-9	В
Chromium	0.37J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:02	7440-47-3	В
Selenium	0.19J	ug/L	1.0	0.085	1	11/23/18 16:00	11/26/18 11:02	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:02	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Meth	od: EPA	7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:04	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	393	mg/L	20.0	4.9	1		11/17/18 19:27		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	456	mg/L	5.0	5.0	1		11/14/18 13:58		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferric	11.8	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferrous	0.40	mg/L	0.20	0.012	1		11/10/18 15:38		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	10.7	mg/L	1.0	0.29	1		11/25/18 00:16	16887-00-6	
Fluoride	0.23	mg/L	0.20	0.29	1		11/25/18 00:16		
Sulfate	23.8	mg/L	5.0	1.2	5		11/25/18 00:10		
		-		1	•		, _ 5, 75 55.62		
365.4 Total Phosphorus	Analytical	Method: EPA 3	65.4						
Phosphorus	0.58	mg/L	0.10	0.050	1		11/15/18 10:42	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-4M	Lab ID:	60286318007	Collected:	11/08/18	3 10:35	Received: 11/	09/18 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	nod: EP/	A 200.7			
Barium	374	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:26	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:26	7440-41-7	
Boron	659	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:26	7440-42-8	
Calcium	109000	ug/L	200	53.5	1	11/26/18 16:15	11/27/18 11:26		
Cobalt	<0.87	ug/L	5.0	0.87	1	11/26/18 16:15	11/27/18 11:26		
Iron	7700	ug/L	50.0	6.1	1		11/27/18 11:26		
Lead	<3.0	ug/L	10.0	3.0	1		11/27/18 11:26		
Lithium	12.5	ug/L	10.0	4.6	1		11/27/18 11:26		
Magnesium	21600	ug/L	50.0	14.0	1		11/27/18 11:26		
Manganese	897	ug/L	5.0	0.73	1		11/27/18 11:26		
Molybdenum	2.2J	ug/L	20.0	0.90	1		11/27/18 11:26		
Potassium	4650	ug/L	500	79.3	1	11/26/18 16:15	11/27/18 11:26		
Sodium	23000	ug/L	500	157	1		11/27/18 11:26	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP	A 200.8			
Antimony	0.084J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:04	7440-36-0	
Arsenic	4.5	ug/L	1.0	0.065	1	11/23/18 16:00	11/26/18 11:04	7440-38-2	
Cadmium	0.035J	ug/L	0.50	0.033	1	11/23/18 16:00	11/26/18 11:04	7440-43-9	В
Chromium	0.38J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:04	7440-47-3	В
Selenium	0.11J	ug/L	1.0	0.085	1	11/23/18 16:00	11/26/18 11:04	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:04	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Meth	od: EPA	7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:07	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	344	mg/L	20.0	4.9	1		11/17/18 19:31		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	454	mg/L	5.0	5.0	1		11/14/18 13:58		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferric	7.6	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferrous	0.080J	mg/L	0.20	0.012	1		11/10/18 15:35		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	8.5	mg/L	1.0	0.29	1		11/25/18 00:48	16887-00-6	
Fluoride	0.24	mg/L	0.20	0.19	1		11/25/18 00:48		
Sulfate	45.0	mg/L	5.0	1.2	5		11/25/18 01:04		
365.4 Total Phosphorus		Method: EPA 3							
	·			0.050	,		44/45/40 10 10	7700 440	
Phosphorus	0.32	mg/L	0.10	0.050	1		11/15/18 10:43	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-4D Lab ID: 60286318008 Collected: 11/08/18 09:40 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 418 5.0 1.5 11/26/18 16:15 11/27/18 11:28 7440-39-3 **Barium** ug/L <0.16 Beryllium ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 11:28 7440-41-7 4380 Boron ug/L 100 12.5 1 11/26/18 16:15 11/27/18 11:28 7440-42-8 Calcium 122000 ug/L 200 53.5 11/26/18 16:15 11/27/18 11:28 7440-70-2 1 Cobalt <0.87 ug/L 5.0 0.87 11/26/18 16:15 11/27/18 11:28 7440-48-4 1 5760 ug/L 50.0 6.1 7439-89-6 Iron 11/26/18 16:15 11/27/18 11:28 1 3.6J 10.0 3.0 7439-92-1 Lead ug/L 1 11/26/18 16:15 11/27/18 11:28 Lithium 26.1 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 11:28 7439-93-2 Magnesium 32800 ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 11:28 7439-95-4 Manganese 336 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 11:28 7439-96-5 Molybdenum 1.8J ug/L 20.0 0.90 11/26/18 16:15 11/27/18 11:28 7439-98-7 1 4770 79.3 Potassium ug/L 500 11/26/18 16:15 11/27/18 11:28 7440-09-7 24800 Sodium ug/L 500 157 11/26/18 16:15 11/27/18 11:28 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** 0.097J ug/L 1.0 0.078 11/23/18 16:00 11/26/18 11:05 7440-36-0 0.065 Arsenic 5.2 ug/L 1.0 1 11/23/18 16:00 11/26/18 11:05 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 11/23/18 16:00 11/26/18 11:05 7440-43-9 Chromium 0.40J 0.078 11/26/18 11:05 7440-47-3 ug/L 1.0 1 11/23/18 16:00 R Selenium 0.091J ug/L 1.0 0.085 11/23/18 16:00 11/26/18 11:05 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 16:00 11/26/18 11:05 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 17:09 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 301 20.0 4.9 11/17/18 19:36 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 566 mg/L 5.0 5.0 11/14/18 13:58 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 5.5 mg/L 11/27/18 17:33 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.23 0.20 0.012 H6 Iron, Ferrous mg/L 1 11/10/18 15:33 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 13.5 mg/L 1.0 0.29 1 11/25/18 01:52 16887-00-6 Fluoride <0.19 0.20 11/25/18 01:52 16984-48-8 mg/L 0.19 1 11/25/18 02:08 14808-79-8 Sulfate 169 mg/L 20.0 4.8 20 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.20 0.10 0.050 11/15/18 10:44 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-5S	Lab ID:	60286318009	Collected	d: 11/08/18	3 13:50	Received: 11/	09/18 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepa	ration Meth	od: EP/	A 200.7			
Barium	431	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:30	7440-39-3	M1
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:30		M1
Boron	128	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:30		M1
Calcium	157000	ug/L	200	53.5	1		11/27/18 11:30		M1
Cobalt	1.4J	ug/L	5.0	0.87	1		11/27/18 11:30		M1
Iron	14500	ug/L	50.0	6.1	1		11/27/18 11:30		M1
Lead Lithium	<3.0 30.5	ug/L ug/L	10.0 10.0	3.0 4.6	1 1		11/27/18 11:30 11/27/18 11:30		M1 M1
Magnesium	37400	ug/L ug/L	50.0	14.0	1		11/27/18 11:30		M1
Manganese	2610	ug/L	5.0	0.73	1		11/27/18 11:30		M1
Molybdenum	1.8J	ug/L ug/L	20.0	0.73	1		11/27/18 11:30		M1
Potassium	5540	ug/L	500	79.3	1	11/26/18 16:15	11/27/18 11:30		M1
Sodium	12000	ug/L	500	157	1		11/27/18 11:30		M1
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepa	ration Meth	od: EP/	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:07	7440-36-0	
Arsenic	11.9	ug/L	1.0	0.065	1	11/23/18 16:00	11/26/18 11:07		
Cadmium	<0.033	ug/L	0.50	0.033	1		11/26/18 11:07		
Chromium	0.49J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:07		В
Selenium	0.15J	ug/L	1.0	0.085	1		11/26/18 11:07		
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:07	7440-28-0	
7470 Mercury	Analytical I	Method: EPA 7	470 Prepa	ration Metho	od: EPA	7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:11	7439-97-6	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	570	mg/L	20.0	4.9	1		11/17/18 19:43		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	564	mg/L	5.0	5.0	1		11/14/18 13:58		
Iron, Ferric (Calculation)	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferric	13.6	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferrous	0.90	mg/L	0.20	0.012	1		11/10/18 15:45		H6
300.0 IC Anions 28 Days	Analytical I	Method: EPA 30	0.00						
Chloride	1.6	mg/L	1.0	0.29	1		11/25/18 02:24	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		11/25/18 02:24	16984-48-8	
	8.0	mg/L	1.0	0.24	1		11/25/18 02:24	14808-79-8	
Sulfate	0.0	0							
Sulfate 365.4 Total Phosphorus		Method: EPA 36	65.4						

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-5M Lab ID: 60286318010 Collected: 11/08/18 13:15 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 888 5.0 1.5 11/26/18 16:15 11/27/18 11:39 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 11:39 7440-41-7 Boron 612 ug/L 100 12.5 1 11/26/18 16:15 11/27/18 11:39 7440-42-8 Calcium 160000 ug/L 200 53.5 11/26/18 16:15 11/27/18 11:39 7440-70-2 1 Cobalt < 0.87 ug/L 5.0 0.87 11/26/18 16:15 11/27/18 11:39 7440-48-4 1 10900 50.0 6.1 7439-89-6 Iron ug/L 11/26/18 16:15 11/27/18 11:39 1 10.0 3.0 7439-92-1 Lead 3.4J ug/L 1 11/26/18 16:15 11/27/18 11:39 Lithium 26.5 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 11:39 7439-93-2 Magnesium 36700 ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 11:39 7439-95-4 Manganese 673 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 11:39 7439-96-5 Molybdenum 0.98J ug/L 20.0 0.90 11/26/18 16:15 11/27/18 11:39 7439-98-7 1 79.3 Potassium 4940 ug/L 500 11/26/18 16:15 11/27/18 11:39 7440-09-7 Sodium 13200 ug/L 500 157 11/26/18 16:15 11/27/18 11:39 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 11/23/18 16:00 11/26/18 11:08 7440-36-0 M1 0.065 Arsenic 0.72J ug/L 1.0 1 11/23/18 16:00 11/26/18 11:08 7440-38-2 M1 Cadmium < 0.033 ug/L 0.50 0.033 1 11/23/18 16:00 11/26/18 11:08 7440-43-9 M1 Chromium 0.43J 0.078 7440-47-3 B.M1 ug/L 1.0 1 11/23/18 16:00 11/26/18 11:08 Selenium < 0.085 ug/L 1.0 0.085 11/23/18 16:00 7782-49-2 1 11/26/18 11:08 M1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 16:00 11/26/18 11:08 7440-28-0 M1 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 17:14 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 550 20.0 4.9 11/17/18 19:50 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 582 mg/L 5.0 5.0 11/14/18 13:58 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 10.5 11/27/18 17:33 7439-89-6 mg/L 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.44 0.20 0.012 H6 Iron, Ferrous mg/L 1 11/10/18 15:44 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 2.7 mg/L 1.0 0.29 1 11/25/18 02:56 16887-00-6 Fluoride 0.20 0.19 11/25/18 02:56 16984-48-8 < 0.19 mg/L 1 11/25/18 03:12 14808-79-8 Sulfate 33.3 mg/L 10.0 2.4 10 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.32 0.10 0.050 11/15/18 10:48 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-5D Lab ID: 60286318011 Collected: 11/08/18 12:25 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 534 5.0 1.5 11/26/18 16:15 11/27/18 11:41 7440-39-3 **Barium** ug/L 7440-41-7 Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 11:41 4590 12.5 Boron ug/L 100 1 11/26/18 16:15 11/27/18 11:41 7440-42-8 Calcium 140000 ug/L 200 53.5 11/26/18 16:15 11/27/18 11:41 7440-70-2 1 Cobalt <0.87 ug/L 5.0 0.87 11/26/18 16:15 11/27/18 11:41 7440-48-4 1 7230 50.0 6.1 11/27/18 11:41 7439-89-6 Iron ug/L 11/26/18 16:15 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 16:15 11/27/18 11:41 Lithium 23.9 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 11:41 7439-93-2 Magnesium 34600 ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 11:41 7439-95-4 Manganese 227 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 11:41 7439-96-5 Molybdenum ug/L 20.0 0.90 11/26/18 16:15 11/27/18 11:41 7439-98-7 1.4J 1 4810 79.3 Potassium ug/L 500 11/26/18 16:15 11/27/18 11:41 7440-09-7 27400 Sodium ug/L 500 157 11/26/18 16:15 11/27/18 11:41 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/23/18 16:00 11/26/18 11:15 7440-36-0 0.065 Arsenic 11.8 ug/L 1.0 1 11/23/18 16:00 11/26/18 11:15 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 11/23/18 16:00 11/26/18 11:15 7440-43-9 Chromium 0.35J 0.078 11/26/18 11:15 7440-47-3 ug/L 1.0 1 11/23/18 16:00 R <0.085 Selenium ug/L 1.0 0.085 11/23/18 16:00 11/26/18 11:15 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 16:00 11/26/18 11:15 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 17:20 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 377 20.0 4.9 11/17/18 19:55 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 631 mg/L 5.0 5.0 11/15/18 14:58 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 7.2 mg/L 11/27/18 17:33 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 Iron, Ferrous < 0.012 0.20 0.012 H6 mg/L 1 11/10/18 15:40 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 13.2 mg/L 1.0 0.29 1 11/25/18 03:28 16887-00-6 Fluoride <0.19 0.20 11/25/18 03:28 16984-48-8 mg/L 0.19 1 11/25/18 03:44 14808-79-8 Sulfate 156 mg/L 20.0 4.8 20 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.22 0.10 0.050 11/15/18 10:50 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-NE-DUP-1	Lab ID:	60286318012	Collected	d: 11/08/18	08:00	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP/	A 200.7			
Barium	251	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:44	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:44	7440-41-7	
Boron	91.0J	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:44		
Calcium	132000	ug/L	200	53.5	1	11/26/18 16:15	11/27/18 11:44		
Cobalt	<0.87	ug/L	5.0	0.87	1		11/27/18 11:44		
Iron Lead	7.3J <3.0	ug/L	50.0 10.0	6.1 3.0	1 1	11/26/18 16:15 11/26/18 16:15	11/27/18 11:44 11/27/18 11:44		
Lithium	21.1	ug/L ug/L	10.0	3.0 4.6	1	11/26/18 16:15	11/27/18 11:44		
Magnesium	22000	ug/L ug/L	50.0	14.0	1	11/26/18 16:15	11/27/18 11:44		
Manganese	268	ug/L	5.0	0.73	1	11/26/18 16:15	11/27/18 11:44		
Molybdenum	7.5J	ug/L	20.0	0.90	1	11/26/18 16:15	11/27/18 11:44		
Potassium	4390	ug/L	500	79.3	1	11/26/18 16:15	11/27/18 11:44	7440-09-7	
Sodium	4540	ug/L	500	157	1	11/26/18 16:15	11/27/18 11:44	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP/	A 200.8			
Antimony	0.21J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:16	7440-36-0	
Arsenic	0.29J	ug/L	1.0	0.065	1	11/23/18 16:00			
Cadmium	0.085J	ug/L	0.50	0.033	1	11/23/18 16:00	11/26/18 11:16	7440-43-9	В
Chromium	0.36J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:16	7440-47-3	В
Selenium	3.6	ug/L	1.0	0.085	1	11/23/18 16:00	11/26/18 11:16	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:16	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepa	ration Metho	od: EPA	7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:23	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	374	mg/L	20.0	4.9	1		11/17/18 20:09		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	465	mg/L	5.0	5.0	1		11/15/18 14:11		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferric	0.0J	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferrous	0.066J	mg/L	0.20	0.012	1		11/10/18 13:36		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	7.3	mg/L	1.0	0.29	1		11/25/18 04:00	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		11/25/18 04:00	16984-48-8	
Sulfate	21.6	mg/L	2.0	0.48	2		11/26/18 21:06	14808-79-8	
365.4 Total Phosphorus	Analytical	Method: EPA 3	65.4						
Phosphorus	<0.050	mg/L	0.10	0.050	1		11/15/18 10:51	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-NE-DUP-2 Lab ID: 60286318013 Collected: 11/08/18 08:00 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 537 5.0 1.5 11/26/18 16:15 11/27/18 11:46 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 11:46 7440-41-7 4590 12.5 Boron ug/L 100 1 11/26/18 16:15 11/27/18 11:46 7440-42-8 Calcium 141000 ug/L 200 53.5 11/26/18 16:15 11/27/18 11:46 7440-70-2 1 Cobalt 11/27/18 11:46 7440-48-4 <0.87 ug/L 5.0 0.87 11/26/18 16:15 1 7320 ug/L 50.0 6.1 7439-89-6 Iron 11/26/18 16:15 11/27/18 11:46 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 16:15 11/27/18 11:46 Lithium 19.8 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 11:46 7439-93-2 Magnesium 34600 ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 11:46 7439-95-4 Manganese 226 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 11:46 7439-96-5 Molybdenum 1.9J ug/L 20.0 0.90 11/26/18 16:15 11/27/18 11:46 7439-98-7 1 4810 500 79.3 Potassium ug/L 11/26/18 16:15 11/27/18 11:46 7440-09-7 27500 Sodium ug/L 500 157 11/26/18 16:15 11/27/18 11:46 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/23/18 16:00 11/26/18 11:18 7440-36-0 0.065 Arsenic 11.9 ug/L 1.0 1 11/23/18 16:00 11/26/18 11:18 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 11/23/18 16:00 11/26/18 11:18 7440-43-9 Chromium 0.39J 0.078 11/26/18 11:18 7440-47-3 ug/L 1.0 1 11/23/18 16:00 R <0.085 Selenium ug/L 1.0 0.085 11/23/18 16:00 11/26/18 11:18 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 16:00 11/26/18 11:18 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 17:25 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 375 20.0 4.9 11/17/18 20:14 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 653 mg/L 5.0 5.0 11/15/18 14:11 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 11/27/18 17:33 7439-89-6 mg/L 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.56 0.20 0.012 H6 Iron, Ferrous mg/L 1 11/10/18 15:31 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 13.2 mg/L 1.0 0.29 1 11/25/18 09:53 16887-00-6 M1 Fluoride <0.19 0.20 0.19 16984-48-8 mg/L 1 11/25/18 09:53 Sulfate 159 mg/L 20.0 4.8 20 11/26/18 21:20 14808-79-8 365.4 Total Phosphorus Analytical Method: EPA 365.4 **Phosphorus** 0.21 0.10 0.050 11/15/18 10:52 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-NE-FB-1	Lab ID:	60286318014	Collected:	11/08/18	10:30	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	<1.5	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 12:04	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 12:04	7440-41-7	
Boron	<12.5	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 12:04		
Calcium	<53.5	ug/L	200	53.5	1	11/26/18 16:15	11/27/18 12:04		
Cobalt	<0.87	ug/L	5.0	0.87	1	11/26/18 16:15	11/27/18 12:04		
Iron	<6.1	ug/L	50.0	6.1	1	11/26/18 16:15	11/27/18 12:04		
Lead	<3.0	ug/L	10.0	3.0	1	11/26/18 16:15	11/27/18 12:04		
Lithium	<4.6	ug/L	10.0	4.6	1	11/26/18 16:15	11/27/18 12:04		
Magnesium	<14.0	ug/L	50.0	14.0	1		11/27/18 12:04		
Manganese	<0.73	ug/L	5.0	0.73	1	11/26/18 16:15	11/27/18 12:04		
Molybdenum Potassium	<0.90 <79.3	ug/L ug/L	20.0	0.90 79.3	1 1	11/26/18 16:15 11/26/18 16:15	11/27/18 12:04 11/27/18 12:04		
Sodium	<79.3 <157	ug/L ug/L	500 500	79.3 157	1		11/27/18 12:04		
		•					11/21/10 12:04	7440-25-5	
200.8 MET ICPMS	-	Method: EPA 20							
Antimony	<0.078	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:20		
Arsenic	<0.065	ug/L	1.0	0.065	1	11/23/18 16:00	11/26/18 11:20		
Cadmium	<0.033	ug/L	0.50	0.033	1	11/23/18 16:00	11/26/18 11:20		
Chromium	0.36J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:20		В
Selenium	<0.085	ug/L	1.0	0.085	1	11/23/18 16:00	11/26/18 11:20		
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:20	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Metho	od: EPA	7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:27	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	<4.9	mg/L	20.0	4.9	1		11/17/18 20:24		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		11/15/18 14:11		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferric	0.0J	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical	Method: SM 35	00-Fe B#4						
Iron, Ferrous	<0.012	mg/L	0.20	0.012	1		11/10/18 15:34		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.29	mg/L	1.0	0.29	1		11/25/19 10-41	16887 00 6	
Fluoride	<0.29 <0.19	mg/L mg/L	1.0 0.20	0.29			11/25/18 10:41 11/25/18 10:41		
Sulfate	<0.19 <0.24	mg/L	1.0	0.19	1 1		11/25/18 10:41		
Guilate	₹0.24	ilig/L	1.0	0.24	'		11/23/10 10.41	14000-13-0	
365.4 Total Phosphorus	Analytical	Method: EPA 3	65.4						
Phosphorus	<0.050	mg/L	0.10	0.050	1		11/15/18 10:55	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-NE-FB-2 Lab ID: 60286318015 Collected: 11/08/18 13:00 Received: 11/09/18 03:12 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.5 11/26/18 16:15 11/27/18 12:06 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 16:15 11/27/18 12:06 7440-41-7 12.5 Boron <12.5 ug/L 100 1 11/26/18 16:15 11/27/18 12:06 7440-42-8 Calcium <53.5 ug/L 200 53.5 11/26/18 16:15 11/27/18 12:06 7440-70-2 1 Cobalt 11/27/18 12:06 7440-48-4 <0.87 ug/L 5.0 0.87 11/26/18 16:15 1 50.0 6.1 7439-89-6 Iron <6.1 ug/L 11/26/18 16:15 11/27/18 12:06 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 16:15 11/27/18 12:06 Lithium <4.6 ug/L 10.0 4.6 1 11/26/18 16:15 11/27/18 12:06 7439-93-2 Magnesium 36.2J ug/L 50.0 14.0 1 11/26/18 16:15 11/27/18 12:06 7439-95-4 Manganese < 0.73 ug/L 5.0 0.73 1 11/26/18 16:15 11/27/18 12:06 7439-96-5 Molybdenum < 0.90 ug/L 20.0 0.90 11/26/18 16:15 11/27/18 12:06 7439-98-7 1 79.3 Potassium <79.3 ug/L 500 11/26/18 16:15 11/27/18 12:06 7440-09-7 Sodium <157 ug/L 500 157 11/26/18 16:15 11/27/18 12:06 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/23/18 16:00 11/26/18 11:21 7440-36-0 <0.065 0.065 Arsenic ug/L 1.0 1 11/23/18 16:00 11/26/18 11:21 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 11/23/18 16:00 11/26/18 11:21 7440-43-9 Chromium 0.24J 0.078 7440-47-3 ug/L 1.0 1 11/23/18 16:00 11/26/18 11:21 R Selenium < 0.085 ug/L 1.0 0.085 11/23/18 16:00 11/26/18 11:21 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 16:00 11/26/18 11:21 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/26/18 18:30 11/27/18 17:30 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 <4.9 20.0 4.9 11/17/18 20:27 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 6.0 mg/L 5.0 5.0 11/15/18 14:11 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 0.0J mg/L 11/27/18 17:33 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 Iron, Ferrous < 0.012 0.20 0.012 H6 mg/L 1 11/10/18 15:42 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride <0.29 mg/L 1.0 0.29 1 11/25/18 10:57 16887-00-6 Fluoride <0.19 0.20 0.19 11/25/18 10:57 16984-48-8 mg/L 1 11/25/18 10:57 14808-79-8 Sulfate <0.24 mg/L 1.0 0.24 1 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus <0.050 0.10 0.050 11/15/18 10:57 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-3S	Lab ID:	60286318016	Collecte	d: 11/08/18	3 11:20	Received: 11/	09/18 03:12 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	246	ug/L	5.0	1.5	1	11/26/18 16:15	11/27/18 11:48	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 16:15	11/27/18 11:48	7440-41-7	
Boron	88.8J	ug/L	100	12.5	1	11/26/18 16:15	11/27/18 11:48		
Calcium	130000	ug/L	200	53.5	1		11/27/18 11:48		
Cobalt	<0.87	ug/L	5.0	0.87	1		11/27/18 11:48		
Iron	10.1J	ug/L	50.0	6.1	1		11/27/18 11:48		
Lead	<3.0	ug/L	10.0	3.0	1		11/27/18 11:48		
Lithium	22.3	ug/L	10.0	4.6	1		11/27/18 11:48		
Magnesium	21600	ug/L	50.0	14.0	1		11/27/18 11:48		
Manganese	276 7.3J	ug/L	5.0	0.73 0.90	1		11/27/18 11:48		
Molybdenum Potassium	7.33 4300	ug/L	20.0		1 1		11/27/18 11:48		
Sodium	4300 4770	ug/L ug/L	500 500	79.3 157	1	11/26/18 16:15 11/26/18 16:15	11/27/18 11:48 11/27/18 11:48		
200.8 MET ICPMS		Method: EPA 2					11/27/10 11.40	7440-23-3	
	-								
Antimony	0.18J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:23		
Arsenic	0.27J	ug/L	1.0	0.065	1	11/23/18 16:00	11/26/18 11:23		_
Cadmium	0.064J	ug/L	0.50	0.033	1		11/26/18 11:23		В
Chromium	0.35J	ug/L	1.0	0.078	1	11/23/18 16:00	11/26/18 11:23		В
Selenium	3.5	ug/L	1.0	0.085	1		11/26/18 11:23		
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 16:00	11/26/18 11:23	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepa	ration Meth	od: EPA	A 7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/26/18 18:30	11/27/18 17:32	7439-97-6	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	367	mg/L	20.0	4.9	1		11/17/18 20:32		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	480	mg/L	5.0	5.0	1		11/15/18 14:11		
Iron, Ferric (Calculation)	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferric	0.010J	mg/L	0.050		1		11/27/18 17:33	7439-89-6	
Iron, Ferrous	Analytical I	Method: SM 35	00-Fe B#4						
Iron, Ferrous	<0.012	mg/L	0.20	0.012	1		11/10/18 15:38		H6
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
Chloride	7.4	mg/L	1.0	0.29	1		11/25/18 11:13	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		11/25/18 11:13		
Sulfate	21.1	mg/L	2.0	0.48	2		11/26/18 21:34		
365.4 Total Phosphorus		Method: EPA 3							
•	•			0.050	4		11/15/10 10:50	7700 44 0	
Phosphorus	<0.050	mg/L	0.10	0.050	1		11/15/18 10:59	7723-14-0	

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-2S Lab ID: 60286318017 Collected: 11/09/18 10:10 Received: 11/10/18 06:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 315 5.0 1.5 11/26/18 18:00 11/27/18 14:06 7440-39-3 **Barium** ug/L Beryllium <0.16 ug/L 1.0 0.16 1 11/26/18 18:00 11/27/18 14:06 7440-41-7 12.5 Boron 679 ug/L 100 1 11/26/18 18:00 11/27/18 14:06 7440-42-8 Calcium 141000 ug/L 200 53.5 11/26/18 18:00 11/27/18 14:06 7440-70-2 1 Cobalt 11/27/18 14:06 7440-48-4 < 0.87 ug/L 5.0 0.87 11/26/18 18:00 1 16800 ug/L 50.0 6.1 11/26/18 18:00 11/27/18 14:06 7439-89-6 Iron 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 18:00 11/27/18 14:06 Lithium 39.7 ug/L 10.0 4.6 1 11/26/18 18:00 11/27/18 14:06 7439-93-2 Magnesium 29400 ug/L 50.0 14.0 1 11/26/18 18:00 11/27/18 14:06 7439-95-4 Manganese 1330 ug/L 5.0 0.73 1 11/26/18 18:00 11/27/18 14:06 7439-96-5 Molybdenum 43.0 ug/L 20.0 0.90 11/26/18 18:00 11/27/18 14:06 7439-98-7 1 500 79.3 Potassium 7120 ug/L 11/26/18 18:00 11/27/18 14:06 7440-09-7 72600 Sodium ug/L 500 157 11/26/18 18:00 11/27/18 14:06 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 11/23/18 15:05 11/27/18 11:07 7440-36-0 0.065 Arsenic 11.0 ug/L 1.0 1 11/23/18 15:05 11/26/18 16:16 7440-38-2 0.080J Cadmium ug/L 0.50 0.033 1 11/23/18 15:05 11/26/18 16:16 7440-43-9 Chromium 0.39J 0.078 11/26/18 16:16 7440-47-3 ug/L 1.0 1 11/23/18 15:05 R Selenium <0.085 ug/L 1.0 0.085 11/23/18 15:05 11/26/18 16:16 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 15:05 11/26/18 16:16 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/27/18 17:50 11/28/18 09:53 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 408 20.0 4.9 11/20/18 11:25 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 720 mg/L 5.0 5.0 11/15/18 14:12 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric 15.1 mg/L 11/27/18 17:33 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.20 0.012 H6 Iron, Ferrous 1.7 mg/L 1 11/10/18 13:47 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 67.6 mg/L 10.0 2.9 10 11/27/18 02:46 16887-00-6 Fluoride 0.20 11/27/18 02:30 16984-48-8 0.31 mg/L 0.19 1 11/27/18 02:46 14808-79-8 Sulfate 141 mg/L 10.0 2.4 10 365.4 Total Phosphorus Analytical Method: EPA 365.4 Phosphorus 0.15 0.10 0.050 11/15/18 11:22 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-2M Lab ID: 60286318018 Collected: 11/09/18 10:50 Received: 11/10/18 06:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.5 11/26/18 18:00 11/27/18 14:08 7440-39-3 **Barium** ug/L Beryllium 0.18J ug/L 1.0 0.16 1 11/26/18 18:00 11/27/18 14:08 7440-41-7 3560 12.5 Boron ug/L 100 1 11/26/18 18:00 11/27/18 14:08 7440-42-8 Calcium 95100 ug/L 200 53.5 11/26/18 18:00 11/27/18 14:08 7440-70-2 1 Cobalt 11/27/18 14:08 7440-48-4 <0.87 ug/L 5.0 0.87 11/26/18 18:00 1 3690 50.0 6.1 11/26/18 18:00 11/27/18 14:08 7439-89-6 Iron ug/L 1 10.0 3.0 7439-92-1 Lead <3.0 ug/L 1 11/26/18 18:00 11/27/18 14:08 Lithium 34.3 ug/L 10.0 4.6 1 11/26/18 18:00 11/27/18 14:08 7439-93-2 Magnesium 14300 ug/L 50.0 14.0 1 11/26/18 18:00 11/27/18 14:08 7439-95-4 Manganese 436 ug/L 5.0 0.73 1 11/26/18 18:00 11/27/18 14:08 7439-96-5 Molybdenum 117 ug/L 20.0 0.90 11/26/18 18:00 11/27/18 14:08 7439-98-7 1 6300 79.3 Potassium ug/L 500 11/26/18 18:00 11/27/18 14:08 7440-09-7 Sodium 61900 ug/L 500 157 11/26/18 18:00 11/27/18 14:08 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 11/23/18 15:05 11/27/18 11:08 7440-36-0 0.065 Arsenic 0.26J ug/L 1.0 1 11/23/18 15:05 11/26/18 16:22 7440-38-2 Cadmium 0.057J ug/L 0.50 0.033 1 11/23/18 15:05 11/26/18 16:22 7440-43-9 Chromium 0.39J 0.078 11/26/18 16:22 7440-47-3 ug/L 1.0 1 11/23/18 15:05 R <0.085 Selenium ug/L 1.0 0.085 11/23/18 15:05 11/26/18 16:22 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 11/23/18 15:05 11/26/18 16:22 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.090 ug/L 0.20 0.090 11/27/18 17:50 11/28/18 10:00 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 256 20.0 4.9 11/20/18 11:30 mg/L 1 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 534 mg/L 5.0 5.0 11/15/18 14:12 1 Iron, Ferric (Calculation) Analytical Method: SM 3500-Fe B#4 Iron, Ferric mg/L 11/27/18 17:33 7439-89-6 0.050 1 Iron, Ferrous Analytical Method: SM 3500-Fe B#4 0.088J 0.20 0.012 H6 Iron, Ferrous mg/L 1 11/10/18 13:48 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 22.3 mg/L 2.0 0.58 2 11/27/18 03:18 16887-00-6 Fluoride 0.47 0.20 11/27/18 03:02 16984-48-8 mg/L 0.19 1 11/27/18 03:34 14808-79-8 Sulfate 154 mg/L 20.0 4.8 20 365.4 Total Phosphorus Analytical Method: EPA 365.4 **Phosphorus** 0.35 0.10 0.050 11/15/18 11:23 7723-14-0 mg/L 1

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Sample: L-TP-2D	Lab ID:	60286318019	Collected	d: 11/09/18	09:40	Received: 11/	10/18 06:25 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	112	ug/L	5.0	1.5	1	11/26/18 18:00	11/27/18 14:15	7440-39-3	
Beryllium	<0.16	ug/L	1.0	0.16	1	11/26/18 18:00	11/27/18 14:15		
Boron	1930	ug/L	100	12.5	1		11/27/18 14:15		
Calcium	88600	ug/L	200	53.5	1	11/26/18 18:00	11/27/18 14:15		
Cobalt	< 0.87	ug/L	5.0	0.87	1	11/26/18 18:00	11/27/18 14:15		
Iron Lead	4480 3.2J	ug/L	50.0 10.0	6.1 3.0	1 1	11/26/18 18:00 11/26/18 18:00	11/27/18 14:15 11/27/18 14:15		
Lithium	3.23 42.7	ug/L ug/L	10.0	3.0 4.6	1	11/26/18 18:00	11/27/18 14:15		
Magnesium	16000	ug/L ug/L	50.0	14.0	1	11/26/18 18:00	11/27/18 14:15		
Manganese	316	ug/L	5.0	0.73	1	11/26/18 18:00	11/27/18 14:15		
Molybdenum	125	ug/L	20.0	0.90	1	11/26/18 18:00	11/27/18 14:15		
Potassium	5510	ug/L	500	79.3	1	11/26/18 18:00	11/27/18 14:15	7440-09-7	
Sodium	58300	ug/L	500	157	1	11/26/18 18:00	11/27/18 14:15	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	11/23/18 15:05	11/27/18 11:09	7440-36-0	
Arsenic	5.9	ug/L	1.0	0.065	1	11/23/18 15:05	11/26/18 16:23		
Cadmium	0.057J	ug/L	0.50	0.033	1	11/23/18 15:05	11/26/18 16:23		
Chromium	0.26J	ug/L	1.0	0.078	1	11/23/18 15:05	11/26/18 16:23	7440-47-3	В
Selenium	<0.085	ug/L	1.0	0.085	1	11/23/18 15:05	11/26/18 16:23	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	11/23/18 15:05	11/26/18 16:23	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepai	ration Meth	od: EPA	A 7470			
Mercury	<0.090	ug/L	0.20	0.090	1	11/27/18 17:50	11/28/18 10:03	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	231	mg/L	20.0	4.9	1		11/20/18 11:43		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	523	mg/L	5.0	5.0	1		11/15/18 14:12		
Iron, Ferric (Calculation)	Analytical	Method: SM 35	500-Fe B#4						
Iron, Ferric	4.4	mg/L	0.050	0.012	1		12/03/18 14:44	7439-89-6	
Iron, Ferrous	Analytical	Method: SM 35	500-Fe B#4						
Iron, Ferrous	0.11J	mg/L	0.20	0.012	1		11/10/18 13:46		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	22.6	mg/L	2.0	0.58	2		11/27/18 04:06	16887-00-6	
Fluoride	0.43	mg/L	0.20	0.19	1		11/27/18 03:50	16984-48-8	
Sulfate	156	mg/L	10.0	2.4	10		11/27/18 06:32	14808-79-8	
365.4 Total Phosphorus	Analytical	Method: EPA 3	65.4						
Phosphorus	0.18	mg/L	0.10	0.050	1		11/15/18 11:30	7723-14-0	

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Mercury

Date: 12/05/2018 04:19 PM

QC Batch: 556888 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

60286318008, 60286318009, 60286318010, 60286318011, 60286318012, 60286318013, 60286318014,

60286318015, 60286318016

METHOD BLANK: 2285036 Matrix: Water

ug/L

< 0.090

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

5

60286318008, 60286318009, 60286318010, 60286318011, 60286318012, 60286318013, 60286318014,

60286318015, 60286318016 Blank Reporting Parameter Units Result Limit MDL Qualifiers Analyzed Mercury ug/L < 0.090 0.20 0.090 11/27/18 16:39 LABORATORY CONTROL SAMPLE: 2285037 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers 5 95 Mercury ug/L 4.8 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2285039 2285038 MS MSD 60286318005 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual

5

4.8

4.9

96

75-125

99

2 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 557103 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2285743 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L <0.090 0.20 0.090 11/28/18 09:49

LABORATORY CONTROL SAMPLE: 2285744

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.7 95 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2285745 2285746

MS MSD 60286318017 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 5 5 5.2 75-125 20 Mercury ug/L < 0.090 5.1 105 101

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 554744 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286318001, 60286318002, 60286318003

METHOD BLANK: 2275800 Matrix: Water

Associated Lab Samples: 60286318001, 60286318002, 60286318003

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L		5.0	1.5	11/20/18 20:58	
Beryllium	ug/L	<0.16	1.0	0.16	11/20/18 20:58	
Boron	ug/L	<12.5	100	12.5	11/20/18 20:58	
Calcium	ug/L	<53.5	200	53.5	11/20/18 20:58	
Cobalt	ug/L	<0.87	5.0	0.87	11/20/18 20:58	
Iron	ug/L	<6.1	50.0	6.1	11/20/18 20:58	
Lead	ug/L	<3.0	10.0	3.0	11/20/18 20:58	
Lithium	ug/L	<4.6	10.0	4.6	11/20/18 20:58	
Magnesium	ug/L	<14.0	50.0	14.0	11/20/18 20:58	
Manganese	ug/L	1.8J	5.0	0.73	11/20/18 20:58	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/20/18 20:58	
Potassium	ug/L	<79.3	500	79.3	11/20/18 20:58	
Sodium	ug/L	<157	500	157	11/20/18 20:58	

LABORATORY CONTROL SAMPLE:	2275801					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Beryllium	ug/L	1000	988	99	85-115	
Boron	ug/L	1000	1010	101	85-115	
Calcium	ug/L	10000	9880	99	85-115	
Cobalt	ug/L	1000	962	96	85-115	
Iron	ug/L	10000	9670	97	85-115	
Lead	ug/L	1000	976	98	85-115	
Lithium	ug/L	1000	951	95	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	975	98	85-115	
Molybdenum	ug/L	1000	980	98	85-115	
Potassium	ug/L	10000	10000	100	85-115	
Sodium	ug/L	10000	10000	100	85-115	

MATRIX SPIKE & MATRIX SPIK	E DUPLICA	ATE: 227580	02		2275803							
			MS	MSD								
	6	60286214001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	180	1000	1000	1140	1140	96	96	70-130	1	20	
Beryllium	ug/L	<0.16	1000	1000	968	955	97	95	70-130	1	20	
Boron	ug/L	13900	1000	1000	15100	15200	125	139	70-130	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLICA	ATE: 22758		MOD	2275803							
		2000004 4004	MS	MSD	MC	MCD	MC	MCD	0/ Daa		N.4	
Parameter	Units	0286214001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	PDD	Max RPD	Qua
Calcium	ug/L	301000	10000	10000	315000	316000	142	156	70-130	0		M1
Cobalt	ug/L	<0.87	1000	1000	893	886	89	89	70-130	1	20	
Iron	ug/L	25400	10000	10000	35100	35000	97	97	70-130	0	20	
Lead	ug/L	<3.0	1000	1000	918	911	92	91	70-130	1	20	
Lithium	ug/L	31.0	1000	1000	981	966	95	94	70-130	1	20	
Magnesium	ug/L	56500	10000	10000	66600	67000	101	105	70-130	1	20	
Manganese	ug/L	3040	1000	1000	4020	4040	98	100	70-130	0	20	
Molybdenum	ug/L	6.1J	1000	1000	971	961	96	95	70-130	1	20	
Potassium	ug/L	7730	10000	10000	17600	17700	99	100	70-130	1	20	
	/1	51500	10000	10000	62600	62800	111	113	70-130	0	20	
		ATE: 22758	MS	MSD Spike	2275805 MS	MSD	MS	MSD	% Rec		Max	
Sodium MATRIX SPIKE & MATRIX S Parameter	SPIKE DUPLIC			MSD Spike Conc.	2275805 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 22758 50286215003	MS Spike	Spike	MS	_	_	_		RPD 0	RPD	Qua
MATRIX SPIKE & MATRIX S	SPIKE DUPLIC, Units	ATE: 22758 50286215003 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits		RPD	Qua
MATRIX SPIKE & MATRIX S Parameter Barium	SPIKE DUPLICA Units ug/L ug/L	ATE: 227580 60286215003 Result 121	MS Spike Conc.	Spike Conc.	MS Result	Result 1100	% Rec 98	% Rec 98	70-130		$\frac{RPD}{20}$	Qua
MATRIX SPIKE & MATRIX S Parameter Barium Beryllium	SPIKE DUPLICA Units ug/L	ATE: 227580 50286215003 Result 121 0.55J	MS Spike Conc. 1000 1000	Spike Conc. 1000 1000	MS Result 1100 990	Result 1100 985	% Rec 98 99	% Rec 98 98	70-130 70-130	 0 1	RPD 20 20	Qua
MATRIX SPIKE & MATRIX S Parameter Barium Beryllium Boron	SPIKE DUPLICA Units ug/L ug/L ug/L	ATE: 227586 60286215003 Result 121 0.55J 8310	MS Spike Conc. 1000 1000	Spike Conc. 1000 1000	MS Result 1100 990 9270	1100 985 9180	% Rec 98 99 96	% Rec 98 98 87	70-130 70-130 70-130	0 1 1	RPD 20 20 20 20 20	Qua
MATRIX SPIKE & MATRIX S Parameter Barium Beryllium Boron Calcium	SPIKE DUPLICA Units ug/L ug/L ug/L ug/L ug/L	ATE: 227586 50286215003 Result 121 0.55J 8310 220000	MS Spike Conc. 1000 1000 1000	Spike Conc. 1000 1000 1000	MS Result 1100 990 9270 231000	1100 985 9180 228000	% Rec 98 99 96 113	% Rec 98 98 87 81	70-130 70-130 70-130 70-130	0 1 1	RPD 20 20 20 20 20	Qua
Parameter Barium Beryllium Boron Calcium Cobalt	SPIKE DUPLICA Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	ATE: 227586 50286215003 Result 121 0.55J 8310 220000 <0.87	MS Spike Conc. 1000 1000 1000 10000 10000	Spike Conc. 1000 1000 1000 10000	MS Result 1100 990 9270 231000 919	1100 985 9180 228000 918	% Rec 98 99 96 113 92	% Rec 98 98 87 81 92	70-130 70-130 70-130 70-130 70-130	0 1 1 1 0	RPD 20 20 20 20 20 20	Qua
Parameter Barium Beryllium Boron Calcium Cobalt	SPIKE DUPLICA Units Ug/L	ATE: 227586 50286215003 Result 121 0.55J 8310 220000 <0.87 11900	MS Spike Conc. 1000 1000 1000 10000 10000	Spike Conc. 1000 1000 1000 10000 10000	MS Result 1100 990 9270 231000 919 21500	Result 1100 985 9180 228000 918 21300	% Rec 98 99 96 113 92 96	% Rec 98 98 87 81 92 94	70-130 70-130 70-130 70-130 70-130 70-130	0 1 1 1 0 1	RPD 20 20 20 20 20 20 20	Qua
Parameter Barium Beryllium Boron Calcium Cobalt Iron Lead	SPIKE DUPLICATION OF THE PROPERTY OF THE PROPE	ATE: 227586 50286215003 Result 121 0.55J 8310 220000 <0.87 11900 <3.0	MS Spike Conc. 1000 1000 1000 10000 10000 10000	Spike Conc. 1000 1000 1000 10000 10000 10000	MS Result 1100 990 9270 231000 919 21500 952	Result 1100 985 9180 228000 918 21300 945	% Rec 98 99 96 113 92 96 95	% Rec 98 98 87 81 92 94 95	70-130 70-130 70-130 70-130 70-130 70-130 70-130	0 1 1 1 0 1	RPD 20 20 20 20 20 20 20 20 20	Qua
Parameter Parameter Barium Beryllium Boron Calcium Cobalt Iron Lead Lithium	SPIKE DUPLICATION OF THE PROPERTY OF THE PROPE	ATE: 227580 50286215003 Result 121 0.55J 8310 220000 <0.87 11900 <3.0 25.0	MS Spike Conc. 1000 1000 1000 10000 10000 10000 10000	Spike Conc. 1000 1000 1000 10000 10000 10000 10000	MS Result 1100 990 9270 231000 919 21500 952 977	Result 1100 985 9180 228000 918 21300 945 980	% Rec 98 99 96 113 92 96 95 95	% Rec 98 98 87 81 92 94 95 96	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0 1 1 1 0 1 1	RPD 20 20 20 20 20 20 20 20 20 20 20	Qua
Parameter Barium Beryllium Boron Calcium Cobalt Iron Lead Lithium Magnesium Manganese	SPIKE DUPLICATION OF THE PROPERTY OF THE PROPE	ATE: 227580 50286215003 Result 121 0.55J 8310 220000 <0.87 11900 <3.0 25.0 28100	MS Spike Conc. 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000	Spike Conc. 1000 1000 1000 10000 10000 1000 1000	MS Result 1100 990 9270 231000 919 21500 952 977 37600	Result 1100 985 9180 228000 918 21300 945 980 37200	% Rec 98 99 96 113 92 96 95 95	% Rec 98 98 87 81 92 94 95 96 92	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0 1 1 1 0 1 1 0	RPD 20 20 20 20 20 20 20 20 20 20 20 20 20	Qua
Parameter Barium Beryllium Boron Calcium Cobalt Iron Lead Lithium Magnesium	SPIKE DUPLICATION OF THE PROPERTY OF THE PROPE	ATE: 227580 50286215003 Result 121 0.55J 8310 220000 <0.87 11900 <3.0 25.0 28100 2110	MS Spike Conc. 1000 1000 1000 1000 1000 1000 1000 10	Spike Conc. 1000 1000 1000 10000 10000 10000 10000 10000	MS Result 1100 990 9270 231000 919 21500 952 977 37600 3060	Result 1100 985 9180 228000 918 21300 945 980 37200 3030	% Rec 98 99 96 113 92 96 95 95	% Rec 98 98 87 81 92 94 95 96 92 93	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0 1 1 1 0 1 1 0 1 1	RPD 20 20 20 20 20 20 20 20 20 20 20 20 20	Qua

MATRIX SPIKE SAMPLE:	2275806						
		60286215005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	500	1000	1460	96	70-130	
Beryllium	ug/L	<0.16	1000	981	98	70-130	
Boron	ug/L	113	1000	1120	101	70-130	
Calcium	ug/L	114000	10000	124000	98	70-130	
Cobalt	ug/L	<0.87	1000	921	92	70-130	
Iron	ug/L	22700	10000	32300	96	70-130	
Lead	ug/L	<3.0	1000	944	94	70-130	
Lithium	ug/L	16.4	1000	973	96	70-130	
Magnesium	ug/L	31600	10000	41000	94	70-130	
Manganese	ug/L	349	1000	1290	94	70-130	
Molybdenum	ug/L	< 0.90	1000	972	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

MATRIX SPIKE SAMPLE:	2275806						
		60286215005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Potassium	ug/L	4120	10000	13800	97	70-130	
Sodium	ug/L	13800	10000	23800	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

CAMPLE DUDUICATE. 0005040

Date: 12/05/2018 04:19 PM

QC Batch: 556667 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286318004, 60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010,

60286318011, 60286318012, 60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2283926 Matrix: Water

Associated Lab Samples: 60286318004, 60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010,

 $60286318011,\,60286318012,\,60286318013,\,60286318014,\,60286318015,\,60286318016$

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L		5.0	1.5	11/27/18 11:10	
Beryllium	ug/L	<0.16	1.0	0.16	11/27/18 11:10	
Boron	ug/L	<12.5	100	12.5	11/27/18 11:10	
Calcium	ug/L	<53.5	200	53.5	11/27/18 11:10	
Cobalt	ug/L	<0.87	5.0	0.87	11/27/18 11:10	
Iron	ug/L	<6.1	50.0	6.1	11/27/18 11:10	
Lead	ug/L	<3.0	10.0	3.0	11/27/18 11:10	
Lithium	ug/L	<4.6	10.0	4.6	11/27/18 11:10	
Magnesium	ug/L	<14.0	50.0	14.0	11/27/18 11:10	
Manganese	ug/L	2.0J	5.0	0.73	11/27/18 11:10	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/27/18 11:10	
Potassium	ug/L	<79.3	500	79.3	11/27/18 11:10	
Sodium	ug/L	<157	500	157	11/27/18 11:10	

LABORATORY CONTROL SAMPLE:	2283927					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	984	98	85-115	
Beryllium	ug/L	1000	996	100	85-115	
Boron	ug/L	1000	980	98	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Cobalt	ug/L	1000	1020	102	85-115	
Iron	ug/L	10000	10100	101	85-115	
Lead	ug/L	1000	997	100	85-115	
Lithium	ug/L	1000	993	99	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1010	101	85-115	
Molybdenum	ug/L	1000	1010	101	85-115	
Potassium	ug/L	10000	10100	101	85-115	
Sodium	ug/L	10000	10500	105	85-115	

SAMPLE DUPLICATE: 2285840		60286318005	Dup		Max	
			•			
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Barium	ug/L	83.7	83.7	0	20	
Beryllium	ug/L	<0.16	<0.16		20	
Boron	ug/L	10600	10900	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

SAMPLE DUPLICATE: 2285840 60286318005 Dup Max RPD Parameter Units Result Result RPD Qualifiers 99600 103000 Calcium ug/L 3 20 <0.87 20 Cobalt ug/L < 0.87 5620 Iron ug/L 5670 1 19 Lead ug/L <3.0 <3.0 27 Lithium 37.0 27.2 30 20 D6 ug/L Magnesium ug/L 22500 23400 4 20 195 4 Manganese ug/L 202 12 Molybdenum ug/L 547 520 5 20 6760 Potassium ug/L 6910 2 20 117000 Sodium ug/L 119000 1 20

SAMPLE DUPLICATE: 2285841						
		60286318009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Barium	ug/L	431	425	2	20	
Beryllium	ug/L	<0.16	< 0.16		20	
Boron	ug/L	128	112	14	20	
Calcium	ug/L	157000	155000	1	20	
Cobalt	ug/L	1.4J	1.0J		20	
Iron	ug/L	14500	14300	1	19	
Lead	ug/L	<3.0	<3.0		27	
Lithium	ug/L	30.5	25.8	17	20	
Magnesium	ug/L	37400	36700	2	20	
Manganese	ug/L	2610	2560	2	12	
Molybdenum	ug/L	1.8J	2.0J		20	
Potassium	ug/L	5540	5350	3	20	
Sodium	ug/L	12000	11800	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556876 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2284987 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.5	5.0	1.5	11/27/18 13:48	
Beryllium	ug/L	<0.16	1.0	0.16	11/27/18 13:48	
Boron	ug/L	<12.5	100	12.5	11/27/18 13:48	
Calcium	ug/L	<53.5	200	53.5	11/27/18 13:48	
Cobalt	ug/L	<0.87	5.0	0.87	11/27/18 13:48	
Iron	ug/L	<6.1	50.0	6.1	11/27/18 13:48	
Lead	ug/L	<3.0	10.0	3.0	11/27/18 13:48	
Lithium	ug/L	<4.6	10.0	4.6	11/27/18 13:48	
Magnesium	ug/L	<14.0	50.0	14.0	11/27/18 13:48	
Manganese	ug/L	0.80J	5.0	0.73	11/27/18 13:48	
Molybdenum	ug/L	< 0.90	20.0	0.90	11/27/18 13:48	
Potassium	ug/L	<79.3	500	79.3	11/27/18 13:48	
Sodium	ug/L	<157	500	157	11/27/18 13:48	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Beryllium	ug/L	1000	987	99	85-115	
Boron	ug/L	1000	979	98	85-115	
Calcium	ug/L	10000	9940	99	85-115	
Cobalt	ug/L	1000	1020	102	85-115	
Iron	ug/L	10000	10000	100	85-115	
Lead	ug/L	1000	984	98	85-115	
Lithium	ug/L	1000	989	99	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1000	100	85-115	
Molybdenum	ug/L	1000	1000	100	85-115	
Potassium	ug/L	10000	10000	100	85-115	
Sodium	ug/L	10000	10400	104	85-115	

MATRIX SPIKE SAMPLE:	2284989						
Doromotor	Llaita	60286215023	Spike	MS	MS % Res	% Rec	Ouglifiere
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	82.2	1000	1060	98	70-130	
Beryllium	ug/L	<0.16	1000	999	100	70-130	
Boron	ug/L	9300	1000	10400	112	70-130	
Calcium	ug/L	84400	10000	94400	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

MATRIX SPIKE SAMPLE:	2284989						
		60286215023	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cobalt	ug/L	<0.87	1000	1010	101	70-130	
Iron	ug/L	64.8	10000	10100	101	70-130	
Lead	ug/L	<3.0	1000	975	97	70-130	
Lithium	ug/L	13.4	1000	987	97	70-130	
Magnesium	ug/L	5160	10000	15000	98	70-130	
Manganese	ug/L	113	1000	1100	99	70-130	
Molybdenum	ug/L	206	1000	1220	101	70-130	
Potassium	ug/L	9650	10000	19700	100	70-130	
Sodium	ug/L	75600	10000	85100	96	70-130	

MATRIX SPIKE & MATRIX SPIKE												
			MS	MSD								
		60286372001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	375	1000	1000	1360	1360	99	98	70-130	0	20	
Beryllium	ug/L	< 0.16	1000	1000	1000	1000	100	100	70-130	0	20	
Boron	ug/L	124	1000	1000	1140	1140	101	102	70-130	0	20	
Calcium	ug/L	162000	10000	10000	174000	173000	118	107	70-130	1	20	
Cobalt	ug/L	4.2J	1000	1000	1000	1000	100	100	70-130	0	20	
Iron	ug/L	368	10000	10000	10400	10300	100	100	70-130	0	20	
Lead	ug/L	3.2J	1000	1000	973	968	97	96	70-130	1	20	
Lithium	ug/L	40.3	1000	1000	1040	1030	100	99	70-130	0	20	
Magnesium	ug/L	44100	10000	10000	54700	54300	106	102	70-130	1	20	
Manganese	ug/L	4550	1000	1000	5620	5590	106	104	70-130	0	20	
Molybdenum	ug/L	< 0.90	1000	1000	1020	1020	102	102	70-130	0	20	
Potassium	ug/L	5880	10000	10000	16100	16000	102	102	70-130	0	20	
Sodium	ug/L	11500	10000	10000	21900	21800	104	103	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 555338 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004

METHOD BLANK: 2278064 Matrix: Water

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	0.079J	1.0	0.078	11/16/18 14:08	
Arsenic	ug/L	0.072J	1.0	0.065	11/16/18 14:08	
Cadmium	ug/L	0.040J	0.50	0.033	11/16/18 14:08	
Chromium	ug/L	< 0.078	1.0	0.078	11/16/18 14:08	
Selenium	ug/L	<0.085	1.0	0.085	11/16/18 14:08	
Thallium	ug/L	< 0.099	1.0	0.099	11/16/18 14:08	

LADODATODY	CONTROL	OANDIE	007000
LABORATORY	CONTROL	SAMPLE:	2278065

Date: 12/05/2018 04:19 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	40	40.2	101	85-115	
Arsenic	ug/L	40	40.1	100	85-115	
Cadmium	ug/L	40	39.6	99	85-115	
Chromium	ug/L	40	40.4	101	85-115	
Selenium	ug/L	40	39.4	99	85-115	
Thallium	ug/L	40	38.1	95	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 22780	66		2278067							
	6	0285081007	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	0.29J	40	40	34.2	34.4	85	85	70-130	0	20	
Arsenic	ug/L	3.9	40	40	41.1	41.1	93	93	70-130	0	20	
Cadmium	ug/L	0.13J	40	40	38.2	38.5	95	96	70-130	1	20	
Chromium	ug/L	3.8	40	40	43.5	43.6	99	100	70-130	0	20	
Selenium	ug/L	1.7	40	40	35.8	36.4	85	87	70-130	2	20	
Thallium	ug/L	< 0.099	40	40	36.4	36.6	91	91	70-130	0	20	

MATRIX SPIKE SAMPLE:	2278068						
		60286261004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	 ug/L	ND	40	39.8	99	70-130	
Arsenic	ug/L	0.59	40	40.8	100	70-130	
Cadmium	ug/L	ND	40	36.9	92	70-130	
Chromium	ug/L	1.3	40	40.0	97	70-130	
Selenium	ug/L	1.2	40	26.0	62	70-130 M	1
Thallium	ug/L	ND	40	35.0	88	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556674 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010, 60286318011,

60286318012, 60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2283950 Matrix: Water

Associated Lab Samples: 60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010, 60286318011,

 $60286318012,\,60286318013,\,60286318014,\,60286318015,\,60286318016$

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	11/26/18 10:54	
Arsenic	ug/L	< 0.065	1.0	0.065	11/26/18 10:54	
Cadmium	ug/L	0.082J	0.50	0.033	11/26/18 10:54	
Chromium	ug/L	0.30J	1.0	0.078	11/26/18 10:54	
Selenium	ug/L	< 0.085	1.0	0.085	11/26/18 10:54	
Thallium	ug/L	< 0.099	1.0	0.099	11/26/18 10:54	

LABORATORY CONTROL SAMPLE:	2283951					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	39.4	98	85-115	
Arsenic	ug/L	40	39.5	99	85-115	
Cadmium	ug/L	40	39.3	98	85-115	
Chromium	ug/L	40	40.4	101	85-115	
Selenium	ug/L	40	38.3	96	85-115	
Thallium	ug/L	40	38.0	95	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 22839	52		2283953							
Parameter	6 Units	0286318005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	0.10J	40	40	39.9	40.2	100	100	70-130	1	20	
Arsenic	ug/L	1.8	40	40	41.9	42.1	100	101	70-130	0	20	
Cadmium	ug/L	0.20J	40	40	38.8	38.9	97	97	70-130	0	20	
Chromium	ug/L	0.37J	40	40	42.1	42.0	104	104	70-130	0	20	
Selenium	ug/L	0.14J	40	40	36.4	36.5	91	91	70-130	0	20	
Thallium	ug/L	< 0.099	40	40	39.3	39.1	98	98	70-130	0	20	

SAMPLE DUPLICATE: 2284999						
		60286318010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Antimony	ug/L	<0.078	0.085J		20	
Arsenic	ug/L	0.72J	0.75J		20)
Cadmium	ug/L	< 0.033	< 0.033		20)
Chromium	ug/L	0.43J	0.44J		20)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

SAMPLE DUPLICATE: 2284999

Parameter	Units	60286318010 Result	Dup Result	RPD	Max RPD	Qualifiers
Selenium Thallium	ug/L ug/L	<0.085 <0.099	0.096J <0.099		20 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556679 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2283974 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

5 .	11.5	Blank	Reporting	MDI		0 117
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	11/27/18 10:58	
Arsenic	ug/L	< 0.065	1.0	0.065	11/26/18 16:00	
Cadmium	ug/L	< 0.033	0.50	0.033	11/26/18 16:00	
Chromium	ug/L	0.22J	1.0	0.078	11/26/18 16:00	
Selenium	ug/L	< 0.085	1.0	0.085	11/26/18 16:00	
Thallium	ug/L	< 0.099	1.0	0.099	11/26/18 16:00	

LABORATORY CONTROL SAMPLE:	2283975	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	38.4	96	85-115	
Arsenic	ug/L	40	39.4	98	85-115	
admium	ug/L	40	39.3	98	85-115	
hromium	ug/L	40	40.9	102	85-115	
elenium	ug/L	40	37.7	94	85-115	
-hallium	ug/L	40	38.4	96	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 228397	76		2283977							
	6	60286215023	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	0.078J	40	40	39.0	39.3	97	98	70-130	1	20	
Arsenic	ug/L	1.7	40	40	41.3	41.2	99	99	70-130	0	20	
Cadmium	ug/L	0.079J	40	40	38.7	38.9	97	97	70-130	0	20	
Chromium	ug/L	0.46J	40	40	39.6	39.4	98	97	70-130	1	20	
Selenium	ug/L	0.20J	40	40	36.4	36.0	90	89	70-130	1	20	
Thallium	ug/L	< 0.099	40	40	38.7	38.7	97	97	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 555761 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004

METHOD BLANK: 2280113 Matrix: Water

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<4.9</td>20.04.911/16/18 19:07

LABORATORY CONTROL SAMPLE: 2280114

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 504 101 90-110

SAMPLE DUPLICATE: 2280115

60286215003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 358 10 Alkalinity, Total as CaCO3 362 1 mg/L

SAMPLE DUPLICATE: 2280116

Date: 12/05/2018 04:19 PM

 Parameter
 Units
 60286471001 Result
 Dup Result
 RPD
 Max RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 488
 495
 1
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Parameter

Alkalinity, Total as CaCO3

Date: 12/05/2018 04:19 PM

QC Batch: 555811 Analysis Method: SM 2320B QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Units

mg/L

60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010, 60286318011, Associated Lab Samples:

60286318012, 60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2280687 Matrix: Water

Result

375

60286318005, 60286318006, 60286318007, 60286318008, 60286318009, 60286318010, 60286318011,Associated Lab Samples: 60286318012, 60286318013, 60286318014, 60286318015, 60286318016 Blank Reporting Units MDL Qualifiers Parameter Result Limit Analyzed Alkalinity, Total as CaCO3 mg/L <4.9 20.0 4.9 11/17/18 19:13 LABORATORY CONTROL SAMPLE: 2280688 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 103 90-110 500 513 SAMPLE DUPLICATE: 2280689 60286318005 Dup Max RPD RPD Result Result Qualifiers Parameter Units 115 Alkalinity, Total as CaCO3 120 4 10 mg/L SAMPLE DUPLICATE: 2280690 60286318013 Dup Max

Result

397

RPD

6

RPD

10

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 556192 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2282069 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <4.9 20.0 4.9 11/20/18 10:40

LABORATORY CONTROL SAMPLE: 2282070

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 513 103 90-110

SAMPLE DUPLICATE: 2282071

60286215025 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 58.8 10 Alkalinity, Total as CaCO3 64.8 10 mg/L

SAMPLE DUPLICATE: 2282072

Date: 12/05/2018 04:19 PM

60286372001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 534 Alkalinity, Total as CaCO3 mg/L 545 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Reporting

Result

858

LCS

RPD

0

% Rec

RPD

10

Qualifiers

LCS

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 555031 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007, Associated Lab Samples:

60286318008, 60286318009, 60286318010

METHOD BLANK: 2276914 Matrix: Water

2276915

Units

mg/L

Associated Lab Samples: Blank

Spike

60286318008, 60286318009, 60286318010

Units MDL Qualifiers Parameter Result Limit Analyzed **Total Dissolved Solids** mg/L < 5.0 5.0 5.0 11/14/18 13:57

LABORATORY CONTROL SAMPLE:

Parameter

Total Dissolved Solids

Date: 12/05/2018 04:19 PM

Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** 100 80-120 mg/L 1000 1000 SAMPLE DUPLICATE: 2276916 60286404006 Dup Max RPD RPD Result Result Qualifiers Parameter Units 606 Total Dissolved Solids 610 10 mg/L 1 SAMPLE DUPLICATE: 2276918 60286318005 Dup Max

858

Result

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 555352 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids
Associated Lab Samples: 60286318011, 60286318012, 60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2278146 Matrix: Water

Associated Lab Samples: 60286318011, 60286318012, 60286318013, 60286318014, 60286318015, 60286318016

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.011/15/18 14:58

LABORATORY CONTROL SAMPLE: 2278147

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1050 105 80-120

SAMPLE DUPLICATE: 2278148

60286318011 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 631 2 **Total Dissolved Solids** 644 10 mg/L

SAMPLE DUPLICATE: 2278150

Date: 12/05/2018 04:19 PM

ParameterUnits60286488003 ResultDup ResultRPDMax RPDQualifiersTotal Dissolved Solidsmg/L484488110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 555353 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2278151 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.011/15/18 14:12

LABORATORY CONTROL SAMPLE: 2278152

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2278153

60286488009 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 697 2 10 **Total Dissolved Solids** 710 mg/L

SAMPLE DUPLICATE: 2278161

Date: 12/05/2018 04:19 PM

60286668008 Dup Max RPD RPD Parameter Units Result Result Qualifiers 620 **Total Dissolved Solids** mg/L 601 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 554544 Analysis Method: SM 3500-Fe B#4
QC Batch Method: SM 3500-Fe B#4 Analysis Description: Iron, Ferrous

Associated Lab Samples: 60286318012, 60286318017, 60286318018, 60286318019

METHOD BLANK: 2274532 Matrix: Water
Associated Lab Samples: 60286318012, 60286318017, 60286318018, 602863180

amples: 60286318012, 60286318017, 60286318018, 60286318019 Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Ferrous mg/L <0.012 0.20 0.012 11/10/18 13:31 H6

LABORATORY CONTROL SAMPLE: 2274533

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Ferrous mg/L 2 2.0 100 90-110 H6

SAMPLE DUPLICATE: 2274535

SAMPLE DUPLICATE: 2274537

Date: 12/05/2018 04:19 PM

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Reporting

2.1

103

90-110 H6

AMEREN LABADIE LCPA N&E Project:

Pace Project No.: 60286318

Iron, Ferrous

Date: 12/05/2018 04:19 PM

QC Batch: 554557 Analysis Method: SM 3500-Fe B#4 QC Batch Method: SM 3500-Fe B#4 Analysis Description: Iron, Ferrous

mg/L

60286318003, 60286318004, 60286318005, 60286318006, 60286318007, 60286318008, 60286318011, Associated Lab Samples:

60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2274664 Matrix: Water

60286318003, 60286318004, 60286318005, 60286318006, 60286318007, 60286318008, 60286318011,Associated Lab Samples: Blank

60286318013, 60286318014, 60286318015, 60286318016

Units MDL Parameter Result Limit Analyzed Qualifiers Iron, Ferrous mg/L < 0.012 0.20 0.012 11/10/18 15:30 H6 LABORATORY CONTROL SAMPLE: 2274665 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

SAMPLE DUPLICATE: 2274667 60286318013 Dup Max RPD RPD Result Parameter Units Result Qualifiers 0.56 20 H6 Iron, Ferrous 0.56 0 mg/L

2

SAMPLE DUPLICATE: 2274668 60286318005 Dup Max Parameter Units Result Result RPD RPD Qualifiers Iron, Ferrous mg/L 0.19J 0.21 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 554558 Analysis Method: SM 3500-Fe B#4
QC Batch Method: SM 3500-Fe B#4 Analysis Description: Iron, Ferrous

Associated Lab Samples: 60286318001, 60286318002, 60286318009, 60286318010

METHOD BLANK: 2274674 Matrix: Water Associated Lab Samples: 60286318001, 60286318002, 60286318009, 602863180

nples: 60286318001, 60286318002, 60286318009, 60286318010 Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Ferrous mg/L <0.012 0.20 0.012 11/10/18 15:43 H6

LABORATORY CONTROL SAMPLE: 2274675

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Ferrous mg/L 2 2.0 102 90-110 H6

SAMPLE DUPLICATE: 2274676

Date: 12/05/2018 04:19 PM

60286318010 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 0.44 0 20 H6 Iron, Ferrous 0.44 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556691 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

60286318008, 60286318009, 60286318010, 60286318011, 60286318012

METHOD BLANK: 2284087 Matrix: Water

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

60286318008, 60286318009, 60286318010, 60286318011, 60286318012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.29	1.0	0.29	11/24/18 10:56	
Fluoride	mg/L	<0.19	0.20	0.19	11/24/18 10:56	
Sulfate	mg/L	< 0.24	1.0	0.24	11/24/18 10:56	

LABORATORY CONTROL SAMPLE:	2284088					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.0	99	90-110	
Fluoride	mg/L	2.5	2.4	95	90-110	
Sulfate	mg/L	5	5.0	101	90-110	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	ATE: 228408	39		2284090							
			MS	MSD								
	6	60286762001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2080	1000	1000	3440	3450	136	137	90-110	0	15	M1
Fluoride	mg/L	60.2	500	500	646	640	117	116	90-110	1	15	M1
Sulfate	mg/L	ND	1000	1000	1310	1290	121	119	90-110	2	15	M1

MATRIX SPIKE SAMPLE:	2284091						
		60286318005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	24.4	25	56.9	130	90-110	M1
Fluoride	mg/L	0.27	2.5	3.4	124	90-110	M1
Sulfate	mg/L	441	250	752	124	90-110	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556692 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60286318013, 60286318014, 60286318015, 60286318016

METHOD BLANK: 2284092 Matrix: Water

Associated Lab Samples: 60286318013, 60286318014, 60286318015, 60286318016

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.29	1.0	0.29	11/25/18 04:16	
Fluoride	mg/L	<0.19	0.20	0.19	11/25/18 04:16	
Sulfate	mg/L	<0.24	1.0	0.24	11/25/18 04:16	

LABORATORY CONTROL SAMPLE:	2284093					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	5.0	99	90-110	
Fluoride	mg/L	2.5	2.5	102	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	ATE: 22840	94		2284095							
			MS	MSD								
	6	60286318013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.2	5	5	18.9	18.8	114	112	90-110	0	15	M1
Fluoride	mg/L	<0.19	2.5	2.5	2.6	2.6	100	100	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556824 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60286318003, 60286318012, 60286318013, 60286318016

METHOD BLANK: 2284818 Matrix: Water
Associated Lab Samples: 60286318003, 60286318012, 60286318013, 60286318016

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfate mg/L <0.24 1.0 0.24 11/26/18 19:27

LABORATORY CONTROL SAMPLE: 2284819

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.2 105 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2284820 2284821 MS MSD 60286318003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 15 M1 mg/L 25.7 10 10 36.8 36.8 111 110 90-110 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 556826 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60286318017, 60286318018, 60286318019

METHOD BLANK: 2284823 Matrix: Water

Associated Lab Samples: 60286318017, 60286318018, 60286318019

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.29	1.0	0.29	11/26/18 17:58	
Fluoride	mg/L	<0.19	0.20	0.19	11/26/18 17:58	
Sulfate	mg/L	<0.24	1.0	0.24	11/26/18 17:58	

LABORATORY CONTROL SAMPLE:	2284824					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.0	100	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	ATE: 228482	25		2284826							
			MS	MSD								
	6	80286358005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.7	5	5	9.7	9.7	99	100	90-110	1	15	
Fluoride	mg/L	0.22	2.5	2.5	2.9	2.9	106	109	90-110	2	15	
Sulfate	mg/L	10.1	5	5	15.3	15.3	103	105	90-110	1	15	

MATRIX SPIKE SAMPLE:	2284827						
Para sastar	I I a Ya	60286372001	Spike	MS	MS	% Rec	0
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	3.7	5	5.7	38	90-110	M1
Fluoride	mg/L	0.29	2.5	1.3	40	90-110	M1
Sulfate	mg/L	96.8	50	115	37	90-110	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

QC Batch: 554982 Analysis Method: EPA 365.4

QC Batch Method: EPA 365.4 Analysis Description: 365.4 Phosphorus

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

60286318008, 60286318009, 60286318010, 60286318011, 60286318012, 60286318013

METHOD BLANK: 2276684 Matrix: Water

Associated Lab Samples: 60286318001, 60286318002, 60286318003, 60286318004, 60286318005, 60286318006, 60286318007,

			-	00200310012, 0	80286318013		
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyze	ed Qualifi	ers
Phosphorus	mg/L	<0.050	0.10	0.05	50 11/15/18 1	10:17	
LABORATORY CONTROL SAMI	PLE: 2276685						
Parameter	Units	•	CS sult	LCS % Rec	% Rec Limits	Qualifiers	
Phosphorus	mg/L		2.0	101	90-110		
MATRIX SPIKE SAMPLE:	2276686						
Davamatas	l laita	60286529001	Spike	MS	MS % Date	% Rec	O a lifi a ma
Parameter	Units	Result	Conc.	Result	% Rec	Limits — ———	Qualifiers
Phosphorus	mg/L	12.2	2	13.8	8	3 90-110) M1
MATRIX SPIKE SAMPLE:	2276688						
		60286318005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Phosphorus	mg/L	0.19	2	2.1	9	6 90-110)
SAMPLE DUPLICATE: 227668	37						
		60286215011	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Phosphorus	mg/L	0.068J	0.056	J		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 554983 Analysis Method: EPA 365.4

QC Batch Method: EPA 365.4 Analysis Description: 365.4 Phosphorus

Associated Lab Samples: 60286318014, 60286318015, 60286318016, 60286318017, 60286318018

METHOD BLANK: 2276689 Matrix: Water

2276690

Associated Lab Samples: 60286318014, 60286318015, 60286318016, 60286318017, 60286318018

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Phosphorus
 mg/L
 <0.050</td>
 0.10
 0.050
 11/15/18 10:53

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phosphorus mg/L 2 1.9 97 90-110

MATRIX SPIKE SAMPLE: 2276691

LABORATORY CONTROL SAMPLE:

60286318014 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 2 1.9 96 90-110 Phosphorus mg/L

MATRIX SPIKE SAMPLE: 2276693

60286270003 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Phosphorus mg/L 2.9 2 4.8 91 90-110

SAMPLE DUPLICATE: 2276692

Date: 12/05/2018 04:19 PM

60286214007 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Phosphorus 0.37 3 10 mg/L 0.36

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 554984

QC Batch Method: EPA 365.4 Analysis Method:

EPA 365.4

Analysis Description:

365.4 Phosphorus

Associated Lab Samples: 60286318019

METHOD BLANK: 2276694

Matrix: Water

Associated Lab Samples:

Phosphorus

Phosphorus

Phosphorus

Phosphorus

Phosphorus

60286318019

Blank

Reporting

Parameter

Units mg/L

Result < 0.050 Limit

0.10

MDL Analyzed

0.050

Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter

2276695

Units

mg/L

Spike Conc.

LCS Result

0.18

0.28

LCS % Rec % Rec Limits

11/15/18 11:25

Qualifiers

MATRIX SPIKE SAMPLE:

2276696

Parameter Units mg/L 60286318019 Result

2

Spike Conc. 2

1.9

MS Result

96

2.1

2.3

MS % Rec

98

100

10

90-110

% Rec Limits

90-110

Qualifiers

MATRIX SPIKE SAMPLE:

2276698

60286571003 Parameter Units Result

mg/L

Spike Conc.

