

REPORT

2020 Annual Groundwater Monitoring and Corrective Action Report

SCL4A - Utility Waste Landfill Cell 4A, Sioux Energy Center, St. Charles County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Avenue St. Louis, Missouri 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

+1 314 984-8800

153140602

1.0 EXECUTIVE SUMMARY AND STATUS OF THE SCL4A GROUNDWATER MONITORING PROGRAM

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§ 257.90(e)). Ameren Missouri (Ameren) has determined that the Utility Waste Landfill (UWL) Cell 4A (SCL4A) at the Sioux Energy Center (SEC) is subject to the requirements of the CCR Rule. This Annual Report for the SCL4A describes CCR Rule groundwater monitoring activities from January 1, 2020 through December 31, 2020, including verification results related to late 2019 sampling.

Throughout 2020, the SCL4A CCR unit has been operating under the Detection Monitoring Program (§257.94) which began October 17, 2017. As a part of Detection Monitoring, statistical evaluations are completed after each sampling event to determine if there are any values that represent a Statistically Significant Increase (SSI) over background concentrations. In 2020, SSIs have been determined for each sampling event and a summary of the SSIs for the past year is provided in **Table 1**.

Event Name	Type of Event and Sampling Dates	Laboratory Analytical Data Receipt Date	Parameters Collected	Verified SSI	SSI Determination Date	ASD Completion Date
er 2019 g Event	Detection Monitoring, November 14-15, 2019	December 9, 2019	Appendix III, Major Cations and Anions	Chloride: TMW-2 Sulfate: TMW-2		June 5
Novembe Sampling	Verification Sampling, January 2-3, 2020	January 13, 2020	Detected Appendix III parameters ^{(See} _{Note 1)}	TDS : TMW-2	March 8, 2020	2020
020 I Event	Detection Monitoring, April 22-27, 2020	June 3, 2020	Appendix III, Major Cations and Anions		September 1	November
April 2 Sampling	Verification Sampling, June 16-18, 2020	July 27, 2020	Detected Appendix III parameters ^{(See} _{Note 1)}	Fluoride: UG-3	2020	30, 2020
November 2020 Sampling Event	Detection Monitoring, November 16-17, 2020	December 28, 2020	Appendix III, Major Cations and Anions	To be determined after stat Sampling are o	istical analysis and completed in 2021.	d Verification

Table 1 – Summary of 2020 SCL4A Sampling Events, Previous Year Verification, and Statistical Evaluations

Notes:

1) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

- 2) SSI Statistically Significant Increase.
- 3) ASD Alternative Source Demonstration.
- 4) TDS Total Dissolved Solids.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Alternative Source Demonstrations (ASDs) were prepared for each of these sampling events and are discussed further in this Annual Report.

There were no changes made to the monitoring system in 2020 with no new wells being installed or decommissioned.

Table of Contents

1.0	EXEC	UTIVE SUMMARY AND STATUS OF THE SCL4A GROUNDWATER MONITORING PROGRA	.M 3-1
2.0	INSTA	ALLATION OR DECOMMISSIONING OF MONITORING WELLS	1
3.0	GROL	INDWATER SAMPLING RESULTS AND DISCUSSION	1
	3.1	Detection Monitoring Program	1
	3.2	Groundwater Elevation, Flow Rate and Direction	2
	3.3	Sampling Issues	2
4.0		/ITIES PLANNED FOR 2021	3

TABLES

Table 1 - Summary of 2020 SCL4A Sampling Events, Previous Year Verification, and Statistical Evaluations

- Table 2 Summary of Groundwater Sampling Dates
- Table 3 November 2019 Detection Monitoring Results
- Table 4 April 2020 Detection Monitoring Results
- Table 5 November 2020 Detection Monitoring Results

FIGURES

Figure 1 - Site Location Aerial Map and Monitoring Well Locations

APPENDICES

APPENDIX A Laboratory Analytical Data

APPENDIX B Alternative Source Demonstration - November 2019 Sampling Event

APPENDIX C Alternative Source Demonstration - April 2020 Sampling Event

APPENDIX D

2020 Potentiometric Surface Maps

2.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the SCL4A. The groundwater monitoring system consists of six (6) groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1**. No new monitoring wells were installed or decommissioned in 2020 as a part of the CCR Rule monitoring program for the SCL4A. For more information on the groundwater monitoring network, details are provided in the previous Annual Groundwater Monitoring Reports for the SCL4A.

3.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections discuss the sampling events completed for the SCL4A CCR Unit in 2020. **Table 2** below provides a summary of the groundwater samples collected in 2020 including the number of samples, the date of sample collection, and the monitoring program.

		Gro	undwater M	onitoring W	'ells		Monitoring	
Sampling Event	BMW-1S	BMW-3S	UG-3	TMW-1	TMW-2	TMW-3	Program	
		, j						
January 2020 Verification Sampling	-	-	1/3/2020	-	1/2/2020	-	Detection	
April 2020 Detection Monitoring	4/22/2020	4/22/2020	4/27/2020	4/27/2020	4/27/2020	4/27/2020	Detection	
June 2020 Verification Sampling	-	-	6/16/2020	-	6/18/2020	-	Detection	
November 2020 Detection Monitoring	11/16/2020	11/16/2020	11/17/2020	11/17/2020	11/17/2020	11/17/2020	Detection	
Total Number of Samples Collected	2	2	4	2	4	2	NA	

Table 2 – Summary of Groundwater Sampling Dates

Notes:

1.) Detection Monitoring Events tested for Appendix III Parameters.

2.) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

3.) "-" No sample collected.

4.) NA - Not applicable.

3.1 Detection Monitoring Program

A Detection Monitoring sampling event was completed November 14-15, 2019. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2019 event were not completed until 2020 and are, therefore, included in this report. Detections of Appendix III analytes triggered a verification sampling event, which was completed on January 2-3, 2020 and verified SSIs. **Table 3** summarizes the results of the statistical analysis of the November 2019 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

An ASD was completed for these SSIs and is provided in **Appendix B**. This ASD demonstrates that SSIs at the monitoring wells around SCL4A are not caused by the SCL4A CCR Unit and the SCL4A CCR Unit remains in Detection Monitoring.

Detection Monitoring samples were collected April 22-27, 2020, and testing was completed for all Appendix III analytes, as well as major cations and anions. Statistical analysis of the data determined SSIs. Detections of Appendix III analytes triggered Verification Sampling, which was completed June 16-18, 2020 and the testing results verified one SSI. **Table 4** summarizes the results of the statistical analysis of the April 2020 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**. As with the November 2019 sampling event, the SSI reported for the monitoring data is not caused by the SCL4A CCR Unit and an ASD for this is provided in **Appendix C**.

A Detection Monitoring sampling event was completed November 16-17, 2020, and testing was performed for all Appendix III analytes, as well as major cations and anions. Statistical analyses to evaluate for SSIs in the November 2020 data were not completed in 2020 and the results will be provided in the 2021 Annual Report. **Table 5** summarizes the results of the November 2020 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

3.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps found in **Appendix D**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Mississippi and Missouri Rivers, since the alluvial aquifer is hydraulically connected to these water bodies. Groundwater in the alluvial aquifer will generally flow from the higher of the two rivers toward the lower elevation river. The SCPA Surface Impoundment and Poeling Lake also locally affect water levels and flow directions. Water flows into and out of the alluvial aquifer as a result of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. At this facility, groundwater can flow north and south toward the Mississippi and Missouri Rivers, depending on river levels.

Groundwater flow direction and hydraulic gradient were estimated for the alluvial aquifer wells at the SEC using commercially available software. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow in the alluvial aquifer at the SEC was toward the northeast but ranged from north to south. Horizontal gradients calculated by the program range from 0.00006 to 0.001 feet/foot with an estimated net annual groundwater movement of approximately three (3) feet.

3.3 Sampling Issues

Verification sampling and a Corrective Action Sampling event for the SEC were planned to start June 1, 2020. However, from approximately June 1, 2020 to June 14, 2020 some of the monitoring wells at the SEC were not accessible or partially submerged due to the flooding of the Mississippi and Missouri Rivers which caused a delay in the planned sampling dates. Prior to collecting water levels or groundwater samples, Golder performed a post-flood monitoring well inspection and based on this evaluation, no monitoring wells were impacted by the flood.

No additional notable sampling issues were encountered at the SCL4A in 2020.

4.0 ACTIVITIES PLANNED FOR 2021

Detection Monitoring is scheduled to continue a semi-annual basis in the second and fourth quarters of 2021. Statistical analysis of the November 2020 Detection Monitoring data will be completed in 2021 and included in the 2021 Annual Report.

Tables

Table 3November 2019 Detection Monitoring ResultsSCL4A - Landfill Cell 4ASioux Energy Center, St. Charles County, MO

_		BACKGR	OUND			GROL	JNDWATER M	IONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-3	UG-3	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			N	ovember 201	9 Detection N	Ionitoring Eve	nt				
DATE	NA	11/15/2019	11/15/2019	NA	11/14/2019	NA	11/14/2019	NA	11/14/2019	NA	11/14/2019
pН	SU	6.88	7.13	6.243-7.648	7.08	6.216-7.528	6.93	6.441-7.519	6.90	6.337-7.638	6.99
BORON, TOTAL	μg/L	118	80.1 J	1,027	976	DQR	79.7 J	DQR	98.1 J	114.8	97.6 J
CALCIUM, TOTAL	μg/L	143,000 J	102,000	160,085	135,000 J	115,800	95,100	134,272	120,000	150,887	116,000
CHLORIDE, TOTAL	mg/L	6.4	7.6	102.2	83.5	4.463	1.8	3.954	4.5	3.1	2.4
FLUORIDE, TOTAL	mg/L	0.28	0.23	0.3772	0.33	0.4264	0.34	0.4061	0.35	0.3573	0.28
SULFATE, TOTAL	mg/L	26.5	34.4	165.7	185 J	50.29	36.9	52.1	75.1	60.9	36.7
TOTAL DISSOLVED SOLIDS	mg/L	551	418	698.7	721	485.1	387	495.8	502	505.9	454
				January 2020	Verification S	ampling Event	t				
DATE	NA				1/3/2020				1/2/2020		
pН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L								4.7		
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L				66.2				85.8		
TOTAL DISSOLVED SOLIDS	mg/L				576				513		

NOTES:

1. Unit Abbreviations: $\mu g/L$ - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. Prediction Limits calculated using Sanitas Software.

5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).

7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Table 4 April 2020 Detection Monitoring Results SCL4A - Landfill Cell 4A Sioux Energy Center, St. Charles County, MO

		BACKGR	OUND			GROL	JNDWATER M	IONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-3	UG-3	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
				April 2020 D	etection Mon	itoring Event					
DATE	NA	4/22/2020	4/22/2020	NA	4/27/2020	NA	4/27/2020	NA	4/27/2020	NA	4/27/2020
рН	SU	6.54	6.90	6.243-7.648	7.12	6.216-7.528	7.02	6.441-7.519	7.02	6.337-7.638	7.04
BORON, TOTAL	μg/L	114	95.9 J	1,027	313	DQR	72.3 J	DQR	91.5 J	114.8	84.0 J
CALCIUM, TOTAL	μg/L	150,000	134,000	160,085	129,000	115,800	111,000	134,272	122,000	150,887	121,000
CHLORIDE, TOTAL	mg/L	8.0	13.2	102.2	51.6	4.463	1.5	3.954	3.8	3.1	1.6
FLUORIDE, TOTAL	mg/L	0.37	0.43	0.3772	0.39	0.4264	0.40	0.4061	0.40	0.3573	0.34
SULFATE, TOTAL	mg/L	27.0	29.6	165.7	68.2	50.29	33.8	52.1	60.5	60.9	33.9
TOTAL DISSOLVED SOLIDS	mg/L	565	472	698.7	579	485.1	399	495.8	505	505.9	437
				June 2020 V	erification Sa	mpling Event					
DATE	NA				6/16/2020				6/18/2020		
pН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										
FLUORIDE, TOTAL	mg/L				0.38						
SULFATE, TOTAL	mg/L								45.3		
TOTAL DISSOLVED SOLIDS	mg/L								420		

NOTES:

1. Unit Abbreviations: $\mu g/L$ - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. Prediction Limits calculated using Sanitas Software.

5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).

7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Table 5November 2020 Detection Monitoring ResultsSCL4A - Landfill Cell 4ASioux Energy Center, St. Charles County, MO

		BACKGR	OUND	GROL	JNDWATER M	IONITORING V	VELLS
ANALYTE	UNITS	BMW-1S	BMW-3S	UG-3	TMW-1	TMW-2	TMW-3
	N	ovember 202	0 Detection N	lonitoring Eve	nt		
DATE	NA	11/16/2020	11/16/2020	11/17/2020	11/17/2020	11/17/2020	11/17/2020
рН	SU	6.96	7.07	7.25	7.25	7.16	7.13
BORON, TOTAL	μg/L	75.1 J	66.3 J	188	65.7 J	87.9 J	88.5 J
CALCIUM, TOTAL	μg/L	141,000	125,000	119,000	119,000	128,000 J	130,000 J
CHLORIDE, TOTAL	mg/L	7.0	11.4	16.5	1.8	3.3	2.1
FLUORIDE, TOTAL	mg/L	0.34	0.40	0.34	0.43	0.34	0.37
SULFATE, TOTAL	mg/L	24.8	30.6	69.5	37.1	46.3	37.6
TOTAL DISSOLVED SOLIDS	mg/L	505	455	473	398	673	433

NOTES:

1. Unit Abbreviations: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

Prepared By: BTT Checked By: EMS Reviewed By: MNH

Figures

(Z)						
_	Sioux	Energy Cen	iter Prop	erty Bound	dary	
	Propos	sed Final IIN	' WL Perir	- neter Fenr	- ce	
	SCI 4/					
	SUL4A		, c⊪ 4A			
	Water	Recycle Po	nd			
Gro for 3	undw SCL4	vater Mo A CCR F	nitorin Rule M	ng Wells Ionitori	s used ng	
\oplus	SCL44	A Monitoring	l Well			
\oplus	Backo	round Monit	toring W	ell		
0		1,000	2	000	3.000	
0		1,000	2	000	3,000	
0		1,000	2	000	3,000	
	;)	1,000	2	000	3,000 Feet	
0 NOTE(S 1.) ALL E	i) BOUNDARIE	1,000 ES AND LOCATION	2 NS ARE APPP	000	3,000 Feet	
0 NOTE(S 1.) ALL E	i) BOUNDARII	1,000	2 NS ARE APPP	000 ROXIMATE.	3,000 Feet	
0 NOTE(S 1.) ALL E	:) BOUNDARIE ENCE(S) BEN MISSY			000 ROXIMATE.	3,000 Feet	
0 NOTE(S 1.) ALL E REFERE 1.) AME 2011. 2012.	i) BOUNDARIE ENCE(S) REN MISS(1,000 ES AND LOCATION	2 NS ARE APPE	000 ROXIMATE.	3,000 Feet	MAP, FEBRUA
0 NOTE(S 1.) ALL E REFERE 1.) AME 2011. 2.) COL	i) BOUNDARIA E NCE(S) IREN MISS(DRDINATE S	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198	2 NS ARE APPP RGY CENTER 13 STATE PLA	000 ROXIMATE. R, SIOUX PROPI INE MISSOURI I	3,000 Feet ERTY CONTROL	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E 2011. 2.) COCO CLIENT	BOUNDARIE ENCE(S) DRDINATE S	1,000 ES AND LOCATION OURI SIOUX ENEF SYSTEM: NAD 198	2 NS ARE APPF RGY CENTEF I3 STATE PLA	000 ROXIMATE. R, SIOUX PROPE INE MISSOURI I	3,000 Feet ERTY CONTROL EAST FIPS 2,401	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E REFERENT 2.) COC CLIENT AMEF SIQU	B) BOUNDARIE ENCE(S) EREN MISS DRDINATE S REN MIS REN MIS	1,000 ES AND LOCATION DURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER	2 NS ARE APPP RGY CENTER 13 STATE PLA	000 ROXIMATE. R, SIOUX PROPE	3,000 Feet	MAP, FEBRUA FEET.
0 REFERE 1.) ALL E 2011. 2.) COLENT AMEF SIOU PROJECT	DOUNDARIE ENCE(S) EREN MISSO DORDINATE S REN MISS REN MISS X ENER	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER	2 NS ARE APPP RGY CENTER I3 STATE PLA	000 ROXIMATE. R, SIOUX PROPE NE MISSOURI I	3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E 2011. 2.) COCC CLIENT AMEF SIOU PROJEC GROU	DOUNDARIE ENCE(S) EREN MISSO DRDINATE S DRDINATE S REN MIS X ENER T T UNDWA	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER	2 NS ARE APPP RGY CENTER I3 STATE PLA R ORING F	000 ROXIMATE. S, SIOUX PROPE NE MISSOURI I	3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E 2011. 2.) COCC CLIENT AMEF SIOU PROJEC GROU	ENCE(S) REN MISSO DRDINATE S REN MIS X ENER DT UNDWA	1,000 ES AND LOCATION OURI SIOUX ENEF SYSTEM: NAD 198 SSOURI RGY CENTEF	2 NS ARE APPE RGY CENTER IS STATE PLA R ORING F	000 ROXIMATE. R, SIOUX PROPH NE MISSOURI I	3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E NOTE(S 1.) ALL E 2011. 2.) COC CLIENT AMEE SIOU PROJEC GROU TITLE SITE	BOUNDARIE ENCE(S) DREIN MISSO DREINMISS DREINMISS REN MIS X ENER DT UNDWA UNDWA	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER TER MONITO	2 NS ARE APPF RGY CENTEF IS STATE PLA R ORING F	000 ROXIMATE. R, SIOUX PROPA INE MISSOURI I PROGRAM	3,000 Feet	MAP, FEBRUA FEET.
NOTE(S 1.) ALL E 1.) ALL E 2011. 2.) COC CLIENT AMEF SIOU PROJEC GROU	B) BOUNDARIE EREN MISS ORDINATE S REN MISS X ENER CT UNDWA UNDWA LOCAT ATIONS	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER TER MONITO	2 NS ARE APPR RGY CENTER 13 STATE PLA R ORING F . MAP AN	000 ROXIMATE. R, SIOUX PROPE INE MISSOURI I PROGRAM	3,000 Feet	MAP, FEBRUA FEET.
NOTE(S 1.) ALL E 2011. 2.) COC CLIENT AMEF SIOU PROJEC GROU TITLE SITE LOC/ CONSU	ENCE(S) EREN MISSO ORDINATE S ORDINATE	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER ITER MONITU	2 NS ARE APPP RGY CENTER I3 STATE PLA R ORING F	000 ROXIMATE. S, SIOUX PROPE MISSOURI I PROGRAM	3,000 Feet	MAP, FEBRUA FEET.
NOTE(S 1.) ALL E 2011. CLIENT AMEF SIOU PROJEC GROU	ENCE(S) REN MISSO ORDINATE S ORDINATE S	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER ION AERIAL	2 NS ARE APPF RGY CENTEF IS STATE PLA R ORING F	000 ROXIMATE. ROSIDUX PROPE INE MISSOURI I PROGRAM	3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E REFERE 1.) AME 2011. 2.) COC CLIENT AMEF SIOU PROJEC GROU TITLE SITE LOC A CONSUL	BOUNDARIE ENCE(S) REN MISSO DRDINATE S REN MISSO DRDINATE S REN MISSO REN MI	1,000 ES AND LOCATION DURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER TER MONITO ION AERIAL	2 NS ARE APPE RGY CENTER 3 STATE PLA R ORING F . MAP AN	000 ROXIMATE. R, SIOUX PROPE INE MISSOURI I PROGRAM ID MONITO (YYYY-MM-DD DESIGNED REPARED REVIEWED	3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E REFERENCE 2011. 2.) COOL CLIENT AMEF SIOU PROJEC GROU TITLE SITE LOCA CONSU	ENCE(S) ENCE(S) REN MISS ORDINATE S REN MIS X ENER T UNDWA LOCAT ATIONS LTANT G	1,000 ES AND LOCATION DURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER TER MONITO ION AERIAL	2 NS ARE APPE RGY CENTEF 13 STATE PLA R ORING F . MAP AN		3,000 Feet	MAP, FEBRUA FEET.
0 NOTE(S 1.) ALL E REFERENT 2.) COCO CLIENT AMEF SIOU PROJEC GROU TITLE SITE LOCA CONSUL	ENCE(S) EREN MISS ORDINATE S REN MISS DRDINATE S REN MIS X ENER UNDWA UNDWA LOCAT T UNDWA LOCAT ATIONS LTANT	1,000 ES AND LOCATION OURI SIOUX ENER SYSTEM: NAD 198 SSOURI RGY CENTER ION AERIAL	2 NS ARE APPE RGY CENTER 33 STATE PLA R ORING F MAP AN	000 ROXIMATE. ROGRAM ROGRAM DOSIGNED PREPARED REVIEWED REVIEWED	3,000 Feet	MAP, FEBRUA FEET.

APPENDIX A

Laboratory Analytical Data

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 13, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN SIOUX ENERGY CTR SCL4A Pace Project No.: 60325633

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on January 04, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Tommy Goodwin, Golder Associates Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60325633001	S-TMW-2	Water	01/02/20 15:10	01/04/20 02:17
60325633002	S-UG-3	Water	01/02/20 12:00	01/04/20 02:17
60325633003	S-SCL4A-DUP-1	Water	01/02/20 08:00	01/04/20 02:17
60325633004	S-SCL4A-FB-1	Water	01/03/20 12:05	01/04/20 02:17

SAMPLE ANALYTE COUNT

Project:AMEREN SIOUX ENERGY CTR SCL4APace Project No.:60325633

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60325633001	S-TMW-2	SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	2	PASI-K
60325633002	S-UG-3	SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	2	PASI-K
60325633003	S-SCL4A-DUP-1	SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	2	PASI-K
60325633004	S-SCL4A-FB-1	SM 2540C	BLA	1	PASI-K
		EPA 300.0	CNB	2	PASI-K

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

Sample: S-TMW-2	Lab ID:	60325633001	Collecte	d: 01/02/20	0 15:10	Received: 01	/04/20 02:17 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	513	mg/L	10.0	10.0	1		01/09/20 07:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	4.7	mg/L	1.0	0.39	1		01/07/20 22:30	16887-00-6	
Sulfate	85.8	mg/L	5.0	1.4	5		01/07/20 22:46	14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

		-	-	-		-	-	-	-
	00005000								
. or	60325633								

Sample: S-UG-3	Lab ID:	60325633002	Collected	: 01/02/20) 12:00	Received: 01/0	04/20 02:17 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical I	Method: SM 25	540C						
Total Dissolved Solids	576	mg/L	10.0	10.0	1		01/09/20 07:02		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0						
Chloride	45.9	mg/L	10.0	3.9	10		01/07/20 23:02	16887-00-6	
Sulfate	66.2	mg/L	10.0	2.8	10		01/07/20 23:02	14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Proj

aat Na	

Sample: S-SCL4A-DUP-1	Lab ID: (60325633003	Collected	1: 01/02/20	08:00	Received: 01/	04/20 02:17 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical N	Method: SM 25	40C						
Total Dissolved Solids	502	mg/L	10.0	10.0	1		01/09/20 07:02		
300.0 IC Anions 28 Days	Analytical M	Method: EPA 30	0.00						
Chloride Sulfate	4.8 83.3	mg/L mg/L	1.0 5.0	0.39 1.4	1 5		01/08/20 19:11 01/07/20 23:49	16887-00-6 14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

Sample: S-SCL4A-FB-1	Lab ID:	60325633004	Collecte	d: 01/03/20) 12:05	Received: 01	/04/20 02:17 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		01/09/20 07:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.39	mg/L	1.0	0.39	1		01/08/20 00:05	16887-00-6	
Sulfate	<0.28	mg/L	1.0	0.28	1		01/08/20 00:05	14808-79-8	

QUALITY CONTROL DATA

Project:	AMEREN SIOUX	ENERGY CTR SC	CL4A				
Pace Project No.:	60325633						
QC Batch:	632004		Analysis Me	ethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids	
Associated Lab San	nples: 60325633	3001, 6032563300	2, 60325633003,	60325633004			
METHOD BLANK:	2573527		Matrix	: Water			
Associated Lab San	nples: 60325633	3001, 6032563300	2, 60325633003,	60325633004			
			Blank	Reporting			
Paran	neter	Units	Result	Limit	MDL	Analyz	ed Qualifiers
Total Dissolved Solid	ds	mg/L	<5.0	5	.0	5.0 01/09/20	07:01
		0570500					
LABORATORY CON	NTROL SAMPLE:	2073020	Snike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solid	ds	mg/L	1000	969	97	80-120	
SAMPLE DUPLICA	TE: 2573529						
			60325647001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	844	81	7	3	10
SAMPLE DUPLICA	TE: 2573530						
			60325711001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	747	77	/1	3	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Pace Project No.:	AMEREN SIOUX 60325633	ENERGY CTR SC	CL4A								
QC Batch:	631850		Anal	ysis Metho	d:	EPA 300.0					
QC Batch Method:	EPA 300.0		Anal	ysis Descri	iption:	300.0 IC Ar	nions				
Associated Lab San	nples: 60325633	001, 6032563300	2, 603256	33003, 603	25633004						
METHOD BLANK:	2572919			Matrix: W	/ater						
Associated Lab San	nples: 60325633	001, 6032563300	2, 603256	33003, 603	25633004						
Davaa	4	L la ita	Bla	nk	Reporting		N	A see huma			
Oblezide	leter	Units					<u>بر</u>			amers	
Sulfate		mg/L mg/l		<0.39 <0.28	1	.0	0.39	01/07/20 0	9:46 9:46		
METHOD BLANK:	2573742			Matrix: W	/ater						
Associated Lab San	nples: 60325633	001, 6032563300	2, 603256	33003, 603	25633004						
			Bla	nk	Reporting						
Paran	neter	Units	Res	sult	Limit	MC	DL	Analyze	d Qւ	alifiers	
Chloride		mg/L		<0.39	1	.0	0.39	01/08/20 1	7:50 7:50		
Sunate		ilig/L		<0.20	I	.0	0.20	01/00/2011	1.50		
LABORATORY COM	ITROL SAMPLE:	2572920									
_			Spike	LC	CS	LCS		% Rec			
Paran	neter	Units	Conc.	Re:	sult	% Rec		Limits	Qualifiers	_	
Chloride		mg/L		5 5	4.7	9	94	90-110 90-110			
Sullate		ilig/L		5	4.0		0	90-110			
LABORATORY COM	ITROL SAMPLE:	2573743									
Desce		11-20-	Spike	LC	CS	LCS	(% Rec	0		
Oblezide	leter	Units				% Rec			Quaimers	_	
Sulfate		mg/L mg/l		5 5	4.8 4.7	ç	95 94	90-110 90-110			
				-		-					
MATRIX SPIKE & N	IATRIX SPIKE DUF	PLICATE: 2572	921		257292	2					
		60205024000	MS	MSD	MO	MCD			0/		Мах
Parameter	Units	Result	Spike Conc.	Spike Conc.	Result	Result	MS % Re	ec % Rec	% Rec Limits	RPD	RPD Qual
Chloride	mg/L	. 168	25	25	196	195		112 10	7 80-120	1	15 E
Sulfate	mg/L	. 67.6	25	25	94.3	93.9		106 10	5 80-120	0	15
MATRIX SPIKE SAM	MPLE:	2572923			• "				<i>c</i> . –		
Paran	neter	Units	60325 R	5600002 esult	Spike Conc	MS Result	t	MS % Rec	% Rec Limits		Qualifiers
Chloride		mg/l		37	5					-120	
Chionae		my/⊏		0.7	5		0.0	55	. 30	120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:	AMEREN SIOUX ENERGY	CTR SCL4A
10,000		0111 002 111

Pace Project No.: 60325633

MATRIX SPIKE SAMPLE:	2572923						
		60325600002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Sulfate	mg/L	141	50	195	109	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60325633

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

E Analyte concentration exceeded the calibration range. The reported result is estimated.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:AMEREN SIOUX ENERGY CTR SCL4APace Project No.:60325633

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60325633001	S-TMW-2	SM 2540C	632004		
60325633002	S-UG-3	SM 2540C	632004		
60325633003	S-SCL4A-DUP-1	SM 2540C	632004		
60325633004	S-SCL4A-FB-1	SM 2540C	632004		
60325633001	S-TMW-2	EPA 300.0	631850		
60325633002	S-UG-3	EPA 300.0	631850		
60325633003	S-SCL4A-DUP-1	EPA 300.0	631850		
60325633004	S-SCL4A-FB-1	EPA 300.0	631850		

Pace Analytical Sample Condition U	lpon Re	ceip	ot	WO#:60325633
Client Name: Golder ASSoci	ate	S		
Courier: FedEx UPS VIA Clay F	PEX 🗆	EC		Pace 🗆 Xroads 💋 Client 🗆 Other 🗆
Tracking #: Pac	e Shippir	ng Lab	bel Use	d? Yes 🗆 No 💋
Custody Seal on Cooler/Box Present: Yes 💋 🛛 No 🗆	Seals i	ntact	Yes 🛛	1 No 🗆
Packing Material: Bubble Wrap □ Bubble Bags □ Thermometer Used: 1298 Type of	⊐ f Ice: (Ve	Fo	am □ lue No	None \Box Other $P 2 P / C$ ne $1/4/2 2 c$
Cooler Temperature (°C): As-read 1.2 Corr. Fact	or <u>+0</u>	.0	Correc	ted 1.2 examining contents / B 1/3/
Temperature should be above freezing to 6°C	_			VE 14/2020
Chain of Custody present:	Yes	□No	□n/a	
Chain of Custody relinquished:	Yes	□No	□n/a	
Samples arrived within holding time:	Yes	ΠNο	□n/A	
Short Hold Time analyses (<72hr):	□Yes		□n/A	
Rush Turn Around Time requested:	□Yes		⊡n/A	
Sufficient volume:	□yes	□No	□n/A	
Correct containers used:	□y∕es	□No	□n/a	
Pace containers used:	□¥es	□No	□n/a	
Containers intact:	↓ ↓Yes	□No	□n/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes	ΩNo		
Filtered volume received for dissolved tests?	□Yes	□No	ZÍN/A	
Sample labels match COC: Date / time / ID / analyses	□ / /es	□No	□n/A	
Samples contain multiple phases? Matrix: 📈 Ұ	□Yes		□n/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Pres	□No	□n/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Lead acetate strip turns dark? (Record only)	□Yes	□No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes	□No		
Trip Blank present:	□Yes	□No	ØN/A	
Headspace in VOA vials (>6mm):	□Yes	□No		
Samples from USDA Regulated Area: State:	□Yes	□No		
Additional labels attached to 5035A / TX1005 vials in the field' Client Notification/ Resolution: Copy COC to	? □Yes o Client?	⊡No Y /		Field Data Required? Y / N
Person Contacted: Date/T Comments/ Resolution:	īme:			
Janui Chush				1/6/20
Project Manager Review:	_		Dat):

Received Ice (Y/N Custod Sealed Co (Y/N)	Temp In	121202	р е	TE Signe	(MN	1	Su Ca	16	13	N/S	6 5		AMPLE	Name of SA TURE of SA	SIGNA								
l on N) ly poler	°C											R	UTANE	NE AND SIG	IPLER NAN	SAM							
												F									-		
7		1 11 1	0.20	1		D D		2	5			t	12	ļ									
< <	1111.2	113/20		lac	110	ME.	9/1-	HE	50		20	216	2020	115/	an	MI Ca	20	E					
SAMPLE CONE	TIME	DATE		ILIATION	AFFI	D BY /	EPTE	ACC	1		TIME		ATE		LATION	BY / AFFIL	J ISHED	LINOL	R	NIS	ADDITIONAL COMME		
/			-	-	F	1	-	E	F		E	t	┝	-	-	-		-1 G	~			-	12
		/				-	-					1	-					л G	5				11
				\mid	T	1	H	H					-	1				G	5				10
							-			\vdash		1	#	$\ $				- С	>			1	ø
					\square				_							$\ $	17	- Г	\$			T	00
							-										F	-1 ດ	1	/		1	7
												F						п 0	5	/	/		6
													_					ч 0	5			17	Un
POUL		1	-	-			-					F	<i>ъ</i> і	120 120	1/3/	-	T	- G	8	1	ロートトートロ	T	4
66				-		2					5	-		1	141		F	7 G	5	Ì	SCLHA-Dup		ω
No2				-		-17	-						8	20 120	15/			ا	5		-126-3	-	2
8				1			_		_		1	-	0	20 5	Va/			_ ດ	~		-TMW-2		
Pace Project	Residual Chlorine (Y/N)	TDS	Fluoride Sulfate	200.7 Calcium Chloride	200.7 Boron	↓Analysis Test↓	Methanol Other	Na ₂ S ₂ O ₃	HCI	H ₂ SO ₄ HNO ₃	Unpreserved	# OF CONTAINERS		ND/GRAB		START START	₽ ₽	SAMPLE TYPE (G=GRAB C=C		WATER WATER WASTE WATER SOLUSALID OL	(A-Z, 0-97, -) (A-Z, 0-97, -) pie IDS MUST BE UNIQU	So and the second secon	ITEM #
		z	z z	z z	z	Y/ N	-	atives	serva	Pre	-		<u> </u>	10	OLLECTE	C		OMP)		Valid Matrix Co	D Client Information	Section	
	(VIN)	lysis Filtered	ted Ana	equest	R	Π					11	11	$\left \right $				11						1
	MO	STATE:							85	· 92	Profile #	Pace						а	Project Numbe		Date/TAT: Standard	ested Due	Reque
	5	ite Location	ŝ					hurch	nie O	Jar	Project	Pace Mana					Ieren	Aπ	Project Name:	6-724-9323	24-9191 Fax: 63	€ 636-7	Phone
OTHE	RCRA	UST									Quote	Pace						r No.:	Purchase Orde	r.com	ffrey ingram@golde	To: je	Email
R DRINK	GROUND WATE	NPDES C									ress:	Addr									allwin, MO 63021	_	
-	AGENCY	GULATORY /	R							ame:	Ipany N	Соп			chneider	nn/Eric Sc	eldma	an Fe	Copy To: R	y Drive, Ste 260	3515 Barrett Parkway	ss: 1	Addres
									l		ntion:	Atter				Э	Ingran	ffrey	Report To: Je		older Associates	oany: (Comp
X - a	Page:								5	mation	tion C	Sec				E.	rmatior	ect Info	Section B Required Proj		nformation:	ion A ired Client	Requi
]																						

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT_AII relevant fields must be completed accurately.

Pace Analytical

MEMORANDUM

Project No. 153140601

DATE January 23, 2020

- TO Project File Golder Associates
- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Tommy Goodwin

EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, SIOUX ENERGY CENTER – SCL4A – DATA PACKAGE 60325633

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

None.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Golder Associates	Project Manager: J Ingram
Project Name: <u>Ameren - Sioux - SCL4A</u>	Project Number: 153140601
Reviewer: T Goodwin	Validation Date: 1/23/2020
Laboratory: Pace Analytical - KS Analytical Method (type and no.): <u>SM 2540C (TDS); EPA 300.0 (Anions)</u> Matrix: Air Soil/Sed. Water Waste Sample Names <u>S-TMW-2, S-UG-3, S-SCL4A-DUP-1, S-SCL4A-FB-1</u>	SDG #: 60325633

NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

Field I	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	х			1/2-3/2020
b)	Sampling team indicated?	х			
c)	Sample location noted?	х			
d)	Sample depth indicated (Soils)?			х	
e)	Sample type indicated (grad)composite)?	X			
f)	Field QC noted?	X			
g)	Field parameters collected (note types)?	х			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	х			
i)	Notations of unacceptable field conditions/performa	nces fr	om field lo	ogs or field	I notes?
			×		
j)	Does the laboratory narrative indicate deficiencies?			×	
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
		_	_	_	
a)	Was the COC properly completed?	х			
b)	Was the COC signed by both field and laboratory personnel?	×			
c)	Were samples received in good condition?	×			
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	х			
b)	Were hold times met for sample analysis?	х			
c)	Were the correct preservatives used?	х			
d)	Was the correct method used?	X			
e)	Were appropriate reporting limits achieved?	x			
f)	Were any sample dilutions noted?	х			See Notes
a)	Were any matrix problems noted?		х		

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS		
a)	Were analytes detected in the method blank(s)?		X				
b)	Were analytes detected in the field blank(s)?		X				
c)	Were analytes detected in the equipment blank(s)?			x			
d)	Were analytes detected in the trip blank(s)?			x			
Laboratory Control Sample (LCS)		YES	NO	NA	COMMENTS		
a)	Was a LCS analyzed once per SDG?	×					
b)	Were the proper analytes included in the LCS?	X					
c)	Was the LCS accuracy criteria met?	X					
Duplic	ates	YES	NO	NA	COMMENTS		
a)	Were field duplicates collected (note original and du	uplicate sample names)?			See Notes		
		×					
b)	Were field dup. precision criteria met (note RPD)?	×			See Notes		
c)	c) Were lab duplicates analyzed (note original and duplicate samples)?						
			×		Unrelated Sample		
d)	Were lab dup. precision criteria met (note RPD)?			x			
Blind Standards		YES	NO	NA	COMMENTS		
a)	Was a blind standard used (indicate name,		×				
	analytes included and concentrations)?						
b)	Was the %D within control limits?			x			
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS		
a)	Was MS accuracy criteria met?			X	Unrelated Sample		
,	Recovery could not be calculated since sample contained high concentration of analyte?			×			
b)	Was MSD accuracy criteria met?			X	Unrelated Sample		
5)	Recovery could not be calculated since sample				<u>_</u>		
	Were MS/MSD precision criteria met?				Unrelated Sample		
C)	were worwoo precision chiena met?						

Comments/Notes:

DUP-1 @ S-TMW-2; FB-1 @ S-UG-3

Dilution: Chloride and Sulfate were diluted in several samples; no qualification is necessary.

Max Field Duplicate RPD: 3% (Limit 20%)

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None				
	\mathbf{X}			
		$\overline{\}$		
			\vdash	
				<u> </u>
	-1			
Signature:	omy f Sood h			Date: 1/23/2020

Signature: 1 01

Date:

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

June 03, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN SIOUX ENERGY CTR SCL4A Pace Project No.: 60335360

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between April 24, 2020 and April 29, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60335360003	S-TMW-1	Water	04/27/20 10:45	04/29/20 03:12
60335360004	S-TMW-2	Water	04/27/20 11:35	04/29/20 03:12
60335360005	S-TMW-3	Water	04/27/20 12:30	04/29/20 03:12
60335360006	S-SCL4A-DUP-1	Water	04/27/20 08:00	04/29/20 03:12
60335360007	S-SCL4A-FB-1	Water	04/27/20 12:45	04/29/20 03:12
60335364016	S-UG-3	Water	04/27/20 13:25	04/29/20 03:12
60335364013	S-BMW-1S	Water	04/22/20 14:55	04/24/20 02:40
60335364014	S-BMW-3S	Water	04/22/20 13:40	04/24/20 02:40

SAMPLE ANALYTE COUNT

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60335360003	S-TMW-1	EPA 200.7	нкс	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60335360004	S-TMW-2	EPA 200.7	НКС	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60335360005	S-TMW-3	EPA 200.7	НКС	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60335360006	S-SCL4A-DUP-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60335360007	S-SCL4A-FB-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	MJK	3	PASI-K
60335364016	S-UG-3	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR	3	PASI-K
60335364013	S-BMW-1S	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR, LDB	3	PASI-K
60335364014	S-BMW-3S	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MGS	1	PASI-K
		SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR, LDB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.:

60335360

Sample: S-TMW-1	Lab ID:	60335360003	Collected	d: 04/27/20	10:45	6 Received: 04/	29/20 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EF	PA 200.7			
	Pace Anal	tical Services	- Kansas C	ity					
Boron	72.3J	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 15:24	7440-42-8	
Calcium	111000	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 15:24	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 15:24	7439-89-6	
Magnesium	20500	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 15:24	7439-95-4	
Manganese	18.3	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 15:24	7439-96-5	
Potassium	5760	ug/L	500	189	1	05/04/20 10:20	05/05/20 15:24	7440-09-7	
Sodium	3130	ug/L	500	107	1	05/04/20 10:20	05/05/20 15:24	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	352	mg/L	20.0	8.4	1		05/06/20 19:43		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	tical Services	- Kansas C	ity					
Total Dissolved Solids	399	mg/L	10.0	10.0	1		04/30/20 14:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Anal	tical Services	- Kansas C	ity					
Chloride	1.5	mg/L	1.0	0.39	1		05/08/20 15:12	16887-00-6	
Fluoride	0.40	mg/L	0.20	0.075	1		05/08/20 15:12	16984-48-8	
Sulfate	33.8	mg/L	5.0	1.4	5		05/08/20 13:49	14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.:

: 60335360

Sample: S-TMW-2	Lab ID:	60335360004	Collecte	d: 04/27/20) 11:35	Received: 04/	29/20 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EF	PA 200.7			
	Pace Anal	tical Services	- Kansas C	ity					
Boron	91.5J	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 15:39	7440-42-8	
Calcium	122000	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 15:39	7440-70-2	
Iron	39.6J	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 15:39	7439-89-6	
Magnesium	23800	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 15:39	7439-95-4	
Manganese	105	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 15:39	7439-96-5	
Potassium	5560	ug/L	500	189	1	05/04/20 10:20	05/05/20 15:39	7440-09-7	
Sodium	3620	ug/L	500	107	1	05/04/20 10:20	05/05/20 15:39	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	363	mg/L	20.0	8.4	1		05/06/20 19:54		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	tical Services	- Kansas C	ity					
Total Dissolved Solids	505	mg/L	10.0	10.0	1		04/30/20 14:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
-	Pace Anal	tical Services	- Kansas C	ity					
Chloride	3.8	mg/L	1.0	0.39	1		05/08/20 16:02	16887-00-6	
Fluoride	0.40	mg/L	0.20	0.075	1		05/08/20 16:02	16984-48-8	
Sulfate	60.5	mg/L	5.0	1.4	5		05/08/20 16:18	14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.:

o.: 60335360

Sample: S-TMW-3	Lab ID:	60335360005	Collected	d: 04/27/20	12:30	Received: 04/	29/20 03:12 Ma	/20 03:12 Matrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual			
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7						
	Pace Anal	vtical Services	- Kansas C	ity								
Boron	84.0J	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 15:41	7440-42-8				
Calcium	121000	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 15:41	7440-70-2				
Iron	113	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 15:41	7439-89-6				
Magnesium	22800	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 15:41	7439-95-4				
Manganese	96.8	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 15:41	7439-96-5				
Potassium	5650	ug/L	500	189	1	05/04/20 10:20	05/05/20 15:41	7440-09-7				
Sodium	4300	ug/L	500	107	1	05/04/20 10:20	05/05/20 15:41	7440-23-5				
2320B Alkalinity	Analytical	Method: SM 23	20B									
	Pace Anal	vtical Services	- Kansas C	ity								
Alkalinity, Total as CaCO3	374	mg/L	20.0	8.4	1		05/06/20 20:00					
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C									
	Pace Anal	vtical Services	- Kansas C	ity								
Total Dissolved Solids	437	mg/L	10.0	10.0	1		04/30/20 15:16					
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00									
	Pace Anal	vtical Services	- Kansas C	ity								
Chloride	16	ma/L	1.0	0.39	1		05/08/20 16:35	16887-00-6				
Fluorido	1.0	<u> </u>										
FIUOIIUE	0.34	mg/L	0.20	0.075	1		05/08/20 16:35	16984-48-8				

05/08/20 17:57 16887-00-6

05/08/20 17:57 16984-48-8

05/08/20 17:08 14808-79-8

ANALYTICAL RESULTS

Project: AMEREN SIOUX ENERGY CTR SCL4A

3.8

0.40

60.6

mg/L

mg/L

mg/L

Pace Project No.: 60335360

Chloride

Fluoride

Sulfate

Sample: S-SCL4A-DUP-1	Lab ID:	60335360006	Collecte	d: 04/27/20	00:80	Received: 04/	29/20 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EF	PA 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	91.5J	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 15:43	7440-42-8	
Calcium	126000	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 15:43	7440-70-2	
Iron	39.7J	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 15:43	7439-89-6	
Magnesium	24300	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 15:43	7439-95-4	
Manganese	108	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 15:43	7439-96-5	
Potassium	5720	ug/L	500	189	1	05/04/20 10:20	05/05/20 15:43	7440-09-7	
Sodium	3680	ug/L	500	107	1	05/04/20 10:20	05/05/20 15:43	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	363	mg/L	20.0	8.4	1		05/07/20 12:27		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	468	mg/L	5.0	5.0	1		04/30/20 15:16		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
-	Pace Anal	ytical Services	- Kansas C	ity					