2

MS Result

MS % Rec % Rec Limits

Qualifiers 90-110

SAMPLE DUPLICATE: 2276697

Date: 12/05/2018 04:19 PM

Parameter Units mg/L 60286372001 Result < 0.050

Dup Result <0.050

RPD

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Sample: L-TP-4M Lab ID: 60286318007 Collected: 11/08/18 10:35 Received: 11/09/18 03:12 Matrix: Water

PWS:	Site ID:	Sample Type:					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual	
Radium-226	EPA 903.1	0.815 ± 0.605 (0.756) C:NA T:86%	pCi/L	12/04/18 21:22	13982-63-3		
Radium-228	EPA 904.0	0.535 ± 0.491 (1.00) C:80% T:85%	pCi/L	12/04/18 18:33	15262-20-1		

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 320562 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60286318007

METHOD BLANK: 1563545 Matrix: Water

Associated Lab Samples: 60286318007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.257 ± 0.316 (0.668) C:82% T:82%
 pCi/L
 12/04/18 16:04

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

QC Batch: 321857 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60286318007

METHOD BLANK: 1569342 Matrix: Water

Associated Lab Samples: 60286318007

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.262 ± 0.454 (0.810) C:NA T:82%
 pCi/L
 12/04/18 21:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 12/05/2018 04:19 PM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60286318001	L-TP-1S	EPA 200.7	 554744	EPA 200.7	 554814
60286318002	L-TP-1M	EPA 200.7	554744	EPA 200.7	554814
0286318003	L-TP-1D	EPA 200.7	554744	EPA 200.7	554814
0286318004	L-TP-3M	EPA 200.7	556667	EPA 200.7	556947
0286318005	L-TP-3D	EPA 200.7	556667	EPA 200.7	556947
0286318006	L-TP-4S	EPA 200.7	556667	EPA 200.7	556947
0286318007	L-TP-4M	EPA 200.7	556667	EPA 200.7	556947
0286318008	L-TP-4D	EPA 200.7	556667	EPA 200.7	556947
0286318009	L-TP-5S	EPA 200.7	556667	EPA 200.7	556947
0286318010	L-TP-5M	EPA 200.7	556667	EPA 200.7	556947
0286318011	L-TP-5D	EPA 200.7	556667	EPA 200.7	556947
0286318012	L-NE-DUP-1	EPA 200.7	556667	EPA 200.7	556947
0286318013	L-NE-DUP-2	EPA 200.7	556667	EPA 200.7	556947
0286318014	L-NE-FB-1	EPA 200.7	556667	EPA 200.7	556947
0286318015	L-NE-FB-2	EPA 200.7	556667	EPA 200.7	556947
0286318016	L-TP-3S	EPA 200.7	556667	EPA 200.7	556947
0286318017	L-TP-2S	EPA 200.7	556876	EPA 200.7	556951
0286318018	L-TP-2M	EPA 200.7	556876	EPA 200.7	556951
0286318019	L-TP-2D	EPA 200.7	556876	EPA 200.7	556951
0286318001	L-TP-1S	EPA 200.8	555338	EPA 200.8	555405
0286318002	L-TP-1M	EPA 200.8	555338	EPA 200.8	555405
0286318003	L-TP-1D	EPA 200.8	555338	EPA 200.8	555405
0286318004	L-TP-3M	EPA 200.8	555338	EPA 200.8	555405
0286318005	L-TP-3D	EPA 200.8	556674	EPA 200.8	556761
0286318006	L-TP-4S	EPA 200.8	556674	EPA 200.8	556761
0286318007	L-TP-4M	EPA 200.8	556674	EPA 200.8	556761
0286318008	L-TP-4D	EPA 200.8	556674	EPA 200.8	556761
0286318009	L-TP-5S	EPA 200.8	556674	EPA 200.8	556761
0286318010	L-TP-5M	EPA 200.8	556674	EPA 200.8	556761
0286318011	L-TP-5D	EPA 200.8	556674	EPA 200.8	556761
0286318012	L-NE-DUP-1	EPA 200.8	556674	EPA 200.8	556761
0286318013	L-NE-DUP-2	EPA 200.8	556674	EPA 200.8	556761
0286318014	L-NE-FB-1	EPA 200.8	556674	EPA 200.8	556761
0286318015	L-NE-FB-2	EPA 200.8	556674	EPA 200.8	556761
0286318016	L-TP-3S	EPA 200.8	556674	EPA 200.8	556761
0286318017	L-TP-2S	EPA 200.8	556679	EPA 200.8	556837
0286318018	L-TP-2M	EPA 200.8	556679	EPA 200.8	556837
0286318019	L-TP-2D	EPA 200.8	556679	EPA 200.8	556837
0286318001	L-TP-1S	EPA 7470	556888	EPA 7470	556949
0286318002	L-TP-1M	EPA 7470	556888	EPA 7470	556949
0286318003	L-TP-1D	EPA 7470	556888	EPA 7470	556949
0286318004	L-TP-3M	EPA 7470	556888	EPA 7470	556949
0286318005	L-TP-3D	EPA 7470	556888	EPA 7470	556949
0286318006	L-TP-4S	EPA 7470	556888	EPA 7470	556949
0286318007	L-TP-4M	EPA 7470	556888	EPA 7470	556949
0286318008	L-TP-4D	EPA 7470	556888	EPA 7470	556949

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

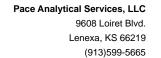
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60286318009	L-TP-5S	EPA 7470	 556888	EPA 7470	556949
60286318010	L-TP-5M	EPA 7470	556888	EPA 7470	556949
0286318011	L-TP-5D	EPA 7470	556888	EPA 7470	556949
0286318012	L-NE-DUP-1	EPA 7470	556888	EPA 7470	556949
0286318013	L-NE-DUP-2	EPA 7470	556888	EPA 7470	556949
0286318014	L-NE-FB-1	EPA 7470	556888	EPA 7470	556949
0286318015	L-NE-FB-2	EPA 7470	556888	EPA 7470	556949
0286318016	L-TP-3S	EPA 7470	556888	EPA 7470	556949
0286318017	L-TP-2S	EPA 7470	557103	EPA 7470	557207
0286318018	L-TP-2M	EPA 7470	557103	EPA 7470	557207
0286318019	L-TP-2D	EPA 7470	557103	EPA 7470	557207
60286318007	L-TP-4M	EPA 903.1	321857		
60286318007	L-TP-4M	EPA 904.0	320562		
60286318001	L-TP-1S	SM 2320B	555761		
0286318002	L-TP-1M	SM 2320B	555761		
0286318003	L-TP-1D	SM 2320B	555761		
0286318004	L-TP-3M	SM 2320B	555761		
0286318005	L-TP-3D	SM 2320B	555811		
0286318006	L-TP-4S	SM 2320B	555811		
0286318007	L-TP-4M	SM 2320B	555811		
0286318008	L-TP-4D	SM 2320B	555811		
0286318009	L-TP-5S	SM 2320B	555811		
0286318010	L-TP-5M	SM 2320B	555811		
0286318011	L-TP-5D	SM 2320B	555811		
0286318012	L-NE-DUP-1	SM 2320B	555811		
0286318013	L-NE-DUP-2	SM 2320B	555811		
0286318014	L-NE-FB-1	SM 2320B	555811		
0286318015	L-NE-FB-2	SM 2320B	555811		
0286318016	L-TP-3S	SM 2320B	555811		
0286318017	L-TP-2S	SM 2320B	556192		
0286318018	L-TP-2M	SM 2320B	556192		
0286318019	L-TP-2D	SM 2320B	556192		
0286318001	L-TP-1S	SM 2540C	555031		
0286318002	L-TP-1M	SM 2540C	555031		
0286318003	L-TP-1D	SM 2540C	555031		
0286318004	L-TP-3M	SM 2540C	555031		
0286318005	L-TP-3D	SM 2540C	555031		
0286318006	L-TP-4S	SM 2540C	555031		
0286318007	L-TP-4M	SM 2540C	555031		
0286318008	L-TP-4D	SM 2540C	555031		
0286318009	L-TP-5S	SM 2540C	555031		
0286318010	L-TP-5M	SM 2540C	555031		
60286318011	L-TP-5D	SM 2540C	555352		
0286318012	L-NE-DUP-1	SM 2540C	555352		
60286318013	L-NE-DUP-2	SM 2540C	555352		

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60286318014	L-NE-FB-1	SM 2540C	555352		
60286318015	L-NE-FB-2	SM 2540C	555352		
0286318016	L-TP-3S	SM 2540C	555352		
0286318017	L-TP-2S	SM 2540C	555353		
0286318018	L-TP-2M	SM 2540C	555353		
0286318019	L-TP-2D	SM 2540C	555353		
0286318001	L-TP-1S	SM 3500-Fe B#4	556806		
0286318002	L-TP-1M	SM 3500-Fe B#4	556806		
0286318003	L-TP-1D	SM 3500-Fe B#4	556806		
0286318004	L-TP-3M	SM 3500-Fe B#4	557168		
0286318005	L-TP-3D	SM 3500-Fe B#4	557168		
0286318006	L-TP-4S	SM 3500-Fe B#4	557168		
0286318007	L-TP-4M	SM 3500-Fe B#4	557168		
0286318008	L-TP-4D	SM 3500-Fe B#4	557168		
0286318009	L-TP-5S	SM 3500-Fe B#4	557168		
0286318010	L-TP-5M	SM 3500-Fe B#4	557168		
0286318011	L-TP-5D	SM 3500-Fe B#4	557168		
0286318012	L-NE-DUP-1	SM 3500-Fe B#4	557168		
0286318013	L-NE-DUP-2	SM 3500-Fe B#4	557168		
0286318014	L-NE-FB-1	SM 3500-Fe B#4	557168		
0286318015	L-NE-FB-2	SM 3500-Fe B#4	557168		
0286318016	L-TP-3S	SM 3500-Fe B#4	557168		
0286318017	L-TP-2S	SM 3500-Fe B#4	557168		
0286318018	L-TP-2M	SM 3500-Fe B#4	557168		
0286318019	L-TP-2D	SM 3500-Fe B#4	558082		
0286318001	L-TP-1S	SM 3500-Fe B#4	554558		
0286318002	L-TP-1M	SM 3500-Fe B#4	554558		
0286318003	L-TP-1D	SM 3500-Fe B#4	554557		
0286318004	L-TP-3M	SM 3500-Fe B#4	554557		
0286318005	L-TP-3D	SM 3500-Fe B#4	554557		
0286318006	L-TP-4S	SM 3500-Fe B#4	554557		
0286318007	L-TP-4M	SM 3500-Fe B#4	554557		
0286318008	L-TP-4D	SM 3500-Fe B#4	554557		
0286318009	L-TP-5S	SM 3500-Fe B#4	554558		
0286318010	L-TP-5M	SM 3500-Fe B#4	554558		
0286318011	L-TP-5D	SM 3500-Fe B#4	554557		
0286318012	L-NE-DUP-1	SM 3500-Fe B#4	554544		
0286318013	L-NE-DUP-2	SM 3500-Fe B#4	554557		
0286318014	L-NE-FB-1	SM 3500-Fe B#4	554557		
0286318015	L-NE-FB-2	SM 3500-Fe B#4	554557		
60286318016	L-TP-3S	SM 3500-Fe B#4	554557		
0286318017	L-TP-2S	SM 3500-Fe B#4	554544		
0286318018	L-TP-2M	SM 3500-Fe B#4	554544		



Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60286318019	L-TP-2D	SM 3500-Fe B#4	554544		
60286318001	L-TP-1S	EPA 300.0	556691		
60286318002	L-TP-1M	EPA 300.0	556691		
60286318003	L-TP-1D	EPA 300.0	556691		
60286318003	L-TP-1D	EPA 300.0	556824		
60286318004	L-TP-3M	EPA 300.0	556691		
60286318005	L-TP-3D	EPA 300.0	556691		
60286318006	L-TP-4S	EPA 300.0	556691		
0286318007	L-TP-4M	EPA 300.0	556691		
60286318008	L-TP-4D	EPA 300.0	556691		
0286318009	L-TP-5S	EPA 300.0	556691		
0286318010	L-TP-5M	EPA 300.0	556691		
0286318011	L-TP-5D	EPA 300.0	556691		
0286318012	L-NE-DUP-1	EPA 300.0	556691		
60286318012	L-NE-DUP-1	EPA 300.0	556824		
60286318013	L-NE-DUP-2	EPA 300.0	556692		
60286318013	L-NE-DUP-2	EPA 300.0	556824		
0286318014	L-NE-FB-1	EPA 300.0	556692		
0286318015	L-NE-FB-2	EPA 300.0	556692		
0286318016	L-TP-3S	EPA 300.0	556692		
0286318016	L-TP-3S	EPA 300.0	556824		
0286318017	L-TP-2S	EPA 300.0	556826		
0286318018	L-TP-2M	EPA 300.0	556826		
0286318019	L-TP-2D	EPA 300.0	556826		
0286318001	L-TP-1S	EPA 365.4	554982		
0286318002	L-TP-1M	EPA 365.4	554982		
0286318003	L-TP-1D	EPA 365.4	554982		
0286318004	L-TP-3M	EPA 365.4	554982		
0286318005	L-TP-3D	EPA 365.4	554982		
0286318006	L-TP-4S	EPA 365.4	554982		
0286318007	L-TP-4M	EPA 365.4	554982		
0286318008	L-TP-4D	EPA 365.4	554982		
0286318009	L-TP-5S	EPA 365.4	554982		
0286318010	L-TP-5M	EPA 365.4	554982		
0286318011	L-TP-5D	EPA 365.4	554982		
0286318012	L-NE-DUP-1	EPA 365.4	554982		
0286318013	L-NE-DUP-2	EPA 365.4	554982		
0286318014	L-NE-FB-1	EPA 365.4	554983		
0286318015	L-NE-FB-2	EPA 365.4	554983		
60286318016	L-TP-3S	EPA 365.4	554983		
60286318017	L-TP-2S	EPA 365.4	554983		
60286318018	L-TP-2M	EPA 365.4	554983		

Project: AMEREN LABADIE LCPA N&E

Pace Project No.: 60286318

Date: 12/05/2018 04:19 PM

Lab ID Sample ID QC Batch Method QC Batch Analytical Method Batch

Sample Condition Upon Receipt

Client Name: Golder		T.
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Use	d? Yes □ No 🐧
Custody Seal on Cooler/Box Present: Yes Ŋ No □	Seals intact: Yes	No□
Packing Material: Bubble Wrap ☐ Bubble Bags	□ Foam □	None ☐ Other ☐
Thermometer Used: T-301 Type o	f Ice: Wet Blue No	
Cooler Temperature (°C): As-read 3.1,2.7 Corr. Fac	tor +().() Correc	ted 3.1, 2.7 Date and initials of person examining contents:
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes DNo DN/A	
Chain of Custody relinquished:	Ñ(Yes □No □N/A	
Samples arrived within holding time:	Yes DNo DN/A	
Short Hold Time analyses (<72hr):	Yes No N/A	Ferrous Iron
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	QYes □No □N/A	
Pace containers used:	Ñ(Yes □No □N/A	
Containers intact:	Ò Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No 🗖N/A	
Sample labels match COC: Date / time / ID / analyses	Yes 🗆 No 🗆 N/A	
Samples contain multiple phases? Matrix: LUT	□Yes No □N/A	
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		
Cyanide water sample checks:	□Yes 🐧No	
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes No	
	,	
Trip Blank present:	Yes No N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	☐Yes ☐No ☐N/A	
Additional labels attached to 5035A / TX1005 vials in the field		
Client Notification/ Resolution: Copy COC 1		Field Data Required? Y / N
Person Contacted: Date/	Time:	
Comments/ Resolution:		
, 01 1		11/9/18
Project Manager Review: Janu Chush	Dat	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Common													1				
	Golder Associates	Report To: Mark Haddock (mhaddock@golder.com)	fock (mhaddo	ck@golder.	com)	Attention:											
A.ddress	13515 Barrett Parkway Drive, Ste 260 C	Copy To: Jeffrey Ingram	ram			Company Name:	ame:				REGUL	REGULATORY AGENCY	GENCY				
	Ballwin, MO 63021					Address:					NPDES		X GROUND WATER	WATER	NIRO L	DRINKING WATER	۵
Email To:	maddock@golder.com	Purchase Order No				Pace Quete Reference:					TSU T		RCRA		T OTHER	<u>د</u>	
Phone: 63	636-724-9191 Fax 636-724-9323 P	Project Name: Amer	Ameren Labadie EC LCPA N&E	C LCPA N&	ш	Pace Project	Jamie Church	Church			Site Location	cation	-				
duested	Requested Due Date/TAT; Standard	Project Number 153-1	153-1406.00011 (COC #3)	OC #3)		Pace Profile	#: 9285				S	STATE:	NAC				
	- Control								Re	Requested Analysis Filtered (Y/N)	Analysis	Filtered	(A/A)				
20. 20.	Section D Valid Matrix Codes Required Client Information MATRIX CODE	o (eg/)	00	COLLECTED			Preservatives	atives	Z • N/A	z	z	z	z				
	DRINKINS WATER WATER WASTE WATER FRODUCT SOLISOLID OIL	꽃 뜻 학 박 학 J seboo bilav ee J O=O BARÐ	OOMPOSITE START	OCMPOSITE END/GRAB					1	eteilu2\e	S					,	
 	Sample ID Sample IDs MUST BE UNIQUE	e) BOOD XIATAM	DATE TIME	Д	E O TA 9MBT BJ9MAR	# OF CONTAINERS	HCI HMO ³ H ⁵ RO ⁴	Nachanol Ma ₂ S ₂ O ₃ Other	testsisysis Test Vetals*	Mercury Chloride/Fluoride TDS	– Total Phosphoru Total Phosphoru	Ferrous Iron Ferric Iron Radium 226	8SS muibs9	Residual Chlorine	DSG.	40236318	
-	L-TP-1S	WT G	-	-	Ohhl	7 4	1 = -	0	_	-	1	1	2BP	211	BR3n	BP3;	5 - 00
2	L-TP-1M			1 /	1400	1 1	11	1	-								8
8	L-TP-1D	WT G		4	1310	7 7	111	4	긔	777	ゴー	エレ	→		7	→	8
4	L-TP-2S	WTW	\									1		1			
NO.	L-TP-2M	WT @	10				-							1			
g.	L-TP-2D	WTW		- /**	+	+	1	1			1	1	0	_		1	
7	L-TP-3S	0 TW	5	1/8/18	-	7	1	1		1	1	1	78 Pau	_	BP3D I	5633	0
60	L-TP-3M	Ø ₩	-	+	1040	7		1	+		1	-	_			-	8
60	L-TP-3D				2460			1					ł				200
0 ;	L-1P-4S	ψ (d			77.41	1 '	1 -	1	ļ				-			20	2RPIN
12	L-TP-4D	0 0		1	0460		-		1-3	7	-1	17.7	>			}	181
	ADDITIONAL COMMENTS	RELINQUIS	RELINQUISHED BY / AFFILIATION	IATION	DATE	TIME		ACCEPTE	ACCEPTED BY / AFFILIATION	LIATION	ď	DATE	TIME		SAMPLE CONDITIONS	SNOITIONS	
A 200 ;	'EPA 200 7: B, Ca, Ba, Be, Co, Pb, Lı, Mo, Fe, Mg, Mn, K, Na 'EPA 200 8: Sb As, Cd, Cr, Se, Tl		16014	1960	sils p	173	V	, o	X	1Sed	Silplii	1/8 03	: 12	7.1.	22	22	75
Pa																	
ge 67			SAM	PLER NAME	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	RE			3					O'ni o	(V/V) y Sealed	(Y/V)	es Intacl (VV)
of 7				SIGNATU	SIGNATURE of SAMPLER	يد			DA	DATE Signed							rqmec

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section C Sectio	goider com)	Jeffrey ligiram Company Name: REGULATORY AGENCY	Address: X GROUND WATER	der No.: Face Cuole Relevance RCRA	Ameren Labadie EC LCPA N&E	le# 9285	Requested Analysis Filtered (YIN)	-	COUNTRY THE CTION START THOUGHTON THE CTION COLLECTION	MATRIX CODE Ashire Type Ashire Type Ashire Type Ashire Type Ashire Tem A	U	9	WT 6 / 215	WIT G	>	9	WF 6 / 0775	9 0	L	9	RELINQUISHED BY JAFFILLATION DATE TIME ACCEPTED BY JAFFILLATION DATE TIME	Why 1001de-11/8/18 1735 Jobo Cof post "17/8 03:12	
Section B Required Project Information: Report To: Mark Control		13515 Barrett Parkway Drive, Ste 260 Copy To: Jeffre		Purchase Order No.:	Fix: 636-724-9329 Project Name: A	Project Number: 1		Odes CODE		MATRIX CODE	L-TP-5S		L-TP-5D WT	L-NE-DUP-1	L-NE-DUP-2	L-NE-FB-1	(-NE-MS-)		WT	WŢ	11/2	FEPA 2007: S. Ca. Ba. Be. Co. Pp. 1.1, Wo. Fe. Mg. Wn. K. Na FEPA 2008: Sb. As. Cd. Cr. Se. 71	

Sample Condition Upon Receipt

Client Name: Golder			
Courier: FedEx UPS VIA Clay	PEX 🗆 EC		Pace □ Xroads 🛕 Client □ Other □
	e Shipping La		•
Custody Seal on Cooler/Box Present: Yes No □	Seals intact		
Packing Material: Bubble Wrap ☐ Bubble Bags ☐		am 🗆	None Ø Other □
	Ice Web B		1/0
Cooler Temperature (°C): As-read Corr. Fact			Date 1: for a
Temperature should be above freezing to 6°C	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	001100	examining contents:
Chain of Custody present:	∭Yes □No	□n/a	
Chain of Custody relinquished:	Mes □No	□n/a	
Samples arrived within holding time:	¥Yes □No	□n/a	
Short Hold Time analyses (<72hr):	NYes 🗆 No	□N/A	Fezz
Rush Turn Around Time requested:	□Yes W No	□N/A	
Sufficient volume:	₩Yes □No	□N/A	
Correct containers used:	Ø Yes □No	□N/A	
Pace containers used:	(dYes □No	□n/a	
Containers intact:	Mayes □No	□n/a	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No	DINIA	
Filtered volume received for dissolved tests?	□Yes □No	MN/A	
Sample labels match COC: Date / time / ID / analyses	M Yes □No	□N/A	
Samples contain multiple phases? Matrix:	□Yes Ú No	□n/a	
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Ø Yes □No	□n/a	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:			
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
	□Yes □No	-4	
Trip Blank present:	□Yes □No	M/N/A	
Headspace in VOA vials (>6mm):	□Yes □No	Ø N/A	
Samples from USDA Regulated Area: State:	□Yes □No	N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No	M N/A	
Client Notification/ Resolution: Copy COC to		N	Field Data Required? Y / N
Person Contacted: Date/Til Comments/ Resolution:	me:		
, 11			11110110
Project Manager Review:		Date	11/12/18

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

是岩景 Pace Project No./ Lab I.D. DRINKING WATER BRAN SAMPLE CONDITIONS B836 OTHER ₽ 2 BP2h > GROUND WATER Page: Residual Chlorine (Y/N) 30 REGULATORY AGENCY S RCRA Requested Analysis Filtered (Y/N) TIME 142 822 muibeA z 200 Z 322 muibes z -erric Iron STATE Site Location WHILE NPDES DATE 91 2 errous fron TSS. z Total Phosphorus z **∀lkalinity** z LDS CCEPTED AY / AFFILIATION Z Chloride/Fluoride/Sulfate Mercury z 2 *sletelV **↓** Analysis Test ↑N/A Офреі. Methanol Jamie Church Preservatives SOSSEN HOBN HCL 9285 Invoice Information HNO3 Company Name H^SSO Pace Project Managen Section C 1736 Unpreserved TIME Pace Quote Attention: Reference: 4ddress; # OF CONTAINERS ァ SAMPLE TEMP AT COLLECTION 81/2/11 **⊕** DATE 1050 9101 2460 Report To: Mark Haddock (mhaddock@golder.com) COMPOSITE Ameren Labadie EC LCPA N&E 1/2/18 DATE COLLECTED 153-1406.00011 (COC #3) RELINQUISHED BY / AFFILIATION TIME START DATE Jeffrey Ingram Required Project Information: O O O O O 0 O () O O (GEGRAB CECOMP) SAMPLE TYPE Purchase Order No : Project Number: Ϋ́ MY M 5 EX M W N. FX. WT Š 3 (see valid codes to left) MATRIX CODE Project Name: Section B Copy To: 13515 Barrett Parkway Drive, Ste 260 ¹EPA 2007; В, Са, Ва, Ве, Со, Рb, Ц, Мо, Fe, Mg, Мп, К, Na ¹EPA 2008; Sb, As, Cd, Сr, Se, П Fex: 636-724-9323 L-TP-4D L-TP-1M L-TP-1D L-TP-2S L-TP-2M L-TP-2D L-TP-3S L-TP-3M L-TP-3D L-TP-4M L-TP-4S ADDITIONAL COMMENTS (A-Z, 0-9 / -) Sample IDs MUST BE UNIQUE maddock@golder.com Standard SAMPLE ID Golder Associates Ballwin, MO 63021 Section D Required Client Information Required Cilent Information; Requested Due Date/TAT; 636-724-9191 Section A company Email To: Address hone: 10 1 7 ILEM # N m U) œ **~** 6

impordant Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 4.5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev 08, 12-Oct-2007

(N/A)

Samples Intact

Cooler (Y/V)

Sustody Sealer

Ice (Y/N)

Received on

Temp in C

19/18

DATE Signed (MM/DD/YY);

200

10

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

Page 70 of 70

SAMPLER NAME AND SIGNATURE

MEMORANDUM

DATE January 10, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC

FROM Tommy Goodwin EMAIL tgoodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – NATURE & EXTENT – DATA PACKAGE 60286318

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- Analysis of Ferrous Iron for all samples was initiated outside of the 15-minute EPA required holding time, the detections in samples were qualified as estimates (J) or non-detect and estimates (UJ).
- When analytes exceeded the recovery criteria for MS/MSD of a sample, the sample result was not qualified on MS/MSD data alone.
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was detected in a blank (i.e. method, field, rinsate), and the sample results were greater than the MDL and less than the PQL the results were recorded at the PQL value and qualified as non-detects (U).
- When a sample or field duplicate RPD was not met, associated samples were qualified as estimates (J). If the results were less than the MDL or detected in a blank below the PQL the results were qualified as non-detects and estimates (UJ).

	Company Name: Golder Associates Project M						
Project Name: Ameren - L CPA - N4E - No 20	-	Project Number: 1531406					
Reviewer: T Goodwin		valio	Validation Date:				
Laboratory: Pace Analytical		SDG	#: 602	86318			
Analytical Method (type and no.): Metals (200.7&200.8), Hg (74	170), Alk (SM 23	320B), TDS	(SM 2540C),	Fe (SM 3500-Fe B#4), Anions (300.0), P (365.4), Ra (90548804.0			
Matrix: ☐ Air ☐ Soil/Sed. ☒ Water ☐ Was				Ra (203.14984.6			
Sample Names <u>L-TP-15</u> , <u>L-TP-1M</u> , <u>L-TP-1D</u> , <u>L</u>							
L-NE-DUP-1, L-NE-DUP-Z, L-NE-FB-1	, L-NE-1	-B-Z,	L-TP-3	5, L-79-25, L-79-2M, L-79-2D			
NOTE: Please provide calculation in Comment area	s or on the	back (if	on the ba	ck please indicate in comment areas).			
Field Information	YES	NO	NA	COMMENTS			
a) Sampling dates noted?	X						
b) Sampling team indicated?	X						
c) Sample location noted?	\mathbf{x}			·			
d) Sample depth indicated (Soils)?			x				
e) Sample type indicated (grab/composite)?	\mathbf{x}			Grab			
f) Field QC noted?	x						
g) Field parameters collected (note types)?	$\overline{\mathbf{x}}$			pH, Cond, Turb, Temp, DO, ORP, Q, DTW			
h) Field Calibration within control limits?	X		$\overline{\Box}$				
Notations of unacceptable field conditions/performs	_	_	as or field	d notes?			
,		\mathbf{x}					
j) Does the laboratory narrative indicate deficience			\mathbf{x}				
Note Deficiencies:							
Note Deliciencies.							
Chain-of-Custody (COC)	YES	NO	NA	COMMENTS			
Chain-of-Custody (COC)	YES	NO	NA	COMMENTS			
Chain-of-Custody (COC) a) Was the COC properly completed?	YES	NO	NA 🗆	COMMENTS			
	x	_	_	COMMENTS			
a) Was the COC properly completed?b) Was the COC signed by both field and laboratory personnel?	X X	_	_	COMMENTS			
a) Was the COC properly completed?b) Was the COC signed by both field	x	_	_	COMMENTS			
a) Was the COC properly completed?b) Was the COC signed by both field and laboratory personnel?c) Were samples received in good condition?	X X X						
a) Was the COC properly completed?b) Was the COC signed by both field and laboratory personnel?	X X	_		COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method)	X X X YES		□ □ □				
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? 	X X X YES		□ □ NA ⊠	COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? 	X X X YES		NA				
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? 	X X YES		NA	COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? d) Was the correct method used? 	X X X YES			COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? d) Was the correct method used? e) Were appropriate reporting limits achieved? 	X X X YES			COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? d) Was the correct method used? e) Were appropriate reporting limits achieved? f) Were any sample dilutions noted? 	X X X YES			COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? d) Was the correct method used? e) Were appropriate reporting limits achieved? 	X X X YES			COMMENTS			
 a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? c) Were the correct preservatives used? d) Was the correct method used? e) Were appropriate reporting limits achieved? f) Were any sample dilutions noted? 	X X X YES			COMMENTS			

Blanks	3	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	Ø			See Notes
b)	Were analytes detected in the field blank(s)?	Ø			FB-1: Cr(0.36)
c)	Were analytes detected in the equipment blank(s)?	•		X	FB-2: Mg(36.2), Cr(0.24), TDS(6.0),
d)	Were analytes detected in the trip blank(s)?			x	
Labora	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	X			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	\not			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and do	uplicate	sample n	ames)?	Dup-1@L-TP-35 DUP-2 P L-TP-5D
		ot			FB-1@L-TP-3M FB-Z@L-TP-SM
b)	Were field dup. precision criteria met (note RPD)?		Ø		DUP-1: Fe(32), Cd(28), Fe 34 (200), Fe 21/200)
c)	Were lab duplicates analyzed (note original and du	plicate	samples)?	,	DVP-2: Mo (30), Fe2/200, C+(200), F+(200), 50,2-(200), f(200)
		X			AIK(200), TDS(5005, Fe 3 (200), Fe 2 1
d)	Were lab dup. precision criteria met (note RPD)?		abla		[203] L:(30)
Blind 9	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			\mathbf{x}	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			X	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)			Ø		La, Se, Anions, P
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
b)			ď		B. Ca, Ariers
121	Recovery could not be calculated since sample contained high concentration of analyte?			x	
c)	Were MS/MSD precision criteria met?	$\not\square$			
Comm	nents/Notes:				
[8001	-03]:Ma (1.8)				
[8004	- 16]: Ma (20), {Cd(0.08), Cr(0.30) Not[04]}				
[8017.	-19] = Ma (0.80, Cr (0.22),				
[8001-	-04]: Sb(0.079), As(0.072), (d(0.040)		0.		
s=====					
			5 W.S.		

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
All Samples	Ferrous Iron (Fe27)	-	1/01	Analyzed outside EPA hold time
L-TP-18M	Arsenic (As)	1.0	υ	Method Blank (MB); MDL < Result < PQL
L-TP-1D		1.0	U	
L-TP-3M	1	(.0	U	
1	Cadmina (Cd)	0,50	V	
L-79-3D	1	0.50	U	
	Chromina (Cr)	1.0	U	<u></u>
1	Lithium (Li)	37.0	7	Sample Duplicate (SD) exceeded liniting Result > MDL
L-TP-45	Cr	0,50	U	MB; MDL < Result < PQL
上	Cr	1.0	U	
L-TP-4M	Cd	0.50	U	
1	Cr	1.0	U	
L-TP-4D		1.0	U	
L-TP-55		1.0	U	
L-TP-5M		1.0	U	
2-TP-5D	1	1.0	U	<u></u>
	Molybdenun (Mo)	1-4	1	RPD expeded limits; Result > MDL
1	Ferrous Iron (Fezt)	0.012	υJ	§ Result < MDL
L-NE-DUP-Z	Mo	1.9	7	3 Result > MDL
	Fe ²⁺	6.56	7	1
1	Cr	1.0	U	MB; MDL < Result < PQL
L-NE-DUP-1		1.0	υ	
	Cd	0.50	U	<u></u>
	Von (Fe)	7.3	7	RPD exceeded limit & Result > MDL
	Fe ²⁺	0.066)	1
	Ferric Iron (Fe 31)	0.0	UJ.	; Result &MDL
L-TP-35	Fe	10.1	1	g Result > MDL
	Fe3+	0.010	1	1
	Feat	0.012	N)	- Result CMDL
	Cd	0.50	U	MB; MDL < Result < PRL
	Cr + P.O.	1.0	U	<u></u>

Continue on Next Page	
Signature: John 1 Joseph	Date:

Revised May 2004

Page 3 of 8

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
2-NE-FB-1	· Cr	1.0	U	MB; MDL < Result < PQL
L-NE-FB-7		1.0	U	
1-TP-25		1.0	U	
L-TP-ZM		1.0	U	
2-TP-ZD		1-0	U	
				,

Signature: John / Sorlly	Date: 1/10/19

Revised May 2004

ץ ץ ار Page الم Page

January 09, 2019

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: LCPA AMEREN GW Pace Project No.: 60291119

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on January 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0

Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 / E10426

Louisiana Certification #: 03055
Nevada Certification #: KS000212018-1
Oklahoma Certification #: 9205/9935
Texas Certification #: T104704407-18-11
Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60291119001	L-UMW-1D	Water	01/02/19 09:24	01/04/19 03:25
60291119002	L-UMW-8D	Water	01/02/19 10:57	01/04/19 03:25
60291119003	L-UMW-5D	Water	01/03/19 10:25	01/04/19 03:25
60291119004	L-LCPA-DUP-1	Water	01/03/19 10:25	01/04/19 03:25
60291119005	L-LCPA-FB-1	Water	01/03/19 10:35	01/04/19 03:25
60291119006	L-UMW-3D	Water	01/03/19 12:43	01/04/19 03:25
60291119007	L-UMW-4D	Water	01/03/19 13:43	01/04/19 03:25

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60291119001	L-UMW-1D	EPA 200.7	CTR	1	PASI-K
60291119002	L-UMW-8D	SM 2540C	AJS	1	PASI-K
60291119003	L-UMW-5D	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60291119004	L-LCPA-DUP-1	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60291119005	L-LCPA-FB-1	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60291119006	L-UMW-3D	EPA 300.0	MGS	1	PASI-K
60291119007	L-UMW-4D	SM 2540C	AJS	1	PASI-K

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

Sample: L-UMW-1D Lab ID: 60291119001 Collected: 01/02/19 09:24 Received: 01/04/19 03:25 Matrix: Water

Parameters Results Units **PQL** MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 168000 200 Calcium ug/L 53.5

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

Sample: L-UMW-8D	Lab ID: 60291119002	Collected: 01/02/19 10:57	Received: 01/04/19 03:25	Matrix: Water

PQL Parameters Results Units MDL DF Prepared CAS No. Analyzed Qual Analytical Method: SM 2540C 2540C Total Dissolved Solids **Total Dissolved Solids** 01/08/19 08:39 mg/L 5.0 5.0

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Sample: L-UMW-5D	Lab ID:	60291119003	Collected	d: 01/03/19	10:25	Received: 01/	04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	5890	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 10:42	7440-42-8	
Calcium	72200	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 10:42	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	531	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	19.0	mg/L	1.0	0.29	1		01/08/19 18:40	16887-00-6	M1,R1
Fluoride	<0.19	mg/L	0.20	0.19	1		01/08/19 18:40	16984-48-8	
Sulfate	278	mg/L	20.0	4.8	20		01/08/19 19:28	14808-79-8	

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Sample: L-LCPA-DUP-1	Lab ID:	60291119004	Collecte	d: 01/03/19	10:25	Received: 01	/04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Boron	5860	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 10:47	7440-42-8	
Calcium	72100	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 10:47	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	536	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	19.0	mg/L	1.0	0.29	1		01/08/19 20:16	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		01/08/19 20:16	16984-48-8	
Sulfate	269	mg/L	20.0	4.8	20		01/09/19 12:10	14808-79-8	

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Sample: L-LCPA-FB-1	Lab ID:	60291119005	Collected	d: 01/03/19	10:35	Received: 01/	04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Boron	26.5J	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 10:49	7440-42-8	
Calcium	<53.5	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 10:49	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	<0.29	mg/L	1.0	0.29	1		01/08/19 20:49	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		01/08/19 20:49	16984-48-8	
Sulfate	<0.24	mg/L	1.0	0.24	1		01/08/19 20:49	14808-79-8	

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

Sample: L-UMW-3D Lab ID: 60291119006 Collected: 01/03/19 12:43 Received: 01/04/19 03:25 Matrix: Water

Parameters Results Units **PQL** MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 300.0 IC Anions 28 Days 17.7 01/08/19 21:53 16887-00-6 Chloride mg/L 1.0 0.29

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

Sample: L-UMW-4D	Lab ID: 60291119007	Collected: 01/03/19 13:43	Received: 01/04/19 03:25	Matrix: Water

PQL Parameters Results Units MDL DF Prepared Analyzed CAS No. Qual 2540C Total Dissolved Solids Analytical Method: SM 2540C **Total Dissolved Solids** 625 01/08/19 08:39 mg/L 5.0 5.0

Project: LCPA AMEREN GW

Pace Project No.: 60291119

QC Batch: 563580

Analysis Method:

EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description:

200.7 Metals, Total

Associated Lab Samples: 60291119001, 60291119003, 60291119004, 60291119005

METHOD BLANK: 2312313

Matrix: Water

Associated Lab Samples:

Boron Calcium 60291119001, 60291119003, 60291119004, 60291119005

Blank

Reporting

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<12.5	100	12.5	01/09/19 10:36	
Calcium	ug/L	<53.5	200	53.5	01/09/19 10:36	

LABORATORY CONTROL SAMPLE: 2312314

Parameter

Units	Spike Conc.	LCS Result	% Rec	% Rec Limits	Qualifiers
 ug/L	1000	1010	101	85-115	
ug/L	10000	10400	104	85-115	

221	231	5

22	1231	•
7.3	1 / . 7 1	n

Parameter	Units	60291121002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	117	1000	1000	1150	1140	103	102	70-130	1	20	
Calcium	ug/L	169000	10000	10000	178000	180000	95	109	70-130	1	20	

MATRIX SPIKE S	SAMPLE:
----------------	---------

Date: 01/09/2019 04:32 PM

221	2251

Parameter	Units	60291119003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	5890	1000	6950	106	70-130	
Calcium	ug/L	72200	10000	82800	106	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LCPA AMEREN GW

Pace Project No.: 60291119

QC Batch: 563588 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60291119002, 60291119003, 60291119004, 60291119005, 60291119007

METHOD BLANK: 2312355 Matrix: Water

Associated Lab Samples: 60291119002, 60291119003, 60291119004, 60291119005, 60291119007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.001/08/19 08:39

LABORATORY CONTROL SAMPLE: 2312356

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Dissolved Solids mg/L 1000 1000 100 80-120

SAMPLE DUPLICATE: 2312358

60291119003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 531 10 **Total Dissolved Solids** 528 1 mg/L

SAMPLE DUPLICATE: 2312359

Date: 01/09/2019 04:32 PM

60291121002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 670 **Total Dissolved Solids** mg/L 669 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

QC Batch: 563695 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60291119003, 60291119004, 60291119005, 60291119006

METHOD BLANK: 2312684 Matrix: Water
Associated Lab Samples: 60291119003, 60291119004, 60291119005, 60291119006

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.29	1.0	0.29	01/08/19 17:20	
Fluoride	mg/L	<0.19	0.20	0.19	01/08/19 17:20	
Sulfate	mg/L	< 0.24	1.0	0.24	01/08/19 17:20	

LABORATORY CONTROL SAMPLE:	2312685					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.6	92	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	CATE: 23126	86		2312687							
		60291119003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	19.0	5	5	24.4	25.0	109	119	90-110	2	15	E,M1, R1
Fluoride	mg/L	<0.19	2.5	2.5	2.6	2.7	97	102	90-110	5	15	
Sulfate	mg/L	278	100	100	382	386	104	109	90-110	1	15	

MATRIX SPIKE SAMPLE:	2312688						
		60291121002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	3.6	5	8.9	106	90-110	
Fluoride	mg/L	0.23	2.5	2.9	105	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 300.0

300.0 IC Anions

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Date: 01/09/2019 04:32 PM

QC Batch: 563846 Analysis Method:
QC Batch Method: EPA 300.0 Analysis Description:

Associated Lab Samples: 60291119004

METHOD BLANK: 2313290 Matrix: Water

Associated Lab Samples: 60291119004

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersSulfatemg/L<0.24</td>1.00.2401/09/19 11:19

LABORATORY CONTROL SAMPLE: 2313291 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 4.8 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2313292 2313293

MS MSD 60291121002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 50 152 0 mg/L 98.6 50 152 108 107 90-110 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LCPA AMEREN GW

Pace Project No.: 60291119

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 01/09/2019 04:32 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: LCPA AMEREN GW

Pace Project No.: 60291119

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60291119001	L-UMW-1D	EPA 200.7	563580	EPA 200.7	563633
60291119003	L-UMW-5D	EPA 200.7	563580	EPA 200.7	563633
60291119004	L-LCPA-DUP-1	EPA 200.7	563580	EPA 200.7	563633
60291119005	L-LCPA-FB-1	EPA 200.7	563580	EPA 200.7	563633
60291119002	L-UMW-8D	SM 2540C	563588		
60291119003	L-UMW-5D	SM 2540C	563588		
60291119004	L-LCPA-DUP-1	SM 2540C	563588		
60291119005	L-LCPA-FB-1	SM 2540C	563588		
60291119007	L-UMW-4D	SM 2540C	563588		
60291119003	L-UMW-5D	EPA 300.0	563695		
60291119004	L-LCPA-DUP-1	EPA 300.0	563695		
60291119004	L-LCPA-DUP-1	EPA 300.0	563846		
60291119005	L-LCPA-FB-1	EPA 300.0	563695		
60291119006	L-UMW-3D	EPA 300.0	563695		

Sample Condition Upon Receipt

Client Name: Golder Description		
	PEX □ ECI □	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pa	ce Shipping Label Used	d? Yes□ No Ø
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes Z	Í No 🗆
Packing Material: Bubble Wrap ☐ Bubble Bags		None ☐ Other ☐
	of ice: Wet Blue No	ne
Cooler Temperature (°C): As-read 1.4, 0.5 Corr. Fac	,	Date and initials of person
Temperature should be above freezing to 6°C	<u>. 0,0</u>	111, 5:12
Chain of Custody present:	Øyes □No □N/A	
Chain of Custody relinquished:	ØYes □No □N/A	
	1	
Samples arrived within holding time:	✓Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ⊅No □N/A	
Rush Turn Around Time requested:	□Yes ØNo □N/A	
Sufficient volume:	∮Yes □No □N/A	
Correct containers used:	Yes ONO ON/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 🗖N/A	
Filtered volume received for dissolved tests?	□Yes ØNo □N/A	
Sample labels match COC: Date / time / ID / analyses	ØYes ØNo □N/A	recieve sample L-Dip-1111 (BPau, BP3N) instead
Samples contain multiple phases? Matrix:	□Yes ØNo □N/A	
Containers requiring pH preservation in compliance?	Yes DNo DN/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	,	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		Dup is L-Dup-1
Lead acetate strip turns dark? (Record only)	□Yes ØNo	1
Potassium iodide test strip turns blue/purple? (Preserve)	/ □Yes ØNo	
Trip Blank present:	☐Yes ☐No ØN/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
	□Yes □No □N/A	
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field		Field Data Required? Y / N
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
	Time:	
Comments/ Resolution:		
, 01 1		
Project Manager Review: Janu Church	Date	1/7/19
r roject manager review.	Date	· ·

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

١	ALIOIT.	ischall call block illumination.		Invoice Information	lation;		Γ		1			
Company: Golde	Golder Associates	Report To: Mark Haddock (mhaddock@golder.cor	dock@golder.com)	Attention:								
Address: 820 S	820 South Main Street, Suite 100	Copy To: Jeffrey Ingram		Company Name	ne:		REGI	REGULATORY AGENCY	AGENCY			
StCh	St Charles, MO 63301			Address:			L	NPDES	GROUND WATER	WATER	T DRIN	DRINKING WATER
Email To: madd	maddock@golder.com	Purchase Order No :		Pace Quote Reference:			L	UST [RCRA		☐ OTHER	2
Phone: 636-724-9191	191 Fax: 636-724-9323	Project Name: LQA / A	Ameren Co	Pace Project Manager:	Jamie Church		Site	Site Location	CM			
Requested Due Date/TAT:	AT: Standard	40		Pace Profile #:	9285			STATE:				
						Redne	sted Analy	Requested Analysis Filtered (Y/N)	(A/N)			
Section D Required Client Information		odes CODE	COLLECTED		Preservatives	Z Z 1 N /A	z	z				
		WY COMPOSITE WY START S.L. START S.L. START	COMPOSITE END/GRAB	_		1				(N/A) 8		
Sample II	SAMPLE ID (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE	CODE (se		TEMP AT CO			Э			ısı Chlorine	P1119400)	119
TEM #		XIATAM 3JAMA2 A	TIME DATE TIME	SAMPLE	Officer Methan HCI HHO ₂ HCI HNO ₃	¶Anal Boron Calciur	Chlorid Fluorid Sulfate	SQT			Pace Proje	Pace Project No./ Lab I.D.
-	1-UM1-1D	-	112/13 0924	1 2 1		٨		B Pall,	BP3N			Q
- 0	12	_	T 1057		-1		>	`				C00
1 (7)	- Um m -	-	113/19 10.25	63	3	1/2/	1//	BPall	(3) PP3N	31 3		500
4	1-6CPA-DUR-1	WT G	1		-			1 BRau	LETAL J			how
2	1-20PA-FB-1	WT G	1635			1 1	+ +		+			\$00
9	- UMM- 3D	WT G	243					*		1		900
7 1	. 1	WT G	134	-+	-1		7	>	2			1.00
80									ŧ	-		
9 10		9 9 _M _M										
11		WT G										
12		WT G										
đ	ADDITIONAL COMMENTS	· RELINQUISHED BY / AFFILIATION		DATE TIME	ACCEPTI	ACCEPTED BY / AFFILIATION	NOI	DATE	TIME		SAMPLE CONDITIONS	NDITIONS
		In Md- 1 60 de	1/3/	9141 6/	E Brockett	4 1Pac		61/4/	0335/	y p.1	7	
Pag		S	SAMPLER NAME AND SIGNATURE	SNATURE							(V) belsed	niaci
e 19 o			PRINT Name of SAMPLER:		Eric Symendu	DATE Signed	gned			Temp in	Ice (Y/I	Cooler (Y/N)
f			SIGNATURE of SAMPLER:	MPLER:	11/11/	TOTALANDI		15/1			1	

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

MEMORANDUM

DATE January 14, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – VERIFICATION SAMPLING – DATA PACKAGE 60291119

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When analytes exceeded the recovery criteria for MS/MSD of a sample, the sample result was not qualified on MS/MSD data alone.
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

	ny Name: Golder Associates Name: Ameren - LCPA - VS - Jan 2019		-	-	r: <u>J Ingram</u> r: 1531406
-	er: T Goodwin				1/4/19
Laborat Analytic Matrix:	tory: Pace Analytical), Alk (SM 23	320B), TDS		Te (SM 3500-Fe B#4), Anions (300.0), P-(365.4), Ra (903.18.904.0) (2)
NOTE:	Please provide calculation in Comment areas of	or on the	back (if	on the back	k please indicate in comment areas).
Field Ir	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	X			<u> </u>
b)	Sampling team indicated?	X			
c)	Sample location noted?	x			
d)	Sample depth indicated (Soils)?			x	
e)	Sample type indicated (grab/composite)?	X			Grab
f)	Field QC noted?	\mathbf{x}			
g)	Field parameters collected (note types)?	x			pH, Cond, Turb, Temp, DO, ORP, Q, DTW
h)	Field Calibration within control limits?	X			
i)	Notations of unacceptable field conditions/perform	nances fro	om field l	ogs or field	notes?
			x		
j)	Does the laboratory narrative indicate deficiencies	? □		X	
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
Onam	0.0000000000000000000000000000000000000		110	117	COMMENTS
a)	Was the COC properly completed?	x			
b)	Was the COC signed by both field	===	_	_	
,	and laboratory personnel?	X	П		•
c)	Were samples received in good condition?	X			· .
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?			X	·
b)	Were hold times met for sample analysis?	$\not\sqsubseteq$			
c)	Were the correct preservatives used?	X			
d)	Was the correct method used?	X			
e)	Were appropriate reporting limits achieved?	x			· · · · · · · · · · · · · · · · · · ·
f)	Were any sample dilutions noted?	Z.			7
g)	Were any matrix problems noted?				

Revised May 2004

Blanks		YES	NO	NA		COMMENTS
a)	Were analytes detected in the method blank(s)?		Ø			
b)	Were analytes detected in the field blank(s)?	$\not\square$		□ F	-8-1	: B(26.5)
c)	Were analytes detected in the equipment blank(s)?	′□		X		
d)	Were analytes detected in the trip blank(s)?			x		
Labora	tory Control Sample (LCS)	YES	NO	NA		COMMENTS
a)	Was a LCS analyzed once per SDG?	X				
b)	Were the proper analytes included in the LCS?	X				
c)	Was the LCS accuracy criteria met?	Ø				
Duplica	ntos	YES	NO	NA		COMMENTS
a)	Were field duplicates collected (note original and du	·	аттріе па	mes)?		Dup-1@ UMW-5P
b \	More field due precision eritoric met (note DDD)	$ \angle $	- REPU			FB-1@ UMW-5D
b)	Were field dup, precision criteria met (note RPD)?	<u> </u>	1/20			
c)	Were lab duplicates analyzed (note original and du		_			
al\	Mara lab dun pracision evitario mat (nota BBD)	X Z				
d)	Were lab dup. precision criteria met (note RPD)?	Щ				-
Blind S	standards	YES	NO	NA		COMMENTS
a)	Was a blind standard used (indicate name,			\mathbf{x}		
	analytes included and concentrations)?					
b)	Was the %D within control limits?			X		
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA		COMMENTS
a)	Was MS accuracy criteria met?	Ø				
	Recovery could not be calculated since sample contained high concentration of analyte?			X		
b)	Was MSD accuracy criteria met?		$ ot \square$			CI
	Recovery could not be calculated since sample contained high concentration of analyte?	\Box	/	x		
c)	Were MS/MSD precision criteria met?	Ø				
Comm	ents/Notes:	- 19-1137 - 19-13-13				
8						

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None -				
				,
<u> </u>				
		1		1

Signature: \(\sigma_{max} \) \(

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

May 31, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between May 02, 2019 and May 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Certification Number: 10090 Arkansas Drinking Water

WY STR Certification #: 2456.01 Arkansas Certification #: 19-016-0

Arkansas Drinking Water
Illinois Certification #: 004455
Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Florida: Cert E871149 SEKS WET Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60301548001	L-UMW-1D	Water	04/30/19 09:30	05/02/19 04:13
60301548002	L-UMW-2D	Water	05/01/19 12:10	05/02/19 04:13
60301548003	L-UMW-3D	Water	04/30/19 16:50	05/02/19 04:13
60301548004	L-UMW-4D	Water	04/30/19 15:05	05/02/19 04:13
60301548005	L-UMW-5D	Water	04/30/19 12:00	05/02/19 04:13
60301548006	L-UMW-6D	Water	04/30/19 10:35	05/02/19 04:13
60301548007	L-UMW-8D	Water	04/30/19 11:25	05/02/19 04:13
60301548008	L-UMW-9D	Water	04/30/19 16:20	05/02/19 04:13
60301548009	L-BMW-1D	Water	05/01/19 12:20	05/02/19 04:13
60301548010	L-BMW-2D	Water	05/01/19 10:15	05/02/19 04:13
60301548011	L-UMW-DUP-1	Water	04/30/19 09:30	05/02/19 04:13
60301548012	L-UMW-FB-1	Water	04/30/19 16:45	05/02/19 04:13
60301548013	L-UMW-FB-2	Water	05/01/19 11:57	05/02/19 04:13
60301548014	L-UMW-1D MS	Water	04/30/19 09:30	05/02/19 04:13
60301548015	L-UMW-1D MSD	Water	04/30/19 09:30	05/02/19 04:13
60301805001	L-UMW-7D	Water	05/02/19 09:55	05/04/19 04:35
60301805002	L-UMW-DUP-2	Water	05/02/19 09:55	05/04/19 04:35

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60301548001	L-UMW-1D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0301548002	L-UMW-2D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0301548003	L-UMW-3D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
	EPA 904.0	JLW	1	PASI-PA	
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0301548004	L-UMW-4D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0301548005	L-UMW-5D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548006	L-UMW-6D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548007	L-UMW-8D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	ZMH	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548008	L-UMW-9D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548009	L-BMW-1D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548010	L-BMW-2D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470	 LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548011	L-UMW-DUP-1	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548012	L-UMW-FB-1	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548013	L-UMW-FB-2	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301548014	L-UMW-1D MS	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60301548015	L-UMW-1D MSD	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60301805001	L-UMW-7D	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
			LRS		PASI-K

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K
60301805002	L-UMW-DUP-2	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-1D	Lab ID: 60301	1548001	Collected	d: 04/30/19	09:30	Received: 05/	02/19 04:13 Ma	atrix: Water	
Parameters	Results Un	its	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical Metho	od: EPA 20	0.7 Prepa	ration Meth	od: EPA	A 200.7			
Barium	421 ug	/L	5.0	1.4	1	05/18/19 17:20	05/20/19 17:31	7440-39-3	
Beryllium	<0.25 ug	/L	1.0	0.25	1	05/18/19 17:20	05/20/19 17:31	7440-41-7	
Boron	555 ug	/L	100	10.7	1	05/18/19 17:20	05/20/19 17:31	7440-42-8	
Calcium	127000 ug	/L	200	50.0	1	05/18/19 17:20	05/20/19 17:31	7440-70-2	
Cobalt	<0.84 ug	/L	5.0	0.84	1	05/18/19 17:20	05/20/19 17:31	7440-48-4	
Iron	12300 ug	/L	50.0	14.0	1	05/18/19 17:20	05/20/19 17:31	7439-89-6	
Lead	<3.4 ug	/L	10.0	3.4	1	05/18/19 17:20	05/20/19 17:31	7439-92-1	
Lithium	24.8 ug	/L	10.0	5.9	1	05/18/19 17:20	05/20/19 17:31	7439-93-2	
Magnesium	34300 ug	/L	50.0	13.0	1	05/18/19 17:20	05/20/19 17:31	7439-95-4	
Manganese	314 ug	/L	5.0	2.1	1	05/18/19 17:20	05/20/19 17:31	7439-96-5	
Molybdenum	<2.6 ug	/L	20.0	2.6	1	05/18/19 17:20	05/20/19 17:31	7439-98-7	
Potassium	6160 ug	/L	500	79.0	1	05/18/19 17:20	05/20/19 17:31	7440-09-7	
Sodium	25000 ug	/L	500	144	1	05/18/19 17:20	05/20/19 17:31	7440-23-5	
200.8 MET ICPMS	Analytical Metho	d: EPA 20	0.8 Prepa	ration Meth	od: EPA	A 200.8			
Antimony	0.082J ug	/L	1.0	0.078	1	05/20/19 09:15	05/22/19 11:41	7440-36-0	
Arsenic	34.7 ug	/L	1.0	0.065	1	05/20/19 09:15	05/22/19 11:41	7440-38-2	
Cadmium	<0.033 ug	/L	0.50	0.033	1	05/20/19 09:15	05/22/19 11:41	7440-43-9	
Chromium	0.19J ug	/L	1.0	0.078	1	05/20/19 09:15	05/22/19 11:41	7440-47-3	В
Selenium	0.11J ug	/L	1.0	0.085	1	05/20/19 09:15	05/22/19 11:41	7782-49-2	
Thallium	<0.099 ug	/L	1.0	0.099	1	05/20/19 09:15	05/22/19 11:41	7440-28-0	
7470 Mercury	Analytical Metho	od: EPA 74	70 Prepar	ation Metho	od: EPA	7470			
Mercury	<0.037 ug	/L	0.20	0.037	1	05/21/19 18:52	05/22/19 13:03	7439-97-6	
2320B Alkalinity	Analytical Metho	od: SM 232	20B						
Alkalinity, Total as CaCO3	510 mg	_J /L	20.0	6.5	1		05/09/19 11:13		
2540C Total Dissolved Solids	Analytical Metho	od: SM 254	10C						
Total Dissolved Solids	559 mg	_J /L	10.0	10.0	1		05/07/19 09:57		
300.0 IC Anions 28 Days	Analytical Metho	d: EPA 30	0.0						
Chloride	12.6 mg	ı/L	1.0	0.22	1		05/21/19 15:46	16887-00-6	
Fluoride	0.18J mg	•	0.20	0.085	1		05/21/19 15:46	16984-48-8	
Sulfate	7.3 mg	•	1.0	0.23	1		05/21/19 15:46		

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-2D Lab ID: 60301548002 Received: 05/02/19 04:13 Matrix: Water Collected: 05/01/19 12:10 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 95.5 ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:44 7440-39-3 **Barium** 7440-41-7 Beryllium <0.25 ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:44 10.7 Boron 1210 ug/L 100 1 05/21/19 13:20 05/22/19 11:44 7440-42-8 Calcium 83400 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:44 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/21/19 13:20 05/22/19 11:44 7440-48-4 Iron 2360 ug/L 50.0 14.0 05/21/19 13:20 05/22/19 11:44 7439-89-6 1 ug/L 10.0 3.4 05/22/19 11:44 7439-92-1 Lead <3.4 1 05/21/19 13:20 Lithium 22.8 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:44 7439-93-2 Magnesium 16600 ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:44 7439-95-4 Manganese 269 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:44 7439-96-5 Molybdenum 43.4 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:44 7439-98-7 1 6620 500 79.0 Potassium ug/L 05/21/19 13:20 05/22/19 11:44 7440-09-7 63600 500 Sodium ug/L 144 05/21/19 13:20 05/22/19 11:44 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 11:46 7440-36-0 0.065 05/20/19 09:15 05/22/19 11:46 7440-38-2 Arsenic 1.8 ug/L 1.0 1 <0.033 Cadmium ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 11:46 7440-43-9 Chromium 0.15J ug/L 1.0 0.078 05/22/19 11:46 7440-47-3 1 05/20/19 09:15 R Selenium 0.11J ug/L 1.0 0.085 05/20/19 09:15 05/22/19 11:46 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 05/20/19 09:15 05/22/19 11:46 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:10 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 204 20.0 6.5 1 05/13/19 13:56 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 547 10.0 10.0 05/07/19 10:03 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 22.1 mg/L 2.0 0.44 2 05/21/19 18:07 16887-00-6 Fluoride 0.35 mg/L 0.20 0.085 1 05/21/19 17:51 16984-48-8 Sulfate 206 50.0 11.5 50 05/21/19 18:22 14808-79-8 mg/L

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-3D Lab ID: 60301548003 Received: 05/02/19 04:13 Matrix: Water Collected: 04/30/19 16:50 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:22 7440-39-3 **Barium** <0.25 Beryllium ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:22 7440-41-7 9590 10.7 Boron ug/L 100 1 05/21/19 13:20 05/22/19 11:22 7440-42-8 M1 Calcium 84000 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:22 7440-70-2 M1 1 Cobalt 05/22/19 11:22 7440-48-4 <0.84 ug/L 5.0 0.84 05/21/19 13:20 1 Iron ug/L 50.0 14.0 05/21/19 13:20 05/22/19 11:22 7439-89-6 114 1 ug/L 10.0 3.4 05/22/19 11:22 7439-92-1 Lead <3.4 1 05/21/19 13:20 Lithium 18.0 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:22 7439-93-2 Magnesium 5040 ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:22 7439-95-4 M1 Manganese 124 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:22 7439-96-5 Molybdenum 202 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:22 7439-98-7 1 9480 500 79.0 Potassium ug/L 1 05/21/19 13:20 05/22/19 11:22 7440-09-7 64000 Sodium ug/L 500 144 05/21/19 13:20 05/22/19 11:22 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 11:48 7440-36-0 0.065 Arsenic 4.6 ug/L 1.0 1 05/20/19 09:15 05/22/19 11:48 7440-38-2 Cadmium 0.10J ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 11:48 7440-43-9 Chromium 0.099J 0.078 05/22/19 11:48 7440-47-3 ug/L 1.0 1 05/20/19 09:15 R Selenium 0.16J ug/L 1.0 0.085 05/20/19 09:15 05/22/19 11:48 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 11:48 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:12 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 46.2 mg/L 20.0 6.5 1 05/09/19 11:23 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 579 10.0 10.0 05/07/19 09:58 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 18.8 mg/L 2.0 0.44 2 05/22/19 15:53 16887-00-6 Fluoride 0.15J mg/L 0.20 0.085 1 05/21/19 18:38 16984-48-8 Sulfate 350 50.0 50 05/21/19 18:54 14808-79-8 mg/L 11.5

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-4D Lab ID: 60301548004 Received: 05/02/19 04:13 Matrix: Water Collected: 04/30/19 15:05 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 88.6 ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:46 7440-39-3 **Barium** <0.25 7440-41-7 Beryllium ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:46 3680 10.7 Boron ug/L 100 1 05/21/19 13:20 05/22/19 11:46 7440-42-8 Calcium 67700 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:46 7440-70-2 1 Cobalt 05/22/19 11:46 7440-48-4 <0.84 ug/L 5.0 0.84 05/21/19 13:20 Iron 282 ug/L 50.0 14.0 05/21/19 13:20 05/22/19 11:46 7439-89-6 1 ug/L 10.0 3.4 05/22/19 11:46 7439-92-1 Lead <3.4 1 05/21/19 13:20 Lithium 33.3 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:46 7439-93-2 Magnesium 8620 ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:46 7439-95-4 Manganese 291 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:46 7439-96-5 Molybdenum 83.4 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:46 7439-98-7 1 8650 500 79.0 Potassium ug/L 05/21/19 13:20 05/22/19 11:46 7440-09-7 114000 500 Sodium ug/L 144 05/21/19 13:20 05/22/19 11:46 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 11:50 7440-36-0 0.065 Arsenic 0.13J ug/L 1.0 1 05/20/19 09:15 05/22/19 11:50 7440-38-2 0.050J Cadmium ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 11:50 7440-43-9 Chromium 0.27J ug/L 1.0 0.078 05/22/19 11:50 7440-47-3 1 05/20/19 09:15 R <0.085 Selenium ug/L 1.0 0.085 05/20/19 09:15 05/22/19 11:50 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 11:50 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:14 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 52.2 20.0 6.5 1 05/09/19 11:37 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 657 10.0 10.0 05/07/19 09:58 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 24.3 mg/L 2.0 0.44 2 05/21/19 20:12 16887-00-6 Fluoride 0.29 mg/L 0.20 0.085 05/21/19 19:25 16984-48-8 1 Sulfate 386 50.0 50 05/21/19 20:27 14808-79-8 mg/L 11.5

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-5D Lab ID: 60301548005 Received: 05/02/19 04:13 Matrix: Water Collected: 04/30/19 12:00 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 64.0 ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:48 7440-39-3 **Barium** <0.25 7440-41-7 Beryllium ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:48 5400 10.7 Boron ug/L 100 1 05/21/19 13:20 05/22/19 11:48 7440-42-8 Calcium 68000 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:48 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/21/19 13:20 05/22/19 11:48 7440-48-4 1 Iron ug/L 50.0 14.0 05/21/19 13:20 05/22/19 11:48 7439-89-6 <14.0 1 ug/L 10.0 3.4 05/22/19 11:48 7439-92-1 Lead <3.4 1 05/21/19 13:20 Lithium 16.7 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:48 7439-93-2 Magnesium 90.3 ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:48 7439-95-4 Manganese 8.8 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:48 7439-96-5 Molybdenum 157 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:48 7439-98-7 1 12900 500 79.0 Potassium ug/L 1 05/21/19 13:20 05/22/19 11:48 7440-09-7 70000 Sodium ug/L 500 144 05/21/19 13:20 05/22/19 11:48 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 11:52 7440-36-0 0.065 Arsenic 16.7 ug/L 1.0 1 05/20/19 09:15 05/22/19 11:52 7440-38-2 Cadmium 0.078J ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 11:52 7440-43-9 Chromium 0.091J 1.0 0.078 05/22/19 11:52 7440-47-3 ug/L 1 05/20/19 09:15 R Selenium 0.14J ug/L 1.0 0.085 05/20/19 09:15 05/22/19 11:52 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 11:52 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:16 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 57.0 mg/L 20.0 6.5 1 05/09/19 11:40 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 503 10.0 10.0 05/07/19 09:58 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 19.8 mg/L 2.0 0.44 2 05/21/19 20:58 16887-00-6 Fluoride 0.095J 0.20 0.085 05/21/19 20:43 16984-48-8 mg/L 1 264 Sulfate 20.0 20 05/21/19 21:14 14808-79-8 mg/L 4.6

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-6D	Lab ID:	60301548006	Collected	d: 04/30/19	10:35	Received: 05/	02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	115	ug/L	5.0	1.4	1	05/18/19 17:20	05/20/19 17:46	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/18/19 17:20	05/20/19 17:46	7440-41-7	
Boron	15600	ug/L	100	10.7	1	05/18/19 17:20	05/20/19 17:46	7440-42-8	
Calcium	103000	ug/L	200	50.0	1	05/18/19 17:20	05/20/19 17:46	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/18/19 17:20	05/20/19 17:46	7440-48-4	
Iron	604	ug/L	50.0	14.0	1	05/18/19 17:20	05/20/19 17:46	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/18/19 17:20	05/20/19 17:46	7439-92-1	
Lithium	9.2J	ug/L	10.0	5.9	1	05/18/19 17:20	05/20/19 17:46	7439-93-2	
Magnesium	5280	ug/L	50.0	13.0	1	05/18/19 17:20	05/20/19 17:46	7439-95-4	
Manganese	426	ug/L	5.0	2.1	1	05/18/19 17:20	05/20/19 17:46	7439-96-5	
Molybdenum	593	ug/L	20.0	2.6	1	05/18/19 17:20	05/20/19 17:46	7439-98-7	
Potassium	20700	ug/L	500	79.0	1	05/18/19 17:20	05/20/19 17:46	7440-09-7	
Sodium	89300	ug/L	500	144	1	05/18/19 17:20	05/20/19 17:46	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepa	aration Meth	od: EP	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	05/20/19 09:15	05/22/19 11:54	7440-36-0	
Arsenic	17.3	ug/L	1.0	0.065	1	05/20/19 09:15	05/22/19 11:54	7440-38-2	
Cadmium	0.27J	ug/L	0.50	0.033	1	05/20/19 09:15	05/22/19 11:54	7440-43-9	
Chromium	0.21J	ug/L	1.0	0.078	1	05/20/19 09:15	05/22/19 11:54	7440-47-3	В
Selenium	0.24J	ug/L	1.0	0.085	1	05/20/19 09:15	05/22/19 11:54	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	05/20/19 09:15	05/22/19 11:54	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepa	ration Meth	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/21/19 18:52	05/22/19 13:19	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	61.8	mg/L	20.0	6.5	1		05/09/19 11:44		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	758	mg/L	10.0	10.0	1		05/07/19 09:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	21.8	mg/L	2.0	0.44	2		05/21/19 21:45	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		05/21/19 21:30		
Sulfate	426	mg/L	50.0	11.5	50		05/21/19 22:01	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-8D Lab ID: 60301548007 Received: 05/02/19 04:13 Matrix: Water Collected: 04/30/19 11:25 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 05/18/19 17:20 05/20/19 17:52 7440-39-3 **Barium** ug/L <0.25 Beryllium ug/L 1.0 0.25 1 05/18/19 17:20 05/20/19 17:52 7440-41-7 10.7 Boron 532 ug/L 100 1 05/18/19 17:20 05/20/19 17:52 7440-42-8 Calcium 135000 ug/L 200 50.0 05/18/19 17:20 05/20/19 17:52 7440-70-2 1 Cobalt < 0.84 ug/L 5.0 0.84 05/18/19 17:20 05/20/19 17:52 7440-48-4 1 Iron 21200 ug/L 50.0 14.0 05/18/19 17:20 05/20/19 17:52 7439-89-6 1 ug/L 10.0 3.4 05/20/19 17:52 7439-92-1 Lead <3.4 1 05/18/19 17:20 Lithium 32.8 ug/L 10.0 5.9 1 05/18/19 17:20 05/20/19 17:52 7439-93-2 Magnesium 34300 ug/L 50.0 13.0 1 05/18/19 17:20 05/20/19 17:52 7439-95-4 Manganese 896 ug/L 5.0 2.1 1 05/18/19 17:20 05/20/19 17:52 7439-96-5 Molybdenum 16.7J ug/L 20.0 2.6 05/18/19 17:20 05/20/19 17:52 7439-98-7 1 5050 500 79.0 Potassium ug/L 05/18/19 17:20 05/20/19 17:52 7440-09-7 18800 500 Sodium ug/L 144 05/18/19 17:20 05/20/19 17:52 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:04 7440-36-0 0.065 Arsenic 27.5 ug/L 1.0 1 05/20/19 09:15 05/22/19 12:04 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:04 7440-43-9 Chromium < 0.078 ug/L 1.0 0.078 05/22/19 12:04 7440-47-3 1 05/20/19 09:15 Selenium <0.085 ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:04 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 05/20/19 09:15 05/22/19 12:04 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:26 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 512 mg/L 20.0 6.5 1 05/09/19 11:51 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 531 mg/L 10.0 10.0 05/07/19 09:59 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 10.9 mg/L 1.0 0.22 05/21/19 22:17 16887-00-6 1 Fluoride 0.16J mg/L 0.20 0.085 05/21/19 22:17 16984-48-8 1 Sulfate 13.3 0.23 05/21/19 22:17 14808-79-8 mg/L 1.0 1

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-9D Lab ID: 60301548008 Received: 05/02/19 04:13 Matrix: Water Collected: 04/30/19 16:20 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 05/18/19 17:20 05/20/19 17:55 7440-39-3 **Barium** ug/L <0.25 Beryllium ug/L 1.0 0.25 1 05/18/19 17:20 05/20/19 17:55 7440-41-7 97.3J 10.7 Boron ug/L 100 1 05/18/19 17:20 05/20/19 17:55 7440-42-8 Calcium 116000 ug/L 200 50.0 05/18/19 17:20 05/20/19 17:55 7440-70-2 1 Cobalt 05/20/19 17:55 7440-48-4 < 0.84 ug/L 5.0 0.84 05/18/19 17:20 1 Iron 22800 ug/L 50.0 14.0 05/18/19 17:20 05/20/19 17:55 7439-89-6 1 ug/L 10.0 3.4 05/20/19 17:55 7439-92-1 Lead <3.4 1 05/18/19 17:20 Lithium 15.9 ug/L 10.0 5.9 1 05/18/19 17:20 05/20/19 17:55 7439-93-2 32600 Magnesium ug/L 50.0 13.0 1 05/18/19 17:20 05/20/19 17:55 7439-95-4 Manganese 349 ug/L 5.0 2.1 1 05/18/19 17:20 05/20/19 17:55 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/18/19 17:20 05/20/19 17:55 7439-98-7 1 3840 500 79.0 Potassium ug/L 05/18/19 17:20 05/20/19 17:55 7440-09-7 13800 500 Sodium ug/L 144 05/18/19 17:20 05/20/19 17:55 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:06 7440-36-0 0.065 Arsenic 32.2 ug/L 1.0 1 05/20/19 09:15 05/22/19 12:06 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:06 7440-43-9 Chromium 0.098J ug/L 1.0 0.078 05/22/19 12:06 7440-47-3 1 05/20/19 09:15 R <0.085 Selenium ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:06 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 12:06 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:28 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 533 20.0 6.5 1 05/13/19 12:29 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 473 10.0 10.0 05/07/19 09:59 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 23.0 mg/L 2.0 0.44 2 05/21/19 23:35 16887-00-6 Fluoride 0.14J mg/L 0.20 0.085 05/21/19 23:19 16984-48-8 1 Sulfate <0.23 0.23 05/21/19 23:19 14808-79-8 mg/L 1.0 1

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-BMW-1D	Lab ID:	60301548009	Collected	d: 05/01/19	12:20	Received: 05/	02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepa	ration Meth	od: EP/	A 200.7			
Barium	941	ug/L	5.0	1.4	1	05/18/19 17:20	05/20/19 17:57	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/18/19 17:20	05/20/19 17:57	7440-41-7	
Boron	82.0J	ug/L	100	10.7	1	05/18/19 17:20	05/20/19 17:57	7440-42-8	
Calcium	120000	ug/L	200	50.0	1	05/18/19 17:20	05/20/19 17:57	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/18/19 17:20	05/20/19 17:57	7440-48-4	
Iron	9710	ug/L	50.0	14.0	1	05/18/19 17:20	05/20/19 17:57	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/18/19 17:20	05/20/19 17:57	7439-92-1	
Lithium	26.6	ug/L	10.0	5.9	1	05/18/19 17:20	05/20/19 17:57	7439-93-2	
Magnesium	28200	ug/L	50.0	13.0	1	05/18/19 17:20	05/20/19 17:57	7439-95-4	
Manganese	601	ug/L	5.0	2.1	1	05/18/19 17:20	05/20/19 17:57	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/18/19 17:20	05/20/19 17:57	7439-98-7	
Potassium	3930	ug/L	500	79.0	1	05/18/19 17:20	05/20/19 17:57	7440-09-7	
Sodium	8680	ug/L	500	144	1	05/18/19 17:20	05/20/19 17:57	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepa	ration Meth	od: EP/	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	05/20/19 09:15	05/22/19 12:08	7440-36-0	
Arsenic	0.94J	ug/L	1.0	0.065	1	05/20/19 09:15	05/22/19 12:08	7440-38-2	
Cadmium	< 0.033	ug/L	0.50	0.033	1	05/20/19 09:15	05/22/19 12:08	7440-43-9	
Chromium	0.13J	ug/L	1.0	0.078	1	05/20/19 09:15	05/22/19 12:08	7440-47-3	В
Selenium	<0.085	ug/L	1.0	0.085	1	05/20/19 09:15	05/22/19 12:08	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	05/20/19 09:15	05/22/19 12:08	7440-28-0	
7470 Mercury	Analytical	Method: EPA 74	470 Prepai	ation Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/21/19 18:52	05/22/19 13:30	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	402	mg/L	20.0	6.5	1		05/13/19 14:02		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	492	mg/L	10.0	10.0	1		05/07/19 10:04		
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.00						
Chloride	12.3	mg/L	1.0	0.22	1		05/21/19 23:50	16887-00-6	
Fluoride	0.18J	mg/L	0.20	0.085	1		05/21/19 23:50	16984-48-8	
Sulfate	32.1	mg/L	5.0	1.2	5		05/22/19 00:06	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID: 60301548010 Received: 05/02/19 04:13 Matrix: Water Sample: L-BMW-2D Collected: 05/01/19 10:15 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 353 ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:51 7440-39-3 **Barium** 7440-41-7 Beryllium < 0.25 ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:51 81.8J 10.7 Boron ug/L 100 1 05/21/19 13:20 05/22/19 11:51 7440-42-8 Calcium 137000 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:51 7440-70-2 1 Cobalt 05/22/19 11:51 7440-48-4 <0.84 ug/L 5.0 0.84 05/21/19 13:20 Iron 7740 ug/L 50.0 14.0 05/21/19 13:20 05/22/19 11:51 7439-89-6 1 ug/L 10.0 3.4 05/22/19 11:51 7439-92-1 Lead <3.4 1 05/21/19 13:20 Lithium 40.6 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:51 7439-93-2 28500 Magnesium ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:51 7439-95-4 Manganese 287 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:51 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:51 7439-98-7 1 4080 500 79.0 Potassium ug/L 05/21/19 13:20 05/22/19 11:51 7440-09-7 6520 500 Sodium ug/L 144 05/21/19 13:20 05/22/19 11:51 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:10 7440-36-0 0.065 Arsenic 29.8 ug/L 1.0 1 05/20/19 09:15 05/22/19 12:10 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:10 7440-43-9 Chromium 0.13J ug/L 1.0 0.078 05/22/19 12:10 7440-47-3 1 05/20/19 09:15 R <0.085 Selenium ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:10 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 12:10 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:32 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 436 mg/L 20.0 6.5 1 05/13/19 14:08 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 506 10.0 10.0 05/07/19 10:04 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 10.4 mg/L 1.0 0.22 05/22/19 00:21 16887-00-6 1 Fluoride 0.17J mg/L 0.20 0.085 05/22/19 00:21 16984-48-8 1 Sulfate 34.5 5.0 5 05/22/19 00:53 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.2

mg/L

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sulfate

Date: 05/31/2019 03:02 PM

Sample: L-UMW-DUP-1 Received: 05/02/19 04:13 Matrix: Water Lab ID: 60301548011 Collected: 04/30/19 09:30 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 66.8 ug/L 5.0 1.4 05/21/19 13:20 05/22/19 11:53 7440-39-3 **Barium** <0.25 Beryllium ug/L 1.0 0.25 1 05/21/19 13:20 05/22/19 11:53 7440-41-7 5460 10.7 Boron ug/L 100 1 05/21/19 13:20 05/22/19 11:53 7440-42-8 Calcium 68900 ug/L 200 50.0 05/21/19 13:20 05/22/19 11:53 7440-70-2 1 Cobalt 05/22/19 11:53 7440-48-4 <0.84 ug/L 5.0 0.84 05/21/19 13:20 1 Iron ug/L 50.0 14.0 05/22/19 11:53 7439-89-6 <14.0 05/21/19 13:20 1 ug/L 10.0 3.4 05/22/19 11:53 7439-92-1 Lead 3.8J 1 05/21/19 13:20 Lithium 18.0 ug/L 10.0 5.9 1 05/21/19 13:20 05/22/19 11:53 7439-93-2 Magnesium 64.0 ug/L 50.0 13.0 1 05/21/19 13:20 05/22/19 11:53 7439-95-4 Manganese 6.9 ug/L 5.0 2.1 1 05/21/19 13:20 05/22/19 11:53 7439-96-5 Molybdenum 159 ug/L 20.0 2.6 05/21/19 13:20 05/22/19 11:53 7439-98-7 1 13000 500 79.0 Potassium ug/L 1 05/21/19 13:20 05/22/19 11:53 7440-09-7 71700 Sodium ug/L 500 144 05/21/19 13:20 05/22/19 11:53 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:12 7440-36-0 0.065 Arsenic 16.2 ug/L 1.0 1 05/20/19 09:15 05/22/19 12:12 7440-38-2 Cadmium 0.082J ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:12 7440-43-9 Chromium < 0.078 0.078 05/22/19 12:12 7440-47-3 ug/L 1.0 1 05/20/19 09:15 Selenium 0.14J ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:12 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 1 05/20/19 09:15 05/22/19 12:12 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:35 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 77.0 mg/L 20.0 6.5 1 05/13/19 12:34 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 507 10.0 10.0 05/07/19 09:59 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 20.5 mg/L 2.0 0.44 2 05/22/19 01:39 16887-00-6 Fluoride 0.11J 0.20 0.085 mg/L 1 05/22/19 01:24 16984-48-8

REPORT OF LABORATORY ANALYSIS

20.0

20

4.6

250

mg/L

05/22/19 16:44 14808-79-8

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID: 60301548012 Received: 05/02/19 04:13 Matrix: Water Sample: L-UMW-FB-1 Collected: 04/30/19 16:45 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 2.6J ug/L 5.0 1.4 05/18/19 17:20 05/20/19 18:05 7440-39-3 **Barium** Beryllium <0.25 ug/L 1.0 0.25 1 05/18/19 17:20 05/20/19 18:05 7440-41-7 10.7 Boron 14.6J ug/L 100 1 05/18/19 17:20 05/20/19 18:05 7440-42-8 Calcium 70.2J ug/L 200 50.0 05/18/19 17:20 05/20/19 18:05 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/18/19 17:20 05/20/19 18:05 7440-48-4 Iron ug/L 50.0 14.0 05/18/19 17:20 05/20/19 18:05 7439-89-6 <14.0 1 10.0 3.4 05/18/19 17:20 05/20/19 18:05 7439-92-1 Lead <3.4 ug/L 1 Lithium < 5.9 ug/L 10.0 5.9 1 05/18/19 17:20 05/20/19 18:05 7439-93-2 Magnesium <13.0 ug/L 50.0 13.0 1 05/18/19 17:20 05/20/19 18:05 7439-95-4 Manganese <2.1 ug/L 5.0 2.1 1 05/18/19 17:20 05/20/19 18:05 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/18/19 17:20 05/20/19 18:05 7439-98-7 1 500 79.0 Potassium <79.0 ug/L 05/18/19 17:20 05/20/19 18:05 7440-09-7 Sodium <144 ug/L 500 144 05/18/19 17:20 05/20/19 18:05 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:00 7440-36-0 <0.065 0.065 Arsenic ug/L 1.0 1 05/20/19 09:15 05/22/19 12:00 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:00 7440-43-9 Chromium 0.081J ug/L 0.078 05/22/19 12:00 7440-47-3 1.0 1 05/20/19 09:15 R <0.085 Selenium ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:00 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 05/20/19 09:15 05/22/19 12:00 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:37 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 <6.5 20.0 6.5 1 05/13/19 12:39 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids <5.0 5.0 5.0 05/07/19 10:01 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 0.23J mg/L 1.0 0.22 05/22/19 02:42 16887-00-6 1 Fluoride <0.085 0.20 0.085 05/22/19 02:42 16984-48-8 mg/L 1 Sulfate < 0.23 0.23 05/22/19 02:42 14808-79-8 mg/L 1.0 1

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID: 60301548013 Received: 05/02/19 04:13 Matrix: Water Sample: L-UMW-FB-2 Collected: 05/01/19 11:57 PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 05/18/19 17:20 05/20/19 18:07 7440-39-3 **Barium** ug/L <0.25 Beryllium ug/L 1.0 0.25 1 05/18/19 17:20 05/20/19 18:07 7440-41-7 10.7 Boron <10.7 ug/L 100 1 05/18/19 17:20 05/20/19 18:07 7440-42-8 Calcium <50.0 ug/L 200 50.0 05/18/19 17:20 05/20/19 18:07 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/18/19 17:20 05/20/19 18:07 7440-48-4 Iron ug/L 50.0 14.0 05/18/19 17:20 05/20/19 18:07 7439-89-6 <14.0 1 10.0 3.4 05/20/19 18:07 7439-92-1 Lead <3.4 ug/L 1 05/18/19 17:20 Lithium < 5.9 ug/L 10.0 5.9 1 05/18/19 17:20 05/20/19 18:07 7439-93-2 Magnesium <13.0 ug/L 50.0 13.0 1 05/18/19 17:20 05/20/19 18:07 7439-95-4 Manganese <2.1 ug/L 5.0 2.1 1 05/18/19 17:20 05/20/19 18:07 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/18/19 17:20 05/20/19 18:07 7439-98-7 1 500 79.0 Potassium <79.0 ug/L 05/18/19 17:20 05/20/19 18:07 7440-09-7 Sodium <144 ug/L 500 144 05/18/19 17:20 05/20/19 18:07 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/20/19 09:15 05/22/19 12:02 7440-36-0 <0.065 0.065 05/20/19 09:15 05/22/19 12:02 7440-38-2 Arsenic ug/L 1.0 1 Cadmium < 0.033 ug/L 0.50 0.033 1 05/20/19 09:15 05/22/19 12:02 7440-43-9 Chromium 0.11J ug/L 0.078 05/22/19 12:02 7440-47-3 1.0 1 05/20/19 09:15 R Selenium < 0.085 ug/L 1.0 0.085 05/20/19 09:15 05/22/19 12:02 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 05/20/19 09:15 05/22/19 12:02 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/21/19 18:52 05/22/19 13:39 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 <6.5 20.0 6.5 1 05/13/19 14:12 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids <5.0 5.0 5.0 05/07/19 11:30 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride <0.22 mg/L 1.0 0.22 05/22/19 02:58 16887-00-6 1 Fluoride <0.085 0.20 0.085 mg/L 1 05/22/19 02:58 16984-48-8 Sulfate < 0.23 0.23 05/22/19 02:58 14808-79-8 mg/L 1.0 1

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-7D Lab ID: 60301805001 Collected: 05/02/19 09:55 Received: 05/04/19 04:35 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 05/15/19 08:55 05/15/19 17:42 7440-39-3 **Barium** ug/L Beryllium 0.37J ug/L 1.0 0.25 1 05/15/19 08:55 05/15/19 17:42 7440-41-7 7030 10.7 Boron ug/L 100 1 05/15/19 08:55 05/15/19 17:42 7440-42-8 Calcium 213000 ug/L 200 50.0 05/15/19 08:55 05/15/19 17:42 7440-70-2 1 Cobalt 05/15/19 17:42 7440-48-4 < 0.84 ug/L 5.0 0.84 05/15/19 08:55 Iron 11600 ug/L 50.0 14.0 05/15/19 08:55 05/15/19 17:42 7439-89-6 1 ug/L 10.0 3.4 05/15/19 17:42 7439-92-1 Lead <3.4 1 05/15/19 08:55 Lithium 20.8 ug/L 10.0 5.9 1 05/15/19 08:55 05/15/19 17:42 7439-93-2 Magnesium 27800 ug/L 50.0 13.0 1 05/15/19 08:55 05/15/19 17:42 7439-95-4 Manganese 2080 ug/L 5.0 2.1 1 05/15/19 08:55 05/15/19 17:42 7439-96-5 Molybdenum 208 ug/L 20.0 2.6 05/15/19 08:55 05/15/19 17:42 7439-98-7 1 6890 500 79.0 05/15/19 08:55 Potassium ug/L 05/15/19 17:42 7440-09-7 69600 500 05/15/19 08:55 Sodium ug/L 144 05/15/19 17:42 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/14/19 15:30 05/15/19 14:34 7440-36-0 0.065 05/15/19 14:34 7440-38-2 Arsenic 20.3 ug/L 1.0 1 05/14/19 15:30 Cadmium 0.082J ug/L 0.50 0.033 1 05/14/19 15:30 05/15/19 14:34 7440-43-9 Chromium 0.28J 1.0 0.078 05/15/19 14:34 7440-47-3 ug/L 1 05/14/19 15:30 Selenium 0.089J ug/L 1.0 0.085 05/14/19 15:30 05/15/19 14:34 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 05/14/19 15:30 05/15/19 14:34 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/16/19 15:10 05/17/19 13:25 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 365 mg/L 20.0 6.5 1 05/16/19 11:26 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 1030 13.3 13.3 05/09/19 14:03 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 13.9 mg/L 1.0 0.22 05/17/19 02:57 16887-00-6 1 Fluoride 0.13J mg/L 0.20 0.085 05/17/19 02:57 16984-48-8 1 Sulfate 422 50.0 50 05/17/19 16:01 14808-79-8 mg/L 11.5

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Sample: L-UMW-DUP-2 Lab ID: 60301805002 Collected: 05/02/19 09:55 Received: 05/04/19 04:35 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 05/15/19 08:55 05/15/19 17:44 7440-39-3 **Barium** ug/L 05/15/19 17:44 7440-41-7 Beryllium 0.39J ug/L 1.0 0.25 1 05/15/19 08:55 7000 10.7 Boron ug/L 100 1 05/15/19 08:55 05/15/19 17:44 7440-42-8 Calcium 214000 ug/L 200 50.0 05/15/19 08:55 05/15/19 17:44 7440-70-2 1 Cobalt 05/15/19 17:44 7440-48-4 < 0.84 ug/L 5.0 0.84 05/15/19 08:55 Iron 11700 ug/L 50.0 14.0 05/15/19 08:55 05/15/19 17:44 7439-89-6 1 ug/L 10.0 3.4 05/15/19 17:44 7439-92-1 Lead <3.4 1 05/15/19 08:55 Lithium 20.0 ug/L 10.0 5.9 1 05/15/19 08:55 05/15/19 17:44 7439-93-2 Magnesium 27800 ug/L 50.0 13.0 1 05/15/19 08:55 05/15/19 17:44 7439-95-4 Manganese 2080 ug/L 5.0 2.1 1 05/15/19 08:55 05/15/19 17:44 7439-96-5 Molybdenum 210 ug/L 20.0 2.6 05/15/19 08:55 05/15/19 17:44 7439-98-7 1 6970 500 79.0 05/15/19 08:55 Potassium ug/L 05/15/19 17:44 7440-09-7 69800 500 05/15/19 08:55 Sodium ug/L 144 05/15/19 17:44 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/14/19 15:30 05/15/19 14:36 7440-36-0 0.065 05/15/19 14:36 7440-38-2 Arsenic 20.1 ug/L 1.0 1 05/14/19 15:30 Cadmium 0.075J ug/L 0.50 0.033 1 05/14/19 15:30 05/15/19 14:36 7440-43-9 Chromium 0.10J ug/L 1.0 0.078 05/15/19 14:36 7440-47-3 1 05/14/19 15:30 Selenium 0.093Jug/L 1.0 0.085 05/15/19 14:36 7782-49-2 1 05/14/19 15:30 Thallium < 0.099 ug/L 1.0 0.099 05/14/19 15:30 05/15/19 14:36 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/16/19 15:10 05/17/19 13:32 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 354 mg/L 20.0 6.5 1 05/16/19 11:41 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 1040 13.3 13.3 05/09/19 14:03 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 13.9 mg/L 1.0 0.22 05/17/19 03:48 16887-00-6 1 Fluoride 0.13J mg/L 0.20 0.085 05/17/19 03:48 16984-48-8 1 Sulfate 440 50.0 11.5 50 05/17/19 16:52 14808-79-8 mg/L

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585045 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2400652 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L <0.037 0.20 0.037 05/17/19 13:16

LABORATORY CONTROL SAMPLE: 2400654

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.9 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2400655 2400656

MS MSD MSD 60301805001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 5 5 4.9 98 75-125 0 20 Mercury ug/L < 0.037 4.9 98

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 586038 Analysis Method: EPA 7470 QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,Associated Lab Samples:

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

METHOD BLANK: 2404529 Matrix: Water

Associated Lab Samples:		01, 6030154800 08, 6030154800	,	,	,		,		301548007	7,		
5 .		,	Bla	nk	Reporting		,					
Parameter		Units	Res	Sult	Limit	MD	'L	Analyzed	1 QI	ualifiers		
Mercury		ug/L		<0.037	0.2	0	0.037 0	5/22/19 12	:58			
LABORATORY CONTROL :	SAMPLE:	2404530										
			Spike	LC	CS	LCS	% F	Rec				
Parameter		Units	Conc.	Res	sult	% Rec	Lim	its	Qualifiers			
Mercury		ug/L		5	5.2	10	3	80-120		_		
MATRIX SPIKE & MATRIX	SPIKE DUPI	LICATE: 2404	.531		2404532	<u> </u>						
			MS	MSD								
		60301548001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug/L	<0.037	5	5	5.2	5.2	104	104	75-125	0	20	

MATRIX SPIKE SAMPLE:	2404533						
		60302398001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mercury	ug/L	<0.000037 mg/L	5	5.2	104	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 584623 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2398909 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/16/19 11:33	
Beryllium	ug/L	< 0.25	1.0	0.25	05/16/19 11:33	
Boron	ug/L	<10.7	100	10.7	05/16/19 11:33	
Calcium	ug/L	<50.0	200	50.0	05/16/19 11:33	
Cobalt	ug/L	<0.84	5.0	0.84	05/16/19 11:33	
Iron	ug/L	<14.0	50.0	14.0	05/16/19 11:33	
_ead	ug/L	<3.4	10.0	3.4	05/16/19 11:33	
_ithium	ug/L	<5.9	10.0	5.9	05/16/19 11:33	
Magnesium	ug/L	15.8J	50.0	13.0	05/16/19 11:33	
Manganese	ug/L	<2.1	5.0	2.1	05/16/19 11:33	
Molybdenum	ug/L	<2.6	20.0	2.6	05/16/19 11:33	
Potassium	ug/L	<79.0	500	79.0	05/16/19 11:33	
Sodium	ug/L	<144	500	144	05/16/19 11:33	

LABORATORY CONTROL SAMPLE:	2398910					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Beryllium	ug/L	1000	983	98	85-115	
Boron	ug/L	1000	974	97	85-115	
Calcium	ug/L	10000	9980	100	85-115	
Cobalt	ug/L	1000	991	99	85-115	
Iron	ug/L	10000	9790	98	85-115	
Lead	ug/L	1000	1000	100	85-115	
Lithium	ug/L	1000	1010	101	85-115	
Magnesium	ug/L	10000	9900	99	85-115	
Manganese	ug/L	1000	980	98	85-115	
Molybdenum	ug/L	1000	916	92	85-115	
Potassium	ug/L	10000	9900	99	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398911 2398912											
			MS	MSD								
	(60301804001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	360	1000	1000	1370	1360	101	100	70-130	1	20	
Beryllium	ug/L	< 0.25	1000	1000	1010	1000	101	100	70-130	1	20	
Boron	ug/L	109	1000	1000	1120	1120	101	101	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2398	911		2398912							
Parameter	6 Units	0301804001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	ug/L	164000	10000	10000	178000	177000	140	134	70-130	0	20	M1
Cobalt	ug/L	3.7J	1000	1000	985	980	98	98	70-130	0	20	
Iron	ug/L	286	10000	10000	10200	10100	99	98	70-130	1	20	
Lead	ug/L	<3.4	1000	1000	981	979	98	98	70-130	0	20	
Lithium	ug/L	43.3	1000	1000	1070	1060	102	101	70-130	1	20	
Magnesium	ug/L	44200	10000	10000	55200	55100	110	108	70-130	0	20	
Manganese	ug/L	4600	1000	1000	5710	5680	112	108	70-130	1	20	
Molybdenum	ug/L	<2.6	1000	1000	935	932	94	93	70-130	0	20	
Potassium	ug/L	5510	10000	10000	15800	15700	103	102	70-130	1	20	
Sodium	ug/L	11200	10000	10000	21700	21700	105	104	70-130	0	20	

MATRIX SPIKE SAMPLE:	2398913	60301923002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	45.3	1000	986	94	70-130	
Beryllium	ug/L	ND	1000	952	95	70-130	
Boron	ug/L	ND	1000	1010	96	70-130	
Calcium	ug/L	26300	10000	34600	83	70-130	
Cobalt	ug/L	ND	1000	946	95	70-130	
Iron	ug/L	150	10000	9420	93	70-130	
Lead	ug/L	ND	1000	945	94	70-130	
Lithium	ug/L	ND	1000	972	97	70-130	
Magnesium	ug/L	7480	10000	16700	92	70-130	
Manganese	ug/L	13.1	1000	956	94	70-130	
Molybdenum	ug/L	ND	1000	893	89	70-130	
Potassium	ug/L	2990	10000	12600	96	70-130	
Sodium	ug/L	54000	10000	60800	68	70-130 N	<i>I</i> 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR #1 Project:

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585455 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301548001, 60301548006, 60301548007, 60301548008, 60301548009, 60301548012, 60301548013

METHOD BLANK: 2402489 Matrix: Water

 $60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007, \\60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013$ Associated Lab Samples:

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/20/19 17:27	
Beryllium	ug/L	< 0.25	1.0	0.25	05/20/19 17:27	
Boron	ug/L	<10.7	100	10.7	05/20/19 17:27	
Calcium	ug/L	<50.0	200	50.0	05/20/19 17:27	
Cobalt	ug/L	<0.84	5.0	0.84	05/20/19 17:27	
Iron	ug/L	<14.0	50.0	14.0	05/20/19 17:27	
Lead	ug/L	<3.4	10.0	3.4	05/20/19 17:27	
Lithium	ug/L	<5.9	10.0	5.9	05/20/19 17:27	
Magnesium	ug/L	<13.0	50.0	13.0	05/20/19 17:27	
Molybdenum	ug/L	<2.6	20.0	2.6	05/20/19 17:27	
Potassium	ug/L	<79.0	500	79.0	05/20/19 17:27	
Sodium	ug/L	185J	500	144	05/20/19 17:27	

LABORATORY CONTROL SAMPLE:	2402490					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	934	93	85-115	
Beryllium	ug/L	1000	957	96	85-115	
Boron	ug/L	1000	939	94	85-115	
Calcium	ug/L	10000	9930	99	85-115	
Cobalt	ug/L	1000	1030	103	85-115	
Iron	ug/L	10000	9750	98	85-115	
Lead	ug/L	1000	1000	100	85-115	
Lithium	ug/L	1000	978	98	85-115	
Magnesium	ug/L	10000	10200	102	85-115	
Manganese	ug/L	1000	975	97	85-115	
Molybdenum	ug/L	1000	979	98	85-115	
Potassium	ug/L	10000	9480	95	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2402	491		2402492							
			MS	MSD								
	(60301548001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	421	1000	1000	1360	1350	94	93	70-130	1	20	
Beryllium	ug/L	< 0.25	1000	1000	972	964	97	96	70-130	1	20	
Boron	ug/L	555	1000	1000	1520	1510	96	96	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2402	491		2402492							
Parameter	6 Units	0301548001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	ug/L	127000	10000	10000	137000	136000	98	90	70-130	1	20	
Cobalt	ug/L	< 0.84	1000	1000	1020	1010	102	101	70-130	0	20	
Iron	ug/L	12300	10000	10000	22000	21800	98	96	70-130	1	20	
Lead	ug/L	<3.4	1000	1000	985	985	98	98	70-130	0	20	
Lithium	ug/L	24.8	1000	1000	1040	1030	101	101	70-130	1	20	
Magnesium	ug/L	34300	10000	10000	44500	44400	102	101	70-130	0	20	
Manganese	ug/L	314	1000	1000	1280	1270	96	96	70-130	1	20	
Molybdenum	ug/L	<2.6	1000	1000	997	996	99	99	70-130	0	20	
Potassium	ug/L	6160	10000	10000	16000	16000	99	99	70-130	0	20	
Sodium	ug/L	25000	10000	10000	35100	35000	102	101	70-130	0	20	

MATRIX SPIKE SAMPLE:	2402493						
		60301548010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	353		1270			
Beryllium	ug/L	<0.25		975			
Boron	ug/L	81.8J		1050			
Calcium	ug/L	137000		144000			
Cobalt	ug/L	<0.84		1020			
Iron	ug/L	7740		17200			
Lead	ug/L	<3.4		992			
Lithium	ug/L	40.6		1060			
Magnesium	ug/L	28500		39300			
Manganese	ug/L	287		1270			
Molybdenum	ug/L	<2.6		1000			
Potassium	ug/L	4080		13600			
Sodium	ug/L	6520		16800			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585940 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301548002, 60301548003, 60301548004, 60301548005, 60301548010, 60301548011

METHOD BLANK: 2404182 Matrix: Water

Associated Lab Samples: 60301548002, 60301548003, 60301548004, 60301548005, 60301548010, 60301548011

Developed	11-26-	Blank	Reporting	MDI	A	0
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/22/19 11:10	
Beryllium	ug/L	< 0.25	1.0	0.25	05/22/19 11:10	
Boron	ug/L	<10.7	100	10.7	05/22/19 11:10	
Calcium	ug/L	<50.0	200	50.0	05/22/19 11:10	
Cobalt	ug/L	<0.84	5.0	0.84	05/22/19 11:10	
Iron	ug/L	<14.0	50.0	14.0	05/22/19 11:10	
Lead	ug/L	<3.4	10.0	3.4	05/22/19 11:10	
Lithium	ug/L	<5.9	10.0	5.9	05/22/19 11:10	
Magnesium	ug/L	<13.0	50.0	13.0	05/22/19 11:10	
Manganese	ug/L	<2.1	5.0	2.1	05/22/19 11:10	
Molybdenum	ug/L	<2.6	20.0	2.6	05/22/19 11:10	
Potassium	ug/L	<79.0	500	79.0	05/22/19 11:10	
Sodium	ug/L	<144	500	144	05/22/19 11:10	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	1010	101	85-115	
Beryllium	ug/L	1000	1010	101	85-115	
Boron	ug/L	1000	983	98	85-115	
Calcium	ug/L	10000	10200	102	85-115	
Cobalt	ug/L	1000	1040	104	85-115	
Iron	ug/L	10000	10100	101	85-115	
Lead	ug/L	1000	1030	103	85-115	
Lithium	ug/L	1000	999	100	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1000	100	85-115	
Molybdenum	ug/L	1000	948	95	85-115	
Potassium	ug/L	10000	9960	100	85-115	
Sodium	ug/L	10000	9970	100	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 2404	184		2404185							
Parameter	Units	60302669001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	ug/L	130	1000	1000	1130	1120	100	99	70-130	1	20	
Beryllium	ug/L	ND	1000	1000	979	957	98	96	70-130	2	20	
Boron	ug/L	363	1000	1000	1350	1340	99	98	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2404	184		2404185							
Parameter	Units	60302669001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	ug/L	933000	10000	10000	920000	923000	-127	-92	70-130	0	20	M1
Cobalt	ug/L	ND	1000	1000	909	898	91	90	70-130	1	20	
Iron	ug/L	ND	10000	10000	9590	9390	96	94	70-130	2	20	
Lead	ug/L	ND	1000	1000	882	871	88	87	70-130	1	20	
Lithium	ug/L	321	1000	1000	1400	1390	108	107	70-130	1	20	
Magnesium	ug/L	568000	10000	10000	556000	558000	-116	-97	70-130	0	20	M1
Manganese	ug/L	ND	1000	1000	928	911	93	91	70-130	2	20	
Molybdenum	ug/L	ND	1000	1000	922	911	91	90	70-130	1	20	
Potassium	ug/L	55900	10000	10000	66300	66700	104	108	70-130	1	20	
Sodium	ug/L	1170000	10000	10000	1150000	1160000	-240	-145	70-130	1	20	M1

MATRIX SPIKE SAMPLE:	2404186						
		60301548003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	68.1	1000	1110	104	70-130	
Beryllium	ug/L	< 0.25	1000	1010	101	70-130	
Boron	ug/L	9590	1000	1180	-841	70-130 M	1
Calcium	ug/L	84000	10000	98600	146	70-130 M	1
Cobalt	ug/L	<0.84	1000	998	100	70-130	
Iron	ug/L	114	10000	10100	100	70-130	
Lead	ug/L	<3.4	1000	976	97	70-130	
Lithium	ug/L	18.0	1000	1040	102	70-130	
Magnesium	ug/L	5040	10000	25300	202	70-130 M	1
Manganese	ug/L	124	1000	1060	93	70-130	
Molybdenum	ug/L	202	1000	945	74	70-130	
Potassium	ug/L	9480	10000	20600	111	70-130	
Sodium	ug/L	64000	10000	168000	1040	70-130 M	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 584464 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2398379 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	05/15/19 13:18	
Arsenic	ug/L	< 0.065	1.0	0.065	05/15/19 13:18	
Cadmium	ug/L	< 0.033	0.50	0.033	05/15/19 13:18	
Chromium	ug/L	< 0.078	1.0	0.078	05/15/19 13:18	
Selenium	ug/L	< 0.085	1.0	0.085	05/15/19 13:18	
Thallium	ug/L	< 0.099	1.0	0.099	05/15/19 13:18	

LABORATORY CONTROL SAMPLE:	2398380					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	39.4	98	85-115	
Arsenic	ug/L	40	39.7	99	85-115	
Cadmium	ug/L	40	40.0	100	85-115	
Chromium	ug/L	40	41.0	103	85-115	
Selenium	ug/L	40	40.2	100	85-115	
Thallium	ug/L	40	37.4	93	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUP	LICATE: 2398	98381 2398382									
Parameter	Units	60301568001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	<0.078	40	40	39.1	39.6	98	99	70-130	1	20	
Arsenic	ug/L	19.0	40	40	59.6	60.2	101	103	70-130	1	20	
Cadmium	ug/L	0.081J	40	40	37.5	37.9	94	95	70-130	1	20	
Chromium	ug/L	<0.078	40	40	47.0	47.3	117	118	70-130	1	20	
Selenium	ug/L	0.10J	40	40	39.1	39.2	98	98	70-130	0	20	
Thallium	ug/L	<0.099	40	40	40.0	40.1	100	100	70-130	0	20	

MATRIX SPIKE SAMPLE:	2398383						
		60301622003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	ND	40	39.9	99	70-130	
Arsenic	ug/L	1.2	40	41.3	100	70-130	
Cadmium	ug/L	ND	40	38.9	97	70-130	
Chromium	ug/L	ND	40	42.3	105	70-130	
Selenium	ug/L	ND	40	39.9	99	70-130	
Thallium	ug/L	ND	40	38.7	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585530 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

METHOD BLANK: 2402827 Matrix: Water

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	05/22/19 11:37	
Arsenic	ug/L	< 0.065	1.0	0.065	05/22/19 11:37	
Cadmium	ug/L	< 0.033	0.50	0.033	05/22/19 11:37	
Chromium	ug/L	0.12J	1.0	0.078	05/22/19 11:37	
Selenium	ug/L	< 0.085	1.0	0.085	05/22/19 11:37	
Thallium	ug/L	< 0.099	1.0	0.099	05/22/19 11:37	

LABORATORY CONTROL SAMPLE:	2402828					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	39.0	98	85-115	
Arsenic	ug/L	40	36.8	92	85-115	
Cadmium	ug/L	40	38.6	97	85-115	
Chromium	ug/L	40	39.3	98	85-115	
Selenium	ug/L	40	37.6	94	85-115	
Thallium	ug/L	40	36.8	92	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2402	829		2402830							
		C0201E40001	MS Spiles	MSD	MC	MCD	MC	MCD	0/ Doo		Mov	
Parameter	Units	60301548001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
- Tarameter		_ -						70 TCO				Quui
Antimony	ug/L	0.082J	40	40	39.3	39.1	98	98	70-130	1	20	
Arsenic	ug/L	34.7	40	40	71.3	70.1	92	89	70-130	2	20	
Cadmium	ug/L	< 0.033	40	40	37.9	37.5	95	94	70-130	1	20	
Chromium	ug/L	0.19J	40	40	38.6	38.1	96	95	70-130	1	20	
Selenium	ug/L	0.11J	40	40	35.8	35.1	89	87	70-130	2	20	
Thallium	ug/L	< 0.099	40	40	34.9	35.0	87	87	70-130	0	20	

MATRIX SPIKE SAMPLE:	2402831	60302236001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	% Rec Limits	Qualifiers
Antimony	ug/L	ND	40	37.5	93	70-130	
Arsenic	ug/L	4.6	40	37.4	82	70-130	
Cadmium	ug/L	ND	40	37.4	93	70-130	
Chromium	ug/L	4.1	40	41.1	93	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

MATRIX SPIKE SAMPLE:	2402831						
		60302236001	Spike	MS	MS	% Rec	0 1111
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Selenium	ug/L	7.6	40	39.0	79	70-130	
Thallium	ug/L	ND	40	34.3	86	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 583511 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60301548001, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007

METHOD BLANK: 2394346 Matrix: Water

Associated Lab Samples: 60301548001, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.505/09/19 09:43

LABORATORY CONTROL SAMPLE: 2394347

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 512 102 90-110

SAMPLE DUPLICATE: 2394348

60301846004 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 258 3 10 Alkalinity, Total as CaCO3 264 mg/L

SAMPLE DUPLICATE: 2394349

Date: 05/31/2019 03:02 PM

 Parameter
 Units
 60301548001 Result
 Dup Result
 RPD
 Max RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 510
 516
 1
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 584102 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60301548002, 60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

METHOD BLANK: 2397396 Matrix: Water

Associated Lab Samples: 60301548002, 60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.505/13/19 12:18

LABORATORY CONTROL SAMPLE: 2397397

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 497 99 90-110

SAMPLE DUPLICATE: 2397398

60301568001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 427 429 0 10 Alkalinity, Total as CaCO3 mg/L

SAMPLE DUPLICATE: 2397399

Date: 05/31/2019 03:02 PM

60301568005 Dup Max RPD RPD Parameter Units Result Result Qualifiers 392 Alkalinity, Total as CaCO3 mg/L 402 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 584515 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2398572 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.505/16/19 10:35

LABORATORY CONTROL SAMPLE: 2398573

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 519 104 90-110

SAMPLE DUPLICATE: 2398574

60301804001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 543 10 Alkalinity, Total as CaCO3 549 1 mg/L

SAMPLE DUPLICATE: 2398575

Date: 05/31/2019 03:02 PM

 Parameter
 Units
 60302254001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 611
 617
 1
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Reporting

1000

% Rec

100

Limits

80-120

Qualifiers

Result

AMEREN LABADIE ENERGY CTR #1 Project:

Pace Project No.: 60301548

Parameter

Total Dissolved Solids

Date: 05/31/2019 03:02 PM

QC Batch: 582881 Analysis Method: SM 2540C

Units

mg/L

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007, Associated Lab Samples:

60301548008, 60301548009, 60301548010, 60301548011, 60301548012

METHOD BLANK: 2392180 Matrix: Water

60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,Associated Lab Samples:

60301548008, 60301548009, 60301548010, 60301548011, 60301548012 Blank

Conc.

1000

MDL Qualifiers Parameter Units Result Limit Analyzed **Total Dissolved Solids** mg/L < 5.0 5.0 5.0 05/07/19 09:57 LABORATORY CONTROL SAMPLE: 2392181 LCS LCS Spike % Rec

SAMPLE DUPLICATE: 2392182 60301548001 Dup Max RPD RPD Result Qualifiers Parameter Units Result 559 **Total Dissolved Solids** 550 2 10 mg/L

SAMPLE DUPLICATE: 2392183 60301568002 Dup Max Parameter Units Result Result RPD RPD Qualifiers **Total Dissolved Solids** mg/L 395 397 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 583021 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60301548013

METHOD BLANK: 2392610 Matrix: Water

Associated Lab Samples: 60301548013

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 05/07/19 11:29

LABORATORY CONTROL SAMPLE: 2392611

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1030 103 80-120

SAMPLE DUPLICATE: 2392612

60301568001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1130 10 **Total Dissolved Solids** 1120 1 mg/L

SAMPLE DUPLICATE: 2392613

Date: 05/31/2019 03:02 PM

60301618006 Dup Max RPD RPD Parameter Units Result Result Qualifiers 2610 **Total Dissolved Solids** mg/L 2660 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR #1 Project:

Pace Project No.: 60301548

QC Batch: 583514 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60301805001, 60301805002

2394354 METHOD BLANK: Matrix: Water

2394355

Associated Lab Samples: 60301805001, 60301805002

Blank Reporting MDL Parameter Limit Units Result Analyzed Qualifiers

Total Dissolved Solids <5.0 5.0 5.0 05/09/19 13:57 mg/L

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 996 100 80-120

SAMPLE DUPLICATE: 2394356

LABORATORY CONTROL SAMPLE:

60301670001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 314 2 **Total Dissolved Solids** 308 10 mg/L

SAMPLE DUPLICATE: 2394357

60301786007 Dup Max RPD Parameter Units Result Result RPD Qualifiers **Total Dissolved Solids** mg/L 4230 4720 11 10 D6

SAMPLE DUPLICATE: 2394358

60301804001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 664 1 10 **Total Dissolved Solids** mg/L 670

SAMPLE DUPLICATE: 2394359

Date: 05/31/2019 03:02 PM

60301827001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 2220 **Total Dissolved Solids** 2260 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585101 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2400812 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

Blank Reporting Limit MDL Parameter Result Qualifiers Units Analyzed Chloride 0.46J 1.0 0.22 05/16/19 18:31 mg/L Fluoride mg/L < 0.085 0.20 0.085 05/16/19 18:31

LABORATORY CONTROL SAMPLE: 2400813 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.8 96 90-110 mg/L Fluoride mg/L 2.5 2.4 96 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2400814 2400815 MSD MS 60301804001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD RPD** Qual Chloride mg/L 3.7 5 5 8.4 8.4 94 95 80-120 0 15 Fluoride mg/L 0.24 2.5 2.5 2.5 2.6 92 93 80-120 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585251 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 2401454 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfate mg/L <0.23 1.0 0.23 05/17/19 15:27

LABORATORY CONTROL SAMPLE: 2401455

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.0 99 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2401456 2401457

MS MSD 60301805001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Sulfate 104 80-120 2 mg/L 422 250 250 682 693 109 15

 MATRIX SPIKE SAMPLE:
 2401458

 60302344001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Sulfate mg/L 657 250 949 117 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 585937 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

METHOD BLANK: 2404160 Matrix: Water

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	05/21/19 15:16	
Fluoride	mg/L	<0.085	0.20	0.085	05/21/19 15:16	
Sulfate	mg/L	< 0.23	1.0	0.23	05/21/19 15:16	

LABORATORY CONTROL SAMPLE:	2404161	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.9	97	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	
Sulfate	mg/L	5	4.9	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2404	162		2404163							
			MS	MSD								
		60301548001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	12.6	5	5	17.2	17.1	92	91	80-120	0	15	_
Fluoride	mg/L	0.18J	2.5	2.5	3.0	3.0	115	114	80-120	1	15	
Sulfate	mg/L	7.3	5	5	12.6	12.5	106	104	80-120	1	15	

MATRIX SPIKE SAMPLE:	2404164						
		60301548010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	10.4	5	14.7	85	80-120	
Fluoride	mg/L	0.17J	2.5	2.9	109	80-120	
Sulfate	mg/L	34.5	25	60.4	104	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

QC Batch: 586198 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60301548003, 60301548011

METHOD BLANK: 2405133 Matrix: Water

Associated Lab Samples: 60301548003, 60301548011

Blank Reporting MDL Result Limit Qualifiers Parameter Units Analyzed Chloride <0.22 1.0 0.22 05/22/19 12:16 mg/L Sulfate mg/L < 0.23 1.0 0.23 05/22/19 12:16

LABORATORY CONTROL SAMPLE: 2405134 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.7 94 90-110 mg/L mg/L Sulfate 5 5.1 102 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2405135 2405136 MSD MS 60301548003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Chloride mg/L 18.8 10 10 28.6 28.5 98 97 80-120 0 15

MATRIX SPIKE SAMPLE: 2405137 60302408005 MS MS Spike % Rec Qualifiers Parameter Units Result Conc. Result % Rec Limits 65.1 Sulfate 311 98 80-120 250 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-1D Lab ID: 60301548001 Collected: 04/30/19 09:30 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.463 ± 0.339 (0.379) C:NA T:94%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	1.41 ± 0.510 (0.764) C:77% T:86%	pCi/L	05/16/19 14:18	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-2D Lab ID: 60301548002 Collected: 05/01/19 12:10 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.02 ± 0.622 (0.764) C:NA T:81%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	0.573 ± 0.404 (0.784) C:80% T:80%	pCi/L	05/16/19 14:18	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-3D Lab ID: 60301548003 Collected: 04/30/19 16:50 Received: 05/02/19 04:13 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.563 ± 0.447 (0.581) C:NA T:80%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	-0.0517 ± 0.324 (0.762) C:81% T:82%	pCi/L	05/16/19 14:18	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-4D Lab ID: 60301548004 Collected: 04/30/19 15:05 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.787 ± 0.551 (0.727) C:NA T:82%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	0.799 ± 0.531 (1.04) C:79% T:75%	pCi/L	05/16/19 14:18	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-5D Lab ID: 60301548005 Collected: 04/30/19 12:00 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

FVV3.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.226 ± 0.314 (0.525) C:NA T:90%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	0.373 ± 0.368 (0.758) C:83% T:79%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-6D Lab ID: 60301548006 Collected: 04/30/19 10:35 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

1 WO.	Olic ID.	Gample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.440 ± 0.434 (0.661) C:NA T:89%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	0.430 ± 0.382 (0.776) C:81% T:74%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-8D Lab ID: 60301548007 Collected: 04/30/19 11:25 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

FW3.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.02 ± 0.580 (0.705) C:NA T:89%	pCi/L	05/23/19 12:16	13982-63-3	
Radium-228	EPA 904.0	1.67 ± 0.558 (0.779) C:76% T:84%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-9D Lab ID: 60301548008 Collected: 04/30/19 16:20 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.410 ± 0.351 (0.476) C:NA T:98%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	0.554 ± 0.362 (0.691) C:79% T:87%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-BMW-1D Lab ID: 60301548009 Collected: 05/01/19 12:20 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

1 445.	Site ib.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.65 ± 0.648 (0.495) C:NA T:95%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	1.73 ± 0.602 (0.864) C:83% T:67%	pCi/L	05/20/19 13:05	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-BMW-2D Lab ID: 60301548010 Collected: 05/01/19 10:15 Received: 05/02/19 04:13 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.446 ± 0.350 (0.411) C:NA T:94%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	0.469 ± 0.374 (0.749) C:79% T:88%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-DUP-1 Lab ID: 60301548011 Collected: 04/30/19 09:30 Received: 05/02/19 04:13 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.418 ± 0.355 (0.440) C:NA T:82%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	0.252 ± 0.362 (0.779) C:74% T:79%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-FB-1 Lab ID: 60301548012 Collected: 04/30/19 16:45 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.701 ± 0.493 (0.629) C:NA T:93%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	0.189 ± 0.434 (0.960) C:80% T:74%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-FB-2 Lab ID: 60301548013 Collected: 05/01/19 11:57 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.513 ± 0.453 (0.672) C:NA T:96%	pCi/L	05/23/19 12:29	13982-63-3	
Radium-228	EPA 904.0	-0.133 ± 0.365 (0.876) C:80% T:71%	pCi/L	05/16/19 14:19	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-1D MS Lab ID: 60301548014 Collected: 04/30/19 09:30 Received: 05/02/19 04:13 Matrix: Water

PWS: Site ID: Sample Type:

Method Act ± Unc (MDC) Carr Trac Units CAS No. **Parameters** Analyzed Qual EPA 903.1 93.87 %REC ± NA (NA) Radium-226 pCi/L 05/23/19 12:29 13982-63-3 C:NA T:NA EPA 904.0 121.50 %REC ± NA (NA) Radium-228 pCi/L 05/16/19 14:20 15262-20-1 C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

 Sample: L-UMW-1D MSD
 Lab ID: 60301548015
 Collected: 04/30/19 09:30
 Received: 05/02/19 04:13
 Matrix: Water

 PWS:
 Site ID:
 Sample Type:

Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 903.1 107.89 %REC 13.90 RPD ± Radium-226 pCi/L 05/23/19 12:29 13982-63-3 NA (NA) C:NA T:NA 119.20 %REC 1.91 RPD ± EPA 904.0 pCi/L Radium-228 05/16/19 14:20 15262-20-1 NA (NA) C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-7D Lab ID: 60301805001 Collected: 05/02/19 09:55 Received: 05/04/19 04:35 Matrix: Water

PWS: Site ID: Sample Type:

1 440.	OILC ID.	Gampie Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.582 ± 0.527 (0.777) C:NA T:83%	pCi/L	05/23/19 11:46	13982-63-3	
Radium-228	EPA 904.0	0.434 ± 0.420 (0.864) C:75% T:81%	pCi/L	05/17/19 12:28	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Sample: L-UMW-DUP-2 Lab ID: 60301805002 Collected: 05/02/19 09:55 Received: 05/04/19 04:35 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.299 ± 0.312 (0.440) C:NA T:85%	pCi/L	05/23/19 11:46	13982-63-3	
Radium-228	EPA 904.0	0.635 ± 0.403 (0.755) C:79% T:80%	pCi/L	05/17/19 12:28	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 341988 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 1664626 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.345 ± 0.393 (0.825) C:83% T:75%
 pCi/L
 05/17/19 12:26

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 341975 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013, 60301548014,

60301548015

METHOD BLANK: 1664594 Matrix: Water

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013, 60301548014,

60301548015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.338 ± 0.334 (0.508) C:NA T:87%
 pCi/L
 05/23/19 12:16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 341976 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013, 60301548014,

60301548015

METHOD BLANK: 1664595 Matrix: Water

Associated Lab Samples: 60301548001, 60301548002, 60301548003, 60301548004, 60301548005, 60301548006, 60301548007,

60301548008, 60301548009, 60301548010, 60301548011, 60301548012, 60301548013, 60301548014,

60301548015

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0902 ± 0.366 (0.828) C:82% T:70%
 pCi/L
 05/16/19 14:18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

QC Batch: 341987 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60301805001, 60301805002

METHOD BLANK: 1664625 Matrix: Water

Associated Lab Samples: 60301805001, 60301805002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.397 ± 0.433 (0.681) C:NA T:72%
 pCi/L
 05/23/19 11:03

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 05/31/2019 03:02 PM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60301548001	L-UMW-1D	EPA 200.7	585455	EPA 200.7	585478
60301548002	L-UMW-2D	EPA 200.7	585940	EPA 200.7	585970
60301548003	L-UMW-3D	EPA 200.7	585940	EPA 200.7	585970
0301548004	L-UMW-4D	EPA 200.7	585940	EPA 200.7	585970
60301548005	L-UMW-5D	EPA 200.7	585940	EPA 200.7	585970
60301548006	L-UMW-6D	EPA 200.7	585455	EPA 200.7	585478
60301548007	L-UMW-8D	EPA 200.7	585455	EPA 200.7	585478
0301548008	L-UMW-9D	EPA 200.7	585455	EPA 200.7	585478
0301548009	L-BMW-1D	EPA 200.7	585455	EPA 200.7	585478
0301548010	L-BMW-2D	EPA 200.7	585940	EPA 200.7	585970
60301548011	L-UMW-DUP-1	EPA 200.7	585940	EPA 200.7	585970
60301548012	L-UMW-FB-1	EPA 200.7	585455	EPA 200.7	585478
60301548013	L-UMW-FB-2	EPA 200.7	585455	EPA 200.7	585478
60301805001	L-UMW-7D	EPA 200.7	584623	EPA 200.7	584665
60301805002	L-UMW-DUP-2	EPA 200.7	584623	EPA 200.7	584665
0301548001	L-UMW-1D	EPA 200.8	585530	EPA 200.8	585558
0301548002	L-UMW-2D	EPA 200.8	585530	EPA 200.8	585558
0301548003	L-UMW-3D	EPA 200.8	585530	EPA 200.8	585558
0301548004	L-UMW-4D	EPA 200.8	585530	EPA 200.8	585558
0301548005	L-UMW-5D	EPA 200.8	585530	EPA 200.8	585558
0301548006	L-UMW-6D	EPA 200.8	585530	EPA 200.8	585558
0301548007	L-UMW-8D	EPA 200.8	585530	EPA 200.8	585558
0301548008	L-UMW-9D	EPA 200.8	585530	EPA 200.8	585558
0301548009	L-BMW-1D	EPA 200.8	585530	EPA 200.8	585558
0301548010	L-BMW-2D	EPA 200.8	585530	EPA 200.8	585558
0301548011	L-UMW-DUP-1	EPA 200.8	585530	EPA 200.8	585558
0301548012	L-UMW-FB-1	EPA 200.8	585530	EPA 200.8	585558
0301548013	L-UMW-FB-2	EPA 200.8	585530	EPA 200.8	585558
0301805001	L-UMW-7D	EPA 200.8	584464	EPA 200.8	584518
60301805002	L-UMW-DUP-2	EPA 200.8	584464	EPA 200.8	584518
0301548001	L-UMW-1D	EPA 7470	586038	EPA 7470	586191
0301548002	L-UMW-2D	EPA 7470	586038	EPA 7470	586191
0301548003	L-UMW-3D	EPA 7470	586038	EPA 7470	586191
0301548004	L-UMW-4D	EPA 7470	586038	EPA 7470	586191
0301548005	L-UMW-5D	EPA 7470	586038	EPA 7470	586191
0301548006	L-UMW-6D	EPA 7470	586038	EPA 7470	586191
0301548007	L-UMW-8D	EPA 7470	586038	EPA 7470	586191
0301548008	L-UMW-9D	EPA 7470	586038	EPA 7470	586191
0301548009	L-BMW-1D	EPA 7470	586038	EPA 7470	586191
0301548010	L-BMW-2D	EPA 7470	586038	EPA 7470	586191
0301548010 0301548011	L-UMW-DUP-1	EPA 7470	586038	EPA 7470	586191
0301548012	L-UMW-FB-1	EPA 7470	586038	EPA 7470	586191
0301548013	L-UMW-FB-2	EPA 7470 EPA 7470	586038	EPA 7470 EPA 7470	586191

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
60301805002	L-UMW-DUP-2	EPA 7470	585045	EPA 7470	585233
60301548001	L-UMW-1D	EPA 903.1	341975		
60301548002	L-UMW-2D	EPA 903.1	341975		
60301548003	L-UMW-3D	EPA 903.1	341975		
60301548004	L-UMW-4D	EPA 903.1	341975		
0301548005	L-UMW-5D	EPA 903.1	341975		
0301548006	L-UMW-6D	EPA 903.1	341975		
0301548007	L-UMW-8D	EPA 903.1	341975		
0301548008	L-UMW-9D	EPA 903.1	341975		
0301548009	L-BMW-1D	EPA 903.1	341975		
0301548010	L-BMW-2D	EPA 903.1	341975		
0301548011	L-UMW-DUP-1	EPA 903.1	341975		
0301548012	L-UMW-FB-1	EPA 903.1	341975		
0301548013	L-UMW-FB-2	EPA 903.1	341975		
0301548014	L-UMW-1D MS	EPA 903.1	341975		
0301548015	L-UMW-1D MSD	EPA 903.1	341975		
0301805001	L-UMW-7D	EPA 903.1	341987		
60301805002	L-UMW-DUP-2	EPA 903.1	341987		
0301548001	L-UMW-1D	EPA 904.0	341976		
0301548002	L-UMW-2D	EPA 904.0	341976		
0301548003	L-UMW-3D	EPA 904.0	341976		
0301548004	L-UMW-4D	EPA 904.0	341976		
0301548005	L-UMW-5D	EPA 904.0	341976		
0301548006	L-UMW-6D	EPA 904.0	341976		
0301548007	L-UMW-8D	EPA 904.0	341976		
0301548008	L-UMW-9D	EPA 904.0	341976		
0301548009	L-BMW-1D	EPA 904.0	341976		
0301548010	L-BMW-2D	EPA 904.0	341976		
0301548011	L-UMW-DUP-1	EPA 904.0	341976		
0301548012	L-UMW-FB-1	EPA 904.0	341976		
0301548013	L-UMW-FB-2	EPA 904.0	341976		
0301548014	L-UMW-1D MS	EPA 904.0	341976		
0301548015	L-UMW-1D MSD	EPA 904.0	341976		
0301805001	L-UMW-7D	EPA 904.0	341988		
0301805002	L-UMW-DUP-2	EPA 904.0	341988		
60301548001	L-UMW-1D	SM 2320B	583511		
60301548002	L-UMW-2D	SM 2320B	584102		
0301548003	L-UMW-3D	SM 2320B	583511		
0301548004	L-UMW-4D	SM 2320B	583511		
0301548005	L-UMW-5D	SM 2320B	583511		
0301548006	L-UMW-6D	SM 2320B	583511		
0301548007	L-UMW-8D	SM 2320B	583511		
0301548008	L-UMW-9D	SM 2320B	584102		
0301548009	L-BMW-1D	SM 2320B	584102		
60301548010	L-BMW-2D	SM 2320B	584102		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR #1

Pace Project No.: 60301548

Date: 05/31/2019 03:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60301548011	L-UMW-DUP-1	SM 2320B	 584102	_	
0301548012	L-UMW-FB-1	SM 2320B	584102		
60301548013	L-UMW-FB-2	SM 2320B	584102		
60301805001	L-UMW-7D	SM 2320B	584515		
60301805002	L-UMW-DUP-2	SM 2320B	584515		
60301548001	L-UMW-1D	SM 2540C	582881		
0301548002	L-UMW-2D	SM 2540C	582881		
0301548003	L-UMW-3D	SM 2540C	582881		
0301548004	L-UMW-4D	SM 2540C	582881		
0301548005	L-UMW-5D	SM 2540C	582881		
0301548006	L-UMW-6D	SM 2540C	582881		
0301548007	L-UMW-8D	SM 2540C	582881		
0301548007	L-UMW-9D	SM 2540C SM 2540C	582881		
0301548009	L-BMW-1D	SM 2540C SM 2540C	582881		
0301548010	L-BMW-2D	SM 2540C	582881		
0301548011	L-UMW-DUP-1	SM 2540C	582881		
0301548012	L-UMW-FB-1	SM 2540C	582881		
0301548013	L-UMW-FB-2	SM 2540C	583021		
0301805001	L-UMW-7D	SM 2540C	583514		
0301805002	L-UMW-DUP-2	SM 2540C	583514		
0301548001	L-UMW-1D	EPA 300.0	585937		
0301548002	L-UMW-2D	EPA 300.0	585937		
0301548003	L-UMW-3D	EPA 300.0	585937		
60301548003	L-UMW-3D	EPA 300.0	586198		
0301548004	L-UMW-4D	EPA 300.0	585937		
0301548005	L-UMW-5D	EPA 300.0	585937		
0301548006	L-UMW-6D	EPA 300.0	585937		
0301548007	L-UMW-8D	EPA 300.0	585937		
0301548008	L-UMW-9D	EPA 300.0	585937		
0301548009	L-BMW-1D	EPA 300.0	585937		
0301548010	L-BMW-2D	EPA 300.0	585937		
0301548011	L-UMW-DUP-1	EPA 300.0	585937		
0301548011	L-UMW-DUP-1	EPA 300.0	586198		
0301548012	L-UMW-FB-1	EPA 300.0	585937		
0301548013	L-UMW-FB-2	EPA 300.0	585937		
60301805001	L-UMW-7D	EPA 300.0	585101		
0301805001	L-UMW-7D	EPA 300.0	585251		
60301805002	L-UMW-DUP-2	EPA 300.0	585101		

Sample Condition Upon Receipt

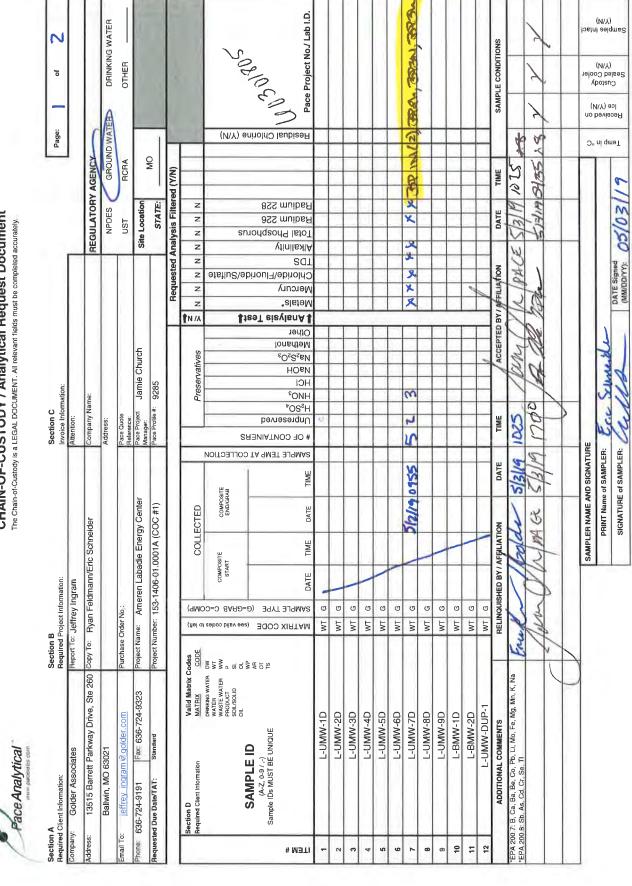
Client Name: Golder		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace 🗆 Xroads 🗗 Client 🗆 Other 🗆
Tracking #: Pa	ace Shipping Label Used	d? Yes □ No 🗗
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	d No □
Packing Material: Bubble Wrap □ Bubble Bags		None □ Other □
Thermometer Used: ——246 Type of	ofice: Wet Blue No	ne
Cooler Temperature (°C): As-read 2.1, 3.4 Corr. Fac	of Ice: Wet Blue No	ted 11, 34 Date and initials of person examining contents: 5/2/19
Temperature should be above freezing to 6°C		
Chain of Custody present:	ØYes □No □N/A	
Chain of Custody relinquished:	PYes □No □N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes ☑No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	Yes No N/A	
Pace containers used:	Yes □No □N/A	
Containers intact:	✓Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	Sonak 2-BMM-1D is lebelled
Sample labels match COC: Date / time / ID / analyses	Wes No □N/A	C5 2-BMH-18.
Samples contain multiple phases? Matrix:	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yes DNo DN/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No ☑Ñ/A	
 Additional labels attached to 5035A / TX1005 vials in the fiek	d? □Yes □No □N/A	
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
Person Contacted: Date	/Time:	
Comments/ Resolution:		
Jani Churh		5/4/19
Project Manager Review:	Date	e:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

Golder Associates	ites	Report To: Jeffrey Ingram	Report To: Jeffrey Ingram	ıram			Attention:	Attention:	Mon:					г			-		-	l	
5 Barrett	cway Drive, Ste 260	Copy To:	an Feld	Ryan Feldmann/Eric Schneider	Schneider		Comp	Company Name:	l ai					M.	SULAT	REGULATORY AGENCY	SENCY			71	
Ballwin, MO 6302	021						Address:	SS.						L	NPDES	S	GROUN	GROUND WATER	<u>A</u>	DRINK	DRINKING WATER
y ingram	jeffrey ingram@golder.com	Purchase Order No	. No.				Pace (Pace Quote Reference:							UST)	RCRA			OTHER	
636-724-9191	Fax: 636-724-9323	Project Name:	Amer	Ameren Labadie E	Energy Center	nter	Pace	roject er:	Jamie Church	hurch				Sign	Site Location	ion	=	277			
Requested Due Date/TAT:	Standard	Project Number:	153-1	1406-01.00	153-1406-01.0001A (COC #1)	11)	Pace		9285						STATE	TE:	2				
											-	Re	queste	d Anal	ysis Fi	Requested Analysis Filtered (Y/N)	(NIA				
Section D Required Client Information	Valid Matrix G MATRIX	code	_		COLLECTED	0		7	Preservatives	stives	†N/A	z	z	z	z	z					
	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL	SE VAIR		COMPOSITE		COMPOSITE					1		e/Sulfate		SI			(N/X)			43
Sample ID (A-Z. 0-9 / .) Sample IDs MUST BE UNIQUE		AR AR TO T	=0) BAYT BJAMA8	L L	i i	F	SAMPLE TEMP AT C	Jubreserved Jupreserved	HCI HNO ³	NaOH Va ₂ S ₂ O ₃ Ionarthanol	Test Pest sisylsis Test	/etals*	Mercury hloride/Fluoride	nkalinity DS	otal Phosphoru adium 226	822 muibe		Residual Chlorine	9	300	20505 20505
	L-UMW-1D	W.	-	-		0	1=					×	X	1		\ \	6	1 (16)	100	FORN S	Ch.K.C.
	L-UMW-2D TRO NO	2			5/1/15	0121 6/	S		W			×	$\stackrel{\frown}{\times}$	X	X	がス	6	7	102	300	310
	L-UMW-3D			_	Wzoles	19 K.So	N		M			×	X	X	X	X			-		D)
	L-UMW-4D	TW	O	_			2	2	2			×	X	Z	X	Y					Tac
	L-UMW-5D	W	σ	_		1200	N	2	M	- 4		X	X	X	×	X					DO
	L-UMW-6D	WT	g	_	7	1085	Ŋ	2	72			Ŝ	X	X	X	×	7		>		DDI
	L-UMW-7D	WT	O	_		Bet-									-						
	I-UMW-8D 35 MAI	IN CZ	O		413	4/30/4 1125	2	2	M			X	×	X	X	アイン	33	Z	BP2V		CNO TEGE
	L-UMW-9D	W	Ű		1	N	101	7	N (1	×	2	7	<	×>	-	-	+		SUC
	L-BMW-1D	TW.	O		1/0		1	11	N C		I		\$	7 5	2 2		+	+	+		COA
	L-BMW-2D	W W	0 0		1/30/1	2001	vn	11/2	11		T	X	2	< X	XX	< ×	->		-		->
ADDITIONAL COMMENTS	COMMENTS	RE	LINGUIS	RELINQUISHED BY / AFFILI	FILIATION	DATE	1	TIME		ACCE	ACCEPTED BY / AFFILIATION	// AFFIL	IATION		DATE		TIME	1	SAMF	SAMPLE CONDITIONS	IONS
Ba, Be, Co, Pt. Cd, Cr. Se. T	-EPA 200 7: В. Са. Ва. Ве. Со. Рр. Li. Мо. Fe. Мg. Мn. K. Na -EPA 200 8: Sb. As. Cd. Cr. Se. Tl	Xa D	Ja.	8/100	Hel	61/1/5	0081	Q	A	The same of the sa		63			8/2/19		Q1/3	-17 S	7	X	>
				F												H			4		
				Ŋ	SAMPLER NAM	PLER NAME AND SIGNATURE	URE										91	0.	uo (lost
				_	PRINT	PRINT Name of SAMPLER:	ER:	100	real	M	2412							, uı du	bavia N/Y) e	Y/N) ad Cod	(N/A)
				I			-	1		1		-			ŀ		I	'n	9:	0) di

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

Company: Golder Associates		Report To: . Leffrey Ingram	frev Inc	nation:				E 18	Invoice Information: Attention:	rmation:						Γ				1		,		,
	00000	- 1	6													-			1	1				
Address: 13515 Barret	13515 Barrett Parkway Drive, Ste 260	Copy To: Ry	an Felt	dmann/	Ryan Feldmann/Eric Schneider	eider		ŏ	Company Name:	ame:						a.	EGUL	ATOR	REGULATORY AGENCY	VCY.		1	13	
Ballwin, MO 63021	63021							¥	Address:							-	IdN	NPDES	Ü	SOUND	GROUND WATER	h	DRINKIN	DRINKING WATER
Email To: jeffrey ingrar	ieffrey ingram@qolder.com	Purchase Order No	No :					Re Ba	Pace Quote Reference							Г	UST	-	œ	RCRA			OTHER	
636-724-9191	Fax: 636-724-9323	Project Name:	Ame	ren Lat	Ameren Labadie Ener	rgy Center		E ≥	Pace Project Manager		Jamie Church	ر ا ت				-	Site Location	cation		2				
Requested Due Date/TAT:	Standard	Project Number: 153-1406-01 0001A (COC #1)	: 153-	1406-0	1.0001A	COC #1)		d.	Pace Profile #:	\$ 9285	2						S	STATE:	-	2				
													H	Re	duest	ed Ar	alysis	Filter	Requested Analysis Filtered (Y/N)	(
Section D Required Client Information	Valid Matrix C	des			поэ	LECTED				Pres	Preservatives	es	N /A	z	z	z	z	z						
	DRINKING WATER WASTE WASTE WASTE PRODUCT SOLLSOLID OIL	See valid codes		S IS	COMPOSITE	COMPOSITE	NSITE RAB						1		e/Sulfate		SI				(N/X) €		1	200
SAMPLE ID (A-Z, 0-91 -) Sample IDs MUST BE UNIQUE		AR TS	=6) 34YT 3J4MA2	DATE	TIME	A E	TIME	S TA GMET E TEMP AT C	# OF CONTAINER	HNO ³	NªOH HCI	Na ₂ S ₂ O ₃ Methanol	Other Test	Metals*	Mercury Chloride/Fluoride	TDS Alkalinity	Total Phosphoru	Radium 226 Radium 228			Residual Chlorine	Pace P	roject	Pace Project No./ Lab I.D.
	L-UMW-DUP-2	W	0	_										170	100									
	L-UMW-FB-1	TW	o F	_		4/30/15	547		25	3	4.3	1) A (2	3	×	X	\times		X	品	23m	1-	000	7 7	TO AL
	L-UMW-FB-2	W	O	-		511119	153		200	W		≯		×	X	X		X		₹		->		1
		WT	D D									H												
		W	0																					
		TW	9		_																			
		W	9		_	U.									-			-						
		W	o L		-					1			_	1	-			-		1				
		W	٥ ۲		+			1	1	1	1	-		1		1	1		+	-	+			
		TW	o F		1			1	1	+	1	+	Т	1		1	1	1	+	1	1			
		TW			+				+	1			1		-		1	+		+	+			
ADDITIONA	ADDITIONAL COMMENTS	REL	LINQUIS	SHED BY	WI G RELINQUISHED BY / AFFILIAT	NOI	DATE		TIME	1	1	ACCEPTED BY / AFFILIATION	ED BY	/ AFFIL	LIATION	1,	o	DATE	TIME			SAMPL	SAMPLE CONDITIONS	SNOT
00.7: B, Ca, Ba, Be, Co, 00.8: Sb. As Cd Cr Se	"EPA 200.7: B, Ca, Ba, Be, Co, Pb, Li, Mo, Fe, Mg, Mn, K, Na "EPA 200.8: Sb, As, Cd, Cr, Se, Ti	Now York	Di	A	160	dor	1/5	0	1800	1	6	Dr	11	a			4	Shing	ah	W	234	Z	X	>
)																9	<i>b</i>			
																					-			
					SAMPL	ER NAME AND SIGNATURE	AND SIGNA	TURE														() OU	19 00	niaci
						PRINT Nar	PRINT Name of SAMPLER:	LER:	And	101	1	Adl	1	1			, i				uı dı	0/V) (A\N) 9q Co 18(oq	1165 li
									1000	1	1	1	1	-			1	-		T	_	90	ΘĮE) du


Sample Condition Upon Receipt

Client Name: Golder		
Courier: FedEx 🗆 UPS 🗆 VIA 🗷 Clay 🗆 F	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	e Shipping Label Use	d? Yes 🗆 No 🖊
Custody Seal on Cooler/Box Present: Yes ☑ No □	Seals intact: Yes	Ø No□
Packing Material: Bubble Wrap □ Bubble Bags	foam □	None □ Other □
Thermometer Used: 1-294 Type of	lce: Wet Blue No	ne Date and initials of person
Cooler Temperature (°C): As-read 1.8 Corr. Factor	or_j.O Correc	ted 0.8 examining contents: 514/19
Temperature should be above freezing to 6°C		
Chain of Custody present:	ØYes □No □N/A	
Chain of Custody relinquished	□Yes □No □N/A	
Samples arrived within holding time:	✓Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ⊅No □N/A	
Rush Turn Around Time requested:	□Yes ZNo □N/A	
Sufficient volume:	☑Yes □No □N/A	
Correct containers used:	☐Yes ☐No ☐N/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No ØN/A	
Sample labels match COC: Date / time / ID / analyses	Yes ONO ON/A	
Samples contain multiple phases? Matrix:	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yes DNo DN/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	·	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ☑N/A	
Headspace in VOA vials (>6mm)	□Yes □No ☑N/A	
Samples from USDA Regulated Area: State:	□Yes □No ☑N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	Yes No ZN/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
Project Manager Review:	Date	e:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

2

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

I		nequired rioject implimation:	auori:				IIVOICE IIIIOIIII audii.	aucu.					1					1		1	
company		Report To: Jeffrey Ingram	аш			Atter	Attention:														
ddress:	s: 13515 Barrett Parkway Drive, Ste 260	Copy To: Ryan Feldmann/Er	nann/Eric Sc	ic Schneider		Сош	Company Name	à					1 22	GULA	TOR)	REGULATORY AGENCY	7.	1			
	Ballwin, MO 63021					Address:	SSS:						-	NPDES	ES	GHO	GHOUND WATE	A	DRI	DRINKING WATER	EB EB
mail To:	lo: jeffrey ingram@golder.com	Purchase Order No.:				Pace	Pace Quote Reference:							UST		RCRA	A		OTHER	EB I	
one	Monel: 636-724-9191 Fax: 636-724-9323	Project Name: Amer	Ameren Labadie E	lie Energy Center		Pace	Pace Project Manager:	Jamie Church	hurch				S	Site Location	ation						
dues	lequested Due Date/TAT: Standard	Project Number: 153-1406-01.		0001A (COC #1)		Pace		9285					Т	ST	STATE:	2	MO				
										-	Re	quest	ad Ans	alysis	Filtere	Requested Analysis Filtered (Y/N)	Г				
	Section D Valid Matrix Codes Required Client Information MATRIX COD	(Mel o)	ŏ	COLLECTED				Preservatives	tives	¶N/A	z	z	z	z	z			1			
	DENOMES ANTER WASTE WATER WASTE WATER PRODUCT PRODUCT	O N M M N 이 이 이 N M M M N N N N N N N N N	COMPOSITE	COMP	COMPOSITE END/GRAB					1		eySulfate		S			(IN/A)	(5)(1)		>	
ITEM #	Sample IDs MUST BE UNIQUE	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DATE TIME	E DATE	TIME	S TA GENT E TEMP S # OF CONTAINERS	Unpreserved H ₂ SO ₄	HCI HCI NgOH	Na ₂ S ₂ O ₃ Methanol	Other Test	*slsteN	Mercury Chloride/Fluoride	TDS Alkalinity	Total Phosphoru	82S muibeF 82S muibeF		Residual Chlorine		50 V	Residual Chlorine Residual Chlorine Pace Project No Lab I.D.	d D.D.
-	L-UMW-DUP-2	D TW		51/1/5	_	M	2	2			×	-	-			3	13	NE CE	100	30 M	12 Ca
2	L-UMW-FB-1	WT G																			
6	L-UMW-FB-2	WT G																			
4		WT G	-										-								
co		WT G																			
9		WT	_															Ц			
7		WT G	_			-															
80		WT G	-			-											1				
on		WT G	_				-				1		-			1	1				
9		WT G	1			+		1		I		1	-			1	1				1
= :						+		1	-	T	1		+	1	1	1	+				
2		5 IW		1		+				-	1		-	1	1		1	1			1
24 20	AUDITIONAL COMMENTS EPA 200,7: B, Ca, Ba, Be, Co, Pb, Li, Mo, Fe, Mg, Mn, K, Na EPA 200,8: Sh As, Cd Cr Sa, TI	6. Medianoished Bit in	LUBY AFFIL	Stole	5/2/K	2	025	1	and MV DE			B	4	77	3	53 S	_,	, A		SAMPLE CONDITIONS	
		Han	11/1	* CE	1	1/2	700	A	B	1	3			1/2	11/4	Silving 2/35	1,4	7	7		
		/	-		1 1			/											•		
		7				/		/													
			SAM	SAMPLER NAME AND SIGNATURE	AND SIGNA	rure	>										0.		y 1910		มเซตเ
				PRINT Nan	PRINT Name of SAMPLER:	ER:	8.1.	characte	1								uj di	bavie 1\Y) e	bolar DO be	(N/A	(N/A)
						1	1					1000000					ue T)))	

MEMORANDUM

DATE 8/15/2019 **Project No.** 1531406-01

TO Project File

Golder Associates

CC

FROM Tommy Goodwin

EMAIL tgoodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – ASSESSMENT MONITORING - DATA PACKAGE 60301548

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Project I Reviewe Laborate Analytic Matrix: Sample	ny Name: (rolder Hospitals) Name: Anesen - Labadie pry: Pace Analytical - KS/PA al Method (type and no.): EPA 200.74 200.85 Method Air Soil/Sed. Water Waste Names L-UMW-ID, L-UMW-ZD, L-UMW-3D, L W-ID, L-BMW-ZD, L-UMW-DUP-1, L-UMW-DUP-1	D _	Project Valida SDG : \$HgZ, 232	et Number: ation Date:_ #:603.c o3{A\k},2	8/15/19 D1548 540CETDS], 300.0 & Airas], 905,1+704.0 & Rade] -UML-6D, L-UML-7D, L-UML-8D, L-UML-9
NOTE:	Please provide calculation in Comment areas or	on the	back (if o	n the back	please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?				4/30 -5/2/19
b)	Sampling team indicated?				
c)	Sample location noted?				
d)	Sample depth indicated (Soits)?				
e)	Sample type indicated (grap composite)?				
f)	Field QC noted?				
g)	Field parameters collected (note types)?				et. Do torb, God, OFF
h)	Field Calibration within control limits?				
i)	Notations of unacceptable field conditions/performa	nces fro	om field log	gs or field no	otes?
			Ø		
j)	Does the laboratory narrative indicate deficiencies? Note Deficiencies:			ď	
Chain-c	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?				
b)	Was the COC signed by both field and laboratory personnel?	P			
c)	Were samples received in good condition?				
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?				
b)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?	Z			
d)	Was the correct method used?	1			
e)	Were appropriate reporting limits achieved?	d			
f)	Were any sample dilutions noted?	V	DO		See Notes
g)	Were any matrix problems noted?				

Revised May 2004

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	I			
b)	Were analytes detected in the field blank(s)?	\Box			See Notes
c)	Were analytes detected in the equipment blank(s)?			\square	
d)	Were analytes detected in the trip blank(s)?				
Laborat	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	d			
b)	Were the proper analytes included in the LCS?				
c)	Was the LCS accuracy criteria met?	Ø			
Duplica	ites	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and de	uplicate	sample na	ames)?	DUP-1@L-UMWSD; FB-1@ L-UMW-3D
		V			DUP-201-UMW-70; FB-20 L-UMW-2D
b)	Were field dup. precision criteria met (note RPD)?				See Notes
c)	Were lab duplicates analyzed (note original and du	plicate s	samples)?		
		ď			L-UMW-ID (ALKITOS)
d)	Were lab dup. precision criteria met (note RPD)?	ď			the Lab DUP RPD: 2% (Linit 10%)
Blind Standards		YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,				
	analytes included and concentrations)?				
b)	Was the %D within control limits?				
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		\triangleleft		
	Recovery could not be calculated since sample contained high concentration of analyte?			₫	
b)	Was MSD accuracy criteria met?				
	Recovery could not be calculated since sample contained high concentration of analyte?				
c)	Were MS/MSD precision criteria met?	Ø			MS/MSD @ L-UMW-ID
Commo	ents/Notes:	i D			FB
(B) 01,02:	My (15.8) 4800 3: B(-), (a(+), who	(+), N~(+)		FB-1: 226 (0.701 = 0.413 [0.62])
48201-13:					13 -1: 8- (26) 8(11.6), 6(702) (1/0.021), CT/0.21
-01-13:	Gr (0,12) Duf.				FB-2: a/ail)
05001-02:	C1- (0.46) DUP- 1: Pb (200), Mg (34)	MA/2	4), (1/200)	Alk(2a)	
-	DUP- 2: Cr(94)				
Diluti	ous: Chloride + Sulfate were diluted in	Seves	in samp	les; re	qualification is necessary

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason		
L-UMW-ID	Chromina (Cr)	1.0	U	Detected in Method Block (MB); PQLTResnHTMD		
20						
3 D						
4D						
5D						
6D						
1 9D						
L-BMW- ID						
L 2D		1	1	1		
L-UMW-3D	Boron (B)	9590	T	MS/MSD exceeded criteria		
	Calcium (a)	84000	1			
	Magnesium (Mg)	5040				
	Sedium (NA)	64000	1			
L-UMW-FB-1	Cr	1.0	U	Detected in MB; PQL > Result > MOL		
L- VAW-FB-Z	1	上	1	1		
	NAMES OF THE PARTY					
	3					

Signature: 5 mm / Spool / Date: 8/15/2019

August 15, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between May 02, 2019 and May 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0

Arkansas Drinking Water

Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60301568001	L-LMW-1S	Water	05/01/19 15:05	05/02/19 04:13
60301568002	L-LMW-2S	Water	04/30/19 15:25	05/02/19 04:13
60301568003	L-LMW-5S	Water	05/01/19 14:05	05/02/19 04:13
60301568004	L-BMW-1S	Water	05/01/19 11:35	05/02/19 04:13
60301568005	L-BMW-2S	Water	05/01/19 10:50	05/02/19 04:13
60301568006	L-LMW-DUP-1	Water	04/30/19 15:25	05/02/19 04:13
60301568007	L-LMW-4S	Water	05/01/19 16:00	05/02/19 04:13
60301803001	L-LMW-3S	Water	05/02/19 10:05	05/04/19 04:35
60301803002	L-LMW-8S	Water	05/02/19 14:05	05/04/19 04:35
60301803003	L-LMW-FB-1	Water	05/02/19 10:35	05/04/19 04:35
60302537001	L-LMW-6S	Water	05/08/19 12:35	05/10/19 03:45
60302537002	L-LMW-7S	Water	05/08/19 14:05	05/10/19 03:45

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60301568001	L-LMW-1S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568002	L-LMW-2S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568003	L-LMW-5S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568004	L-BMW-1S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568005	L-BMW-2S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568006	L-LMW-DUP-1	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568007	L-LMW-4S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301803001	L-LMW-3S	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301803002	L-LMW-8S	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301803003	L-LMW-FB-1	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60302537001	L-LMW-6S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60302537002	L-LMW-7S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-1S	Lab ID:	60301568001	Collecte	d: 05/01/19	15:05	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	114	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:28	7440-39-3	
Lithium	26.4	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:28	7439-93-2	
Molybdenum	4.7J	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:28	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	19.0	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:24	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-2S	Lab ID:	60301568002	Collecte	d: 04/30/19	15:25	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	33.1	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:50	7440-39-3	
Lithium	10.6	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:50	7439-93-2	
Molybdenum	112	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:50	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	41.1	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:32	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-5S	Lab ID:	60301568003	Collecte	d: 05/01/19	14:05	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	291	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:52	7440-39-3	
Lithium	9.6J	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:52	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:52	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.47J	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:34	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-BMW-1S	Lab ID:	60301568004	Collecte	d: 05/01/19	11:35	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	288	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:54	7440-39-3	
Lithium	17.6	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:54	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:54	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	35.1	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:44	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-BMW-2S	Lab ID:	60301568005	Collecte	d: 05/01/19	10:50	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	266	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:57	7440-39-3	
Lithium	20.2	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:57	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:57	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.52J	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:46	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-DUP-1	Lab ID:	60301568006	Collecte	d: 04/30/19	15:25	Received: 05/	/02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	33.9	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:59	7440-39-3	
Lithium	9.7J	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:59	7439-93-2	
Molybdenum	111	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:59	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	41.3	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:48	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-4S	Lab ID: 60301568007		Collected: 05/01/19 16:00			Received: 05/02/19 04:13 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	116	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 13:01	7440-39-3	
Lithium	35.8	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 13:01	7439-93-2	
Molybdenum	151	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 13:01	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	21.0	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:50	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-3S	Lab ID:	60301803001	Collecte	d: 05/02/19	10:05	Received: 05/	/04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	69.7	ug/L	5.0	1.4	1	05/15/19 08:55	05/16/19 11:37	7440-39-3	
Lithium	23.2	ug/L	10.0	5.9	1	05/15/19 08:55	05/16/19 11:37	7439-93-2	
Molybdenum	157	ug/L	20.0	2.6	1	05/15/19 08:55	05/16/19 11:37	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	3.6	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:16	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-8S	Lab ID:	60301803002	Collecte	d: 05/02/19	14:05	Received: 05/	/04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	298	ug/L	5.0	1.4	1	05/15/19 08:55	05/16/19 11:39	7440-39-3	
Lithium	21.4	ug/L	10.0	5.9	1	05/15/19 08:55	05/16/19 11:39	7439-93-2	
Molybdenum	244	ug/L	20.0	2.6	1	05/15/19 08:55	05/16/19 11:39	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	22.0	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:18	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-FB-1	Lab ID:	60301803003	Collecte	d: 05/02/19	10:35	Received: 05/	/04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	<1.4	ug/L	5.0	1.4	1	05/15/19 08:55	05/16/19 11:41	7440-39-3	
Lithium	<5.9	ug/L	10.0	5.9	1	05/15/19 08:55	05/16/19 11:41	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/15/19 08:55	05/16/19 11:41	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	<0.065	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:34	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-6S	Lab ID:	60302537001	Collecte	d: 05/08/19	12:35	Received: 05/	/10/19 03:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	323	ug/L	5.0	1.4	1	05/20/19 14:55	05/21/19 12:22	7440-39-3	
Lithium	34.6	ug/L	10.0	5.9	1	05/20/19 14:55	05/21/19 12:22	7439-93-2	
Molybdenum	26.2	ug/L	20.0	2.6	1	05/20/19 14:55	05/21/19 12:22	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	3.1	ug/L	1.0	0.065	1	05/20/19 10:53	05/22/19 11:17	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Sample: L-LMW-7S	Lab ID:	60302537002	Collecte	d: 05/08/19	14:05	Received: 05/	/10/19 03:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	296	ug/L	5.0	1.4	1	05/20/19 14:55	05/21/19 12:24	7440-39-3	
Lithium	35.7	ug/L	10.0	5.9	1	05/20/19 14:55	05/21/19 12:24	7439-93-2	
Molybdenum	118	ug/L	20.0	2.6	1	05/20/19 14:55	05/21/19 12:24	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	17.2	ug/L	1.0	0.065	1	05/20/19 10:53	05/22/19 11:19	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 583885 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301568001, 60301568002, 60301568003, 60301568004, 60301568005, 60301568006, 60301568007

METHOD BLANK: 2395795 Matrix: Water

Associated Lab Samples: 60301568001, 60301568002, 60301568003, 60301568004, 60301568005, 60301568006, 60301568007

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/13/19 12:26	
Lithium	ug/L	<5.9	10.0	5.9	05/13/19 12:26	
Molybdenum	ug/L	<2.6	20.0	2.6	05/13/19 12:26	

LABORATORY CONTROL SAMPLE:	2395796					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	972	97	85-115	
Lithium	ug/L	1000	973	97	85-115	
Molybdenum	ug/L	1000	948	95	85-115	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 2395		2395798								
			MS	MSD								
	6	0301568001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	114	1000	1000	1090	1090	98	98	70-130	0	20	
Lithium	ug/L	26.4	1000	1000	1050	1050	102	102	70-130	0	20	
Molybdenum	ug/L	4.7J	1000	1000	956	964	95	96	70-130	1	20	

MATRIX SPIKE SAMPLE:	2395799						
Parameter	Units	60301646001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	23.5	1000	966	94	70-130	_
Lithium	ug/L	16.1	1000	1030	101	70-130	
Molybdenum	ug/L	22.6	1000	945	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 584623 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301803001, 60301803002, 60301803003

METHOD BLANK: 2398909 Matrix: Water

Associated Lab Samples: 60301803001, 60301803002, 60301803003

Description	11-20-	Blank	Reporting	MDI	A a b a -d	0
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/16/19 11:33	
Lithium	ug/L	<5.9	10.0	5.9	05/16/19 11:33	
Molybdenum	ug/L	<2.6	20.0	2.6	05/16/19 11:33	

LABORATORY CONTROL SAMPLE:	2398910					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Lithium	ug/L	1000	1010	101	85-115	
Molvbdenum	ua/L	1000	916	92	85-115	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398911											
			MS	MSD								
	6	0301804001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	360	1000	1000	1370	1360	101	100	70-130	1	20	
Lithium	ug/L	43.3	1000	1000	1070	1060	102	101	70-130	1	20	
Molybdenum	ug/L	<2.6	1000	1000	935	932	94	93	70-130	0	20	

MATRIX SPIKE SAMPLE:	2398913						
Parameter	Units	60301923002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	45.3	1000	986	94	70-130	_
Lithium	ug/L	ND	1000	972	97	70-130	
Molybdenum	ug/L	ND	1000	893	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 585659 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60302537001, 60302537002

METHOD BLANK: 2403215 Matrix: Water

Associated Lab Samples: 60302537001, 60302537002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/21/19 12:05	
Lithium	ug/L	<5.9	10.0	5.9	05/21/19 12:05	
Molybdenum	ug/L	<2.6	20.0	2.6	05/21/19 12:05	

LABORATORY CONTROL SAMPLE:	2403216					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	1030	103	85-115	
Lithium	ug/L	1000	1050	105	85-115	
Molybdenum	ug/L	1000	931	93	85-115	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2403	217		2403218							
			MS	MSD								
	6	0302656002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	20.8	1000	1000	1040	1050	102	103	70-130	1	20	
Lithium	ug/L	48.7	1000	1000	1100	1110	105	106	70-130	1	20	
Molybdenum	ug/L	ND	1000	1000	906	904	90	90	70-130	0	20	

MATRIX SPIKE SAMPLE:	2403219						
Parameter	Units	60302658002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	186	1000	1210	103	70-130	
Lithium	ug/L	15.3	1000	1060	104	70-130	
Molybdenum	ug/L	ND	1000	902	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 584464 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301568001, 60301568002, 60301568003, 60301568004, 60301568005, 60301568006, 60301568007

METHOD BLANK: 2398379 Matrix: Water

Associated Lab Samples: 60301568001, 60301568002, 60301568003, 60301568004, 60301568005, 60301568006, 60301568007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Arsenic
 ug/L
 <0.065</td>
 1.0
 0.065
 05/15/19 13:18

LABORATORY CONTROL SAMPLE: 2398380

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 39.7 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398381 2398382

MS MSD 60301568001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 20 Arsenic ug/L 19.0 40 40 59.6 60.2 101 103 70-130

 MATRIX SPIKE SAMPLE:
 2398383
 60301622003
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Arsenic ug/L 1.2 40 41.3 100 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 584536 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301803001, 60301803002, 60301803003

METHOD BLANK: 2398606 Matrix: Water

Associated Lab Samples: 60301803001, 60301803002, 60301803003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 05/16/19 14:13

LABORATORY CONTROL SAMPLE: 2398607

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 39.7 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398608 2398609

MS MSD MSD 60301804001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 70-130 2 20 Arsenic ug/L 1.6 40 40 41.3 40.4 99 97

 MATRIX SPIKE SAMPLE:
 2398610

 60302480001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Arsenic ug/L 1.6 40 41.6 100 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

QC Batch: 585573 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60302537001, 60302537002

METHOD BLANK: 2402959 Matrix: Water

Associated Lab Samples: 60302537001, 60302537002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 05/22/19 10:51

LABORATORY CONTROL SAMPLE: 2402960

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 37.1 93 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2402961 2402962

MS MSD MSD 60302498001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual ND 87 20 Arsenic ug/L 40 40 35.6 35.7 88 70-130 0

MATRIX SPIKE SAMPLE: 2402963 60303232001 Spike MS MS % Rec

ParameterUnitsResultConc.Result% RecLimitsQualifiersArsenicug/L0.24J4036.79170-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 08/15/2019 12:01 PM

PASI-K Pace Analytical Services - Kansas City

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301568

Date: 08/15/2019 12:01 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60301568001	L-LMW-1S	EPA 200.7	583885	EPA 200.7	<u></u>
60301568002	L-LMW-2S	EPA 200.7	583885	EPA 200.7	584051
60301568003	L-LMW-5S	EPA 200.7	583885	EPA 200.7	584051
60301568004	L-BMW-1S	EPA 200.7	583885	EPA 200.7	584051
60301568005	L-BMW-2S	EPA 200.7	583885	EPA 200.7	584051
60301568006	L-LMW-DUP-1	EPA 200.7	583885	EPA 200.7	584051
60301568007	L-LMW-4S	EPA 200.7	583885	EPA 200.7	584051
60301803001	L-LMW-3S	EPA 200.7	584623	EPA 200.7	584665
60301803002	L-LMW-8S	EPA 200.7	584623	EPA 200.7	584665
60301803003	L-LMW-FB-1	EPA 200.7	584623	EPA 200.7	584665
60302537001	L-LMW-6S	EPA 200.7	585659	EPA 200.7	585727
60302537002	L-LMW-7S	EPA 200.7	585659	EPA 200.7	585727
60301568001	L-LMW-1S	EPA 200.8	584464	EPA 200.8	584518
60301568002	L-LMW-2S	EPA 200.8	584464	EPA 200.8	584518
60301568003	L-LMW-5S	EPA 200.8	584464	EPA 200.8	584518
60301568004	L-BMW-1S	EPA 200.8	584464	EPA 200.8	584518
60301568005	L-BMW-2S	EPA 200.8	584464	EPA 200.8	584518
60301568006	L-LMW-DUP-1	EPA 200.8	584464	EPA 200.8	584518
60301568007	L-LMW-4S	EPA 200.8	584464	EPA 200.8	584518
60301803001	L-LMW-3S	EPA 200.8	584536	EPA 200.8	584573
60301803002	L-LMW-8S	EPA 200.8	584536	EPA 200.8	584573
60301803003	L-LMW-FB-1	EPA 200.8	584536	EPA 200.8	584573
60302537001	L-LMW-6S	EPA 200.8	585573	EPA 200.8	585611
60302537002	L-LMW-7S	EPA 200.8	585573	EPA 200.8	585611

Sample Condition Upon Receipt

Client Name: Goder		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace Xroads Client Other
	ace Shipping Label Use	d? Yes 🗆 No 🗗
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	I No□
Packing Material: Bubble Wrap ☐ Bubble Bags	Foam 🗆	None ☐ Other ☐
Thermometer Used: Type	of Ice: Wet Blue No	ne Pote and laid to a few and
Cooler Temperature (°C): As-read 30, 3,2 Corr. Fac	ctor_1.0 Correct	ted 2.0, 2.2 Date and initials of person examining contents: 5/2/19
Temperature should be above freezing to 6°C		,
Chain of Custody present:	✓Yes □No □N/A	
Chain of Custody relinquished:	✓Yes □No □N/A	
Samples arrived within holding time:	√ Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes ØNo □N/A	
Sufficient volume:	Yes No N/A	10
Correct containers used:	Yes ONO ON/A	
Pace containers used:	Yes No N/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	Yes No ON/A	Sant extra samples 2-2mw-2/5
Samples contain multiple phases? Matrix:	Yes No ON/A	time + data 5/1/19@ 1600 (BP24, BP3)
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	ØYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	BR34)
Headspace in VOA vials (>6mm)	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No ZN/A	
Additional labels attached to 5035A / TX1005 vials in the fiel	d? □Yes □No ☑N/A	
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
	/Time;	
Comments/ Resolution Per Eric, analyze extra sample	L-LMW-4S for all parar	meters.
Janui Churh		5/4/19
Project Manager Review:	Date	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