1.0

0.20

5.0

0.39

0.075

1.4

1

1

5

05/08/20 18:14 14808-79-8

ANALYTICAL RESULTS

Project: AMEREN SIOUX ENERGY CTR SCL4A

<0.28

mg/L

Pace Project No.: 60335360

Sulfate

Sample: S-SCL4A-FB-1	Lab ID:	60335360007	Collecte	d: 04/27/20) 12:45	6 Received: 04/	29/20 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EF	PA 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	<11.7	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 15:45	7440-42-8	
Calcium	78.0J	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 15:45	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 15:45	7439-89-6	
Magnesium	<19.7	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 15:45	7439-95-4	
Manganese	<0.97	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 15:45	7439-96-5	
Potassium	<189	ug/L	500	189	1	05/04/20 10:20	05/05/20 15:45	7440-09-7	
Sodium	147J	ug/L	500	107	1	05/04/20 10:20	05/05/20 15:45	7440-23-5	В
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	<8.4	mg/L	20.0	8.4	1		05/07/20 12:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	6.5	mg/L	5.0	5.0	1		04/30/20 15:16		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	<0.39	mg/L	1.0	0.39	1		05/08/20 18:14	16887-00-6	
Fluoride	<0.075	mg/L	0.20	0.075	1		05/08/20 18:14	16984-48-8	

1.0

0.28

1

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 603

•	60335360	
•	00000000	

Sample: S-UG-3	Lab ID:	60335364016	Collected	d: 04/27/20) 13:25	5 Received: 04/	29/20 03:12 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EF	PA 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	313	ug/L	100	11.7	1	05/04/20 10:20	05/05/20 12:00	7440-42-8	
Calcium	129000	ug/L	200	32.4	1	05/04/20 10:20	05/05/20 12:00	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	05/04/20 10:20	05/05/20 12:00	7439-89-6	
Magnesium	24800	ug/L	50.0	19.7	1	05/04/20 10:20	05/05/20 12:00	7439-95-4	
Manganese	706	ug/L	5.0	0.97	1	05/04/20 10:20	05/05/20 12:00	7439-96-5	
Potassium	5550	ug/L	500	189	1	05/04/20 10:20	05/05/20 12:00	7440-09-7	
Sodium	31800	ug/L	500	107	1	05/04/20 10:20	05/05/20 12:00	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	346	mg/L	20.0	8.4	1		05/06/20 19:19		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
	Pace Anal	ytical Services	- Kansas Ci	ity					
Total Dissolved Solids	579	mg/L	10.0	10.0	1		04/30/20 14:27		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
-	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	51.6	mg/L	5.0	1.9	5		05/19/20 13:06	16887-00-6	
Fluoride	0.39	mg/L	0.20	0.075	1		05/19/20 12:17	16984-48-8	
Sulfate	68.2	mg/L	5.0	1.4	5		05/19/20 13:06	14808-79-8	
		-							

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No .:

.: 60335360

Sample: S-BMW-1S	Lab ID:	60335364013	Collected	d: 04/22/20) 14:55	Received: 04/	24/20 02:40 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical I	Method: EPA 2	00.7 Prepa	ration Meth	nod: EP	A 200.7			
	Pace Analy	tical Services	- Kansas Ci	ity					
Boron	114	ug/L	100	11.7	1	04/29/20 13:20	04/30/20 17:01	7440-42-8	
Calcium	150000	ug/L	200	32.4	1	04/29/20 13:20	04/30/20 17:01	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	04/29/20 13:20	04/30/20 17:01	7439-89-6	
Magnesium	31500	ug/L	50.0	19.7	1	04/29/20 13:20	04/30/20 17:01	7439-95-4	
Manganese	434	ug/L	5.0	0.97	1	04/29/20 13:20	04/30/20 17:01	7439-96-5	
Potassium	378J	ug/L	500	189	1	04/29/20 13:20	04/30/20 17:01	7440-09-7	
Sodium	4980	ug/L	500	107	1	04/29/20 13:20	04/30/20 17:01	7440-23-5	
2320B Alkalinity	Analytical I	Method: SM 23	20B						
	Pace Analy	tical Services	- Kansas Ci	ity					
Alkalinity, Total as CaCO3	438	mg/L	20.0	8.4	1		05/01/20 15:49		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
	Pace Analy	tical Services	- Kansas Ci	ity					
Total Dissolved Solids	565	mg/L	10.0	10.0	1		04/28/20 14:16		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0						
	Pace Analy	tical Services	- Kansas Ci	ity					
Chloride	8.0	mg/L	1.0	0.39	1		05/19/20 02:22	16887-00-6	
Fluoride	0.37	mg/L	0.20	0.075	1		05/19/20 02:22	16984-48-8	
Sulfate	27.0	mg/L	2.0	0.56	2		05/19/20 15:30	14808-79-8	

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.:

60335360

Lab ID:	60335364014	Collected	d: 04/22/20	13:40	Received: 04/	24/20 02:40 Ma	atrix: Water	
Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EF	PA 200.7			
Pace Analy	tical Services	Kansas C	ity					
95.9J	ug/L	100	11.7	1	04/29/20 13:20	04/30/20 17:03	7440-42-8	
134000	ug/L	200	32.4	1	04/29/20 13:20	04/30/20 17:03	7440-70-2	
<26.8	ug/L	50.0	26.8	1	04/29/20 13:20	04/30/20 17:03	7439-89-6	
26000	ug/L	50.0	19.7	1	04/29/20 13:20	04/30/20 17:03	7439-95-4	
318	ug/L	5.0	0.97	1	04/29/20 13:20	04/30/20 17:03	7439-96-5	
490J	ug/L	500	189	1	04/29/20 13:20	04/30/20 17:03	7440-09-7	
5470	ug/L	500	107	1	04/29/20 13:20	04/30/20 17:03	7440-23-5	
Analytical	Method: SM 23	20B						
Pace Analy	tical Services	Kansas C	ity					
395	mg/L	20.0	8.4	1		05/01/20 15:54		
Analytical	Method: SM 25	40C						
Pace Analy	tical Services	Kansas C	ity					
472	mg/L	10.0	10.0	1		04/29/20 09:58		
Analytical	Method: EPA 3	0.0						
Pace Analy	tical Services	Kansas C	ity					
13.2	mg/L	1.0	0.39	1		05/19/20 03:20	16887-00-6	
0.43	mg/L	0.20	0.075	1		05/19/20 03:20	16984-48-8	
29.6	mg/L	2.0	0.56	2		05/19/20 15:45	14808-79-8	
	Lab ID: Results Analytical I Pace Analy 95.9J 134000 <26.8 26000 318 490J 5470 Analytical I Pace Analy 395 Analytical I Pace Analy 472 Analytical I Pace Analy 13.2 0.43 29.6	Lab ID:60335364014ResultsUnitsAnalytical Method: EPA 20Pace Analytical Services95.9.Jug/L134000ug/L26000ug/L26000ug/L318ug/L490.Jug/L5470ug/LAnalytical Method: SM 23Pace Analytical Services395mg/LAnalytical Method: SM 25Pace Analytical Services472mg/LAnalytical Method: SM 25Pace Analytical Services13.2mg/L0.43mg/L29.6mg/L	Lab ID:60335364014CollectedResultsUnitsPQLAnalytical Method:EPA 200.7PrepaPace Analytical Services - Kansas C95.9.Jug/L100134000ug/L200 <26.8 ug/L50.026000ug/L50.0 318 ug/L50.026000ug/L500 5470 ug/L500490.Jug/L500 5470 ug/L500Analytical Method:SM 2320BPace Analytical Services - Kansas C 395 mg/L20.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L10.0Analytical Method:SM 2540CPace Analytical Services - Kansas C 472 mg/L1.00.43mg/L0.2029.6mg/L2.0 2.0	Lab ID: 60335364014 Collected: $04/22/20$ Results Units PQL MDL Analytical Method: EPA 200.7 Preparation Meth Pace Analytical Services - Kansas City 95.9.J ug/L 100 11.7 134000 ug/L 200 32.4 <26.8	Lab ID: 60335364014 Collected: 04/22/20 13:40 Results Units PQL MDL DF Analytical Method: EPA 200.7 Preparation Method: EF Pace Analytical Services - Kansas City 95.9.J ug/L 100 11.7 1 134000 ug/L 200 32.4 1 26.8 1 26000 ug/L 50.0 26.8 1 26000 19.7 1 318 ug/L 5.0 0.97 1 490.J ug/L 500 107 1 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 395 mg/L 20.0 8.4 1 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 472 mg/L 10.0 10.0 1 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 1 1 1 1 Analytical Method: EPA 300.0 <td< td=""><td>Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/ Results Units PQL MDL DF Prepared Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 95.9.J ug/L 100 11.7 1 04/29/20 13:20 134000 ug/L 200 32.4 1 04/29/20 13:20 26000 ug/L 50.0 26.8 1 04/29/20 13:20 26000 ug/L 50.0 19.7 1 04/29/20 13:20 26000 ug/L 50.0 19.7 1 04/29/20 13:20 318 ug/L 5.0 0.97 1 04/29/20 13:20 490.J ug/L 500 107 1 04/29/20 13:20 5470 ug/L 20.0 8.4 1 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 472 mg/L</td><td>Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/24/20 02:40 Mathematical Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Prepared Analyzed 95.9J ug/L 100 11.7 1 04/29/20 04/30/20 17:03 134000 ug/L 200 32.4 1 04/29/20 13:20 04/30/20 17:03 266.8 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 5.0 0.97 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 500 107 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 500 107 1 04/29/20 13:20 04/30/20 17:03 Analytical Method: SM 2320B services - Kansas City</td><td>Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/24/20 02:40 Matrix: Water Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 95.9J ug/L 100 11.7 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 200 32.4 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 7449-42-8 134000 ug/L 50.0 19.7 1 04/29/20 13:20 04/30/20 17:03 7439-95-5 318 ug/L 50.0 10.7 1</td></td<>	Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/ Results Units PQL MDL DF Prepared Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 95.9.J ug/L 100 11.7 1 04/29/20 13:20 134000 ug/L 200 32.4 1 04/29/20 13:20 26000 ug/L 50.0 26.8 1 04/29/20 13:20 26000 ug/L 50.0 19.7 1 04/29/20 13:20 26000 ug/L 50.0 19.7 1 04/29/20 13:20 318 ug/L 5.0 0.97 1 04/29/20 13:20 490.J ug/L 500 107 1 04/29/20 13:20 5470 ug/L 20.0 8.4 1 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 472 mg/L	Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/24/20 02:40 Mathematical Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Prepared Analyzed 95.9J ug/L 100 11.7 1 04/29/20 04/30/20 17:03 134000 ug/L 200 32.4 1 04/29/20 13:20 04/30/20 17:03 266.8 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 5.0 0.97 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 500 107 1 04/29/20 13:20 04/30/20 17:03 318 ug/L 500 107 1 04/29/20 13:20 04/30/20 17:03 Analytical Method: SM 2320B services - Kansas City	Lab ID: 60335364014 Collected: 04/22/20 13:40 Received: 04/24/20 02:40 Matrix: Water Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 95.9J ug/L 100 11.7 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 200 32.4 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 7440-42-8 134000 ug/L 50.0 26.8 1 04/29/20 13:20 04/30/20 17:03 7449-42-8 134000 ug/L 50.0 19.7 1 04/29/20 13:20 04/30/20 17:03 7439-95-5 318 ug/L 50.0 10.7 1

Project:	AMEREN SIO	UX ENERGY CTR SCL4	A									
Pace Project No.:	60335360											
QC Batch:	651902		Analysis Meth	Analysis Method: EPA 200.7								
QC Batch Method:	EPA 200.7		Analysis Des	cription:	200.7	7 Metals, Total						
			Laboratory:		Pace	Analytical Ser	vices - Kansas City	/				
Associated Lab Sa	mples: 60335	364013, 60335364014										
METHOD BLANK:	2644795		Matrix:	Water								
Associated Lab Sa	mples: 60335	364013, 60335364014										
			Blank	Reporting	3							
Para	meter	Units	Result	Limit		MDL	Analyzed	Qualifiers				
Boron		ug/L	<11.7		100	11.7	04/30/20 16:27					
Calcium		ug/L	<32.4	:	200	32.4	04/30/20 16:27					
Iron		ug/L	<26.8	5	0.0	26.8	04/30/20 16:27					
Magnesium		ug/L	<19.7	5	0.0	19.7	04/30/20 16:27					
Manganese		ug/L	<0.97		5.0	0.97	04/30/20 16:27					
Potassium		ug/L	<189	:	500	189	04/30/20 16:27					
Sodium		ug/L	<107	1	500	107	04/30/20 16:27					

LABORATORY CONTROL SAMPLE: 2644796

Parameter	l Inite	Spike Conc	LCS Result	LCS % Rec	% Rec	Qualifiers
	Onits					Quanners
Boron	ug/L	1000	1000	100	85-115	
Calcium	ug/L	10000	10100	101	85-115	
Iron	ug/L	10000	9960	100	85-115	
Magnesium	ug/L	10000	10500	105	85-115	
Manganese	ug/L	1000	1020	102	85-115	
Potassium	ug/L	10000	10100	101	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 2644	797		2644798	}						
			MS	MSD								
		60335364006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	1030	1000	1000	2080	2060	106	103	70-130	1	20	
Calcium	ug/L	83300	10000	10000	94300	93000	109	96	70-130	1	20	
Iron	ug/L	<26.8	10000	10000	10200	10100	102	101	70-130	1	20	
Magnesium	ug/L	20800	10000	10000	31800	31500	110	107	70-130	1	20	
Manganese	ug/L	64.9	1000	1000	1100	1090	104	102	70-130	1	20	
Potassium	ug/L	6980	10000	10000	17400	17200	104	102	70-130	1	20	
Sodium	ug/L	24300	10000	10000	34900	34500	106	102	70-130	1	20	
MATRIX SPIKE SAMPLE:		2644799										
			60335	5364014	Spike	MS		MS	% Rec	;		
Parameter		Units	Re	esult	Conc.	Result	%	Rec	Limits		Qualif	iers
Boron		ug/L		95.9J	1000	1	100	101	70	-130		
Calcium		ug/L		134000	10000	145	000	109	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

MATRIX SPIKE SAMPLE:	2644799	60335364014	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Iron	ug/L	<26.8	10000	9910	99	70-130	
Magnesium	ug/L	26000	10000	36400	105	70-130	
Manganese	ug/L	318	1000	1330	102	70-130	
Potassium	ug/L	490J	10000	10600	101	70-130	
Sodium	ug/L	5470	10000	15700	103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	AMEREN SIOUX I 60335360	ENERGY CTR SO	CL4A									
QC Batch:	652405		Analy	sis Metho	d: F	FPA 200.7						
OC Batch Method	EPA 200 7		Analy	/sis Descri	ntion: 2	200 7 Metal	s Total					
QO Dateri Metriou.	EI A 200.7		Labo	ratory:	puon. 2	Daca Analyt	ical Sarvia	oc Konco	e City			
Associated Lab Sam	nples: 60335360	003, 6033536000	4, 6033536	60005, 603	35360006, (6033536000)7	es - Nalisa	SCity			
METHOD BLANK:	2646770			Matrix: W	/ater							
Associated Lab Sam	nples: 60335360	003, 6033536000	4, 6033536	0005, 603	35360006,	6033536000	07					
			Blar	nk	Reporting							
Param	neter	Units	Res	ult	Limit	MDI	-	Analyzed	Qı	ualifiers		
Boron		ug/L		<11.7	10	0	11.7 0	5/05/20 15:	22			
Calcium		ug/L		<32.4	20	0	32.4 0	5/05/20 15:	22			
Iron		ug/L		<26.8	50.0	0	26.8 0	5/05/20 15:	22			
Magnesium		ug/L		<19.7	50.0	0	19.7 0	5/05/20 15:	22			
Manganese		ug/L		<0.97	5.0	0	0.97 0	5/05/20 15:	22			
Potassium		ug/L		<189	50	0	189 0	5/05/20 15:	22			
Sodium		ug/L		307J	50	0	107 0	5/05/20 15:	22			
LABORATORY CON	NTROL SAMPLE:	2646771 Units	Spike Conc.	LC Res	CS sult	LCS % Rec	% R Lim	ec	Qualifiers			
Boron		ua/I			992	Q		85-115		_		
Calcium		ug/L	100	0	10200	102	>	85-115				
Iron		ug/L	1000	0	10200	102	2	85-115				
Magnesium		ug/L	1000	0	10200	102	2	85-115				
Manganese		ug/L	100	00	1010	101	1 .	85-115				
Potassium		ug/L	1000	00	10100	101	1	85-115				
Sodium		ug/L	1000	00	10400	104	1	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 2646	772	MCD	2646773							
		60225260002	IVIJ Spiko	IVIJD Spiko	MS	MSD	MS	MSD	% Poo		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L		1000	1000	1080	1070	101	100	70-130	1	20	
Calcium	ug/L	111000	10000	10000	121000	123000	98	114	70-130	1	20	
Iron	ug/L	<26.8	10000	10000	9930	9940	99	99	70-130	0	20	
Magnesium	ug/L	20500	10000	10000	30500	30400	100	99	70-130	0	20	
Manganese	ug/L	18.3	1000	1000	1020	1010	100	99	70-130	2	20	
Potassium	ug/L	5760	10000	10000	15800	15900	100	102	70-130	1	20	
Sodium	ug/L	3130	10000	10000	13300	13200	101	101	70-130	1	20	

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 2646	774		2646775							
			MS	MSD								
		60335359004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	149	1000	1000	1150	1140	100	99	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

MATRIX SPIKE & MATRIX SI	PIKE DUP	LICATE: 2646	774		2646775							
_		60335359004	MS Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	ug/L	104000	10000	10000	113000	113000	83	88	70-130	0	20	
Iron	ug/L	<26.8	10000	10000	9700	9820	97	98	70-130	1	20	
Magnesium	ug/L	23700	10000	10000	33600	33400	98	96	70-130	1	20	
Manganese	ug/L	27.1	1000	1000	1020	1000	99	98	70-130	1	20	
Potassium	ug/L	4030	10000	10000	13900	14000	98	100	70-130	1	20	
Sodium	ug/L	10400	10000	10000	20300	20300	100	100	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SIOUX ENER	RGY CTR SCL4/	4						
Pace Project No.:	60335360								
QC Batch:	652406		Analysis Met	hod:	EPA 200.	7			<u> </u>
QC Batch Method:	EPA 200.7		Analysis Des	cription:	200.7 Me	tals, Total			
			Laboratory:		Pace Ana	lytical Ser	vices - Kansas City	,	
Associated Lab San	nples: 60335364016								
METHOD BLANK:	2646777		Matrix:	Water					
Associated Lab San	nples: 60335364016								
			Blank	Reporting	I				
Paran	neter	Units	Result	Limit	N	IDL	Analyzed	Qualifiers	
Boron		ug/L	<11.7	1	00	11.7	05/05/20 10:55		
Calcium		ug/L	<32.4	2	200	32.4	05/05/20 10:55		
Iron		ug/L	<26.8	5	0.0	26.8	05/05/20 10:55		
Magnesium		ug/L	<19.7	5	0.0	19.7	05/05/20 10:55		
Manganese		ug/L	<0.97		5.0	0.97	05/05/20 10:55		
Potassium		ug/L	<189	5	500	189	05/05/20 10:55		
Sodium		ug/L	<107	5	500	107	05/05/20 10:55		