The State of the	Charles Char	Company: Golder Associates Repor	Report To: Jeffrey Ingram	Report To: Jeffrey Ingram		a	Attention:							10			
The Control of Contr				Idmann/Eric Schne	ider		отрапу Name				REGULATO	DRY AGEN	ζ				
See Cabe Cab	Fire GS67244833 Project Name Purplace Codes Purpl	Ballwin, MO 63021				1	ddress:				NPDES	+	OUND WAT	TE VE	DRINKING	WATER	
School	Fate CSG-724-9323 Proper Name: Anneare Labadia Energy Center Page Proper Name: Anneare Lab		nase Order No :			<u>α</u>	ace Quote eference;				TSU	/	RA	\	OTHER		
Statute	Standard	Fax: 636-724-9323	ct Name: Am	eren Labadie Ener	gy Center	u ≥		amie Church			Site Locati						
Sample Discourage Wash Burn Coees Wash Burn Burn Burn Burn Burn Burn Burn Burn	SAMPLE ID COLLECTED Sample Dr. Martin Codes Collection Dr. Martin Codes Codes Codes Codes Codes Codes Code	Standard	ct Number. 153	3-1406-01.0001B ((30C #2)			1285			STAI		2				
SAMPLE ID Supplementation SAMPLE ID Supplementation SAMPLE ID Supplementation SAMPLE ID Supplementation	SAMPLE ID Sample Do MUSTER VONE WAR WAR COMES THE THE PARTIES CONTINUE AND THE THE THE PARTIES OF THE THE THE THE PARTIES OF THE								-	Requested	Analysis Fil	tered (Y/N					
SAMPLE ID	SAMPLE ID Sample Da Mist BE UNIQUE Concount Sample Da Mist BE UNIQUE Concount Con	Valid Matrix Co.	to left)	COLL	ECTED		ď.	reservatives		z	_						
Sample 19	Sample BID Sample Da Mistre E Linguis Sample Da Mistre Da	DANICKA WATER DV WATER WAT WASEE WATER WW PRODUCT P SOILSOLD P		COMPOSITE	COMPOSITE		G			ejsìlu <i>8\</i>	9		(N/Y)		·	77	
L - LM w - 25	L-LMW-15	Š		_	-	SAMPLE TEMP AT CO	Unpreserved H ₂ SO ₄	Nª ^S S ^S O ³ NªOH HCI	Other Vanalysis Test	Chloride/Fluoride TDS			Residual Chlorine	Pace F) S (/Lab I.D.	
L - LM W - Es WT 6 4/54/19 15.55 5 2 1	L-LMW-255 WT 6 9/1/9 14.55 52 1	1- mm-1	-		-		0			(X	N. W.	327	(4)	3031	(3)	100	
1 - LM \(\mu \cdot \)	1 - LM w - LS wr 6 S/1/9 u S S c c	5-mm-	-							X	123	100	150			700	
L - BM w - 15	L-5MW-15 WT G	LMW-5	-		61	50	2 5			\ \	1					003	
L - LMW - Du P - 1	12 - 12 M W - 25 M W = SIL19 10 50 \$ 22 1 M M G W G W G W G W G W G W G W G W G W	BAW-1	-		11 61	8	2			×						1-100	
ADDITIONAL COMMENTS ADDITIONA	1 - 1 M W - DuP - i WT G	BMW-			~	50				×						200	
WT 6	WT G	LAW-DUP	-		H8/19 -	[> ×		>	7	_		-	
ADDITIONAL COMMENTS WT G WT	ADDITIONAL COMMENTS ADDITIONA		_												N	T	(TRA
WT G	WT 6		-														SAMPIE
ADDITIONAL COMMENTS ADDITIONA	ADDITIONAL COMMENTS ADDITIONAL COMMENTS RELINGUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION ACCEPTED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION ACCEPTED BY ACCEPTED BY AFFILLATION ACCEPTE		_														
ADDITIONAL COMMENTS RELINGUISHED BY AFFILIATION ADDITIONAL COMMENTS RELINGUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS OF the SSC. M. C.	ADDITIONAL COMMENTS RELINGUISHED BY AFFILIATION O (0,1) Sample these Realities O (0,1) Sample these Realities O (1) Sample																
DITIONAL COMMENTS RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS ALP (S) MUTA(S)	DITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION CALLED BY AFFILIATION CALLE		_						1								
DITIONAL COMMENTS RELINQUISIPED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS THE MACHE COMMENT SHAPE CONDITIONS SAMPLE CONDITIONS ALP (S) MUTAL(S)	DITIONAL COMMENTS RELINQUISHED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION ACCEPTED BY		_														
Market Sayli Melles Ship 1800 LM D. 5121A 312 7 7 7 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Sant 1: 18 160 14 160 14 160 14 160 14 160 14 160 14 160 14 160 140 140 140 140 140 140 140 140 140 14	ADDITIONAL COMMENTS	RELINGU	IISHED BY I AFFILIATI	t n	DATE	TIME	ACC	EPTED BY !	AFFILIATION	DATE			SAMPL	E CONDITIO	S	
sandlethuse Paunius O V	sanplethuse Burneys O V	# * # B	W. W.	14/160h	30	-	1800	A. A.	3	1	57211			X	7	1	
Metals>	Mcta(S)	Langle these Paranci	SC	7													
, J. ()																	
													17		14	to	
					PRINT Name of	SAMPLER:	イカ	18 May	Win !	1			amp ir	eviece (Y) ec	otsuc Dele N/Y)	(N/N)	
of SAMPLER: Coelvey	SIGNATURE of SAMPLER: M. (MM/DD/DYY): SIGNATURE OF SAMPLER: M. (MM/DD/					SAMPLER	11/1/1	The state of the s		DATE Signed	1/1	6/1	— 9Т			วรเ	

Sample Condition Upon Receipt

Client Name: Colds Assa		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX D ECI D	Pace ☐ Xroads☐ Client ☐ Other ☐
Tracking #:	Pace Shipping Label U	Olicit D Other L
Custody Seal on Cooler/Box Present: Yes No I	□ Seals intact: Ye	
Packing Material: Bubble Wrap ☐ Bubble B		
Thermometer Used: 7700 Ty	pe of Ice: (Wet) Blue	None
Cooler Temperature (°C): As-read O. 4 Corr.	Factor +0 4 Com	Date and initials of person
Temperature should be above freezing to 6°C	70-1 Com	examining contents: 5-10
Chain of Custody present:	Yes DNo DN	/A
Chain of Custody relinquished:	Yes ONO ON	
Samples arrived within holding time:	Yes 🗆 No 🗆 N/	
Short Hold Time analyses (<72hr):	□Yes No □N/	
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	YOYes ONO ON/A	
Pace containers used:	Yes ONO ONIA	
Containers intact:	Xyes ONO ON/A	THE SIE & COC TO! THE
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □NA	SCHOF SQIMPLES
Filtered volume received for dissolved tests?	□Yes □No □NIA	
Sample labels match COC: Date / time / ID / analyses	Yes DNo DN/A	
Samples contain multiple phases? Matrix: WT	□Yes No □N/A	
ontainers requiring pH preservation in compliance?	Yes ONO ON/A	List sample IDs
TINO3 H2SO4, HCI<2; NaOH>9 Sulfide NaOH>10 Overida	Jess Live Livia	List sample IDs, volumes, lot #'s of preservative and the date/time added.
yanide water sample checks:		
ead acetate strip turns dark? (Record only)	□Yes □No	
otassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
rip Blank present:	□Yes □No N/A	
eadspace in VOA vials (>6mm):	□Yės □No NN/A	
amples from USDA Regulated Area: State:	□Yes □No ☑N/A	
ditional labels attached to 5035A / TX1005 vials in the field	do Ev. Ev. Ev.	
ent Notification/ Resolution: Copy COC	to Client? Y N	5.110
rson Contacted: Date/	Time:	Field Data Required? Y / N
nmments/ Resolution	THIO.	_
21		
oject Manager Review: Janui Chush		5/13/19
	Date	

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Pace Project No / Lab I.D. (N/A) DRINKING WATER SAMPLE CONDITIONS OTHER (N/A) Custody Sealed Cooler Received on lce (V/V) GROUND WATER Page: 8 Residual Chlorine (Y/N) O° ni qmeT REGULATORY AGENCY 9 25011015 RCRA TIME Requested Analysis Filtered (Y/N) C STATE Site Location NPDES DATE 104 UST otal Phosphorus z DATE Signed (MM/DD/YY): z Alkalinity ACCEPTED BY / AFFILIATION 1531 z SQT Shloride/Fluoride/Sulfate z Netals* Z taeT sisylsnA 1 ¶N/λ 8 Ofher Methanol Jamie Church Andrew Ad. Preservatives Na₂S₂O₃ NaOH Reterence:
Pace Project Jamie Manager:
Pace Profile #: 9285 HCI invoice Information HNO3 Company Name [†]OS²H 1738 Section C TIME Address: Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Ĺ SAMPLE TEMP AT COLLECTION DATE 5521 TIME COMPOSITE END/GRAB roject Name: Ameren Labadie Energy Center DATE Project Number: 153-1406-01.0001B (COC#2) COLLECTED Dopy To: Ryan Feldmann/Eric Schneider RELINQUISHED BY / AFFILIATION TIME COMPOSITE DATE Required Project Information: Report To: Jeffrey Ingram WT G WT G G O g O O O G U g (G=GRAB C=COMP) **BAYT BJAMA**8 urchase Order No.: ₩ TW M⊤ ____M W W W (see valid codes to left) MATRIX CODE × W W Valid Matrix Codes
MATRIX CODE
DIVENTED TO THE
PROSTE WITH
PROSTEN THE
SOLUSOLID OLI
OLI
OLI
TIS
TIS 13515 Barrett Parkway Drive, Ste 260 Fax: 636-724-9323 jeffrey ingram@golder.com ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE not only fact Mota 15: 3 SAMPLE ID Ballwin, MO 63021 Golder Associates Section D Required Clent Information Section A Required Client Information: hone: 636-724-9191 Requested Due Date/TAT: 유 Ξ ĸ 9 0 42 8 6 7 6

Sample Condition Upon Receipt

Tracking #: Pac Custody Seal on Cooler/Box Present: Yes No □ Packing Material: Bubble Wrap □ Bubble Bags □	Foam G	ed? Yes \(\text{No} \(\text{No} \) \\ \text{None} \(\text{Other} \) \\ \text{Ione} \\ \text{Date and initials of person} \(\text{Person} \)
Custody Seal on Cooler/Box Present: Yes ✓ No ☐ Packing Material: Bubble Wrap ☐ Bubble Bags ☐	Seals intact: Yes Foam ☐ Fice: Wet Blue N	No Date and initials of person
Packing Material: Bubble Wrap □ Bubble Bags □	Foam G	None ☐ Other ☐ Ione Date and initials of person
	fice: Wet Blue N	one Date and initials of person
Thermometer Used: Type of	•	Date and initials of person
The monder of the state of the	or <u>-1.0</u> Corre	Date and initials of person
Cooler Temperature (°C): As-read <u>1.5</u> Corr. Fact		cted o.5 examining contents: 5 19119
Temperature should be above freezing to 6°C		Same
Chain of Custody present:	ØYes □No □N//	1000
Chain of Custody relinquished:	ØYes □No □N/A	1/2
Samples arrived within holding time:	✓Yes □No □N/	
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A	A .
Rush Turn Around Time requested:	□Yes ZÎNo □N/A	A .
Sufficient volume:	ZYes □No □N/A	
Correct containers used:	Yes No N/	
Pace containers used:	Yes □No □N/A	A
Containers intact:	✓Yes □No □N/	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ØN/	A
Filtered volume received for dissolved tests?	□Yes □No ØN/A	Exmple 2-2 my- 85 doesn't
Sample labels match COC: Date / time / ID / analyses	Pres No ON/	hera labals on Them.
Samples contain multiple phases? Matrix:	□Yes No □N/	A
Containers requiring pH preservation in compliance?	Yes No N/	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		reale/ame added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □Ni/	
Headspace in VOA vials (>6mm):	□Yes □No □N//	
Samples from USDA Regulated Area: State	□Yes □No □N//	
Additional labels attached to 5035A / TX1005 vials in the field		
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
, , , , , , , , , , , , , , , , , , , ,		5/6/19
Project Manager Review: Janu Churh ——	D:	ate:

CHAIN-OF-CUSTODY / Analytical Request Document The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

		Hequired Project Information:	ormation:			Invoic	Invoice Information:	ä						Page:	1	5	Y
Сотрапу:	Golder Associates	Report To: Jeffrey Ingram	Ingram			Attention:	on:										
Address:	13515 Barrett Parkway Drive, Ste 260 Copy To: Ryan Feldmann/Eric	Copy To: Ryan F	eldmann/Eric	c Schneider		Comp	Company Name:				2	GULATO	REGULATORY AGENCY	k	6		
	Ballwin, MO 63021					Address:	.; <u>;</u>					NPDES		GROUND WATE	A.	DRINKING WATER	WATER
Email To:	jeffrey ingram@golder.com	Purchase Order No.:				Pace Quote Reference:	uote ce:					UST	RCRA	4		OTHER	
	Phone: 636-724-9191 Fax: 636-724-9329	Project Name: Ameren Labadi	neren Labad	ie Energy Center	ınter	Pace Project Manager:		Jamie Church			S	Site Location					
ested	Requested Due Date/TAT: Standard	Project Number: 153-1406-01.00	3-1406-01.0	001B (COC #2)	#2)	-ace F	Pace Profile #: 9285	85				STATE:		MC			
										Reque	sted Ans	lysis Filb	Requested Analysis Filtered (Y/N)				V.
ŭ č		odes CODE (1)		COLLECTED	Q		Pre	Preservatives	⊉ N/A	z	z					П	ı
	DANACAS WATER WASTE WATER WASTE WATER FRODUCT SOIL/SOLID OIL	WYT WWY F P WW O. 의 마이네 codes	COMPOSITE		COMPOSITE				1	e/Sulfate	SI			(N/X) 6		8	5
	Sample IDs MUST BE UNIQUE	∰ Æ ₽ ₩ e) BOD XIATAM ED) BYYTE (E)	DATE	HAF	H.	SAMPLE TEMP AT C	HNO3 H ₂ SO4 Unpreserved	HCI Na ₂ S ₂ O ₃ Methanol	Other Tesi Tesi	Metals* Chloride/Fluorid	rDS Alkalinity Total Phosphoru			Residual Chlorine	Sac	Pace Project No. Lab.	Pace Project No/ Lab I.D.
†-	1-1mm-35	MT TW	-	10	19/	m	-				_						
2	1-1mm - 85		_		1405	-	-			×							
9	1-87-WM-2		_	7	- 1035	1	1			*							
4		WT	-														
S		WT G	-														
9		WT G	-						1								
7		WT G															
8											1						
6 ;		D W							1								
2 ;				-						-							
12								5		-							
1	ADDITIONAL COMMENTS	RELINO	RELINQUISHED BY / AF	FFILATION	DATE		TIME	/Acce	ACCEPTEDRY	PETILIATION	NQ	DATE	TIME		SAMPL	SAMPLE CONDITIONS	SNS
200	ERA 2007 B. Ca. Fr. Mo. Mr. X. Mo.	900	11	1/10/1	5/1/19		5201	Jan	1	3	ME	5/3/19	500/				
1	For the Following Metals only	The State of the s	B	-/MC	E 5/8/	6/ 8	200										
-	-	_															
			-	SAMPLER NA	AMPLER NAME AND SIGNATURE	TURE								о.		19 0	iseli
				PRINT	PRINT Name of SAMPLER:	15	Eriks	Sohnord	1					uj di	bevie	stod (N/V)	il sel (N/Y)
			1,							DATE Signed	paus	1 1		шө		gļe) dw

MEMORANDUM

DATE August 16, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCPB – NATURE AND EXTENT - DATA PACKAGE 60301568

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

■ When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Project	Name: Golds Associates Name: Amesen - Labadie - LCPB - 1 T Goodwin	U4E	Projec	t Numb	ger:
Analytic Matrix: Sample	Dry:		4s, L-Lnu	·-55, l	
	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	$\overline{\mathbf{A}}$			4/30-5/8/19
b) =	Sampling team indicated?				
c)	Sample location noted?				
d)	Sample depth indicated (Soils)?				
e)	Sample type indicated (grab/composite)?				
f)	Field QC noted?				
g)	Field parameters collected (note types)?				
h)	Field Calibration within control limits?				
i)	Notations of unacceptable field conditions/performa	nces fr	om field log	s or fie	d notes?
·	·				
j)	Does the laboratory narrative indicate deficiencies? Note Deficiencies:				
Chain-c	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?				
b)	Was the COC signed by both field and laboratory personnel?				
c)	Were samples received in good condition?				
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?				
b)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?				
d)	Was the correct method used?				
e)	Were appropriate reporting limits achieved?				
f)	Were any sample dilutions noted?				
g)	Were any matrix problems noted?		/		7

Revised May 2004 Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?				
b)	Were analytes detected in the field blank(s)?				
c)	Were analytes detected in the equipment blank(s)?				
d)	Were analytes detected in the trip blank(s)?				
abora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?				
b)	Were the proper analytes included in the LCS?				
c)	Was the LCS accuracy criteria met?				
uplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and de	uplicate s	ample r	names)?	L-LMW-25 @ DUP
					FB-1 @ L-LM35
b)	Were field dup. precision criteria met (note RPD)?				See Notes
c)	Were lab duplicates analyzed (note original and du	plicate sa	amples)	?	
		DO			
d)	Were lab dup. precision criteria met (note RPD)?			2	
lind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,				
	analytes included and concentrations)?				
b)	Was the %D within control limits?				
latrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)					
·	Recovery could not be calculated since sample contained high concentration of analyte?			_ _	
b)	Was MSD accuracy criteria met?				
,	Recovery could not be calculated since sample contained high concentration of analyte?			_	
c)	Were MS/MSD precision criteria met?				
	ents/Notes: Field Duplicak RCD: 8.9% (linit 2	0%)			

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None		-		
	,			

Signature: Jomy Mood /	Date: 8/16/19	8

August 15, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between May 02, 2019 and May 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0

Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60301804001	L-TMW-1	Water	05/02/19 13:55	05/04/19 04:35
60301804002	L-TMW-2	Water	05/02/19 12:10	05/04/19 04:35
60301804003	L-UWL-DUP-1	Water	05/02/19 12:10	05/04/19 04:35
60302536001	L-TMW-3	Water	05/08/19 12:00	05/10/19 03:45
60302536002	L-MW-26	Water	05/08/19 10:50	05/10/19 03:45
60302536003	L-UWL-FB-1	Water	05/08/19 10:55	05/10/19 03:45
60301568004	L-BMW-1S	Water	05/01/19 11:35	05/02/19 04:13
60301568005	L-BMW-2S	Water	05/01/19 10:50	05/02/19 04:13

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60301804001	L-TMW-1	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301804002	L-TMW-2	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301804003	L-UWL-DUP-1	EPA 200.7	HKC	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60302536001	L-TMW-3	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60302536002	L-MW-26	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60302536003	L-UWL-FB-1	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568004	L-BMW-1S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K
60301568005	L-BMW-2S	EPA 200.7	EMR	3	PASI-K
		EPA 200.8	JGP	1	PASI-K

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-TMW-1	Lab ID:	Lab ID: 60301804001		Collected: 05/02/19 13:55		Received: 05/	Received: 05/04/19 04:35 M		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	360	ug/L	5.0	1.4	1	05/15/19 08:55	05/16/19 11:43	7440-39-3	
Lithium	43.3	ug/L	10.0	5.9	1	05/15/19 08:55	05/16/19 11:43	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/15/19 08:55	05/16/19 11:43	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.6	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:20	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-TMW-2	Lab ID:	60301804002	Collecte	d: 05/02/19	12:10	Received: 05/	/04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	194	ug/L	5.0	1.4	1	05/15/19 08:55	05/15/19 17:38	7440-39-3	
Lithium	45.2	ug/L	10.0	5.9	1	05/15/19 08:55	05/15/19 17:38	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/15/19 08:55	05/15/19 17:38	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.1	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:25	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-UWL-DUP-1	Lab ID:	60301804003	Collecte	d: 05/02/19	12:10	Received: 05/	/04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	195	ug/L	5.0	1.4	1	05/15/19 08:55	05/15/19 17:40	7440-39-3	
Lithium	44.0	ug/L	10.0	5.9	1	05/15/19 08:55	05/15/19 17:40	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/15/19 08:55	05/15/19 17:40	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.0	ug/L	1.0	0.065	1	05/14/19 17:45	05/16/19 14:27	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-TMW-3	Lab ID: 60302536001		Collecte	Collected: 05/08/19 12:00		Received: 05/10/19 03:45 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	386	ug/L	5.0	1.4	1	05/20/19 14:55	05/21/19 12:09	7440-39-3	
Lithium	41.2	ug/L	10.0	5.9	1	05/20/19 14:55	05/21/19 12:09	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/20/19 14:55	05/21/19 12:09	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.5	ug/L	1.0	0.065	1	05/20/19 10:53	05/22/19 11:07	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-MW-26	Lab ID:	Lab ID: 60302536002		Collected: 05/08/19 10:50		Received: 05/	Received: 05/10/19 03:45 M		
Parameters	Results	Units	PQL .	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	210	ug/L	5.0	1.4	1	05/20/19 14:55	05/21/19 12:11	7440-39-3	
Lithium	37.0	ug/L	10.0	5.9	1	05/20/19 14:55	05/21/19 12:11	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/20/19 14:55	05/21/19 12:11	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	1.0	ug/L	1.0	0.065	1	05/20/19 10:53	05/22/19 11:13	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

Sample: L-UWL-FB-1	Lab ID: 60302536003		Collecte	Collected: 05/08/19 10:55		Received: 05/	Received: 05/10/19 03:45 Ma		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	208	ug/L	5.0	1.4	1	05/20/19 14:55	05/21/19 12:14	7440-39-3	
Lithium	35.0	ug/L	10.0	5.9	1	05/20/19 14:55	05/21/19 12:14	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/20/19 14:55	05/21/19 12:14	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.99J	ua/L	1.0	0.065	1	05/20/19 10:53	05/22/19 11:15	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-BMW-1S	Lab ID:	Lab ID: 60301568004		Collected: 05/01/19 11:35		Received: 05/	02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	288	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:54	7440-39-3	
Lithium	17.6	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:54	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:54	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	35.1	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:44	7440-38-2	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-BMW-2S	Lab ID: 60301568005		Collecte	Collected: 05/01/19 10:50		Received: 05/02/19 04:13 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	266	ug/L	5.0	1.4	1	05/10/19 15:30	05/13/19 12:57	7440-39-3	
Lithium	20.2	ug/L	10.0	5.9	1	05/10/19 15:30	05/13/19 12:57	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/10/19 15:30	05/13/19 12:57	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	0.52J	ug/L	1.0	0.065	1	05/14/19 15:30	05/15/19 13:46	7440-38-2	

EPA 200.7

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 583885 Analysis Method:

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301568004, 60301568005

METHOD BLANK: 2395795 Matrix: Water

Associated Lab Samples: 60301568004, 60301568005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/13/19 12:26	
Lithium	ug/L	<5.9	10.0	5.9	05/13/19 12:26	
Molybdenum	ug/L	<2.6	20.0	2.6	05/13/19 12:26	

LABORATORY CONTROL SAMPLE:	2395796					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	972	97	85-115	
Lithium	ug/L	1000	973	97	85-115	
Molybdenum	ua/l	1000	948	95	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2395797					2395798							
			MS	MSD								
		60301568001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	114	1000	1000	1090	1090	98	98	70-130	0	20	
Lithium	ug/L	26.4	1000	1000	1050	1050	102	102	70-130	0	20	
Molybdenum	ug/L	4.7J	1000	1000	956	964	95	96	70-130	1	20	

MATRIX SPIKE SAMPLE:	2395799						
Parameter	Units	60301646001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	23.5	1000	966	94	70-130	_
Lithium	ug/L	16.1	1000	1030	101	70-130	
Molybdenum	ug/L	22.6	1000	945	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 584623 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60301804001, 60301804002, 60301804003

METHOD BLANK: 2398909 Matrix: Water

Associated Lab Samples: 60301804001, 60301804002, 60301804003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/16/19 11:33	
Lithium	ug/L	<5.9	10.0	5.9	05/16/19 11:33	
Molybdenum	ug/L	<2.6	20.0	2.6	05/16/19 11:33	

LABORATORY CONTROL SAMPLE:	2398910					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	980	98	85-115	
Lithium	ug/L	1000	1010	101	85-115	
Molybdenum	ug/L	1000	916	92	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2398	911		2398912							
			MS	MSD								
	6	0301804001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	360	1000	1000	1370	1360	101	100	70-130	1	20	
Lithium	ug/L	43.3	1000	1000	1070	1060	102	101	70-130	1	20	
Molybdenum	ug/L	<2.6	1000	1000	935	932	94	93	70-130	0	20	

MATRIX SPIKE SAMPLE:	2398913						
Parameter	Units	60301923002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	45.3	1000	986	94	70-130	_
Lithium	ug/L	ND	1000	972	97	70-130	
Molybdenum	ug/L	ND	1000	893	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 585659 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60302536001, 60302536002, 60302536003

METHOD BLANK: 2403215 Matrix: Water

Associated Lab Samples: 60302536001, 60302536002, 60302536003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/21/19 12:05	
Lithium	ug/L	<5.9	10.0	5.9	05/21/19 12:05	
Molybdenum	ug/L	<2.6	20.0	2.6	05/21/19 12:05	

LABORATORY CONTROL SAMPLE:	2403216					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	1030	103	85-115	
Lithium	ug/L	1000	1050	105	85-115	
Molybdenum	ug/L	1000	931	93	85-115	

MATRIX SPIKE & MATRIX SP		2403218										
			MS	MSD								
	6	0302656002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	20.8	1000	1000	1040	1050	102	103	70-130	1	20	
Lithium	ug/L	48.7	1000	1000	1100	1110	105	106	70-130	1	20	
Molybdenum	ug/L	ND	1000	1000	906	904	90	90	70-130	0	20	

MATRIX SPIKE SAMPLE:	2403219						
Parameter	Units	60302658002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Barium	ug/L	186	1000	1210	103	70-130	
Lithium	ug/L	15.3	1000	1060	104	70-130	
Molybdenum	ug/L	ND	1000	902	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 584464 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301568004, 60301568005

METHOD BLANK: 2398379 Matrix: Water

Associated Lab Samples: 60301568004, 60301568005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 05/15/19 13:18

LABORATORY CONTROL SAMPLE: 2398380

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 39.7 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398381 2398382

MS MSD MSD 60301568001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 101 70-130 20 Arsenic ug/L 19.0 40 40 59.6 60.2 103

 MATRIX SPIKE SAMPLE:
 2398383
 60301622003
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Arsenic ug/L 1.2 40 41.3 100 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 584536 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60301804001, 60301804002, 60301804003

METHOD BLANK: 2398606 Matrix: Water

Associated Lab Samples: 60301804001, 60301804002, 60301804003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 05/16/19 14:13

LABORATORY CONTROL SAMPLE: 2398607

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 39.7 99 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398608 2398609

MS MSD MSD 60301804001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 70-130 2 20 Arsenic ug/L 1.6 40 40 41.3 40.4 99 97

 MATRIX SPIKE SAMPLE:
 2398610

 60302480001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Arsenic ug/L 1.6 40 41.6 100 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

QC Batch: 585573 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60302536001, 60302536002, 60302536003

METHOD BLANK: 2402959 Matrix: Water

Associated Lab Samples: 60302536001, 60302536002, 60302536003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 05/22/19 10:51

LABORATORY CONTROL SAMPLE: 2402960

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 37.1 93 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2402961 2402962

MS MSD MSD 60302498001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual ND 87 20 Arsenic ug/L 40 40 35.6 35.7 88 70-130 0

 MATRIX SPIKE SAMPLE:
 2402963
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Arsenic ug/L 0.24J 40 36.7 91 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 08/15/2019 01:02 PM

PASI-K Pace Analytical Services - Kansas City

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Date: 08/15/2019 01:02 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60301568004	L-BMW-1S	EPA 200.7	583885	EPA 200.7	584051
60301568005	L-BMW-2S	EPA 200.7	583885	EPA 200.7	584051
60301804001	L-TMW-1	EPA 200.7	584623	EPA 200.7	584665
60301804002	L-TMW-2	EPA 200.7	584623	EPA 200.7	584665
60301804003	L-UWL-DUP-1	EPA 200.7	584623	EPA 200.7	584665
60302536001	L-TMW-3	EPA 200.7	585659	EPA 200.7	585727
60302536002	L-MW-26	EPA 200.7	585659	EPA 200.7	585727
0302536003	L-UWL-FB-1	EPA 200.7	585659	EPA 200.7	585727
60301568004	L-BMW-1S	EPA 200.8	584464	EPA 200.8	584518
0301568005	L-BMW-2S	EPA 200.8	584464	EPA 200.8	584518
60301804001	L-TMW-1	EPA 200.8	584536	EPA 200.8	584573
60301804002	L-TMW-2	EPA 200.8	584536	EPA 200.8	584573
60301804003	L-UWL-DUP-1	EPA 200.8	584536	EPA 200.8	584573
60302536001	L-TMW-3	EPA 200.8	585573	EPA 200.8	585611
60302536002	L-MW-26	EPA 200.8	585573	EPA 200.8	585611
60302536003	L-UWL-FB-1	EPA 200.8	585573	EPA 200.8	585611

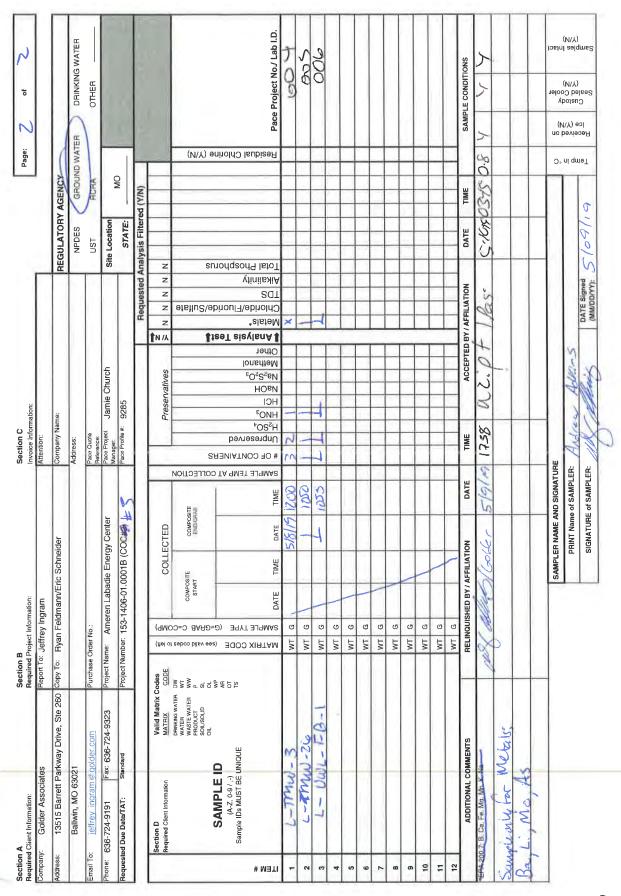
Sample Condition Upon Receipt

Client Name: Golder		
,	PEX 🗆 ECI 🗅	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	e Shipping Label Use	d? Yes □ No Ø
Custody Seal on Cooler/Box Present: Yes Ø No □	Seals intact: Yes	
Packing Material: Bubble Wrap Bubble Bags	2	None ☐ Other ☐
	Ice: Wet Blue No	ne
Cooler Temperature (°C): As-read 2.2 Corr. Fact		Date and initials of person
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes No N/A	L-TMW-1 Samples ave
Chain of Custody relinquished:	Dires ONO ON/A	the same samples for both
Samples arrived within holding time:	☑Yes □No □N/A	chains / AISO 1-Tmw-2/Di
		Credit Styles Common 2/10
Short Hold Time analyses (<72hr):	□Yes □N/A	
Rush Turn Around Time requested:	□Yes ØNo □N/A	
Sufficient volume:	☑Yes □No □N/A	
Correct containers used:	☐Yes ☐No ☐N/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	✓Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	ØYes □No □N/A	
Samples contain multiple phases? Matrix:	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance?	Yes ONO ON/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	-	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ØN/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
Samples from USDA Regulated Area: State:	□Yes □No ØN/A	
Additional labels attached to 5035A / TX1005 vials in the field?	,	
Client Notification/ Resolution: Copy COC to	-	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
		FICHO
Project Manager Poriory	D-1	5/6/19
Project Manager Review:	Dat	C. C

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

mpany: Golder Associates	Report To: Jeffrey Ingram	y Ingram				Attention:	Invoice Information: Attention:				Г						
13515 Barrett Parkway Drive, Ste 260	Сору То:	Ryan Feldmann/Eric Schneider	iric Schnei	der		Company Name:	Name:				1 20	GULATO	REGULATORY AGENCY	ζ.			
Ballwin, MO 63021						Address:					-	NPDES	9	GROUND WATER	Æ	DRINKIN	DRINKING WATER
jeffrey_ingram@golder.com	Purchase Order No.:					Pace Quote					T	UST		RCRA	١	OTHER	
636-724-9191 Fax: 636-724-9323	Project Name:	Ameren Labadie Energy Center	adie Energ	y Center		Pace Project	1	Jamie Church			l s	Site Location	- Luc				
quested Due Date/TAT: Standard	Project Number: 153-1406-01.0001	153-1406-01	.0001C (C	C (COC #3)		Pace Profile #:	#: 9285				Ī	STATE:	نن	MO	1		
									_	Reque	sted An	Mysis FIR	Requested Analysis Filtered (Y/N)	0			-
Section D Valid Matrix Codes Required Client Information MATRIX COD	code	(AMO	COLLECTED	СТЕР			Prese	Preservatives	↑ N /A	z	z						
MATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL	seboo blisv ee		COMPOSITE	COMPOSITE		5			1	eySulfate	S			(N/A)		7	7
SAMPLE ID (A-Z 0-9/-) Sample IDs MUST BE UNIQUE	A A B P P P P P P P P P P P P P P P P P	SAMPLE TYPE (G=	Ä	HAC	E TEMP AT C	# OF CONTAINERS	HCI HNO ³ H ⁵ 20 [¢]	HOaV Aa ₂ S ₂ O ₃ Nethanol	Jehrer JeaT sisylsnA J	Aetals* Chloride/Fluoride	'DS Vikalinity Otal Phosphoru			eninoldO (subiseF		Sectional Company	Pare Project No. 24 In
-TMW-1	TW				to.	9 6						A	119 12				
-7MG-2	TW	ŋ		Ī	1210	7.7	-			1	9	i	1	CCC			
- UML-DUP-1	WT	o o		4	1	1	-			×	-			4	1000	1 1	2021 202
	TW	9														,	1
	TW	9															
	TW	5				W,W											
	TW	5															
	TW	ŋ															
	TW	g															
	TW	g	-		1				T					1			
	TW TW	0 0	-		T		+	-	T								
ADDITIONAL COMMENTS	RELIN	RELINQUISHED BY / AFFIJ	/ AFFILIATION	2	DATE	TIME	-	MECE	ССЕРТЕВ ВІ	ASPILIATION	NO	DATE	TIME	-	SAMP	SAMPLE CONDITIONS	ONS
Do So My Mr. R. Wa	hill	1-1	166	1	5/3/19	5201	1	100	1	3		(13/1	2016	1			
sis for the following melals	Nai	11/1	NPA	(ES	13/19	1700	7	SA	5	a		Lidin	8	25 2.2	1	×	7
Ba, Li, Mo, AS	1	D	_		1 11		>							4			
			SAMPLER	PLER NAME AND SIGNATURE	SIGNATU		_							0.		pler	laci
			E E	PRINT Name of SAMPLER:	SAMPLER	4	Shreid	bid.						uį du	bevie N/Y)	islody d Cod Y/N)	nl səl Y/V)
						1	11			DATE Signed	peu		1	шә		Cu ale) dш

Sample Condition Upon Receipt



Client Name: Colder HSSoc		
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: P	ace Shipping Label Use	d? Yes□ No 1
Custody Seal on Cooler/Box Present: Yes 🗷 No 🗆	Seals intact: Yes	S. No □
Packing Material: Bubble Wrap ☐ Bubble Bags	Foam 🗆	None □ Other □ ZP/C
Thermometer Used: Type	of Ice: (Wet) Blue No	ne
Cooler Temperature (°C): As-read <u>OY</u> Corr. Fa	ctor 40-4 Correc	ted 0.8 Date and initials of person examining contents: 5-10-19
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	Yes □No □N/A	
Samples arrived within holding time:	Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	Yes □No □N/A	
Correct containers used	Yayes □No □N/A	
Pace containers used	Yes No N/A	There are 2 COC for the
Containers intact:	Xyes □No □N/A	some set of Samples
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No JN/A	1
Filtered volume received for dissolved tests?	□Yes □No ♠N/A	
Sample labels match COC: Date / time / ID / analyses	Yes 🗆 No 🗆 N/A	
Samples contain multiple phases? Matrix:	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	2	date/time added.
(Exceptions: VOA Micro O&G KS TPH OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	∐Yes ∐No KN/A	
Headspace in VOA vials (>6mm):	□Yes □No 1N/A	18
Samples from USDA Regulated Area: State:	□Yes □No ■N/A	
Additional labels attached to 5035A / TX1005 vials in the fie	Id? □Yes □No □NA	
Client Notification/ Resolution: Copy COC	to Client? Y N	Field Data Required? Y / N
Person Contacted: Date	e/Time:	
Comments/ Resolution		
		5/10/19
Jana Churk		
Project Manager Review	Date	a.

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Sample Condition Upon Receipt

Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace Xroads Client Other
Tracking #: P	ace Shipping Label Use	d? Yes 🗆 No 🗗
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	I No□
Packing Material: Bubble Wrap □ Bubble Bags	s	None ☐ Other ☐
Thermometer Used: 7-29k Type	of Ice: Wet Blue No	ne Standistille for
Cooler Temperature (°C): As-read 30, 3,2 Corr. Fa	ictor_1.0 Correc	ted 2.0, 2.2 Date and initials of person examining contents: 5/2/19
Temperature should be above freezing to 6°C		,
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	✓Yes □No □N/A	
Samples arrived within holding time:	√Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ØNo □N/A	
Rush Turn Around Time requested:	□Yes ☑No □N/A	
Sufficient volume:	ØYes □No □N/A	
Correct containers used:	Yes ONo ON/A	
Pace containers used:	Yes No N/A	
Containers intact:	ZYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No ØN/A	
Sample labels match COC: Date / time / ID / analyses	Yes No ON/A	Sant extra samples. 2-2my-215
Samples contain multiple phases? Matrix:	Yes No ON/A	time + data 51,119@ 1600(BP24, BR3
Containers requiring pH preservation in compliance?	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH. OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	BR311)
Headspace in VOA vials (>6mm)	□Yes □No ☑N/A	
Samples from USDA Regulated Area: State:	□Yes □No ØN/A	
Additional labels attached to 5035A / TX1005 vials in the fie	eld? □Yes □No ☑N/A	
	C to Client? Y N	Field Data Required? Y / N
	e/Time:	
Comments/ Resolution. Per Eric, analyze extra sample	L-LMW-4S for all parar	meters.
		5/4/19
Project Manager Review:	Date	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

DRINKING WA OTHER CAMPLE CONDITIONS SAMPLE CONDITIONS	636- Section	5 Barrett Parkway Drive, Ste 260		,	Report To: Jeffrey Ingram			Attention:										
Service District Contract of the Contract	636- Section Required		Copy To:	an Feldm	ann/Eric Sc	hneider		Сотрапу	Jame;				REGULATO	NRY AGEN	JC√			
	636- led Due Section	rin, MO 63021						Address:					NPDES	+	OUND WA	重	DRINKING V	WATER
SAMPLE ID		y ingram@golder.com	Purchase Order	No :				Pace Quote					UST	J.R.	RA	\	OTHER	
STATE	Section D		Project Name:	Ameren	ι Labadie Ε	nergy Cente.		Pace Projec		Church			Site Location					
NATE ELD WASTELL VAN DATE WA	Section D Required Cli		Project Number.	153-140	06-01.00011	B (COC #2)		Pace Profile	1				STATE	1	MO			
WALE D	Section D Required Cli										_	Requested A	inalysis Filt	N/N paret				
WPLE ID			code	(awc	S)LLECTED			Preserv	atives		z	z					
## WALE ID ### WAST BE UNIONE ##			DW WT WWW SL OL	DD=D BARD	COMPOSITE	COMPC					t		Si		(N/A)			
Wilder	Sample		AR OT TS					# OF CONTAINER	HCI HNO ³	₂ O ₂ S ₂ M Nethanol	t Analysis Test	TDS Alkalinity	Total Phosphoru		Residual Chlorine		Project No.	Lab I.D.
M \(\(\lambda \) - 2 \(\lambda \)	1	1 - 1	TW	-		5/1/19		20	3		×	Baba	14		(4)	BP3	N(3)	100
M W - 15 M W -	-7	2	TW	-		SIPSH			1		×	1300	1	1	150			700
MW - 15 M T C S/1/9 1 5 5 7 1 M T M T C		Mu-5	TW			51118	1405		1		X							003
W		- 1	TW	_		01/18	11 3		7		×							DOM!
WIT G	١.		TW	-		5/1/5	5		7		N							100
WT G WT G WT G WT C		Dup	TW	-		4/20/14	1		-		×	Ş	-	2	7			5
WT G WT G WT C			TW	-														中
WT G WT G WT G WT G WT G WT C			TW	-														
DITIONAL COMMENTS WT G WT G WT C			TW.	_														
DITIONAL COMMENTS RELINGUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION ACCEPTED BY ACCEPTED BY AFFILLATION ACCEPTED BY ACCEPTED BY AFFILLATION ACCE			TW	-							1							
DITIONAL COMMENTS RELINDUISHED BY AFFILIATION BETWEEN AFFILIATION BY A STATE TIME ACCEPTED BY AFFILIATION BY A STATE TO A STATE CONDITIONS SAMPLE CONDITIONS AND THE STATE TIME SAMPLE CONDITIONS AND THE SAMPLE CONDITIONS SAMPLE CONDITIONS SAMPLE NAME AND SIGNATURE SAMPLE NAME AND SIGNATURE			TW	_														
DITIONAL COMMENTS RELINQUISHED BY JAFFILLATION DATE TIME ACCEPTED BY JAFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY JAFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY JAFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY JAFFILLATION AC			TW	ŋ														
Marketing Bayl: Weller Slips 1800 AM De. 51219 0413 3:2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	q	DDITIONAL COMMENTS	REI	INQUISHE	ED BY / AFFIL	IATION	DATE	TIME		ACCEPT	ED BY I AFI	FILIATION	DATE		100	SAMP	LE CONDITION	S
Metals) SAMPLE NAME AND SIGNATURE	15.00		N. M.	B	1	260	5/1/5	1800	1	M	Bu	1	51216		di	X	7	1
Meth(S) SAMPLER NAME AND SIGNATURE			400	٦											V			
C C	1 the 50																	
					SAM	PLER NAME A	UND SIGNATU	- RE							3		101	ios
						SIGNATURE	RE of SAMPLER;	S. C.	1	1	0.5	DATE Signed	11/2	61	Tem	ece eol	uO elseS	lqms8

MEMORANDUM

DATE August 16, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – NATURE AND EXTENT - DATA PACKAGE 60301804

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

■ When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Project Review Laborat Analytic Matrix: Sample	ny Name: Gdds Name: American - Labordie - LCLI - N+E er: T Goodwin ory: Pace Anglical - KS cal Method (type and no.): EPA 200,7+200.6 (A Air Soil/Sed. Water Waste Names L-TMW-1, L-TMW-2, L-TMW-3,	 	Proje Valid SDG	ect Number dation Date	
	Please provide calculation in Comment areas or aformation	on the	NO	on the bac	k please indicate in comment areas). COMMENTS
a)	Sampling dates noted?	Ø			5/1-5/8/19
b)	Sampling team indicated?		П		
c)	Sample location noted?	<u> </u>	П		
d)	Sample depth indicated (Soils)?				
e)	Sample type indicated (grap/composite)?				3
f)	Field QC noted?				
g)	Field parameters collected (note types)?				
h)	Field Calibration within control limits?				
i)	Notations of unacceptable field conditions/performa	nces fro	om field le	ogs or field	notes?
			B		
j)	Does the laboratory narrative indicate deficiencies? Note Deficiencies:			P	
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?				-
b)	Was the COC signed by both field and laboratory personnel?				
c)	Were samples received in good condition?				
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?				
b)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?				
d)	Was the correct method used?				
e)	Were appropriate reporting limits achieved?				
f)	Were any sample dilutions noted?				
g)	Were any matrix problems noted?				¥-

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		Z		
b)	Were analytes detected in the field blank(s)?	Ø			See Notes
c)	Were analytes detected in the equipment blank(s)?				
d)	Were analytes detected in the trip blank(s)?				
abora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?				
b)	Were the proper analytes included in the LCS?				
c)	Was the LCS accuracy criteria met?	7			
uplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample r	names)?	DUP-1 e L-TMW-Z
					FB-1 @ L-MW-26
b)	Were field dup. precision criteria met (note RPD)?	V			Max Field Dive RPD: 9.5% (Limit 70%)
c)	Were lab duplicates analyzed (note original and dup	plicate s	samples)	?	
			$\overline{\mathcal{A}}$		
d)	Were lab dup. precision criteria met (note RPD)?			Ø	
lind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		1		
	analytes included and concentrations)?				
b)	Was the %D within control limits?				
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?				
	Recovery could not be calculated since sample contained high concentration of analyte?			⊿	
b)	Was MSD accuracy criteria met?				
·	Recovery could not be calculated since sample contained high concentration of analyte?				
c)	Were MS/MSD precision criteria met?				
c)		_			
F	ents/Notes: ct 200.8 1: ElA 200.7 Hefall were incorrect sample 103.	alls a	I he	refore no	t mlideted.
F	B	·l/s •	I he	refere no	t ralidated.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None				
	,			
3				

Signature: John John Date: 8/6/2019

October 15, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between May 10, 2019 and August 22, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455

Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60302527001	L-TP-1S	Water	05/08/19 17:20	05/10/19 03:25
60302527002	L-TP-1M	Water	05/08/19 16:50	05/10/19 03:25
60302527003	L-TP-1D	Water	05/08/19 15:50	05/10/19 03:25
60302527004	L-TP-3S	Water	05/09/19 10:30	05/10/19 03:25
60302527005	L-TP-3M	Water	05/09/19 10:25	05/10/19 03:25
60302527006	L-TP-3D	Water	05/09/19 11:10	05/10/19 03:25
60302527007	L-TP-5S	Water	05/09/19 13:30	05/10/19 03:25
60302527008	L-TP-5M	Water	05/09/19 13:30	05/10/19 03:25
60302527009	L-TP-5D	Water	05/09/19 13:30	05/10/19 03:25
60302527010	L-UMW-10S (AMW-1S)	Water	05/08/19 14:50	05/10/19 03:25
60302527011	L-UMW-10D (AMW-1D)	Water	05/08/19 16:00	05/10/19 03:25
60302527012	L-NE-DUP-1	Water	05/08/19 16:00	05/10/19 03:25
60302527013	L-NE-DUP-2	Water	05/08/19 16:00	05/10/19 03:25
60302527014	L-NE-FB-1	Water	05/08/19 17:25	05/10/19 03:25
60302527015	L-NE-FB-2	Water	05/08/19 14:30	05/10/19 03:25
60302527016	L-TP-1D MS	Water	05/08/19 15:50	05/10/19 03:25
60302527017	L-TP-1D MSD	Water	05/08/19 15:50	05/10/19 03:25
60302527018	L-UMW-10S (AMW-1S) MS	Water	05/08/19 14:50	05/10/19 03:25
60302527019	L-UMW-10S (AMW-1S) MSD	Water	05/08/19 14:50	05/10/19 03:25
60302527020	L-TP-2S	Water	08/20/19 10:15	08/22/19 02:55
60302527021	L-TP-2M	Water	08/20/19 11:00	08/22/19 02:55
60302527022	L-TP-2D	Water	08/20/19 11:55	08/22/19 02:55
60302527023	L-TP-4S	Water	08/20/19 15:30	08/22/19 02:55
60302527024	L-TP-4M	Water	08/20/19 16:15	08/22/19 02:55
60302527025	L-TP-4D	Water	08/20/19 12:55	08/22/19 02:55

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60302527001	L-TP-1S	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	TDS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527002	L-TP-1M	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	TDS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0302527003	L-TP-1D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	TDS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K
0302527004	L-TP-3S	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
0302527005	L-TP-3M	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		SM 2320B		1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527006	L-TP-3D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527007	L-TP-5S	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527008	L-TP-5M	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527009	L-TP-5D	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527010	L-UMW-10S (AMW-1S)	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	_	EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS	2	PASI-K
0302527011	L-UMW-10D (AMW-1D)	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K
0302527012	L-NE-DUP-1	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K
0302527013	L-NE-DUP-2	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	JDS, MGS	3	PASI-K
0302527014	L-NE-FB-1	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
			LDF		PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0		3	PASI-K
60302527015	L-NE-FB-2	EPA 200.7	EMR	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	LRS	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	JES	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60302527016	L-TP-1D MS	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60302527017	L-TP-1D MSD	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60302527018	L-UMW-10S (AMW-1S) MS	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60302527019	L-UMW-10S (AMW-1S) MSD	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
60302527020	302527020 L-TP-2S	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS, MJK	3	PASI-K
60302527021	L-TP-2M	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302527022	L-TP-2D	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
	_	EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302527023	L-TP-4S	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302527024	L-TP-4M	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302527025	L-TP-4D	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JLH	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	MJK	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-TP-1S Lab ID: 60302527001 Collected: 05/08/19 17:20 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 322 5.0 1.4 05/24/19 09:48 05/24/19 18:00 7440-39-3 **Barium** ug/L Beryllium < 0.25 ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:00 7440-41-7 10.7 Boron 77.4J ug/L 100 1 05/24/19 09:48 05/24/19 18:00 7440-42-8 Calcium 147000 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:00 7440-70-2 1 Cobalt 05/24/19 18:00 7440-48-4 < 0.84 ug/L 5.0 0.84 05/24/19 09:48 1 Iron 22600 ug/L 50.0 14.0 05/24/19 09:48 05/24/19 18:00 7439-89-6 1 ug/L 10.0 3.4 05/24/19 18:00 7439-92-1 Lead <3.4 1 05/24/19 09:48 Lithium 19.0 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:00 7439-93-2 28500 Magnesium ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:00 7439-95-4 Manganese 1300 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:00 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:00 7439-98-7 1 4050 500 79.0 Potassium ug/L 05/24/19 09:48 05/24/19 18:00 7440-09-7 9030 05/24/19 09:48 Sodium ug/L 500 144 05/24/19 18:00 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:40 7440-36-0 0.065 Arsenic 28.7 ug/L 1.0 1 05/28/19 10:14 05/30/19 14:59 7440-38-2 Cadmium 0.055J ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 14:59 7440-43-9 Chromium 0.16J 0.078 05/28/19 10:14 05/30/19 14:59 7440-47-3 ug/L 1.0 1 Selenium 0.14J ug/L 1.0 0.085 05/28/19 10:14 05/30/19 14:59 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 14:59 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/22/19 14:10 05/23/19 17:41 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 490 20.0 6.5 1 05/16/19 18:29 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 565 10.0 10.0 05/15/19 16:08 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 3.3 mg/L 1.0 0.22 05/30/19 14:36 16887-00-6 1 Fluoride 0.099J 0.20 0.085 mg/L 1 05/30/19 14:36 16984-48-8

REPORT OF LABORATORY ANALYSIS

10.0

2.3

10

36.3

mg/L

05/30/19 15:08 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-1M	Lab ID:	60302527002	Collected	d: 05/08/19	16:50	Received: 05/10/19 03:25 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical I	Method: EPA 20	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	947	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:02	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:02	7440-41-7	
Boron	60.6J	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:02	7440-42-8	
Calcium	133000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:02	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:02	7440-48-4	
ron	9570	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:02	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:02	7439-92-1	
Lithium	24.0	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:02	7439-93-2	
Magnesium	36400	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:02	7439-95-4	
Manganese	754	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:02	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:02	7439-98-7	
Potassium	4170	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:02	7440-09-7	
Sodium	9980	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:02	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 20	00.8 Prepa	ration Meth	od: EP	A 200.8			
Antimony	0.094J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:42	7440-36-0	
Arsenic	0.50J	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:03	7440-38-2	
Cadmium	0.21J	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:03	7440-43-9	
Chromium	0.40J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:03	7440-47-3	
Selenium	0.31J	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:03	7782-49-2	
Thallium	0.24J	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:03	7440-28-0	
7470 Mercury	Analytical I	Method: EPA 74	470 Prepa	ration Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/22/19 14:10	05/23/19 17:43	7439-97-6	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	486	mg/L	20.0	6.5	1		05/16/19 18:36		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	548	mg/L	10.0	10.0	1		05/15/19 16:08		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 30	0.00						
Chloride	5.4	mg/L	1.0	0.22	1		05/30/19 15:23	16887-00-6	
Fluoride	0.16J	mg/L	0.20	0.085	1		05/30/19 15:23		
Sulfate	29.9	mg/L	5.0	1.2	5		05/30/19 15:39		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-1D	Lab ID:	60302527003	Collecte	d: 05/08/19	15:50	Received: 05/	atrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	1410	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:04	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:04	7440-41-7	
Boron	56.6J	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:04	7440-42-8	
Calcium	132000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:04	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:04	7440-48-4	
Iron	8120	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:04	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:04	7439-92-1	
Lithium	23.8	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:04		
Magnesium	35000	ug/L	50.0	13.0	1	05/24/19 09:48			
Manganese	226	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:04		
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:04		
Potassium	4170	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:04		
Sodium	11000	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:04	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepa	aration Meth	od: EP	A 200.8			
Antimony	0.77J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:43	7440-36-0	
Arsenic	0.65J	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:04	7440-38-2	
Cadmium	< 0.033	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:04	7440-43-9	
Chromium	0.26J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:04	7440-47-3	
Selenium	<0.085	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:04	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:04	7440-28-0	
7470 Mercury	Analytical	Method: EPA 74	470 Prepa	ration Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/22/19 14:10	05/23/19 17:46	7439-97-6	M1
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	471	mg/L	20.0	6.5	1		05/16/19 18:42		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	581	mg/L	10.0	10.0	1		05/15/19 16:10		
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.00						
Chloride	4.1	mg/L	1.0	0.22	1		05/31/19 12:36	16887-00-6	
Fluoride	0.23	mg/L	0.20	0.085	1		05/31/19 12:36		
Sulfate	24.7	mg/L	2.0	0.46	2		05/30/19 17:12		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-3S	Lab ID:	60302527004	Collected	: 05/09/19	10:30	Received: 05/	10/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	243	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:10	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:10	7440-41-7	
Boron	67.2J	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:10	7440-42-8	
Calcium	132000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:10	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:10	7440-48-4	
ron	<14.0	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:10	7439-89-6	
Lead	3.9J	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:10	7439-92-1	
_ithium	21.1	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:10	7439-93-2	
Magnesium	21600	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:10	7439-95-4	
Manganese	36.0	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:10	7439-96-5	
Molybdenum	3.3J	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:10	7439-98-7	
Potassium	4040	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:10	7440-09-7	
Sodium	5100	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:10	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP/	A 200.8			
Antimony	0.16J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:44	7440-36-0	
Arsenic	0.26J	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:06	7440-38-2	
Cadmium	0.038J	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:06	7440-43-9	
Chromium	0.84J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:06	7440-47-3	
Selenium	2.2	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:06	7782-49-2	
Γhallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:06	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/28/19 14:38	05/29/19 12:47	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	390	mg/L	20.0	6.5	1		05/17/19 15:44		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	457	mg/L	10.0	10.0	1		05/16/19 14:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	8.7	mg/L	1.0	0.22	1		05/30/19 17:59	16887-00-6	
Fluoride	0.17J	mg/L	0.20	0.085	1		05/30/19 17:59		
Sulfate	21.2	mg/L	2.0	0.46	2		05/30/19 18:15		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-3M	Lab ID:	60302527005	Collected	05/09/19	10:25	Received: 05/	10/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepar	ation Meth	od: EPA	A 200.7			
Barium	257	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:12	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:12	7440-41-7	
Boron	4880	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:12	7440-42-8	
Calcium	105000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:12	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:12	7440-48-4	
ron	8650	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:12	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:12	7439-92-1	
Lithium	33.8	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:12	7439-93-2	
Magnesium	23900	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:12	7439-95-4	
Manganese	1310	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:12	7439-96-5	
Molybdenum	247	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:12	7439-98-7	
Potassium	5130	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:12	7440-09-7	
Sodium	48000	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:12	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EPA	A 200.8			
Antimony	0.23J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:45	7440-36-0	
Arsenic	0.58J	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:08	7440-38-2	
Cadmium	0.17J	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:08	7440-43-9	
Chromium	0.22J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:08	7440-47-3	
Selenium	0.16J	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:08	7782-49-2	
Γhallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:08	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/28/19 14:38	05/29/19 12:54	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	292	mg/L	20.0	6.5	1		05/17/19 16:34		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	607	mg/L	10.0	10.0	1		05/16/19 14:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	16.8	mg/L	1.0	0.22	1		05/30/19 18:30	16887-00-6	
Fluoride	0.20J	mg/L	0.20	0.085	1		05/30/19 18:30		
Sulfate	168	mg/L	20.0	4.6	20		05/30/19 19:01		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-3D	Lab ID:	60302527006	Collected	d: 05/09/19	11:10	Received: 05/	Received: 05/10/19 03:25 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua	
200.7 Metals, Total	Analytical N	Method: EPA 20	00.7 Prepa	ration Meth	od: EP	A 200.7				
Barium	77.2	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:14	7440-39-3		
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:14	7440-41-7		
Boron	10000	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:14	7440-42-8		
Calcium	85400	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:14	7440-70-2		
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:14	7440-48-4		
ron	5580	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:14	7439-89-6		
Lead	3.9J	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:14	7439-92-1		
Lithium	29.8	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:14	7439-93-2		
Magnesium	19900	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:14	7439-95-4		
Manganese	172	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:14	7439-96-5		
Molybdenum	766	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:14	7439-98-7		
Potassium	6390	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:14	7440-09-7		
Sodium	114000	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:14	7440-23-5		
200.8 MET ICPMS	Analytical N	Method: EPA 20	00.8 Prepa	ration Meth	od: EP	A 200.8				
Antimony	0.085J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:46	7440-36-0		
Arsenic	4.7	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:10	7440-38-2		
Cadmium	0.26J	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:10	7440-43-9		
Chromium	0.13J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:10	7440-47-3		
Selenium	0.11J	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:10	7782-49-2		
Thallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:10	7440-28-0		
7470 Mercury	Analytical N	Method: EPA 74	470 Prepa	ration Metho	od: EPA	A 7470				
Mercury	<0.037	ug/L	0.20	0.037	1	05/28/19 14:38	05/29/19 12:56	7439-97-6		
2320B Alkalinity	Analytical N	Method: SM 23	20B							
Alkalinity, Total as CaCO3	113	mg/L	20.0	6.5	1		05/17/19 16:43			
2540C Total Dissolved Solids	Analytical N	Method: SM 25	40C							
Total Dissolved Solids	825	mg/L	10.0	10.0	1		05/16/19 14:03			
300.0 IC Anions 28 Days	Analytical N	Method: EPA 30	0.00							
Chloride	27.1	mg/L	5.0	1.1	5		05/30/19 20:04	16887-00-6		
Fluoride	0.28	mg/L	0.20	0.085	1		05/30/19 19:48			
Sulfate	387	mg/L	100	23.0	100		05/30/19 20:20			

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-5S Lab ID: 60302527007 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 378 5.0 1.4 05/24/19 09:48 05/24/19 18:17 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:17 7440-41-7 10.7 Boron 119 ug/L 100 1 05/24/19 09:48 05/24/19 18:17 7440-42-8 Calcium 145000 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:17 7440-70-2 1 Cobalt 2.4J ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:17 7440-48-4 1 Iron 1330 ug/L 50.0 14.0 05/24/19 18:17 7439-89-6 05/24/19 09:48 1 <3.4 ug/L 10.0 3.4 05/24/19 18:17 7439-92-1 Lead 1 05/24/19 09:48 Lithium 23.2 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:17 7439-93-2 Magnesium 36000 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:17 7439-95-4 Manganese 2100 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:17 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:17 7439-98-7 1 4990 500 79.0 Potassium ug/L 05/24/19 09:48 05/24/19 18:17 7440-09-7 9480 05/24/19 09:48 Sodium ug/L 500 144 05/24/19 18:17 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:47 7440-36-0 0.96J 0.065 05/28/19 10:14 05/30/19 15:11 7440-38-2 Arsenic ug/L 1.0 1 Cadmium 0.035J ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:11 7440-43-9 Chromium 0.10J 0.078 05/28/19 10:14 05/30/19 15:11 7440-47-3 ug/L 1.0 1 Selenium 0.54J ug/L 1.0 0.085 05/28/19 10:14 05/30/19 15:11 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 15:11 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/28/19 14:38 05/29/19 12:59 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 552 20.0 6.5 1 05/17/19 16:48 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 575 10.0 10.0 05/16/19 14:03 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 1.5 mg/L 1.0 0.22 05/30/19 20:35 16887-00-6 1 Fluoride <0.085 0.20 0.085 mg/L 1 05/30/19 20:35 16984-48-8 Sulfate 19.6 0.23 05/30/19 20:35 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.0

1

mg/L

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-TP-5M Lab ID: 60302527008 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 831 5.0 1.4 05/24/19 09:48 05/24/19 18:19 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:19 7440-41-7 10.7 Boron 828 ug/L 100 1 05/24/19 09:48 05/24/19 18:19 7440-42-8 Calcium 150000 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:19 7440-70-2 1 Cobalt < 0.84 ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:19 7440-48-4 1 Iron 10200 ug/L 50.0 14.0 05/24/19 18:19 7439-89-6 05/24/19 09:48 1 3.6J ug/L 10.0 3.4 05/24/19 18:19 7439-92-1 Lead 1 05/24/19 09:48 Lithium 22.3 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:19 7439-93-2 Magnesium 36100 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:19 7439-95-4 Manganese 739 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:19 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:19 7439-98-7 1 4540 500 79.0 Potassium ug/L 05/24/19 09:48 05/24/19 18:19 7440-09-7 12700 Sodium ug/L 500 144 05/24/19 09:48 05/24/19 18:19 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:50 7440-36-0 0.065 05/28/19 10:14 05/30/19 15:17 7440-38-2 Arsenic 0.92J ug/L 1.0 1 Cadmium 0.044J ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:17 7440-43-9 Chromium 0.18J 0.078 05/28/19 10:14 05/30/19 15:17 7440-47-3 ug/L 1.0 1 0.14J Selenium ug/L 1.0 0.085 05/30/19 15:17 7782-49-2 1 05/28/19 10:14 Thallium <0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 15:17 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/28/19 14:38 05/29/19 13:01 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 519 mg/L 20.0 6.5 1 05/17/19 16:55 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 618 10.0 10.0 05/16/19 14:03 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 4.1 mg/L 1.0 0.22 05/30/19 21:06 16887-00-6 1 Fluoride <0.085 0.20 0.085 mg/L 1 05/30/19 21:06 16984-48-8

REPORT OF LABORATORY ANALYSIS

10.0

2.3

10

48.8

mg/L

05/30/19 21:22 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-5D Lab ID: 60302527009 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water

Comments: • Sample collection time on containers does not match COC; client was notified.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA	A 200.7 Prepa	ration Meth	od: EP	PA 200.7			
Barium	572	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:25	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:25	7440-41-7	
Boron	4510	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:25	7440-42-8	
Calcium	133000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:25	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:25	7440-48-4	
Iron	6640	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:25	7439-89-6	
Lead	<3.4	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:25	7439-92-1	
Lithium	22.4	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:25	7439-93-2	
Magnesium	34600	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:25	7439-95-4	
Manganese	222	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:25	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:25	7439-98-7	
Potassium	4490	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:25	7440-09-7	
Sodium	25900	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:25	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA	3 200.8 Prepa	ration Meth	od: EP	PA 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:51	7440-36-0	
Arsenic	13.9	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:18	7440-38-2	
Cadmium	< 0.033	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:18	7440-43-9	
Chromium	<0.078	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:18	7440-47-3	
Selenium	<0.085	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:18	7782-49-2	
Thallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:18	7440-28-0	
7470 Mercury	Analytical	Method: EPA	7470 Prepa	ration Meth	od: EP/	A 7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/29/19 16:56	05/30/19 11:19	7439-97-6	
2320B Alkalinity	Analytical	Method: SM	2320B						
Alkalinity, Total as CaCO3	380	mg/L	20.0	6.5	1		05/17/19 16:59		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	693	mg/L	10.0	10.0	1		05/16/19 14:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA	A 300.0						
Chloride	14.0	mg/L	1.0	0.22	1		05/30/19 21:38	16887-00-6	
Fluoride	0.088J	mg/L	0.20	0.085	1		05/30/19 21:38	16984-48-8	
Sulfate	151	mg/L	20.0	4.6	20		05/30/19 21:53		
		J							

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-UMW-10S (AMW-1S) Lab ID: 60302527010 Collected: 05/08/19 14:50 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 551 5.0 1.4 05/24/19 09:48 05/24/19 18:27 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:27 7440-41-7 10.7 Boron 374 ug/L 100 1 05/24/19 09:48 05/24/19 18:27 7440-42-8 Calcium 172000 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:27 7440-70-2 M1 1 Cobalt 4.5J ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:27 7440-48-4 1 Iron 4840 ug/L 50.0 14.0 05/24/19 18:27 7439-89-6 05/24/19 09:48 1 <3.4 ug/L 10.0 3.4 05/24/19 18:27 7439-92-1 Lead 1 05/24/19 09:48 Lithium 33.8 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:27 7439-93-2 Magnesium 38100 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:27 7439-95-4 Manganese 1590 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:27 7439-96-5 Molybdenum 2.9J ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:27 7439-98-7 1 6750 500 79.0 Potassium ug/L 1 05/24/19 09:48 05/24/19 18:27 7440-09-7 61200 Sodium ug/L 500 144 05/24/19 09:48 05/24/19 18:27 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:52 7440-36-0 0.065 05/28/19 10:14 05/30/19 15:20 7440-38-2 Arsenic 2.9 ug/L 1.0 1 Cadmium < 0.033 ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:20 7440-43-9 Chromium 0.091J 0.078 05/28/19 10:14 05/30/19 15:20 7440-47-3 ug/L 1.0 1 Selenium <0.085 ug/L 1.0 0.085 05/30/19 15:20 7782-49-2 1 05/28/19 10:14 Thallium < 0.099 ug/L 1.0 0.099 1 05/28/19 10:14 05/30/19 15:20 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/29/19 16:56 05/30/19 11:21 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 474 mg/L 20.0 6.5 1 05/16/19 19:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 931 mg/L 10.0 10.0 05/15/19 16:11 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Fluoride 0.13J mg/L 0.20 0.085 05/30/19 22:09 16984-48-8 1 Sulfate 17.6 mg/L 0.23 05/30/19 22:09 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.0

1

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-UMW-10D (AMW-1D) Lab ID: 60302527011 Collected: 05/08/19 16:00 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total ug/L 5.0 1.4 05/24/19 09:48 05/24/19 18:31 7440-39-3 **Barium** Beryllium 0.26J ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:31 7440-41-7 6900 10.7 Boron ug/L 100 1 05/24/19 09:48 05/24/19 18:31 7440-42-8 Calcium 83700 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:31 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:31 7440-48-4 1 Iron 4320 ug/L 50.0 14.0 05/24/19 18:31 7439-89-6 05/24/19 09:48 1 ug/L 10.0 3.4 05/24/19 18:31 7439-92-1 Lead <3.4 1 05/24/19 09:48 Lithium 36.1 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:31 7439-93-2 Magnesium 11700 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:31 7439-95-4 Manganese 215 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:31 7439-96-5 Molybdenum 370 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:31 7439-98-7 1 7520 500 79.0 Potassium ug/L 05/24/19 09:48 05/24/19 18:31 7440-09-7 112000 Sodium ug/L 500 144 05/24/19 09:48 05/24/19 18:31 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:55 7440-36-0 0.065 Arsenic 2.7 ug/L 1.0 1 05/28/19 10:14 05/30/19 15:25 7440-38-2 Cadmium 0.16J ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:25 7440-43-9 Chromium 0.19J ug/L 1.0 0.078 05/28/19 10:14 05/30/19 15:25 7440-47-3 1 Selenium 0.13J ug/L 1.0 0.085 05/30/19 15:25 7782-49-2 1 05/28/19 10:14 Thallium <0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 15:25 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/29/19 16:56 05/30/19 11:33 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 144 mg/L 20.0 6.5 1 05/16/19 19:15 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 752 mg/L 10.0 10.0 05/15/19 16:11 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 37.7 mg/L 2.0 0.44 2 05/31/19 01:16 16887-00-6 Fluoride 0.35 mg/L 0.20 0.085 05/31/19 01:00 16984-48-8 1 Sulfate 332 20.0 20 05/31/19 14:50 14808-79-8 mg/L 4.6

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-NE-DUP-1 Lab ID: 60302527012 Collected: 05/08/19 16:00 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 64.2 ug/L 5.0 1.4 05/24/19 09:48 05/24/19 18:34 7440-39-3 **Barium** Beryllium <0.25 ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:34 7440-41-7 6930 10.7 Boron ug/L 100 1 05/24/19 09:48 05/24/19 18:34 7440-42-8 Calcium 84100 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:34 7440-70-2 1 Cobalt 05/24/19 18:34 7440-48-4 <0.84 ug/L 5.0 0.84 05/24/19 09:48 1 Iron 4320 ug/L 50.0 14.0 05/24/19 18:34 7439-89-6 05/24/19 09:48 1 4.3J ug/L 10.0 3.4 05/24/19 18:34 7439-92-1 Lead 1 05/24/19 09:48 Lithium 34.4 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:34 7439-93-2 Magnesium 11800 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:34 7439-95-4 Manganese 216 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:34 7439-96-5 Molybdenum 369 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:34 7439-98-7 1 7540 500 79.0 Potassium ug/L 05/24/19 09:48 05/24/19 18:34 7440-09-7 112000 500 Sodium ug/L 144 05/24/19 09:48 05/24/19 18:34 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:56 7440-36-0 0.065 Arsenic 2.7 ug/L 1.0 1 05/28/19 10:14 05/30/19 15:27 7440-38-2 Cadmium 0.15J ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:27 7440-43-9 Chromium 0.28J ug/L 1.0 0.078 05/28/19 10:14 05/30/19 15:27 7440-47-3 1 Selenium 0.13J ug/L 1.0 0.085 05/30/19 15:27 7782-49-2 1 05/28/19 10:14 Thallium <0.099 ug/L 1.0 0.099 1 05/28/19 10:14 05/30/19 15:27 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/29/19 16:56 05/30/19 11:35 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 148 20.0 6.5 1 05/16/19 19:20 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 800 10.0 10.0 05/15/19 16:11 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 37.1 mg/L 2.0 0.44 2 05/31/19 02:34 16887-00-6 Fluoride 0.33 mg/L 0.20 0.085 05/31/19 02:18 16984-48-8 1

REPORT OF LABORATORY ANALYSIS

20.0

20

4.6

335

mg/L

05/31/19 15:07 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-NE-DUP-2	Lab ID:	60302527013	Collected	: 05/08/19	16:00	Received: 05/	10/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepar	ration Meth	od: EP/	A 200.7			
Barium	952	ug/L	5.0	1.4	1	05/24/19 09:48	05/24/19 18:36	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	05/24/19 09:48	05/24/19 18:36	7440-41-7	
Boron	83.5J	ug/L	100	10.7	1	05/24/19 09:48	05/24/19 18:36	7440-42-8	
Calcium	134000	ug/L	200	50.0	1	05/24/19 09:48	05/24/19 18:36	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	05/24/19 09:48	05/24/19 18:36	7440-48-4	
ron	9640	ug/L	50.0	14.0	1	05/24/19 09:48	05/24/19 18:36	7439-89-6	
_ead	<3.4	ug/L	10.0	3.4	1	05/24/19 09:48	05/24/19 18:36	7439-92-1	
_ithium	24.2	ug/L	10.0	5.9	1	05/24/19 09:48	05/24/19 18:36		
Magnesium	36600	ug/L	50.0	13.0	1	05/24/19 09:48	05/24/19 18:36	7439-95-4	
Manganese	760	ug/L	5.0	2.1	1	05/24/19 09:48	05/24/19 18:36	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	05/24/19 09:48	05/24/19 18:36	7439-98-7	
Potassium	4250	ug/L	500	79.0	1	05/24/19 09:48	05/24/19 18:36	7440-09-7	
Sodium	10100	ug/L	500	144	1	05/24/19 09:48	05/24/19 18:36	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepar	ration Meth	od: EP/	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 16:57	7440-36-0	
Arsenic	0.13J	ug/L	1.0	0.065	1	05/28/19 10:14	05/30/19 15:29	7440-38-2	
Cadmium	< 0.033	ug/L	0.50	0.033	1	05/28/19 10:14	05/30/19 15:29	7440-43-9	
Chromium	0.14J	ug/L	1.0	0.078	1	05/28/19 10:14	05/30/19 15:29	7440-47-3	
Selenium	<0.085	ug/L	1.0	0.085	1	05/28/19 10:14	05/30/19 15:29	7782-49-2	
Γhallium	<0.099	ug/L	1.0	0.099	1	05/28/19 10:14	05/30/19 15:29	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepara	ation Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	05/29/19 16:56	05/30/19 11:37	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	498	mg/L	20.0	6.5	1		05/17/19 12:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	560	mg/L	10.0	10.0	1		05/15/19 16:11		
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	5.3	mg/L	1.0	0.22	1		05/31/19 02:50	16887-00-6	
Fluoride	0.12J	mg/L	0.20	0.085	1		05/31/19 02:50		
Sulfate	29.3	mg/L	5.0	1.2	5		05/31/19 15:24		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-NE-FB-1 Lab ID: 60302527014 Collected: 05/08/19 17:25 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total ug/L 5.0 1.4 05/24/19 09:48 05/24/19 18:38 7440-39-3 **Barium** <0.25 Beryllium ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:38 7440-41-7 11.3J 10.7 Boron ug/L 100 1 05/24/19 09:48 05/24/19 18:38 7440-42-8 Calcium 61.7J ug/L 200 50.0 05/24/19 09:48 05/24/19 18:38 7440-70-2 В 1 Cobalt <0.84 ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:38 7440-48-4 Iron ug/L 50.0 14.0 05/24/19 09:48 05/24/19 18:38 7439-89-6 <14.0 1 10.0 3.4 05/24/19 18:38 7439-92-1 Lead <3.4 ug/L 1 05/24/19 09:48 Lithium < 5.9 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:38 7439-93-2 Magnesium <13.0 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:38 7439-95-4 Manganese <2.1 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:38 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:38 7439-98-7 1 500 79.0 Potassium <79.0 ug/L 05/24/19 09:48 05/24/19 18:38 7440-09-7 500 Sodium <144 ug/L 144 05/24/19 09:48 05/24/19 18:38 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:58 7440-36-0 <0.065 0.065 Arsenic ug/L 1.0 1 05/28/19 10:14 05/30/19 15:31 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:31 7440-43-9 Chromium 0.088J ug/L 1.0 0.078 05/28/19 10:14 05/30/19 15:31 7440-47-3 1 <0.085 Selenium ug/L 1.0 0.085 05/30/19 15:31 7782-49-2 1 05/28/19 10:14 Thallium < 0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 15:31 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/29/19 16:56 05/30/19 11:39 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 <6.5 20.0 6.5 1 05/17/19 12:50 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 6.5 5.0 5.0 05/15/19 16:12 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride <0.22 mg/L 1.0 0.22 05/31/19 03:21 16887-00-6 1 Fluoride <0.085 0.20 0.085 05/31/19 03:21 16984-48-8 mg/L 1

REPORT OF LABORATORY ANALYSIS

0.23

1

1.0

< 0.23

mg/L

05/31/19 03:21 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-NE-FB-2 Lab ID: 60302527015 Collected: 05/08/19 14:30 Received: 05/10/19 03:25 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total ug/L 5.0 1.4 05/24/19 09:48 05/24/19 18:40 7440-39-3 **Barium** <0.25 Beryllium ug/L 1.0 0.25 1 05/24/19 09:48 05/24/19 18:40 7440-41-7 10.7 Boron <10.7 ug/L 100 1 05/24/19 09:48 05/24/19 18:40 7440-42-8 Calcium <50.0 ug/L 200 50.0 05/24/19 09:48 05/24/19 18:40 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 05/24/19 09:48 05/24/19 18:40 7440-48-4 Iron ug/L 50.0 14.0 05/24/19 18:40 7439-89-6 <14.0 05/24/19 09:48 1 10.0 3.4 05/24/19 18:40 7439-92-1 Lead <3.4 ug/L 1 05/24/19 09:48 Lithium < 5.9 ug/L 10.0 5.9 1 05/24/19 09:48 05/24/19 18:40 7439-93-2 Magnesium <13.0 ug/L 50.0 13.0 1 05/24/19 09:48 05/24/19 18:40 7439-95-4 Manganese <2.1 ug/L 5.0 2.1 1 05/24/19 09:48 05/24/19 18:40 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 05/24/19 09:48 05/24/19 18:40 7439-98-7 1 500 79.0 Potassium <79.0 ug/L 05/24/19 09:48 05/24/19 18:40 7440-09-7 Sodium <144 ug/L 500 144 05/24/19 09:48 05/24/19 18:40 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Antimony <0.078 ug/L 1.0 0.078 05/28/19 10:14 05/30/19 16:59 7440-36-0 <0.065 0.065 Arsenic ug/L 1.0 1 05/28/19 10:14 05/30/19 15:32 7440-38-2 Cadmium < 0.033 ug/L 0.50 0.033 1 05/28/19 10:14 05/30/19 15:32 7440-43-9 Chromium < 0.078 ug/L 0.078 05/28/19 10:14 05/30/19 15:32 7440-47-3 1.0 1 Selenium < 0.085 ug/L 1.0 0.085 05/30/19 15:32 7782-49-2 1 05/28/19 10:14 Thallium < 0.099 ug/L 1.0 0.099 05/28/19 10:14 05/30/19 15:32 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 05/29/19 16:56 05/30/19 11:42 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 <6.5 20.0 6.5 1 05/17/19 12:54 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 11.8 10.8 10.8 05/22/19 17:00 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride <0.22 mg/L 1.0 0.22 05/31/19 03:36 16887-00-6 1 Fluoride <0.085 mg/L 0.20 0.085 05/31/19 03:36 16984-48-8 1 Sulfate < 0.23 0.23 05/31/19 03:36 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.0

1

mg/L

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-2S Lab ID: 60302527020 Collected: 08/20/19 10:15 Received: 08/22/19 02:55 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 347 5.0 1.4 08/29/19 08:35 08/29/19 16:53 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 08/29/19 08:35 08/29/19 16:53 7440-41-7 10.7 Boron 221 ug/L 100 1 08/29/19 08:35 08/29/19 16:53 7440-42-8 Calcium 143000 ug/L 200 50.0 08/29/19 08:35 08/29/19 16:53 7440-70-2 M1 1 Cobalt < 0.84 ug/L 5.0 0.84 08/29/19 08:35 08/29/19 16:53 7440-48-4 1 Iron 18400 ug/L 50.0 14.0 08/29/19 08:35 08/29/19 16:53 7439-89-6 1 ug/L 10.0 3.4 08/29/19 16:53 7439-92-1 Lead <3.4 1 08/29/19 08:35 Lithium 27.3 ug/L 10.0 5.9 1 08/29/19 08:35 08/29/19 16:53 7439-93-2 Magnesium 23000 ug/L 50.0 13.0 1 08/29/19 08:35 08/29/19 16:53 7439-95-4 Manganese 768 ug/L 5.0 2.1 1 08/29/19 08:35 08/29/19 16:53 7439-96-5 Molybdenum 22.4 ug/L 20.0 2.6 08/29/19 08:35 08/29/19 16:53 7439-98-7 1 5720 500 79.0 Potassium ug/L 08/29/19 08:35 08/29/19 16:53 7440-09-7 93300 500 Sodium ug/L 144 08/29/19 08:35 08/29/19 16:53 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** 0.086J ug/L 1.0 0.078 08/29/19 14:26 09/04/19 11:53 7440-36-0 0.065 Arsenic 5.5 ug/L 1.0 1 08/29/19 14:26 09/04/19 11:53 7440-38-2 Cadmium 0.051J ug/L 0.50 0.033 1 08/29/19 14:26 09/04/19 11:53 7440-43-9 Chromium 0.27J ug/L 1.0 0.078 09/04/19 11:53 7440-47-3 1 08/29/19 14:26 Selenium 0.14J ug/L 1.0 0.085 08/29/19 14:26 09/04/19 11:53 7782-49-2 1 09/04/19 11:53 7440-28-0 Thallium <0.099 ug/L 1.0 0.099 08/29/19 14:26 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 08/29/19 11:49 08/30/19 13:10 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 534 mg/L 20.0 6.5 1 09/03/19 17:43 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 721 10.0 10.0 08/29/19 09:03 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 47.3 mg/L 5.0 5 09/11/19 18:31 16887-00-6 1.1 Fluoride 0.24 mg/L 0.20 0.085 09/10/19 22:33 16984-48-8 1 Sulfate 63.3 5.0 5 09/11/19 18:31 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.2

mg/L

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-TP-2M Lab ID: 60302527021 Collected: 08/20/19 11:00 Received: 08/22/19 02:55 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 08/29/19 08:35 08/29/19 17:00 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 08/29/19 08:35 08/29/19 17:00 7440-41-7 1250 10.7 Boron ug/L 100 1 08/29/19 08:35 08/29/19 17:00 7440-42-8 Calcium 98100 ug/L 200 50.0 08/29/19 08:35 08/29/19 17:00 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 08/29/19 08:35 08/29/19 17:00 7440-48-4 1 Iron 3300 ug/L 50.0 14.0 08/29/19 08:35 08/29/19 17:00 7439-89-6 1 ug/L 10.0 3.4 7439-92-1 Lead <3.4 1 08/29/19 08:35 08/29/19 17:00 Lithium 32.6 ug/L 10.0 5.9 1 08/29/19 08:35 08/29/19 17:00 7439-93-2 Magnesium 14100 ug/L 50.0 13.0 1 08/29/19 08:35 08/29/19 17:00 7439-95-4 Manganese 440 ug/L 5.0 2.1 1 08/29/19 08:35 08/29/19 17:00 7439-96-5 7439-98-7 Molybdenum 64.0 ug/L 20.0 2.6 08/29/19 08:35 08/29/19 17:00 1 6390 500 79.0 Potassium ug/L 08/29/19 08:35 08/29/19 17:00 7440-09-7 61900 500 Sodium ug/L 144 08/29/19 08:35 08/29/19 17:00 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** 0.090J ug/L 1.0 0.078 08/29/19 14:26 09/04/19 11:54 7440-36-0 0.065 Arsenic 0.48J ug/L 1.0 1 08/29/19 14:26 09/04/19 11:54 7440-38-2 0.050J Cadmium ug/L 0.50 0.033 1 08/29/19 14:26 09/04/19 11:54 7440-43-9 Chromium 0.14J ug/L 1.0 0.078 09/04/19 11:54 7440-47-3 1 08/29/19 14:26 Selenium 0.091J ug/L 1.0 0.085 08/29/19 14:26 09/04/19 11:54 7782-49-2 1 Thallium <0.099 ug/L 1.0 0.099 08/29/19 14:26 09/04/19 11:54 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 08/29/19 11:49 08/30/19 13:12 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 281 20.0 6.5 1 09/03/19 17:48 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 541 10.0 10.0 08/29/19 09:03 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 19.2 mg/L 2.0 0.44 2 09/10/19 23:17 16887-00-6 Fluoride 0.43 mg/L 0.20 0.085 09/10/19 23:03 16984-48-8 1