LABORATORY CONTROL SAMPLE: 2646778

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	956	96	85-115	
Calcium	ug/L	10000	10200	102	85-115	
Iron	ug/L	10000	10100	101	85-115	
Magnesium	ug/L	10000	9940	99	85-115	
Manganese	ug/L	1000	975	97	85-115	
Potassium	ug/L	10000	9900	99	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX SPIK		LICATE: 2646	779		2646780							
Parameter	Units	60335363005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	30400	1000	1000	32300	32200	187	179	70-130	0	20	M1
Calcium	ug/L	254000	10000	10000	268000	267000	143	132	70-130	0	20	M1
Iron	ug/L	1170	10000	10000	11200	11100	100	100	70-130	0	20	
Magnesium	ug/L	10000	10000	10000	19600	19500	96	95	70-130	1	20	
Manganese	ug/L	707	1000	1000	1710	1710	101	100	70-130	0	20	
Potassium	ug/L	18000	10000	10000	28200	28000	101	100	70-130	0	20	
Sodium	ug/L	88600	10000	10000	99100	98800	105	101	70-130	0	20	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 26	46781		2646782							
			MS	MSD								
		6033536100	3 Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	1′	1 1000	1000	1090	1100	98	99	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 2646	781 MS	MSD	2646782							
Parameter	Units	60335361003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
								/01100				
Calcium	ug/L	142000	10000	10000	151000	150000	88	71	70-130	1	20	
Iron	ug/L	865	10000	10000	10800	10800	100	100	70-130	0	20	
Magnesium	ug/L	38600	10000	10000	47600	47200	90	87	70-130	1	20	
Manganese	ug/L	403	1000	1000	1370	1380	96	97	70-130	1	20	
Potassium	ug/L	7390	10000	10000	17300	17100	99	97	70-130	1	20	
Sodium	ug/L	11900	10000	10000	21700	21500	98	96	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMER	EN SIOUX	ENERGY CTR SCL	4A							
Pace Project No .:	603353	360									
QC Batch:	65242	29		Analysis M	lethod:	SM	2320B				
QC Batch Method:	SM 2	320B		Analysis D	escription:	232	20B Alkalini	ity			
				Laboratory	/:	Pa	ce Analytica	al Serv	rices - Kar	nsas Ci	ity
Associated Lab Sam	nples:	60335364	013, 60335364014								
METHOD BLANK:	264687	71		Matri	ix: Water						
Associated Lab Sam	nples:	60335364	013, 60335364014								
				Blank	Reporti	ng					
Param	neter		Units	Result	Limit		MDL		Analyz	zed	Qualifiers
Alkalinity, Total as Ca	aCO3		mg/L	<8.	4	20.0		8.4	05/01/20	14:04	
LABORATORY CON	TROL	SAMPLE:	2646872								
				Spike	LCS	I	LCS	%	Rec		
Param	neter		Units	Conc.	Result	%	6 Rec	Li	mits	Qua	alifiers
Alkalinity, Total as Ca	aCO3		mg/L	500	513		103		90-110		
		40070									
SAMPLE DUPLICAT	IE: 26	46873		60225701001					Max		
Param	neter		Units	Result	Resul	t	RPD		RPD		Qualifiers
	-002										
Aikainity, totai as Ca	auus		mg/∟	21	I	200		3		10	
SAMPLE DUPLICAT	ΓE: 26	46874									
				60335363001	l Dup				Max		
Param	neter		Units	Result	Resu	t	RPD		RPD		Qualifiers
Alkalinity, Total as Ca	aCO3		mg/L	35	0	345		1		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SIOUX	ENERGY CTR S	CL4A					
Pace Project No.:	60335360							
QC Batch:	653257		Analysis Me	ethod:	SM 2320B			
QC Batch Method:	SM 2320B		Analysis De	scription:	2320B Alkalin	ity		
			Laboratory:		Pace Analytic	al Services -	Kansas C	Sity
Associated Lab Sa	mples: 6033536	0003, 6033536000	04, 60335360005,	60335364016				
METHOD BLANK:	2649868		Matrix	: Water				
Associated Lab Sa	mples: 6033536	0003, 6033536000	4, 60335360005,	60335364016				
			Blank	Reporting				
Para	meter	Units	Result	Limit	MDL	Ar	alyzed	Qualifiers
Alkalinity, Total as	CaCO3	mg/L	<8.4	20.	.0	8.4 05/06	6/20 17:28	
LABORATORY CC	NTROL SAMPLE:	2649869						
			Spike	LCS	LCS	% Rec		
Para	meter	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Alkalinity, Total as	CaCO3	mg/L	500	497	99	90-	110	
SAMPLE DUPLICA	ATE: 2649870							
_			60335571008	Dup		Ν	lax	
Para	meter	Units	Result	Result	RPD	R	PD	Qualifiers
Alkalinity, Total as	CaCO3	mg/L	567	54	10	5	10	
SAMPLE DUPLICA	ATE: 2649871							
			60335360003	Dup		N	lax	
Para	meter	Units	Result	Result	RPD	R	PD	Qualifiers
Alkalinity, Total as	CaCO3	mg/L	352	35	51	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEF	REN SIOUX	ENERGY CTR SCL	.4A								
Pace Project No.:	60335	360										
QC Batch:	6532	258		Analysis M	ethod:	SM 232	0B					
QC Batch Method:	SM	2320B		Analysis D	escription:	2320B A	Alkalinit	у				
				Laboratory	:	Pace Ar	nalytical	Services	s - Kar	nsas Ci	ity	
Associated Lab Sat	mples:	60335360	0006, 60335360007									
METHOD BLANK:	26498	372		Matri	x: Water							
Associated Lab Sa	mples:	60335360	0006, 60335360007									
				Blank	Reporting	9						
Para	meter		Units	Result	Limit		MDL		Analyz	ed	Qualifiers	
Alkalinity, Total as 0	CaCO3		mg/L	<8.4	4 2	20.0	i	8.4 05/	07/20	11:53		
LABORATORY CO	NTROL	SAMPLE:	2649873									
				Spike	LCS	LCS		% Red	C			
Para	meter		Units	Conc.	Result	% Red	;	Limits	6	Qua	alifiers	
Alkalinity, Total as C	CaCO3		mg/L	500	500		100	90	0-110			
SAMPLE DUPLICA	TE: 2	649874										
				60335361003	Dup				Max			
Para	meter		Units	Result	Result		RPD		RPD		Qualifiers	
Alkalinity, Total as C	CaCO3		mg/L	459	9	439		5		10		
SAMPLE DUPLICA	TE: 2	649875										
				60335359004	Dup				Max			
Para	meter		Units	Result	Result		RPD		RPD		Qualifiers	
Alkalinity, Total as 0	CaCO3		mg/L	315	5	333		6		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AN	IEREN SIOUX	ENERGY CTR S	CL4A					
Pace Project No.: 60	335360							
QC Batch: 6	51545		Analysis Met	thod:	SM 2540C			
QC Batch Method: S	SM 2540C		Analysis Des	scription:	2540C Total D	issolved Solids	5	
			Laboratory:		Pace Analytica	al Services - Ka	ansas C	ity
Associated Lab Sample	es: 60335364	1013						
METHOD BLANK: 26	43651		Matrix:	Water				
Associated Lab Sample	es: 60335364	013						
			Blank	Reporting				
Paramete	er	Units	Result	Limit	MDL	Anal	yzed	Qualifiers
Total Dissolved Solids		mg/L	<5.0	5	5.0	5.0 04/28/2	0 14:10	
LABORATORY CONTR	OL SAMPLE:	2643652						
			Spike	LCS	LCS	% Rec		
Paramete	er	Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Total Dissolved Solids		mg/L	1000	995	100	80-120)	
SAMPLE DUPLICATE:	2643653							
			60335395021	Dup		Max		
Paramete	er	Units	Result	Result	RPD)	Qualifiers
Total Dissolved Solids		mg/L	178	1	78	0	10	
SAMPLE DUPLICATE:	2643654							
			60335247005	Dup		Max		
Paramete	er	Units	Result	Result	RPD	RPD)	Qualifiers
Total Dissolved Solids		mg/L	213	2	16	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SIOUX	ENERGY CTR S	SCL4A					
Pace Project No.:	60335360							
QC Batch:	651780		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	scription:	2540C Total D	issolved Solids	;	
			Laboratory:		Pace Analytica	al Services - Ka	insas C	ity
Associated Lab San	nples: 6033536	4014						
METHOD BLANK:	2644351		Matrix	: Water				
Associated Lab San	nples: 6033536	4014						
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analy	zed	Qualifiers
Total Dissolved Solid	ds	mg/L		5	5.0	5.0 04/29/20	09:57	
LABORATORY CON	ITROL SAMPLE:	2644352						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Total Dissolved Solid	ds	mg/L	1000	993	99	80-120		
SAMPLE DUPLICA	TE: 2644353							
			60335364014	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solid	ds	mg/L	472	4	71	0	10	
SAMPLE DUPLICA	TE: 2644354							
			60335364006	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solid	ds	mg/L	412	42	20	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMER	EN SIOUX	ENERGY CTR S	CL4A							
Pace Project No.:	60335	360									
QC Batch:	6520)54		Analysis Me	ethod:	SM 2540C					
QC Batch Method:	SM 2	2540C		Analysis De	escription:	2540C Total E	Dissolve	ed Solids			
				Laboratory:	:	Pace Analytic	al Serv	ices - Kai	nsas C	ity	
Associated Lab Sa	mples:	60335360	0003, 6033536000	04, 60335364016							
METHOD BLANK:	26453	21		Matrix	: Water						
Associated Lab Sar	mples:	60335360	0003, 6033536000	04, 60335364016							
				Blank	Reporting						
Para	meter		Units	Result	Limit	MDL		Analyz	zed	Qualifiers	
Total Dissolved Sol	ids		mg/L	<5.0) (5.0	5.0	04/30/20	14:23	_	
LABORATORY CO	NTROL	SAMPLE:	2645322								
				Spike	LCS	LCS	%	Rec			
Para	meter		Units	Conc.	Result	% Rec	Lir	nits	Qua	alifiers	
Total Dissolved Sol	ids		mg/L	1000	991	99		80-120			
	TE: 2	645323									
	VIL. 20	040020		60335416002	Dup			Max			
Para	meter		Units	Result	Result	RPD		RPD		Qualifiers	
Total Dissolved Sol	ids		mg/L	196	5 1	91	3		10		
SAMPLE DUPLICA	TE: 2	645324		00005000000	_						
Doro	motor		Linita	60335360003	Dup	000		Max		Qualifiara	
Para	meter		Units		result	KPD		RPD		Qualifiers	
Total Dissolved Sol	ids		mg/L	399) 3	95	1		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SIOUX	ENERGY CTR SC	CL4A							
Pace Project No.:	60335360									
QC Batch:	652118		Analysis Me	ethod:	SM 2540C					
QC Batch Method:	SM 2540C		Analysis De	scription:	2540C Total E	Dissol	ved Solids			
			Laboratory:		Pace Analytic	al Se	rvices - Kar	isas C	ity	
Associated Lab San	nples: 60335360	005, 6033536000	6, 60335360007							
METHOD BLANK:	2645590		Matrix	: Water						
Associated Lab San	nples: 60335360	005, 6033536000	6, 60335360007							
			Blank	Reporting						
Param	neter	Units	Result	Limit	MDL		Analyz	ed	Qualifiers	
Total Dissolved Solid	ds	mg/L	<5.0	5.	.0	5.0	04/30/20	15:16		
LABORATORY COM	NTROL SAMPLE:	2645591								
_			Spike	LCS	LCS	9	% Rec	_		
Paran	neter	Units	Conc	Result	% Rec	l	_imits	Qua	alifiers	
Total Dissolved Solid	ds	mg/L	1000	993	99		80-120			
SAMPLE DUPLICA	TE: 2645592									
_			60335361003	Dup			Max			
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Total Dissolved Solid	ds	mg/L	576	58	8	2		10		
SAMPLE DUPLICA	TE: 2645593									
_			60335359004	Dup			Max			
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Total Dissolved Solid	ds	mg/L	430	42	28	0		10		
SAMPLE DUPLICA	TE: 2645594									
_			60335571008	Dup			Max		0 11/1	
Paran	neter	Units	Result	Result			RPD		Qualifiers	
Total Dissolved Solid	ds	mg/L	1370	139	0	2		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Tojeci.	AMEREN SIOU	X ENERGY CIR SC	CL4A						
Pace Project No.:	60335360								
QC Batch:	653569		Analysis Me	ethod:	EPA 300.0)			
QC Batch Method:	EPA 300.0		Analysis De	escription:	300.0 IC A	nions			
			Laboratory:		Pace Ana	ytical Se	rvices - Kan	isas City	
ssociated Lab Sa	mples: 6033536	60003, 6033536000	4, 60335360005,	6033536000	6, 60335360	007			
IETHOD BLANK:	2651339		Matrix	: Water					
ssociated Lab Sa	mples: 6033536	60003, 6033536000	4, 60335360005,	6033536000	6, 60335360	007			
			Blank	Reporting	g				
Para	meter	Units	Result	Limit	M	DL	Analyz	ed	Qualifiers
Chloride		mg/L	<0.39		1.0	0.39	05/08/20	09:30	
luoride		mg/L	<0.075	c C).20	0.075	05/08/20	09:30	
Sulfate		mg/L	<0.28		1.0	0.28	05/08/20	09:30	
	2652710		Matrix	: Water					
ssociated Lab Sa	mples: 6033536	60003.6033536000	4. 60335360005	6033536000	6. 60335360	007			
			Blank	Reporting	a, 000000000 a				
Para	meter	Units	Result	Limit	M	DL	Analyz	ed	Qualifiers
		ma/l			1.0	0.39	05/11/20 0	09:21	
Fluoride		mg/L	<0.05		1.0	0.00	05/11/20 (09.21	
ulfate		mg/L	<0.28		10	0.070	05/11/20	09.21	
unato			10.20			0.20	00/11/20	00.21	
IETHOD BLANK.	2653309		Matrix	: Water					
ssociated Lab Sa	2653309 mples: 6033536	60003, 6033536000	Matrix 4, 60335360005,	:: Water 6033536000	6, 60335360	007			
Associated Lab Sa	2653309 mples: 6033536	60003, 6033536000	Matrix 4, 60335360005, Blank	: Water 6033536000 Reporting	6, 60335360 g	007			
Associated Lab San Paran	2653309 mples: 6033536 meter	60003, 6033536000 Units	Matrix 4, 60335360005, Blank Result	: Water 6033536000 Reporting Limit	6, 60335360 g M	0007 DL	Analyz	ed	Qualifiers
Ssociated Lab Sal	2653309 mples: 6033536 meter	60003, 6033536000 Units mg/L	Matrix 4, 60335360005, Blank <u>Result</u> <0.39	:: Water 6033536000 Reporting Limit	6, 60335360 g <u>M</u> 1.0	0007 DL 0.39	Analyz	ed	Qualifiers
All FROD BLANK. Issociated Lab Sar Para Para Noride	2653309 mples: 6033536 meter	60003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075	:: Water 6033536000 Reporting Limit	6, 60335360 9 1.0 0.20	0007 DL 0.39 0.075	Analyz 05/12/20 05/12/20	ed 09:16 09:16	Qualifiers
Associated Lab Sar Para Noride Juoride Sulfate	2653309 mples: 6033536 meter	60003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28	c: Water 60335360000 Reporting Limit	6, 60335360 9 <u>M</u> 1.0 0.20 1.0	0007 DL 0.39 0.075 0.28	Analyz 05/12/20 05/12/20 05/12/20	ed 09:16 09:16 09:16	Qualifiers
Associated Lab Sar Para Chloride Fluoride Sulfate	2653309 mples: 6033536 meter	60003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28	:: Water 60335360000 Reporting Limit	6, 60335360 9 <u>M</u> 1.0 0.20 1.0	0007 DL 0.39 0.075 0.28	Analyz 05/12/20 05/12/20 05/12/20	ed 09:16 09:16 09:16	Qualifiers
ABORATORY CO	2653309 mples: 6033536 meter NTROL SAMPLE:	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike	CCS	6, 60335360 9 M 1.0 0.20 1.0 LCS	0007 DL 0.39 0.075 0.28	Analyz 05/12/20 05/12/20 05/12/20 % Rec	ed 09:16 09:16 09:16	Qualifiers
Associated Lab Sar Para Chloride Juloride Julfate ABORATORY CO Para	2653309 mples: 6033536 meter NTROL SAMPLE: meter	60003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc.	C Water 6033536000 Reporting Limit C LCS Result	6, 60335360 9 <u>M</u> 1.0 0.20 1.0 LCS % Rec	0007 DL 0.39 0.075 0.28	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits	ed 09:16 09:16 09:16 09:16	Qualifiers
ABORATORY CO	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5	:: Water 6033536000 Reporting Limit C LCS Result 4.6	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec	0007 DL 0.39 0.075 0.28	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110	ed 09:16 09:16 09:16 09:16	Qualifiers
ABORATORY CO Parau Chloride Sulfate ABORATORY CO Parau Chloride Juoride	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5	:: Water 60335360000 Reporting Limit C LCS Result 4.6 2.5	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec	0007 DL 0.39 0.075 0.28 0.28	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110	ed 09:16 09:16 09:16 09:16 Qualit	Qualifiers
ABORATORY CO Parau hloride luoride ulfate ABORATORY CO Parau hloride luoride ulfate	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5	:: Water 60335360000 Reporting Limit C LCS Result 4.6 2.5 4.9	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1	0007 DL 0.39 0.075 0.28 	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 90-110	ed 09:16 09:16 09:16 09:16 Qualit	Qualifiers
Associated Lab Sar Para Para Chloride Chloride Chloride Chloride ABORATORY CO Para Para Chloride Chloride Chloride Chloride	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5 5	:: Water 6033536000 Reporting Limit C LCS Result 4.6 2.5 4.9	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1	0007 DL 0.39 0.075 0.28 0.28	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 90-110	ed 09:16 09:16 09:16 09:16	Qualifiers
ABORATORY CO	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5	:: Water 6033536000 Reporting Limit C LCS Result 4.6 2.5 4.9	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1	0007 DL 0.39 0.075 0.28 93 01 97	Analyz 05/12/20 0 05/12/20 0 05/12/20 0 % Rec Limits 90-110 90-110	ed 09:16 09:16 09:16 Qualit	Qualifiers
Associated Lab Sar Para Para Chloride Fluoride Sulfate ABORATORY CO Para Chloride Fluoride Sulfate ABORATORY CO	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5 5 Spike Spike	LCS Result LCS Result	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1 LCS	0007 DL 0.39 0.075 0.28 93 01 97	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 90-110	ed 09:16 09:16 09:16 Qualit	Qualifiers
ABORATORY CO Para ABORATORY CO Para ABORATORY CO Para ABORATORY CO Para	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5 5 Spike Conc.	LCS Result LCS Result	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1 LCS % Rec	0007 DL 0.39 0.075 0.28 93 01 97 97	Analyz 05/12/20 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 90-110 90-110 90-110	ed 09:16 09:16 09:16 Qualit	Qualifiers
Associated Lab Sar Para Para Chloride Fluoride Sulfate ABORATORY CO Para Chloride Sulfate ABORATORY CO Para ABORATORY CO Para	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5 5 Spike Conc. 5 5 5 5	:: Water 6033536000 Reporting Limit C LCS Result 4.6 2.5 4.9 LCS Result 4.6 2.5 4.9	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1 LCS % Rec	0007 DL 0.39 0.075 0.28 93 01 97 97 92 92	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 % Rec Limits 90-110	ed 09:16 09:16 09:16 Qualit	Qualifiers
Associated Lab Sar Para Chloride Fluoride Sulfate ABORATORY CO Para Chloride Fluoride Sulfate ABORATORY CO Para Chloride Fluoride	2653309 mples: 6033536 meter NTROL SAMPLE: meter	50003, 6033536000 	Matrix 4, 60335360005, Blank Result <0.39 <0.075 <0.28 Spike Conc. 5 2.5 5 5 Spike Conc. 5 2.5 5	:: Water 6033536000 Reporting Limit C LCS Result 4.6 2.5 4.9 LCS Result 4.6 2.5 4.9	6, 60335360 9 M 1.0 0.20 1.0 LCS % Rec 1 LCS % Rec	0007 DL 0.39 0.075 0.28 93 01 97 97 92 94 94	Analyz 05/12/20 05/12/20 05/12/20 % Rec Limits 90-110 90-110 90-110 % Rec Limits 90-110 90-110	ed 09:16 09:16 09:16 Qualit	Qualifiers

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

LABORATORY CONTROL SAMPLE:	2653310					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.5	91	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	5	5.0	100	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPI	LICATE: 2651	341		2651342							
			MS	MSD								
		60335360003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.5	5	5	6.0	6.1	89	92	80-120	2	15	
Fluoride	mg/L	0.40	2.5	2.5	2.9	2.9	99	100	80-120	2	15	
Sulfate	mg/L	33.8	25	25	58.2	58.1	98	97	80-120	0	15	

MATRIX SPIKE & MATRIX SPI	IKE DUPL	ICATE: 2651	343		2651344							
			MS	MSD								
		60335359004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5.2	5	5	10.1	10.2	98	99	80-120	1	15	
Fluoride	mg/L	0.28	2.5	2.5	2.7	2.8	98	99	80-120	1	15	
Sulfate	mg/L	58.3	25	25	83.0	82.3	99	96	80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	AMEREN SIOUX 60335360	ENERGY CTR SCL4	A							
QC Batch:	655383		Analysis M	Method:	E	EPA 300.0				
QC Batch Method:	EPA 300.0		Analysis [Descriptio	on: 3	300.0 IC Anions				
			Laborator	v:	F	Pace Analytical	Services - Kan	sas City		
Associated Lab San	nples: 60335364	1013, 60335364014		, 		,		,		
METHOD BLANK:	2658521		Mati	rix: Wate	er					
Associated Lab San	nples: 60335364	013, 60335364014								
			Blank	Re	porting					
Paran	neter	Units	Result	l	Limit	MDL	Analyz	ed	Qualifiers	
Chloride			<0.3	39	1.0	0.3	39 05/18/20	11:43		_
Fluoride		mg/L	< 0.07	75	0.2	0.0	75 05/18/20	11:43		
Sulfate		mg/L	<0.2	28	1.0	0.:	28 05/18/20	11:43		
METHOD BLANK:	2659286		Mati	rix: Wate	er					
Associated Lab San	nples: 60335364	1013, 60335364014		_						
_			Blank	Re	porting					
Paran	neter		Result	l	Limit	MDL	Analyz	ed	Qualifiers	_
Chloride		mg/L	<0.3	39	1.0	0.3	39 05/19/20	09:16		
Fluoride		mg/L	<0.07	75	0.2	0.0	75 05/19/20 (09:16		
Sulfate		mg/L	<0.2	28	1.0	0 0.:	28 05/19/20 (09:16		
LABORATORY COM	NTROL SAMPLE:	2658522								
			Spike	LCS		LCS	% Rec			
Paran	neter	Units	Conc.	Result		% Rec	Limits	Qualifier	S	
Chloride		mg/L	5		5.0	101	90-110			
Fluoride		mg/L	2.5		2.4	95	90-110			
Sulfate		mg/L	5		5.4	108	90-110			
LABORATORY COM	NTROL SAMPLE:	2659287								
			Spike	LCS		LCS	% Rec			
Paran	neter	Units	, Conc.	Result		% Rec	Limits	Qualifier	S	
Chloride			5		47	94	90-110			
Fluoride		mg/L	25		2.3	93	90-110			
Sulfate		ma/L	5		4.8	96	90-110			
		3	-		-					
MATRIX SPIKE SAM	MPLE:	2658523								
			603354160	011 \$	Spike	MS	MS	% R	Rec	
Paran	neter	Units	Result	(Conc.	Result	% Rec	Lim	its	Qualifiers
Chloride		mg/L		5.8	250	963	38	33	80-120 M1	
Fluoride		mg/L		0.50	125	139	11	1	80-120	
Sulfate		mg/L		8.8	250	359	14	10	80-120 M1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2658	524		2658525							
			MS	MSD								
		60335364006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	20.4	10	10	31.0	31.8	106	114	80-120	3	15	
Fluoride	mg/L	0.44	2.5	2.5	2.8	2.9	95	97	80-120	2	15	
Sulfate	mg/L	106	50	50	153	160	95	110	80-120	5	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIO	UX ENERGY CTR S	CL4A						
QC Batch: 655521		Analysis M	ethod:	EPA 30	0.0			
OC Batch Method: EPA 300.0		Analysis M	ecription:	300.010	C Anione			
QC Batch Method. EFA 300.0			escription.			miana Kan		
Associated Lab Samples: 60335	364016	Laboratory	•	Pace A	naiyiicai Se	ivices - Kan	sas City	
METHOD BLANK: 2658959		Matrix	x: Water					
Associated Lab Samples: 60335	364016							
		Blank	Reporting	g				
Parameter	Units	Result	Limit		MDL	Analyz	ed	Qualifiers
Chloride	ma/L)	1.0	0.39	05/19/20 (
Fluoride	mg/L	<0.075	5 ().20	0.075	05/19/20 (09:19	
Sulfate	mg/L	<0.28	3	1.0	0.28	05/19/20 (09:19	
METHOD BLANK: 2660762		Matrix	x: Water					
Associated Lab Samples: 60335	364016							
		Blank	Reportin	g				
Parameter	Units	Result	Limit	-	MDL	Analyz	ed	Qualifiers
Chloride	mg/L	<0.39	 9	1.0	0.39	05/20/20 (
Fluoride	mg/L	<0.075	5 ().20	0.075	05/20/20 (09:31	
Sulfate	mg/L	<0.28	3	1.0	0.28	05/20/20 (09:31	
METHOD BLANK: 2660856		Matrix	x: Water					
Associated Lab Samples: 60335	364016							
		Blank	Reportin	g				
Parameter	Units	Result	Limit		MDL	Analyz	ed	Qualifiers
Chloride	ma/L	<0.39	9	1.0	0.39	05/21/20 (09:26	
Fluoride	mg/L	<0.075	5 ().20	0.075	05/21/20 (09:26	
Sulfate	mg/L	<0.28	3	1.0	0.28	05/21/20 (09:26	
LABORATORY CONTROL SAMPL	E: 2658960							
		Spike	LCS	LCS	(% Rec		
Parameter	Units	Conc	Result	% Re	c	Limits	Qualifi	ers
Chloride	mg/L	5	4.7		94	90-110		
Fluoride	mg/L	2.5	2.5		101	90-110		
Sulfate	mg/L	5	4.9		98	90-110		
_ABORATORY CONTROL SAMPL	E: 2660763							
_		Spike	LCS	LCS	c.	% Rec	-	
Parameter	Units	Conc	Result	% Re	c	Limits	Qualifi	ers
Chloride	mg/L	5	4.7		95	90-110		
Fluoride	mg/L	2.5	2.6		103	90-110		
Sulfato	ma/l	5	5.0		99	90-110		