REPORT OF LABORATORY ANALYSIS

20.0

20

4.6

149

mg/L

09/11/19 00:02 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-TP-2D Lab ID: 60302527022 Collected: 08/20/19 11:55 Received: 08/22/19 02:55 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 107 5.0 1.4 08/29/19 08:35 08/29/19 17:07 7440-39-3 **Barium** ug/L Beryllium <0.25 ug/L 1.0 0.25 1 08/29/19 08:35 08/29/19 17:07 7440-41-7 1650 10.7 Boron ug/L 100 1 08/29/19 08:35 08/29/19 17:07 7440-42-8 Calcium 92200 ug/L 200 50.0 08/29/19 08:35 08/29/19 17:07 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 08/29/19 08:35 08/29/19 17:07 7440-48-4 1 Iron 3570 ug/L 50.0 14.0 08/29/19 08:35 08/29/19 17:07 7439-89-6 1 ug/L 10.0 3.4 7439-92-1 Lead <3.4 1 08/29/19 08:35 08/29/19 17:07 Lithium 37.7 ug/L 10.0 5.9 1 08/29/19 08:35 08/29/19 17:07 7439-93-2 Magnesium 15700 ug/L 50.0 13.0 1 08/29/19 08:35 08/29/19 17:07 7439-95-4 Manganese 302 ug/L 5.0 2.1 1 08/29/19 08:35 08/29/19 17:07 7439-96-5 Molybdenum 119 ug/L 20.0 2.6 08/29/19 08:35 08/29/19 17:07 7439-98-7 1 5510 500 79.0 Potassium ug/L 08/29/19 08:35 08/29/19 17:07 7440-09-7 57000 500 Sodium ug/L 144 08/29/19 08:35 08/29/19 17:07 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** <0.078 ug/L 1.0 0.078 08/29/19 14:26 09/04/19 11:56 7440-36-0 0.065 Arsenic 11.7 ug/L 1.0 1 08/29/19 14:26 09/04/19 11:56 7440-38-2 0.054J Cadmium ug/L 0.50 0.033 1 08/29/19 14:26 09/04/19 11:56 7440-43-9 Chromium 0.11J ug/L 1.0 0.078 09/04/19 11:56 7440-47-3 1 08/29/19 14:26 <0.085 Selenium ug/L 1.0 0.085 08/29/19 14:26 09/04/19 11:56 7782-49-2 1 09/04/19 11:56 7440-28-0 Thallium < 0.099 ug/L 1.0 0.099 08/29/19 14:26 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 08/29/19 11:49 08/30/19 13:24 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 232 20.0 6.5 1 09/03/19 17:54 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 539 10.0 10.0 08/29/19 09:04 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 22.5 mg/L 2.0 0.44 2 09/11/19 00:32 16887-00-6 Fluoride 0.42 mg/L 0.20 0.085 09/11/19 00:17 16984-48-8 1

REPORT OF LABORATORY ANALYSIS

10.0

2.3

10

164

mg/L

09/11/19 00:47 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-4S Lab ID: 60302527023 Collected: 08/20/19 15:30 Received: 08/22/19 02:55 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 257 5.0 1.4 08/29/19 08:35 08/29/19 17:09 7440-39-3 **Barium** ug/L Beryllium < 0.25 ug/L 1.0 0.25 1 08/29/19 08:35 08/29/19 17:09 7440-41-7 83.5J 10.7 Boron ug/L 100 1 08/29/19 08:35 08/29/19 17:09 7440-42-8 Calcium 93500 ug/L 200 50.0 08/29/19 08:35 08/29/19 17:09 7440-70-2 1 Cobalt < 0.84 ug/L 5.0 0.84 08/29/19 08:35 08/29/19 17:09 7440-48-4 1 Iron 16600 ug/L 50.0 14.0 08/29/19 08:35 7439-89-6 08/29/19 17:09 1 ug/L 10.0 3.4 7439-92-1 Lead <3.4 1 08/29/19 08:35 08/29/19 17:09 Lithium 10.9 ug/L 10.0 5.9 1 08/29/19 08:35 08/29/19 17:09 7439-93-2 Magnesium 29400 ug/L 50.0 13.0 1 08/29/19 08:35 08/29/19 17:09 7439-95-4 Manganese 375 ug/L 5.0 2.1 1 08/29/19 08:35 08/29/19 17:09 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 08/29/19 08:35 08/29/19 17:09 7439-98-7 1 5140 500 79.0 Potassium ug/L 08/29/19 08:35 08/29/19 17:09 7440-09-7 23300 500 Sodium ug/L 144 08/29/19 08:35 08/29/19 17:09 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** 0.085J ug/L 1.0 0.078 08/29/19 14:26 09/04/19 12:01 7440-36-0 0.065 Arsenic 71.2 ug/L 1.0 1 08/29/19 14:26 09/04/19 12:01 7440-38-2 0.050J Cadmium ug/L 0.50 0.033 1 08/29/19 14:26 09/04/19 12:01 7440-43-9 Chromium 0.22J 1.0 0.078 09/04/19 12:01 7440-47-3 ug/L 1 08/29/19 14:26 Selenium 0.20J ug/L 1.0 0.085 08/29/19 14:26 09/04/19 12:01 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 08/29/19 14:26 09/04/19 12:01 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 08/29/19 11:49 08/30/19 13:26 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 400 20.0 6.5 1 09/03/19 18:00 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 433 10.0 10.0 08/29/19 09:04 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 10.4 mg/L 1.0 0.22 09/11/19 01:01 16887-00-6 1 Fluoride 0.27 mg/L 0.20 0.085 09/11/19 01:01 16984-48-8 1 Sulfate 18.4 0.23 09/11/19 01:01 14808-79-8

REPORT OF LABORATORY ANALYSIS

1.0

1

mg/L

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Sample: L-TP-4M	Lab ID:	60302527024	Collected	d: 08/20/19	16:15	Received: 08/	atrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical	Method: EPA 20	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	379	ug/L	5.0	1.4	1	08/29/19 08:35	08/29/19 17:12	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	08/29/19 08:35	08/29/19 17:12	7440-41-7	
Boron	463	ug/L	100	10.7	1	08/29/19 08:35	08/29/19 17:12	7440-42-8	
Calcium	109000	ug/L	200	50.0	1	08/29/19 08:35	08/29/19 17:12	7440-70-2	
Cobalt	<0.84	ug/L	5.0	0.84	1	08/29/19 08:35	08/29/19 17:12	7440-48-4	
ron	7330	ug/L	50.0	14.0	1	08/29/19 08:35	08/29/19 17:12	7439-89-6	
₋ead	<3.4	ug/L	10.0	3.4	1	08/29/19 08:35	08/29/19 17:12	7439-92-1	
Lithium	12.1	ug/L	10.0	5.9	1	08/29/19 08:35	08/29/19 17:12	7439-93-2	
Magnesium	21000	ug/L	50.0	13.0	1	08/29/19 08:35	08/29/19 17:12	7439-95-4	
Manganese	929	ug/L	5.0	2.1	1	08/29/19 08:35	08/29/19 17:12	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	08/29/19 08:35	08/29/19 17:12	7439-98-7	
Potassium	4430	ug/L	500	79.0	1	08/29/19 08:35	08/29/19 17:12	7440-09-7	
Sodium	20400	ug/L	500	144	1	08/29/19 08:35	08/29/19 17:12	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 20	00.8 Prepa	ration Meth	od: EP	A 200.8			
Antimony	<0.078	ug/L	1.0	0.078	1	08/29/19 14:26	09/04/19 12:03	7440-36-0	
Arsenic	6.1	ug/L	1.0	0.065	1	08/29/19 14:26	09/04/19 12:03	7440-38-2	
Cadmium	0.033J	ug/L	0.50	0.033	1	08/29/19 14:26	09/04/19 12:03	7440-43-9	
Chromium	0.15J	ug/L	1.0	0.078	1	08/29/19 14:26	09/04/19 12:03	7440-47-3	
Selenium	0.11J	ug/L	1.0	0.085	1	08/29/19 14:26	09/04/19 12:03	7782-49-2	
Γhallium	<0.099	ug/L	1.0	0.099	1	08/29/19 14:26	09/04/19 12:03	7440-28-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepai	ration Metho	od: EPA	7470			
Mercury	<0.037	ug/L	0.20	0.037	1	08/29/19 11:49	08/30/19 13:28	7439-97-6	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	354	mg/L	20.0	6.5	1		09/03/19 18:15		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	450	mg/L	10.0	10.0	1		08/29/19 09:04		H1
800.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	8.7	mg/L	1.0	0.22	1		09/11/19 01:31	16887-00-6	
Fluoride	0.25	mg/L	0.20	0.085	1		09/11/19 01:31		
Sulfate	44.2	mg/L	5.0	1.2	5		09/11/19 01:46		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sulfate

Date: 10/15/2019 04:06 PM

Sample: L-TP-4D Lab ID: 60302527025 Collected: 08/20/19 12:55 Received: 08/22/19 02:55 Matrix: Water PQL MDL DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 200.7 Metals, Total 5.0 1.4 08/29/19 08:35 08/29/19 17:14 7440-39-3 **Barium** ug/L <0.25 Beryllium ug/L 1.0 0.25 1 08/29/19 08:35 08/29/19 17:14 7440-41-7 4610 10.7 Boron ug/L 100 1 08/29/19 08:35 08/29/19 17:14 7440-42-8 Calcium 121000 ug/L 200 50.0 08/29/19 08:35 08/29/19 17:14 7440-70-2 1 Cobalt <0.84 ug/L 5.0 0.84 08/29/19 08:35 08/29/19 17:14 7440-48-4 1 Iron 5320 ug/L 50.0 14.0 08/29/19 08:35 08/29/19 17:14 7439-89-6 1 ug/L 10.0 3.4 08/29/19 17:14 7439-92-1 Lead <3.4 1 08/29/19 08:35 Lithium 22.5 ug/L 10.0 5.9 1 08/29/19 08:35 08/29/19 17:14 7439-93-2 Magnesium 31800 ug/L 50.0 13.0 1 08/29/19 08:35 08/29/19 17:14 7439-95-4 Manganese 320 ug/L 5.0 2.1 1 08/29/19 08:35 08/29/19 17:14 7439-96-5 Molybdenum <2.6 ug/L 20.0 2.6 08/29/19 08:35 08/29/19 17:14 7439-98-7 1 4700 500 79.0 Potassium ug/L 1 08/29/19 08:35 08/29/19 17:14 7440-09-7 25600 Sodium ug/L 500 144 08/29/19 08:35 08/29/19 17:14 7440-23-5 200.8 MET ICPMS Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 **Antimony** 0.35J ug/L 1.0 0.078 08/29/19 14:26 09/04/19 12:05 7440-36-0 0.065 Arsenic 7.5 ug/L 1.0 1 08/29/19 14:26 09/04/19 12:05 7440-38-2 <0.033 Cadmium ug/L 0.50 0.033 1 08/29/19 14:26 09/04/19 12:05 7440-43-9 Chromium 0.28J 0.078 09/04/19 12:05 7440-47-3 ug/L 1.0 1 08/29/19 14:26 <0.085 Selenium ug/L 1.0 0.085 08/29/19 14:26 09/04/19 12:05 7782-49-2 1 Thallium < 0.099 ug/L 1.0 0.099 08/29/19 14:26 09/04/19 12:05 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Mercury < 0.037 ug/L 0.20 0.037 08/29/19 11:49 08/30/19 13:30 7439-97-6 Analytical Method: SM 2320B 2320B Alkalinity Alkalinity, Total as CaCO3 318 20.0 6.5 1 09/03/19 18:20 mg/L 2540C Total Dissolved Solids Analytical Method: SM 2540C Total Dissolved Solids 603 10.0 10.0 08/29/19 09:04 Н1 mg/L 1 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride 12.9 mg/L 1.0 0.22 09/11/19 02:01 16887-00-6 1 Fluoride 0.22 mg/L 0.20 0.085 09/11/19 02:01 16984-48-8 1

REPORT OF LABORATORY ANALYSIS

20.0

20

4.6

154

mg/L

09/11/19 02:16 14808-79-8

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 586214 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60302527001, 60302527002, 60302527003

METHOD BLANK: 2405202 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L <0.037 0.20 0.037 05/23/19 17:21

LABORATORY CONTROL SAMPLE: 2405203

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 4.2 84 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2405204 2405205

MS MSD MSD MS 60302527003 Spike Spike MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 5 5 3.7 3.5 75 75-125 20 M1 Mercury ug/L < 0.037 70

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR Project:

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 587034 Analysis Method: EPA 7470 QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury Associated Lab Samples: 60302527004, 60302527005, 60302527006, 60302527007, 60302527008

METHOD BLANK: 2408464 Matrix: Water

Associated Lab Samples: 60302527004, 60302527005, 60302527006, 60302527007, 60302527008

> Blank Reporting

Parameter Limit MDL Qualifiers Units Result Analyzed Mercury < 0.037 0.20 0.037 05/29/19 12:43

ug/L

LABORATORY CONTROL SAMPLE: 2408465

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 5.0 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2408466 2408467 MS MSD MSD 60302527004 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 5 5 4.9 101 75-125 2 20 Mercury ug/L < 0.037 5.0 99

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 587325 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014, 60302527015

METHOD BLANK: 2409353 Matrix: Water

Associated Lab Samples: 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014, 60302527015

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Mercury
 ug/L
 <0.037</td>
 0.20
 0.037
 05/30/19 11:14

LABORATORY CONTROL SAMPLE: 2409354

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 5.0 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2409355 2409356

MS MSD MSD 60302527010 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 5 5 75-125 20 Mercury ug/L < 0.037 4.8 4.8 96 96 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 606407 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2478429 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Mercury
 ug/L
 <0.037</td>
 0.20
 0.037
 08/30/19 12:58

LABORATORY CONTROL SAMPLE: 2478430

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Mercury ug/L 5 4.7 94 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2478431 2478432

MS MSD MSD 60302527021 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 5 5 4.9 101 75-125 3 20 Mercury ug/L < 0.037 5.0 98

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 586620 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015

METHOD BLANK: 2406484 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	05/24/19 17:53	
Beryllium	ug/L	< 0.25	1.0	0.25	05/24/19 17:53	
Boron	ug/L	<10.7	100	10.7	05/24/19 17:53	
Calcium	ug/L	50.7J	200	50.0	05/24/19 17:53	
Cobalt	ug/L	<0.84	5.0	0.84	05/24/19 17:53	
Iron	ug/L	15.2J	50.0	14.0	05/24/19 17:53	
Lead	ug/L	<3.4	10.0	3.4	05/24/19 17:53	
Lithium	ug/L	<5.9	10.0	5.9	05/24/19 17:53	
Magnesium	ug/L	20.3J	50.0	13.0	05/24/19 17:53	
Manganese	ug/L	<2.1	5.0	2.1	05/24/19 17:53	
Molybdenum	ug/L	<2.6	20.0	2.6	05/24/19 17:53	
Potassium	ug/L	<79.0	500	79.0	05/24/19 17:53	
Sodium	ug/L	<144	500	144	05/24/19 17:53	

LABORATORY CONTROL SAMPLE:	2406485					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	983	98	85-115	
Beryllium	ug/L	1000	986	99	85-115	
Boron	ug/L	1000	968	97	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Cobalt	ug/L	1000	1010	101	85-115	
Iron	ug/L	10000	9900	99	85-115	
Lead	ug/L	1000	1020	102	85-115	
Lithium	ug/L	1000	996	100	85-115	
Magnesium	ug/L	10000	9910	99	85-115	
Manganese	ug/L	1000	981	98	85-115	
Molybdenum	ug/L	1000	938	94	85-115	
Potassium	ug/L	10000	9800	98	85-115	
Sodium	ug/L	10000	9940	99	85-115	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 2406			2406487							
Parameter	Units	60302527003 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	ug/L	1410	1000	1000	2360	2340	95	94	70-130	1	20	
Beryllium	ug/L	< 0.25	1000	1000	958	969	96	97	70-130	1	20	
Boron	ug/L	56.6J	1000	1000	1020	1050	97	100	70-130	3	20	
Calcium	ug/L	132000	10000	10000	142000	139000	97	71	70-130	2	20	
Cobalt	ug/L	<0.84	1000	1000	960	978	96	98	70-130	2	20	
Iron	ug/L	8120	10000	10000	17500	17400	94	93	70-130	0	20	
Lead	ug/L	<3.4	1000	1000	968	992	97	99	70-130	2	20	
Lithium	ug/L	23.8	1000	1000	1020	1040	99	101	70-130	2	20	
Magnesium	ug/L	35000	10000	10000	44500	44500	95	95	70-130	0	20	
Manganese	ug/L	226	1000	1000	1170	1190	94	97	70-130	2	20	
Molybdenum	ug/L	<2.6	1000	1000	924	942	92	94	70-130	2	20	
Potassium	ug/L	4170	10000	10000	14000	14100	98	99	70-130	1	20	
Sodium	ug/L	11000	10000	10000	20800	20900	98	99	70-130	0	20	

MATRIX SPIKE SAMPLE:	2406488						
		60302527010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	551	1000	1510	96	70-130	
Beryllium	ug/L	<0.25	1000	970	97	70-130	
Boron	ug/L	374	1000	1340	97	70-130	
Calcium	ug/L	172000	10000	178000	63	70-130 N	/ 11
Cobalt	ug/L	4.5J	1000	969	96	70-130	
Iron	ug/L	4840	10000	14300	94	70-130	
Lead	ug/L	<3.4	1000	969	97	70-130	
Lithium	ug/L	33.8	1000	1050	101	70-130	
Magnesium	ug/L	38100	10000	46900	88	70-130	
Manganese	ug/L	1590	1000	2520	92	70-130	
Molybdenum	ug/L	2.9J	1000	932	93	70-130	
Potassium	ug/L	6750	10000	16600	99	70-130	
Sodium	ug/L	61200	10000	70100	88	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 606334 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2478172 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	08/29/19 16:48	
Beryllium	ug/L	<0.25	1.0	0.25	08/29/19 16:48	
Boron	ug/L	<10.7	100	10.7	08/29/19 16:48	
Calcium	ug/L	<50.0	200	50.0	08/29/19 16:48	
Cobalt	ug/L	<0.84	5.0	0.84	08/29/19 16:48	
Iron	ug/L	14.0J	50.0	14.0	08/29/19 16:48	
Lead	ug/L	<3.4	10.0	3.4	08/29/19 16:48	
Lithium	ug/L	<5.9	10.0	5.9	08/29/19 16:48	
Magnesium	ug/L	22.3J	50.0	13.0	08/29/19 16:48	
Manganese	ug/L	<2.1	5.0	2.1	08/29/19 16:48	
Molybdenum	ug/L	<2.6	20.0	2.6	08/29/19 16:48	
Potassium	ug/L	<79.0	500	79.0	08/29/19 16:48	
Sodium	ug/L	<144	500	144	08/29/19 16:48	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	981	98	85-115	
Beryllium	ug/L	1000	985	98	85-115	
Boron	ug/L	1000	961	96	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Cobalt	ug/L	1000	985	98	85-115	
Iron	ug/L	10000	9890	99	85-115	
Lead	ug/L	1000	1050	105	85-115	
Lithium	ug/L	1000	1010	101	85-115	
Magnesium	ug/L	10000	9750	98	85-115	
Manganese	ug/L	1000	984	98	85-115	
Molybdenum	ug/L	1000	985	99	85-115	
Potassium	ug/L	10000	9940	99	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2478174 2478175												
			MS	MSD								
	6	0302527020	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	347	1000	1000	1300	1330	96	98	70-130	2	20	
Beryllium	ug/L	<0.25	1000	1000	975	993	98	99	70-130	2	20	
Boron	ug/L	221	1000	1000	1200	1210	98	99	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2478	174		2478175							
Parameter	6 Units	0302527020 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Calcium	ug/L	143000	10000	10000	156000	159000	125	153	70-130	2	20	M1
Cobalt	ug/L	<0.84	1000	1000	952	968	95	97	70-130	2	20	
Iron	ug/L	18400	10000	10000	28300	28700	99	104	70-130	2	20	
Lead	ug/L	<3.4	1000	1000	1010	1020	101	102	70-130	2	20	
Lithium	ug/L	27.3	1000	1000	986	1010	96	98	70-130	2	20	
Magnesium	ug/L	23000	10000	10000	33100	33500	101	106	70-130	1	20	
Manganese	ug/L	768	1000	1000	1760	1780	99	101	70-130	1	20	
Molybdenum	ug/L	22.4	1000	1000	1010	1020	98	100	70-130	2	20	
Potassium	ug/L	5720	10000	10000	15700	16100	100	104	70-130	2	20	
Sodium	ug/L	93300	10000	10000	105000	106000	115	132	70-130	2	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 587012 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015

METHOD BLANK: 2408417 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527015

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.078	1.0	0.078	05/30/19 16:38	
Arsenic	ug/L	< 0.065	1.0	0.065	05/30/19 14:56	
Cadmium	ug/L	< 0.033	0.50	0.033	05/30/19 14:56	
Chromium	ug/L	< 0.078	1.0	0.078	05/30/19 14:56	
Selenium	ug/L	< 0.085	1.0	0.085	05/30/19 14:56	
Thallium	ug/L	< 0.099	1.0	0.099	05/30/19 14:56	

LABORATORY CONTROL SAMPLE:	2408418					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	40.5	101	85-115	
Arsenic	ug/L	40	39.6	99	85-115	
Cadmium	ug/L	40	39.9	100	85-115	
Chromium	ug/L	40	40.1	100	85-115	
Selenium	ug/L	40	41.0	102	85-115	
Thallium	ug/L	40	38.3	96	85-115	

MATRIX SPIKE SAMPLE:	2408419	60302527001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	<0.078	40	39.7	99	70-130	
Arsenic	ug/L	28.7	40	67.1	96	70-130	
Cadmium	ug/L	0.055J	40	38.9	97	70-130	
Chromium	ug/L	0.16J	40	39.0	97	70-130	
Selenium	ug/L	0.14J	40	39.2	98	70-130	
Thallium	ug/L	<0.099	40	36.9	92	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2408420 2408421												
			MS	MSD								
	6	0302527010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.078	40	40	40.8	40.4	102	101	70-130	1	20	
Arsenic	ug/L	2.9	40	40	42.4	42.2	99	98	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 2408	420		2408421							
	6	0302527010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium	ug/L	<0.033	40	40	39.1	38.9	98	97	70-130	1	20	
Chromium	ug/L	0.091J	40	40	40.4	39.9	101	99	70-130	1	20	
Selenium	ug/L	< 0.085	40	40	39.4	38.4	98	96	70-130	3	20	
Thallium	ug/L	< 0.099	40	40	36.6	36.7	92	92	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 606449 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2478608 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Dame verten	11-26-	Blank	Reporting	MDI	A b d	0
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	< 0.078	1.0	0.078	09/04/19 11:49	
Arsenic	ug/L	< 0.065	1.0	0.065	09/04/19 11:49	
Cadmium	ug/L	< 0.033	0.50	0.033	09/04/19 11:49	
Chromium	ug/L	<0.078	1.0	0.078	09/04/19 11:49	
Selenium	ug/L	<0.085	1.0	0.085	09/04/19 11:49	
Thallium	ug/L	< 0.099	1.0	0.099	09/04/19 11:49	

LABORATORY CONTROL SAMPLE:	2478609					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	37.5	94	85-115	
Arsenic	ug/L	40	39.5	99	85-115	
Cadmium	ug/L	40	39.6	99	85-115	
Chromium	ug/L	40	39.5	99	85-115	
Selenium	ug/L	40	40.1	100	85-115	
Thallium	ug/L	40	37.3	93	85-115	

MATRIX SPIKE & MATRIX S	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2478610 2478611											
			MS	MSD								
		60302527022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.078	40	40	36.8	37.1	92	93	70-130	1	20	
Arsenic	ug/L	11.7	40	40	52.0	52.0	101	101	70-130	0	20	
Cadmium	ug/L	0.054J	40	40	37.5	37.8	94	94	70-130	1	20	
Chromium	ug/L	0.11J	40	40	41.9	42.1	104	105	70-130	1	20	
Selenium	ug/L	< 0.085	40	40	38.0	38.1	95	95	70-130	0	20	
Thallium	ug/L	< 0.099	40	40	38.5	38.8	96	97	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 584935 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527010, 60302527011, 60302527012

METHOD BLANK: 2400210 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527010, 60302527011, 60302527012

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.505/16/19 16:59

LABORATORY CONTROL SAMPLE: 2400211

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 494 99 90-110

SAMPLE DUPLICATE: 2400212

60302527003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 471 486 3 10 Alkalinity, Total as CaCO3 mg/L

SAMPLE DUPLICATE: 2400213

Date: 10/15/2019 04:06 PM

Parameter Units 60302527010 Dup Max Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 474 472 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 585263 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60302527004, 60302527013, 60302527014, 60302527015

METHOD BLANK: 2401500 Matrix: Water
Associated Lab Samples: 60302527004, 60302527013, 60302527014, 603025270

es: 60302527004, 60302527013, 60302527014, 60302527015 Blank Reporting

Parameter Units Result Limit MDL Analyzed

Alkalinity, Total as CaCO3 mg/L <6.5 20.0 6.5 05/17/19 12:29

LABORATORY CONTROL SAMPLE: 2401501

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 506 101 90-110

SAMPLE DUPLICATE: 2401502

60302527013 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 498 495 10 Alkalinity, Total as CaCO3 1 mg/L

SAMPLE DUPLICATE: 2401503

Date: 10/15/2019 04:06 PM

60302446001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 202 Alkalinity, Total as CaCO3 mg/L 197 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

 QC Batch:
 585265
 Analysis Method:
 SM 2320B

 QC Batch Method:
 SM 2320B
 Analysis Description:
 2320B Alkalinity

 Associated Lab Samples:
 60302527005, 60302527006, 60302527007, 60302527008, 60302527009

METHOD BLANK: 2401509 Matrix: Water

Associated Lab Samples: 60302527005, 60302527006, 60302527007, 60302527008, 60302527009

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.505/17/19 16:24

LABORATORY CONTROL SAMPLE: 2401510

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 502 100 90-110

SAMPLE DUPLICATE: 2401511

60302527005 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 292 288 10 Alkalinity, Total as CaCO3 1 mg/L

SAMPLE DUPLICATE: 2401512

Date: 10/15/2019 04:06 PM

 Parameter
 Units
 Result Result RPD
 Max RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 240
 243
 1
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 606955 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2480597 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<6.5</td>20.06.509/03/19 15:35

LABORATORY CONTROL SAMPLE: 2480598

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 489 98 90-110

SAMPLE DUPLICATE: 2480599

60312724002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 654 3 10 Alkalinity, Total as CaCO3 671 mg/L

SAMPLE DUPLICATE: 2480600

Date: 10/15/2019 04:06 PM

Parameter Units 60312565003 Dup Result RPD Max Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L ND <6.5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 584817 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527010, 60302527011, 60302527012, 60302527013,

60302527014

METHOD BLANK: 2399588 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527010, 60302527011, 60302527012, 60302527013,

Associated Lab Samples: 6030252 6030252		02, 60302527003,	60302527010,	60302527011	, 60302527012,	60302	527013,
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analy	zed	Qualifiers
Total Dissolved Solids	mg/L	<5.0	5.	0	5.0 05/15/19	16:02	
LABORATORY CONTROL SAMPLE:	2399589	On the	100	1.00	0/ 0		
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qua	lifiers
Total Dissolved Solids	mg/L	1000	1040	104	80-120		
SAMPLE DUPLICATE: 2399590							
Parameter	Units	60302398001 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solids	mg/L	746	77	<u>'</u> 2	3	10	
SAMPLE DUPLICATE: 2399591							
Parameter	Units	60302527003 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solids	mg/L	581	-		4	10	
SAMPLE DUPLICATE: 2399592							
Parameter	Units	60302527010 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solids	mg/L	931	93	9	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 585009 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids
Associated Lab Samples: 60302527004, 60302527005, 60302527006, 60302527007, 60302527008, 60302527009

METHOD BLANK: 2400558 Matrix: Water

Associated Lab Samples: 60302527004, 60302527005, 60302527006, 60302527007, 60302527008, 60302527009

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.05.005/16/19 14:01

LABORATORY CONTROL SAMPLE: 2400559

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1000 100 80-120

SAMPLE DUPLICATE: 2400560

60302496003 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 664 2 **Total Dissolved Solids** 652 10 mg/L

SAMPLE DUPLICATE: 2400561

Date: 10/15/2019 04:06 PM

60302589004 Dup Max RPD RPD Parameter Units Result Result Qualifiers 957 **Total Dissolved Solids** mg/L 960 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR Project:

Pace Project No.: 60302527

QC Batch: 586350 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60302527015

METHOD BLANK: 2405574 Matrix: Water

2405575

Associated Lab Samples: 60302527015

Blank Reporting MDL Parameter Limit Qualifiers Units Result Analyzed

Total Dissolved Solids <5.0 5.0 5.0 05/22/19 16:58 mg/L

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 986 99 80-120

SAMPLE DUPLICATE: 2405576

LABORATORY CONTROL SAMPLE:

60303029001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 531 10 D6 **Total Dissolved Solids** 97.0 138 mg/L

SAMPLE DUPLICATE: 2405577

60303174002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 1380 **Total Dissolved Solids** mg/L 1390 1 10

SAMPLE DUPLICATE: 2405578

Date: 10/15/2019 04:06 PM

60303078003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers **Total Dissolved Solids** 519 2 10 mg/L 529

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 606319 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2478126 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.05.008/29/19 09:03

LABORATORY CONTROL SAMPLE: 2478127

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2478128

60312794005 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 346 0 **Total Dissolved Solids** 346 10 mg/L

SAMPLE DUPLICATE: 2478129

Date: 10/15/2019 04:06 PM

60312794013 Dup Max RPD RPD Parameter Units Result Result Qualifiers 312 **Total Dissolved Solids** mg/L 318 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Chloride

Fluoride

Sulfate

Sulfate

Date: 10/15/2019 04:06 PM

QC Batch: 587622 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

mg/L

mg/L

mg/L

24.7

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015

METHOD BLANK: 2410440 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015

mg/L

_		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	05/30/19 11:43	
Fluoride	mg/L	< 0.085	0.20	0.085	05/30/19 11:43	
Sulfate	mg/L	<0.23	1.0	0.23	05/30/19 11:43	
LABORATORY CONTROL SAMPLE:	2410441					
		Spike	LCS L	CS %	% Rec	
Parameter	Units	Conc.	Result %	Rec I	Limits Qu	alifiers

5

5

2.5

10

		Ū										
MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2410	1442		2410443	3						
			MS	MSD								
	6	0302527003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual

10

4.9

2.5

4.8

35.4

90-110

90-110

90-110

109

80-120

0 15

107

97

100

96

35.6

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2410	444		2410445							
			MS	MSD								
		60302527010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	<4.2	2.5	2.5	2.9	3.0	112	114	80-120	1	15	
Sulfate	mg/L	24.0J	25	25	42.2	42.5	98	99	80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 587875 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60302527003, 60302527011, 60302527012, 60302527013

METHOD BLANK: 2411258 Matrix: Water

Associated Lab Samples: 60302527003, 60302527010, 60302527011, 60302527012, 60302527013

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	05/31/19 10:08	
Fluoride	mg/L	<0.085	0.20	0.085	05/31/19 10:08	
Sulfate	mg/L	<0.23	1.0	0.23	05/31/19 10:08	

LABORATORY CONTROL SAMPLE:	2411259					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.7	95	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	5	5.3	105	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2411260 2411261												
			MS	MSD								
		60302527003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.1	5	5	8.9	8.9	97	96	80-120	1	15	
Fluoride	mg/L	0.23	2.5	2.5	2.6	2.6	96	95	80-120	1	15	
Sulfate	mg/L	24.7	5	5	30.1	30.1	108	107	80-120	0	15	E

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2411262 2411263												
Parameter	Units	60302527010 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	175	250	250	418	415	97	96	80-120	1	15	
Fluoride Sulfate	mg/L mg/L	<4.2 24.0J	125 250	125 250	124 271	123 268	99 99	98 98	80-120 80-120	1	15 15	
Sullate	IIIg/∟	24.03	230	250	211	200	99	90	00-120		13	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2411265 2411266												
			MS	MSD								
	6	0303293015	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3080	2500	2500	6090	5880	120	112	80-120	4	15	
Fluoride	mg/L	ND	1250	1250	1180	1250	94	100	80-120	6	15	
Sulfate	mg/L	ND	2500	2500	2880	2910	99	100	80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

QC Batch: 608445 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 2485576 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.43J	1.0	0.22	09/10/19 10:44	
Fluoride	mg/L	<0.085	0.20	0.085	09/10/19 10:44	
Sulfate	mg/L	<0.23	1.0	0.23	09/10/19 10:44	

LABORATORY CONTROL SAMPLE:	2485577					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	
Sulfate	mg/L	5	5.0	99	90-110	

MATRIX SPIKE SAMPLE:	2485578						
Parameter	Units	60313886001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	610	500	1050	88	80-120	
Fluoride	mg/L	<20.0	250	261	104	80-120	
Sulfate	mg/L	1460	500	1910	90	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2485	580		2485581							
			MS	MSD								
		60313883001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	8.5	2.5	2.5	11.2	11.3	108	110	80-120	0	15	E

SAMPLE DUPLICATE: 2485623						
		60313885001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	1070	1090	1	15	
Fluoride	mg/L	1.3	1.4	1	15	
Sulfate	mg/L	2290	2330	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 608637 QC Batch Method: EPA 300.0 Analysis Method: Analysis Description:

EPA 300.0

300.0 IC Anions

Associated Lab Samples: 60302527020

METHOD BLANK: 2486357

Matrix: Water

Associated Lab Samples:

Date: 10/15/2019 04:06 PM

60302527020

Blank Reporting

Limit MDL Parameter Units Result Qualifiers Analyzed Chloride 0.34J 1.0 0.22 09/11/19 10:28 mg/L Sulfate mg/L < 0.23 1.0 0.23 09/11/19 10:28

LABORATORY CONTROL SAMPLE: 2486358

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2486360 2486359

mg/L

		60313341002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	194000	50000	50000	276000	276000	165	164	80-120	0	15	E,M1
Sulfate	mg/L	ND	50000	50000	75000	82500	143	158	80-120	9	15	M1

MATRIX SPIKE SAMPLE: 2486361 60313615004 MS MS % Rec Spike % Rec Qualifiers Parameter Units Result Conc. Result Limits 80-120 Chloride 1.7 5 6.5 95 mg/L Sulfate 15.2 5 20.5 80-120 E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

106

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-1S Lab ID: 60302527001 Collected: 05/08/19 17:20 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.436 ± 0.535 (0.879) C:NA T:85%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	0.378 ± 0.335 (0.678) C:78% T:93%	pCi/L	05/30/19 16:07	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-1M Lab ID: 60302527002 Collected: 05/08/19 16:50 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	2.04 ± 0.716 (0.158) C:NA T:92%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	1.25 ± 0.467 (0.679) C:80% T:82%	pCi/L	05/30/19 16:07	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-1D Lab ID: 60302527003 Collected: 05/08/19 15:50 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

FVV3.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	2.02 ± 0.777 (0.585) C:NA T:82%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	3.43 ± 0.839 (0.688) C:75% T:85%	pCi/L	05/30/19 16:07	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-3S Lab ID: 60302527004 Collected: 05/09/19 10:30 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

FVV3.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.555 ± 0.350 (0.150) C:NA T:88%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	1.13 ± 0.423 (0.621) C:80% T:94%	pCi/L	05/30/19 16:07	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-3M Lab ID: 60302527005 Collected: 05/09/19 10:25 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.657 ± 0.409 (0.403) C:NA T:93%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	0.502 ± 0.596 (1.26) C:79% T:88%	pCi/L	05/30/19 20:06	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-3D Lab ID: 60302527006 Collected: 05/09/19 11:10 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.24 ± 0.550 (0.160) C:NA T:91%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	0.519 ± 0.532 (1.10) C:82% T:84%	pCi/L	05/30/19 20:06	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-5S Lab ID: 60302527007 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.08 ± 0.684 (0.882) C:NA T:80%	pCi/L	06/05/19 16:42	13982-63-3	
Radium-228	EPA 904.0	0.659 ± 0.519 (1.03) C:79% T:88%	pCi/L	05/30/19 18:52	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-5M Lab ID: 60302527008 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	2.19 ± 0.761 (0.165) C:NA T:92%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.745 ± 0.511 (0.978) C:77% T:89%	pCi/L	05/30/19 18:54	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-5D Lab ID: 60302527009 Collected: 05/09/19 13:30 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection time on containers does not match COC; client was notified.

		•				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.46 ± 0.674 (0.654) C:NA T:83%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.904 ± 0.511 (0.924) C:80% T:92%	pCi/L	05/30/19 18:54	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-UMW-10S (AMW-1S) Lab ID: 60302527010 Collected: 05/08/19 14:50 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.792 ± 0.436 (0.388) C:NA T:94%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.668 ± 0.376 (0.660) C:73% T:84%	pCi/L	05/30/19 16:07	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-UMW-10D (AMW-1D) Lab ID: 60302527011 Collected: 05/08/19 16:00 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.10 ± 0.540 (0.176) C:NA T:80%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	1.22 ± 0.684 (1.25) C:77% T:84%	pCi/L	05/30/19 20:08	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-NE-DUP-1 Lab ID: 60302527012 Collected: 05/08/19 16:00 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.434 ± 0.368 (0.456) C:NA T:87%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.679 ± 0.556 (1.11) C:78% T:90%	pCi/L	05/30/19 20:09	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-NE-DUP-2 Lab ID: 60302527013 Collected: 05/08/19 16:00 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.77 ± 0.686 (0.434) C:NA T:91%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	1.19 ± 0.699 (1.30) C:77% T:87%	pCi/L	05/30/19 20:10	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-NE-FB-1 Lab ID: 60302527014 Collected: 05/08/19 17:25 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	-0.0658 ± 0.532 (1.10) C:NA T:85%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.0539 ± 0.542 (1.25) C:78% T:79%	pCi/L	05/30/19 20:10	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-NE-FB-2 Lab ID: 60302527015 Collected: 05/08/19 14:30 Received: 05/10/19 03:25 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.316 ± 0.512 (0.891) C:NA T:78%	pCi/L	06/05/19 16:57	13982-63-3	
Radium-228	EPA 904.0	0.706 ± 0.571 (1.13) C:80% T:79%	pCi/L	05/30/19 20:10	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-1D MS Lab ID: 60302527016 Collected: 05/08/19 15:50 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 903.1 98.43 %REC ± NA (NA) Radium-226 pCi/L 06/05/19 17:09 13982-63-3 C:NA T:NA EPA 904.0 76.49 %REC ± NA (NA) Radium-228 pCi/L 05/30/19 16:07 15262-20-1 C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-1D MSD Lab ID: 60302527017 Collected: 05/08/19 15:50 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

Method Act ± Unc (MDC) Carr Trac Units **Parameters** Analyzed CAS No. Qual EPA 903.1 72.20 %REC 30.74 RPD ± Radium-226 pCi/L 06/05/19 17:09 13982-63-3 NA (NA) C:NA T:NA 85.89 %REC 11.58 RPD ± EPA 904.0 pCi/L Radium-228 05/30/19 16:07 15262-20-1 NA (NA) C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-UMW-10S (AMW-1S) MS Lab ID: 60302527018 Collected: 05/08/19 14:50 Received: 05/10/19 03:25 Matrix: Water

PWS: Site ID: Sample Type:

Method Act ± Unc (MDC) Carr Trac CAS No. **Parameters** Units Analyzed Qual EPA 903.1 112.84 % REC ± NA (NA) Radium-226 pCi/L 06/05/19 17:09 13982-63-3 C:NA T:NA EPA 904.0 98.75 %REC ± NA (NA) Radium-228 pCi/L 06/03/19 13:37 15262-20-1 C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-UMW-10S (AMW-1S) Lab ID: 60302527019 Collected: 05/08/19 14:50 Received: 05/10/19 03:25 Matrix: Water

MSD

PWS: Site ID: Sample Type:

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	127.59 % REC 12.27 RPD ± NA (NA) C:NA T:NA	pCi/L	06/05/19 17:09	13982-63-3	
Radium-228	EPA 904.0	91.06 %REC 8.11 RPD ± NA (NA) C:NA T:NA	pCi/L	06/03/19 13:37	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-2S Lab ID: 60302527020 Collected: 08/20/19 10:15 Received: 08/22/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.0607 ± 0.277 (0.563) C:NA T:97%	pCi/L	09/04/19 13:49	13982-63-3	
Radium-228	EPA 904.0	0.433 ± 0.430 (0.892) C:83% T:82%	pCi/L	09/03/19 16:37	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-2M Lab ID: 60302527021 Collected: 08/20/19 11:00 Received: 08/22/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.42 ± 0.720 (0.693) C:NA T:84%	pCi/L	09/04/19 13:49	13982-63-3	
Radium-228	EPA 904.0	1.51 ± 0.505 (0.667) C:81% T:83%	pCi/L	09/03/19 16:37	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-2D Lab ID: 60302527022 Collected: 08/20/19 11:55 Received: 08/22/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

1 445.	Site ib.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.08 ± 0.684 (0.883) C:NA T:94%	pCi/L	09/04/19 13:49	13982-63-3	
Radium-228	EPA 904.0	0.524 ± 0.364 (0.700) C:81% T:89%	pCi/L	09/03/19 16:37	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-4S Lab ID: 60302527023 Collected: 08/20/19 15:30 Received: 08/22/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

1 443.	Site ib.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.14 ± 0.569 (0.464) C:NA T:98%	pCi/L	09/04/19 14:02	13982-63-3	
Radium-228	EPA 904.0	0.0893 ± 0.325 (0.736) C:83% T:80%	pCi/L	09/03/19 16:37	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-4M Lab ID: 60302527024 Collected: 08/20/19 16:15 Received: 08/22/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.416 ± 0.337 (0.188) C:NA T:99%	pCi/L	09/04/19 14:02	13982-63-3	
Radium-228	EPA 904.0	0.881 ± 0.448 (0.795) C:80% T:85%	pCi/L	09/03/19 16:39	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Sample: L-TP-4D Lab ID: 60302527025 Collected: 08/20/19 12:55 Received: 08/22/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

1 445.	Site ib.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.79 ± 0.877 (0.937) C:NA T:86%	pCi/L	09/04/19 14:02	13982-63-3	
Radium-228	EPA 904.0	1.11 ± 0.474 (0.771) C:80% T:86%	pCi/L	09/03/19 16:38	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 358893 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 1742542 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.199 \pm 0.332 (0.723) C:82% T:82% pCi/L 09/03/19 16:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 342777 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015, 60302527016, 60302527017, 60302527018, 60302527019

METHOD BLANK: 1668423 Matrix: Water

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015, 60302527016, 60302527017, 60302527018, 60302527019

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.330 ± 0.292 (0.587) C:84% T:93%
 pCi/L
 05/30/19 16:07

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 342776 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60302527001, 60302527002, 60302527003, 60302527004, 60302527005, 60302527006, 60302527007,

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015, 60302527016, 60302527017, 60302527018, 60302527019

METHOD BLANK: 1668422 Matrix: Water

 $Associated \ Lab \ Samples: \qquad 60302527001, \ 60302527002, \ 60302527003, \ 60302527004, \ 60302527005, \ 60302527006, \ 60302527007, \ 6030$

60302527008, 60302527009, 60302527010, 60302527011, 60302527012, 60302527013, 60302527014,

60302527015, 60302527016, 60302527017, 60302527018, 60302527019

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.522 ± 0.413 (0.562) C:NA T:83%
 pCi/L
 06/05/19 16:42

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

QC Batch: 358892 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

METHOD BLANK: 1742541 Matrix: Water

Associated Lab Samples: 60302527020, 60302527021, 60302527022, 60302527023, 60302527024, 60302527025

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-226 $0.463 \pm 0.368 \quad (0.478) \text{ C:NA T:91\%}$ pCi/L $09/04/19 \; 13:36$

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 10/15/2019 04:06 PM

B Analyte was detected in the associated method blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch		
60302527001	L-TP-1S	EPA 200.7	586620	EPA 200.7	 586751		
60302527002	L-TP-1M	EPA 200.7	586620	EPA 200.7	586751		
60302527003	L-TP-1D	EPA 200.7	586620	EPA 200.7	586751		
60302527004	L-TP-3S	EPA 200.7	586620	EPA 200.7	586751		
60302527005	L-TP-3M	EPA 200.7	586620	EPA 200.7	586751		
60302527006	L-TP-3D	EPA 200.7	586620	EPA 200.7	586751		
60302527007	L-TP-5S	EPA 200.7	586620	EPA 200.7	586751		
60302527008	L-TP-5M	EPA 200.7	586620	EPA 200.7	586751		
60302527009	L-TP-5D	EPA 200.7	586620	EPA 200.7	586751		
60302527010	L-UMW-10S (AMW-1S)	EPA 200.7	586620	EPA 200.7	586751		
60302527011	L-UMW-10D (AMW-1D)	EPA 200.7	586620	EPA 200.7	586751		
60302527012	L-NE-DUP-1	EPA 200.7	586620	EPA 200.7	586751		
60302527013	L-NE-DUP-2	EPA 200.7	586620	EPA 200.7	586751		
60302527014	L-NE-FB-1	EPA 200.7	586620	EPA 200.7	586751		
60302527015	L-NE-FB-2	EPA 200.7	586620	EPA 200.7	586751		
60302527020	L-TP-2S	EPA 200.7	606334	EPA 200.7	606381		
60302527021	L-TP-2M	EPA 200.7	606334	EPA 200.7	606381		
60302527021 60302527022	L-TP-2D	EPA 200.7	606334	EPA 200.7	606381		
60302527023	L-TP-4S	EPA 200.7	606334	EPA 200.7	606381		
60302527024	L-TP-4M	EPA 200.7	606334	EPA 200.7	606381		
60302527025	L-TP-4D	EPA 200.7	606334	EPA 200.7	606381		
60302527001	L-TP-1S	EPA 200.8	587012	EPA 200.8	587056		
60302527002	L-TP-1M	EPA 200.8	587012	EPA 200.8	587056		
60302527003	L-TP-1D	EPA 200.8	587012	EPA 200.8	587056		
60302527004	L-TP-3S	EPA 200.8	587012	EPA 200.8	587056		
60302527005	L-TP-3M	EPA 200.8	587012	EPA 200.8	587056		
60302527006	L-TP-3D	EPA 200.8	587012	EPA 200.8	587056		
60302527007	L-TP-5S	EPA 200.8	587012	EPA 200.8	587056		
60302527008	L-TP-5M	EPA 200.8	587012	EPA 200.8	587056		
60302527009	L-TP-5D	EPA 200.8	587012	EPA 200.8	587056		
60302527010	L-UMW-10S (AMW-1S)	EPA 200.8	587012	EPA 200.8	587056		
60302527011	L-UMW-10D (AMW-1D)	EPA 200.8	587012	EPA 200.8	587056		
60302527012	L-NE-DUP-1	EPA 200.8	587012	EPA 200.8	587056		
60302527013	L-NE-DUP-2	EPA 200.8	587012	EPA 200.8	587056		
60302527014	L-NE-FB-1	EPA 200.8	587012	EPA 200.8	587056		
60302527015	L-NE-FB-2	EPA 200.8	587012	EPA 200.8	587056		
60302527020	L-TP-2S	EPA 200.8	606449	EPA 200.8	606513		
60302527021	L-TP-2M	EPA 200.8	606449	EPA 200.8	606513		
60302527022	L-TP-2D	EPA 200.8	606449	EPA 200.8	606513		
0302527023	L-TP-4S	EPA 200.8	606449	EPA 200.8	606513		
60302527024	L-TP-4M	EPA 200.8	606449	EPA 200.8	606513		
0302527025	L-TP-4D	EPA 200.8	606449	EPA 200.8	606513		
60302527001	L-TP-1S	EPA 7470	586214	EPA 7470	586383		
60302527002	L-TP-1M	EPA 7470	586214	EPA 7470	586383		
	-····						
60302527003	L-TP-1D	EPA 7470	586214	EPA 7470	586383		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60302527005	L-TP-3M	EPA 7470	587034	EPA 7470	587159
60302527006	L-TP-3D	EPA 7470	587034	EPA 7470	587159
60302527007	L-TP-5S	EPA 7470	587034	EPA 7470	587159
60302527008	L-TP-5M	EPA 7470	587034	EPA 7470	587159
60302527009	L-TP-5D	EPA 7470	587325	EPA 7470	587547
60302527010	L-UMW-10S (AMW-1S)	EPA 7470	587325	EPA 7470	587547
60302527011	L-UMW-10D (AMW-1D)	EPA 7470	587325	EPA 7470	587547
0302527012	L-NE-DUP-1	EPA 7470	587325	EPA 7470	587547
0302527013	L-NE-DUP-2	EPA 7470	587325	EPA 7470	587547
0302527014	L-NE-FB-1	EPA 7470	587325	EPA 7470	587547
0302527015	L-NE-FB-2	EPA 7470	587325	EPA 7470	587547
0302527020	L-TP-2S	EPA 7470	606407	EPA 7470	606463
60302527021	L-TP-2M	EPA 7470	606407	EPA 7470	606463
0302527021	L-TP-2D	EPA 7470	606407	EPA 7470	606463
0302527023	L-TP-4S	EPA 7470	606407	EPA 7470	606463
0302527024	L-TP-4M	EPA 7470	606407	EPA 7470	606463
60302527025	L-TP-4D	EPA 7470	606407	EPA 7470	606463
60302527001	L-TP-1S	EPA 903.1	342776		
0302527002	L-TP-1M	EPA 903.1	342776		
0302527003	L-TP-1D	EPA 903.1	342776		
0302527004	L-TP-3S	EPA 903.1	342776		
0302527005	L-TP-3M	EPA 903.1	342776		
0302527006	L-TP-3D	EPA 903.1	342776		
0302527007	L-TP-5S	EPA 903.1	342776		
0302527008	L-TP-5M	EPA 903.1	342776		
0302527009	L-TP-5D	EPA 903.1	342776		
0302527010	L-UMW-10S (AMW-1S)	EPA 903.1	342776		
0302527011	L-UMW-10D (AMW-1D)	EPA 903.1	342776		
0302527012	L-NE-DUP-1	EPA 903.1	342776		
0302527013	L-NE-DUP-2	EPA 903.1	342776		
0302527014	L-NE-FB-1	EPA 903.1	342776		
0302527015	L-NE-FB-2	EPA 903.1	342776		
0302527016	L-TP-1D MS	EPA 903.1	342776		
0302527017	L-TP-1D MSD	EPA 903.1	342776		
0302527018	L-UMW-10S (AMW-1S) MS	EPA 903.1	342776		
0302527019	L-UMW-10S (AMW-1S) MSD	EPA 903.1	342776		
0302527020	L-TP-2S	EPA 903.1	358892		
0302527021	L-TP-2M	EPA 903.1	358892		
0302527022	L-TP-2D	EPA 903.1	358892		
0302527023	L-TP-4S	EPA 903.1	358892		
0302527024	L-TP-4M	EPA 903.1	358892		
0302527025	L-TP-4D	EPA 903.1	358892		
0302527001	L-TP-1S	EPA 904.0	342777		
0302527001	L-TP-18 L-TP-1M	EPA 904.0 EPA 904.0	342777		
0302527002 0302527003	L-TP-1M L-TP-1D	EPA 904.0 EPA 904.0	342777 342777		
0302527003	L-TP-3S	EPA 904.0 EPA 904.0	342777		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
60302527005	L-TP-3M	EPA 904.0	342777		
60302527006	L-TP-3D	EPA 904.0	342777		
0302527007	L-TP-5S	EPA 904.0	342777		
0302527008	L-TP-5M	EPA 904.0	342777		
0302527009	L-TP-5D	EPA 904.0	342777		
0302527010	L-UMW-10S (AMW-1S)	EPA 904.0	342777		
	L-UMW-10D (AMW-1D)	EPA 904.0	342777		
	L-NE-DUP-1	EPA 904.0	342777		
0302527013	L-NE-DUP-2	EPA 904.0	342777		
0302527014	L-NE-FB-1	EPA 904.0	342777		
0302527015	L-NE-FB-2	EPA 904.0	342777		
	L-TP-1D MS	EPA 904.0	342777		
0302527017	L-TP-1D MSD	EPA 904.0	342777		
	L-UMW-10S (AMW-1S) MS	EPA 904.0	342777		
	L-UMW-10S (AMW-1S) MSD	EPA 904.0	342777		
0302527020	L-TP-2S	EPA 904.0	358893		
0302527021	L-TP-2M	EPA 904.0	358893		
0302527022	L-TP-2D	EPA 904.0	358893		
0302527023	L-TP-4S	EPA 904.0	358893		
0302527024	L-TP-4M	EPA 904.0	358893		
0302527025	L-TP-4D	EPA 904.0	358893		
	L-TP-1S	SM 2320B	584935		
	L-TP-1M	SM 2320B	584935		
0302527003	L-TP-1D	SM 2320B	584935		
0302527004	L-TP-3S	SM 2320B	585263		
	L-TP-3M	SM 2320B	585265		
	L-TP-3D	SM 2320B	585265		
	L-TP-5S	SM 2320B	585265		
	L-TP-5M	SM 2320B	585265		
0302527009	L-TP-5D	SM 2320B	585265		
	L-UMW-10S (AMW-1S)	SM 2320B	584935		
	L-UMW-10D (AMW-1D)	SM 2320B	584935		
0302527012	L-NE-DUP-1	SM 2320B	584935		
0302527013	L-NE-DUP-2	SM 2320B	585263		
0302527014	L-NE-FB-1	SM 2320B	585263		
0302527015	L-NE-FB-2	SM 2320B	585263		
0302527020	L-TP-2S	SM 2320B	606955		
0302527021	L-TP-2M	SM 2320B	606955		
0302527022	L-TP-2D	SM 2320B	606955		
0302527023	L-TP-4S	SM 2320B	606955		
0302527024	L-TP-4M	SM 2320B	606955		
0302527025	L-TP-4D	SM 2320B	606955		
0302527001	L-TP-1S	SM 2540C	584817		
0302527002	L-TP-1M	SM 2540C	584817		
	L-TP-1D	SM 2540C	584817		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
60302527004	 L-TP-3S	SM 2540C	585009		
0302527005	L-TP-3M	SM 2540C	585009		
0302527006	L-TP-3D	SM 2540C	585009		
0302527007	L-TP-5S	SM 2540C	585009		
0302527008	L-TP-5M	SM 2540C	585009		
0302527009	L-TP-5D	SM 2540C	585009		
0302527010	L-UMW-10S (AMW-1S)	SM 2540C	584817		
0302527011	L-UMW-10D (AMW-1D)	SM 2540C	584817		
0302527012	L-NE-DUP-1	SM 2540C	584817		
0302527013	L-NE-DUP-2	SM 2540C	584817		
0302527014	L-NE-FB-1	SM 2540C	584817		
0302527015	L-NE-FB-2	SM 2540C	586350		
0302527020	L-TP-2S	SM 2540C	606319		
0302527021	L-TP-2M	SM 2540C	606319		
0302527022	L-TP-2D	SM 2540C	606319		
0302527023	L-TP-4S	SM 2540C	606319		
0302527024	L-TP-4M	SM 2540C	606319		
0302527025	L-TP-4D	SM 2540C	606319		
0302527001	L-TP-1S	EPA 300.0	587622		
0302527002	L-TP-1M	EPA 300.0	587622		
0302527003	L-TP-1D	EPA 300.0	587622		
0302527003	L-TP-1D	EPA 300.0	587875		
0302527004	L-TP-3S	EPA 300.0	587622		
0302527005	L-TP-3M	EPA 300.0	587622		
0302527006	L-TP-3D	EPA 300.0	587622		
0302527007	L-TP-5S	EPA 300.0	587622		
0302527008	L-TP-5M	EPA 300.0	587622		
0302527009	L-TP-5D	EPA 300.0	587622		
0302527010	L-UMW-10S (AMW-1S)	EPA 300.0	587622		
0302527011	L-UMW-10D (AMW-1D)	EPA 300.0	587622		
0302527011	L-UMW-10D (AMW-1D)	EPA 300.0	587875		
0302527012	L-NE-DUP-1	EPA 300.0	587622		
0302527012	L-NE-DUP-1	EPA 300.0	587875		
0302527013	L-NE-DUP-2	EPA 300.0	587622		
0302527013	L-NE-DUP-2	EPA 300.0	587875		
0302527014	L-NE-FB-1	EPA 300.0	587622		
0302527015	L-NE-FB-2	EPA 300.0	587622		
0302527020	L-TP-2S	EPA 300.0	608445		
0302527020	L-TP-2S	EPA 300.0	608637		
0302527021	L-TP-2M	EPA 300.0	608445		
0302527022	L-TP-2D	EPA 300.0	608445		

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60302527

Date: 10/15/2019 04:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60302527023	L-TP-4S	EPA 300.0	608445		
60302527024	L-TP-4M	EPA 300.0	608445		
60302527025	L-TP-4D	EPA 300.0	608445		

Sample Condition Upon Receipt

WO#:60302527

1 20	
ECI□ Pace□ Xroads Q	Client □ Other □
ng Label Used? Yes □ No 🗓	
Foam □ None □ Oth	ext ZPIC
Corrected 15-2	Date and initials of person examining contents: 5-10-19
	2.1,0.8,1.0
□No □N/A	
□No □N/A	
□No □N/A	
XNo □N/A	
ØNo □N/A	
□No ĎN/A	
□No DINA	
□No □N/A	
ENO DINA	
	es, lot #'s of preservative and the
date/time added.	
□No	
□No	
□No ŪNIA	
□No VIN/A	*
□No ŒNA	
□No DANA	
Y / N Field Data Required	? Y / N
5/10/10	
S S S S S S S S S S S S S S S S S S S	ping Label Used? Yes No Is intact: Yes No Foam None Oth Wet Blue None Corrected S December S No N/A S

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

				EPA EPA		12	==	10	9	œ	7	o	Ch	4	ယ	2	_	ITEM #			Reques	Phone:	Email To:		Address:	Company:	Required C
				200.7: B, Ca, Ba, Be, C 200.8: Sb, As, Cd, Ct, S	ADDITION													SAMPLE ID (AZ 091,-) Sample IDs MUST BE UNIQUE	Section D Required Client Information		Requested Due Date/TAT:	636-724-9191		Ballwin, MO 63021		y: Golder Associates	Required Client Information:
				EPA 2007 B. Ca, Ba, Be, Co, Pb, Li, Mo, Fe, Mg, Mn, K, Na EPA 200 B Sb, Aa, Cd, Cr, Se, Tl	ADDITIONAL COMMENTS	L-TP-4D	L-TP-4M	L-TP-4S	L-TP-3D	L-TP-3M	L-TP-3S	L-TP-2D	L-TP-2M	L-TP-2S	L-TP-1D	L-TP-1M	L-TP-1S	D J UNIQUE	Valid Matrix Codes MATRIX CODE		Standard	Fax: 636-724-9323	jeffrey ingram@golder.com	63021	13515 Barrett Parkway Drive, Ste 260	ciates	
				0														79 7 A A R P WWW	CODE DW WT WT		Project Number: 153-1406-01.0001 (COC #10)	Project Name:	Purchase Order No :		Copy To:	Report To: Jeffrey ingram	Required Project Information:
			(0	RELIN	TW.	TW	\$	¥.	TW	1	TW	M	4	\$	4	NT.	MATRIX CODE (see valid codes SAMPLE TYPE (G=GRAB C=CC	_		ber: 15	- 1	der No		yan F	Jeffrey	oject Inf
				1	HSIDD	G	0	G	ര	G	ດ	ര	0	6	G	o O	6		JIVIF)		3-140	neren			eldma	ingrai	ormatio
1	-	ι		5/6	RELINQUISHED BY / AFFILIATION	L		-			_	_	_	_				COMPOSITE START DATE TI	0		6-01,000	Labadie I			Ryan Feldmann/Eric Schneider	з	2.
200	PRIN	SAMPLER NAME AND SIGNATURE		olde,	ILIATION	1	/		-		5/1/17				51818	5/8	5/8	ME	COLLECTED		1 (COC #	Ameren Labadie Energy Center			chneider		
MATURE	JT Name	AME AN		1	RASI	COMPOSITI	ä		0)	enter																	
PRINT Name of SAMPLER:	ID SIGN		5/4/	DAIE				110	C20	1030				公公	150	4720	TIME										
	ATUR		119	П						Ĺ							SAMPLE TEMP AT COLLECTION		1	g	2 70	20 '0	>	0	ъ	=	
- 1	A	m		i.		, [1	S					5	U	2	# OF CONTAINERS		1	Pace Profile #	Pace Pro Manager	Pace Quote Reference:	Address:	Company Name:	Attention:	Invoice Information:
				SEL	ME	-	+	+	2	5	1 20	-	-	-	16	2	2	Unpreserved H ₂ SO ₄			file #	ject	ote	*:	ny Nan	3.	Inform
1	t'en		+	Ť	+			1	U	U	I U				-0	Ci	w	HNO ₃	Pres	1	9285	Jam			ne:		ation:
T.	'							1	-		+	-	1	1	-	-		HCI NaOH	Preservatives	L	QI	Jamie Church					
9	No.			K	Ι,	-	+	+	+	t	+	-	+	1	-	\vdash	-	Na ₂ S ₂ O ₃	tives			hurc	(1)				
	2		_	2	1 5		1		1	T	No.						E	Methanol	1	1							
	25			B	i	ACCEPTED BY / AFFI								1	L			Other		-		М					
				60	. 5	3 -	-	_	D.		N/	-	_	_	12	-	1	↓Analysis Test↓	Y/N.	1							
DAT		l B		R	١		+	+	F		-	+	+	+	0		X	Metals* Mercury	z	뒣							
TE Signed	Н	M		1		LIATION	+	+	1		X	+	+	1	1		×	Chloride/Fluoride/Sulfate	z	ues.	П						
pen					1	ž -			F	-	X		T		T	-	×	TDS	z	18							
1									H	-	×				1	-	X	Alkalinity	z	inal		SH			ᇛ		
				3	1		1	1		+		+	+	+	1	-		D- 1' 000	z	/sis	ST	5	UST	NPDES	Ę.	0	
				30		DATE	+	+	1	E	X	+	+	+	T	-	X	Radium 226 Radium 228	z	quested Analysis Filtered (Y/N)	STATE:	Site Location		S	REGULATORY AGENCY	-1	
5						-	+	+	-		X	+	+	Ť	t	1	1	radian 220		1		_	1		YA		
П			1 1 1	0.88		I I	1			1	000	3	T		00	1	20			N/S	11		공	(9)	GEN		
J.		1		8					(-	COPY	5			130	1	180			Ĭ		S _O	RCRA	NO.	2	4	_
Ter	ni an	°°	000	15-2		L			1	1	2	1	1	+	2	-	10		1111	4	4			N			
	T	.(104-6	100	1	L	1	-	1	+	100	-	+		-	1	A	Residual Chlorine (Y/N)			11	111	4	GROUND WATER	1		1
	elve		1	77	4	40		×	1	+	Fac.)			next	1	P2U	7 (11/2		1	20	1		-
IC	e (Y/	3/4)		1	1	AMP			1						100		1	0 C						0			
	usto			1	1	SAMPLE CONDITIONS			K		03				3	1	NEGS	Pace Project No/ Lab I.D.					9	DRI			
	ed C (Y/N)	ooler)	(1	0	IGNC			1		NE	1			0	2	Z	182					OTHER	DRINKING WATER			
				SIL	+	NOIT			1		151				W339	1	100	E C					1	\ 	1		1
am	ples	Intac	6	1		U)			t	+	- 2				U		OE	[g						ATE			
	(Y/N				1				6		0				Back	60		[-					3	ZŪ.			
			1 1 1	_					8	1 8	5 0			-	IĆ	15	9	i i	1111	1111	MI	1111	1				L

ace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

	T	17	*EPA 20		12	#	10	9	œ	7	6	Ų1	4	ω	2	1	ITEM #			Requeste	Phone:	Email To:		Address:	Company:	Required C
			10 7: B, Ca, Ba, Be, Co 10 8: Sb. As, Cd, Cr, Se	ADDITION								L-U	L-U				SAMPLE ID (A-Z, 0-9/) Sample IDs MUST BE UNIQUE	Section D Required Client Information		Requested Due Date/TAT:	636-724-9191		Ballwin, MO 63021	13515 Barret	Golder Associates	Required Client Information:
			'EPA 200 7: B, Ca, Ba, Be, Co, Pb, Li, Mo, Fe, Mg, Mn, K, Na 'EPA 200 8: Sb, As, Cd, Cr, Se, Tl	ADDITIONAL COMMENTS				L-NE-FB-2	L-NE-FB-1	L-NE-DUP-2	L-NE-DUP-1	L-UMW-10D (AMW-1D)	L-UMW-10S (AMW-1S)	L-TP-5D	L-TP-5M	L-TP-5S	WATER WATER WASTE WASTE WATER PRODUCT SOIL/SOLID OIL	Valid Matrix C MATRIX		Standard	Fax: 636-724-9323	jeffrey_ingram@golder.com	53021	13515 Barrett Parkway Drive, Ste 260	ciates	
	1		(Jac)														TS SE	CODE		Project Number: 153-1406-01.0001 (COC #10)	Project Name:	Purchase Order No.:		Сору То:	Report To: Jeffrey Ingram	Required Project Information:
				RELIN	WT	M	5	M	Š.	*	\$	¥.	M.	4	¥ C	TW	MATRIX CODE (see valid codes SAMPLE TYPE (G=GRAB C=C)	-		iber: 15	1.7	rder No.		Ryan F	Jeffrey	roject Inf
			S.	QUISHED	ဂ	o	G	۵	G	ဂ	ര	ര	ര	G	G	6	D	JIVIP)		53-1406	meren L	Ü		eldmar	Ingram	formation
	ş		16	RELINQUISHED BY I AFFILIATION	H	-			_	_	_	_				H	ART	0		-01.000	abadie E			n/Eric S		
PRI	SAMPLER NAME AND SIGNATURE		Solde	ILIATION	1			5/6	5/8	×	5/8	5	VT.			5191	TIME	COLLECTED		1 (COC #	Ameren Labadie Energy Center			Ryan Feldmann/Eric Schneider		
NT Name	NAME AN							19/19	_	18/18/5	5/8/15	51815	-			19	COMPOSITE ENDIGRAB	Œ		1 10)	enter					
PRINT Name of SAMPLER:	ID SIGNA		54119	DATE				1430	25	1	1	009	150 150	1480	1330	1530	TIME									
ER:	TURE			L"				Ų.					2				SAMPLE TEMP AT COLLECTION			P	Z 70	20.70	>	0	2	=
			1.	TIME			1	1-					2	1	I	CR	# OF CONTAINERS Unpreserved			Pace Profile #:	Pace Project Manager:	Pace Quole Reference	Address:	Company Name:	Attention:	Invoice Information:
1x			738	m	H		-	F	7					-	F	2	H ₂ SO ₄		П		90	ole	"	y Nam	7.	nforma
Se			8	10		F		1	=			=	W	-	-	W	HNO₃ HCI	Preservatives	П	9285	Jamie Church			P.		tion:
36			Ta	jil.	H		t		-								NaOH	vati			Chi					
Ac			7	ACC									L	L	L		Na ₂ S ₂ O ₃ Methanol	/es			ırch					
Win			7	EPTE	H	+	-	-		+	-	-	H				Other									
5			15.80	ACCEPTED BY / AFFIL				-									↓Analysis Test↓	Y/N.	П	Ш						
,			,	AFF		I		1-	-			E	×	t	-	×	Metals*	z	Req							
4				LIATION	H	-	+	۲			F	E	×	1	Ε	X	Mercury Chloride/Fluoride/Sulfate	z	que	М						
				2	-	-	+	1-					X	+		×	TDS	z	sted					Ш		
					T			1	=	-	-	-	×	4	-	×	Alkalinity	z	Ana		S			ᇛ		
			5//		L	I	L												lysis	S	:e Lo	UST	NP.	읩		
			5/18/19	DATE	L	+	-	1	E			-	X	2	=	1	Radium 226 Radium 228	z	∄	STATE:	Site Location	-	NPDES	₹ O		
		-		H	H	+	+	T				20	(C)		F	SI	Radiuiti 220	2	uested Analysis Filtered (Y/N)	**	3			REGULATORY AGENCY		
		-01	SX.	i i	E	1	1	(-	-			P	15			187			CYN			2/	9	8		
			100	0				L		1		Š	Š	1	-	1			_	1	5	RCRA	NOON	1	7	_
emp in	°C	000	17:00		H	-	+	-	+	+	-	12	K	-	-	B	Residual Chlorine (Y/N)	1111	111			1	D W	W		Tage.
	F	11		-	H	+	+	1	=			10	8	-	+	12				111	M	1	GROUND WATER	/		.9
ceived		1	5	SA				1				SC	5		1	C	Pa 6						-			1
Custoo	tv	,		SAMPLE CONDITIONS							13	15	S	-	-	8	Pace Project No./ Lab I.D.									
custod aled Co (Y/N)	ooler		-	CON				-	-	-	-	Tu	BOW			5	8 90 ₂					OTHER	DRINKING WATER			2
(1/14)			-	IOITIO							1	5	1	1		Y	S S					75	₩G			2
mples I	Intacid	-	1	8				1				B	NE NE	1		C	[\(\alpha \)						WAT	1		1
mpies i (Y/N)					1			1				17	Y	000	0	00	i.						뛰			
		1 1 1		1	1			M	1	C	U	IV	F4	IV	1 5	10	1	11111	111	1111	111		- 1	1 7		ı

Sample Condition Upon Receipt

Client Name: Golder		
+	PEX 🗆 ECI 🗆	Pace □ Xroads Ø Client □ Other □
Starter Start Star	ce Shipping Label Use	
Custody Seal on Cooler/Box Present: Yes 🚺 No 🗆	Seals intact: Yes	,
Packing Material: Bubble Wrap □ Bubble Bags		2 None Other JAPIC
	fice: Wet Blue N	ne other many
Cooler Temperature (°C): As-read 0.9 21.9 Corr. Fac	,	Date and initials of namedy 1
Temperature should be above freezing to 6°C	tor <u>VIZ</u> confec	ted (), 1/21. examining contents: 7/22/19 HF
Chain of Custody present:	Yes ONO ON/A	2 CODIENS
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Zyes DNo DN/A	
Short Hold Time analyses (<72hr):	□Yes ∕ No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes 🗆 No 🗆 N/A	
Correct containers used:	Yes No N/A	
Pace containers used:	✓Yes □No □N/A	
Containers intact:	✓Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	QYes □No □N/A	
Samples contain multiple phases? Matrix: MT	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	ŹYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes No □N/A	
Headspace in VOA vials (>6mm);	□Yes □No Ø N/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? DYes DNo DN/A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/,Resolution:		
Janai Churh		8/22/19
Project Manager Review:	Date	2

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

022 023 023 Pace Project No./ Lab I.D. DRINKING WATER (N/A) Samples Intact BP3N BP3L F-ALL-Q-020rev 07, 15-May-2007 SAMPLE CONDITIONS OTHER 32! (N/X) Custody Sealed Cooler φ Ice (Y/N) Received on GROUND WATER Residual Chlorine (Y/N) O° ni qmeT 8A S REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME BPIN Site Location STATE NPDES DATE 1/12/80 UST Necl 822 mm ps DATE Signed (MM/DD/YY): +NUM11 00151 ACCEPTED BY / AFFILIATION SIL Pace Quote
Reference:
Pace Project
Manager:
Pace Profile #: ↑ test Test N/A Other Methanol Na₂S₂O₃ Preservatives HOBN というととからら HCI Invoice Information: company Name: [†]OS^zH Section C Unpreserved 8 ttention: Address: TIME SIGNATURE of SAMPLER: # OF CONTAINERS 'n SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 1615 1155 1530 TIME 0011 7 1015 一天 00 COMPOSITE END/GRAB 61/02/8 DATE COLLECTED RELINQUISHED BY / AFFILIATION TIME project Name: Americal Laborate El Project Number: 15:3 j.40601,000 COMPOSITE Jeffrer Ingram DATE Required Project Information: Report To: Mark Ha (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: (see valid codes to left) MATRIX CODE Section B ORIGINAL Copy To: Matrix Codes MATRIX / CODE Drinking Water Water Waste Water 12 636 - 724-7503 Barec Htarkury William Product Soil/Solid Oil Wipe Air Tissue Other Seg ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Belling 140 II BY ompany, leo ldles Hasso SAMPLE ID Marke golder, Con TP-2M TP-4m ードーコロ ノアノコイ 36-724-9191 Required Client Information Section A Required Client Information: トアーン Requested Due Date/TAT: ddress: | 3515 Section D EP\$200.7 090 As. BA 200.8 10 9 9 Ŧ 12 # M3TI ~ e 4 œ 6 7 Page 92 of 92

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per month for any invoices not paid within 30 days

MEMORANDUM

DATE October 16, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy Goodwin EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – NATURE AND EXTENT - DATA PACKAGE 60302527

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was analyzed outside of EPA hold time, detections were recorded at the result and qualified as estimates (J).
- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a duplicate comparison criterion was not met, associated sample detections were qualified as estimates (J).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).

	y Name: Golder Associates	_	Proje	ect Mana	ger: J Ingram						
	Name: Ameren - Labadie - N&E	_	Project Number: 1531406								
Reviewe	er: T Goodwin	_	Valid	dation Da	te: 10/16/2019						
Analytic Matrix:	ar mouriou (typo una no.).		lg); EPA 903		Rads); SM2320B (Alk); SM2540C (TDS); EPA 300.0 (Anions)						
	UP-1, L-NE-DUP-2, L-NE-FB-1, L-NE-FB-2, L-TP-1D MS, L- M, L-TP-2D, L-TP-4S, L-TP-4M, L-TP-4D	TP-1D	MSD, L-UM	W-10S (A	MW-1S) MS, L-UMW-10S (AMW-1S) MSD, L-TP-2S,						
	Please provide calculation in Comment areas or	on the	back (if	on the b	ack please indicate in comment areas).						
Field In	formation	YES	NO	NA	COMMENTS						
a)	Sampling dates noted?	x			5/8-5/9/2019 and 8/20/209						
b)	Sampling team indicated?	x									
c)	Sample location noted?	x									
d)	Sample depth indicated (Soils)?			х							
e)	Sample type indicated (grab/composite)?	x									
f)	Field QC noted?	×									
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb						
h)	Field Calibration within control limits?	×									
i)	Notations of unacceptable field conditions/performa	nces f	rom field lo	ogs or fie	eld notes?						
·			×								
j)	Does the laboratory narrative indicate deficiencies? Note Deficiencies:			×							
Chain	& Cuetada (COC)	YES	NO	NA NA	COMMENTS						
Chain-C	f-Custody (COC)	IES	NO	NA	COMMENTS						
a)	Was the COC properly completed?	х									
b)	Was the COC signed by both field and laboratory personnel?	x	П	П							
c)	Were samples received in good condition?	x									
Genera	l (reference QAPP or Method)	YES	NO	NA	COMMENTS						
a)	Were hold times met for sample pretreatment?	X									
b)	Were hold times met for sample analysis?		х		See Notes						
c)	Were the correct preservatives used?	×									
d)	Was the correct method used?	х									
e)	Were appropriate reporting limits achieved?	х									
f)	Were any sample dilutions noted?	x			See Notes						
g)	Were any matrix problems noted?		×								

Revised May 2004 Page 1 of 3

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	x			See Notes
b)	Were analytes detected in the field blank(s)?	х			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			x	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	x			
b)	Were the proper analytes included in the LCS?	x			
c)	Was the LCS accuracy criteria met?	x			
Duplica		YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	-	sample n	ames)?	DUP-1 @ AM-1D, DUP-2 @ TP-1M
		x			FB-1 @ TP-1S, FB-2 @ TP-5D
b)	Were field dup. precision criteria met (note RPD)?		х		See Notes
c)	Were lab duplicates analyzed (note original and du	plicate s	amples)?	•	
		x			-27003,05,10,13: Alk, TDS
d)	Were lab dup. precision criteria met (note RPD)?	x			Max Lab DUP RPD: 4% (Limit 10%)
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		×		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			x	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		×		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
b)			x		See Notes
	Was MSD accuracy criteria met?	ш	لثا		
	Was MSD accuracy criteria met? Recovery could not be calculated since sample contained high concentration of analyte?			×	
c)	Recovery could not be calculated since sample				
,	Recovery could not be calculated since sample contained high concentration of analyte?			x	
Comm	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met?	×		x	(0.43);
Comm	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met? ents/Notes:	x -25: Fe	(14.0), N	x	(0.43);
Comm MB: - FB-1:	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met? ents/Notes: 27001-15: Ca (50.7), Fe (15.2), Mg (20.3); -27020-	x -25: Fe	(14.0), N	x	(0.43);
MB: - FB-1:	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met? ents/Notes: 27001-15: Ca (50.7), Fe (15.2), Mg (20.3); -27020-18 (11.3), Ca (61.7), Cr (0.088), TDS (6.5); FB-2:	-25: Fe	(14.0), N	x □	(0.43);
MB: - FB-1: DUP-	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met? ents/Notes: 27001-15: Ca (50.7), Fe (15.2), Mg (20.3); -27020-28 B (11.3), Ca (61.7), Cr (0.088), TDS (6.5); FB-2: 11: Be (200), Pb (200), Cr (38), Ra-226 (200);	-25: Fe TDS (11	(14.0), M (1.8)	x □ lg (22.3), Cl	
MB: - FB-1: DUP- DUP- MS/M	Recovery could not be calculated since sample contained high concentration of analyte? Were MS/MSD precision criteria met? ents/Notes: 27001-15: Ca (50.7), Fe (15.2), Mg (20.3); -27020-28 B (11.3), Ca (61.7), Cr (0.088), TDS (6.5); FB-2: 1: Be (200), Pb (200), Cr (38), Ra-226 (200); 2: B (32), Sb (200), As (117), Cd (200), Cr (96), S	-25: Fe TDS (11	(14.0), M (1.8)	x □ lg (22.3), Cl	

Revised May 2004 Page 2 of 3

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TP-1S	Boron (B)	100	U	Detected in FB-1: PQL>Result>MDL
"	Chromium (Cr)	1.0	U	n
L-UMW-10S (AMW-1S)	Calcium (Ca)	-	J	MS %Rec Low; Result>MDL
L-UMW-10D (AMW-1D)	Radium-226 (Ra-226)	-	J	RPD Exceeded Limits: MDC>Result
L-NE-FB-1	Ca	200	U	Detected in Method Blank (MB); PQL>Result>MDL
L-NE-FB-2	Total Dissolved Solids (TDS)	_	J	Analyzed Outside of EPA Hold Time
L-TP-2S	11	_	J	п
11	Ca	-	J	MS %Rec High; Result>MDL
"	Sodium (Na)	-	J	п
L-TP-2M	TDS	-	J	Analyzed Outside of EPA Hold Time
L-TP-2D	11	-	J	II .
L-TP-4S	11	-	J	11
L-TP-4M	"	-	J	II .
L-TP-4D	"	-	J	11

Signature: 10/16/2019

Date: 10/16/2019

Revised May 2004

September 03, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on August 22, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 19-016-0

Arkansas Drinking Water Illinois Certification #: 004455

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET

Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60312684001	L-UMW-3D	Water	08/21/19 11:45	08/22/19 02:55

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60312684001	L-UMW-3D	EPA 300.0	MGS	1	PASI-K

ANALYTICAL RESULTS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Date: 09/03/2019 05:18 PM

Sample: L-UMW-3D Lab ID: 60312684001 Collected: 08/21/19 11:45 Received: 08/22/19 02:55 Matrix: Water

Parameters Results Units **PQL** MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 300.0 IC Anions 28 Days 21.2 2.0 09/03/19 14:39 16887-00-6 Chloride mg/L 0.44 2

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Date: 09/03/2019 05:18 PM

QC Batch: 606993 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60312684001

METHOD BLANK: 2480800 Matrix: Water

Associated Lab Samples: 60312684001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Chloride mg/L <0.22 1.0 0.22 09/03/19 11:07

LABORATORY CONTROL SAMPLE: 2480801

Parameter Units Spike LCS LCS % Rec Limits Qualifiers

Chloride mg/L 5 4.6 91 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2480802 2480803

MS MSD

MSD 60312584001 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Chloride 7800 7930 2 mg/L 1690 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 09/03/2019 05:18 PM

PASI-K Pace Analytical Services - Kansas City

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60312684

Date: 09/03/2019 05:18 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60312684001	L-UMW-3D	EPA 300.0	606993		

Sample Condition Upon Receipt

Client Name: Golder		
Courier: FedEx UPS VIA Clay F	PEX [] ECI []	Pace □ Xroads 🗹 Client □ Other □
Tracking #: Pac	ce Shipping Label Use	d? Yes□ No 🖟
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	,
Packing Material: Bubble Wrap ☐ Bubble Bags ☐ Type of	fice: Wet Blue No	Date and initials of person .
Cooler Temperature (°C): As-read /. 2 Corr. Fact Temperature should be above freezing to 6°C	for <u>-0, 2</u> Correct	ted // 0 examining contents:8/22/19 H
The second secon	hy my my	
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	ÄYes □No □N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes ØNo □N/A	
Rush Turn Around Time requested:	□Yes □No □N/A	
Sufficient volume:	ZYes □No □N/A	
Correct containers used:	Yes No N/A	
Pace containers used:	✓Yes □No □N/A	
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes \\ \begin{align*} \text{No} \text{□N/A} \\ \end{align*}	
	□Yes ZNo □N/A	
Filtered volume received for dissolved tests?	,	
Sample labels match COC: Date / time / ID / analyses	Yes No N/A	
Samples contain multiple phases? Matrix: VT	□Yes ☑No □N/A	11.
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	□Yes □No Ø N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:	□Yes □No	
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes ØNo □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
	□Yes □No ZN/A	
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field' Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/T		
Comments/ Resolution:		
Janui Chush		
Project Manager Review:	Date	8/23/19

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

1403120341 Pace Project No./ Lab I.D. (N/A) DRINKING WATER SAMPLE CONDITIONS Sealed Cooler (Y/N) OTHER þ Custody Ice (Y/N) Received on GROUND WATE Page: Residual Chlorine (Y/N) O° ni qmeT REGULATORY AGENCY Θ RCHA TIME Requested Analysis Filtered (Y/N) 5 STATE: Site Location NPDES 1/12/80 QATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION SUI Mil Fourty z stallu2\abhoufT\abhoth8 z Metals ₽N/A taeT eisylsnA ↓ Other Methanol Jamie Church Preservatives $Na_2S_2O_3$ XVIVED NaOH HCI 9285 nvoice Information: €ОИН Company Name: Pace Quote
Reference:
Pace Project
Manager:
Pace Profile #: C POS²H Section C 8 TIME Unpreserved Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 5 DATE 8/21/ TIME eport To: Mark Haddock (mhaddock@golder.com) COMPOSITE END/GRAB 12/FS DATE COLLECTED Purchase Order No: Lukach, & LCF A roject Number: 153-1406.00036 (696-117) roject Name: Ameren Sieux-EC SOPC RELINQUISHED BY / AFFILIATION TIME COMPOSITE DATE Section B Required Project Information: Copy To: Jeffrey Ingram WT G WT G WT G WT G WT G WT 34YT 3J4MA2 G (G=GRAB C=COMP) WT G ΤW W W ۲ W MATRIX CODE Valid Matrix Codes
MATRIX
CODE
WINNEWS WATER
WINTER
WASTE WATER
WIN WASTE WATER
WINTER
WINTER
WINTER
WINTER
WINTER
WINTER
OUL
OUL
OUL
TIS 13515 Barrett Parkway Drive, Ste 260 Fax: 636-724-9323 S-SCPO-DUP-1 S-SCPC-FB-1 S-BMW-1S S-BMW-8S S-DG-1 8-DG-2 S-DG-3 S-pg-4 S-UG-1A S-0G-2 ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE maddock@golder.com SAMPLE ID Golder Associates Ballwin, MO 63021 Section D Required Client Information Required Client Information: equested Due Date/TAT: ione: 636-724-9191 Email To: 10 Ξ 42 co 9 N က 4 7 8 6 # MaTi

MEMORANDUM

DATE September 30, 2019 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCPA – VERIFICATION SAMPLING - DATA PACKAGE 60312684

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

None.

Project Name: Americal-Labadic - LCPA	Company Name: Golder Associates			Proje	ger: J Ingram	
Laboratory: Pace Analylical - KS Analytical Method (type and no.): SPA 300.0 (Anions)						
Analytical Method (type and no.): EPA 300.0 (Anions) Matrix: Air Soli/Sed: Water Waste Sample Names L-UMW-3D Water Waste Waste	Review	er: T Goodwin	_	Valid	dation Da	ate: 9/30/2019
Matrix:	Laborat	ory: Pace Analytical - KS		SDG	#: 60312	2684
Sample Names L-UMW-3D NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas). Field Information YES NO NA COMMENTS a) Sampling dates noted?	Analytic	cal Method (type and no.): EPA 300.0 (Anions)				
NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas). Field Information YES NO NA COMMENTS						
Field Information YES NO NA COMMENTS	Sample	Names L-UMW-3D				
Field Information YES NO NA COMMENTS						
Field Information YES NO NA COMMENTS	NOTE:	Please provide calculation in Comment areas or	on the	e back (if	on the ba	ack please indicate in comment areas).
b) Sampling team indicated? c) Sample location noted? d) Sample depth indicated (Soils)? e) Sample type indicated (Goils)? e) Sample type indicated (Goils) (Goils)? e) Sample type indicated (Goils) (Goils)? f) Field QC noted? g) Field parameters collected (note types)? i) Notations of unacceptable field conditions/performances from field logs or field notes? i) Notations of unacceptable field conditions/performances from field logs or field notes? i) Note Deficiencies: Chain-of-Custody (COC) YES NO NA COMMENTS a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? Seneral (reference QAPP or Method) YES NO NA COMMENTS a) Were hold times met for sample pretreatment? ii) Were hold times met for sample analysis?						
b) Sampling team indicated? c) Sample location noted? d) Sample depth indicated (Soils)? e) Sample type indicated (Grab)composite)? f) Field QC noted? g) Field parameters collected (note types)? h) Field Calibration within control limits? i) Notations of unacceptable field conditions/performances from field logs or field notes?	-		×	П	П	
c) Sample location noted? d) Sample depth indicated (Soils)? e) Sample type indicated (Grab)composite)? f) Field QC noted? g) Field parameters collected (note types)? h) Field Calibration within control limits? i) Notations of unacceptable field conditions/performances from field logs or field notes?					_	
d) Sample depth indicated (Soils)?	,		_			
e) Sample type indicated (Fab)composite)?			_		_	
f) Field QC noted? g) Field parameters collected (note types)? k) pH, Sp.Cond, ORP, Temp, DO, Turb h) Field Calibration within control limits? k) pH, Sp.Cond, ORP, Temp, DO, Turb h) Field Calibration within control limits? k) pH, Sp.Cond, ORP, Temp, DO, Turb pH, Sp.Cond,						
g) Field parameters collected (note types)?	•		_	_	_	· · · · · · · · · · · · · · · · · · ·
h) Field Calibration within control limits?	,					pH Sp Cond ORP Temp DO Turb
i) Notations of unacceptable field conditions/performances from field logs or field notes?					_	pri, op. solia, ora , reinp, be, raib
j) Does the laboratory narrative indicate deficiencies?			_	_		
j) Does the laboratory narrative indicate deficiencies?	1)	Notations of unacceptable field conditions/performa			_	eid notes?
Note Deficiencies: Chain-of-Custody (COC) YES NO NA COMMENTS a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) YES NO NA COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?					_	
Chain-of-Custody (COC) YES NO NA COMMENTS a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? General (reference QAPP or Method) YES NO NA COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?	j)			Ш	X	
a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?		Note Deficiencies:	—			
a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?						
a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?						
a) Was the COC properly completed? b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?	Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
b) Was the COC signed by both field and laboratory personnel? c) Were samples received in good condition? X COMMENTS a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?		(000)				
and laboratory personnel? c) Were samples received in good condition? Solution Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? Solution Were hold times met for sample analysis? Solution Were hold times met for sample analysis?	a)	Was the COC properly completed?	x			
c) Were samples received in good condition? Comments	b)		_			
General (reference QAPP or Method) a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis? x D COMMENTS		• •		_		
a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?	c)	Were samples received in good condition?	×		Ш	
a) Were hold times met for sample pretreatment? b) Were hold times met for sample analysis?	Gonora	N (reference CAPP or Method)	VES	NO	NIA	COMMENTS
b) Were hold times met for sample analysis?	Genera	in (reference CAFF of Method)	IES	NO	INA	COMMENTS
	a)	Were hold times met for sample pretreatment?	x			
c) Were the correct preservatives used?	b)	Were hold times met for sample analysis?	х			
	c)	Were the correct preservatives used?	×			
d) Was the correct method used?	d)	Was the correct method used?	×			
e) Were appropriate reporting limits achieved?	e)	Were appropriate reporting limits achieved?	×			
f) Were any sample dilutions noted?	f)		x			See Notes
g) Were any matrix problems noted?	,	• •	_	х		

Revised May 2004 Page 1 of 3

a) Were analytes detected in the method blank(s)?	
c) Were analytes detected in the equipment blank(s)?	
Laboratory Control Sample (LCS) A) Was a LCS analyzed once per SDG? B) Were the proper analytes included in the LCS? C) Was the LCS accuracy criteria met? Duplicates A) Were field duplicates collected (note original and duplicate sample names)? B) Were field dup. precision criteria met (note RPD)? C) Were lab duplicates analyzed (note original and duplicate samples)?	
Laboratory Control Sample (LCS) a) Was a LCS analyzed once per SDG? b) Were the proper analytes included in the LCS? c) Was the LCS accuracy criteria met? Duplicates YES NO NA COMMENTS COMMENTS	
a) Was a LCS analyzed once per SDG? b) Were the proper analytes included in the LCS? c) Was the LCS accuracy criteria met? YES NO NA COMMENTS a) Were field duplicates collected (note original and duplicate sample names)? b) Were field dup. precision criteria met (note RPD)? c) Were lab duplicates analyzed (note original and duplicate samples)?	
a) Was a LCS analyzed once per SDG? b) Were the proper analytes included in the LCS? c) Was the LCS accuracy criteria met? YES NO NA COMMENTS a) Were field duplicates collected (note original and duplicate sample names)? b) Were field dup. precision criteria met (note RPD)? c) Were lab duplicates analyzed (note original and duplicate samples)?	
b) Were the proper analytes included in the LCS?	
c) Was the LCS accuracy criteria met? X	
Duplicates A) Were field duplicates collected (note original and duplicate sample names)? B) Were field dup. precision criteria met (note RPD)? C) Were lab duplicates analyzed (note original and duplicate samples)? D) Were lab duplicates analyzed (note original and duplicate samples)?	
a) Were field duplicates collected (note original and duplicate sample names)?	
b) Were field dup. precision criteria met (note RPD)? C) Were lab duplicates analyzed (note original and duplicate samples)?	
b) Were field dup. precision criteria met (note RPD)? C) Were lab duplicates analyzed (note original and duplicate samples)?	
c) Were lab duplicates analyzed (note original and duplicate samples)?	
d) Were lab dup. precision criteria met (note RPD)?	
Blind Standards YES NO NA COMMENTS	
a) Was a blind standard used (indicate name,	
analytes included and concentrations)?	
b) Was the %D within control limits?	
Matrix Spike/Matrix Spike Duplicate (MS/MSD) YES NO NA COMMENTS	
2 N.	
a) Was Mo accuracy chieffa filet:	
Recovery could not be calculated since sample contained high concentration of analyte?	
b) Was MSD accuracy criteria met?	
Recovery could not be calculated since sample contained high concentration of analyte?	
c) Were MS/MSD precision criteria met?	
Comments/Notes:	
MS/MSD for unrelated samples	
Chloride analyzed at a dilution in L-UMW-3D	

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None				
		-		
		 	-	
······································				
		-		
	ís.			
ettikirin oli uutuvaa tiiskuutain minassan kitoistakinin on on opiannyistä yleet on prinssa mastaagilyn o		1		
			-	
			1	
		-	-	
				<u> </u>
en Prillion del 1970 è de 1911 constituire de l'annonce de la constant de la general de data de l'annonce de l				
	m / Ja	L	I	

November 13, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on October 19, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Tommy Goodwin, Golder Associates Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

North Dakota Certification #: R-190

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water

Illinois Certification #: 004455 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60318737001	L-AM-1S	Water	10/16/19 12:30	10/19/19 03:50
60318737002	L-AM-1D	Water	10/16/19 14:00	10/19/19 03:50

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60318737001	L-AM-1S	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	EMR	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60318737002	L-AM-1D	EPA 200.7	EMR	5	PASI-K
		EPA 200.8	EMR	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	MJK	3	PASI-K

ANALYTICAL RESULTS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

Sample: L-AM-1S	Lab ID:	60318737001	Collected	: 10/16/19	12:30	Received: 10/	19/19 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	537	ug/L	5.0	1.4	1	10/23/19 08:55	10/24/19 15:19	7440-39-3	
Boron	200	ug/L	100	10.7	1	10/23/19 08:55	10/24/19 15:19	7440-42-8	
Calcium	231000	ug/L	200	50.0	1	10/23/19 08:55	10/24/19 15:19	7440-70-2	
Lithium	23.4	ug/L	10.0	5.9	1	10/23/19 08:55	10/24/19 15:19	7439-93-2	
Molybdenum	<2.6	ug/L	20.0	2.6	1	10/23/19 08:55	10/24/19 15:19	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP/	A 200.8			
Arsenic	3.0	ug/L	1.0	0.065	1	10/23/19 15:03	10/29/19 17:21	7440-38-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	783	mg/L	13.3	13.3	1		10/23/19 13:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	7.8	mg/L	1.0	0.22	1		11/12/19 00:12	16887-00-6	
Fluoride	0.25	mg/L	0.20	0.085	1		11/12/19 00:12	16984-48-8	
Sulfate	78.8	mg/L	20.0	4.6	20		11/12/19 00:29	14808-79-8	

ANALYTICAL RESULTS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

Sample: L-AM-1D	Lab ID:	60318737002	Collected:	10/16/19	14:00	Received: 10/	19/19 03:50 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	72.6	ug/L	5.0	1.4	1	10/23/19 08:55	10/24/19 15:21	7440-39-3	
Boron	6540	ug/L	100	10.7	1	10/23/19 08:55	10/24/19 15:21	7440-42-8	
Calcium	88800	ug/L	200	50.0	1	10/23/19 08:55	10/24/19 15:21	7440-70-2	
Lithium	37.0	ug/L	10.0	5.9	1	10/23/19 08:55	10/24/19 15:21	7439-93-2	
Molybdenum	345	ug/L	20.0	2.6	1	10/23/19 08:55	10/24/19 15:21	7439-98-7	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP/	A 200.8			
Arsenic	2.3	ug/L	1.0	0.065	1	10/23/19 15:03	10/29/19 17:23	7440-38-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	684	mg/L	10.0	10.0	1		10/23/19 13:22		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	35.8	mg/L	5.0	1.1	5		11/12/19 01:03	16887-00-6	
Fluoride	0.38	mg/L	0.20	0.085	1		11/12/19 00:46	16984-48-8	
Sulfate	275	mg/L	50.0	11.5	50		11/12/19 01:20	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

QC Batch: 617629 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 2520187 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	10/24/19 14:50	
Boron	ug/L	<10.7	100	10.7	10/24/19 14:50	
Calcium	ug/L	<50.0	200	50.0	10/24/19 14:50	
Lithium	ug/L	<5.9	10.0	5.9	10/24/19 14:50	
Molybdenum	ug/L	<2.6	20.0	2.6	10/24/19 14:50	

LABORATORY CONTROL SAMPLE:	2520188	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	990	99	85-115	
Boron	ug/L	1000	962	96	85-115	
Calcium	ug/L	10000	10200	102	85-115	
Lithium	ug/L	1000	979	98	85-115	
Molybdenum	ug/L	1000	1020	102	85-115	

MATRIX SPIKE SAMPLE:	2520189	60318736001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	155	1000	1130	97	70-130	
Boron	ug/L	9440	1000	10200	81	70-130	
Calcium	ug/L	87100	10000	96300	92	70-130	
Lithium	ug/L	28.8	1000	994	97	70-130	
Molybdenum	ug/L	292	1000	1290	100	70-130	

MATRIX SPIKE & MATRIX SP		2520191										
	6	60318735001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	14.2	1000	1000	998	996	98	98	70-130	0	20	
Boron	ug/L	5260	1000	1000	6480	6410	122	114	70-130	1	20	
Calcium	ug/L	7340	10000	10000	17700	17700	103	103	70-130	0	20	
Lithium	ug/L	12.3	1000	1000	989	985	98	97	70-130	0	20	
Molybdenum	ug/L	302	1000	1000	1320	1320	101	102	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

20

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Arsenic

Date: 11/13/2019 04:06 PM

QC Batch: 617826 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 2520917 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Arsenic ug/L <0.065 1.0 0.065 10/29/19 16:55

LABORATORY CONTROL SAMPLE: 2520918

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 35.9 90 85-115

40

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2520919 2520920

ug/L

2.3

MS MSD MSD 60318737002 Spike Spike MS MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual

40

40.3

40.5

95

96

70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

QC Batch: 617499 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 2519915 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 10/23/19 13:19

LABORATORY CONTROL SAMPLE: 2519916

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 987 99 80-120

SAMPLE DUPLICATE: 2519917

60318456001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1140 2 10 **Total Dissolved Solids** 1120 mg/L

SAMPLE DUPLICATE: 2519918

Date: 11/13/2019 04:06 PM

60318595003 Dup Max RPD RPD Parameter Units Result Result Qualifiers 523 **Total Dissolved Solids** mg/L 537 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

QC Batch: 621676 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 2535170 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	11/11/19 19:42	
Fluoride	mg/L	< 0.085	0.20	0.085	11/11/19 19:42	
Sulfate	mg/L	<0.23	1.0	0.23	11/11/19 19:42	

METHOD BLANK: 2535876 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	11/12/19 21:35	
Fluoride	mg/L	<0.085	0.20	0.085	11/12/19 21:35	
Sulfate	mg/L	< 0.23	1.0	0.23	11/12/19 21:35	

LABORATORY CONTROL SAMPLE:	2535171					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.7	93	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

LABORATORY CONTROL SAMPLE:	2535877					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.8	96	90-110	
Fluoride	mg/L	2.5	2.6	106	90-110	
Sulfate	mg/L	5	5.3	105	90-110	

MATRIX SPIKE & MATRIX SP		2535173										
			MS	MSD								
		60318734001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	76.3	100	100	176	168	100	92	80-120	5	15	
Fluoride	mg/L	0.29	2.5	2.5	2.7	2.6	96	94	80-120	2	15	
Sulfate	mg/L	198	100	100	319	290	121	92	80-120	9	15	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

MATRIX SPIKE SAMPLE:	2535174						
		60319962005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	 mg/L	4.3		9.3	99	80-120	
Fluoride	mg/L	ND	2.5	2.9	116	80-120	
Sulfate	mg/L	17.9	5	23.5	111	80-120 E	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Sample: L-AM-1S Lab ID: 60318737001 Collected: 10/16/19 12:30 Received: 10/19/19 03:50 Matrix: Water

PWS: Site ID: Sample Type:

1 443.	Site ib.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.116 ± 0.393 (0.759) C:NA T:92%	pCi/L	11/11/19 13:45	13982-63-3	
Radium-228	EPA 904.0	1.16 ± 0.516 (0.865) C:81% T:86%	pCi/L	11/08/19 17:08	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Sample: L-AM-1D Lab ID: 60318737002 Collected: 10/16/19 14:00 Received: 10/19/19 03:50 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.296 ± 0.387 (0.638) C:NA T:101%	pCi/L	11/11/19 13:45	13982-63-3	
Radium-228	EPA 904.0	0.698 ± 0.457 (0.876) C:80% T:85%	pCi/L	11/08/19 17:08	15262-20-1	

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Radium-226

QC Batch: 368390 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

 0.000 ± 0.306 (0.647) C:NA T:87%

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 1787310 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

pCi/L

11/11/19 13:45

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

QC Batch: 368389 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60318737001, 60318737002

METHOD BLANK: 1787305 Matrix: Water

Associated Lab Samples: 60318737001, 60318737002

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers

Radium-228 0.274 ± 0.426 (0.922) C:70% T:83% pCi/L 11/08/19 12:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 11/13/2019 04:06 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60318737

Date: 11/13/2019 04:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60318737001	L-AM-1S	EPA 200.7	617629	EPA 200.7	617750
60318737002	L-AM-1D	EPA 200.7	617629	EPA 200.7	617750
60318737001	L-AM-1S	EPA 200.8	617826	EPA 200.8	617909
60318737002	L-AM-1D	EPA 200.8	617826	EPA 200.8	617909
60318737001	L-AM-1S	EPA 903.1	368390		
60318737002	L-AM-1D	EPA 903.1	368390		
60318737001	L-AM-1S	EPA 904.0	368389		
60318737002	L-AM-1D	EPA 904.0	368389		
60318737001	L-AM-1S	SM 2540C	617499		
60318737002	L-AM-1D	SM 2540C	617499		
60318737001	L-AM-1S	EPA 300.0	621676		
60318737002	L-AM-1D	EPA 300.0	621676		

Sample Condition Upon Receipt

Client Name: <u>Golder</u>		11.00
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pa	ce Shipping Label Use	d? Yes □ No Ø
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	
Packing Material: Bubble Wrap □ Bubble Bags,	✓ Foam □	None □ Other □
Thermometer Used: 794 Type of	of Ice: Wet Blue No	ne
Cooler Temperature (°C): As-read 2.1110 Corr. Fac	tor 0,4 Correc	ted 2.5,1.4 Date and initials of person examining contents: 161914
Temperature should be above freezing to 6°C		
Chain of Custody present:	Aes □No □N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Yes ONO ON/A	
Short Hold Time analyses (<72hr):	□Yes □N/A	
Rush Turn Around Time requested:	□Yes ZNo □N/A	
Sufficient volume:	ZYes □No □N/A	
Correct containers used:	Yes ONo ON/A	
Pace containers used:	Yes ONO ON/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	Yes ONO ON/A	
Samples contain multiple phases? Matrix:	Yes No N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:	□Yes □No	
Lead acetate strip tums dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
Samples from USDA Regulated Area: State:	□Yes □No ☑N/A	
Additional labels attached to 5035A / TX1005 vials in the field	I? □Yes □No ☑N/A	
Client Notification/ Resolution: Copy COC		Field Data Required? Y / N
Person Contacted: Date/	Time:	
Comments/ Resolution:		
Janui Chush		10/21/19
Project Manager Review:	Date	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1955 State Post	Required Client Information:		more and a solice							Transfer of	III VOICE TITOUTINGTOIL		1											
13515 Blanch Perkewy Dress Sulfer 20 Princes 13515 Blanch Perkewy Dress Sulfer 20 Princes 13514 Blanch Perkewy Dr	Company: Golder Associate	se	Report To: Ma	ark Hac	ddock (n	nhaddoc	k@golc	ler.com)		Artentio	ë									1				
SAMPLE ID Control of Control	Address: 13515 Barrett Pe	arkway Drive, Suite 26	Copy To:	ffrey In	ıgram					Compar	у Мате:						뿐	GULAT	ORY AG	ENCY				
The control of the	Ballwin, MO 630	21								Address							_	NPDE	L	GROUNE	WATER	L	DRINKING WATER	WATER
14-69-8800 The C89-724-5823 The Continue Antients Code The C89-724-5823 The Continue Antients Code The C89-724-5823 The C99-724-5823		er.com	Purchase Orde	r No.						Pace Qu	ote o:						L	UST		RCRA		L	THER	
1 1 1 1 1 1 1 1 1 1	314-984-8800	ах: 636-724-9323	Project Name:	Ame	ren Gro	undwate	ır Samp	1	CPA	Pace Pro	1	lamie (Church				S	ite Local	ion		-			
The Part		andard	Project Number	r. 153-	1406					Pace Pro		3285					Г	STA	į.	Q ■	1			
10 10 10 10 10 10 10 10															ď	senba	ed Ana	llysis Fi	Itered ()	(N)				
CONTROL CONT	Section D Required Client Information	Valid Matrix C	code			100	LECTE	٥			٩	reserv	atives	11//	_	_	z							
The commence The continuence The continuen			DW WT WW SL OL		COM! ST,	POSITE	ЯШ)MPOSITE ND/GRAB	OLLECTION	S						e/Sulfate	82				(N/Y) €			
WIT G		D UNIQUE	2000 XIGENT		DATE				VI		⁵OS²H	HCI	Na ₂ S ₂ O ₃	Other	*sls19M		Radium 226 & 2				7	208)	673	/ Lab I.
WIT G	-7		W	-		H		_	2	7		an an		F	-	-	-		F					8
WIT G	1 - Dm	C	W	-			12/61	-	9			eA.		F	-	-	-							6
WT G	/		* *	-	-			-	2								H							3
WT G	/		W	-															R					
WT G	2		W	_																				
WIT G	9		W	_														-3,						
WT G	_	/	W															18.5						
WIT G	80	/	W	_		_																		14
WIT G	6	/	W	_																				
WIT G WIT G WIT G WIT G MATHORITHMEN DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION ACCEPTED BY /	0	/	W																					
COMMENTS REDNOUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION ACCEPTED BY	1		W	_																				
COMMENTS RECMANISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME MATTHEWALISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION ACCEPTED	2		M	_															Ī				Ŋ	
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Detailed a signed a sign	ADDITIONAL C	OMMENTS		CHOUR	SHED BY	/ AFFILIA	NOIL		DATE	J.F	E		ACCI	EPTED B	Y / AFF	TLIATION	-	DATE	-	ME		SAMPLE	NOLLIGNO	S
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Death of CAMPIER: Death of CAMPIER	A 200.7: Ba, B, Ca, 🖜 Li, Mo A 200.8: As		1/44/	1000	A Park	zete	Soon	-	MASIO		15	7	7.7	50	3	Par		-			\vdash			
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: PRINT Name of SAMPLER: SIGNATURE of SAMPLER: PRINT Name OF SAMPL			9								Ť	1	M	13	1			1674			$\overline{}$			1
PRINT Name of SAMPLER: School Sampler of SAMPLER: School Sampler of Sampler o	Page					SAMP	ER NAN	IE AND SI	GNATUR		7													tost
WWW.DIANA.	e 19 of 1						PRINT		AMPLER	7	E.	Social	30	18	+ 48	TE Signi	- Pa - c	6/8/6	9			N/Y) eol		al selgms8 (N/Y)

MEMORANDUM

DATE January 2, 2020 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCPA – DETECTION MONITORING - DATA PACKAGE 60318737

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

None.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates	_	Proj	ect Manag	er: J Ingram
Project	Name: Ameren - Labadie - LCPA	_			er: 1531406
Review	er: T Goodwin	_	Valid	dation Date	e: <u>1/2/2020</u>
l ahorat	ory: Pace Analytical - KS		SDG	3 #: 603187	37
		 SM25400			ids); EPA 300.0 (Anions); EPA 903.1/904.0 (Radium)
•	,				
Sample	Names L-AM-1S, L-AM-1D				
			-		
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the ba	ck please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	×			10/16/2019
b)	Sampling team indicated?	x			
c)	Sample location noted?	×			
d)	Sample depth indicated (Soils)?			×	
e)	Sample type indicated (grab)composite)?	x			
f)	Field QC noted?	×			
g)	Field parameters collected (note types)?	×		П	pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	×	П		
i)	Notations of unacceptable field conditions/performa		_	oas or field	1 notes?
•,	The control of an acceptable field contained by performed	ооо·	×		2.110.000
j)	Does the laboratory narrative indicate deficiencies?			×	
1)	Note Deficiencies:				
	Note Deliciencies.				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	x			
b)	Was the COC signed by both field				
,	and laboratory personnel?	x			
c)	Were samples received in good condition?	х			
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
	•				
a)	Were hold times met for sample pretreatment?	x			
b)	Were hold times met for sample analysis?	x			
c)	Were the correct preservatives used?	x			
d)	Was the correct method used?	x			-
e)	Were appropriate reporting limits achieved?	x			
f)	Were any sample dilutions noted?	x			See Notes
a)	Were any matrix problems noted?		×	П	

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		х		
b)	Were analytes detected in the field blank(s)?			×	
c)	Were analytes detected in the equipment blank(s)?			×	
d)	Were analytes detected in the trip blank(s)?			х	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	x			
b)	Were the proper analytes included in the LCS?	x			
c)	Was the LCS accuracy criteria met?	x			
Duplica	ates	YES	NO	NA	COMMENTS
а)	Were field duplicates collected (note original and du	uplicate	sample r	names)?	
,	, , , ,		×	o o	
b)	Were field dup. precision criteria met (note RPD)?	\Box		×	
c)	Were lab duplicates analyzed (note original and dup	plicate :	— samples):	_	
,	, , ,	. 🗆	×		
d)	Were lab dup. precision criteria met (note RPD)?			x	
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,	П	×		COMMENTO
۵,	analytes included and concentrations)?	Ш			
b)	Was the %D within control limits?			х	
/				_	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	х			
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
b)	Was MSD accuracy criteria met?	×			
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
c)	Were MS/MSD precision criteria met?	х			
	ents/Notes: on: Chloride and Sulfate were diluted in several sai	mples;	no qualifi	ication is	necessary.
	1, 2, 1, 1				
			7/		
× -					

Revised May 2004 Page 2 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None				
			-	
		\wedge		
 				
	my Moorly	_ •	•	, /
Signature:	ma /Whore!			Date: 1/2/2020

Revised May 2004

December 09, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between November 07, 2019 and November 09, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Tommy Goodwin, Golder Associates Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification

Idaho Certification
Illinois Certification

Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3
Utah/TNI Certification #: PA014572017-9
USDA Soil Permit #: P330-17-00091
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 9526
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 19-016-0

Arkansas Drinking Water
Illinois Certification #: 004455
Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60320431001	L-UMW-1D	Water	11/06/19 10:00	11/07/19 03:50
60320431002	L-UMW-7D	Water	11/06/19 09:30	11/07/19 03:50
60320431003	L-UMW-8D	Water	11/05/19 14:45	11/07/19 03:50
60320431004	L-UMW-9D	Water	11/06/19 11:23	11/07/19 03:50
60320431005	L-BMW-1D	Water	11/05/19 10:00	11/07/19 03:50
60320431006	L-BMW-2D	Water	11/05/19 12:40	11/07/19 03:50
60320431007	L-UMW-DUP-1	Water	11/06/19 08:00	11/07/19 03:50
60320431008	L-UMW-FB-1	Water	11/06/19 11:46	11/07/19 03:50
60320431009	L-UMW-7D MS	Water	11/06/19 09:30	11/07/19 03:50
60320431010	L-UMW-7D MSD	Water	11/06/19 09:30	11/07/19 03:50
60320742001	L-UMW-2D	Water	11/07/19 12:30	11/09/19 02:55
60320742002	L-UMW-3D	Water	11/07/19 14:15	11/09/19 02:55
60320742003	L-UMW-4D	Water	11/07/19 09:25	11/09/19 02:55
60320742004	L-UMW-5D	Water	11/07/19 10:46	11/09/19 02:55
60320742005	L-UMW-6D	Water	11/07/19 12:48	11/09/19 02:55
60320742006	L-AM-1S	Water	11/07/19 14:05	11/09/19 02:55
60320742007	L-AM-1D	Water	11/07/19 15:25	11/09/19 02:55
60320742008	L-UMW-DUP-2	Water	11/07/19 08:00	11/09/19 02:55
60320742009	L-UMW-FB-2	Water	11/07/19 15:08	11/09/19 02:55

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60320431001	L-UMW-1D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431002	L-UMW-7D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS, MJK	3	PASI-K
0320431003	L-UMW-8D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	2320B AJS2 2540C BLA A 300.0 MGS, MJK	1	PASI-K
		EPA 300.0	MGS, MJK	3	PASI-K
0320431004	L-UMW-9D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431005	L-BMW-1D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431006	L-BMW-2D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

_ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431007	L-UMW-DUP-1	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431008	L-UMW-FB-1	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320431009	L-UMW-7D MS	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
0320431010	L-UMW-7D MSD	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
0320742001	L-UMW-2D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320742002	L-UMW-3D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60320742003	L-UMW-4D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320742004	L-UMW-5D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS, MJK	3	PASI-K
0320742005	L-UMW-6D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	AJS2 BLA MJK	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320742006	L-AM-1S	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320742007	L-AM-1D	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
0320742008	L-UMW-DUP-2	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60320742009	L-UMW-FB-2	EPA 200.7	HKC	10	PASI-K
		EPA 200.8	JGP	1	PASI-K
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-1D	Lab ID:	60320431001	Collected	d: 11/06/19	10:00	Received: 11/	07/19 03:50 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	ration Meth	nod: EP	A 200.7			
Barium	502	ug/L	5.0	1.4	1	11/21/19 15:17	11/22/19 20:26	7440-39-3	
Boron	1340	ug/L	100	10.7	1	11/21/19 15:17	11/22/19 20:26	7440-42-8	
Calcium	130000	ug/L	200	50.0	1	11/21/19 15:17	11/22/19 20:26	7440-70-2	M1
Iron	14600	ug/L	50.0	14.0	1	11/21/19 15:17	11/22/19 20:26	7439-89-6	
Lithium	24.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/22/19 20:26	7439-93-2	
Magnesium	35600	ug/L	50.0	13.0	1	11/21/19 15:17	11/22/19 20:26	7439-95-4	
Manganese	420	ug/L	5.0	2.1	1	11/21/19 15:17	11/22/19 20:26	7439-96-5	
Molybdenum	6.9J	ug/L	20.0	2.6	1	11/21/19 15:17	11/22/19 20:26	7439-98-7	
Potassium	6500	ug/L	500	79.0	1	11/21/19 15:17	11/22/19 20:26	7440-09-7	
Sodium	46000	ug/L	500	144	1	11/21/19 15:17	11/22/19 20:26	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepa	ration Meth	nod: EP	A 200.8			
Arsenic	49.7	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 15:59	7440-38-2	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	530	mg/L	20.0	6.5	1		11/12/19 15:16		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	634	mg/L	10.0	10.0	1		11/12/19 09:49		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
Chloride	14.1	mg/L	1.0	0.22	1		11/26/19 19:28	16887-00-6	
Fluoride	0.24	mg/L	0.20	0.085	1		11/26/19 19:28	16984-48-8	
Sulfate	86.0	mg/L	10.0	2.3	10		12/03/19 10:57		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-7D	Lab ID:	60320431002	Collected	: 11/06/19	9 09:30	Received: 11/	07/19 03:50 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical N	Method: EPA 20	00.7 Prepar	ation Meth	od: EP/	A 200.7			
Barium	131	ug/L	5.0	1.4	1	11/25/19 15:55	11/27/19 16:22	7440-39-3	
Boron	11000	ug/L	100	10.7	1	11/25/19 15:55	11/27/19 16:22	7440-42-8	
Calcium	266000	ug/L	200	50.0	1	11/25/19 15:55	11/27/19 16:22	7440-70-2	M1
Iron	13500	ug/L	50.0	14.0	1	11/25/19 15:55	11/27/19 16:22	7439-89-6	
Lithium	18.8	ug/L	10.0	5.9	1	11/25/19 15:55	11/27/19 16:22	7439-93-2	
Magnesium	30700	ug/L	50.0	13.0	1	11/25/19 15:55	11/27/19 16:22	7439-95-4	
Manganese	2390	ug/L	5.0	2.1	1	11/25/19 15:55	11/27/19 16:22	7439-96-5	
Molybdenum	342	ug/L	20.0	2.6	1	11/25/19 15:55	11/27/19 16:22	7439-98-7	
Potassium	8160	ug/L	500	79.0	1	11/25/19 15:55	11/27/19 16:22	7440-09-7	
Sodium	161000	ug/L	500	144	1	11/25/19 15:55	11/27/19 16:22	7440-23-5	M1
200.8 MET ICPMS	Analytical N	Method: EPA 20	00.8 Prepar	ation Meth	od: EP/	A 200.8			
Arsenic	24.1	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:00	7440-38-2	
2320B Alkalinity	Analytical N	Method: SM 23	20B						
Alkalinity, Total as CaCO3	165	mg/L	20.0	6.5	1		11/12/19 15:27		
2540C Total Dissolved Solids	Analytical N	Method: SM 25	40C						
Total Dissolved Solids	1560	mg/L	13.3	13.3	1		11/12/19 09:49		
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0						
Chloride	17.4	mg/L	1.0	0.22	1		12/02/19 21:05	16887-00-6	
Fluoride	0.16J	mg/L	0.20	0.085	1		12/02/19 21:05	16984-48-8	
Sulfate	992	mg/L	50.0	11.5	50		11/26/19 20:48	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-8D	Lab ID:	60320431003	Collected	: 11/05/19	14:45	Received: 11/	07/19 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP	A 200.7			
Barium	431	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 13:56	7440-39-3	
Boron	1680	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 13:56	7440-42-8	
Calcium	143000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 13:56	7440-70-2	
Iron	25000	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 13:56	7439-89-6	
Lithium	34.4	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 13:56	7439-93-2	
Magnesium	35100	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 13:56	7439-95-4	
Manganese	1140	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 13:56	7439-96-5	
Molybdenum	29.1	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 13:56	7439-98-7	
Potassium	5600	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 13:56	7440-09-7	
Sodium	26200	ug/L	500	144	1	11/21/19 15:17	11/23/19 13:56	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepar	ation Meth	od: EP	A 200.8			
Arsenic	30.5	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:03	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	347	mg/L	20.0	6.5	1		11/12/19 15:38		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	677	mg/L	10.0	10.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	13.6	mg/L	1.0	0.22	1		11/26/19 21:37	16887-00-6	
Fluoride	0.20J	mg/L	0.20	0.085	1		11/26/19 21:37	16984-48-8	
Sulfate	227	mg/L	20.0	4.6	20		12/02/19 16:51	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-9D	Lab ID:	60320431004	Collected	d: 11/06/19	11:23	Received: 11/	07/19 03:50 M	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7				
Barium	536	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 13:58	7440-39-3		
Boron	106	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 13:58	7440-42-8		
Calcium	119000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 13:58	7440-70-2		
Iron	24000	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 13:58	7439-89-6		
Lithium	16.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 13:58	7439-93-2		
Magnesium	33300	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 13:58	7439-95-4		
Manganese	376	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 13:58	7439-96-5		
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 13:58	7439-98-7		
Potassium	4080	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 13:58	7440-09-7		
Sodium	13800	ug/L	500	144	1	11/21/19 15:17	11/23/19 13:58	7440-23-5		
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8				
Arsenic	35.6	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:04	7440-38-2		
2320B Alkalinity	Analytical	Method: SM 23	320B							
Alkalinity, Total as CaCO3	463	mg/L	20.0	6.5	1		11/12/19 15:43			
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C							
Total Dissolved Solids	459	mg/L	10.0	10.0	1		11/12/19 09:50			
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00							
Chloride	20.7	mg/L	2.0	0.44	2		11/26/19 22:57	16887-00-6		
Fluoride	0.19J	mg/L	0.20	0.085	1		11/26/19 22:41	16984-48-8		
Sulfate	<0.23	mg/L	1.0	0.23	1		11/26/19 22:41			

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-BMW-1D	Lab ID:	60320431005	Collected	d: 11/05/19	10:00	Received: 11/	07/19 03:50 M	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7				
Barium	1120	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:01	7440-39-3		
Boron	82.3J	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:01	7440-42-8		
Calcium	124000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:01	7440-70-2		
Iron	10100	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:01	7439-89-6		
Lithium	30.3	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:01	7439-93-2		
Magnesium	29500	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:01	7439-95-4		
Manganese	542	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:01	7439-96-5		
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:01	7439-98-7		
Potassium	4380	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:01	7440-09-7		
Sodium	9090	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:01	7440-23-5		
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8				
Arsenic	1.9	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:34	7440-38-2		
2320B Alkalinity	Analytical I	Method: SM 23	320B							
Alkalinity, Total as CaCO3	453	mg/L	20.0	6.5	1		11/12/19 15:50			
2540C Total Dissolved Solids	Analytical I	Method: SM 25	540C							
Total Dissolved Solids	446	mg/L	10.0	10.0	1		11/11/19 13:19			
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00							
Chloride	9.4	mg/L	1.0	0.22	1		11/26/19 23:13	16887-00-6		
Fluoride	0.23	mg/L	0.20	0.085	1		11/26/19 23:13	16984-48-8		
Sulfate	12.2	mg/L	1.0	0.23	1		11/26/19 23:13			

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-BMW-2D	Lab ID: 6	0320431006	Collecte	d: 11/05/19	12:40	Received: 11/	07/19 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical M	lethod: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	321	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:03	7440-39-3	
Boron	65.6J	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:03	7440-42-8	
Calcium	124000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:03	7440-70-2	
Iron	6940	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:03	7439-89-6	
Lithium	41.1	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:03	7439-93-2	
Magnesium	27300	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:03	7439-95-4	
Manganese	295	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:03	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:03	7439-98-7	
Potassium	3730	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:03	7440-09-7	
Sodium	6450	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:03	7440-23-5	
200.8 MET ICPMS	Analytical M	lethod: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	44.2	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:35	7440-38-2	
2320B Alkalinity	Analytical M	lethod: SM 23	20B						
Alkalinity, Total as CaCO3	405	mg/L	20.0	6.5	1		11/12/19 15:56		
2540C Total Dissolved Solids	Analytical M	lethod: SM 25	40C						
Total Dissolved Solids	456	mg/L	10.0	10.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 3	0.00						
Chloride	10.1	mg/L	1.0	0.22	1		11/26/19 23:45	16887-00-6	
Fluoride	0.25	mg/L	0.20	0.085	1		11/26/19 23:45	16984-48-8	
Sulfate	28.2	mg/L	5.0	1.2	5		11/27/19 00:01	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-DUP-1 Lab ID: 60320431007 Collected: 11/06/19 08:00 Received: 11/07/19 03:50 Matrix: Water

Comments: • Upon receipt at the laboratory, 2.5 mls of nitric acid were added to the sample to meet the sample preservation requirement of pH <2 for radiochemistry analysis. The samples were not preserved <2 within the required 5 days of collection.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA	A 200.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	513	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:05	7440-39-3	
Boron	1360	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:05	7440-42-8	
Calcium	144000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:05	7440-70-2	
Iron	15400	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:05	7439-89-6	
Lithium	30.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:05	7439-93-2	
Magnesium	36100	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:05	7439-95-4	
Manganese	413	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:05	7439-96-5	
Molybdenum	6.5J	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:05	7439-98-7	
Potassium	6530	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:05	7440-09-7	
Sodium	45300	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:05	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA	A 200.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	55.4	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:36	7440-38-2	
2320B Alkalinity	Analytical	Method: SM	2320B						
Alkalinity, Total as CaCO3	501	mg/L	20.0	6.5	1		11/13/19 13:56		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	646	mg/L	10.0	10.0	1		11/12/19 09:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA	A 300.0						
Chloride	14.2	mg/L	1.0	0.22	1		11/27/19 00:17	16887-00-6	
Fluoride	0.23	mg/L	0.20	0.085	1		11/27/19 00:17	16984-48-8	
Sulfate	73.9	mg/L	20.0	4.6	20		11/27/19 01:54	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-FB-1	Lab ID:	60320431008	Collected	d: 11/06/19	11:46	Received: 11/	07/19 03:50 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	<1.4	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:07	7440-39-3	
Boron	<10.7	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:07	7440-42-8	
Calcium	<50.0	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:07	7440-70-2	
Iron	<14.0	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:07	7439-89-6	
Lithium	<5.9	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:07	7439-93-2	
Magnesium	<13.0	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:07	7439-95-4	
Manganese	<2.1	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:07	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:07	7439-98-7	
Potassium	<79.0	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:07	7440-09-7	
Sodium	<144	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:07	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	<0.065	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:33	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	<6.5	mg/L	20.0	6.5	1		11/13/19 14:06		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	7.0	mg/L	5.0	5.0	1		11/12/19 09:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.22	mg/L	1.0	0.22	1		11/27/19 02:26	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/27/19 02:26	16984-48-8	
Sulfate	<0.23	mg/L	1.0	0.23	1		11/27/19 02:26		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-2D	Lab ID:	60320742001	Collected	d: 11/07/19	12:30	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	101	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:10	7440-39-3	
Boron	1010	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:10	7440-42-8	
Calcium	85000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:10	7440-70-2	
Iron	2350	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:10	7439-89-6	
Lithium	26.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:10	7439-93-2	
Magnesium	18500	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:10	7439-95-4	
Manganese	271	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:10	7439-96-5	
Molybdenum	40.7	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:10	7439-98-7	
Potassium	6570	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:10	7440-09-7	
Sodium	61100	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:10	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	1.5	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:37	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	250	mg/L	20.0	6.5	1		11/13/19 14:17		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	545	mg/L	10.0	10.0	1		11/13/19 13:44		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	21.8	mg/L	5.0	1.1	5		12/02/19 12:38	16887-00-6	
Fluoride	0.34	mg/L	0.20	0.085	1		11/26/19 14:17	16984-48-8	
Sulfate	172	mg/L	20.0	4.6	20		11/26/19 15:20	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-3D	Lab ID:	60320742002	Collected	l: 11/07/19	14:15	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	105	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:12	7440-39-3	
Boron	9090	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:12	7440-42-8	
Calcium	119000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:12	7440-70-2	
Iron	65.5	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:12	7439-89-6	
Lithium	20.0	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:12	7439-93-2	
Magnesium	2570	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:12	7439-95-4	
Manganese	67.7	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:12	7439-96-5	
Molybdenum	168	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:12	7439-98-7	
Potassium	14400	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:12	7440-09-7	
Sodium	66300	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:12	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	52.1	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:43	7440-38-2	
2320B Alkalinity	Analytical I	Method: SM 23	320B						
Alkalinity, Total as CaCO3	163	mg/L	20.0	6.5	1		11/13/19 14:21		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	661	mg/L	10.0	10.0	1		11/13/19 13:44		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	21.5	mg/L	2.0	0.44	2		12/02/19 12:54	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/26/19 15:36	16984-48-8	
Sulfate	298	mg/L	50.0	11.5	50		11/26/19 15:52		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-4D	Lab ID:	60320742003	Collected	11/07/19	09:25	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepai	ration Meth	od: EP	A 200.7			
Barium	119	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:21	7440-39-3	
Boron	4810	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:21	7440-42-8	
Calcium	90000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:21	7440-70-2	
Iron	272	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:21	7439-89-6	
Lithium	32.9	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:21	7439-93-2	
Magnesium	8670	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:21	7439-95-4	
Manganese	316	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:21	7439-96-5	
Molybdenum	120	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:21	7439-98-7	
Potassium	11000	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:21	7440-09-7	
Sodium	144000	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:21	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepai	ration Meth	od: EP	A 200.8			
Arsenic	0.14J	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:44	7440-38-2	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	143	mg/L	20.0	6.5	1		11/13/19 14:26		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	540C						
Total Dissolved Solids	811	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
Chloride	20.0	mg/L	1.0	0.22	1		11/26/19 16:08	16887-00-6	
Fluoride	0.27	mg/L	0.20	0.085	1		11/26/19 16:08	16984-48-8	
Sulfate	410	mg/L	50.0	11.5	50		11/26/19 16:24		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-5D	Lab ID:	60320742004	Collected: 11/07/19 10:46			Received: 11/			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	88.4	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:23	7440-39-3	
Boron	10200	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:23	7440-42-8	
Calcium	96100	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:23	7440-70-2	
Iron	<14.0	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:23	7439-89-6	
Lithium	35.9	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:23	7439-93-2	
Magnesium	122	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:23	7439-95-4	
Manganese	18.3	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:23	7439-96-5	
Molybdenum	263	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:23	7439-98-7	
Potassium	13200	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:23	7440-09-7	
Sodium	73800	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:23	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	11.9	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:46	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	95.2	mg/L	20.0	6.5	1		11/13/19 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	590	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	22.1	mg/L	2.0	0.44	2		12/02/19 18:42	16887-00-6	
Fluoride	0.12J	mg/L	0.20	0.085	1		11/26/19 16:39		
Sulfate	292	mg/L	20.0	4.6	20		11/26/19 16:55		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-6D	Lab ID:	60320742005	Collected	d: 11/07/19	12:48	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	131	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:25	7440-39-3	
Boron	13200	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:25	7440-42-8	
Calcium	118000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:25	7440-70-2	
Iron	422	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:25	7439-89-6	
Lithium	16.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:25	7439-93-2	
Magnesium	4050	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:25	7439-95-4	
Manganese	351	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:25	7439-96-5	
Molybdenum	535	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:25	7439-98-7	
Potassium	26400	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:25	7440-09-7	
Sodium	102000	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:25	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	29.0	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:47	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	73.5	mg/L	20.0	6.5	1		11/13/19 14:44		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	864	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	20.0	mg/L	1.0	0.22	1		11/26/19 17:11	16887-00-6	
Fluoride	0.091J	mg/L	0.20	0.085	1		11/26/19 17:11	16984-48-8	
Sulfate	504	mg/L	50.0	11.5	50		12/03/19 10:41		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-AM-1S	Lab ID:	60320742006	Collected	d: 11/07/19	14:05	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	527	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 14:27	7440-39-3	
Boron	242	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 14:27	7440-42-8	
Calcium	218000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 14:27	7440-70-2	
Iron	3790	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 14:27	7439-89-6	
Lithium	28.2	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 14:27	7439-93-2	
Magnesium	44200	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 14:27	7439-95-4	
Manganese	902	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 14:27	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 14:27	7439-98-7	
Potassium	6220	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 14:27	7440-09-7	
Sodium	21300	ug/L	500	144	1	11/21/19 15:17	11/23/19 14:27	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	3.7	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:29	7440-38-2	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	677	mg/L	20.0	6.5	1		11/13/19 14:52		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	826	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
Chloride	7.9	mg/L	1.0	0.22	1		11/26/19 18:30	16887-00-6	
Fluoride	0.15J	mg/L	0.20	0.085	1		11/26/19 18:30	16984-48-8	
Sulfate	78.0	mg/L	10.0	2.3	10		11/26/19 18:46		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-AM-1D	Lab ID:	60320742007	Collecte	d: 11/07/19	15:25	Received: 11/	09/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Barium	75.6	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 16:12	7440-39-3	
Boron	7010	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 16:12	7440-42-8	
Calcium	87800	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 16:12	7440-70-2	
Iron	4150	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 16:12	7439-89-6	
Lithium	38.6	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 16:12	7439-93-2	
Magnesium	13000	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 16:12	7439-95-4	
Manganese	227	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 16:12	7439-96-5	
Molybdenum	390	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 16:12	7439-98-7	
Potassium	8140	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 16:12	7440-09-7	
Sodium	113000	ug/L	500	144	1	11/21/19 15:17	11/23/19 16:12	7440-23-5	
200.8 MET ICPMS	Analytical I	Method: EPA 2	00.8 Prepa	aration Meth	od: EP	A 200.8			
Arsenic	4.0	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:31	7440-38-2	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
Alkalinity, Total as CaCO3	172	mg/L	20.0	6.5	1		11/13/19 14:56		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	726	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
Chloride	36.9	mg/L	5.0	1.1	5		11/26/19 19:34	16887-00-6	
Fluoride	0.31	mg/L	0.20	0.085	1		11/26/19 19:18	16984-48-8	
Sulfate	302	mg/L	50.0	11.5	50		11/26/19 19:50	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-DUP-2 Lab ID: 60320742008 Collected: 11/07/19 08:00 Received: 11/09/19 02:55 Matrix: Water

Comments: • Upon receipt at the laboratory, 2.5 mls of nitric acid were added to the sample to meet the sample preservation requirement of pH <2 for radiochemistry analysis. The samples were not preserved <2 within the required 5 days of collection.

Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EP/	A 200.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	525	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 16:14	7440-39-3	
Boron	206	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 16:14	7440-42-8	
Calcium	218000	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 16:14	7440-70-2	
Iron	3710	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 16:14	7439-89-6	
Lithium	24.8	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 16:14	7439-93-2	
Magnesium	43700	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 16:14	7439-95-4	
Manganese	883	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 16:14	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 16:14	7439-98-7	
Potassium	6190	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 16:14	7440-09-7	
Sodium	21100	ug/L	500	144	1	11/21/19 15:17	11/23/19 16:14	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EP/	A 200.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	3.5	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:32	7440-38-2	
2320B Alkalinity	Analytical	Method: SM	2320B						
Alkalinity, Total as CaCO3	691	mg/L	20.0	6.5	1		11/13/19 15:04		
2540C Total Dissolved Solids	Analytical	Method: SM	2540C						
Total Dissolved Solids	814	mg/L	10.0	10.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical	Method: EP/	A 300.0						
Chloride	8.0	mg/L	1.0	0.22	1		11/26/19 20:05	16887-00-6	
Fluoride	0.13J	mg/L	0.20	0.085	1		11/26/19 20:05	16984-48-8	
Sulfate	78.1	mg/L	20.0	4.6	20		11/26/19 20:37	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Sample: L-UMW-FB-2	Lab ID:	60320742009	Collected	d: 11/07/19	15:08	Received: 11/	09/19 02:55 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Barium	<1.4	ug/L	5.0	1.4	1	11/21/19 15:17	11/23/19 16:16	7440-39-3	
Boron	<10.7	ug/L	100	10.7	1	11/21/19 15:17	11/23/19 16:16	7440-42-8	
Calcium	<50.0	ug/L	200	50.0	1	11/21/19 15:17	11/23/19 16:16	7440-70-2	
Iron	<14.0	ug/L	50.0	14.0	1	11/21/19 15:17	11/23/19 16:16	7439-89-6	
Lithium	<5.9	ug/L	10.0	5.9	1	11/21/19 15:17	11/23/19 16:16	7439-93-2	
Magnesium	<13.0	ug/L	50.0	13.0	1	11/21/19 15:17	11/23/19 16:16	7439-95-4	
Manganese	<2.1	ug/L	5.0	2.1	1	11/21/19 15:17	11/23/19 16:16	7439-96-5	
Molybdenum	<2.6	ug/L	20.0	2.6	1	11/21/19 15:17	11/23/19 16:16	7439-98-7	
Potassium	<79.0	ug/L	500	79.0	1	11/21/19 15:17	11/23/19 16:16	7440-09-7	
Sodium	<144	ug/L	500	144	1	11/21/19 15:17	11/23/19 16:16	7440-23-5	
200.8 MET ICPMS	Analytical	Method: EPA 2	00.8 Prepa	ration Meth	od: EP	A 200.8			
Arsenic	<0.065	ug/L	1.0	0.065	1	11/11/19 09:30	11/11/19 16:45	7440-38-2	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	<6.5	mg/L	20.0	6.5	1		11/13/19 15:16		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		11/13/19 13:45		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	<0.22	mg/L	1.0	0.22	1		11/26/19 21:41	16887-00-6	
Fluoride	< 0.085	mg/L	0.20	0.085	1		11/26/19 21:41	16984-48-8	
Sulfate	<0.23	mg/L	1.0	0.23	1		11/26/19 21:41	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

QC Batch: 624002 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60320431001, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007, 60320431008,

60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

METHOD BLANK: 2544458 Matrix: Water

Associated Lab Samples: 60320431001, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007, 60320431008,

60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	11/22/19 20:24	
Boron	ug/L	<10.7	100	10.7	11/22/19 20:24	
Calcium	ug/L	< 50.0	200	50.0	11/22/19 20:24	
Iron	ug/L	<14.0	50.0	14.0	11/22/19 20:24	
Lithium	ug/L	<5.9	10.0	5.9	11/22/19 20:24	
Magnesium	ug/L	<13.0	50.0	13.0	11/22/19 20:24	
Manganese	ug/L	<2.1	5.0	2.1	11/22/19 20:24	
Molybdenum	ug/L	<2.6	20.0	2.6	11/22/19 20:24	
Potassium	ug/L	84.4J	500	79.0	11/22/19 20:24	
Sodium	ug/L	<144	500	144	11/22/19 20:24	

LABORATORY CONTROL SAMPLE:	2544459					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	1000	100	85-115	
Boron	ug/L	1000	992	99	85-115	
Calcium	ug/L	10000	9140	91	85-115	
Iron	ug/L	10000	9450	94	85-115	
Lithium	ug/L	1000	1020	102	85-115	
Magnesium	ug/L	10000	10200	102	85-115	
Manganese	ug/L	1000	1050	105	85-115	
Molybdenum	ug/L	1000	1030	103	85-115	
Potassium	ug/L	10000	9810	98	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 2544	460		2544461							
		0000040404	MS	MSD		1400		1405	0/ D			
		60320431001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	502	1000	1000	1540	1550	104	105	70-130	1	20	
Boron	ug/L	1340	1000	1000	2370	2440	104	110	70-130	3	20	
Calcium	ug/L	130000	10000	10000	155000	156000	243	251	70-130	1	20	M1
Iron	ug/L	14600	10000	10000	25600	25700	110	111	70-130	0	20	
Lithium	ug/L	24.8	1000	1000	1030	1040	101	101	70-130	1	20	
Magnesium	ug/L	35600	10000	10000	45600	46500	100	109	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPLI	CATE: 2544	460		2544461							
	(60320431001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese	ug/L	420	1000	1000	1420	1440	100	102	70-130	2	20	
Molybdenum	ug/L	6.9J	1000	1000	1040	1060	104	105	70-130	2	20	
Potassium	ug/L	6500	10000	10000	16700	16800	102	103	70-130	1	20	
Sodium	ug/L	46000	10000	10000	55300	55800	94	98	70-130	1	20	

MATRIX SPIKE SAMPLE:	2544462						
		60320742002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	105	1000	1120	102	70-130	
Boron	ug/L	9090	1000	10000	94	70-130	
Calcium	ug/L	119000	10000	127000	84	70-130	
Iron	ug/L	65.5	10000	10100	100	70-130	
Lithium	ug/L	20.0	1000	1020	100	70-130	
Magnesium	ug/L	2570	10000	12500	99	70-130	
Manganese	ug/L	67.7	1000	1080	102	70-130	
Molybdenum	ug/L	168	1000	1220	105	70-130	
Potassium	ug/L	14400	10000	24100	97	70-130	
Sodium	ug/L	66300	10000	75200	89	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 624660 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Associated Lab Samples: 60320431002

METHOD BLANK: 2547136 Matrix: Water

Associated Lab Samples: 60320431002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.4	5.0	1.4	11/27/19 16:20	
Boron	ug/L	29.2J	100	10.7	11/27/19 16:20	
Calcium	ug/L	<50.0	200	50.0	11/27/19 16:20	
Iron	ug/L	<14.0	50.0	14.0	11/27/19 16:20	
Lithium	ug/L	< 5.9	10.0	5.9	11/27/19 16:20	
Magnesium	ug/L	<13.0	50.0	13.0	11/27/19 16:20	
Manganese	ug/L	<2.1	5.0	2.1	11/27/19 16:20	
Molybdenum	ug/L	<2.6	20.0	2.6	11/27/19 16:20	
Potassium	ug/L	<79.0	500	79.0	11/27/19 16:20	
Sodium	ug/L	<144	500	144	11/27/19 16:20	

LABORATORY CONTROL SAMPLE: 254713	LABORATORY	CONTROL	SAMPLE:	2547137
-----------------------------------	------------	---------	---------	---------

Date: 12/09/2019 05:38 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	999	100	85-115	
Boron	ug/L	1000	1020	102	85-115	
Calcium	ug/L	10000	10100	101	85-115	
Iron	ug/L	10000	10000	100	85-115	
Lithium	ug/L	1000	1000	100	85-115	
Magnesium	ug/L	10000	9970	100	85-115	
Manganese	ug/L	1000	980	98	85-115	
Molybdenum	ug/L	1000	1020	102	85-115	
Potassium	ug/L	10000	10100	101	85-115	
Sodium	ug/L	10000	9970	100	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 2547	138		2547139							
Parameter	6 Units	0320431002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Barium	ug/L	131	1000	1000	1110	1140	98	101	70-130	2	20	
Boron	ug/L	11000	1000	1000	12000	12000	107	108	70-130	0	20	
Calcium	ug/L	266000	10000	10000	266000	270000	3	45	70-130	2	20	M1
Iron	ug/L	13500	10000	10000	22700	23200	92	97	70-130	2	20	
Lithium	ug/L	18.8	1000	1000	1000	1040	99	102	70-130	3	20	
Magnesium	ug/L	30700	10000	10000	38700	39500	80	88	70-130	2	20	
Manganese	ug/L	2390	1000	1000	3360	3350	97	96	70-130	0	20	
Molybdenum	ug/L	342	1000	1000	1370	1380	102	104	70-130	1	20	
Potassium	ug/L	8160	10000	10000	17800	18400	96	102	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2547138 2547139

MS MSD 60320431002 Spike Spike MS MSD MS MSD % Rec Max Qual Parameter Units Conc. Result % Rec % Rec RPD RPD Result Conc. Result Limits 161000 167000 57 20 M1 Sodium ug/L 10000 10000 167000 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR LCPA Project:

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

QC Batch: 621463 Analysis Method: EPA 200.8 QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007, Associated Lab Samples:

60320742007, 60320742008, 60320742009

METHOD BLANK: 2534757 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

MS

60320431008, 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006,

60320742007, 60320742008, 60320742009

Reporting Blank Parameter Result Limit MDL Qualifiers Units Analyzed Arsenic < 0.065 1.0 0.065 11/11/19 15:55 ug/L LABORATORY CONTROL SAMPLE: 2534758 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic ug/L 40 39.2 98 85-115 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2534760 2534759

MSD

Parameter	Units	60320431002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L	24.1	40	40	67.2	67.4	108	108	70-130	0	20	
MATRIX SPIKE SAMPLE:	:	2534761	60320	742001	Spike	MS		MS	% Red	<u> </u>		

% Rec Qualifiers Parameter Units Result Conc. Result Limits 1.5 Arsenic ug/L 40 47.3 114 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 621881 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006

METHOD BLANK: 2535850 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <6.5 20.0 6.5 11/12/19 15:03

LABORATORY CONTROL SAMPLE: 2535851

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 500 506 101 90-110

SAMPLE DUPLICATE: 2535852

60320431001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 530 4 10 Alkalinity, Total as CaCO3 549 mg/L

SAMPLE DUPLICATE: 2535854

Date: 12/09/2019 05:38 PM

60320431002 Dup Max RPD RPD Parameter Units Result Result Qualifiers 165 Alkalinity, Total as CaCO3 mg/L 177 7 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN LABADIE ENERGY CTR LCPA Project:

Pace Project No.: 60320431

QC Batch: 622137 Analysis Method: SM 2320B QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Units

mg/L

60320431007, 60320431008, 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, Associated Lab Samples:

60320742006, 60320742007, 60320742008, 60320742009

METHOD BLANK: 2536730 Matrix: Water

Associated Lab Samples:

60320742006, 60320742007, 60320742008, 60320742009 Blank Reporting

Units MDL Qualifiers Parameter Result Limit Analyzed Alkalinity, Total as CaCO3 mg/L <6.5 20.0 6.5 11/13/19 13:43

LABORATORY CONTROL SAMPLE: 2536731

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 104 90-110 mg/L 500 520 SAMPLE DUPLICATE: 2536732 60320431007 Dup Max RPD RPD Result Result Qualifiers

501

502

0

10

SAMPLE DUPLICATE: 2536733

Alkalinity, Total as CaCO3

Date: 12/09/2019 05:38 PM

Parameter

		60320742008	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Alkalinity, Total as CaCO3	mg/L	691	694	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 621544 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60320431003, 60320431005, 60320431006

METHOD BLANK: 2534910 Matrix: Water

Associated Lab Samples: 60320431003, 60320431005, 60320431006

Blank Reporting
Parameter Units Result Limit MDL Analyzed

Total Dissolved Solids mg/L <5.0 5.0 11/11/19 13:18

LABORATORY CONTROL SAMPLE: 2534911

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2534912

60320422001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 673 3 10 **Total Dissolved Solids** 691 mg/L

SAMPLE DUPLICATE: 2534913

Date: 12/09/2019 05:38 PM

60320429001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 804 **Total Dissolved Solids** mg/L 844 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 621708 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60320431001, 60320431002, 60320431004, 60320431007, 60320431008

METHOD BLANK: 2535262 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431004, 60320431007, 60320431008

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.011/12/19 09:48

LABORATORY CONTROL SAMPLE: 2535263

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2535264

60320431002 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 1560 10 **Total Dissolved Solids** 1590 1 mg/L

SAMPLE DUPLICATE: 2535265

Date: 12/09/2019 05:38 PM

60320431004 Dup Max RPD RPD Parameter Units Result Result Qualifiers 459 **Total Dissolved Solids** mg/L 466 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Parameter

Total Dissolved Solids

Date: 12/09/2019 05:38 PM

QC Batch: 622003 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

METHOD BLANK: 2536188 Matrix: Water

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009 Blank Reporting Units MDL Qualifiers Parameter Result Limit Analyzed **Total Dissolved Solids** mg/L <5.0 5.0 5.0 11/13/19 13:43 LABORATORY CONTROL SAMPLE: 2536189 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** 101 80-120 mg/L 1000 1010 SAMPLE DUPLICATE: 2536190 60320741001 Dup Max RPD RPD Result Qualifiers Parameter Units Result 1820 **Total Dissolved Solids** 1980 8 10 mg/L SAMPLE DUPLICATE: 2536191 60320739001 Dup Max

Result

794

RPD

2

RPD

10

Qualifiers

Result

777

Units

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

QC Batch: 624756 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

METHOD BLANK: 2547287 Matrix: Water

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	11/26/19 12:26	
Fluoride	mg/L	<0.085	0.20	0.085	11/26/19 12:26	
Sulfate	mg/L	<0.23	1.0	0.23	11/26/19 12:26	

METHOD BLANK: 2550033 Matrix: Water

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	12/02/19 09:29	
Fluoride	mg/L	<0.085	0.20	0.085	12/02/19 09:29	
Sulfate	mg/L	<0.23	1.0	0.23	12/02/19 09:29	

METHOD BLANK: 2551056 Matrix: Water

Associated Lab Samples: 60320742001, 60320742002, 60320742003, 60320742004, 60320742005, 60320742006, 60320742007,

60320742008, 60320742009

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	12/03/19 09:14	
Fluoride	mg/L	<0.085	0.20	0.085	12/03/19 09:14	
Sulfate	mg/L	< 0.23	1.0	0.23	12/03/19 09:14	

LABORATORY CONTROL SAMPLE: 2547288 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.8 97 90-110 mg/L Fluoride mg/L 2.5 2.5 99 90-110 Sulfate mg/L 5 4.9 98 90-110

LABORATORY CONTROL SAMPLE: 2550034 Spike LCS LCS % Rec Parameter Units Conc. Qualifiers Result % Rec Limits Chloride mg/L 5 4.8 96 90-110 Fluoride 95 90-110 mg/L 2.5 2.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

LABORATORY CONTROL SAMPLE:	2550034					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers

Sulfate mg/L 5 4.9 98 90-110

LABORATORY CONTROL SAMPLE: 2551057

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.9	98	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2547289 2547290 MS MSD 60321883001 Spike MS MSD MS MSD Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual

Chloride 1160 1000 1000 2960 2830 181 168 80-120 5 15 M1 mg/L Fluoride mg/L ND 500 500 832 789 166 158 80-120 5 15 M1 1000 5 15 M1 Sulfate mg/L ND1000 1740 1660 170 162 80-120

MATRIX SPIKE SAMPLE:	2547291						
Parameter	Units	60320742008 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	8.0	5	13.2	104	80-120	
Fluoride	mg/L	0.13J	2.5	3.0	113	80-120	
Sulfate	mg/L	78.1	100	177	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 624757 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008

METHOD BLANK: 2547292 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Farameter	UTILS			IVIDL	Analyzeu	
Chloride	mg/L	0.27J	1.0	0.22	11/26/19 17:04	
Fluoride	mg/L	< 0.085	0.20	0.085	11/26/19 17:04	
Sulfate	mg/L	<0.23	1.0	0.23	11/26/19 17:04	

METHOD BLANK: 2550031 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.30J	1.0	0.22	12/02/19 20:17	
Fluoride	mg/L	<0.085	0.20	0.085	12/02/19 20:17	
Sulfate	mg/L	< 0.23	1.0	0.23	12/02/19 20:17	

METHOD BLANK: 2551058 Matrix: Water

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.22	1.0	0.22	12/03/19 09:14	
Fluoride	mg/L	< 0.085	0.20	0.085	12/03/19 09:14	
Sulfate	mg/L	< 0.23	1.0	0.23	12/03/19 09:14	

LABORATORY CONTROL SAMPLE: 2547293

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.7	95	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	4.6	93	90-110	

LABORATORY CONTROL SAMPLE: 2550032

Date: 12/09/2019 05:38 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride Fluoride	mg/L mg/L	5 2.5	4.8	96 98	90-110 90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

LCS

LCS

98

% Rec

90-110

Project: AMEREN LABADIE ENERGY CTR LCPA

LABORATORY CONTROL SAMPLE: 2550032

Pace Project No.: 60320431

Sulfate

Date: 12/09/2019 05:38 PM

Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate	mg/L		4.9	97	90-110	
LABORATORY CONTROL SAMPLE:	2551059	0.11	1.00	1.00	0/ D	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.9	98	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	

5

Spike

mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2547294 25472												
			MS	MSD								
	(60320431002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	17.4	25	25	40.8	40.5	94	92	80-120	1	15	
Fluoride	mg/L	0.16J	2.5	2.5	2.8	2.9	107	110	80-120	2	15	
Sulfate	mg/L	992	250	250	1240	1220	100	91	80-120	2	15	E

4.9

MATRIX SPIKE SAMPLE:	2547296						
Parameter	Units	60320431007 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	14.2	5	19.5	106	80-120	_
Fluoride	mg/L	0.23	2.5	2.8	102	80-120	
Sulfate	mg/L	73.9	100	175	101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-1D Lab ID: 60320431001 Collected: 11/06/19 10:00 Received: 11/07/19 03:50 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.767 ± 0.585 (0.832) C:NA T:82%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	1.43 ± 0.525 (0.804) C:83% T:88%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-7D Lab ID: 60320431002 Collected: 11/06/19 09:30 Received: 11/07/19 03:50 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.148 ± 0.321 (0.593) C:NA T:85%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.584 ± 0.408 (0.785) C:82% T:78%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-8D Lab ID: 60320431003 Collected: 11/05/19 14:45 Received: 11/07/19 03:50 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.386 ± 0.421 (0.662) C:NA T:89%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.816 ± 0.431 (0.783) C:84% T:88%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-9D Lab ID: 60320431004 Collected: 11/06/19 11:23 Received: 11/07/19 03:50 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.258 ± 0.305 (0.480) C:NA T:97%	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	0.546 ± 0.312 (0.558) C:82% T:98%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-BMW-1D Lab ID: 60320431005 Collected: 11/05/19 10:00 Received: 11/07/19 03:50 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.29 ± 0.538 (0.366) C:NA T:100%	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	0.922 ± 0.386 (0.607) C:83% T:93%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-BMW-2D Lab ID: 60320431006 Collected: 11/05/19 12:40 Received: 11/07/19 03:50 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.511 ± 0.374 (0.418) C:NA T:91%	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	0.252 ± 0.318 (0.674) C:83% T:90%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-DUP-1 Lab ID: 60320431007 Collected: 11/06/19 08:00 Received: 11/07/19 03:50 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Upon receipt at the laboratory, 2.5 mls of nitric acid were added to the sample to meet the sample preservation requirement of pH

<2 for radiochemistry analysis. The samples were not preserved <2 within the required 5 days of collection.</p>

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.105 ± 0.251 (0.485) C:NA T:93%	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	0.292 ± 0.351 (0.742) C:82% T:87%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-FB-1 Lab ID: 60320431008 Collected: 11/06/19 11:46 Received: 11/07/19 03:50 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.496 ± 0.342 (0.365) C:NA T:96%	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	0.211 ± 0.321 (0.693) C:82% T:96%	pCi/L	12/03/19 14:22	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-7D MS Lab ID: 60320431009 Collected: 11/06/19 09:30 Received: 11/07/19 03:50 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	99.98 %REC ± NA (NA) C:NA T:NA	pCi/L	12/03/19 12:35	13982-63-3	
Radium-228	EPA 904.0	66.84 %REC ± NA (NA) C:NA T:NA	pCi/L	12/03/19 14:22	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-7D MSD Lab ID: 60320431010 Collected: 11/06/19 09:30 Received: 11/07/19 03:50 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac **Parameters** Units Analyzed CAS No. Qual EPA 903.1 114.90 %REC 13.88 RPD ± Radium-226 pCi/L 12/03/19 12:35 13982-63-3 NA (NA) C:NA T:NA 72.42 %REC 8.01 RPD ± EPA 904.0 pCi/L Radium-228 12/03/19 14:22 15262-20-1 NA (NA)

C:NA T:NA

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-2D Lab ID: 60320742001 Collected: 11/07/19 12:30 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.0548 ± 0.468 (0.913) C:NA T:91%	pCi/L	12/03/19 11:53	13982-63-3	
Radium-228	EPA 904.0	0.306 ± 0.404 (0.861) C:77% T:82%	pCi/L	12/03/19 14:20	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-3D Lab ID: 60320742002 Collected: 11/07/19 14:15 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.117 ± 0.362 (0.701) C:NA T:86%	pCi/L	12/03/19 11:53	13982-63-3	
Radium-228	EPA 904.0	0.696 ± 0.390 (0.707) C:84% T:85%	pCi/L	12/03/19 14:20	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-4D Lab ID: 60320742003 Collected: 11/07/19 09:25 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.393 ± 0.482 (0.791) C:NA T:86%	pCi/L	12/03/19 11:53	13982-63-3	
Radium-228	EPA 904.0	0.756 ± 0.408 (0.729) C:85% T:82%	pCi/L	12/03/19 14:20	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-5D Lab ID: 60320742004 Collected: 11/07/19 10:46 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual	
Radium-226	EPA 903.1	0.000 ± 0.376 (0.770) C:NA T:93%	pCi/L	12/03/19 11:53	13982-63-3		
Radium-228	EPA 904.0	0.611 ± 0.338 (0.606) C:85% T:92%	pCi/L	12/03/19 14:20	15262-20-1		

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-6D Lab ID: 60320742005 Collected: 11/07/19 12:48 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.346 ± 0.322 (0.424) C:NA T:93%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.851 ± 0.361 (0.564) C:84% T:93%	pCi/L	12/03/19 14:20	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-AM-1S Lab ID: 60320742006 Collected: 11/07/19 14:05 Received: 11/09/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

FWS.	Site ID.	Sample Type.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.170 ± 0.368 (0.680) C:NA T:86%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.707 ± 0.390 (0.713) C:84% T:95%	pCi/L	12/03/19 14:21	15262-20-1	

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-AM-1D Lab ID: 60320742007 Collected: 11/07/19 15:25 Received: 11/09/19 02:55 Matrix: Water

PWS: Site ID: Sample Type

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.176 ± 0.346 (0.632) C:NA T:88%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	1.27 ± 0.480 (0.711) C:83% T:83%	pCi/L	12/03/19 14:21	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-DUP-2 Lab ID: 60320742008 Collected: 11/07/19 08:00 Received: 11/09/19 02:55 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Upon receipt at the laboratory, 2.5 mls of nitric acid were added to the sample to meet the sample preservation requirement of pH

<2 for radiochemistry analysis. The samples were not preserved <2 within the required 5 days of collection.</p>

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.605 ± 0.522 (0.776) C:NA T:92%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.940 ± 0.468 (0.841) C:85% T:89%	pCi/L	12/03/19 14:21	15262-20-1	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Sample: L-UMW-FB-2 Lab ID: 60320742009 Collected: 11/07/19 15:08 Received: 11/09/19 02:55 Matrix: Water

PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.361 ± 0.367 (0.555) C:NA T:100%	pCi/L	12/03/19 12:21	13982-63-3	
Radium-228	EPA 904.0	0.317 ± 0.294 (0.599) C:87% T:99%	pCi/L	12/03/19 14:21	15262-20-1	

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 371011 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008, 60320431009, 60320431010, 60320742001, 60320742002, 60320742003, 60320742004,

60320742005, 60320742006, 60320742007, 60320742008, 60320742009

METHOD BLANK: 1800152 Matrix: Water

 $Associated \ Lab \ Samples: \qquad 60320431001, \ 60320431002, \ 60320431003, \ 60320431004, \ 60320431005, \ 60320431006, \ 60320431007, \ 6032$

60320431008, 60320431009, 60320431010, 60320742001, 60320742002, 60320742003, 60320742004, 6032004,

60320742005, 60320742006, 60320742007, 60320742008, 60320742009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.613 ± 0.350 (0.631) C:88% T:88%
 pCi/L
 12/03/19 14:22

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL - RADIOCHEMISTRY

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

QC Batch: 371012 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Associated Lab Samples: 60320431001, 60320431002, 60320431003, 60320431004, 60320431005, 60320431006, 60320431007,

60320431008, 60320431009, 60320431010, 60320742001, 60320742002, 60320742003, 60320742004,

60320742005, 60320742006, 60320742007, 60320742008, 60320742009

METHOD BLANK: 1800153 Matrix: Water

 $Associated \ Lab \ Samples: \qquad 60320431001, \ 60320431002, \ 60320431003, \ 60320431004, \ 60320431005, \ 60320431006, \ 60320431007, \ 6032$

60320431008, 60320431009, 60320431010, 60320742001, 60320742002, 60320742003, 60320742004, 6032004,

60320742005, 60320742006, 60320742007, 60320742008, 60320742009

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.121 ± 0.185 (0.484) C:NA T:98%
 pCi/L
 12/03/19 11:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 12/09/2019 05:38 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
60320431001	L-UMW-1D	EPA 200.7	624002	EPA 200.7	624096
60320431002	L-UMW-7D	EPA 200.7	624660	EPA 200.7	624740
60320431003	L-UMW-8D	EPA 200.7	624002	EPA 200.7	624096
60320431004	L-UMW-9D	EPA 200.7	624002	EPA 200.7	624096
0320431005	L-BMW-1D	EPA 200.7	624002	EPA 200.7	624096
0320431006	L-BMW-2D	EPA 200.7	624002	EPA 200.7	624096
0320431007	L-UMW-DUP-1	EPA 200.7	624002	EPA 200.7	624096
0320431008	L-UMW-FB-1	EPA 200.7	624002	EPA 200.7	624096
0320742001	L-UMW-2D	EPA 200.7	624002	EPA 200.7	624096
0320742002	L-UMW-3D	EPA 200.7	624002	EPA 200.7	624096
0320742003	L-UMW-4D	EPA 200.7	624002	EPA 200.7	624096
0320742004	L-UMW-5D	EPA 200.7	624002	EPA 200.7	624096
0320742005	L-UMW-6D	EPA 200.7	624002	EPA 200.7	624096
0320742006	L-AM-1S	EPA 200.7	624002	EPA 200.7	624096
0320742007	L-AM-1D	EPA 200.7	624002	EPA 200.7	624096
0320742008	L-UMW-DUP-2	EPA 200.7	624002	EPA 200.7	624096
0320742009	L-UMW-FB-2	EPA 200.7	624002	EPA 200.7	624096
0320431001	L-UMW-1D	EPA 200.8	621463	EPA 200.8	621523
0320431002	L-UMW-7D	EPA 200.8	621463	EPA 200.8	621523
0320431003	L-UMW-8D	EPA 200.8	621463	EPA 200.8	621523
0320431004	L-UMW-9D	EPA 200.8	621463	EPA 200.8	621523
0320431005	L-BMW-1D	EPA 200.8	621463	EPA 200.8	621523
0320431006	L-BMW-2D	EPA 200.8	621463	EPA 200.8	621523
0320431007	L-UMW-DUP-1	EPA 200.8	621463	EPA 200.8	621523
0320431008	L-UMW-FB-1	EPA 200.8	621463	EPA 200.8	621523
0320742001	L-UMW-2D	EPA 200.8	621463	EPA 200.8	621523
0320742002	L-UMW-3D	EPA 200.8	621463	EPA 200.8	621523
0320742003	L-UMW-4D	EPA 200.8	621463	EPA 200.8	621523
0320742004	L-UMW-5D	EPA 200.8	621463	EPA 200.8	621523
0320742005	L-UMW-6D	EPA 200.8	621463	EPA 200.8	621523
0320742006	L-AM-1S	EPA 200.8	621463	EPA 200.8	621523
0320742007	L-AM-1D	EPA 200.8	621463	EPA 200.8	621523
0320742008	L-UMW-DUP-2	EPA 200.8	621463	EPA 200.8	621523
0320742009	L-UMW-FB-2	EPA 200.8	621463	EPA 200.8	621523
0320431001	L-UMW-1D	EPA 903.1	371012		
0320431002	L-UMW-7D	EPA 903.1	371012		
0320431003	L-UMW-8D	EPA 903.1	371012		
0320431004	L-UMW-9D	EPA 903.1	371012		
0320431005	L-BMW-1D	EPA 903.1	371012		
0320431006	L-BMW-2D	EPA 903.1	371012		
0320431007	L-UMW-DUP-1	EPA 903.1	371012		
0320431008	L-UMW-FB-1	EPA 903.1	371012		
0320431009	L-UMW-7D MS	EPA 903.1	371012		
0320431010	L-UMW-7D MSD	EPA 903.1	371012		
0320742001	L-UMW-2D	EPA 903.1	371012		
0320742002	L-UMW-3D	EPA 903.1	371012		
0320742003	L-UMW-4D	EPA 903.1	371012		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