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

LABORATORY CONTROL SAMPLE:	2660857					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	4.9	97	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 2658	961		2658962							
			MS	MSD								
		60335364016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	51.6	25	25	78.3	78.2	107	106	80-120	0	15	
Fluoride	mg/L	0.39	2.5	2.5	2.9	3.0	99	104	80-120	4	15	
Sulfate	mg/L	68.2	25	25	93.9	93.7	103	102	80-120	0	15	

MATRIX SPIKE SAMPLE:	2658963						
		60335364024	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	7.7	5	13.4	114	80-120	
Fluoride	mg/L	0.30	2.5	3.0	110	80-120	
Sulfate	mg/L	86.1	50	142	111	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

B Analyte was detected in the associated method blank.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SIOUX ENERGY CTR SCL4A

Pace Project No.: 60335360

Analytical Lab ID **QC Batch Method** QC Batch Batch Sample ID **Analytical Method** 60335364013 S-BMW-1S EPA 200.7 651902 EPA 200.7 651984 60335364014 S-BMW-3S EPA 200.7 651902 EPA 200.7 651984 60335364016 S-UG-3 EPA 200.7 652406 EPA 200.7 652606 60335360003 S-TMW-1 652405 EPA 200.7 EPA 200.7 652604 S-TMW-2 60335360004 652405 EPA 200.7 EPA 200.7 652604 S-TMW-3 60335360005 EPA 200.7 652405 EPA 200.7 652604 60335360006 S-SCL4A-DUP-1 EPA 200.7 652405 EPA 200.7 652604 60335360007 S-SCL4A-FB-1 EPA 200.7 652405 EPA 200.7 652604 60335364013 S-BMW-1S SM 2320B 652429 S-BMW-3S 60335364014 SM 2320B 652429 60335364016 S-UG-3 SM 2320B 653257 60335360003 S-TMW-1 SM 2320B 653257 60335360004 S-TMW-2 SM 2320B 653257 S-TMW-3 60335360005 SM 2320B 653257 60335360006 S-SCL4A-DUP-1 SM 2320B 653258 60335360007 S-SCL4A-FB-1 SM 2320B 653258 60335364013 S-BMW-1S SM 2540C 651545 60335364014 S-BMW-3S SM 2540C 651780 652054 60335364016 S-UG-3 SM 2540C 60335360003 S-TMW-1 SM 2540C 652054 60335360004 S-TMW-2 SM 2540C 652054 60335360005 S-TMW-3 SM 2540C 652118 60335360006 S-SCL4A-DUP-1 SM 2540C 652118 60335360007 S-SCL4A-FB-1 SM 2540C 652118 60335364013 S-BMW-1S EPA 300.0 655383 60335364014 S-BMW-3S EPA 300.0 655383 60335364016 S-UG-3 EPA 300.0 655521 653569 60335360003 S-TMW-1 EPA 300.0 60335360004 S-TMW-2 EPA 300.0 653569 60335360005 S-TMW-3 EPA 300.0 653569 60335360006 S-SCL4A-DUP-1 EPA 300.0 653569 60335360007 S-SCL4A-FB-1 EPA 300.0 653569

		W0#:60335360
Pace Analytical Sample Condition	Upon Receint	TI B BBITI A THERE BITE BIT
www.paceRibs.com	opon Receipt	
		00335360
Client Name: Golder Assic		
Courier: FedEx 🗆 UPS 🗇 VIA 🗖 Clay 🗅	PEX 🗆 ECI 🗆 Pa	ace 🗆 Xroads 📈 Client 🗆 Other 🗆
Tracking #: Pa	ce Shipping Label Used?	Yes D No Z
Custody Seal on Cooler/Box Present: Yes 📈 No 🗆	Seals intact: Yes 🖌	No 🗆
Packing Material: Bubble Wrap 🗆 Bubble Bags	□ Foam □	None 🗆 Other 🖉 ၁ pk
Thermometer Used: T-296 Type	of Ice: Wet Blue None	
Cooler Temperature (°C): As-read 2	tor to.1 Corrected	a.1, 18.3 Date and initials of person examining contents: 4 24 20
Temperature should be above freezing to 6°C		
Chain of Custody present:	Pres INO IN/A	
Chain of Custody relinquished:		
Samples arrived within holding time:		
Short Hold Time analyses (<72hr):	TYes INO DNA	
Rush Turn Around Time requested:	DYes No DN/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	TYes No NA	
Pace containers used:		
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	OYes ONO DANA	
Filtered volume received for dissolved tests?	🗆 Yes 🗆 No 💭 NIA	
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix:	DYes IN DINA	
Containers requiring pH preservation in compliance?	Yes No N/A List	t sample IDs, volumes, lot #'s of preservative and the
(HNO3, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	03(73	
Cyanide water sample checks:		
Potassium iodide test strip turns blue/purple? (Preserve)		
Trip Blank present:		
Headspace in VOA vials (>6mm);		
Samples from USDA Regulated Area: State:	UYes No DN/A	
Additional labels attached to 5035A / TX1005 vials in the field	2 DYes DNA NIA	
Client Notification/ Resolution: Copy COC t	o Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/	lime:	
Comments/ Resolution:		

Project Manager Review:

Jani Churk

Date

4/24/20

	-
	20 3
	ps so
	S.
	20
	28
ē.	es
()	12
1	12
20	7
	1

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section	A Client Information:	Section B Required Project	Informati	:uo				Sectic Invoice	on C Informat	tion:					7			Page:	-	of	N
Company:	Golder Associates	Report To: Jeffre	sy Ingra	E				Attentic	:uc								'				
Address:	13515 Barrett Parkway Dr, Ste 260	Copy To: Eric (Schnie	der, Rya	n Feldma			Compa	ny Name	: Golc	der Asso	ciates	2		REGUL	ATORY	AGENCY				
	Ballwin, MO 63021							Addres	s:						<u>ч</u>	DES	GROUN	D WATEF		DRINKING	Š
Email To:	jeffrey ingram@golder.com	Purchase Order N	°C CC	C #0 1		546	41	Pace Qi Referen	lote Se:						SN L		RCRA		L	DTHER	
Phone:	336-724-9191 Fax 636-724-9323	Project Name:	Amerer	1 Sioux I	Energy C(anter SC	<u>L</u>	Pace Pr Manage	oject	Jamie C	Church				Site Lo	cation					
Requeste	d Due Date/TAT: Standard	Project Number:	153140	602.000	3 B F			Pace Pr	ofile #:	9285, lir	ne 3				s	TATE:	Q				
												-	Re	queste	Analysis	Filtered	(N/A)				
	section D Valid Matrix C Valid Matrix C MATRIX	o left) CODE CODE	(JW)		COLLEC	TED			۵.	reserve	atives	1 N /A	z	Z							
	WATER WATER WATER WASE WATER PRODUCT SOUSOLD OIL	및 전 전 전 전 전 상 전 전 전 전 Seboo bilby 66	00=0 8AA6	COMPOSI START	μ	COMPOSIT END/GRAE		-				1	elatelu2/	SIPIAMU				(N/A)			
# MƏTI	Sample ID (A-Z, 0-9 /) Sample IDs MUST BE UNIQUE	유 문 다 다 다 아이프 (se	SAMPLE TYPE (G=0	ATE	L H	DATE		# OF CONTAINERS	H ^s 2O ⁴ Nubleselved	HCI HCI HNO ³	Nechanol Nethanol	Jahar JeeT sisylsnA	ebinoul-Tebinold	Alkalinity				Residual Chlorine	03	rited w	
-	-6-LMW-1S	Ţ	U													F		t			
2	S-LMW-2S	TW	U															F			
e	\$-LMW-3S	WT	U																		
4	SILMW-4S	WT	U	_														_			
ŝ	S-LMIN-5S	ΨT	U	-								-									
9	S-LMWV-6S	WT	U	-																	
7	S-LMW-7S	ΨT	U																		
-00	S-LMW-4S	Ţ	U							_		1				+		7			
თ	S-LMW-98 (US)	WT	U				,					-1						+			
10	S-BMW-1S	ŢŴ	U		-	122/201	155	2					X	x -				-			
1 1	S-BMW-25 5	WT	0 0		-	1	540	1	1	1			1	ł	_						
	ADDITIONAL COMMENTS	RELIN	IQUISHE	ED BY / A	FILIATION		DATE	Ê	H		ACCE	PTED B/	/ AFFIL	IATION		E E	TIME		SAMPI	E CONDITIC	SNO
*App III and	Cal/An Metals" - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B	B	2	5	bolde	1	123/90	180	P	EBC	sche	大	100	Э	117	120	246			~	11
Page	0				AMPLER	NAME AN	D SIGNATL	RE							_				u	l) led	
935				4	PR	INT Name	of SAMPLE	5	200	have	1)° ni q	o bevi (N\Y)	1/Y) 76	
of 37					Sic	NATURE (of SAMPLE		2		1		DAT	E Signed	17	2610		məT	ece Bol	aloo)	lamed

F-ALL-Q-020rev 08, 12-Oct-2007

"Important Note: By signing this form what a accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Sample Condition Upon Receipt

Golder Assoc Client Name: Pace 🗆 Xroad K Client 🗅 Other 🗅 FedEx D UPS D VIA 🗆 Clay [] Courier: PEX 🖸 ECI 🗆 Pace Shipping Label Used? Yes 🗆 Noto Tracking #: NoX NoX Seals intact: Yes 🗆 Custody Seal on Cooler/Box Present: Yes 🗆 Other Z ZPIC Bubble Wrap Bubble Bags None []] Packing Material: Foam 🗆 Thermometer Used: T298 Type of Ice, Wet) Blue None Date and initials of person examining contents: 4.29.20 44 Cooler Temperature (°C): As-read 0.5 Corr. Factor 40.1 Corrected 0.6 Temperature should be above freezing to 6°C 21.4, 20.2, 0.6,0.8,0-1,1.4 21.5,20.3,0.7,0.4,0.2,1.5 Yes 🗆 No 🗇 N/A Chain of Custody present: All coolers out of temp had Chain of Custody relinquished Yes DNo DN/A Samples arrived within holding time: XYes INO IN/A only Radium Short Hold Time analyses (<72hr): TYes XNo □n/a Rush Turn Around Time requested: Sufficient volume: Yes DNo **N/A** Correct containers used: Yes 🗆 No DN/A Pace containers used: Yes No DN/A XYes DNo DN/A Containers intact: Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? Yes No XIN/A EYes DNo XN/A Filtered volume received for dissolved tests? Yes DNo DN/A Sample labels match COC: Date / time / ID / analyses wT Yes No ⊡N/A Samples contain multiple phases? Matrix: Containers requiring pH preservation in compliance? List sample IDs, volumes, lot #'s of preservative and the XYes 🗆 No ⊡n/a date/time added. (HNO3, H2SO4, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) 603177 Cyanide water sample checks: □Yes □No Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve) Yes No □Yes □No Trip Blank present: N/A UYes UNO WWA Headspace in VOA vials (>6mm): Samples from USDA Regulated Area: State □Yes □No Additional labels attached to 5035A / TX1005 vials in the field? \Box Yes \Box No $_{o}$ łπ/a Client Notification/ Resolution: Copy COC to Client? Y Field Data Required? YI N Person Contacted: Date/Time: Comments/ Resolution Jani Churk 4/29/20 Project Manager Review: Date

W0#:60335360

į
ì

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Page: 1 of 1		ENCY	ROUND WATER 🖵 DRINKING WATER	CRA CTHER		Mo	N) V (N		(N/A) =	Residual Chlorine Pace Project No. Lab LD							1-SW-1-M42-S	1-9-21-1-m2-5					AE SAMPLE CONDITIONS	0	7 N N N 0.0 C	0.4	9:3 V () (1)	•C	ni qr dy Set dy Set ller (Y	Ten Rec Coo Coo
		REGULATORY AGE	NPDES / G	- UST / R	Site Location	STATE:	nalysis Filtered (Y/			9													DATE	8/28/20 160	12006726.2					62/22/40
Section C nvoice Information:	vitiention:	company Name: Golder Associates Inc	vddress:	ace Quote deference:	ace Project Jamie Church	ace Profile #: 9285, line 3	Requested A	Preservatives	S J Sulfate sisie Nn/	# OF CONTRINERS Unpreserved H ₂ SO ₄ HCI MaCH MaCH Other Other Other Chloride/Fluoride Other Other Chloride/Fluoride Other Ot	Z I I Z X X X X X X								1			N 4	TIME ACCEPTED BY I AFFILIATION	New I ANN L	124 1/ 11 wind 1/ac		>		Er. c.Schneide	MM DATE Signed (MM/DD/YY): L
on B ed Project Information:	To: Jeffrey Ingram	 Eric Schnieder, Ryan Feldman 		se Order No.: COC #11	Name: Ameren Sioux Energy Center SCL4A	Number: 153140602.0003D		OULECTED	OLLECTION COMPOSITE ENDIGRAB START ENDIGRAB COMPOSITE	ahmatrix code (gedation of the code (gedati	WT G 1 HIZ770 1325		WT 6 1 1125	wπ g 12 30	WT G	WT G 1245	WT G 1 1045	WT G / HO45	WT G	WT G	WT G	WT G	RELINQUISHED BY / AFFILIATION DATE	10111 11 16/00 41/28/20	16W W 41/20 1	1.1		SAMPLER NAME AND SIGNATURE	PRINT Name of SAMPLER:	SIGNATURE of SAMPLER:
A Client Information: Requir	Golder Associates Report	13515 Barrett Parkway Dr., Ste 260 Copy T	Ballwin, MO 63021	jeffrey ingram@golder.com Purcha	336-724-9191 Fax: 636-724-9323 Project	d Due Date/TAT: Standard Project		Section D Valid Matrix Codes Lequired Client Information MATRIX CODE	NRINCIAS WATER DW WATER WT WATER WT PRODUCT R SOILSOLD SL SOILSOLD SL	Sample ID WP WP WP WP (A-Z, 0-9/) OT OT Sample IDs MUST BE UNIQUE	S-UG-3	S-TMW-1	S-TMW-2	S-TMW-3	S-SCL4A-DUP-1	S-SCL4A-FB-1	S-SCL4A-MS-1	S-SCL4A-MSD-1	S-BMW-1S	S-BMW-3S			ADDITIONAL COMMENTS	Cat/An Metals" - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B		1				
Section A Required (Company:	Address:		Email To:	Phone: 6	Requested		ώ ử		≥ # W∃LÌ	-	2	3	4	ŝ	9	7	00	თ	10	£	12		*App III and I			Pa	age :	37 c	of 37

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1 5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev 08, 12-Oct-2007

MEMORANDUM

Project No. 153140602

DATE July 1, 2020

TO Project File Golder Associates

- CC Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, SIOUX ENERGY CENTER – SCL4A – DETECTION - DATA PACKAGE 60335360

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Golder Associates Inc.	Project Manager: J. Ingram
Project Name: Ameren - SEC - SCL4A	Project Number: 153140602
Reviewer: <u>A. Muehlfarth</u>	Validation Date: 06/29/2020
Laboratory: <u>Pace Analytical</u> Analytical Method (type and no.): <u>EPA 200.7 (Total Met</u> Matrix: Air Soil/Sed. Water Wa Sample Names <u>S-TMW-1, S-TMW-2, S-TMW-3, S-SCL4A-</u>	SDG #: 60335360 als); SM2320B (Alkalinity); SM2540C (TDS); EPA 300.0 (Anions) Iste

NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

Field Ir	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	x			04/22 - 04/27/2020
b)	Sampling team indicated?	х			
c)	Sample location noted?	x			
d)	Sample depth indicated (Soils)?			x	
e)	Sample type indicated (grab/composite)?	×			Grab
f)	Field QC noted?	x			See Notes
g)	Field parameters collected (note types)?	х			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	X			
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field no	otes?
			X		
j)	Does the laboratory narrative indicate deficiencies?			x	
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
Chain -	of-Custody (COC) Was the COC properly completed?	YES	NO	NA	COMMENTS
Chain- a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field	YES ×	NO	NA	COMMENTS
Chain- a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel?	YES ×	NO	NA	COMMENTS
Chain-(a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × ×	NO	NA	COMMENTS See Notes
Chain-(a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × ×	NO		COMMENTS See Notes
Chain- a) b) c) Genera	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × × YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-a a) b) c) Genera a)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × × YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-(a) b) c) Genera a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis?	YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-d a) b) c) Genera a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used?	YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-(a) b) c) Genera a) b) c) d)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used?	YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-(a) b) c) Genera a) b) c) d) e)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used? Were appropriate reporting limits achieved?	YES	NO	NA	COMMENTS See Notes COMMENTS
Chain-4 a) b) c) Genera a) b) c) d) e) f)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used? Were appropriate reporting limits achieved? Were any sample dilutions noted?	YES × × YES × × × × × × ×	NO		COMMENTS See Notes See Notes See Notes
QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	х			See Notes
b)	Were analytes detected in the field blank(s)?	х			See Notes
c)	Were analytes detected in the equipment blank(s)?			X	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	х			
b)	Were the proper analytes included in the LCS?	х			
c)	Was the LCS accuracy criteria met?	х			
Duplica	ites	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	iplicate	sample n	ames)?	S-SCL4A-DUP-1 @ S-TMW-2
		x			
b)	Were field dup. precision criteria met (note RPD)?	x			
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?)	
		х			
d)	Were lab dup. precision criteria met (note RPD)?	X			
Blind S	tandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		x		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			x	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		×		
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
b)	Was MSD accuracy criteria met?		х		
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
c)	Were MS/MSD precision criteria met?	Х			

Comments/Notes:

Some coolers were outside of temperature limits, however they contained only Radium samples.

Chloride and Sulfate were diluted in several samples, no qualification necessary.

MB: 2646770: Sodium (307 J), associated with samples -60003 through -60007

FB: S-SCL4A-FB-1 @ S-TMW-3: Calcium (78.0 J), Sodium (147 J), TDS (6.5) detections in sample > 10x the blank result,

no qualification necessary.

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

MS/MSD: 2646779, 2646780: MS/MSD % recovery high for Boron, Calcium, associated with sample 60335363005 (unrelated sample). 2658523: MS % recovery high for Chloride, Sulfate, associated with sample 60335416011 (unrelated sample).

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
S-SCL4A-FB-1	Sodium	500	U	Detected in Method Blank
<u>\</u>				
	\bigwedge			
/	Inn Muhllath			06/29/2020
Signature:	NIN I MANATON			Date:

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 27, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN SCL4A-VS Pace Project No.: 60340573

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between June 17, 2020 and June 19, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60340573001	S-TMW-2	Water	06/18/20 11:15	06/19/20 04:22
60340573002	S-SCL4A-FB-1	Water	06/18/20 11:25	06/19/20 04:22
60340573003	S-SCL4A-DUP-1	Water	06/18/20 08:00	06/19/20 04:22
60340199012	S-UG-3	Water	06/16/20 11:31	06/17/20 04:48

SAMPLE ANALYTE COUNT

Project: AMEREN SCL4A-VS Pace Project No.: 60340573

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60340573001	S-TMW-2	SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR	2	PASI-K
60340573002	S-SCL4A-FB-1	EPA 300.0	JWR	1	PASI-K
60340573003	S-SCL4A-DUP-1	SM 2540C	CNB	1	PASI-K
		EPA 300.0	JWR	1	PASI-K
60340199012	S-UG-3	EPA 300.0	JWR	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

Sample: S-TMW-2	Lab ID: 60340573001		Collected: 06/18/20 11:15			Received: 06				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
2540C Total Dissolved Solids	Analytical Method: SM 2540C Pace Analytical Services - Kansas City									
Total Dissolved Solids	420	mg/L	10.0	10.0	1		06/23/20 08:34			
300.0 IC Anions 28 Days	Analytical Pace Analy	Method: EPA 3 ytical Services	00.0 - Kansas C	ity						
Fluoride Sulfate	0.38 45.3	mg/L mg/L	0.20 5.0	0.075 1.4	1 5		06/23/20 14:15 06/23/20 15:05	16984-48-8 14808-79-8		

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

Sample: S-SCL4A-FB-1	Lab ID: 60340573002		Collected	d: 06/18/20) 11:25	Received: 06/	19/20 04:22 Ma	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
300.0 IC Anions 28 Days	Analytical Pace Anal	Method: EPA 3	00.0 - Kansas Ci	ity						
Fluoride	<0.075	mg/L	0.20	0.075	1		06/23/20 15:54	16984-48-8		

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

Sample: S-SCL4A-DUP-1	Lab ID: 60340573003		Collected: 06/18/20 08:00			Received: 06/	atrix: Water				
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
2540C Total Dissolved Solids	Analytical Method: SM 2540C Pace Analytical Services - Kansas City										
Total Dissolved Solids	419	mg/L	10.0	10.0	1		06/23/20 08:34				
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City										
Sulfate	45.9	mg/L	5.0	1.4	5		06/23/20 16:11	14808-79-8			

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

ample: S-UG-3 Lab ID: 60340199012		Collecte	d: 06/16/20) 11:31	Received: 06/	17/20 04:48 Ma	fatrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City								
Fluoride	0.38	mg/L	0.20	0.075	1		06/22/20 22:40	16984-48-8	