120742006	Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
1320742006	60320742004	L-UMW-5D	EPA 903.1	371012		
1320742007	60320742005	L-UMW-6D	EPA 903.1	371012		
LUMW-DUP-2	0320742006	L-AM-1S	EPA 903.1	371012		
LUMW-DUP-2	0320742007	L-AM-1D				
S20431001	0320742008					
A	0320742009	L-UMW-FB-2	EPA 903.1	371012		
S20431003	0320431001	L-UMW-1D	EPA 904.0	371011		
S20431005	0320431002	L-UMW-7D	EPA 904.0	371011		
S20431006	0320431003	L-UMW-8D	EPA 904.0	371011		
320431006 L-BMW-ZD EPA 904.0 371011 320431007 L-UMW-DUP-1 EPA 904.0 371011 320431008 L-UMW-FB-1 EPA 904.0 371011 320431009 L-UMW-TD MS EPA 904.0 371011 320431010 L-UMW-ZD EPA 904.0 371011 320742001 L-UMW-3D EPA 904.0 371011 320742002 L-UMW-4D EPA 904.0 371011 320742004 L-UMW-4D EPA 904.0 371011 320742005 L-UMW-6D EPA 904.0 371011 320742006 L-AM-1S EPA 904.0 371011 320742007 L-AM-1D EPA 904.0 371011 320742007 L-AM-1D EPA 904.0 371011 320742009 L-UMW-DP-2 EPA 904.0 371011 320742009 L-UMW-FB-2 EPA 904.0 371011 320431001 L-UMW-DP-1 SM 2320B 621881 320431002 L-UMW-DP-1 SM 2320B 621881 320431003 L-UMW-BD	0320431004	L-UMW-9D	EPA 904.0	371011		
1320431007	320431005	L-BMW-1D	EPA 904.0	371011		
Section	0320431006	L-BMW-2D	EPA 904.0	371011		
Section	320431007	L-UMW-DUP-1	EPA 904.0	371011		
1320431009	320431008					
10	0320431009	L-UMW-7D MS				
1.00 1.00	320431010	L-UMW-7D MSD		371011		
S20742002						
S20742003						
S20742004						
S20742005						
1320742006 L-AM-1S EPA 904.0 371011 320742007 L-AM-1D EPA 904.0 371011 320742008 L-UMW-DP-2 EPA 904.0 371011 320742009 L-UMW-FB-2 EPA 904.0 371011 320742009 L-UMW-FB-2 EPA 904.0 371011 320431001 L-UMW-FD SM 2320B 621881 621881 62320431002 L-UMW-RD SM 2320B 621881 621881 62320431003 L-UMW-RD SM 2320B 621881 621881 62320431004 L-UMW-PD SM 2320B 621881 62320431005 L-BMW-1D SM 2320B 621881 62320431006 L-BMW-2D SM 2320B 621881 622137 622						
S20742007						
S20742008						
Company						
SM 2320B G21881	0320742009					
SM 2320B G21881	0320431001	L-UMW-1D	SM 2320B	621881		
Sazo431003	0320431002	L-UMW-7D				
SM 2320B G21881 SM 2320B G2187 SM 2320B G22137 SM 2320B SM						
Sacial Control						
SM 2320B G21881 SM 2320B G2187 SM 2320B G22137 SM 2320B SM						
320431008 L-UMW-FB-1 SM 2320B 622137 320742001 L-UMW-2D SM 2320B 622137 320742002 L-UMW-3D SM 2320B 622137 320742003 L-UMW-4D SM 2320B 622137 320742004 L-UMW-5D SM 2320B 622137 320742005 L-UMW-6D SM 2320B 622137 320742006 L-AM-1S SM 2320B 622137 320742007 L-AM-1D SM 2320B 622137 320742008 L-UMW-DUP-2 SM 2320B 622137 320742009 L-UMW-FB-2 SM 2320B 622137 320431001 L-UMW-1D SM 2540C 621708 320431002 L-UMW-8D SM 2540C 621544	0320431006					
SM 2320F	0320431007	L-UMW-DUP-1	SM 2320B	622137		
SM 2320B G22137 SM 2320B G22137	0320431008	L-UMW-FB-1	SM 2320B	622137		
320742003 L-UMW-4D SM 2320B 622137 320742004 L-UMW-5D SM 2320B 622137 320742005 L-UMW-6D SM 2320B 622137 320742006 L-AM-1S SM 2320B 622137 320742007 L-AM-1D SM 2320B 622137 320742008 L-UMW-DUP-2 SM 2320B 622137 320742009 L-UMW-FB-2 SM 2320B 622137 320431001 L-UMW-1D SM 2540C 621708 320431002 L-UMW-8D SM 2540C 621544	0320742001	L-UMW-2D	SM 2320B	622137		
320742003 L-UMW-4D SM 2320B 622137 320742004 L-UMW-5D SM 2320B 622137 320742005 L-UMW-6D SM 2320B 622137 320742006 L-AM-1S SM 2320B 622137 320742007 L-AM-1D SM 2320B 622137 320742008 L-UMW-DUP-2 SM 2320B 622137 320742009 L-UMW-FB-2 SM 2320B 622137 320431001 L-UMW-1D SM 2540C 621708 320431002 L-UMW-8D SM 2540C 621544	0320742002	L-UMW-3D	SM 2320B	622137		
3320742004 L-UMW-5D SM 2320B 622137 3320742005 L-UMW-6D SM 2320B 622137 3320742006 L-AM-1S SM 2320B 622137 3320742007 L-AM-1D SM 2320B 622137 3320742008 L-UMW-DUP-2 SM 2320B 622137 3320742009 L-UMW-FB-2 SM 2320B 622137 3320431001 L-UMW-1D SM 2540C 621708 3320431002 L-UMW-8D SM 2540C 621544	0320742003		SM 2320B	622137		
320742005 L-UMW-6D SM 2320B 622137 320742006 L-AM-1S SM 2320B 622137 320742007 L-AM-1D SM 2320B 622137 320742008 L-UMW-DUP-2 SM 2320B 622137 320742009 L-UMW-FB-2 SM 2320B 622137 320431001 L-UMW-1D SM 2540C 621708 320431002 L-UMW-7D SM 2540C 621708 320431003 L-UMW-8D SM 2540C 621544	0320742004					
SM 2320742006	0320742005					
SM 2320742007	0320742006					
J320742008 L-UMW-DUP-2 SM 2320B 622137 J320742009 L-UMW-FB-2 SM 2320B 622137 J320431001 L-UMW-1D SM 2540C 621708 J320431002 L-UMW-7D SM 2540C 621708 J320431003 L-UMW-8D SM 2540C 621544	320742007					
320742009 L-UMW-FB-2 SM 2320B 622137 320431001 L-UMW-1D SM 2540C 621708 320431002 L-UMW-7D SM 2540C 621708 320431003 L-UMW-8D SM 2540C 621544	0320742008					
320431002 L-UMW-7D SM 2540C 621708 320431003 L-UMW-8D SM 2540C 621544	0320742009					
320431002 L-UMW-7D SM 2540C 621708 320431003 L-UMW-8D SM 2540C 621544	0320431001	L-UMW-1D	SM 2540C	621708		
	0320431002					
320431004 L-UMW-9D SM 2540C 621708	0320431003	L-UMW-8D	SM 2540C	621544		
	0320431004	L-UMW-9D	SM 2540C	621708		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCPA

Pace Project No.: 60320431

Date: 12/09/2019 05:38 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60320431005	L-BMW-1D	SM 2540C	621544		
60320431006	L-BMW-2D	SM 2540C	621544		
60320431007	L-UMW-DUP-1	SM 2540C	621708		
60320431008	L-UMW-FB-1	SM 2540C	621708		
60320742001	L-UMW-2D	SM 2540C	622003		
60320742002	L-UMW-3D	SM 2540C	622003		
60320742003	L-UMW-4D	SM 2540C	622003		
60320742004	L-UMW-5D	SM 2540C	622003		
60320742005	L-UMW-6D	SM 2540C	622003		
60320742006	L-AM-1S	SM 2540C	622003		
60320742007	L-AM-1D	SM 2540C	622003		
60320742008	L-UMW-DUP-2	SM 2540C	622003		
60320742009	L-UMW-FB-2	SM 2540C	622003		
60320431001	L-UMW-1D	EPA 300.0	624757		
60320431002	L-UMW-7D	EPA 300.0	624757		
60320431003	L-UMW-8D	EPA 300.0	624757		
60320431004	L-UMW-9D	EPA 300.0	624757		
60320431005	L-BMW-1D	EPA 300.0	624757		
60320431006	L-BMW-2D	EPA 300.0	624757		
60320431007	L-UMW-DUP-1	EPA 300.0	624757		
60320431008	L-UMW-FB-1	EPA 300.0	624757		
60320742001	L-UMW-2D	EPA 300.0	624756		
60320742002	L-UMW-3D	EPA 300.0	624756		
60320742003	L-UMW-4D	EPA 300.0	624756		
60320742004	L-UMW-5D	EPA 300.0	624756		
60320742005	L-UMW-6D	EPA 300.0	624756		
60320742006	L-AM-1S	EPA 300.0	624756		
60320742007	L-AM-1D	EPA 300.0	624756		
60320742008	L-UMW-DUP-2	EPA 300.0	624756		
60320742009	L-UMW-FB-2	EPA 300.0	624756		

Sample Condition Upon Receipt

Client Name: GOLDEY ASSOCIATE	25	
V12 (V	PEX 🗆 ECI 🗆	Pace □ Xroads ☑ Client □ Other □
Tracking #: Pac	e Shipping Label Use	
Custody Seal on Cooler/Box Present: Yes ☐ No ☐	Seals intact: Yes	A /
Packing Material: Bubble Wrap □ Bubble Bags □	(None □ Other/d2P(
Thermometer Used: 1996 Type of	fice: (Vet) Blue No	
Cooler Temperature (°C): As-read O. Corr. Factor	or +0.0 Correc	
Temperature should be above freezing to 6°C \ 0.9 3.2		10.9.3.2
Chain of Custody present	□X'es □No □N/A	
Chain of Custody relinquished:	(☐Xes □No □N/A	
Samples arrived within holding time:	/ □Ýes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes □No □N/A	
Rush Turn Around Time requested:	□Yes □No □N/A	Cooler at 10.9°C Contained
Sufficient volume:	ĎYes □No □N/A	Radium Containers
Correct containers used:	∑Yes □No □N/A	
Pace containers used:	ZYes □No □N/A	
Containers intact:	ØÝes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □\N/A	
	1,	
Filtered volume received for dissolved tests?	☐Yes ☐No ☐Ñ/A	
Sample labels match COC: Date / time / ID / analyses	□Wes □No □N/A	
Samples contain multiple phases? Matrix: 1	□Yes □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	□Ýes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No ☑N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	? DYes DNo DN/A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ïme:	
Comments/ Resolution:		
fami Churh		11/7/19
Project Manager Review:	Dat	

CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurate

200 Pace Project No./ Lab I.D. 0 00 00 Samples Intact (V/V) DRINKING WATER 900 200 500 000 TOP SAMPLE CONDITIONS (0033043 8 OTHER 7 οţ Cooler (Y/N) Custody Sealed Ice (Y/N) по bevieceЯ GROUND WATER Page: 20.6 Residual Chlorine (Y/N) 0 O° ni qmeT REGULATORY AGENCY 8 RCRA Requested Analysis Filtered (Y/N) TIME 300 TATE: Site Location DATE Signed (I/OC//?) NPDES DATE Radium 226/228 √lkalinity LDS SK ACCEPTED BY / AFFILIATION z Chloride/Fluoride/Sulfate z √letals** z Vetals* N/A LAnalysis Test 4 Other Methanol Jamie Church Preservatives Na2S2O3 NaOH EncSchneid 9285 HCI Invoice Information ²ОИН Company Name Manager Pace Profile #: ^bOS²H Pace Quote Reference Pace Project Section C Unpreserved Address: Attention TIME # OF CONTAINERS 7 SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE 6/19/In 0721 05:0 6/19/11 11/10/19 0930 0430 Ameren Labadie Energy Center LCPA TIME 9 15/2 133 146119 1123 1/2/19 100D COMPOSITE END/GRAB 11/0/19 COLLECTED DATE RELINQUISHED BY / AFFILIATION TIME COMPOSITE DATE Required Project Information: Report To: Jeffrey Ingram (G=GRAB C=COMP) SAMPLE TYPE O O O O O Ø O Ō O O O O urchase Order No ¥ ¥ ₹ 5 LUMM CB -1-UMU - TOME ONT Ž ¥ M ₹ ₹ 5 Ŋ (see valid codes to left) MATRIX CODE Project Name: Project Numbe Section B CINCL-DWD-1 Copy To: Valid Matrix Codes SE WP OF TS DRINKING WATER
WATER
WASTE WATER
PRODUCT
SOIL/SOLID
OIL 13515 Barrett Parkway Dr., Ste 260 Fax 636-724-9323 - ASSES leffrey ingram@golder.com L-UMW-2D L-UMW-3D L-UMW-1D L-UMW-4D L-UMW-8D L-UMW-7D L-UMW-9D L-BMW-1D L-BMW-2D EPA 200 7: B, Ca, Fe, Mn, Mg, K, Na, Ba, LI, Mo L-AM-1S ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Golder Associates Ballwin, MO 63021 SAMPLE ID Required Client Information Required Client Information: none. 636-724-9191 Requested Due Date/TAT: Section D EPA 200 8: As Section A mail Toddress Page 65 of 69 10 2 ~ w 9 ~ ÷ 12 # WILL 00

Important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

000 (N/X) Pace Project No./ Lab I.D. Samples DRINKING WATER 800 Cooler (V/V) OTHER οĘ Custody 000 00 (N/Y) 4eceived GROUND WATER Page: Residual Chlorine (Y/N) ui dwə REGULATORY AGENCY Θ RCERT Requested Analysis Filtered (Y/N) STATE (MM/DD/YY): 11/06/1/9 Site Location NPDES CHAIN-OF-CUSTODY / Analytical Request Document UST The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately Radium 226/228 Alkalinity LDS Chloride/Fluoride/Sulfate Vetals** z Netals* **↓ teeT sisylsnA** N/A Other Methanol Jamie Church Na₂S₂O₃ Preservatives SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: E. S. M. M. M. SIGNATURE of SAMPLER: HOBN HCI 9285 HNO3 M ompany Name PS2H Section C ShE1 2019/11 Unpreserved 3 I # OF CONTAINERS SAMPLE TEMP AT COLLECTION 9hi 6/19/1 Ameren Labadie Energy Center LCPA 11/19/10 DATE COLLECTED RELINGUISHED BY / AFFILIATION landler 16dde TIME COMPOSITE DATE Report To: Jeffrey Ingram Required Project Information: O O O O O O O O SAMPLE TYPE (G=GRAB C=COMP) urchase Order No: 5 Z 5 N Z Y W M M MY Ž ş MATRIX CODE (see valid codes to left) Project Name: Section B Copy To: Valid Matrix Codes MATRIX CODE DIRINGWATER WW WASTE WATER WW PRODUCT SOLUSOLID OIL WP SOLUSOLID TE TE TE TE TE 13515 Barrett Parkway Dr., Ste 260 Fax: 636-724-9323 L-UMW-DUP-1 L-UMW-DUP-2 L-UMW-FB-1 L-UMW-FB-2 jeffrey_ingram@golder.com Face Analytical L-AM-1D ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Ballwin, MO 63021 Golder Associates Section D Required Client Information Required Client Information: orte 636-724-9191 Requested Due Date/TAT: Section A 7 12 ~ 8 9 7 m 9 # MaTI

Sample Condition Upon Receipt

Client Name: Golder Associate	e)			
Courier: FedEx UPS VIA Clay	PEX []	EC		Pace ☐ Xroads ☐ Client ☐ Other ☐
	ce Shippir			d? Yes,∕⊡ No □
Custody Seal on Cooler/Box Present: Yes ☐ No ☐			: Yeş⁄Ĺ	
Packing Material: Bubble Wrap □ Bubble Bags □			am 🗆	None □ Other Ø2 ₽1 €
	fice We	7		
Cooler Temperature (°C): As-read(). 1, 0.6 Corr. Fact				Character of the Control of the Cont
Temperature should be above freezing to 6°C				(-1,-
Chain of Custody present:	√Yes	□No	□n/a	
Chain of Custody relinquished:	□Xes	□No	□n/a	
Samples arrived within holding time:	D/Yes	□No	□n/a	
Short Hold Time analyses (<72hr):	✓ □Yes	Γ2Kιο	□n/a	
Rush Turn Around Time requested:	□Yes	Z _{No}	□n/a	
Sufficient volume:	√Yes	□No	□n/a	
Correct containers used:	ØYes	□No	□n/a	
Pace containers used:	Z Yes	□No	□n/a	
Containers intact:	, ✓ Yes	□No	□N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes	□No	□Kν/A	
Filtered volume received for dissolved tests?	□Yes	□No	N/A	
Sample labels match COC: Date / time / ID / analyses	ZYes	□No	□n/a	
Samples contain multiple phases? Matrix: W +	□Yes		□n/a	
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Yes	□No	□n/a	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:	□Yes	Пы		
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes			
Trip Blank present:	□Yes	□No	ØN/A	
Headspace in VOA vials (>6mm):	□Yes	□No	N/A	
Samples from USDA Regulated Area: State	□Yes	□No	/N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes	□No	ZN/A	
Client Notification/ Resolution: Copy COC to			/ N	Field Data Required? Y / N
Person Contacted: Date/T	Гime:			_
Comments/ Resolution:				
Project Manager Review: Janu Churh	_		Date	e:11/10/19

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

6500 Pace Project No./ Lab I.D. (N/A) DRINKING WATER SAMPLE CONDITIONS 0 (JU) Cooler (Y/N) OTHER 0 οţ Custody Seale (N/Y) eal Received on GROUND WATER Page: Residual Chlorine (Y/N) 200 J. u dweT 8 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME Site Location STATE: DATE NPDES UST DATE Signed | 7 7 2 Radium 226/228 1 2 2 2 2 2 2 Alkalinity 7 7 2 LDS ACCEPTED BY / AFFILIATION 7 2 z Chloride/Fluoride/Sulfate 2 7 > z Metals** > √etals* z Analysis Test N/A Other Methanol Jamie Church Preservatives Na₂S₂O₃ NaOH HCI 9285 M HNO3 W 60 W 6 company Name PS2H SIGNATURE of SAMPLER: WWW ace Profile #: nvoice Inform Section C Reference: Pace Project TIME PRINT Name of SAMPLER: ANNIX Unpreserved ace Quote Address: J # OF CONTAINERS T 7 7 7 SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION DATE 6//8/1 940 Orc 71-7-41405 OEC! 0925 TIME 1415 Ameren Labadie Energy Center LCPA DATE COLLECTED RELINQUISHED BY / AFFILIATION (50/41 \lesssim TIME COMPOSITE START XII ATE HATTER MUNICIPALITY teport To: Jeffrey Ingram Required Project Information; MAGA ഗ O O ပ O ഗ O U (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: ¥ ¥ Ż ₹ X M ¥ Ş Ž Ş Ž ¥ MATRIX CODE (see valid codes to left) roject Number roject Name: Section B Copy To: Valid Matrix Codes WW Y SL OL AR AR TS WATER WASTE WASTE WASTE WASTE WASTE WATER WOLCT BOOLSOLID SOIL 13515 Barrett Parkway Dr., Ste 260 Fax 636-724-9323 L-UMW-3D L-UMW-4D L-UMW-6D L-UMW-7D L-UMW-8D L-UMW-9D L-BMW-1D jeffrey_ingram@golder.com L-UMW-2D L-UMW-5D L-BMW-2D EPA 200 7: B, Ca, Fe, Mn, Mg, K, Na, Ba, Li, Mo L-AM-1S ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Standard SAMPLE ID Ballwin, MO 63021 Golder Associates Section D Required Client Information Required Client Information: Requested Due Date/TAT: 636-724-9191 -EPA 200 8: As ection A Page 68 of 69 mail To: Address: 10 7 12 6 ILEM # 2 9 00

P

F-ALL-Q-020rev.08, 12-Oct-2007

important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per month for any invoices not paid within 30 days

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Age:		REGULATORY AGENCY	NPDES GROUND WATER DRINKING WATER	UST RCRA OTHER	Site Location	STATE: MIC	Requested Analysis Filtered (Y/N)		(N/A) €	Alkalinity Redium 226/226 Residual Chlorine Pace Project No./Lab I.D.	444		200		(00)						DATE TIME SAMPLE CONDITIONS	111 16:25	1 (19/10 0255 C.L.O. Y -1 -1		ived (ce	Cusp Second (Y/)
							quested	z	eySulfate	Metals** Chloride/Fluorid TDS	7 7 3	_	2 2	ľ	2	t			1		ACCEPTED BY AFFILIATION		Thec			- Consistent
	Ш						Rec	z		*slsfəM	7		2	1	7	t				1	AFFIL	Y				I can
į								↑N/A	1	Other Dealysis Test		_	_	1	_	T			_	_	ED BY	Y				
					ے					Nethanol					1	1				1	CEPT	VK	0			7
					Jamie Church			Preservatives		NaOH Na ₂ S ₂ O ₃			-	+	1	+	H		+	+	- ×	3	8			
Ü.					amie (9285		eserv		HCI НИО ³	8				~	1			-	1		13/60	3			3
ormatic		Name:				1		Ā		[≯] OS ² H	101		M	Y		t			1	1		1	3			1
Invoice Information	Attention:	Company Name:	Address:	Pace Quote Reference:	Pace Project	Pace Profile #:				Unpreserved	1 1		-	-	-	t	+		+	+	TIME	47.75	10			שווין
Invo	Atte	Ŝ	Add	Pac	Pac	Pac	-	_		# OF CONTAINER	5	+	2	+	2	+	H		+	1	+	-			URE,	ER:
	H.				4					I WE	8	F		-	20	T					DATE	16			LER NAME AND SIGNATURE	PRINT Name of SAMPLER:
					Ameren Labadie Energy Center LCPA				SITE	Ē	55				208	1		Ц		1	+	-	3	1	AND S	me of
Ų	115				Cente			TED	COMPOSITE	DATE	11-7-19		11-7-19	1	11-T-11							1			NAME	INT
					ergy (Н	COLLECTED		116	á			+	=	+	+			1	VOITA	10/0	1		13	# i
					die Er			8	SITE	T MM							1				AFFII (A	1	15.		SAMP	
::	_				Labac				COMPOSITE	DATE	118	10	NVA	-	7/1/8	1				1	WT G	Marshit Control	-		n-	
rmation	ngrar	Į, į			neren						1	7	=		3	-	1	-	-		S S S S S S S S S S S S S S S S S S S	2 101 C				
ect Info	ffrey 1	0.0		er No :		L.		-	GEAB C=CO		W G	-	WTG	_	_	S W	5 O	W G	_		NT G		Y.			
Required Project Information:	Report To: Jeffrey Ingram			Purchase Order No	Project Name:	Project Number:	b		,,,,	- JOOO XIGIVW	>	>	>	>	>	> .	-	_		1	Ť	Links	₹			
Require	Seport	Copy To:		ourcha	Project	Project	L	des	WT WT SL OL	NA AR ST											+	1	9	+	1	
-							1	trix Co																		
	Golder Associates	13515 Barrett Parkway Dr., Ste 260	Ballwin, MO 63021	jeffrey ingram@golder.com	Fax: 636-724-9323	Standard		Valid Matrix Codes mation <u>MATRIX</u> <u>COU</u>	DRINKING WATER WASTER WASTER PRODUCT SOILSOLID OIL	SAMPLE ID (A-Z. 0-9/) Sample IDs MUST BE UNIQUE	L-AM-1D	L-UMW-DUP-1	L-UMW-DUP-2	L-UMW-FB-1	L-UMW-FB-2						ADDITIONAL DOMINGINGS	FD4 2007: R Ca Fe Mn Mn K Na Ba II Mn				
mation	ler As	15 Bai	win, M	ye ing	9191	e/TAT:		ent Infor		AMI (A-Z. IDs ML											FICE	ADD No.				
Required Client Information:	Gold	1351	Ballw	jeffre	636-724-9191	Requested Due Date/TAT:		Section D Required Client Information		S ample I											ľ	Ca F	As			
Required Clien					636-	ted Du		Section D Required C		σ	_			A.			-					8.2.00	-EPA 200 8: As			
d)	Company:	Address		mail To:	Phone:	dnes	Г			# WBT	-	2	62	4	ro.	و	~ a	6	우	7	12	Da 2	PA			

MEMORANDUM

DATE January 6, 2020 **Project No.** 1531406

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Tommy Goodwin EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCPA – DETECTION MONITORING - DATA PACKAGE 60320431

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a duplicate comparison criterion was not met, associated samples were qualified as estimates (J).
- When a matrix spike/matrix spike duplicate recovered outside accepted limits corresponding sample detections were recorded at the result and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

	ny Name: Golder Associates	Proj	ect Manager	· J Ingram	
	Name: Ameren - Labadie - LCPA			ect Number:	
Review	er: T Goodwin		Vali	dation Date:	1/6/2020
Lahorat	ory: Pace Analytical - KS		SDC	3 #: 60320431	
	ral Method (type and no.): EPA 200.7/200.8 (Metals); S	 M25400			
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste				
Sample	Names L-UMW-1D, L-UMW-2D, L-UMW-3D, L-UMW-4D, L		5D, L-UMW	/-6D, L-UMW-7	D, L-UMW-8D, L-UMW-9D, L-BMW-1D, L-BMW-2D,
L-AM-1	S, L-AM-1D, L-UMW-DUP-1, L-UMW-FB-1, L-UMW-DUP-2,	L-UMW	/-FB-2, L-U	IMW-7D MS, L	-UMW-7D MSD
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the back	please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	X			11/5-7/2019
b)	Sampling team indicated?	×			
c)	Sample location noted?	x	П		
d)	Sample depth indicated (Soils)?			×	
e)	Sample type indicated (grab/composite)?	×			
f)	Field QC noted?	×			
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	×			
	Notations of unacceptable field conditions/performa	_	om fold l		
i)	Notations of unacceptable field conditions/performa	Inces in			iotes?
:\	Door the lebenster requesting indicate deficiency of		×		
j)	Does the laboratory narrative indicate deficiencies?			x	-
	Note Deficiencies:				
			-		
Chain-c	of-Custody (COC)	YES	NO	NA	COMMENTS
Onami	n-ousloup (000)	ILS	NO	IVA	COMMENTS
a)	Was the COC properly completed?	х			
b)	Was the COC signed by both field			***	
	and laboratory personnel?	×			
c)	Were samples received in good condition?	х			
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	П	×		See Notes
b)	Were hold times met for sample analysis?	×			
c)	Were the correct preservatives used?	×			
d)	Was the correct method used?	×			-
e)	Were appropriate reporting limits achieved?	×			
f)	Were any sample dilutions noted?	×			See Notes
a)	Were any matrix problems noted?		\square		

Revised May 2004 Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blank	s	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	X			See Notes
b)	Were analytes detected in the field blank(s)?	х			See Notes
c)	Were analytes detected in the equipment blank(s)?			×	
d)	Were analytes detected in the trip blank(s)?			x	-
Labor	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)		×			COMMENTS
			_		
b)	, , , , , , , , , , , , , , , , , , , ,	×			
c)	Was the LCS accuracy criteria met?	х			
Duplio	cates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample r	names)?	DUP-1 @ L-UMW-1D, DUP-2 @ L-AM-1S
		×			FB-1 @ L-UMW-9D, FB-2 @ L-AM-1D
b)	Were field dup. precision criteria met (note RPD)?		x		See Notes
c)	Were lab duplicates analyzed (note original and dup	olicate s	samples)	?	-31001 (Alk); -31002 (Alk, TDS); -31007 (Alk);
		×			-42008 (Alk); -31004 (TDS)
d)	Were lab dup. precision criteria met (note RPD)?	×			See Notes
Rlind	Standards	YES	NO	NA	COMMENTS
			NO	NA	COMMENTS
a)			×		
h.\	analytes included and concentrations)?				-
b)	Was the %D within control limits?	П		х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		×		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?		×		See Notes
·	Recovery could not be calculated since sample contained high concentration of analyte?			×	
c)		×			
Comm	nents/Notes:				
FB-1	: TDS (7.0), Ra-226 (0.496),				
MB:	31001,3-8 and 42001-9: K (84.4), 31002: B (29.2);	31001-	8: CI (0.2	27/0.30)	
MS/N	MSD: -31001 Ca_MS/MSD_High; -31002 Ca&Na_M	S/MSD	_Low		
DUP	-1: Li (22), Ra-228 (200); DUP-2: Ra-228 (200)		<u> </u>		
May					
IVIAA	Lab Duplicate RPD: 7% (Limit 10%)				
	Lab Duplicate RPD: 7% (Limit 10%) on: Chloride and Sulfate diluted in several samples	; no qua	alification	is necess	ary.

Revised May 2004 Page 2 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-UMW-1D	Calcium (Ca)	-	J	MS/MSD Recovered High; Result > MDL
L-UMW-7D	Ca	-	J	MS/MSD Recovered Low; Result > MDL
**	Sodium (Na)	-	J	11
L-UMW-1D	Radium-228 (Ra-228)		J	Field Duplicate (FD) RPD Exceeded Limits; Result > MDC
L-UMW-DUP-2	11		J	
	7 1/1/			

Signature:	Em	Mood	1/2	Date:	1/6/2020
		/ / /			

Revised May 2004 Page 3 of 3

January 31, 2020 Project No. 153-140601

APPENDIX D

November 2018 Assessment Monitoring Statistical Evaluation

TECHNICAL MEMORANDUM

DATE February 28, 2019 **Project No.** 153-1406

TO Bill Kutosky Ameren Missouri

CC Susan Knowles, Craig Giesmann, Paul Pike, Charlie Henderson

FROM Mark Haddock - Golder Associates EMAIL mhaddock@golder.com

ASSESSMENT MONITORING STATISTICAL EVALUATION FOR THE LCPA SURFACE IMPOUNDMENT, LABADIE ENERGY CENTER, FRANKLIN COUNTY MISSOURI

This Technical Memorandum provides the results of the Assessment Monitoring Statistical Evaluation for the LCPA Surface Impoundment November 2018 sampling event at the Labadie Energy Center located in Franklin County Missouri. Included in this memorandum is a brief summary of constituents that are present at a Statistically Significant Level (SSL), a list of site-specific Groundwater Protection Standards (**Table 1**), and the Sanitas Technologies[™] (Sanitas) statistical software output for each of the Appendix IV parameters (**Appendix A** and **Appendix B**).

SSLs were calculated using the methods and procedures outlined in the Groundwater Monitoring Plan's (GMP) Statistical Analysis Plan (SAP). No outliers were removed prior to calculation of the confidence intervals. A summary of SSLs at corresponding well(s) is as follows:

Molybdenum at UMW-3D, UMW-4D, UMW-5D, UMW-6D, and UMW-7D

Golder appreciates this opportunity to provide hydrogeological and engineering support services to Ameren. If you have any questions or comments regarding the information provided, please call our office at (314) 984-8800. Sincerely,

Jeffrey Ingram, R.G. *Project Geologist*

Joy S. Oyean

Mark Haddock, P.E., R.G. *Principal, Practice Leader*

Noch N. efallos

JSI/MNH

Enclosures:

Table 1 – LCPA Groundwater Protection Standards

Appendix A – Sanitas Confidence Interval Statistical Output

Appendix B - Sanitas Trending Confidence Bands Statistical Output

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

T: +1 314 984-8800 F: +1 314 984-8770

LCPA Groundwater Protection Standards LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

Labadic Energy Center, Frankiii County, Wo

Parameter	Units	MCL or Health Based GWPS	Site GWPS	Value to Return to Detection Monitoring ⁷
Antimony	μg/L	6	6	DQR
Arsenic	μg/L	10	42.6	42.6
Barium	μg/L	2000	2000	1290
Beryllium	μg/L	4	4	DQR
Cadmium	μg/L	5	5	DQR
Chromium	μg/L	100	100	DQR
Cobalt	μg/L	6	6	DQR
Fluoride	mg/l	4	4	0.29
Lead	μg/L	15	15	DQR
Lithium	μg/L	40	54.85	55.39
Mercury	μg/L	2	2	DQR
Molybdenum	μg/L	100	100	DQR
Radium 226 + 228	pCi/L	5	5	3.51
Selenium	μg/L	50	50	DQR
Thallium	μg/L	2	2	DQR

Notes:

Prepared by: JSI 10/3/2018

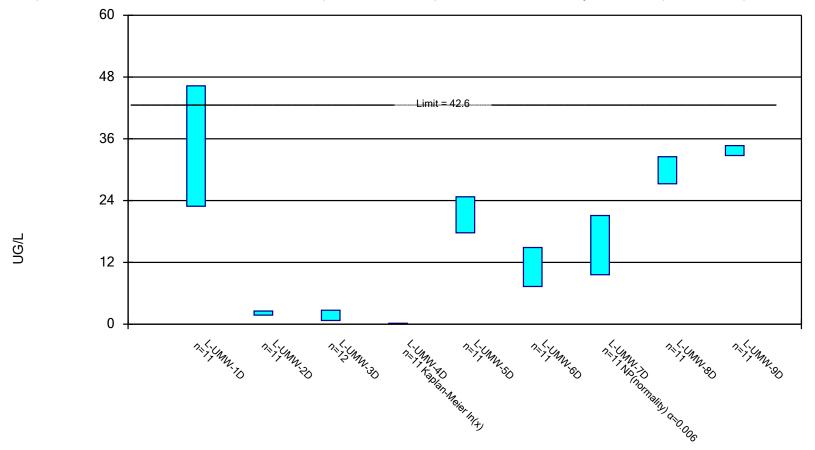
1. μg/L - micrograms per liter

Checked by:TJG 10/4/2018

2. mg/L - milligrams per liter

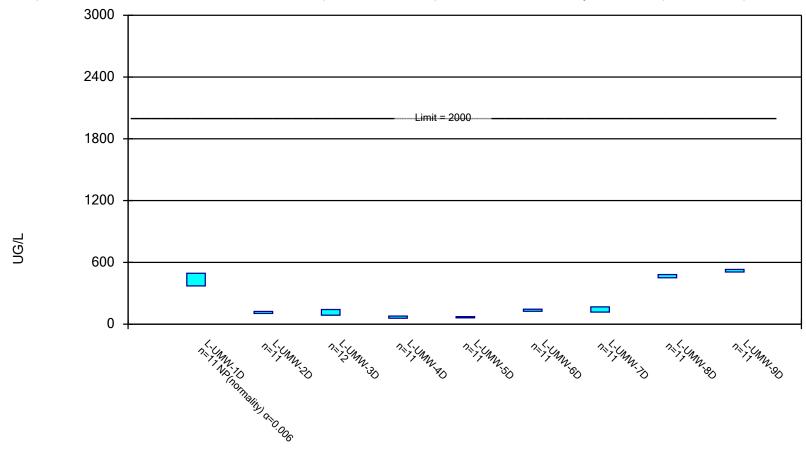
Reviewed by:MNH 10/10/2018

- 3. pCi/L picocuries per liter
- 4. MCL Maximum Contaminant Level. MCLs from United States Environmental Protection Agency (USEPA) 2012 Edition of the Drinking Water Standards and Health Advisories. Spring 2012. http://water.epa.gov/drink/contaminants/index.cfm.
- 5. Health Based Groundwater Protection Standards (GWPS) were adoped for Appendix IV parameters without an MCL (i.e. cobalt, lithium, molybdenum, and lead). Information available at https://www.epa.gov/coalash/coal-ash-rule.
- 6. Values were calculated using statistical methods outlined for Detection Monitoring and are used for returning to Detection Monitoring based on available data to date.
- 7. DQR Double Quantification Rule. If all baseline data are less than the Practical Quantitation Limit (PQL), then the DQR will be used. More information on the DQR is provided in the Statistical Analysis Plan.
- 8. Site GWPS is either the MCL/Health Based GWPS or based on background levels (calculated as described in the Statistical Analysis Plan for Assessment Monitoring), whichever is higher.
- 9. GWPS and background values calculated using baseline sampling results from monitoring wells BMW-1D and BMW-2D.

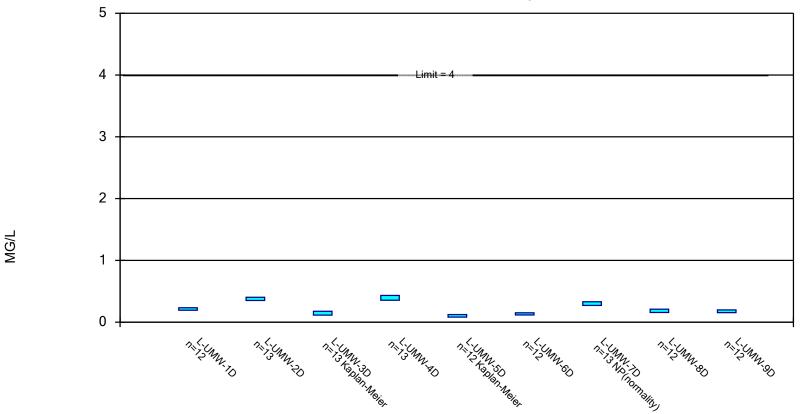

Bill Kutosky
Ameren Missouri
Project No. 153-1406
February 28, 2019

APPENDIX A

Sanitas Confidence Interval Statistical Output

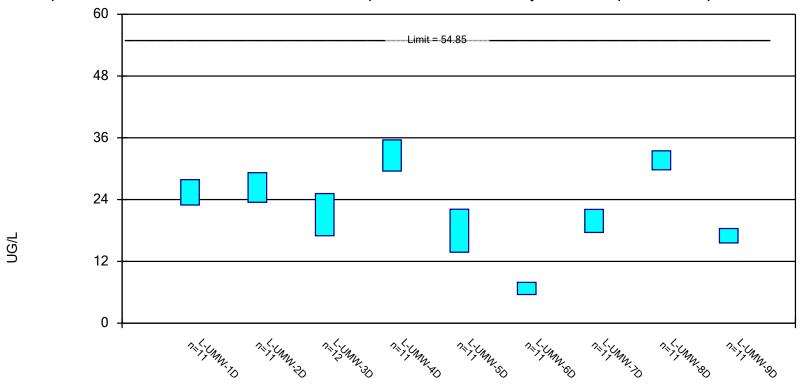


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: ARSENIC, TOTAL Analysis Run 2/20/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

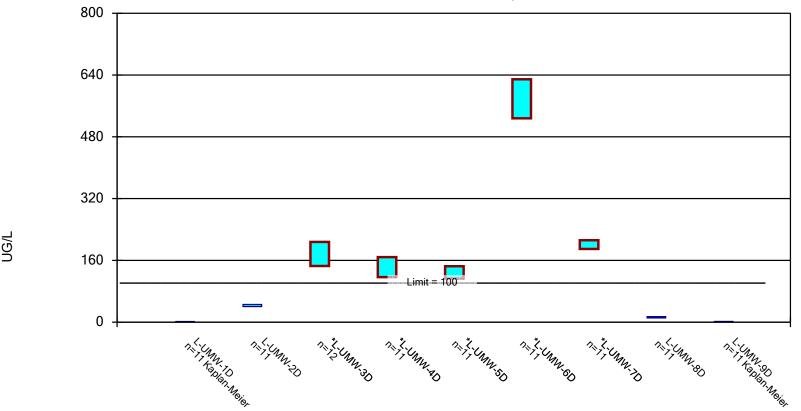
Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: BARIUM, TOTAL Analysis Run 2/20/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

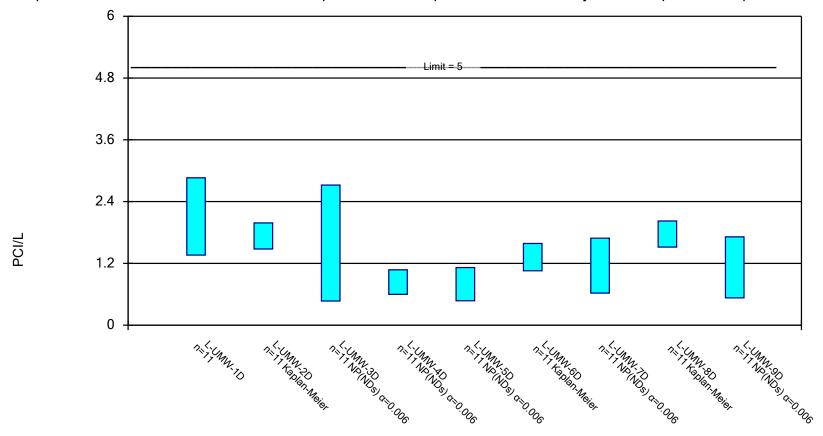
Constituent: FLUORIDE, TOTAL Analysis Run 2/20/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: LITHIUM, TOTAL Analysis Run 2/20/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric Confidence Interval


Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: MOLYBDENUM, TOTAL Analysis Run 2/20/2019 8:21 AM

Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

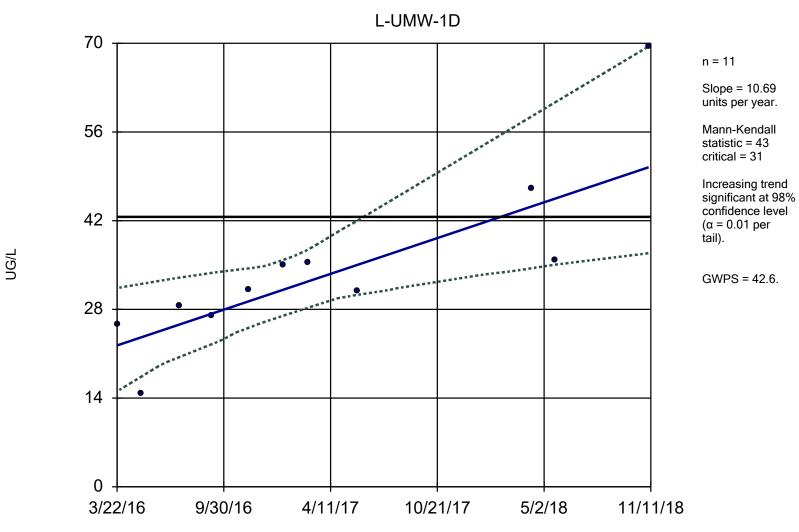
Constituent: Radium [226 + 228] Analysis Run 2/20/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Confidence Interval

		Labadie E.C.	Client: Ameren	Data: LEC DA	ATA (ST	ATS) I	Printed 2/20/2	2019, 8:23 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
ARSENIC, TOTAL (UG/L)	L-UMW-1D	46.3	22.9	42.6	No	11	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-2D	2.544	1.747	42.6	No	11	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-3D	2.703	0.7118	42.6	No	12	8.333	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-4D	0.1743	0.09087	42.6	No	11	36.36	ln(x)	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-5D	24.74	17.75	42.6	No	11	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-6D	14.89	7.312	42.6	No	11	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-7D	21.1	9.6	42.6	No	11	0	No	0.006	NP (normality)
ARSENIC, TOTAL (UG/L)	L-UMW-8D	32.52	27.28	42.6	No	11	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-9D	34.68	32.75	42.6	No	11	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-1D	494	371	2000	No	11	0	No	0.006	NP (normality)
BARIUM, TOTAL (UG/L)	L-UMW-2D	123.3	103.7	2000	No	11	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-3D	142	86.66	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-4D	77.95	57.33	2000	No	11	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-5D	73.02	61.02	2000	No	11	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-6D	144.9	125.3	2000	No	11	0	No	0.01	Param.
,						11	0			
BARIUM, TOTAL (UG/L)	L-UMW-7D L-UMW-8D	167.6	116.8	2000	No	11		No	0.01	Param.
BARIUM, TOTAL (UG/L)		481.5	450.1	2000	No		0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-9D	531.1	506.2	2000	No	11	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-1D	0.2323	0.1927	4	No	12	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-2D	0.4029	0.3509	4	No	13	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-3D	0.1758	0.1134	4	No	13	23.08	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-4D	0.4319	0.3543	4	No	13	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-5D	0.1223	0.08192	4	No	12	16.67	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-6D	0.1515	0.116	4	No	12	8.333	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-7D	0.33	0.27	4	No	13	0	No	0.01	NP (normality)
FLUORIDE, TOTAL (MG/L)	L-UMW-8D	0.21	0.1567	4	No	12	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-9D	0.1976	0.154	4	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-1D	27.88	22.95	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-2D	29.23	23.48	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-3D	25.18	16.99	54.85	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-4D	35.6	29.53	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-5D	22.12	13.78	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-6D	7.924	5.567	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-7D	22.1	17.61	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-8D	33.46	29.79	54.85	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-9D	18.38	15.59	54.85	No	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-1D	1.528	0.6077	100	No	11	27.27	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-2D	45.81	40.3	100	No	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-3D	207.7	145.5	100	Yes	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-4D	168.5	116.6	100	Yes	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-5D	144.7	112.7	100	Yes	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-6D	629	527.9	100	Yes	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-7D	212.1	189.5	100	Yes	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-8D	14.33	11.03	100	No	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-9D	1.854	0.673	100	No	11	27.27	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-1D	2.862	1.362	5	No	11	9.091	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-2D	1.986	1.478	5	No	11	27.27	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-3D	2.721	0.4685	5	No	11	63.64	No	0.006	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-4D	1.075	0.5985	5	No	11	72.73	No	0.006	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-5D	1.118	0.473	5	No	11	90.91	No	0.006	NP (NDs)
- · · · · ·										•

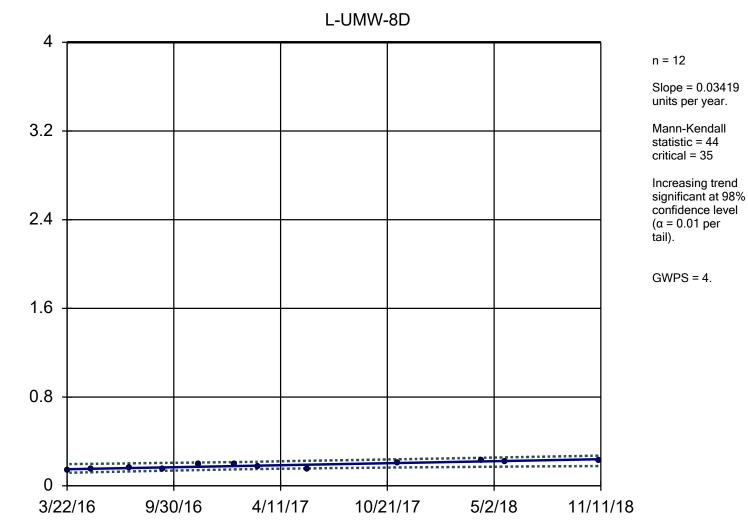
Confidence Interval

		Labadie E.C. Client: Ameren		Data: LEC DATA (STATS)		Printed 2/20/2019, 8:23 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Radium [226 + 228] (PCI/L)	L-UMW-6D	1.586	1.056	5	No	11	45.45	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-7D	1.689	0.623	5	No	11	81.82	No	0.006	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-8D	2.023	1.517	5	No	11	36.36	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-9D	1.716	0.529	5	No	11	81.82	No	0.006	NP (NDs)

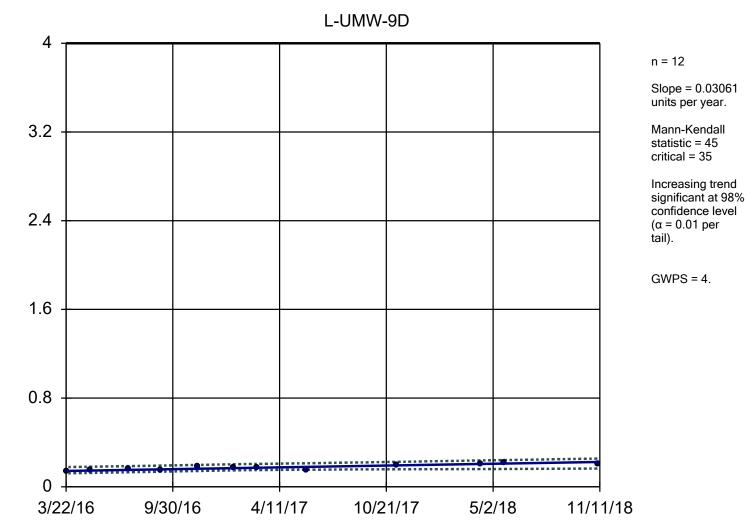

Bill Kutosky
Ameren Missouri
Project No. 153-1406
February 28, 2019

APPENDIX B

Sanitas Trending Confidence Bands Statistical Output

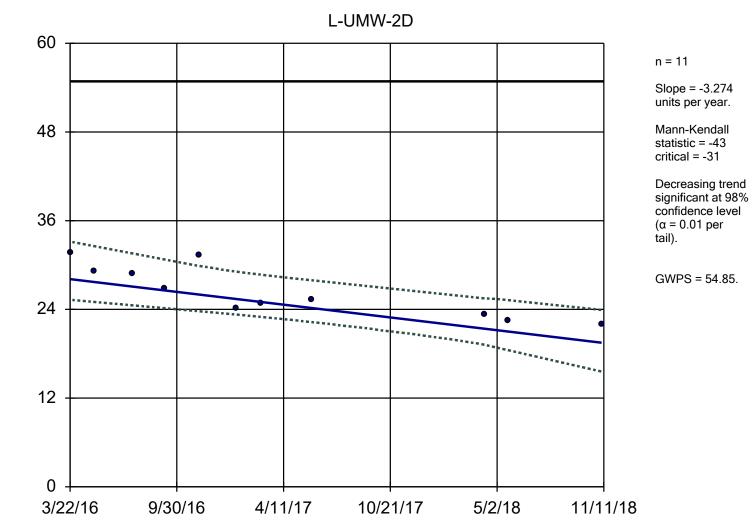


Sen's Slope and 95% Confidence Band


Constituent: ARSENIC, TOTAL Analysis Run 2/20/2019 9:06 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Sen's Slope and 95% Confidence Band

Constituent: FLUORIDE, TOTAL Analysis Run 2/20/2019 9:07 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)


Sen's Slope and 95% Confidence Band

Constituent: FLUORIDE, TOTAL Analysis Run 2/20/2019 9:07 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

NG/L

Sen's Slope and 95% Confidence Band

Constituent: LITHIUM, TOTAL Analysis Run 2/20/2019 9:07 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

January 31, 2020 Project No. 153-140601

APPENDIX G

April-May 2019 Assessment Monitoring Statistical Evaluation

TECHNICAL MEMORANDUM

DATE September 6, 2019 **Project No.** 153-140601

TO Bill Kutosky Ameren Missouri

CC Susan Knowles, Craig Giesmann, Paul Pike, Charlie Henderson

FROM Mark Haddock - Golder Associates EMAIL mhaddock@golder.com

ASSESSMENT MONITORING STATISTICAL EVALUATION FOR THE LCPA SURFACE IMPOUNDMENT, LABADIE ENERGY CENTER, FRANKLIN COUNTY MISSOURI

This Technical Memorandum provides the results of the Assessment Monitoring Statistical Evaluation for the LCPA Surface Impoundment April-May 2019 sampling event at the Labadie Energy Center located in Franklin County Missouri. Included in this memorandum is a brief summary of constituents that are present at a Statistically Significant Level (SSL), a list of site-specific Groundwater Protection Standards (**Table 1**), and the Sanitas Technologies™ (Sanitas) statistical software output for each of the Appendix IV parameters (**Appendix A** and **Appendix B**).

SSLs were calculated using the methods and procedures outlined in the Groundwater Monitoring Plan's (GMP) Statistical Analysis Plan (SAP). No outliers were removed prior to calculation of the confidence intervals. A summary of SSLs at corresponding well(s) is as follows:

Molybdenum at UMW-3D, UMW-4D, UMW-5D, UMW-6D, and UMW-7D

Golder appreciates this opportunity to provide hydrogeological and engineering support services to Ameren. If you have any questions or comments regarding the information provided, please call our office at (314) 984-8800. Sincerely,

Jeffrey Ingram, R.G. *Project Geologist*

You S. Oylun

Mark Haddock, P.E., R.G. *Principal, Practice Leader*

Mach N. afalland

JSI/MNH

Enclosures:

Table 1 – LCPA Groundwater Protection Standards

Appendix A - Sanitas Confidence Interval Statistical Output

Appendix B – Sanitas Trending Confidence Bands Statistical Output

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

T: +1 314 984-8800 F: +1 314 984-8770

Table 1 - LCPA Groundwater Protection Standards LCPA Surface Impoundment Labadie Energy Center

Parameter	Units	MCL or Health Based GWPS	Site GWPS	Value to Return to Detection Monitoring ⁷
Antimony	μg/L	6	6	DQR
Arsenic	μg/L	10	42.6	42.6
Barium	μg/L	2000	2000	1290
Beryllium	μg/L	4	4	DQR
Cadmium	μg/L	5	5	DQR
Chromium	μg/L	100	100	DQR
Cobalt	μg/L	6	6	DQR
Fluoride	mg/L	4	4	0.2999
Lead	μg/L	15	15	DQR
Lithium	μg/L	40	51.96	52.55
Mercury	μg/L	2	2	DQR
Molybdenum	μg/L	100	100	DQR
Radium 226 + 228	pCi/L	5	5	4.14
Selenium	μg/L	50	50	DQR
Thallium	μg/L	2	2	DQR

Notes:

Prepared by: JSI 8/1/2019

1. μg/L - micrograms per liter

Checked by: LMS 8/27/2019

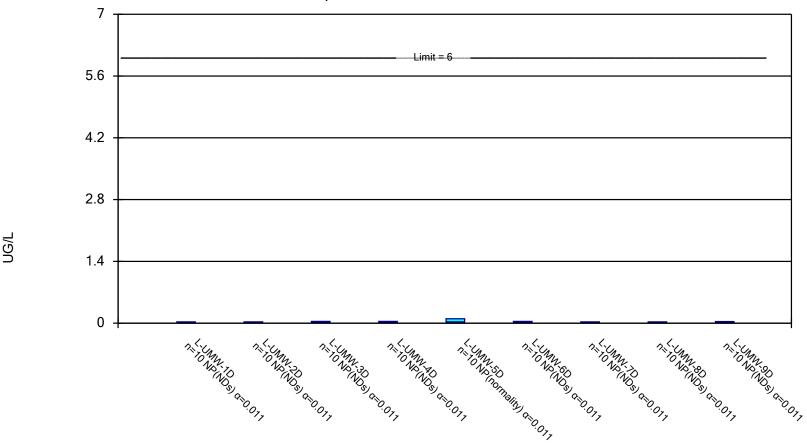
2. mg/L - milligrams per liter

Reviewed by: MNH 9/5/2019

3. pCi/L - picocuries per liter

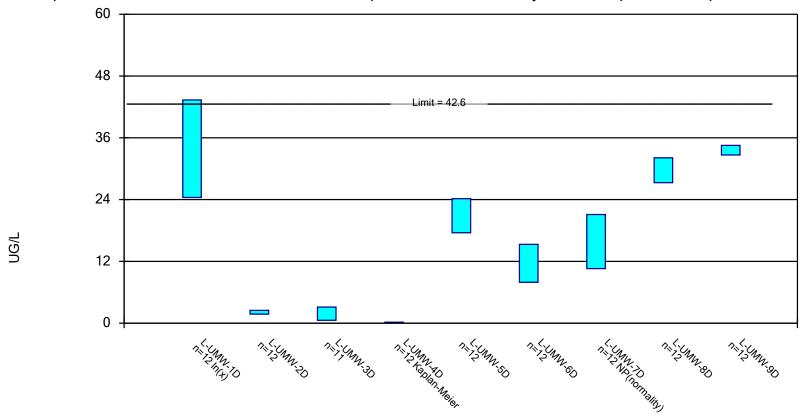
- 4. MCL Maximum Contaminant Level. MCLs from United States Environmental Protection Agency (USEPA) 2012 Edition of the Drinking Water Standards and Health Advisories. Spring 2012. http://water.epa.gov/drink/contaminants/index.cfm.
- 5. Health Based Groundwater Protection Standards (GWPS) were adopted for Appendix IV parameters without an MCL (i.e. cobalt, lithium, molybdenum, and lead). Information available at https://www.epa.gov/coalash/coal-ash-rule.
- 6. Values were calculated using statistical methods outlined for Detection Monitoring and are used for returning to Detection Monitoring based on available data to date.
- 7. DQR Double Quantification Rule. If all baseline data are less than the Practical Quantitation Limit (PQL), then the DQR will be used. More information on the DQR is provided in the Statistical Analysis Plan.
- 8. Site GWPS is either the MCL/Health Based GWPS or based on background levels (calculated as described in the Statistical Analysis Plan for Assessment Monitoring), whichever is higher.
- 9. GWPS and background values calculated using results collected through May 2019 from monitoring wells BMW-1D and BMW-2D.

Bill Kutosky
Project No. 153-140601
Ameren Missouri
September 6, 2019


APPENDIX A

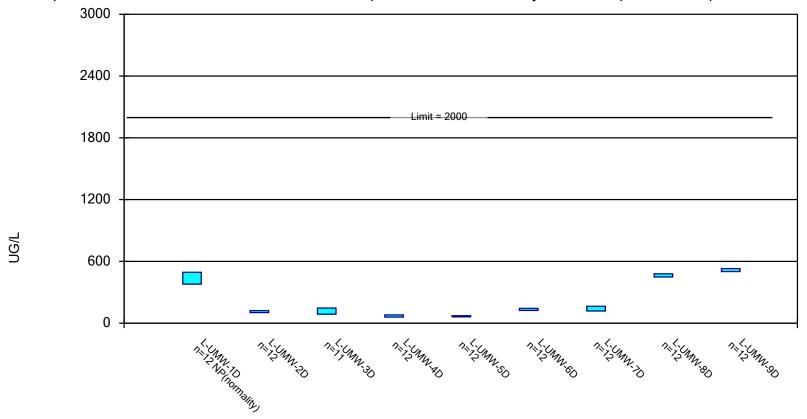
Sanitas Confidence Interval Statistical Output

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

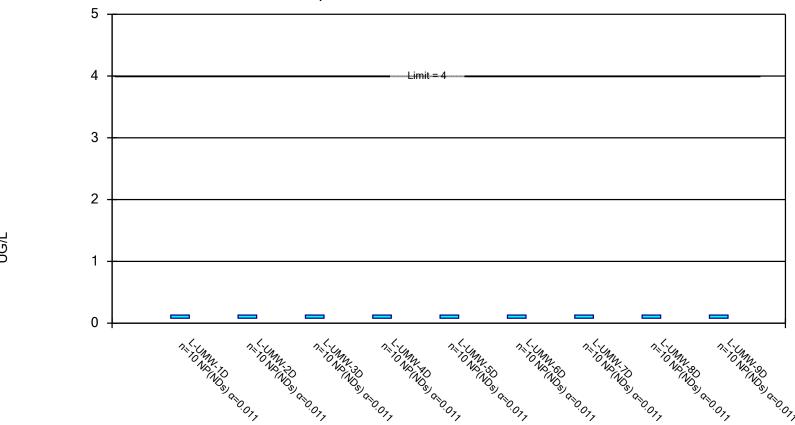
Constituent: ANTIMONY, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

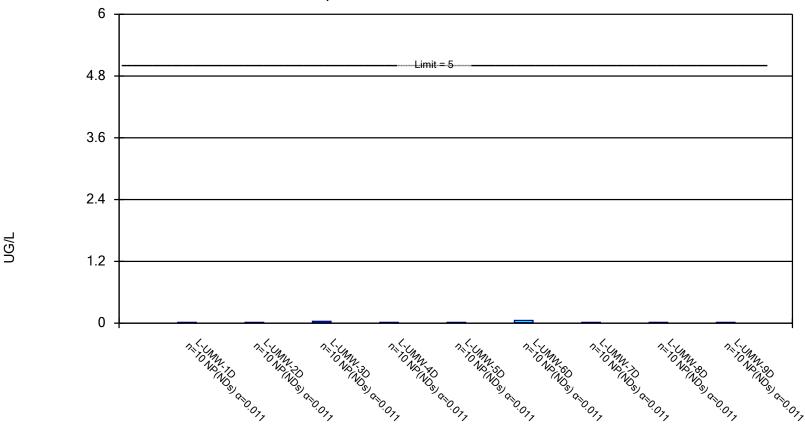
Constituent: ARSENIC, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

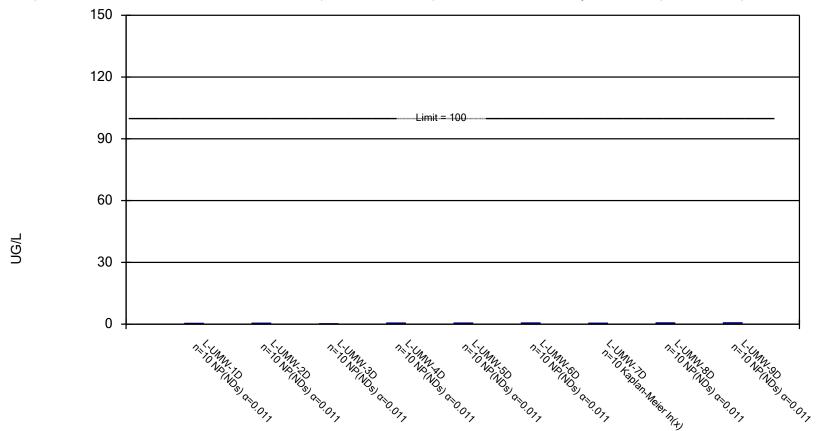
Constituent: BARIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

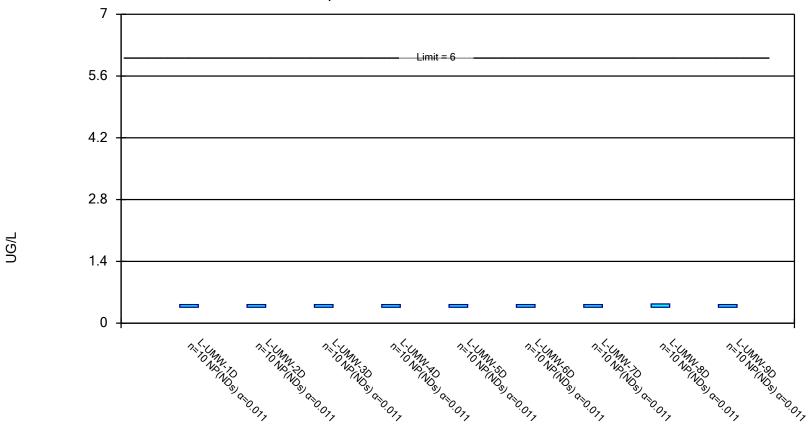
Constituent: BERYLLIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

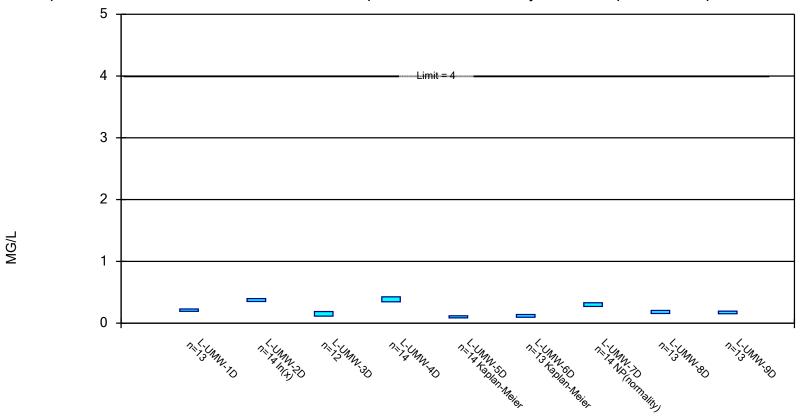
Constituent: CADMIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

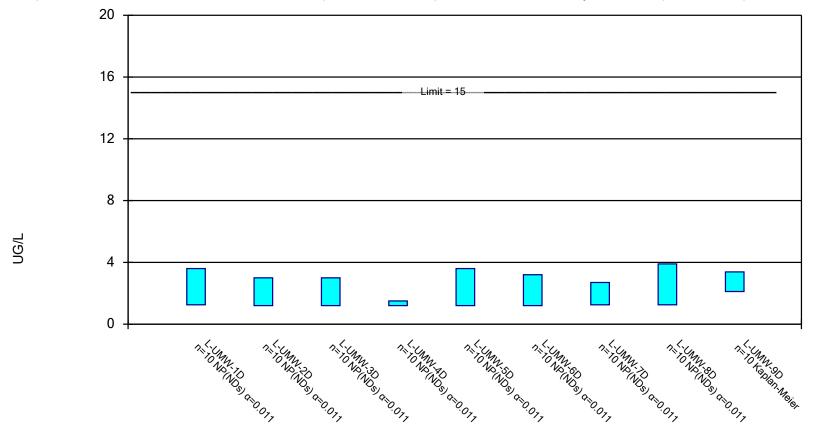
Constituent: CHROMIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

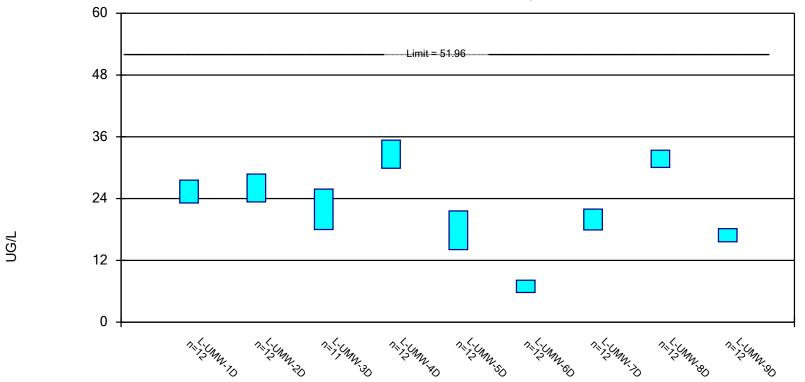
Constituent: COBALT, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

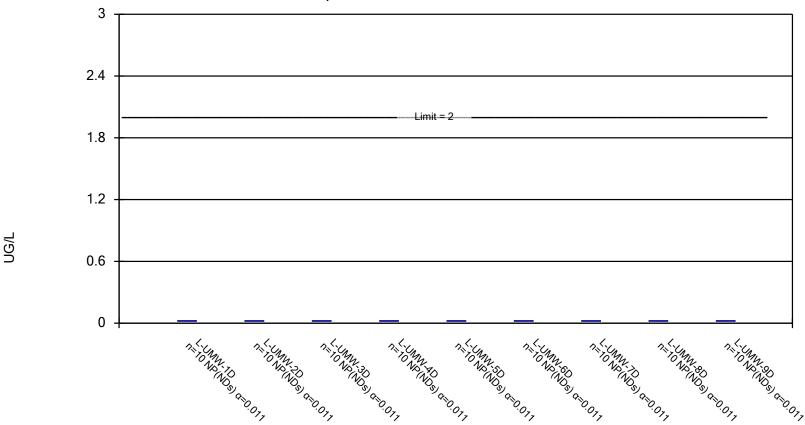
Constituent: FLUORIDE, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

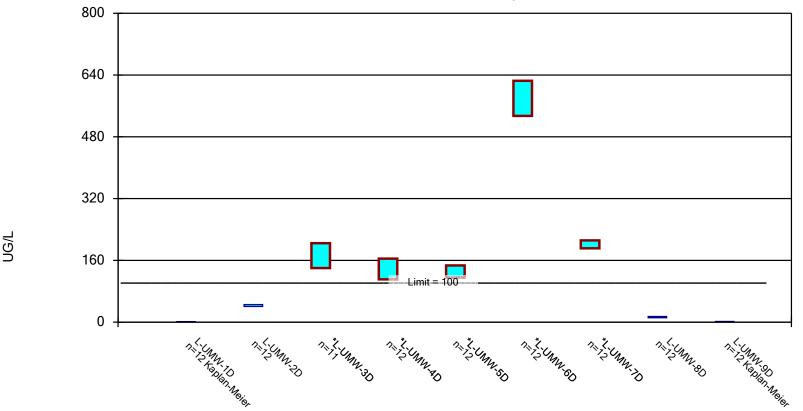
Constituent: LEAD, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: LITHIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

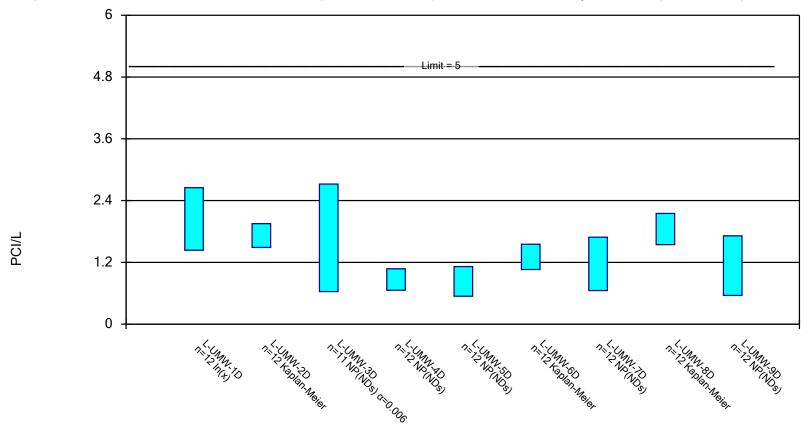
Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: MERCURY, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric Confidence Interval

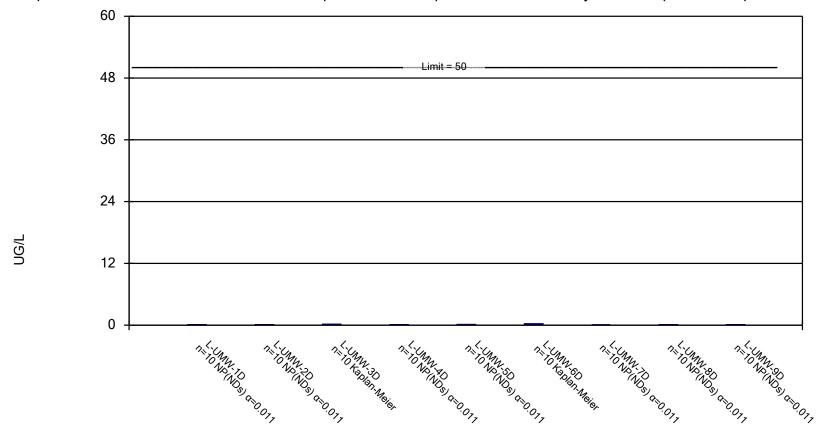
Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: MOLYBDENUM, TOTAL Analysis Run 8/28/2019 8:21 AM

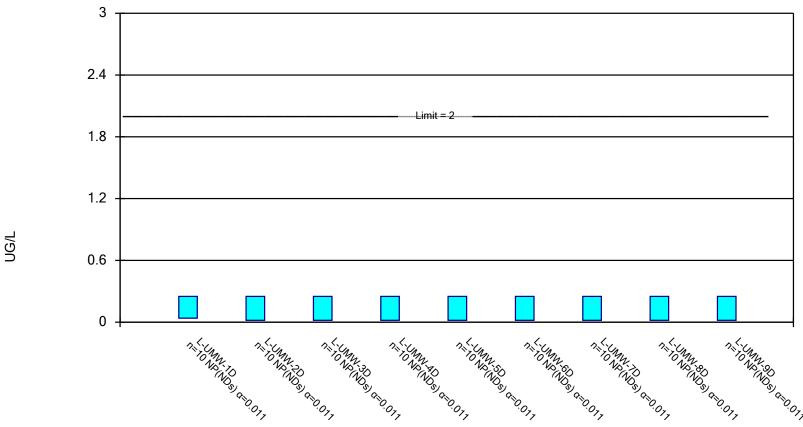
Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Radium [226 + 228] Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: SELENIUM, TOTAL Analysis Run 8/28/2019 8:21 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Constituent: THALLIUM, TOTAL Analysis Run 8/28/2019 8:22 AM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Confidence Interval

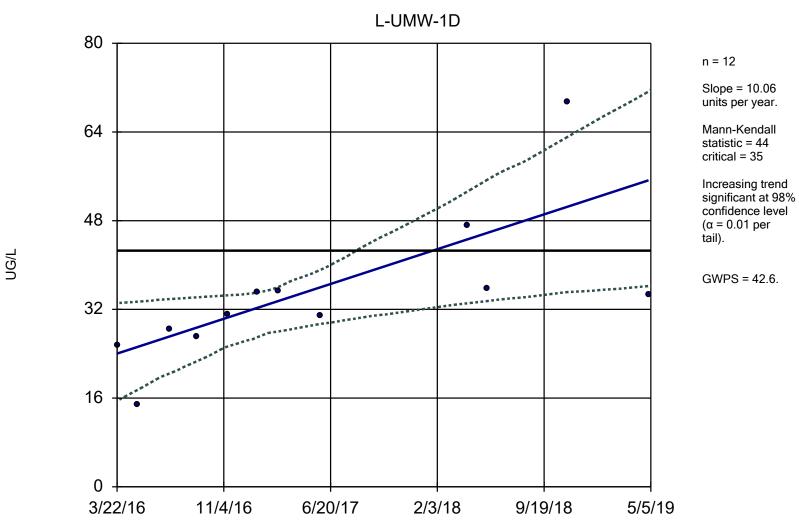
		Labadie E.C.	Client: Ameren	Data: LEC DA	ATA (STA	ATS)	Printed 8/28/2	019, 8:23 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
ANTIMONY, TOTAL (UG/L)	L-UMW-1D	0.029	0.013	6	No	10	80	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-2D	0.029	0.013	6	No	10	100	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-3D	0.039	0.013	6	No	10	90	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-4D	0.039	0.013	6	No	10	90	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-5D	0.1	0.029	6	No	10	40	No	0.011	NP (normality)
ANTIMONY, TOTAL (UG/L)	L-UMW-6D	0.039	0.013	6	No	10	90	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-7D	0.029	0.013	6	No	10	100	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-8D	0.029	0.013	6	No	10	100	No	0.011	NP (NDs)
ANTIMONY, TOTAL (UG/L)	L-UMW-9D	0.035	0.013	6	No	10	90	No	0.011	NP (NDs)
ARSENIC, TOTAL (UG/L)	L-UMW-1D	43.36	24.42	42.6	No	12	0	ln(x)	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-2D	2.483	1.75	42.6	No	12	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-3D	3.118	0.5533	42.6	No	11	9.091	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-4D	0.183	0.08969	42.6	No	12	33.33	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-5D	24.17	17.56	42.6	No	12	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-6D	15.3	7.937	42.6	No	12	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-7D	21.1	10.6	42.6	No	12	0	No	0.01	NP (normality)
ARSENIC, TOTAL (UG/L)	L-UMW-8D	32.12	27.28	42.6	No	12	0	No	0.01	Param.
ARSENIC, TOTAL (UG/L)	L-UMW-9D	34.52	32.66	42.6	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-1D	494	379	2000	No	12	0	No	0.01	NP (normality)
BARIUM, TOTAL (UG/L)	L-UMW-2D	121.7	102.3	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-3D	146.9	86.7	2000	No	11	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-4D	79.79	58.98	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-5D	72.19	61.34	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-6D	143.3	123.5	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-7D	163.9	117.7	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-8D	478.9	448.1	2000	No	12	0	No	0.01	Param.
BARIUM, TOTAL (UG/L)	L-UMW-9D	529.7	501	2000	No	12	0	No	0.01	Param.
BERYLLIUM, TOTAL (UG/L)	L-UMW-1D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-2D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-3D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-4D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-5D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-6D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-7D	0.13	0.08	4	No	10	90	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-8D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
BERYLLIUM, TOTAL (UG/L)	L-UMW-9D	0.13	0.08	4	No	10	100	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-1D	0.0145	0.009	5	No	10	100	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-2D	0.0145	0.009	5	No	10	100	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-3D	0.036	0.009	5	No	10	80	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-4D	0.0145	0.009	5	No	10	90	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-5D	0.0145	0.009	5	No	10	90	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-6D	0.052	0.009	5	No	10	70	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-7D	0.0145	0.009	5	No	10	90	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-8D	0.0145	0.009	5	No	10	100	No	0.011	NP (NDs)
CADMIUM, TOTAL (UG/L)	L-UMW-9D	0.0145	0.009	5	No	10	100	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-1D	0.36	0.027	100	No	10	70	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-2D	0.47	0.027	100	No	10	70	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-3D	0.17	0.027	100	No	10	90	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-4D	0.55	0.039	100	No	10	60	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-5D	0.54	0.027	100	No	10	70	No	0.011	NP (NDs)

Confidence Interval

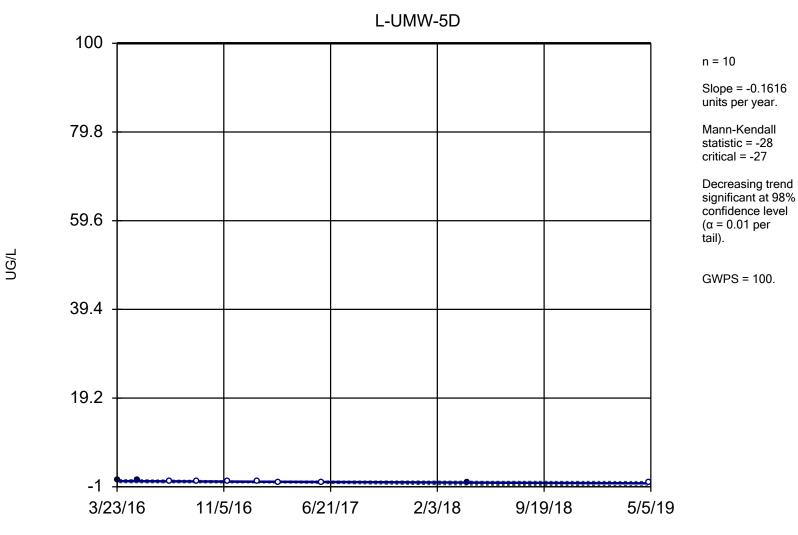
Labadie F.C	Client: Ameren	Data: LFC DATA (STATS)	Printed 8/28/2019	8.23 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
CHROMIUM, TOTAL (UG/L)	L-UMW-6D	0.56	0.027	100	No	10	60	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-7D	0.4449	0.06334	100	No	10	50	ln(x)	0.01	Param.
CHROMIUM, TOTAL (UG/L)	L-UMW-8D	0.62	0.027	100	No	10	60	No	0.011	NP (NDs)
CHROMIUM, TOTAL (UG/L)	L-UMW-9D	0.65	0.027	100	No	10	70	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-1D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-2D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-3D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-4D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-5D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-6D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-7D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-8D	0.435	0.36	6	No	10	90	No	0.011	NP (NDs)
COBALT, TOTAL (UG/L)	L-UMW-9D	0.42	0.36	6	No	10	100	No	0.011	NP (NDs)
FLUORIDE, TOTAL (MG/L)	L-UMW-1D	0.2292	0.1908	4	No	13	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-2D	0.3976	0.3511	4	No	14	0	ln(x)	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-3D	0.1876	0.1141	4	No	12	8.333	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-4D	0.4262	0.3452	4	No	14	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-5D	0.1193	0.08463	4	No	14	21.43	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-6D	0.1401	0.09562	4	No	13	15.38	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-7D	0.33	0.27	4	No	14	0	No	0.01	NP (normality)
FLUORIDE, TOTAL (MG/L)	L-UMW-8D	0.2062	0.1569	4	No	13	0	No	0.01	Param.
FLUORIDE, TOTAL (MG/L)	L-UMW-9D	0.1942	0.152	4	No	13	0	No	0.01	Param.
LEAD, TOTAL (UG/L)	L-UMW-1D	3.6	1.25	15	No	10	60	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-2D	3	1.2	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-3D	3	1.2	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-4D	1.5	1.2	15	No	10	100	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-5D	3.6	1.2	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-6D	3.2	1.2	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-7D	2.7	1.25	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-8D	3.9	1.25	15	No	10	80	No	0.011	NP (NDs)
LEAD, TOTAL (UG/L)	L-UMW-9D	3.383	2.111	15	No	10	50	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-1D	27.58	23.15	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-2D	28.76	23.36	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-3D	25.84	18	51.96	No	11	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-4D	35.35	29.9	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-5D	21.6	14.1	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-6D	8.145	5.755	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-7D	21.96	17.91	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-8D	33.4	30.05	51.96	No	12	0	No	0.01	Param.
LITHIUM, TOTAL (UG/L)	L-UMW-9D	18.17	15.62	51.96	No	12	0	No	0.01	Param.
MERCURY, TOTAL (UG/L)	L-UMW-1D	0.023	0.0195	2	No	10	100	No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-2D	0.023	0.0195	2	No	10	100	No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-3D	0.023	0.0195	2	No	10	100	No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-4D	0.023	0.0195	2	No	10	100	No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-5D	0.023	0.0195	2		10	100		0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-6D	0.023	0.0195	2	No No	10	100	No No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-7D	0.023	0.0195	2	No	10	100	No	0.011	NP (NDs)
MERCURY, TOTAL (UG/L)	L-UMW-8D	0.023	0.0195	2			100		0.011	NP (NDs)
MERCURY, TOTAL (UG/L) MERCURY, TOTAL (UG/L)	L-UMW-9D	0.023	0.0195	2	No No	10 10	100	No No	0.011	NP (NDs)
					No	10		No		
MOLYBDENUM, TOTAL (UG/L)	L-UMW-1D	1.501	0.6346	100	No	12	33.33	No	0.01	Param.

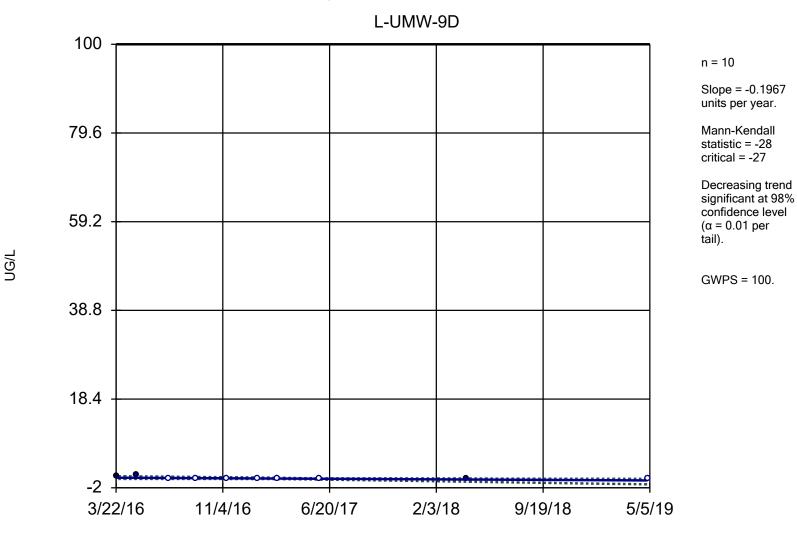
Confidence Interval

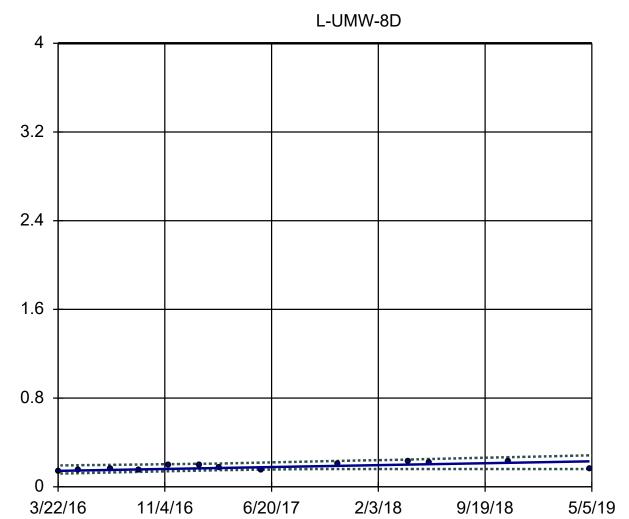

Labadie E.C.	Client: Ameren	Data: LEC DATA (STATS)	Printed 8/28/2019, 8:23 AM
--------------	----------------	------------------------	----------------------------

		24044.0 2.0		Data: 220 D/		, .		0.0, 0.207		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
MOLYBDENUM, TOTAL (UG/L)	L-UMW-2D	45.56	40.61	100	No	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-3D	204.5	140	100	Yes	11	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-4D	164.5	110.7	100	Yes	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-5D	146.8	115.4	100	Yes	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-6D	625.1	534.2	100	Yes	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-7D	211.7	191.1	100	Yes	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-8D	14.76	11.28	100	No	12	0	No	0.01	Param.
MOLYBDENUM, TOTAL (UG/L)	L-UMW-9D	1.803	0.7023	100	No	12	33.33	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-1D	2.65	1.435	5	No	12	8.333	ln(x)	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-2D	1.951	1.491	5	No	12	25	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-3D	2.721	0.632	5	No	11	63.64	No	0.006	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-4D	1.075	0.659	5	No	12	75	No	0.01	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-5D	1.118	0.542	5	No	12	91.67	No	0.01	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-6D	1.552	1.062	5	No	12	50	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-7D	1.689	0.6525	5	No	12	83.33	No	0.01	NP (NDs)
Radium [226 + 228] (PCI/L)	L-UMW-8D	2.15	1.544	5	No	12	33.33	No	0.01	Param.
Radium [226 + 228] (PCI/L)	L-UMW-9D	1.716	0.5575	5	No	12	83.33	No	0.01	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-1D	0.09	0.043	50	No	10	90	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-2D	0.09	0.043	50	No	10	90	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-3D	0.1748	0.1134	50	No	10	50	No	0.01	Param.
SELENIUM, TOTAL (UG/L)	L-UMW-4D	0.09	0.043	50	No	10	100	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-5D	0.14	0.09	50	No	10	60	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-6D	0.2714	0.1896	50	No	10	20	No	0.01	Param.
SELENIUM, TOTAL (UG/L)	L-UMW-7D	0.09	0.089	50	No	10	70	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-8D	0.09	0.043	50	No	10	90	No	0.011	NP (NDs)
SELENIUM, TOTAL (UG/L)	L-UMW-9D	0.09	0.043	50	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-1D	0.25	0.039	2	No	10	80	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-2D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-3D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-4D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-5D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-6D	0.25	0.018	2	No	10	90	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-7D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-8D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)
THALLIUM, TOTAL (UG/L)	L-UMW-9D	0.25	0.018	2	No	10	100	No	0.011	NP (NDs)


Bill Kutosky
Project No. 153-140601
Ameren Missouri
September 6, 2019

APPENDIX B

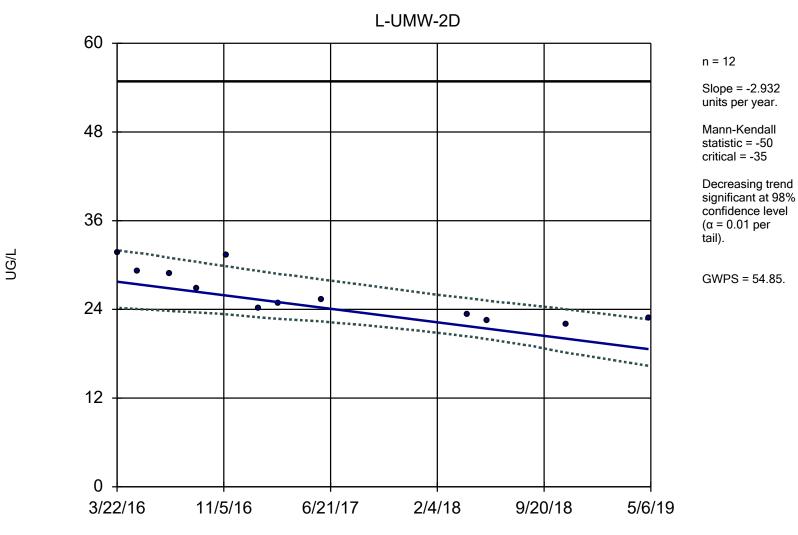

Sanitas Trending Confidence Bands Statistical Output


Constituent: ARSENIC, TOTAL Analysis Run 8/20/2019 4:11 PM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

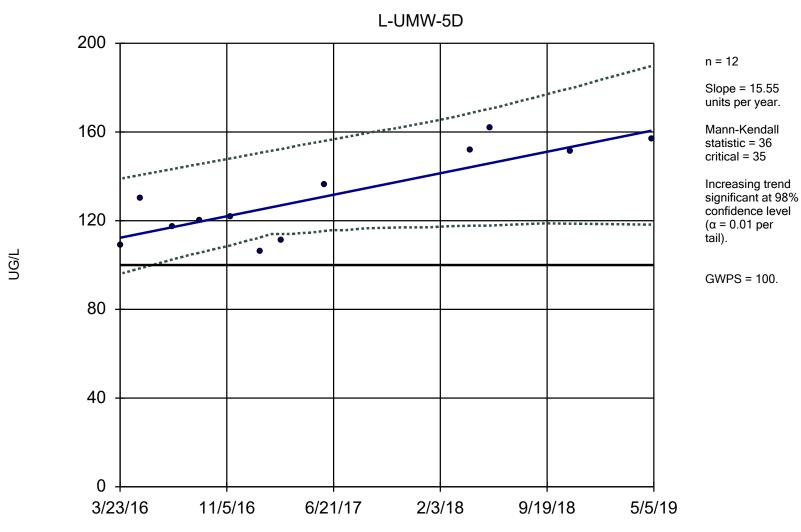
Constituent: CHROMIUM, TOTAL Analysis Run 8/20/2019 4:12 PM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Constituent: CHROMIUM, TOTAL Analysis Run 8/20/2019 4:12 PM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

n = 13


Slope = 0.02748 units per year.

Mann-Kendall statistic = 41 critical = 39


Increasing trend significant at 98% confidence level ($\alpha = 0.01$ per tail).

GWPS = 4.

Constituent: FLUORIDE, TOTAL Analysis Run 8/20/2019 4:12 PM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Constituent: LITHIUM, TOTAL Analysis Run 8/20/2019 4:13 PM Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Constituent: MOLYBDENUM, TOTAL Analysis Run 8/20/2019 4:13 PM

Labadie E.C. Client: Ameren Data: LEC DATA (STATS)

Trend Test

	L	abadie E.C. Clie	ent: Ameren	Data: LEC DATA	A (STATS)	Printed	8/20/2019, 4	I:14 PM			
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
ANTIMONY, TOTAL (UG/L)	L-UMW-1D	0	-3	-27	No	10	80	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-2D	0	-9	-27	No	10	100	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-3D	-0.00	-14	-27	No	10	90	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-4D	0	-10	-27	No	10	90	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-5D	0.004069	11	27	No	10	40	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-6D	-0.00	-16	-27	No	10	90	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-7D	0	-9	-27	No	10	100	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-8D	0	-9	-27	No	10	100	n/a	n/a	0.02	NP
ANTIMONY, TOTAL (UG/L)	L-UMW-9D	0	5	27	No	10	90	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-1D	10.06	44	35	Yes	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-2D	-0.02437	-3	-35	No	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-3D	0.9286	21	31	No	11	9.091	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-4D	0	2	35	No	12	33.33	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-5D	-0.2801	-6	-35	No	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-6D	2.423	22	35	No	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-7D	2.091	9	35	No	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-8D	-0.3121	-11	-35	No	12	0	n/a	n/a	0.02	NP
ARSENIC, TOTAL (UG/L)	L-UMW-9D	0.1312	3	35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-1D	22.58	26	35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-2D	-7.521	-35	-35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-3D	-4.156	-3	-31	No	11	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-4D	4.927	17	35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-5D	-1.64	-11	-35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-6D	1.967	3	35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-7D	-11.49	-12	-35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-8D	-12.46	-26	-35	No	12	0	n/a	n/a	0.02	NP
BARIUM, TOTAL (UG/L)	L-UMW-9D	-11.04	-26	-35	No	12	0	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-1D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-2D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-3D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-4D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-5D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-6D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-7D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-8D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
BERYLLIUM, TOTAL (UG/L)	L-UMW-9D	-0.00	-21	-27	No	10	100	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-1D	0	-9	-27	No	10	100	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-2D	0	-9	-27	No	10	100	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-3D	0	5	27	No	10	80	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-4D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-5D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-6D	0	8	27	No	10	70	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L)	L-UMW-7D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
CADMIUM, TOTAL (UG/L) CADMIUM, TOTAL (UG/L)	L-UMW-8D	0	-9 -9	-27 -27	No	10	100	n/a n/a	n/a n/a	0.02	NP NP
CADMIUM, TOTAL (UG/L)	L-UMW-9D	0	-9 -9	-27	No	10	100	n/a n/a	n/a n/a	0.02	NP
CADMIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L)	L-UMW-1D	-0.05643	-9 -18	-21 -27	No	10	70		n/a n/a	0.02	NP NP
CHROMIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L)	L-UMW-2D	-0.05645 -0.172	-16 -25	-21 -27	No	10	70 70	n/a n/a	n/a n/a	0.02	NP NP
CHROMIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L)	L-UMW-3D	-0.172	-25 -21	-27 -27	No	10	90			0.02	NP
CHROMIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L)	L-UMW-4D	-0.04367 -0.0574		-21 -27	No	10	90 60	n/a n/a	n/a n/a	0.02	NP NP
			-21					n/a			
CHROMIUM, TOTAL (UG/L)	L-UMW-5D	-0.1616	-28	-27	Yes	10	70	n/a	n/a	0.02	NP

Labadie E.C. Client: Ameren Data: LEC DATA (STATS) Printed 8/20/2019, 4:14 PM

	Laba	idle E.C. Clie	ent: Ameren	Data: LEC DATA (S	SIAIS)	Printed 8	3/20/2019, 4	1:14 PM			
<u>Constituent</u>	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	<u>%NDs</u>	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	<u>Method</u>
CHROMIUM, TOTAL (UG/L)	L-UMW-6D	-0.2253	-27	-27	No	10	60	n/a	n/a	0.02	NP
CHROMIUM, TOTAL (UG/L)	L-UMW-7D	-0.2223	-19	-27	No	10	50	n/a	n/a	0.02	NP
CHROMIUM, TOTAL (UG/L)	L-UMW-8D	-0.203	-25	-27	No	10	60	n/a	n/a	0.02	NP
CHROMIUM, TOTAL (UG/L)	L-UMW-9D	-0.1967	-28	-27	Yes	10	70	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-1D	0.006913	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-2D	0.006861	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-3D	0.006992	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-4D	0.006992	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-5D	0.006887	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-6D	0.006887	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-7D	0.006966	27	27	No	10	100	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-8D	0.00565	16	27	No	10	90	n/a	n/a	0.02	NP
COBALT, TOTAL (UG/L)	L-UMW-9D	0.006913	27	27	No	10	100	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-1D	0.004142	8	39	No	13	0	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-2D	0.009264	19	44	No	14	0	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-3D	0.01637	17	35	No	12	8.333	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-4D	0.02761	25	44	No	14	0	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-5D	0.006006	19	44	No	14	21.43	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-6D	-0.00	-6	-39	No	13	15.38	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-7D	0	-7	-44	No	14	0	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-8D	0.02748	41	39	Yes	13	0	n/a	n/a	0.02	NP
FLUORIDE, TOTAL (MG/L)	L-UMW-9D	0.02526	34	39	No	13	0	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-1D	0	1	27	No	10	60	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-2D	0	6	27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-3D	0	4	27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-4D	0	5	27	No	10	100	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-5D	0	-2	-27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-6D	0	-2	-27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-7D	0	10	27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-8D	0.122	11	27	No	10	80	n/a	n/a	0.02	NP
LEAD, TOTAL (UG/L)	L-UMW-9D	0	-3	-27	No	10	50	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-1D	-0.7453	-8	-35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-2D	-2.932	-50	-35	Yes	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-3D	-1.255	-18	-31	No	11	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-4D	-1.714	-19	-35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-5D	-2.95	-30	-35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-6D	-0.7307	-22	-35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-7D	0.5591	10	35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-8D	-0.5864	-14	-35	No	12	0	n/a	n/a	0.02	NP
LITHIUM, TOTAL (UG/L)	L-UMW-9D	-0.9501	-28	-35	No	12	0	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-1D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-2D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-3D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-4D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-5D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-6D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-7D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-8D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MERCURY, TOTAL (UG/L)	L-UMW-9D	0	4	27	No	10	100	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-1D	-0.05411	-7	-35	No	12	33.33	n/a	n/a	0.02	NP

Page 3

		Labadie E.C.	Client: Ameren	Data: LEC DATA	(STATS)	Printed	8/20/2019,	1:14 PM			
<u>Constituent</u>	<u>Well</u>	Slope	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MOLYBDENUM, TOTAL (UG/L)	L-UMW-2D	-1.154	-22	-35	No	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-3D	10.14	12	31	No	11	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-4D	-17.27	-21	-35	No	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-5D	15.55	36	35	Yes	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-6D	-29.1	-20	-35	No	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-7D	6.627	24	35	No	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-8D	0.1331	1	35	No	12	0	n/a	n/a	0.02	NP
MOLYBDENUM, TOTAL (UG/L)	L-UMW-9D	-0.1314	4 -8	-35	No	12	33.33	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-1D	0.1884	17	35	No	12	8.333	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-2D	0.0780	1 6	35	No	12	25	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-3D	-0.0448	35 -5	-31	No	11	63.64	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-4D	-0.0294	41 -6	-35	No	12	75	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-5D	-0.164	-24	-35	No	12	91.67	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-6D	-0.0443	33 -4	-35	No	12	50	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-7D	-0.095	36 -18	-35	No	12	83.33	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-8D	-0.2002	2 -8	-35	No	12	33.33	n/a	n/a	0.02	NP
Radium [226 + 228] (PCI/L)	L-UMW-9D	-0.150	4 -22	-35	No	12	83.33	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-1D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-2D	0	-9	-27	No	10	90	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-3D	0	-4	-27	No	10	50	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-4D	-0.0158	39 -27	-27	No	10	100	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-5D	0.0115	22	27	No	10	60	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-6D	0.0310	6 13	27	No	10	20	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-7D	0	-11	-27	No	10	70	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-8D	-0.00	-25	-27	No	10	90	n/a	n/a	0.02	NP
SELENIUM, TOTAL (UG/L)	L-UMW-9D	-0.0158	39 -27	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-1D	-0.0670	08 -24	-27	No	10	80	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-2D	-0.0670	02 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-3D	-0.067	14 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-4D	-0.0670	08 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-5D	-0.067	14 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-6D	-0.071	68 -23	-27	No	10	90	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-7D	-0.0669	96 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-8D	-0.067	08 -21	-27	No	10	100	n/a	n/a	0.02	NP
THALLIUM, TOTAL (UG/L)	L-UMW-9D	-0.067	08 -21	-27	No	10	100	n/a	n/a	0.02	NP

January 31, 2020 Project No. 153-140601

APPENDIX F

Nature and Extent Technical Memorandum

Technical Memorandum

DATE January 2020 **Project No.** 153140601

TO Bill Kutosky Ameren Missouri

CC Susan Knowles, Craig Giesmann, Charley Henderson, Paul Pike

FROM Jeffrey Ingram, Mark Haddock EMAIL Jingram@Golder.com

NATURE AND EXTENT INVESTIGATION, LABADIE ENERGY CENTER, FRANKLIN COUNTY, MISSOURI

Dear Mr. Kutosky,

Golder Associates Inc. (Golder) is pleased to submit this Technical Memorandum summarizing recent groundwater sampling and groundwater level measurements near the Ameren Missouri (Ameren) Labadie Energy Center (LEC) in Franklin County, Missouri. This Technical Memorandum provides the groundwater sampling results and groundwater level measurement results from this ongoing investigation of Coal Combustion Residual (CCR) impacts from LCPA Surface Impoundment to groundwater. A figure displaying the locations of the monitoring wells used for this investigation is provided as **Figure 1**.

1.0 PROJECT SCOPE OF WORK

The scope of work for this investigation included the following:

- Collect multiple samples in the nature and extent monitoring network for CCR Rule constituents
- Complete multiple rounds of groundwater elevation measurements to produce potentiometric surface maps
- Tabulate sampling results and prepare a Technical Memorandum

2.0 GROUNDWATER SAMPLING

Groundwater sampling was completed in November 2018 and April – August 2019. Sampling was completed using low flow sampling techniques and guidelines as provided in the LCPA Groundwater Monitoring Plan. Tables summarizing the analytical results are provided in **Tables 1** and **2**. Laboratory data report packets and data validation memos are included in the 2018 and 2019 Annual Reports.

Samples were collected from monitoring wells used to monitor the LCPB, LCL1, as well as 17 monitoring wells and piezometers installed for nature and extent purposes. Well construction diagrams for these monitoring wells are provided in the 2017, 2018 or 2019 Annual Reports for the LCPA, LCPB and LCL1.

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

T: +1 314 984-8800 F: +1 314 984-8770

Bill Kutosky
Project No. 153140601
Ameren Missouri
January 2020

3.0 GROUNDWATER LEVEL MONITORING

Multiple rounds of water level measurements were collected from available monitoring wells. A table displaying the groundwater level monitoring results is provided in **Table 3.** Measurements were used to create site-wide potentiometric surface maps for evaluating groundwater flow direction. Potentiometric surface maps are provided in the 2018 and 2019 Annual Reports for the LCPA.

4.0 CLOSING

Golder appreciates the opportunity to serve as your consultant on this project. If you have any questions concerning this letter report or need additional information, please contact the undersigned at 314-984-8800.

GOLDER ASSOCIATES INC.

leffry S. Dyrun

Jeffrey Ingram, R.G. *Project Geologist*

Mark Haddock, P.E., R.G. *Principal, Practice Leader*

Manh N. efallar

JSI/MNH

Attachments or Enclosures:

Tables

Table 1 – Nature and Extent Groundwater Sampling Analytical Results – November 2018

Table 2 - Nature and Extent Groundwater Sampling Analytical Results - April-August 2019

Table 3 – Summary of Groundwater Elevation Monitoring Results

Figures

Figure 1 – Site Location and Monitoring Well and Piezometer Location Map

Bill Kutosky
Project No. 153140601
Ameren Missouri
January 2020

Tables

Table 1 Nature and Extent Groundwater Sampling Analytical Results - November 2018 Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

			LCPB Groundwater Monitoring Wells								LCI	1 Groundwate	r Monitoring W	/ells	
		BMW-1S	BMW-2S	LMW-1S	LMW-2S	LMW-3S	LMW-4S	LMW-5S	LMW-6S	LMW-7S	LMW-8S	MW-26	TMW-1	TMW-2	TMW-3
Analyte	Units						Field Paramete	re .							
DATE	NA	11/7/2018	11/7/2018	11/7/2018	11/8/2018	11/7/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/9/2018	11/9/2018	11/9/2018	11/9/2018
DISSOLVED OXYGEN	mg/L	0.22	0.61	1.09	0.11	0.24	0.48	1.33	0.66	0.68	0.46	0.57	0.31	0.13	0.13
PH	SU	6.83	7.12	7.22	9.82	7.52	7.46	7.48	7.28	7.40	7.48	7.00	6.94	6.93	6.81
REDOX POTENTIAL	mV	-13.2	26.4	-79.3	-133.6	-163.3	-84.0	-57.8	-107.3	-73.2	11.6	6.9	97.0	-50.1	-88.7
SPECIFIC CONDUCTIVITY	mS/cm	0.91	0.52	1.72	0.43	0.63	1.07	0.75	1.07	1.02	1.13	0.69	0.91	0.95	0.94
TURBIDITY	NTU	4.88	2.57	4.98	0.09	9.93	4.65	4.62	4.85	4.38	3.08	0.74	1.02	2.50	4.35
TORBIBITT	1410	4.00	2.57	4.50	0.03		endix III Param		4.03	4.30	3.00	0.74	1.02	2.30	4.55
BORON, TOTAL	μg/L	151	84.8 J	13,900	4,210	3,840	9,450	97.2 J	3,760	6,620	6,970	76.9 J	124	106	128
CALCIUM, TOTAL	μg/L	201,000	128,000	301,000	55,100	58,200	132,000	153,000	182,000	149,000	167,000	134,000	162,000	178,000	184,000
CHLORIDE, TOTAL	mg/L	5.6	1.3 J	16.4	22.8	20.9	23.8	4.0	12.2	19.3	19.5 J	2.7	3.7	5.5	6.7
FLUORIDE, TOTAL	mg/L	ND	ND	ND	0.23	0.46	0.23	ND	0.20	0.20	0.35 J	ND	0.29	0.21	ND
SULFATE, TOTAL	mg/L	36.7	28.4	982	222	263	270	12.1	122	257	334 J	24.8	96.8	91.0	66.9
TOTAL DISSOLVED SOLIDS	mg/L	751	958 J	1,580	420	496	757	473	740	734	867	494 J	677 J	686 J	720 J
	, Gr			,			endix IV Param								
ANTIMONY, TOTAL	μg/L	-	_	-	-	-	-	-	-	-	-	-	-	-	-
ARSENIC, TOTAL	μg/L	38.5	0.44 J	26.4	36.9	1.8	18.8	0.58 J	25.8	20.7	9.3	0.52 J	1.8	2.0	16.1
BARIUM, TOTAL	μg/L	323	287	180	34.4	67.4	150	349	387	287	222	186	375	203	313
BERYLLIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CADMIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CHROMIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
COBALT, TOTAL	μg/L	-	-	-	=	-	=	-	-	-	-	-	-	-	-
FLUORIDE, TOTAL	mg/L	ND	ND	ND	0.23	0.46	0.23	ND	0.20	0.20	0.35 J	ND	0.29	0.21	ND
LEAD, TOTAL	μg/L	1	ı	-	1	-	-	Ī	-	ı	-	-	-	-	-
LITHIUM, TOTAL	μg/L	17.3	18.4	31.0	12.8	19.6	39.9	9.6 J	43.9	37.9	30.9 J	29.1	40.3	43.7	52.0
MERCURY, TOTAL	μg/L	-	1	-	-	-	-	1	-	-	-	-	-	-	-
MOLYBDENUM, TOTAL	μg/L	ND	1.9 J	6.1 J	97.5	145	83.2	ND	25.6	111	157	1.1 J	ND	1.1 J	ND
RADIUM [226 + 228]	pCi/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SELENIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
THALLIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	,					ī	ditional Parame				1		ı	1	1
ALKALINITY	mg/L	733	392	327	31.1	91.1	351	454	538	365	368	435	534	565	589
IRON, TOTAL	μg/L	31,100	12.6 J	25,400	10.4 J	3,400	8,060	27.7 J	27,300	7,150	4,490	ND	368	1,970	9,970
MAGNESIUM, TOTAL	μg/L	49,400	21,200	56,500	108	4,200	27,100	17,900	32,900	33,200	31,700	26,000	44,100	42,600	39,200
MANGANESE, TOTAL	μg/L	2,930	ND	3,040	ND	309	1,720	57.7	2,430	1,190	1,880	36.5	4,550	2,740	1,400
PHOSPHORUS, TOTAL	mg/L	0.86	ND	0.45	ND	0.50	0.37	ND	0.37	0.23	0.21	ND	ND	ND	0.19
POTASSIUM, TOTAL	μg/L	6,100	7,530	7,730	8,640	7,510	7,050	3,180	6,930	6,640	7,470	4,980	5,880	6,640	6,730
SODIUM, TOTAL	μg/L	22,200	9,390	51,500	59,000	88,300	89,200	6,700	23,800	50,300	69,100	9,790	11,500	9,920	8,410

¹⁾ Unit Abbreviations-: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - Standard Units, mV - millivolts, mS/cm - millisiemens- per centimeter, NTU - nephelometric turbidity unit, pCi/L - picoCuries per liter.

Prepared By: EMS/RJF Checked By: LMS/TJG Reviewed By: CMR

^{2) &}quot;-" Not sampled.

³⁾ J - Result is an estimated value.

⁴⁾ ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect.

⁵⁾ NA - Not Applicable

⁶⁾ Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.

Table 1 Nature and Extent Groundwater Sampling Analytical Results - November 2018 Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

		Nature and Extent Piezometers UMW-10D UMW-10S																
Analyte	Units	UMW-10D (AM-1D)	UMW-10S (AM-1S)	TP-1D	TP-1M	TP-1S	TP-2D	TP-2M	TP-2S	TP-3D	TP-3M	TP-3S	TP-4D	TP-4M	TP-4S	TP-5D	TP-5M	TP-5S
									F	ield Paramete	rs							
DATE	NA	11/9/2018	11/9/2018	11/8/2018	11/8/2018	11/8/2018	11/9/2018	11/9/2018	11/9/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018	11/8/2018
DISSOLVED OXYGEN	mg/L	0.40	0.14	0.24	0.17	0.23	0.13	0.10	0.13	0.13	0.13	0.16	0.25	0.15	0.18	0.15	0.12	0.13
рН	SU	7.65	6.93	7.06	7.09	7.01	7.63	7.70	7.33	7.71	7.28	7.10	7.15	7.24	7.10	7.29	7.14	7.13
REDOX POTENTIAL	mV	-70.5	9.7	-122.7	-112.8	-138.9	-45.2	-83.4	-51.5	-46.5	-3.7	42.7	-114.2	-144.4	-146.1	13.6	-2.8	-5.0
SPECIFIC CONDUCTIVITY	mS/cm	0.73	0.96	0.78	0.76	0.87	0.55	0.57	0.83	0.78	0.60	0.53	0.75	0.64	0.68	0.65	0.67	0.68
TURBIDITY	NTU	0.02	0.11	1.73	2.47	3.18	0.76	0.07	1.67	1.11	3.21	4.46	1.60	1.74	1.25	3.86	1.50	0.62
									Арре	endix III Param	eters							
BORON, TOTAL	μg/L	7,410	494	69.6 J	69.4 J	105	1,930	3,560	679	10,600	6,210	88.8 J	4,380	659	131	4,590	612	128
CALCIUM, TOTAL	μg/L	79,300	157,000	136,000	129,000	152,000	88,600	95,100	141,000	99,600	101,000	130,000	122,000	109,000	110,000	140,000	160,000	157,000
CHLORIDE, TOTAL	mg/L	33.6	157	4.9	3.5	4.3	22.6	22.3	67.6	24.4	18.4	7.4	13.5	8.5	10.7	13.2	2.7	1.6
FLUORIDE, TOTAL	mg/L	0.41	0.27	ND	0.20 J	ND	0.43	0.47	0.31	0.27	0.22	ND	ND	0.24	0.23	ND	ND	ND
SULFATE, TOTAL	mg/L	336	18.7	25.7	29.0	39.2	156	154	141	441	205	21.1	169	45.0	23.8	156	33.3	8.0
TOTAL DISSOLVED SOLIDS	mg/L	700	725	520	528	556	523	534	720	858	585	480	566	454	456	631	582	564
									Appendix IV	Parameters								
ANTIMONY, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.10 J	ND	0.18 J	0.097 J	0.084 J	0.12 J	ND	ND	ND
ARSENIC, TOTAL	μg/L	2.7	4.5	ND	ND	12.8	5.9	0.26 J	11.0	1.8	ND	0.27 J	5.2	4.5	24.2	11.8	0.72 J	11.9
BARIUM, TOTAL	μg/L	76.4	539	1,420	980	355	112	115	315	83.7	238	246	418	374	302	534	888	431
BERYLLIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	0.18 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM, TOTAL	μg/L	0.14 J	ND	ND	ND	ND	0.057 J	0.057 J	0.080 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHROMIUM, TOTAL	μg/L	ND	ND	0.26 J	0.081 J	0.10 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
COBALT, TOTAL	μg/L	ND	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4 J
FLUORIDE, TOTAL	mg/L	0.41	0.27	ND	0.20 J	ND	0.43	0.47	0.31	0.27	0.22	ND	ND	0.24	0.23	ND	ND	ND
LEAD, TOTAL	μg/L	ND	ND	ND	ND	ND	3.2 J	ND	ND	ND	ND	ND	3.6 J	ND	ND	ND	3.4 J	ND
LITHIUM, TOTAL	μg/L	32.5	37.0	26.4	21.8	14.3	42.7	34.3	39.7	37.0	26.9	22.3	26.1	12.5	18.2	23.9	26.5	30.5
MERCURY, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MOLYBDENUM, TOTAL	μg/L	375	3.6 J	ND	ND	4.5 J	125	117	43.0	547	355	7.3 J	1.8 J	2.2 J	ND	1.4 J	0.98 J	1.8 J
RADIUM [226 + 228]	pCi/L	ND	ND	-	-	-	-	-	-	-	-	-	-	ND	-	-	-	-
SELENIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.14 J	ND	3.5	0.091 J	0.11 J	0.19 J	ND	ND	0.15 J
THALLIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
									Additional	Parameters								
ALKALINITY	mg/L	138	449	489	467	511	231	256	408	115	250	367	301	344	393	377	550	570
IRON, TOTAL	μg/L	4,210	5,600	8,090	8,520	24,500	4,480	3,690	16,800	5,620	7,500	10.1 J	5,760	7,700	12,200	7,230	10,900	14,500
MAGNESIUM, TOTAL	μg/L	11,600	34,600	35,000	34,100	30,700	16,000	14,300	29,400	22,500	22,300	21,600	32,800	21,600	23,100	34,600	36,700	37,400
MANGANESE, TOTAL	μg/L	210	1,840	230	586	1710	316	436	1330	195	1,070	276	336	897	1,160	227	673	2,610
PHOSPHORUS, TOTAL	mg/L	0.34	0.14	0.47	0.64	0.22	0.18	0.35	0.15	0.19	0.30	ND	0.20	0.32	0.58	0.22	0.32	0.12
POTASSIUM, TOTAL	μg/L	7,120	6,700	4,230	4,020	4,760	5,510	6,300	7,120	6,760	5,320	4,300	4,770	4,650	5,420	4,810	4,940	5,540
SODIUM, TOTAL	μg/L	113,000	59,700	11,400	8,780	10,100	58,300	61,900	72,600	117,000	60,300	4,770	24,800	23,000	23,500	27,400	13,200	12,000

¹⁾ Unit Abbreviations-: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - Standard Units, mV - millivolts, mS/cm - millisiemens- per centimeter, NTU - nephelometric turbidity unit, pCi/L - picoCuries per liter.

Prepared By: EMS/RJF Checked By: LMS/TJG Reviewed By: CMR

^{2) &}quot;-" Not sampled.

³⁾ J - Result is an estimated value.

⁴⁾ ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect.

NA - Not Applicabl

⁶⁾ Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.

Table 2 Nature and Extent Groundwater Sampling Analytical Results - April-August 2019 Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

					LCF	B Groundwate	r Monitoring W	/ells				LCI	LCL1 Groundwater Monitoring Wells				
Analyte	Units	BMW-1S	BMW-2S	LMW-1S	LMW-2S	LMW-3S	LMW-4S	LMW-5S	LMW-6S	LMW-7S	LMW-8S	MW-26	TMW-1	TMW-2	TMW-3		
							ield Paramete	rs									
DATE	NA	5/1/2019	5/1/2019	5/1/2019	4/30/2019	5/2/2019	5/1/2019	5/1/2019	5/8/2019	5/8/2019	5/2/2019	5/8/2019	5/2/2019	5/2/2019	5/8/2019		
DISSOLVED OXYGEN	mg/L	1.09	0.52	0.58	0.71	0.12	0.13	3.83	0.60	0.50	0.43	0.24	0.20	0.16	0.12		
рН	SU	6.53	6.18	6.70	9.54	7.33	6.15	5.96	6.67	7.08	6.92	6.02	6.91	6.87	5.83		
REDOX POTENTIAL	mV	-96.5	59.9	-74.2	-63.2	51.5	11.4	131.3	-39.6	-38.3	-98.4	210.6	119.1	64.8	176.5		
SPECIFIC CONDUCTIVITY	mS/cm	1.005	0.436	1.203	0.461	0.670	0.790	0.405	1.178	1.198	1.094	0.600	0.810	0.880	0.820		
TURBIDITY	NTU	4.62	2.54	4.96	1.21	2.18	4.91	1.80	4.85	5.11	4.70	3.02	1.97	4.45	4.73		
						Арр	endix III Param	eters									
BORON, TOTAL	μg/L	111	61.3 J	8,840	3,770	4,080	8,770	73.9 J	5,660	7,790	8,340	98.2 J	109	98.5 J	114		
CALCIUM, TOTAL	μg/L	196,000	126,000	261,000	51,300	64,300	121,000	133,000	164,000	139,000	187,000	142,000	164,000	176,000	170,000		
CHLORIDE, TOTAL	mg/L	4.4	1.4	9.5	22.3	20.2	23.7	2.9	16.2	20.2	17.3	3.3	3.7	5.3	6.2		
FLUORIDE, TOTAL	mg/L	0.22	0.21	0.20 J	0.24	0.45	0.31	0.18 J	0.090 J	0.17 J	0.17 J	0.20	0.24	0.24	0.19 J		
SULFATE, TOTAL	mg/L	39.2	29.4	451	195	237	234	9.0	130	242	460	19.3	98.6	86.4	48.9		
TOTAL DISSOLVED SOLIDS	mg/L	740	459	1,130	395	561	749	417	738	873	1,050	516	664	676	733		
						Арр	endix IV Param	eters									
ANTIMONY, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
ARSENIC, TOTAL	μg/L	35.1	0.52 J	19.0	41.1	3.6	21.0	0.47 J	3.1	17.2	22.0	1.0	1.6	1.1	1.5		
BARIUM, TOTAL	μg/L	288	266	114	33.1	69.7	116	291	323	296	298	210	360	194	386		
BERYLLIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CADMIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CHROMIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
COBALT, TOTAL	μg/L	_	-	-	-	-	-	-	-	-	-	-	-	-	-		
FLUORIDE, TOTAL	mg/L	0.22	0.21	0.20 J	0.24	0.45	0.31	0.18 J	0.090 J	0.17 J	0.17 J	0.20	0.24	0.24	0.19 J		
LEAD, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
LITHIUM, TOTAL	μg/L	17.6	20.2	26.4	10.6	23.2	35.8	9.6 J	34.6	35.7	21.4	37.0	43.3	45.2	41.2		
MERCURY, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MOLYBDENUM, TOTAL	μg/L	ND	ND	4.7 J	112	157	151	ND	26.2	118	244	ND	ND	ND	ND		
RADIUM [226 + 228]	pCi/L	_	-	-	-	-	-	-	-	_	-	-	-	-	-		
SELENIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
THALLIUM, TOTAL	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
						Add	ditional Parame	eters									
ALKALINITY	mg/L	694	392	427	30.8	133	317	392	442	341	325	432	543	576	580		
IRON, TOTAL	μg/L	30,000	21.5 J	17,300	ND	3,700	6,680	45.7 J	13,700	5,750	12,200	1,200	286	1,120	321		
MAGNESIUM, TOTAL	μg/L	47,000	20,900	47,800	89.0	5,280	24,400	14,400	32,100	35,000	35,500	43,500	44,200	41,600	47,000		
MANGANESE, TOTAL	μg/L	2,810	ND	2,840	ND	391	1,470	11.6	2,210	1,450	2,590	2,870	4,600	2,710	5,020		
POTASSIUM, TOAL	μg/L	5,760	6,860	6,590	8,500	7,310	6,720	2,740	6,350	7,210	7,750	6,540	5,510	6,540	5,720		
SODIUM, TOTAL	μg/L	19,100	9,440	24,300	58,800	99,100	85,300	5,770	26,800	58,500	83,400	9,650	11,200	9,660	11,500		

¹⁾ Unit Abbreviations-: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - Standard Units, mV - millivolts, mS/cm - millisiemens- per centimeter, NTU - nephelometric turbidity unit, pCi/L - picoCuries per liter.

- 2) "-" Not sampled.
- 3) J Result is an estimated value.
- 4) ND Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect.
- 5) NA Not Applicable.
- 6) Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.

Table 2 Nature and Extent Groundwater Sampling Analytical Results - April-August 2019 Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

								Nature a	and Extent Piez	ometers						
Analyte	Units	TP-1D	TP-1M	TP-1S	TP-2D	TP-2M	TP-2S	TP-3D	TP-3M	TP-3S	TP-4D	TP-4M	TP-4S	TP-5D	TP-5M	TP-5S
Allalyte	Offics							F	ield Parameter	'S						
DATE	NA	5/8/2019	5/8/2019	5/8/2019	8/20/2019	8/20/2019	8/20/2019	5/9/2019	5/9/2019	5/9/2019	8/20/2019	8/20/2019	8/20/2019	5/9/2019	5/9/2019	5/9/2019
DISSOLVED OXYGEN	mg/L	0.76	0.99	0.76	0.23	0.17	0.21	1.05	1.28	0.84	0.29	0.34	0.31	0.11	1.17	0.15
рН	SU	6.83	6.74	6.61	7.15	7.17	6.70	7.20	6.67	6.77	6.69	7.27	7.09	7.06	6.60	6.81
REDOX POTENTIAL	mV	-87.4	-101.1	-78.8	-147.9	-160.8	-146.1	-144.9	-91.9	164.9	-127.5	-104.2	-128.2	110.3	-71.2	213.9
SPECIFIC CONDUCTIVITY	mS/cm	0.997	1.024	1.061	0.885	0.922	1.347	1.121	0.923	0.720	0.903	0.760	0.847	0.890	1.036	0.860
TURBIDITY	NTU	1.63	1.59	0.62	1.33	3.30	2.83	1.07	3.27	3.35	0.87	1.74	4.14	2.08	0.44	1.51
								Арре	endix III Parame	eters						
BORON, TOTAL	μg/L	56.6 J	60.6 J	ND	1,650	1,250	221	10,000	4,880	67.2 J	4,610	463	83.5 J	4,510	828	119
CALCIUM, TOTAL	μg/L	132,000	133,000	147,000	92,200	98,100	143,000 J	85,400	105,000	132,000	121,000	109,000	93,500	133,000	150,000	145,000
CHLORIDE, TOTAL	mg/L	4.1	5.4	3.3	22.5	19.2	47.3	27.1	16.8	8.7	12.9	8.7	10.4	14.0	4.1	1.5
FLUORIDE, TOTAL	mg/L	0.23	0.16 J	0.099 J	0.42	0.43	0.24	0.28	0.20 J	0.17 J	0.22	0.25	0.27	0.088 J	ND	ND
SULFATE, TOTAL	mg/L	24.7	29.9	36.3	164	149	63.3	387	168	21.2	154	44.2	18.4	151	48.8	19.6
TOTAL DISSOLVED SOLIDS	mg/L	581	548	565	539	541 J	721 J	825	607	457	603 J	450 J	433 J	693	618	575
								Арре	endix IV Parame	eters						
ANTIMONY, TOTAL	μg/L	0.77 J	0.094 J	ND	ND	0.090 J	0.086 J	0.085 J	0.23 J	0.16 J	0.35 J	ND	0.085 J	ND	ND	ND
ARSENIC, TOTAL	μg/L	0.65 J	0.50 J	28.7	11.7	0.48 J	5.5	4.7	0.58 J	0.26 J	7.5	6.1	71.2	13.9	0.92 J	0.96 J
BARIUM, TOTAL	μg/L	1,410	947	322	107	120	347	77.2	257	243	434	379	257	572	831	378
BERYLLIUM, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM, TOTAL	μg/L	ND	0.21 J	0.055 J	0.054 J	0.050 J	0.051 J	0.26 J	0.17 J	0.038 J	ND	0.033 J	0.050 J	ND	0.044 J	0.035 J
CHROMIUM, TOTAL	μg/L	0.26 J	0.40 J	ND	0.11 J	0.14 J	0.27 J	0.13 J	0.22 J	0.84 J	0.28 J	0.15 J	0.22 J	ND	0.18 J	0.10 J
COBALT, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J
FLUORIDE, TOTAL	mg/L	0.23	0.16 J	0.099 J	0.42	0.43	0.24	0.28	0.20 J	0.17 J	0.22	0.25	0.27	0.088 J	ND	ND
LEAD, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	3.9 J	ND	3.9 J	ND	ND	ND	ND	3.6 J	ND
LITHIUM, TOTAL	μg/L	23.8	24.0	19.0	37.7	32.6	27.3	29.8	33.8	21.1	22.5	12.1	10.9	22.4	22.3	23.2
MERCURY, TOTAL	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MOLYBDENUM, TOTAL	μg/L	ND	ND	ND	119	64.0	22.4	766	247	3.3 J	ND	ND	ND	ND	ND	ND
RADIUM [226 + 228]	pCi/L	5.45	3.29 J	ND	1.604	2.93	ND	1.759	ND	1.685	2.9	1.297	1.2293	2.364	2.935	ND
SELENIUM, TOTAL	μg/L	ND	0.31 J	0.14 J	ND	0.091 J	0.14 J	0.11 J	0.16 J	2.2	ND	0.11 J	0.20 J	ND	0.14 J	0.54 J
THALLIUM, TOTAL	μg/L	ND	0.24 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
								Add	itional Parame	ters						
ALKALINITY	mg/L	471	486	490	232	281	534	113	292	390	318	354	400	380	519	552
IRON, TOTAL	μg/L	8,120	9,570	22,600	3,570	3,300	18,400	5,580	8,650	ND	5,320	7,330	16,600	6,640	10,200	1,330
MAGNESIUM, TOTAL	μg/L	35,000	36,400	28,500	15,700	14,100	23,000	19,900	23,900	21,600	31,800	21,000	29,400	34,600	36,100	36,000
MANGANESE, TOTAL	μg/L	226	754	1,300	302	440	768	172	1,310	36.0	320	929	375	222	739	2,100
POTASSIUM, TOAL	μg/L	4,170	4,170	4,050	5,510	6,390	5,720	6,390	5,130	4,040	4,700	4,430	5,140	4,490	4,540	4,990
SODIUM, TOTAL	μg/L	11,000	9,980	9,030	57,000	61,900	93,300	114,000	48,000	5,100	25,600	20,400	23,300	25,900	12,700	9,480

¹⁾ Unit Abbreviations-: μg/L - micrograms per liter, mg/L - milligrams per liter, SU - Standard Units, mV - millivolts, mS/cm - millisiemens- per centimeter, NTU - nephelometric turbidity unit, pCi/L - picoCuries per liter.

^{2) &}quot;-" Not sampled.

³⁾ J - Result is an estimated value.

⁴⁾ ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect.

⁵⁾ NA - Not Applicable.

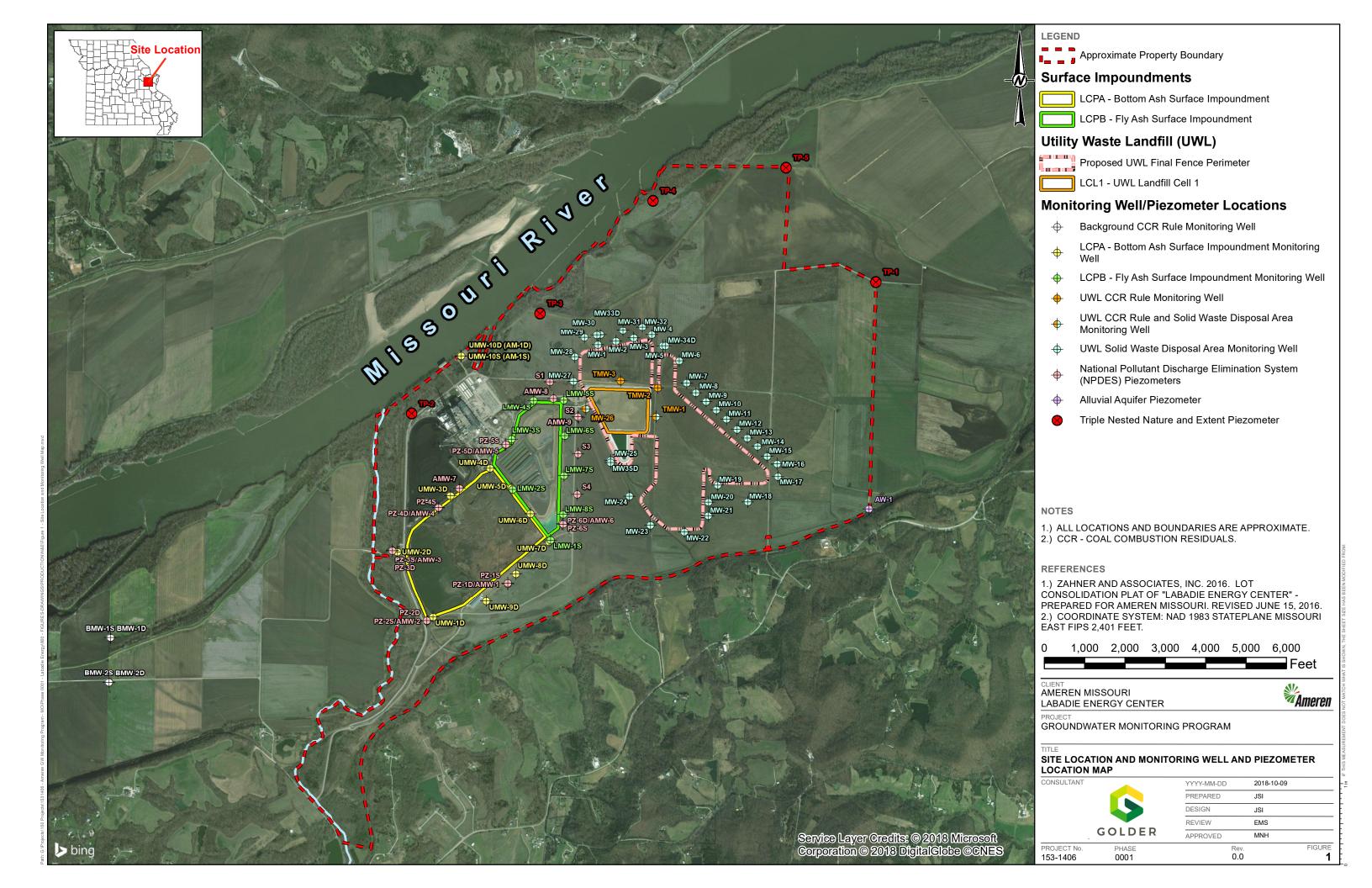
⁶⁾ Radium [226 + 228] is reported as the sum of Radium 226 and Radium 228 activity concentrations unless the sum of Radium 226 and Radium 228 Minimum Detectable Concentrations (MDC) is higher in which case it is displayed as ND.

Table 3 Summary of Groundwater Elevation Monitoring Results Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

	Well ID	Loca	ation	Top of Casing	Ground Surface	Eleva	dwater ation ements /2018	Eleva Measur	dwater ation ements /2019	Eleva Measur	dwater ation ements /2019
		Northing	Easting	Feet MSL ³	Feet MSL ³	DTW ¹	GWE ²	DTW ¹	GWE ²	DTW ¹	GWE ²
	UMW-1D	988822.5	723129.4	489.72	487.8	27.80	461.92	23.89	465.83	22.09	467.63
	UMW-2D	990437.2	722248.6	484.81	482.7	23.13	461.68	19.29	465.52	16.95	467.86
	UMW-3D (R) UMW-4D	991823.5 992512.3	723545.1 724538.1	491.13 494.95	488.8 493.2	29.81 33.96	461.32 460.99	25.93 29.93	465.20 465.02	23.90 28.37	467.23 466.58
lls ⁸	UMW-5D	992027.2	725067.9	496.76	494.9	35.70	461.06	31.69	465.07	30.45	466.31
LCPA CCR Wells ⁸	UMW-6D	991382.8	725540.9	496.19	494.5	35.03	461.16	31.08	465.11	25.52	466.99
SC _R	UMW-7D	990722.8	726032.4	469.79	468.0	8.51	461.28	4.62	465.17	4.14	465.65
PA (UMW-8D	989892.7	725179.5	469.47	467.5	7.55	461.92	3.62	465.85	3.04	466.43
וכו	UMW-9D	989220.0	724447.8	470.61	468.8	8.51	462.10	4.56	466.05	3.64	466.97
	BMW-1D BMW-2D	988310.6 987204.3	715138.4 715104.2	473.54 474.39	471.2 472.4	12.14 12.98	461.40 461.41	7.72 8.28	465.82 466.11	4.45 5.74	469.09 468.65
	AM-1S	995288.1	723817.1	483.00	480.2	23.28	459.72	19.40	463.60	15.04	467.96
	AM-1D	995298.6	723827.3	482.78	480.0	23.06	459.72	19.09	463.69	15.10	467.68
	LMW-1S	990727.7	726039.1	470.06	468.1	8.56	461.50	4.62	465.44	4.78	465.28
	LMW-2S	992017.5	725074.2	496.64	494.9	35.54	461.10	31.53	465.11	30.37	466.27
Es ⁸	LMW-3S	993254.3	725081.6	492.56	490.5	31.86	460.70	27.73	464.83	NA 7.17	NA 465.66
LCPB CCR Wells ⁸	LMW-4S LMW-5S	994194.9 994201.6	725624.1 726366.8	472.83 468.75	470.7 466.9	12.36 8.42	460.47 460.33	8.11 4.15	464.72 464.60	7.17 3.37	465.66 465.38
SCR	LMW-6S	993320.2	726391.4	469.56	467.2	9.09	460.47	5.91	463.65	4.24	465.32
PB (LMW-7S	992330.1	726371.1	468.43	466.7	7.72	460.71	3.71	464.72	3.03	465.40
21	LMW-8S	991371.2	726351.3	467.24	465.2	6.29	460.95	2.40	464.84	1.94	465.30
	BMW-1S	988310.0	715131.6	473.49	471.2	12.18	461.31	7.70	465.79	4.50	468.99
	BMW-2S	987210.1	715104.3	474.56	472.5	13.10	461.46	8.41	466.15	5.92	468.64
LCL1 CCR Wells ⁸	TMW-1 TMW-2	993782.9 994513.1	728656.8 728663.8	469.34 470.40	466.9 468.0	9.46 10.84	459.88 459.56	5.01 6.08	464.33 464.32	5.38 6.41	463.96 463.99
LCL1 C	TMW-3	994635.7	727842.0	469.41	467.1	9.56	459.85	4.98	464.43	4.85	464.56
l C	MW-26	993976.5	726910.9	469.20	466.7	8.85	460.35	4.61	464.59	4.12	465.08
	MW-1	995572.0	727213.0	472.05	469.5	12.40	459.65	7.39	464.66	7.05	465.00
	MW-2	995657.0	727664.0	471.86	469.3	12.32	459.54	7.04	464.82	7.17	464.69
	MW-3	995739.6	728101.2	471.01	468.5	11.56	459.45	7.43	463.58	6.59	464.42
	MW-4	995818.4	728546.3	470.96	468.3 467.4	11.81	459.15	6.41	464.55	6.76	464.20
	MW-5 MW-6	995545.8 995177.0	728819.2 729226.7	470.06 469.68	467.4	10.74 10.37	459.32 459.31	5.58 5.31	464.48 464.37	6.04 5.86	464.02 463.82
	MW-7	994621.5	729411.4	469.15	466.7	9.78	459.37	4.89	464.26	5.43	463.72
	MW-8	994382.7	729643.2	468.25	465.6	8.90	459.35	4.06	464.19	4.66	463.59
	MW-9	994168.3	729892.6	467.81	465.1	8.48	459.33	3.68	464.13	4.31	463.50
	MW-10	993950.5	730148.7	468.56	465.8	9.25	459.31	4.51	464.05	5.12	463.44
	MW-11 MW-12	993724.6 993469.5	730398.4 730622.5	468.55 468.11	466.1 465.7	9.28 8.89	459.27 459.22	4.06 4.23	464.49 463.88	5.23 4.93	463.32 463.18
	MW-13	993469.5	730912.8	468.11	465.7	9.91	459.22	4.23	463.78	5.05	463.05
ells	MW-14	993052.3	731166.4	466.83	464.2	7.72	459.11	3.21	463.62	3.97	462.86
>	MW-15	992807.3	731405.9	467.30	465.0	8.14	459.16	3.81	463.49	4.50	462.80
Utility Waste Landfill Wells	MW-16	992617.6	731651.2	466.57	464.0	7.31	459.26	3.57	463.00	4.03	462.54
e La	MW-17	992302.1	731675.3	467.89	465.3	8.83	459.06	4.55	463.34	5.33	462.56
/ast	MW-18 MW-19	991677.7 992089.0	730928.2 730177.6	465.27 466.16	462.8 463.5	4.37 6.15	460.90 460.01	2.43 2.65	462.84 463.51	2.87 NA	462.40 NA
> >	MW-20	991669.1	729951.7	465.97	463.6	6.02	459.95	2.45	463.52	NA	NA
tilit	MW-21	991334.0	729950.0	465.90	463.4	5.44	460.46	2.71	463.19	NA	NA
	MW-22	990929.1	729354.6	466.80	464.2	6.62	460.18	2.95	463.85	NA	NA
	MW-23	991099.5	728511.5	467.54	464.9	7.42	460.12	3.95	463.59	5.58	461.96
	MW-24	991818.3	727992.3	467.10	464.6	6.81	460.29	2.83	464.27	2.85	464.25
	MW-25 MW-27	992706.9 994663.9	727528.7 726607.5	468.61 470.05	466.0 467.4	8.21 9.87	460.40 460.18	4.20 5.22	464.41 464.83	3.95 4.84	464.66 465.21
	MW-28	995276.3	726639.9	470.03	468.6	11.36	459.82	5.84	465.34	6.50	464.68
	MW-29	995678.8	726962.2	472.97	470.4	13.29	459.68	8.31	464.66	7.79	465.18
	MW-30	995759.9	727408.8	472.02	469.3	12.44	459.58	7.38	464.64	7.13	464.89
	MW-31	995836.2	727853.5	472.51	469.9	13.04	459.47	7.96	464.55	7.92	464.59
	MW-32	995912.4	728305.6	471.07	468.2	11.69	459.38	6.50	464.57	6.76	464.31
	MW-33D MW-34D	995741.5 995560.9	727408.7 728820.5	472.15 470.19	469.4 467.4	12.50 10.78	459.65 459.41	7.69 5.93	464.46 464.26	7.11 6.02	465.04 464.17
	MW-35D	992693.5	727536.2	468.59	465.9	8.22	460.37	4.14	464.45	3.83	464.76
		552055.5	, 550.2	.55.55	.55.5	J.22	.55.57		.575	3.03	.5 / 5

Created by: RJF Checked by: KAB Reviewed by: CMR

Table 3 Summary of Groundwater Elevation Monitoring Results Labadie Nature and Extent Investigation Labadie Energy Center, Franklin County, MO

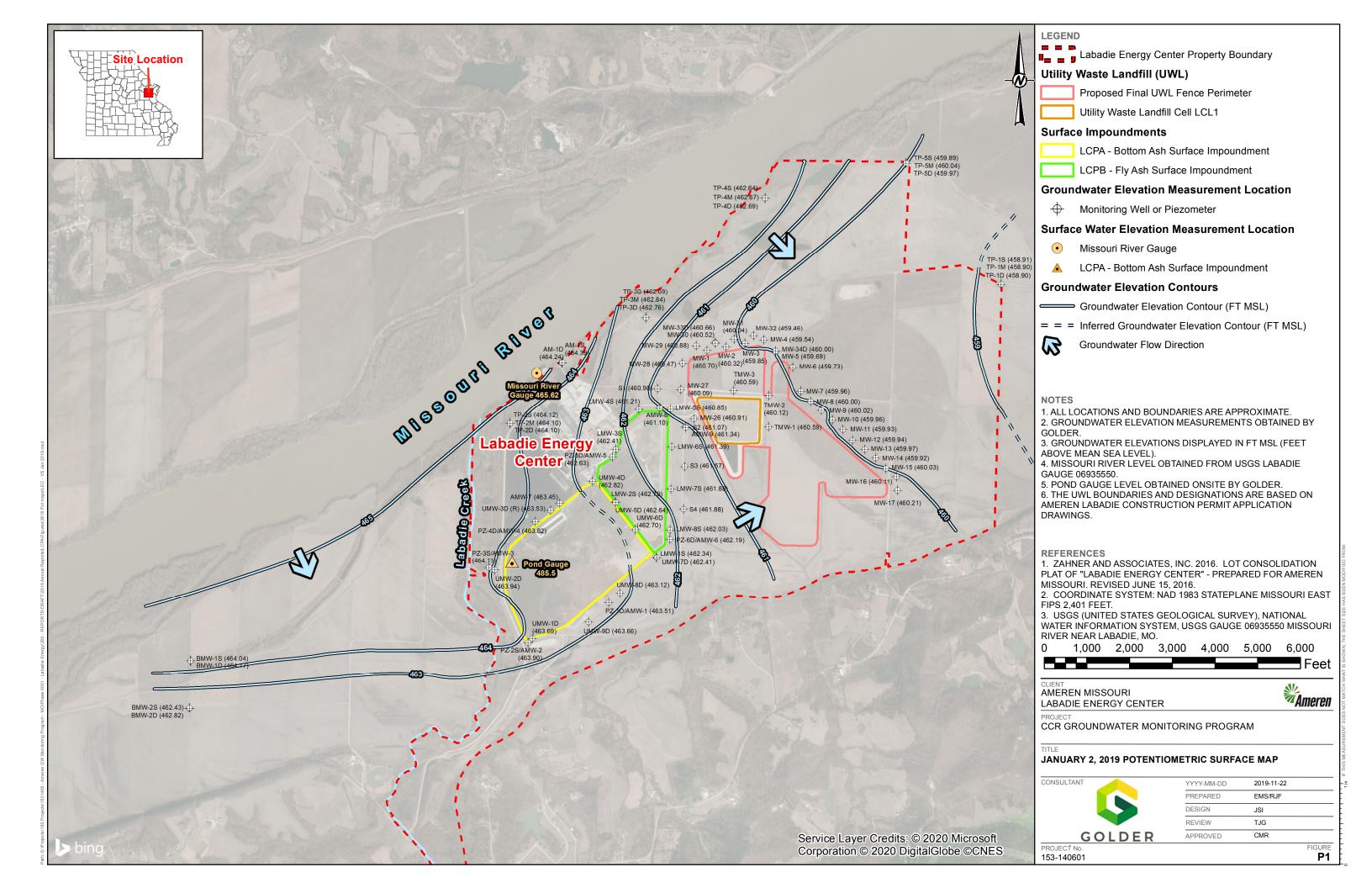

	Well ID	Loca	ntion	Top of Casing	•		dwater ation ements /2018	Eleva	dwater ation ements /2019	Groundwater Elevation Measurements 10/4/2019	
		Northing	Easting	Feet MSL ³	Feet MSL ³	DTW ¹	GWE ²	DTW ¹	GWE ²	DTW ¹	GWE ²
Other	AW-1	991502.4	733926.6	466.78	463.4	6.75	460.03	3.86	462.92	4.12	462.66
	TP-1S	997122.3	734100.3	469.08	465.8	10.97	458.11	5.02	464.06	6.81	462.27
Nature and Extent Temporary Piezometers	TP-1M	997122.3	734100.3	469.08	465.8	10.96	458.12	5.09	463.99	6.80	462.28
me	TP-1D	997122.3	734100.3	469.09	465.8	10.95	458.14	6.07	463.02	6.79	462.30
oza	TP-2S	993865.6	722603.7	471.24	468.2	10.82	460.42	6.98	464.26	3.22	468.02
Pić	TP-2M	993865.6	722603.7	471.22	468.2	10.72	460.50	7.81	463.41	3.67	467.55
ary	TP-2D	993865.6	722603.7	471.22	468.2	10.71	460.51	7.86	463.36	3.68	467.54
por	TP-3S	996343.6	725783.7	475.60	472.6	16.20	459.40	11.80	463.80	8.95	466.65
em	TP-3M	996343.6	725783.7	475.64	472.6	16.17	459.47	11.90	463.74	8.89	466.75
it T	TP-3D	996343.6	725783.7	475.63	472.6	16.21	459.42	11.91	463.72	8.85	466.78
rter	TP-4S	999139.8	728578.3	472.07	469.1	13.65	458.42	9.25	462.82	NA	NA
Û	TP-4M	999139.8	728578.3	472.07	469.1	13.61	458.46	9.26	462.81	NA	NA
anc	TP-4D	999139.8	728578.3	472.08	469.1	13.62	458.46	9.29	462.79	NA	NA
ure	TP-5S	999955.0	731876.6	470.39	467.4	12.37	458.02	7.38	463.01	5.97	464.42
Vatı	TP-5M	999955.0	731876.6	470.39	467.4	12.37	458.02	7.41	462.98	5.88	464.51
	TP-5D	999955.0	731876.6	470.37	467.4	12.33	458.04	7.37	463.00	5.94	464.43
	PZ-1D/AMW-1	989663.9	724916.0	470.28	468.1	8.16	462.12	4.24	466.04	3.46	466.82
	PZ-2S/AMW-2	988727.0	723029.3	489.65	487.4	27.60	462.05	23.57	466.08	21.80	467.85
	PZ-3S/AMW-3	990485.6	722115.3	482.50	479.9	20.75	461.75	16.92	465.58	NA	NA
	PZ-4D/AMW-4	991567.2	723197.6	488.37	486.2	26.86	461.51	23.41	464.96	20.85	467.52
e <mark>s</mark>	PZ-5D/AMW-5	993079.9	725005.8	492.73	490.8	31.93	460.80	27.84	464.89	NA	NA
Vel	PZ-6D/AMW-6	991152.7	726348.8	468.35	466.0	7.23	461.12	3.39	464.96	2.94	465.41
S V	AMW-7	991996.3	723769.5	491.14	489.1	29.91	461.23	26.01	465.13	23.86	467.28
PDES Wells ⁹	AMW-8	994225.9	726113.0	471.06	468.4	10.73	460.33	6.53	464.53	5.51	465.55
Z	AMW-9	993784.5	726717.8	468.93	466.8	8.61	460.32	4.36	464.57	3.73	465.20
	S1	994676.8	726055.1	472.64	470.4	12.30	460.34	7.70	464.94	NA	NA
	S2	993763.7	726717.6	469.48	467.2	9.04	460.44	4.81	464.67	4.34	465.14
	S3	992855.4	726692.5	468.97	466.6	8.37	460.60	4.24	464.73	3.72	465.25
	S4	991859.2	726669.0	468.24	466.0	7.38	460.86	3.41	464.83	3.02	465.22
River Level	Missouri River ⁷	995047.6	723234.9	NA	NA	459.40	NA	NA	463.14	NA	468.67

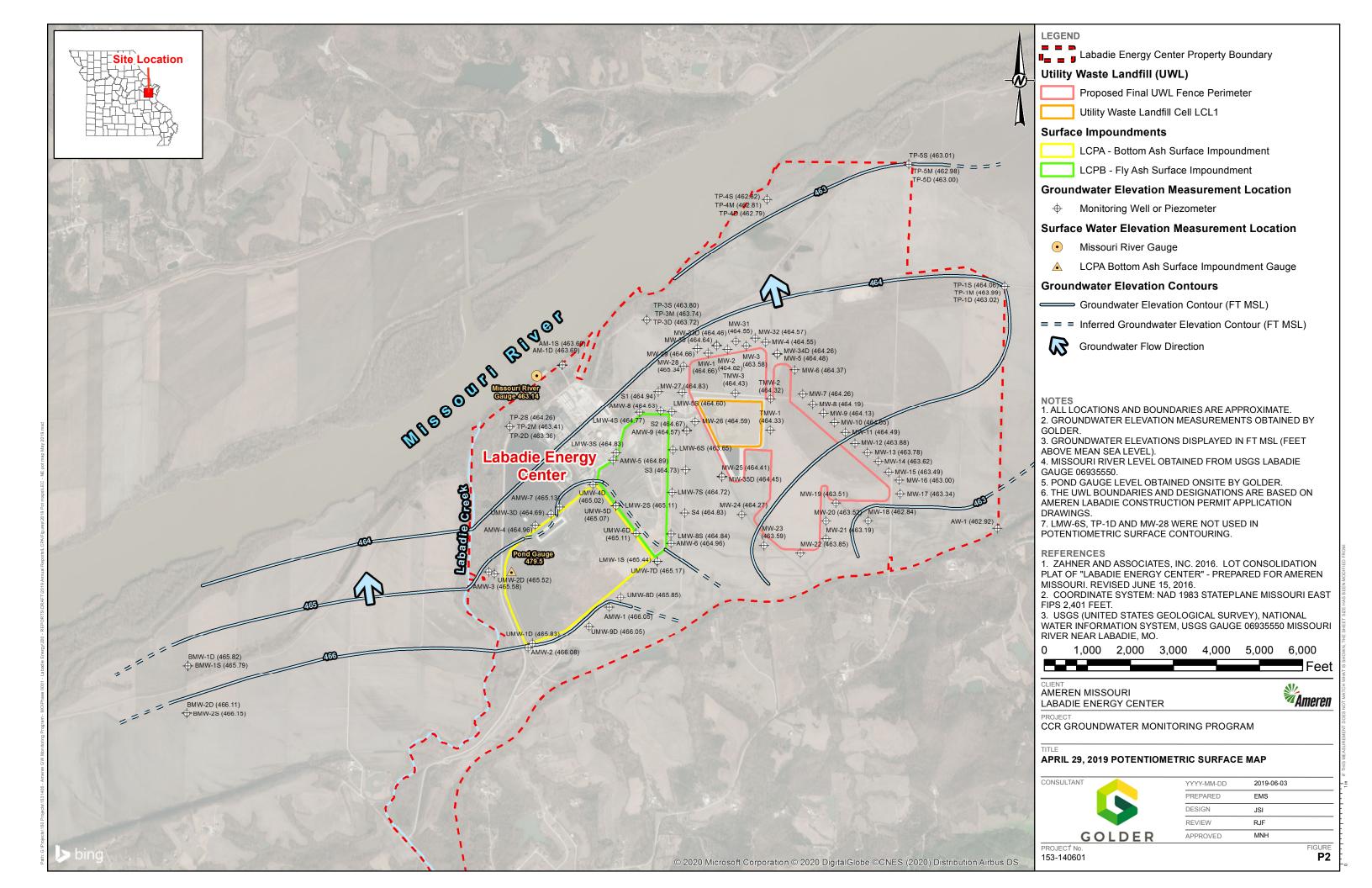
Notes:

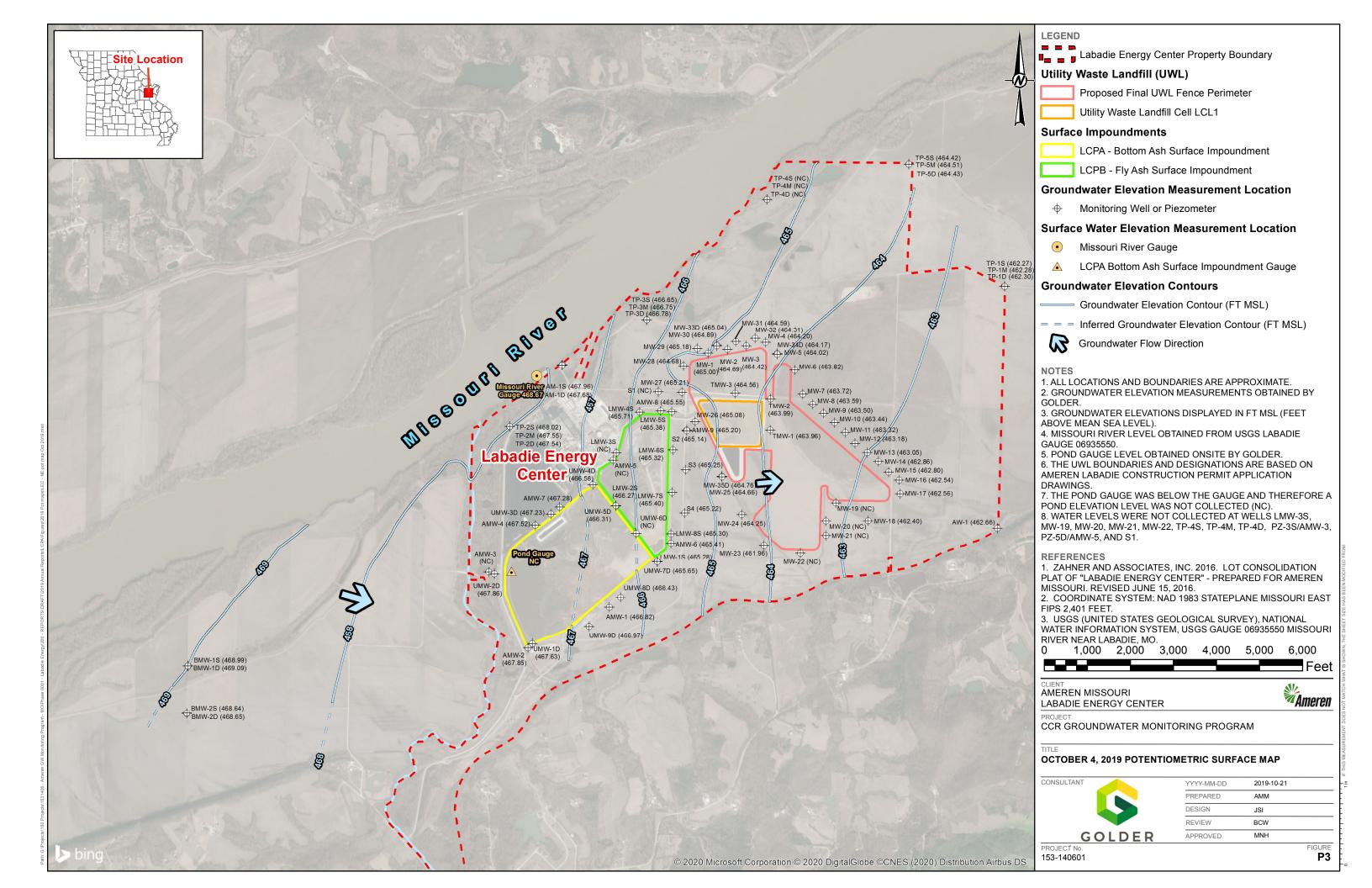
- 1.) DTW Depth to water measured in feet below top of casing.
- 2.) GWE Groundwater elevation measured in feet above mean sea level.
- 3.) Feet MSL Feet above mean sea level.
- 4.) Horizontal Datum: State Plane Coordinates NAD83 (2000) Missouri East Zone feet.
- 5.) Vertical Datum: NAVD88 feet.
- 6.) NA Not Applicable.
- 7.) Missouri River level obtained from United States Geological Survey (USGS) gauge 06935550.
- 8.) CCR Coal Combustion Residuals.
- 9.) NPDES National Pollutant Discharge Elimination System.

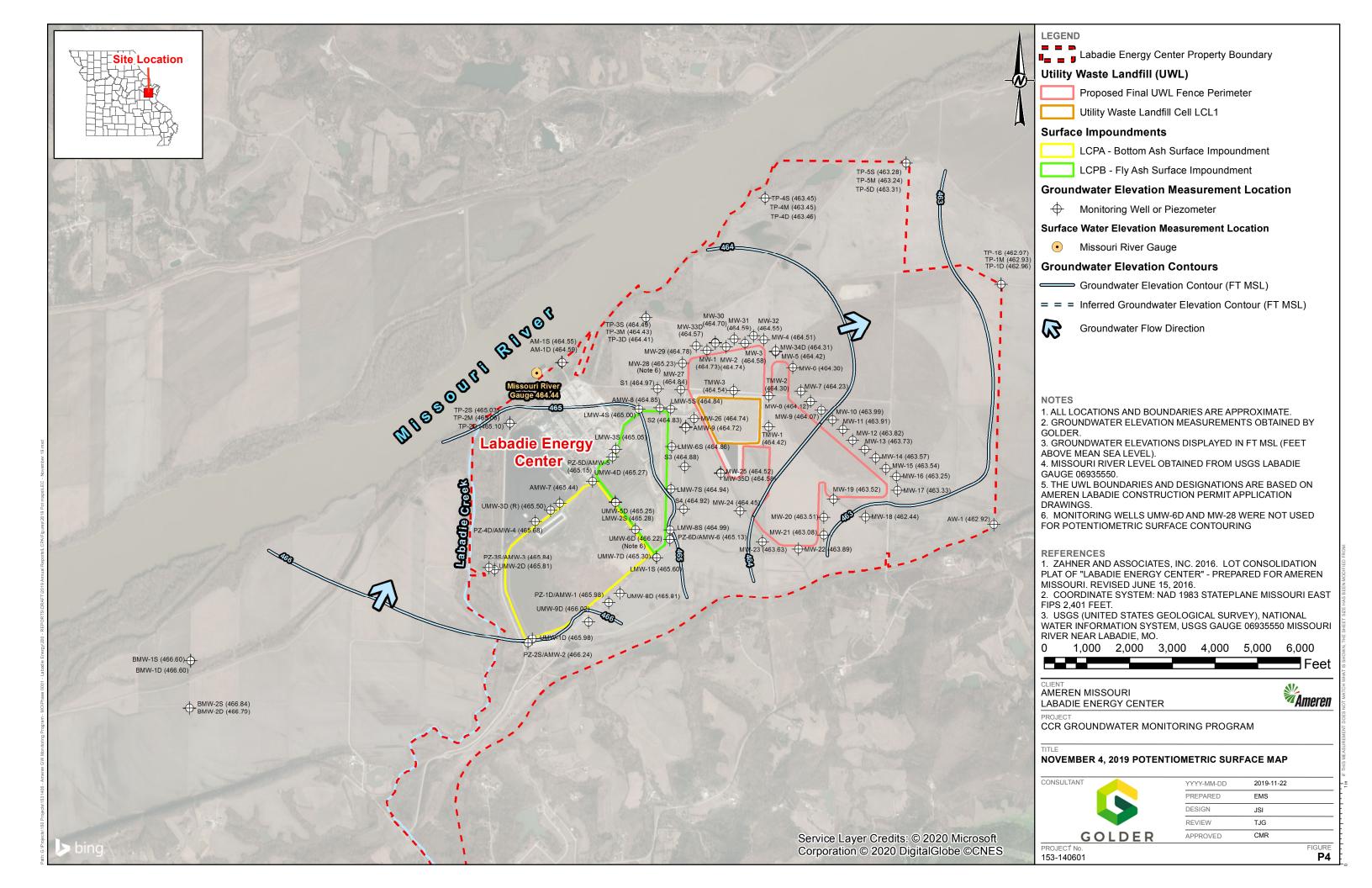
Created by: RJF Checked by: KAB Reviewed by: CMR Bill Kutosky
Project No. 153140601
Ameren Missouri
January 2020

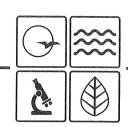
Figures




January 31, 2020 Project No. 153-140601


APPENDIX G


2019 Potentiometric Surface Maps



January 31, 2020 Project No. 153-140601

APPENDIX H

UMW-6D Modification Records

Missouri Department of

NATURAL RESOURCES

Michael L. Parson, Governor

Carol S. Comer, Director

P.O. Box 250 111 Fairgrounds Rd. Rolla, MO 65402-0250 (573) 368-2165 FAX(573) 368-2317

VARIANCE	: Approved	l							VARIANC	E NUI	/IBER:	6605	
				WE	LL OWN	ER INFO	RMATIC	ON					
NAME:	AMEREN	MISSOU	રા										
BUSINESS NAME:	AMEREN	MISSOUI	રા										
ADDRESS 1	: 1901 CHC	OUTEAU A	VE.								FAX:		
ADDRESS 2	:												
CITY:	ST. LOUIS	S		;	STATE:	MO	ZIP: 63	3103	7	TELEP	HONE:		
					WELL	. LOCATI	ON						
COUNTY:	FRA	ANKLIN			LAT.	38	33	20.9	LONG.	90	49	51.3	
1/4		1/4		1/4	SE		SEC.	18	TWN.	44	N	RNG.	2E
				COI	NTRACT	OR INFO	RMATIC	ON					
BUSINESS N	NAME:	DIRTY [OG DRLC	DBA	BULLDO	G DRLG		PERMI	T NUMBER	₹:		003503	
CONTRACTO	OR NAME:	CRAIG I	MAXEINER	3							1 12 100		* *
ADDRESS:		411 TRA	NSPOINT	DR							FAX:	618-286-	0354
CITY:		DUPO			STAT	ΓE: IL	ZIP	62239	7	TELEP	HONE:	618-286-	3800
				V	ARIANC	E INFORM	NOITAI	1					
				٧	'ARIANC	E EXPLAI	NATION	1					
VARIANCE OF PERIOD OF FOUR-INCH PROTECTOI COMPLETIO	UP TO ONE DIAMETER R WILL BE (YEAR F STEEL V COVEREI	ROM CON VELL PRO D WITH A	STRU TECT LOCK	OR 2.5 FING WEL	CONTRACE INTO	CTOR V THE C R. CONT	VILL INS SROUND TRACTO	STALL A FIND AROUND OR WILL NO	VE-FO	OT LON RISER. THE SE	NG BY STEEL ECTION U	JPON
RULE NUME	BER MODIF	IED:	10 CSR 2	3-4.06	60								
				F	REASON	FOR VAF	RIANCE						
VARIANCE F TO ONE YEA OF A LINER.	AR. OWNER	R PLANS	O REGRA	ADE T	HE AREA	A AROUN	D THE	WELL IN	N COORDIN	IOITAI	N WITH		
DATE:					09/04/2	2019		BY:	BRA	D MIT	CHELL	L	and the same of th
Cc:						Cc:	-						

golder.com