Project:	AMEREN SCL4A	-VS							
Pace Project No.:	60340573								
QC Batch:	661576		Analysis Me	ethod:	SM 2540C				
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids			
			Laboratory:		Pace Analytica	ity			
Associated Lab Sam	nples: 60340573	3001, 60340573003							
METHOD BLANK:	2681980		Matrix	: Water					
Associated Lab Sam	ples: 60340573	3001, 60340573003							
			Blank	Reporting					
Param	neter	Units	Result	Limit	MDL	Analy	zed	Qualifiers	
Total Dissolved Solids mg/L		<5.0	5	.0 5.0 06/23/20 08:3					
LABORATORY CON	ITROL SAMPLE:	2681981							
			Spike	LCS	LCS	% Rec			
Param	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers		
Total Dissolved Solid	ds	mg/L	1000	1000	100	80-120			
	E. 2691092								
SAMPLE DUPLICAT	E. 2001902		60340569001	Dup		Мах			
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Total Dissolved Solid	ls	mg/L	568	57	72	1	10		
	E: 2681983								
2 22 2 0. 210/1			60340573001	Dup		Max			
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Total Dissolved Solid	ds	mg/L	420	42	24	1	10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project No.: 60340573	
QC Batch: 661408 Analysis Method: EPA 300.0	
QC Batch Method:EPA 300.0Analysis Description:300.0 IC Anions	
Laboratory: Pace Analytical Services - Kansas City	
Associated Lab Samples: 60340199012	
METHOD BLANK: 2681574 Matrix: Water	
Associated Lab Samples: 60340199012	
Blank Reporting	
Parameter Units Result Limit MDL Analyzed Qualifiers	
Fluoride mg/L <0.075 0.20 0.075 06/22/20 09:39	
METHOD BLANK: 2683038 Matrix: Water	
Associated Lab Samples: 60340199012	
Blank Reporting	
Parameter Units Result Limit MDL Analyzed Qualifiers	
Fluoride mg/L <0.075 0.20 0.075 06/23/20 17:02	
LABORATORY CONTROL SAMPLE: 2681575	
Spike LCS LCS % Rec	
Parameter Units Conc. Result % Rec Limits Qualifiers	
Fluoride mg/L 2.5 2.5 101 90-110	
LABORATORY CONTROL SAMPLE: 2683039	
Spike LCS LCS % Rec	
Parameter Units Conc. Result % Rec Limits Qualifiers	
Fluoride mg/L 2.5 2.4 95 90-110	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2681576 2681577	
MS MSD	
60340564001 Spike Spike MS MSD MS MSD % Rec Max	Qual
Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD	Quai
Fluoride mg/L ND 12.5 12.5 13.8 13.8 104 104 80-120 0 15	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2681578 2681579	
MS MSD	
60340199010 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD	Qual
Fluoride mg/L 0.32 2.5 2.5 2.8 100 100 80-120 1 15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	AMEREN SCL4A-	VS										
Pace Project No.:	60340573											
QC Batch:	661608		Analys	sis Metho	d:	EPA 300.0						
QC Batch Method:	EPA 300.0		Analys	Analysis Description:		300.0 IC An	ions					
			Labora	atory:		Pace Analy	ical Sei	rvices - Kans	as City			
Associated Lab Sar	mples: 60340573	001, 6034057300	02, 60340573	003		-			-			
METHOD BLANK:	2682113		Ν	Matrix: W	ater							
Associated Lab Sar	mples: 60340573	001, 6034057300	02, 60340573	003								
_			Blank	K .	Reporting							
Parar	neter	Units	Resul	t	Limit	MD	L	Analyze	d Qu	ualifiers		
Fluoride		mg/L	<(0.075	0.2	0	0.075	06/23/20 0	9:24			
Sulfate		mg/L		<0.28	1	0	0.28	06/23/20 0	9:24			
METHOD BLANK:	2684011		Ν	Matrix: W	ater							
Associated Lab Sar	nples: 60340573	001 6034057300	02 60340573	003								
			Blank	(Reporting							
Parar	neter	Units	Resul	t	Limit	MD	L	Analyze	d Qı	ualifiers		
Fluoride		ma/l	<	0.075	0.2	0	0.075	06/24/20 1	7:55			
Sulfate		mg/L		<0.28	1	0	0.28	06/24/20 1	7:55			
LABORATORY CO	NTROL SAMPLE:	2682114	0.11			1.00						
Doror	notor	Linita	Spike	LC	S	LCS	9	6 Rec	Qualifiara			
Fala				Kes		% Rec			Quaimers			
Fluoride		mg/L	2.5		2.5	10	2	90-110				
Sulfate		mg/L	5)	4.9	9	9	90-110				
LABORATORY CO	NTROL SAMPLE:	2684012										
			Spike	LC	s	LCS	%	6 Rec				
Parar	neter	Units	Conc.	Res	sult	% Rec	L	imits	Qualifiers			
Fluoride		mg/L	2.5		2.6	10	2	90-110				
Sulfate		mg/L	5	i	5.5	10	9	90-110				
		LICATE: 2692	115		2682114							
		2002	MS	MSD	2002110	,						
		60340572001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Re	c % Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	0.61J	12.5	12.5	13.3	13.3	1	01 10	80-120	0	15	
Sulfate	mg/L	43.9	25	25	69.8	69.4	1	04 10	2 80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

MATRIX SPIKE	E & MATRIX SPIKE DUP	LICATE: 2682	117		2682118							
Parar	neter Units	60340573001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Fluoride	mg/L	0.38	2.5	2.5	2.8	2.9	96	101	80-120	5	15	
Sulfate	mg/L	45.3	25	25	71.0	71.4	103	104	80-120	0	15	
MATRIX SPIKE	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2682119											
			MS	MSD								
		60340574001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parar	neter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Fluoride	mg/L	0.37	2.5	2.5	2.8	2.8	97	98	80-120	2	15	
Sulfate	mg/L	38.5	5	5	43.8	43.9	106	107	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCL4A-VS

Pace Project No.: 60340573

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCL4A-VS Pace Project No.: 60340573

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60340573001	S-TMW-2	SM 2540C	661576		
60340573003	S-SCL4A-DUP-1	SM 2540C	661576		
60340199012	S-UG-3	EPA 300.0	661408		
60340573001	S-TMW-2	EPA 300.0	661608		
60340573002	S-SCL4A-FB-1	EPA 300.0	661608		
60340573003	S-SCL4A-DUP-1	EPA 300.0	661608		

		WO#:603405/3
⁶		
Pace Analytical Sample Condition U	pon Receipt	
		60340573
Client Name: Gobbe Associate	2,	
		Pace Xroads Client Other
Tracking #: Pac	e Shinning Label User	12 Yes 🗆 No 🗆
Custody Seal on Cooler/Box Present: Yes X No	Seals intact: Yes	No 🗆
Packing Material: Bubble Wrap Bubble Bags	J Foam D	None \Box Other \Rightarrow $7PLC$
Thermometer Used: $\sqrt{299}$ Type of	Ice: Wet Blue No	ne
Cooler Temperature (°C): As-read $\partial_{a} Q$ Corr. Factor	or +D.1 Correct	Date and initials of person examining contents/10/92/JWW
Temperature should be above freezing to 6°C		
Chain of Custody present:	Q∕×e s □no □n/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:	□Yes XNo □N/A	
Sufficient volume:	ØYes □No □N/A	
Correct containers used:	XYes 🗆 No 🗇 N/A	
Pace containers used:	- ∑Yes □No □N/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?		
Filtered volume received for dissolved tests?	□Yes □No VN/A	
Sample labels match COC: Date / time / ID / analyses	XYes DNO DN/A	
Samples contain multiple phases? Matrix:	□Yes 🕅No □N/A	
Containers requiring pH preservation in compliance?		List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No 211A	
Headspace in VOA vials (>6mm):	□Yes □No 12N/A	
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field	? 🛛 Yes 🖾 No 💆 N/A	
Client Notification/ Resolution: Copy COC to	o Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
20.1		6/22/20
Janui Churh		
мојест мападет кечјем:	- Date	d)

.

Time Color	Section	A Client Information:	Section B Required Project Information:	Section C Invoice Information:		Page: of	
	Company	Golder Associates	Report To: Jeffrey Ingram	Attention:			1.16
Image:	Address:	13515 Вагтеtt Parkway Drive, Ste 260	Copy To: Ryan Feldmann/Eric Schneider	Company Name:	REGULATORY AGENCY		_
Instrume Control Contro Control Control <		Ballwin, MO 63021		Address:	NPDES / GROUN	JD WATER DRINKING WATER	_
Time: E3-25-25-1511 Time: SCLPA - VS Time: SCLPA - VS Time: SCLPA - VS Time: Time: <th< td=""><td>Email To:</td><td>jeffrey ingram@golder.com</td><td>Purchase Order No.:</td><td>Pace Quote Reference:</td><td>UST RCRA</td><td>OTHER</td><td>_</td></th<>	Email To:	jeffrey ingram@golder.com	Purchase Order No.:	Pace Quote Reference:	UST RCRA	OTHER	_
Manual American Anticipitation Manual American Americon Americon American American American American American Americ	Phone:	636-724-9191 Fax: 636-724-9323	Project Name: Ameren SCL4A-VS	Pace Project Jamie Church	Site Location		N. 1. 1
Request Analysis Finance (M) Marcine (M) Marci	Request	d Due Date/TAT: Standard	Project Number: 153146602	Pace Profile # 9285	STATE: MU		1111
Remotion Remotion Restance				Requester	I Analysis Filtered (Y/N)		
Bandware Mathematical Samples S		Section D Valid Matrix C Required Client Information MATRIX	odes DME COLLECTED COLLECTED	Preservatives			
Same ARDIE ID ARDIE ID AR		MILLING WATER WATER WATER PROJUCT SOLD	WDW Wr Wr Wr Wr Sight B C acco Sight B C acco				
Bampless inten And Market		SAMPLE ID (A-Z, D-97,-) Sample IDS MUST BE UNIQUE	성 홍 홍 은 k 20DE (sc 20DE (sc 2	MTAINERS MTAINERS Need I Bis Test			
1 5-77Miu-2 wr wr 1 <td< td=""><td># WƏTI</td><td></td><td>D XIRIAM APLET TAMAR ATAMAR ATAMAR ATAMAR</td><td>AMPCE 1 4 OF COI Machine Ma</td><td></td><td>Residual Residence Project No./ Lab I.D.</td><td></td></td<>	# WƏTI		D XIRIAM APLET TAMAR ATAMAR ATAMAR ATAMAR	AMPCE 1 4 OF COI Machine Ma		Residual Residence Project No./ Lab I.D.	
2 5-5.5LL4A-FA-I wr wr 111	-	S-TMW-2	WT G 1 CHIRIZO ILIS	1 1 1 1 1 1 5			-
3 5-5(L14) WP M	2	S-SCL4A-FA-1	WT G / 1125	/ / / / /			
4 5-54LUA - MS-1 wr.g 111	e	5-SCL4A-DUP-1	WT G	1 1 1 1 1			
5 5-54LLHA Mr C L IIIS I L IIIS I L IIIS I L IIIS IIIS IIIS L IIIS	4	5-SCLUA - MS-1	WT G / 1(15	11 11		1-2m-2-m2-1	
Mill Mill <th< td=""><td>S</td><td>5-5CL4A-MS0-1</td><td>WT 6 1 113</td><td>11/</td><td></td><td>S-TM4-2-W52</td><td>-</td></th<>	S	5-5CL4A-MS0-1	WT 6 1 113	11/		S-TM4-2-W52	-
1 1	9		WT G				
Samples Inlact Min	~		WT G				-
M Current of the second seco	00		WT G				1
Samples rinact Signature of samples. Signature of samples. Signat	6		WT G				-
12 m c m c ADDITIONAL COMMENTS m m c m ADDITIONAL COMMENTS m m m c ADDITIONAL COMMENTS m m m c Cussion m m m m c Cussion m m m m m Cussion m m m	11		WT G				-
ADDITIONAL CONNENTS DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED B	12		WT G				-
Scaled Cooler Scaled		ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION DATE	TIME ACCEPTED BY / AFFILIATION	DATE TIME	SAMPLE CONDITIONS	-
Stantucking and a samples interded an and samples interded an activity of samples interded and samples interded an			lell alberto 611814	1320 WWW MCW	1651 JE 18/101 C		
SamPLER NAME SamPLER NAME SamPLER NAME Sealed Cooler Temp in "C Date Signed (Y/V) Date Signed (M/VI) Date Signed (MMIDDINY): SIGNATURE of SAMPLER:			auch men by 181	ad 1305 MIREIEL/HACE	TEHDORIHIAN	Y Y Y C.S	
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: PRINT NAME OF SAMPLER:							r -
PRINT Name of SAMPLER: C. C. WWW PRINT Name of SAMPLER: C. C. WWW SIGNATURE of SAMPLER: DATE Signed CC SIGNATURE of SAMPLER: MM			SAMPLER NAME AND SIGNATU	JRE		oner oler on on on	-
SIGNATURE of SAMPLER: Chr DATE Signed Control of Same			PRINT Name of SAMPLE	R Ereschnede		ni qm bevie: (Y/Y) e: (bof Co bel Co bel Co (V/Y) (V/Y)	
			SIGNATURE of SAMPLE	R: Charle Signer	0010 20	9Т 9697 568 568 898 898	1

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Page 16 of 16

MEMORANDUM

Project No. 153140602

DATE July 27, 2020

TO Project File Golder Associates

- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, SIOUX ENERGY CENTER – SCL4A – VERIFICATION SAMPLING - DATA PACKAGE 60340573

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

None.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Golder Associates Inc.	Project Manager: <u>J. Ingram</u>				
Project Name: Ameren - SEC - SCL4A	Project Number: 153140602				
Reviewer: A. Muehlfarth	Validation Date: 07/27/2020				
Laboratory: <u>Pace Analytical Services, LLC</u> Analytical Method (type and no.): <u>SM 2540C (TDS); EPA 300.0 (Anions)</u>	SDG #: 60340573				
Matrix: Air Soil/Sed. 🔳 Water 🗌 Waste 🗌					
Sample Names S-TMW-2, S-SCL4A-FB-1, S-SCL4A-DUP-1, S-UG-3					

NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

Field I	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	х			06/16/2020 - 06/18/2020
b)	Sampling team indicated?	х			
c)	Sample location noted?	х			
d)	Sample depth indicated (Soils)?			X	
e)	Sample type indicated (grab/composite)?	x			Grab
f)	Field QC noted?	X			See Notes
g)	Field parameters collected (note types)?	х			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	X			
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field	notes?
			x		
j)	Does the laboratory narrative indicate deficiencies?			X	
	Note Deficiencies:				
Chain	-of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	x			
, b)	Was the COC signed by both field				
,	and laboratory personnel?	х			
c)	Were samples received in good condition?	х			
Gener	al (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	X			
b)	Were hold times met for sample analysis?	×			
, c)	Were the correct preservatives used?	×			
d)	Was the correct method used?	\mathbf{x}			
e)	Were appropriate reporting limits achieved?				
5) f)	Were any sample dilutions noted?	\mathbf{x}			See Notes
/	, ,				

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		×		S-SCL4A-FB-1 @ S-TMW-2
b)	Were analytes detected in the field blank(s)?		×		
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	х			
b)	Were the proper analytes included in the LCS?	х			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample n	ames)?	S-SCL4A-DUP-1 @ S-TMW-2
		х			
b)	Were field dup. precision criteria met (note RPD)?	x			Max RPD: 1.3% (<20%)
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?	2	
		х			
d)	Were lab dup. precision criteria met (note RPD)?	х			Max RPD: 1% (<10%)
Blind S	standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			х	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			x	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	x			
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
b)	Was MSD accuracy criteria met?	х			
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
c)	Were MS/MSD precision criteria met?	Х			

Comments/Notes:

Sulfate was diluted in several samples, no qualification necessary.

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
\				
		$\overline{}$		
		$\overline{}$		
				<u>_</u>
				<u>_</u>
				<u>_</u>
	(Im Muhllath			07/27/2020
Signature:	- Will I Man Month			Date:

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

December 28, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN SCL4A Pace Project No.: 60354705

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on November 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN SCL4A

Pace Project No.: 60354705

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN SCL4A

Pace Project No.: 60354705

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60354705001	S-TMW-1	Water	11/17/20 14:35	11/18/20 04:15
60354705002	S-TMW-2	Water	11/17/20 13:45	11/18/20 04:15
60354705003	S-TMW-3	Water	11/17/20 12:50	11/18/20 04:15
60354705004	S-SCL4A-DUP-1	Water	11/17/20 08:00	11/18/20 04:15
60354705005	S-SCL4A-FB-1	Water	11/17/20 14:40	11/18/20 04:15
60354369022	S-UG-3	Water	11/17/20 15:40	11/18/20 04:15
60354369018	S-BMW-1S	Water	11/16/20 14:50	11/18/20 04:15
60354369011	S-BMW-3S	Water	11/16/20 12:20	11/18/20 04:15

SAMPLE ANALYTE COUNT

Project: AMEREN SCL4A

0354705

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60354705001	S-TMW-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354705002	S-TMW-2	EPA 200.7	HKC	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354705003	S-TMW-3	EPA 200.7	HKC	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354705004	S-SCL4A-DUP-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354705005	S-SCL4A-FB-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354369022	S-UG-3	EPA 200.7	HKC	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354369018	S-BMW-1S	EPA 200.7	НКС	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60354369011	S-BMW-3S	EPA 200.7	НКС	7	PASI-K
		SM 2320B	BLA	1	PASI-K
		SM 2540C	MAP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-TMW-1	Lab ID:	60354705001	Collecte	d: 11/17/20) 14:35	Received: 11/	18/20 04:15 Ma	atrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EF	PA 200.7					
	Pace Anal	vtical Services	- Kansas C	ity							
Boron	65.7J	ug/L	100	11.7	1	12/06/20 11:13	12/08/20 16:20	7440-42-8			
Calcium	119000	ug/L	200	32.4	1	12/06/20 11:13	12/08/20 16:20	7440-70-2			
Iron	29.2J	ug/L	50.0	26.8	1	12/06/20 11:13	12/08/20 16:20	7439-89-6			
Magnesium	20500	ug/L	50.0	19.7	1	12/06/20 11:13	12/08/20 16:20	7439-95-4			
Manganese	194	ug/L	5.0	0.97	1	12/06/20 11:13	12/08/20 16:20	7439-96-5			
Potassium	5430	ug/L	500	189	1	12/06/20 11:13	12/08/20 16:20	7440-09-7			
Sodium	3300	ug/L	500	107	1	12/06/20 11:13	12/08/20 16:20	7440-23-5			
2320B Alkalinity	Analytical	Method: SM 23	20B								
	Pace Anal	vtical Services	- Kansas C	ity							
Alkalinity, Total as CaCO3	330	mg/L	20.0	8.4	1		11/23/20 14:04				
2540C Total Dissolved Solids	Analytical Method: SM 2540C										
	Pace Anal	vtical Services	- Kansas C	ity							
Total Dissolved Solids	398	mg/L	5.0	5.0	1		11/19/20 08:38				
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0								
	Pace Anal	vtical Services	- Kansas C	ity							
Chloride	1.8	mg/L	1.0	0.39	1		12/09/20 14:00	16887-00-6			
Fluoride	0.43	mg/L	0.20	0.075	1		12/09/20 14:00	16984-48-8			
Sulfate	37.1	mg/L	5.0	1.4	5		12/09/20 14:15	14808-79-8			

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-TMW-2	Lab ID:	60354705002	Collecte	d: 11/17/20) 13:45	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EP	A 200.7			
	Pace Analy	vtical Services	- Kansas C	ity					
Boron	87.9J	ug/L	100	11.7	1	12/06/20 11:13	12/08/20 16:23	7440-42-8	
Calcium	128000	ug/L	200	32.4	1	12/06/20 11:13	12/08/20 16:23	7440-70-2	M1
Iron	217	ug/L	50.0	26.8	1	12/06/20 11:13	12/08/20 16:23	7439-89-6	
Magnesium	23400	ug/L	50.0	19.7	1	12/06/20 11:13	12/08/20 16:23	7439-95-4	
Manganese	551	ug/L	5.0	0.97	1	12/06/20 11:13	12/08/20 16:23	7439-96-5	
Potassium	5850	ug/L	500	189	1	12/06/20 11:13	12/08/20 16:23	7440-09-7	
Sodium	3720	ug/L	500	107	1	12/06/20 11:13	12/08/20 16:23	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	vtical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	355	mg/L	20.0	8.4	1		11/23/20 14:10		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	vtical Services	- Kansas C	ity					
Total Dissolved Solids	673	mg/L	10.0	10.0	1		11/20/20 09:36		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Analy	vtical Services	- Kansas C	ity					
Chloride	3.3	mg/L	1.0	0.36	1		12/09/20 11:09	16887-00-6	
Fluoride	0.34	mg/L	0.20	0.085	1		12/09/20 11:09	16984-48-8	
Sulfate	46.3	mg/L	5.0	2.1	5		12/09/20 11:56	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-TMW-3	Lab ID:	60354705003	Collected	d: 11/17/20) 12:50	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EP/	A 200.7			
	Pace Analy	vtical Services	- Kansas C	ity					
Boron	88.5J	ug/L	100	11.7	1	12/06/20 11:13	12/08/20 16:28	7440-42-8	
Calcium	130000	ug/L	200	32.4	1	12/06/20 11:13	12/08/20 16:28	7440-70-2	
Iron	1340	ug/L	50.0	26.8	1	12/06/20 11:13	12/08/20 16:28	7439-89-6	
Magnesium	23700	ug/L	50.0	19.7	1	12/06/20 11:13	12/08/20 16:28	7439-95-4	
Manganese	677	ug/L	5.0	0.97	1	12/06/20 11:13	12/08/20 16:28	7439-96-5	
Potassium	6080	ug/L	500	189	1	12/06/20 11:13	12/08/20 16:28	7440-09-7	
Sodium	4350	ug/L	500	107	1	12/06/20 11:13	12/08/20 16:28	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	vtical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	377	mg/L	20.0	8.4	1		11/23/20 14:21		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	vtical Services	- Kansas C	ity					
Total Dissolved Solids	433	mg/L	10.0	10.0	1		11/19/20 08:38		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Analy	vtical Services	- Kansas C	ity					
Chloride	2.1	mg/L	1.0	0.39	1		12/09/20 14:31	16887-00-6	
Fluoride	0.37	mg/L	0.20	0.075	1		12/09/20 14:31	16984-48-8	
Sulfate	37.6	mg/L	5.0	1.4	5		12/09/20 14:47	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-SCL4A-DUP-1	Lab ID: 6	60354705004	Collected	d: 11/17/20	08:00	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical N	lethod: EPA 20	00.7 Prepa	ration Meth	od: EF	PA 200.7			
	Pace Analy	tical Services -	Kansas Ci	ity					
Boron	67.2J	ug/L	100	11.7	1	12/06/20 11:13	12/08/20 16:30	7440-42-8	
Calcium	95800	ug/L	200	32.4	1	12/06/20 11:13	12/08/20 16:30	7440-70-2	
Iron	1050	ug/L	50.0	26.8	1	12/06/20 11:13	12/08/20 16:30	7439-89-6	
Magnesium	17700	ug/L	50.0	19.7	1	12/06/20 11:13	12/08/20 16:30	7439-95-4	
Manganese	494	ug/L	5.0	0.97	1	12/06/20 11:13	12/08/20 16:30	7439-96-5	
Potassium	4530	ug/L	500	189	1	12/06/20 11:13	12/08/20 16:30	7440-09-7	
Sodium	3320	ug/L	500	107	1	12/06/20 11:13	12/08/20 16:30	7440-23-5	
2320B Alkalinity	Analytical N	lethod: SM 23	20B						
	Pace Analy	tical Services -	Kansas Ci	ity					
Alkalinity, Total as CaCO3	373	mg/L	20.0	8.4	1		11/23/20 14:27		
2540C Total Dissolved Solids	Analytical N	lethod: SM 25	40C						
	Pace Analy	tical Services -	Kansas Ci	ity					
Total Dissolved Solids	467	mg/L	10.0	10.0	1		11/20/20 09:37		
300.0 IC Anions 28 Days	Analytical N	lethod: EPA 30	0.0						
-	Pace Analy	tical Services -	Kansas Ci	ity					
Chloride	2.1	mg/L	1.0	0.39	1		12/09/20 15:02	16887-00-6	
Fluoride	0.37	mg/L	0.20	0.075	1		12/09/20 15:02	16984-48-8	
Sulfate	37.5	mg/L	5.0	1.4	5		12/09/20 15:18	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-SCL4A-FB-1	Lab ID:	60354705005	Collecte	d: 11/17/20) 14:40	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EF	PA 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	<11.7	ug/L	100	11.7	1	12/06/20 11:13	12/08/20 16:33	7440-42-8	
Calcium	43.5J	ug/L	200	32.4	1	12/06/20 11:13	12/08/20 16:33	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	12/06/20 11:13	12/08/20 16:33	7439-89-6	
Magnesium	<19.7	ug/L	50.0	19.7	1	12/06/20 11:13	12/08/20 16:33	7439-95-4	
Manganese	<0.97	ug/L	5.0	0.97	1	12/06/20 11:13	12/08/20 16:33	7439-96-5	
Potassium	<189	ug/L	500	189	1	12/06/20 11:13	12/08/20 16:33	7440-09-7	
Sodium	<107	ug/L	500	107	1	12/06/20 11:13	12/08/20 16:33	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	<8.4	mg/L	20.0	8.4	1		11/23/20 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	9.0	mg/L	5.0	5.0	1		11/20/20 09:37		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	<0.39	mg/L	1.0	0.39	1		12/09/20 15:34	16887-00-6	
Fluoride	<0.075	mg/L	0.20	0.075	1		12/09/20 15:34	16984-48-8	
Sulfate	<0.28	mg/L	1.0	0.28	1		12/09/20 15:34	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-UG-3	Lab ID:	60354369022	Collected	d: 11/17/20	0 15:40	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EP	A 200.7			
	Pace Analy	vtical Services	- Kansas C	ity					
Boron	188	ug/L	100	11.7	1	12/06/20 12:00	12/08/20 19:56	7440-42-8	
Calcium	119000	ug/L	200	32.4	1	12/06/20 12:00	12/08/20 19:56	7440-70-2	
Iron	<26.8	ug/L	50.0	26.8	1	12/06/20 12:00	12/08/20 19:56	7439-89-6	
Magnesium	23300	ug/L	50.0	19.7	1	12/06/20 12:00	12/08/20 19:56	7439-95-4	
Manganese	574	ug/L	5.0	0.97	1	12/06/20 12:00	12/08/20 19:56	7439-96-5	
Potassium	5330	ug/L	500	189	1	12/06/20 12:00	12/08/20 19:56	7440-09-7	
Sodium	19100	ug/L	500	107	1	12/06/20 12:00	12/08/20 19:56	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	vtical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	337	mg/L	20.0	8.4	1		11/19/20 16:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	vtical Services	- Kansas C	ity					
Total Dissolved Solids	473	mg/L	10.0	10.0	1		11/19/20 15:06		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Analy	vtical Services	- Kansas C	ity					
Chloride	16.5	mg/L	1.0	0.39	1		12/08/20 02:01	16887-00-6	
Fluoride	0.34	mg/L	0.20	0.075	1		12/08/20 02:01	16984-48-8	
Sulfate	69.5	mg/L	5.0	1.4	5		12/08/20 02:16	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-BMW-1S	Lab ID:	60354369018	Collecte	d: 11/16/20) 14:50	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EPA	A 200.7			
	Pace Anal	tical Services	- Kansas C	ity					
Boron	75.1J	ug/L	100	11.7	1	12/06/20 12:00	12/08/20 19:46	7440-42-8	
Calcium	141000	ug/L	200	32.4	1	12/06/20 12:00	12/08/20 19:46	7440-70-2	
Iron	52.0	ug/L	50.0	26.8	1	12/06/20 12:00	12/08/20 19:46	7439-89-6	
Magnesium	27800	ug/L	50.0	19.7	1	12/06/20 12:00	12/08/20 19:46	7439-95-4	
Manganese	1240	ug/L	5.0	0.97	1	12/06/20 12:00	12/08/20 19:46	7439-96-5	
Potassium	366J	ug/L	500	189	1	12/06/20 12:00	12/08/20 19:46	7440-09-7	В
Sodium	4800	ug/L	500	107	1	12/06/20 12:00	12/08/20 19:46	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	422	mg/L	20.0	8.4	1		11/19/20 16:19		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	tical Services	- Kansas C	ity					
Total Dissolved Solids	505	mg/L	10.0	10.0	1		11/19/20 15:05		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Anal	tical Services	- Kansas C	ity					
Chloride	7.0	mg/L	1.0	0.39	1		12/07/20 22:38	16887-00-6	
Fluoride	0.34	mg/L	0.20	0.075	1		12/07/20 22:38	16984-48-8	
Sulfate	24.8	mg/L	2.0	0.56	2		12/07/20 22:52	14808-79-8	

Project: AMEREN SCL4A

Pace Project No.: 60354705

Sample: S-BMW-3S	Lab ID:	60354369011	Collected	d: 11/16/20) 12:20	Received: 11/	18/20 04:15 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	nod: EP/	A 200.7			
	Pace Analy	tical Services	- Kansas C	ity					
Boron	66.3J	ug/L	100	11.7	1	12/06/20 12:00	12/08/20 19:19	7440-42-8	
Calcium	125000	ug/L	200	32.4	1	12/06/20 12:00	12/08/20 19:19	7440-70-2	
Iron	35.3J	ug/L	50.0	26.8	1	12/06/20 12:00	12/08/20 19:19	7439-89-6	
Magnesium	23000	ug/L	50.0	19.7	1	12/06/20 12:00	12/08/20 19:19	7439-95-4	
Manganese	344	ug/L	5.0	0.97	1	12/06/20 12:00	12/08/20 19:19	7439-96-5	
Potassium	440J	ug/L	500	189	1	12/06/20 12:00	12/08/20 19:19	7440-09-7	В
Sodium	5250	ug/L	500	107	1	12/06/20 12:00	12/08/20 19:19	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Analy	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	378	mg/L	20.0	8.4	1		11/19/20 15:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Analy	tical Services	- Kansas Ci	ity					
Total Dissolved Solids	455	mg/L	10.0	10.0	1		11/19/20 15:05		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
	Pace Analy	tical Services	- Kansas C	ity					
Chloride	11.4	mg/L	1.0	0.39	1		12/08/20 14:12	16887-00-6	
Fluoride	0.40	mg/L	0.20	0.075	1		12/08/20 14:12	16984-48-8	
Sulfate	30.6	mg/L	2.0	0.56	2		12/07/20 17:18	14808-79-8	

Project: Pace Project No.:	AMEREN SCL4A 60354705							
QC Batch:	693106		Analysis Me	thod:	EPA 200.7			
QC Batch Method:	EPA 200.7		Analysis Des	scription:	200.7 Metals, Tota	al		
			Laboratory:		Pace Analytical Se	ervices - Kansas Ci	ty	
Associated Lab Sar	mples: 603543690 ⁷	11, 60354369018,	60354369022					
METHOD BLANK:	2799492		Matrix:	Water				
Associated Lab Sar	mples: 603543690 [,]	11, 60354369018,	60354369022					
			Blank	Reporting				
Parar	meter	Units	Result	Limit	MDL	Analyzed	Qualifiers	

Boron	ug/L	<11.7	100	11.7	12/08/20 18:54
Calcium	ug/L	47.9J	200	32.4	12/08/20 18:54
Iron	ug/L	<26.8	50.0	26.8	12/08/20 18:54
Magnesium	ug/L	<19.7	50.0	19.7	12/08/20 18:54
Manganese	ug/L	<0.97	5.0	0.97	12/08/20 18:54
Potassium	ug/L	224J	500	189	12/08/20 18:54
Sodium	ug/L	378J	500	107	12/08/20 18:54

LABORATORY CONTROL SAMPLE: 2799493

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L		967	97	85-115	
Calcium	ug/L	10000	10100	101	85-115	
Iron	ug/L	10000	10000	100	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1010	101	85-115	
Potassium	ug/L	10000	10400	104	85-115	
Sodium	ug/L	10000	10400	104	85-115	

MATRIX SPIKE & MATRIX SP	PIKE DUPI	_ICATE: 2799	494		2799495							
			MS	MSD								
		60354702003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L		1000	1000	1050	1070	96	98	70-130	2	20	
Calcium	ug/L	147000	10000	10000	151000	155000	39	77	70-130	2	20	M1
Iron	ug/L	<26.8	10000	10000	9650	9840	96	98	70-130	2	20	
Magnesium	ug/L	36300	10000	10000	44400	45000	81	87	70-130	1	20	
Manganese	ug/L	804	1000	1000	1750	1760	94	96	70-130	1	20	
Potassium	ug/L	8290	10000	10000	17900	18300	96	100	70-130	2	20	
Sodium	ug/L	28900	10000	10000	37600	38400	87	95	70-130	2	20	
MATRIX SPIKE SAMPLE:		2799496										
			60354	1369012	Spike	MS		MS	% Rec			
Parameter		Units	Re	esult	Conc.	Result	%	Rec	Limits		Quali	fiers
Boron		ug/L		66.8J	1000	1	020	96	70	-130		
Calcium		ug/L		98100	10000	108	000	102	70	-130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN SCL4A Pace Project No.: 60354705

MATRIX SPIKE SAMPLE:	2799496						
		60354369012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Iron	ug/L	5380	10000	14900	95	70-130	
Magnesium	ug/L	22100	10000	32000	100	70-130	
Manganese	ug/L	382	1000	1370	99	70-130	
Potassium	ug/L	3660	10000	13700	100	70-130	
Sodium	ug/L	5190	10000	15100	99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN	SCL4A											
Pace Project No.:	60354705												
QC Batch:	693107			Analy	ysis Metho	od: I	EPA 200.7						
QC Batch Method:	EPA 200	.7		Analy	ysis Desc	ription: 2	200.7 Metal	s, Total					
				Labo	ratory:		Pace Analy	ical Servi	ices - Kansa	s City			
Associated Lab Sar	mples: 60	3547050	001, 6035470500	02, 6035470	5003, 60	354705004,	603547050	05					
METHOD BLANK:	2799497				Matrix: V	Vater							
Associated Lab Sar	mples: 60	3547050	001, 6035470500	2, 6035470	5003, 60	354705004,	603547050	05					
				Blar	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qu	ualifiers		
Boron			ug/L		<11.7	10	0	11.7	12/08/20 15	:50			
Calcium			ug/L		<32.4	20	0	32.4	12/08/20 15	:50			
Iron			ug/L		<26.8	50.	0	26.8	12/08/20 15	:50			
Magnesium			ug/L		<19.7	50.	0	19.7	12/08/20 15	:50			
Manganese			ug/L		<0.97	5.	0	0.97	12/08/20 15	:50			
Potassium			ug/L		<189	50	0	189	12/08/20 15	:50			
Sodium			ug/L		<107	50	0	107	12/08/20 15	:50			
LABORATORY CO	NTROL SAM	MPLE:	2799498										
				Spike	L	CS	LCS	%	Rec				
Parar	neter		Units	Conc.	Re	esult	% Rec	Lir	nits	Qualifiers	_		
Boron			ug/L	100	00	961	9	6	85-115				
Calcium			ug/L	1000	00	10400	10	4	85-115				
Iron			ug/L	1000	00	10600	10	6	85-115				
Magnesium			ug/L	1000	00	10100	10	1	85-115				
Manganese			ug/L	100	00	1010	10	1	85-115				
Potassium			ug/L	1000	00	10200	10	2	85-115				
Sodium			ug/L	1000	00	10700	10	7	85-115				
MATRIX SPIKE & N	ATRIX SPI	KE DUP	LICATE: 2799	499		2799500)						
				MS	MSD								
			60354704006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron		ug/L		1000	1000	1050	1010	9	7 93	70-130	4	20	
Calcium		ug/L	132000	10000	10000	147000	140000	15	4 84	70-130	5	20	M1
Iron		ug/L	<26.8	10000	10000	9970	9860	10	0 98	70-130	1	20	
Magnesium		ug/L	42000	10000	10000	54000	50500	11	9 84	70-130	7	20	
Manganese		ug/L	518	1000	1000) 1520	1440	10	1 93	70-130	5	20	
Potassium		ug/L	8100	10000	10000	18700	17600	10	6 95	70-130	6	20	
Sodium		ug/L	35400	10000	10000	47200	44800	11	8 93	70-130	5	20	

MATRIX SPIKE SAMPLE:	2799501						
		60354705002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	87.9J	1000	1010	93	70-130	
Calcium	ug/L	128000	10000	129000	8	70-130	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCL4A Pace Project No.: 60354705

MATRIX SPIKE SAMPLE:	2799501						
		60354705002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Iron	ug/L	217	10000	9830	96	70-130	
Magnesium	ug/L	23400	10000	31000	76	70-130	
Manganese	ug/L	551	1000	1450	90	70-130	
Potassium	ug/L	5850	10000	14900	91	70-130	
Sodium	ug/L	3720	10000	13300	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMER	EN SCL4A							
Pace Project No.:	60354	705							
QC Batch:	6903	55		Analysis Me	ethod:	SM 2320B			
QC Batch Method:	SM 2	320B		Analysis De	escription:	2320B Alkalini	ity		
				Laboratory:		Pace Analytica	al Services - K	ansas C	ity
Associated Lab Sa	mples:	60354369	9011, 603543690	18, 60354369022					
METHOD BLANK:	27888	58		Matrix	: Water				
Associated Lab Sa	mples:	60354369	9011, 603543690	18, 60354369022					
				Blank	Reporting				
Para	meter		Units	Result	Limit	MDL	Anal	yzed	Qualifiers
Alkalinity, Total as (CaCO3		mg/L		20	.0	8.4 11/19/2	0 14:53	
LABORATORY CO	NTROL	SAMPLE:	2788859						
				Spike	LCS	LCS	% Rec		
Para	meter		Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Alkalinity, Total as 0	CaCO3		mg/L	500	488	98	90-110)	
SAMPLE DUPLICA	ATE: 27	788860							
				60354702003	Dup		Max	C C	
Para	meter		Units	Result	Result	RPD	RPE)	Qualifiers
Alkalinity, Total as 0	CaCO3		mg/L	460	46	61	0	10	
SAMPLE DUPLICA	ATE: 27	788861							
				60354369012	Dup		Мах	ξ	
Para	meter		Units	Result	Result	RPD	RPE)	Qualifiers
Alkalinity, Total as (CaCO3		mg/L	310	30	09	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SCL4A							
Pace Project No.:	60354705							
QC Batch:	690813		Analysis Me	ethod:	SM 2320B			
QC Batch Method:	SM 2320B		Analysis De	scription:	2320B Alkalini	ty		
			Laboratory:		Pace Analytica	al Services - Ka	insas Ci	ity
Associated Lab Sar	mples: 6035470	5001, 6035470500	02, 60354705003,	60354705004,	60354705005			
METHOD BLANK:	2791510		Matrix	: Water				
Associated Lab Sar	mples: 6035470	5001, 6035470500	02, 60354705003,	60354705004,	60354705005			
			Blank	Reporting				
Para	meter	Units	Result	Limit	MDL	Analy	zed	Qualifiers
Alkalinity, Total as 0	CaCO3	mg/L	<8.4	20.	0	8.4 11/23/20	12:47	
LABORATORY CO	NTROL SAMPLE:	2791511						
			Spike	LCS	LCS	% Rec		
Para	meter	Units	Conc	Result	% Rec	Limits	Qua	lifiers
Alkalinity, Total as 0	CaCO3	mg/L	500	495	99	90-110		
SAMPLE DUPLICA	TE: 2791512							
_			60354704006	Dup		Max		o ""
Para	meter	Units	Result	Result	RPD	RPD		Qualifiers
Alkalinity, Total as C	CaCO3	mg/L	457	47	2	3	10	
SAMPLE DUPLICA	TE: 2791513							
			60354705002	Dup		Max		
Para	meter	Units	Result	Result	RPD	RPD		Qualifiers
Alkalinity, Total as 0	CaCO3	mg/L	355	36	3	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Al	MEREN SCL4A								
Pace Project No.: 60)354705								
QC Batch:	690324		Analysis Me	ethod:	SM 2540C				
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	Dissolved	Solids		
			Laboratory:		Pace Analytic	al Service	es - Kan	sas Ci	ty
Associated Lab Sample	es: 60354705	5001, 60354705003							
METHOD BLANK: 27	788738		Matrix	: Water					
Associated Lab Sample	es: 60354705	5001, 60354705003							
			Blank	Reporting					
Paramet	er	Units	Result	Limit	MDL		Analyze	ed	Qualifiers
Total Dissolved Solids		mg/L	<5.0	5	.0	5.0 11	/19/20 ()8:34	
LABORATORY CONTI	ROL SAMPLE:	2788739							
			Spike	LCS	LCS	% Re	ес		
Paramet	er	Units	Conc.	Result	% Rec	Limi	ts	Qua	lifiers
Total Dissolved Solids		mg/L	1000	981	98	8	30-120		
SAMPLE DUPLICATE:	2788740		00054505000	Dur			Mari		
Paramet	er	Units	60354595009 Result	Dup Result	RPD		RPD		Qualifiers
Total Dissolved Solida			1250	100				10	
		mg/L	1200	120	00	I		10	
SAMPLE DUPLICATE:	2788741								
			60354704006	Dup			Max		
Paramet	er	Units	Result	Result	RPD		RPD		Qualifiers
Total Dissolved Solids		mg/L	637	63	33	1		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SCL4A	L Contraction of the second seco								
Pace Project No.:	60354705									
QC Batch:	690481		Analysis Me	thod: S	SM 2540C					
QC Batch Method:	SM 2540C		Analysis Des	scription: 2	2540C Total Dissolved Solids					
			Laboratory:	F	ace Analytica	I Services - Kai	nsas Cit	ty		
Associated Lab Sam	ples: 60354369	9011, 603543690	18, 60354369022							
METHOD BLANK:	2789436		Matrix:	Water						
Associated Lab Sam	ples: 60354369	9011, 603543690	18, 60354369022							
			Blank	Reporting						
Param	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers		
Total Dissolved Solid	ls	mg/L		5.0)	5.0 11/19/20	15:03			
		-								
LABORATORY CON	ITROL SAMPLE:	2789437								
			Spike	LCS	LCS	% Rec				
Param	neter	Units	Conc.	Result	% Rec	Limits	Qua	lifiers		
Total Dissolved Solid	ls	mg/L	1000	1000	100	80-120				
SAMPLE DUPLICAT	E: 2789438									
			60354702003	Dup		Max				
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Total Dissolved Solid	ls	mg/L	628	606	3	4	10			
SAMPLE DUPLICAT	E: 2789439									
			60354369012	Dup		Max				
Param	neter	Units	Result	Result	RPD	RPD		Qualifiers		
Total Dissolved Solid	ls	mg/L	396	412	2	4	10			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN SCL4A									
Pace Project No.:	60354705									
QC Batch:	690585		Analysis Me	ethod:	SM 2540C					
QC Batch Method:	SM 2540C		Analysis De	scription:	2540C Total Dissolved Solids					
			Laboratory:		Pace Analytic	al Services - Ka	nsas City			
Associated Lab Sar	nples: 6035470	5002, 603547050	04, 60354705005							
METHOD BLANK:	2790001		Matrix	: Water						
Associated Lab Sar	nples: 6035470	5002, 603547050	04, 60354705005							
			Blank	Reporting						
Paran	neter	Units	Result	Limit	MDL	Analyz	zed C	lualifiers		
Total Dissolved Soli	ds	mg/L		5	.0	5.0 11/20/20	09:35			
LABORATORY CO	NTROL SAMPLE:	2790002								
			Spike	LCS	LCS	% Rec				
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers			
Total Dissolved Soli	ds	mg/L	1000	1050	105	80-120				
SAMPLE DUPLICA	TE: 2790003									
			60354705002	Dup		Max				
Paran	neter	Units	Result	Result	RPD	RPD	Qual	ifiers		
Total Dissolved Soli	ds	mg/L	673	69	95	3	10			
SAMPLE DUPLICA	TE: 2790004									
			60354811001	Dup		Max				
Paran	neter	Units	Result	Result	RPD	RPD	Qual	ifiers		
Total Dissolved Soli	ds	mg/L	2790	227	70	21	10 D6			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:AMEREN SCL4APace Project No.:60354705											
QC Batch: 693100		Analysis	Method	l:	EPA 300.0						
QC Batch Method: EPA 300.0		Analysis	s Descrip	otion:	300.0 IC An	ions					
		Laborate	ory:		Pace Analy	tical Serv	rices - Kans	sas City			
Associated Lab Samples: 60354369	011, 6035436901	8, 6035436902	22								
METHOD BLANK: 2799457		Ma	atrix: Wa	ater							
Associated Lab Samples: 60354369	011, 6035436901	8, 6035436902	22								
Parameter	Linits	Blank Result	F	Reporting	МП	1	Analyze	o be	ualifiers		
	mg/l) 30 —	1			12/07/20 0	18·24			
Eluoride	mg/L	<0.0	075	0.2	0	0.075	12/07/20 0)8:24			
Sulfate	mg/L	<0	0.28	1.	0	0.28	12/07/20 0	8:24			
METHOD BLANK: 2802268		Ма	atrix: Wa	ater							
Associated Lab Samples: 60354369	011, 6035436901	8, 6035436902	22								
-		Blank	F	Reporting							
Parameter	Units	Result		Limit	MD	L	Analyze	ed Q	ualifiers		
Chloride	mg/L	<0	0.39	1.	0	0.39	12/08/20 0)8:14			
Fluoride	mg/L mg/l	<0.0	075 1 28	0.2	0	0.075	12/08/20 0	18:14 18:17			
Currato	nig, ±				•	0.20	12,00,200				
LABORATORY CONTROL SAMPLE:	2799458										
		Spike	LC	S	LCS	%	Rec				
Parameter	Units	Conc.	Res	ult	% Rec	Lii	mits	Qualifiers			
Chloride	mg/L	5		4.9	9	9	90-110				
	mg/L	2.5		2.5	10	1	90-110				
Suirate	mg/L	5		4.7	9	5	90-110				
LABORATORY CONTROL SAMPLE:	2802269										
		Spike	LC	S	LCS	%	Rec				
Parameter	Units	Conc.	Res	ult	% Rec	Lii	mits	Qualifiers			
Chloride	mg/L	5		4.8	9	6	90-110				
Fluoride	mg/L	2.5		2.6	10	2	90-110				
Sulfate	mg/L	5		5.1	10	2	90-110				
MATRIX SPIKE & MATRIX SPIKE DUE	PLICATE: 2799	459		2799460)						
		MS N	ISD	2.00.00							
	60354369012	Spike S	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Units	Result	Conc. C	conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride mg/L	13.4	5	5	17.6	17.9	8	34 9	91 80-120	2	15	
Fluoride mg/L	0.34	2.5	2.5	2.3	2.5	7	'9 8	86 80-120) 7	15	_
Sulfate mg/L	38.1	10	10	50.9	54.3	12	28 16	62 80-120) 7	15	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCL4A Pace Project No.: 60354705

MATRIX SPIKE SAMPLE:	2799461						
		60354369019	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	76.7	50	125	96	80-120	
Fluoride	mg/L	0.16J	2.5	2.4	90	80-120	
Sulfate	mg/L	462	250	705	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No :	AMERI 603547	EN SCL4A									
	6027	00 20		Analysia Ma	othod	= D	A 200 0				
QC Batch.	09370	02					A 300.0				
QC Batch Method:	EPA	00.0			escription:	300		niana Kan			
Associated Lab Sar	mnles	60354705001 6	0354705003 6	Laboratory:	6035470500	- Ра 5	ce Analytical Se	rvices - Kar	isas City		
	npico.	00004700001,0		, ,	0000470000	<u> </u>					
METHOD BLANK:	280162	1		Matrix	c: Water						
Associated Lab Sar	mples:	60354705001, 6	0354705003, 6	60354705004,	6035470500	5					
				Blank	Reporting	g					
Parar	neter		Units	Result	Limit		MDL	Analyz	ed	Qualifiers	_
Chloride			mg/L	<0.39)	1.0	0.39	12/09/20	08:45		
Fluoride			mg/L	<0.075	5 C).20	0.075	12/09/20	08:45		
Sulfate			mg/L	<0.28	3	1.0	0.28	12/09/20	08:45		
METHOD BLANK:	280342	1		Matrix	: Water						
Associated Lab Sar	mples:	60354705001.6	0354705003.6	60354705004.	6035470500	5					
	•	,-	, -	Blank	Reporting	a					
Parar	neter		Units	Result	Limit	5	MDL	Analyz	ed	Qualifiers	
Chloride			ma/L	< 0.39)	1.0	0.39	12/09/20			-
Fluoride			mg/L	< 0.075	; C).20	0.075	12/09/20	08:45		
Sulfate			mg/L	<0.28	3	1.0	0.28	12/09/20	08:45		
			-								
METHOD BLANK:	280344	3		Matrix	: Water						
Associated Lab Sar	mples:	60354705001,6	0354705003, 6	60354705004,	6035470500	5					
				Blank	Reporting	g					
Parar	neter		Units	Result	Limit		MDL	Analyz	ed	Qualifiers	
Chloride			mg/L	<0.39)	1.0	0.39	12/10/20	10:44		_
Fluoride			mg/L	<0.075	5 C).20	0.075	12/10/20	10:44		
Sulfate			mg/L	<0.28	3	1.0	0.28	12/10/20	10:44		
METHOD BLANK:	280405	0		Matrix	c Water						
Associated Lab Sar	mples:	60354705001.6	0354705003.6	60354705004.	6035470500	5					
		,	,	Blank	Reporting	a					
Parar	neter		Units	Result	Limit	5	MDL	Analyz	ed	Qualifiers	
Chloride		·	ma/L	<0.39)	1.0	0.39	12/10/20	10:44		_
Fluoride			mg/L	< 0.075	; C).20	0.075	12/10/20	10:44		
Sulfate			mg/L	<0.28	3	1.0	0.28	12/10/20	10:44		
			-								
LABORATORY CO	NTROL	SAMPLE: 2801	622								
_				Spike	LCS	-	LCS 9	% Rec	0		
Parar	neter		Units	Conc.	Result	%	% Rec	Limits	Qualifie	ers	
Chloride			mg/L	5	4.8		97	90-110			
Fluoride			mg/L	2.5	2.5		98	90-110			
B	oculte proc	ontod on this name or	a in the unite india	atod by the "Units	e column orosn	twher	o an altornato unit le	s prosontod to	the right of	the result	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCL4A

Pace Project No.: 60354705

LABORATORY CONTROL SAMPLE:	2801622										
		Spike	LC	S	LCS	% Re	ec				
Parameter	Units	Conc.	Re	sult	% Rec	Limit	ts (Qualifiers	_		
Sulfate	mg/L		5	5.0	100) 9	90-110		_		
LABORATORY CONTROL SAMPLE:	2803422										
		Spike	LC	S	LCS	% Re	ec				
Parameter	Units	Conc.	Re	sult	% Rec	Limit	ts (Qualifiers			
Chloride	mg/L		5	4.8	97	7 9	90-110		_		
Fluoride	mg/L	2.	5	2.5	98	3 9	90-110				
Sulfate	mg/L		5	5.0	100) 9	90-110				
LABORATORY CONTROL SAMPLE:	2803444										
		Spike	LC	S	LCS	% Re	ec				
Parameter	Units	Conc.	Re	sult	% Rec	Limit	ts (Qualifiers			
Chloride	mg/L		5	4.8	97	7 9	90-110		_		
Fluoride	mg/L	2.	5	2.4	98	3 9	90-110				
Sulfate	mg/L		5	5.0	99	9 9	90-110				
LABORATORY CONTROL SAMPLE:	2804051										
		Spike	LC	S	LCS	% Re	ec				
Parameter	Units	Conc.	Re	sult	% Rec	Limit	ts (Qualifiers			
Chloride	mg/L		5	4.8	97	7 9	90-110		_		
Fluoride	mg/L	2.	5	2.4	98	3 9	90-110				
Sulfate	mg/L		5	5.0	99	9 9	90-110				
MATRIX SPIKE & MATRIX SPIKE DU	PLICATE: 2801	623	MCD	2801624	4						
	60354704006	IVIJ Sniko	IVISD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride mg/	L 68.5	25	25	95.8	94.7	109	105	80-120	1	15	
Fluoride mg/	Ľ 0.41	2.5	2.5	2.9	3.4	101	119	80-120	14	15	
Sulfate mg/	۲L 37.1	25	25	62.0	61.2	100	97	80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	AMEREN SCL4A 60354705								
QC Batch: QC Batch Method:	693765 EPA 300.0		Analysis M Analysis De	ethod: escription:	EPA 300.0 300.0 IC A	nions	rvices - Kan	eac City	
Associated Lab Sam	nples: 6035470	5002	Laboratory		Face Analy		NCES - Nai		
METHOD BLANK:	2801629		Matrix	: Water					
Associated Lab Sam	nples: 6035470	5002							
Param	neter	Units	Blank Result	Reportin Limit	g ME	DL	Analvz	ed	Qualifiers
Chloride		ma/l			10	0.36	12/09/20	10.37	
Fluoride		mg/L	<0.08	5	0.20	0.085	12/09/20	10:37	
Sulfate		mg/L	<0.42	2	1.0	0.42	12/09/20	10:37	
METHOD BLANK:	2804054		Matrix	: Water					
Associated Lab Sam	nples: 6035470	5002							
_			Blank	Reportin	g	N			0
Param	neter	Units	Result	Limit	ME		Analyz	ed	Qualifiers
Chloride		mg/L	<0.36	6	1.0	0.36	12/10/20	10:44	
Fluoride		mg/L	<0.085	5 (0.20	0.085	12/10/20	10:44	
Sulfate		mg/L	<0.42	2	1.0	0.42	12/10/20	10:44	
METHOD BLANK:	2804297		Matrix	c Water					
Associated Lab Sam	-ccc.	5002							
			Blank	Reportin	a				
Param	neter	Units	Result	Limit	ME	DL	Analyz	ed	Qualifiers
Chloride		mg/L	<0.36	5	1.0	0.36	12/11/20	09:28	
Fluoride		mg/L	<0.085	5 (0.20	0.085	12/11/20 (09:28	
Sulfate		mg/L	<0.42	2	1.0	0.42	12/11/20 (09:28	
		2801630							
			Spike	LCS	LCS	0	% Rec		
Param	neter	Units	Conc.	Result	% Rec	I	Limits	Qualif	iers
Chloride		mg/L	5	5.1	1()2	90-110		
Fluoride		mg/L	2.5	2.5	1()2	90-110		
Sulfate		mg/L	5	5.0	ę	99	90-110		
		2804055							
		200-000	Spike	LCS	LCS	o,	% Rec		
Param	neter	Units	Conc.	Result	% Rec	I	Limits	Qualif	iers
Chloride		mg/L	5	4.8	ç	97	90-110		
Fluoride		mg/L	2.5	2.4	ę	98	90-110		
Sulfate		ma/L	5	5.0	ç	99	90-110		

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCL4A

Pace Project No.: 60354705

LABORATORY CONTROL SAMPLE:	2804298					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	95	90-110	
Fluoride	mg/L	2.5	2.4	95	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 2801	631		2801632							
			MS	MSD								
		60354705002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.3	5	5	8.0	8.0	94	93	80-120	1	15	
Fluoride	mg/L	0.34	2.5	2.5	2.7	2.7	94	94	80-120	0	15	
Sulfate	mg/L	46.3	25	25	73.8	74.9	110	114	80-120	2	15	

MATRIX SPIKE SAMPLE:	2801633						
		60355901001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	0.58J	5	5.0	88	80-120	
Fluoride	mg/L	<0.085	2.5	2.4	97	80-120	
Sulfate	mg/L	9.4	5	14.6	103	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCL4A

Pace Project No.: 60354705

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCL4A Pace Project No.: 60354705

				Analytical Method	Batch
60354369011	S-BMW-3S	EPA 200.7	693106	EPA 200.7	693137
60354369018	S-BMW-1S	EPA 200.7	693106	EPA 200.7	693137
60354369022	S-UG-3	EPA 200.7	693106	EPA 200.7	693137
60354705001	S-TMW-1	EPA 200.7	693107	EPA 200.7	693138
60354705002	S-TMW-2	EPA 200.7	693107	EPA 200.7	693138
60354705003	S-TMW-3	EPA 200.7	693107	EPA 200.7	693138
60354705004	S-SCL4A-DUP-1	EPA 200.7	693107	EPA 200.7	693138
60354705005	S-SCL4A-FB-1	EPA 200.7	693107	EPA 200.7	693138
60354369011	S-BMW-3S	SM 2320B	690355		
60354369018	S-BMW-1S	SM 2320B	690355		
60354369022	S-UG-3	SM 2320B	690355		
60354705001	S-TMW-1	SM 2320B	690813		
60354705002	S-TMW-2	SM 2320B	690813		
60354705003	S-TMW-3	SM 2320B	690813		
60354705004	S-SCL4A-DUP-1	SM 2320B	690813		
60354705005	S-SCL4A-FB-1	SM 2320B	690813		
60354369011	S-BMW-3S	SM 2540C	690481		
60354369018	S-BMW-1S	SM 2540C	690481		
60354369022	S-UG-3	SM 2540C	690481		
60354705001	S-TMW-1	SM 2540C	690324		
60354705002	S-TMW-2	SM 2540C	690585		
60354705003	S-TMW-3	SM 2540C	690324		
60354705004	S-SCL4A-DUP-1	SM 2540C	690585		
60354705005	S-SCL4A-FB-1	SM 2540C	690585		
60354369011	S-BMW-3S	EPA 300.0	693100		
60354369018	S-BMW-1S	EPA 300.0	693100		
60354369022	S-UG-3	EPA 300.0	693100		
60354705001	S-TMW-1	EPA 300.0	693762		
60354705002	S-TMW-2	EPA 300.0	693765		
60354705003	S-TMW-3	EPA 300.0	693762		
60354705004	S-SCL4A-DUP-1	EPA 300.0	693762		
60354705005	S-SCL4A-FB-1	EPA 300.0	693762		

Pace Analytical Sample Conditio	on Upon Receipt	WO#:60354705
Client Name: Golder		
Courier: FedEx □ UPS □ VIA □ 1.45 Clay □	PEX 🗆 ECI 🗆 P	Pace 🗆 Xroads X Client 🗆 Other 🗆
Tracking #:	Pace Shipping Label Used?	Yes 🗆 No t
Custody Seal on Cooler/Box Present: Y	□ Seals intact: Yes	No 🗆
Packing Material:Bubble Babble B	ags	None D Other 791
Cooler Temperature (°C): As-read 0.6 Corr.	Factor +O . > Corrected	Date and initials of person examining contents: 11/18-2000
Temperature should be above freezing to 6°C o (, 2, 2	0,6	3.32.40.8
Chain of Custody present:	Yes No N/A	/ / /
Chain of Custody relinguished:		
Samples arrived within holding time:		
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:		
Sufficient volume:		2
Correct containers used:		
Pace containers used:		
Containers lased.		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs		
Filtered volume received for dissolved tests?		
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix:		
Containers requiring pH preservation in compliance?	Yes □No □N/A Li	st sample IDs, volumes, lot #'s of preservative and the ate/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	T# GOZ173	
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	L'Yes L'No	
Potassium ioulde test strip turns blue/purple? (Preserve)	∐Yes ∐No	
Trip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the	field? Yes No	
Copy Construction: Copy Co	UC to Client? Y / N	Field Data Required? Y / N
Comments/ Resolution		
By jchurch at 7:55 am, 11/19/20		
Project Manager Review	Date:	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Sectic	on A ed Client Information:	Section B Required Project Information:	Section C Invoice Information		Page: of
Compa	iny: Golder Associates	Report To: Jeffrey Ingram	Attention:		
Addres	s: 13515 Barrett Parkway Dr., Ste 260	Copy To: Ryan Feldmann/Eric Schneider	Company Name:	REGULATORY AGENC	
	Ballwin, MO 63021		Address:	r NPDES	ND WATER 📃 DRINKING WATER
Email 1	o: jeffrey ingram@golder.com	Purchase Order No.:	Pace Quote Reference:	I UST RCRA	T OTHER
Phone:	636-724-9191 Fax: 636-724-9323	Project Name: Ameren SCL4A Sioux Energy Center	Pace Project Jamie Church Manager	Site Location	
Reque	sted Due Date/TAT: Standard	Project Number: 153-140602.0003D	Pace Profile #: 9285	STATE: MC	
			Re	uested Analysis Filtered (Y/N)	
	Section D Valid Matrix C Valid Matrix C Required Client Information	odes Dia Collected Collected	Preservatives	z	
	DRINKING WATER WATER WASTE WASTE PRODUCT SOLUSOUD	2 SL P WWT WWT SRAB C-COMPOSITE START ENDIGRAB START ENDIGRAB COMPOSITE COMPOSITE		** SIE	(N/A)
	SamPLE ID (A-Z, 0-9 /) Sample IDS MUST BE UNIQUE	TTMPE (G=1 CODE (st CODE (st	erved erved for for for for for for for for for for	ty Aethory Methory X 226 728 728	al Chlorine
# MƏTİ		DATE DATE DATE DATE DATE DATE DATE	AMMPCE Chlorid HNO ₃ HCI MaOH MaOH MaCH Methan Other Methan Other	Alkalini Alkalini Append Mercur Radiun Radiun	ସୁସ୍ ଡୁଡ ନିନ୍ଦୁ Pace Project No./ Lab I.D.
-	S-TMW-1	Wr G 1 + 1435			
2	S-TMW-2				
ę	S-TMW-3	Wr G IIIIIII	2 2 1		
4	S-UG-3	WT G / I IS46			
ŝ	S-SCL4A-DUP-1	WT G			
9	S-SCL4A-FB-1	WT G			
2	S-SCL4A-MS-1	WT G 135			
∞	S-SCL4A-MSD-1	WT G 1.1345			
σ	S-BMW-1S	WT G NILIULIUN 1450			
10	S-BMW-3S	WT G L III			
₹ 3		WT 6			
2	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION DATE	TIME ACCEPTED BY / AFFI	ATION DATE TIME	SAMPLE CONDITIONS
*EPA	200.7: Fe, Mg, Mn, K, Na, Ca, B	Brenden Talbert (Golder 11/12/20	IVUS MUDDELA MUM	nuo 11/17 1650	
		Runela mimura	1650 wh: A/	Le 11.18.20 OUIS	0.8 7 4 1
					N J G
_	D				
aye	200	SAMPLER NAME AND SIGNAT			s Intac Sealer (Y/N) (Y/N)
01 01	21 ~ 4	PRINT Name of SAMPLE	It brenden Taller 1	E Signed 11 12 25	Temp Cooler Cooler (Y)
51	. 0 1		12 v tarring 1 (MM	NDDWN: 1111-126	e e e e e e e e e e e e e e e e e e e

"Important Note: By signing this form you are according Pace's NET 30 day payment terms and agreeing to late charges of 1 5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev 08, 12-Oct-2007

MEMORANDUM

Project No. 153140602

DATE December 29, 2020

- TO Project File Golder Associates
- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, SIOUX ENERGY CENTER – SEC-SCL4A – DETECTION MONITORING - DATA PACKAGE 60354705

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Golder Associates	Project Manager: <u>J. Ingram</u>	
Project Name: Ameren- Sioux - SCL4A	Project Number: ¹⁵³¹⁴⁰⁶⁰²	
Reviewer: A. Muehlfarth	Validation Date: 12/29/2020	
Laboratory: Pace Analytical - KS Analytical Method (type and no.): EPA 200.7 (Total Metals); SM2 Matrix: Air Soil/Sed. Water Waste Sample Names S-TMW-1, S-TMW-2, S-TMW-3, S-SCL4A-DUP-1, S-	SDG #: 60354705 2540C (TDS); SM2320B (Alkalinity); EPA 300.0 (Anions) 	

NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

Field In	nformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	х			11/16/2020 - 11/17/2020
b)	Sampling team indicated?	х			BTT
c)	Sample location noted?	X			
d)	Sample depth indicated (Soils)?			x	
e)	Sample type indicated (grab/composite)?	x			Grab
f)	Field QC noted?	х			See Notes
g)	Field parameters collected (note types)?	х			pH, S.Cond., Turb, Temp, DO, ORP
h)	Field Calibration within control limits?	х			
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field no	ites?
			Х		
j)	Does the laboratory narrative indicate deficiencies?			x	
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
Chain-o	of-Custody (COC) Was the COC properly completed?	YES ×	NO	NA	COMMENTS
Chain-(a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field	YES	NO		COMMENTS
Chain-o a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel?	YES ×	NO		COMMENTS
Chain-o a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × ×	NO	NA	COMMENTS
Chain-(a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × ×			COMMENTS
Chain-(a) b) c) Genera	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES × × YES	NO	NA	COMMENTS
Chain-(a) b) c) Genera a)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES	NO	NA	COMMENTS
Chain-d a) b) c) Genera a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis?	YES ∴ × YES × ×	NO	NA	COMMENTS
Chain-(a) b) c) Genera a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used?	YES	NO	NA	COMMENTS
Chain-d a) b) c) Genera a) b) c) d)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? If (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used?	YES × × × YES × × × × ×	NO	NA	COMMENTS
Chain-(a) b) c) Genera a) b) c) d) e)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used? Were appropriate reporting limits achieved?	YES × × × YES × × × × × ×	NO	NA	COMMENTS
Chain-(a) b) c) Genera a) b) c) d) e) f)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used? Were appropriate reporting limits achieved? Were any sample dilutions noted?	YES × × × YES × × × × × × × ×	NO	NA	COMMENTS COMMENTS COMMENTS See Notes

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	×			
b)	Were analytes detected in the field blank(s)?	X			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	х			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	iplicate	sample n	ames)?	
		x			S-SCL4A-DUP-1 @ S-TMW-3
b)	Were field dup. precision criteria met (note RPD)?		x		See Notes
c)	Were lab duplicates analyzed (note original and dup	olicate s	samples)?)	
		x			See Notes
d)	Were lab dup. precision criteria met (note RPD)?		х		See Notes
Blind S	standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		x		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			X	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		x		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
b)	Was MSD accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			X	
c)	Were MS/MSD precision criteria met?	х			

Comments/Notes:

Sulfate was diluted in several samples, no qualification necessary.

Method Blanks:

2799492: Calcium (47.9J), Potassium (224J), Sodium (378J), associated with samples -011, -018, -022. Ror results in associated samples that were >10x blank result, no qualification was necessary.

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

Field Blank:

S-SCL4A-FB-1 @ S-TMW-1: Calcium (43.5J), TDS (9.0). Sample results >10x the blank result, no qualification necessary.

Duplicates:

S-SCL4A-DUP-1: RPD exceeds limit (20%) for Boron (27.4%), Calcium (30.3%), Iron (24.3%), Magnesium (29.0%), Manganese (31.2%), Sodium (26.9%).

2790004: RPD exceeds limit (10%) for TDS (21%). Associated with unrelated sample, no qualification necessary.

MS/MSD:

2799494/2799495: MS % recovery low for Calcium. MS/MSD performed on unrelated sample, no qualification necessary.

2799499/2799500: MS % recovery high for Calcium. MS/MSD performed on unrelated sample, no qualification necessary.

2799501: MS % recovery low for Calcium. Associated with sample -002.

2799459/2799460: MS % recovery low for Fluoride, MS/MSD % recovery high for Sulfate. MS/MSD performed on unrelated sample, no qualification necessary.

$\overline{\}$

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason		
S-BMW-1S	Potassium	500	U	Detected in MB, sample result <pql< td=""></pql<>		
S-BMW-3S	"	500	U	11		
S-TMW-3	Boron	88.5	J	DUP RPD exceeds limits		
"	Calcium	130000	J	II.		
"	Iron	1340	J	II.		
"	Magnesium	23700	J	"		
"	Manganese	677	J	"		
"	Sodium	4350	J	"		
S-SCL4A-DUP-1	Boron	67.2	J	"		
"	Calcium	95800	J	"		
"	Iron	1050	J	"		
"	Magnesium	17700	J	"		
"	Manganese	494	J	"		
"	Sodium	3320	J	"		
S-TMW-2	Calcium	128000	J	MS % recovery outside control limits		
	<					
	1 M.III	12/20/2020				
Signature: (//////////////////////////////				Date:		

APPENDIX B

Alternative Source Demonstration – November 2019 Sampling Event

REPORT SCL4A - Alternative Source Demonstration

Sioux Energy Center, St. Charles County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Avenue, St. Louis, MO 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

+1 314 984-8800

153-140602

June 5, 2020

Table of Contents

1.0	CERTIFICATION STATEMENT1					
2.0	INTRODUCTION2					
3.0	SITE DESCRIPTION AND BACKGROUND2					
	3.1	Geological and Hydrogeological Setting	2			
	3.2	Utility Waste Landfill Cell 4A – SCL4A	2			
	3.3	CCR Rule Groundwater Monitoring	3			
4.0	REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES					
5.0	EVIDENCE OF SSI FROM ALTERNATIVE SOURCE					
	5.1	CCR Indicators	5			
	5.2	SSIs at TMW-2	6			
	5.2.1	Boron Concentrations at TMW-2	6			
	5.2.2	Sulfate Concentrations	6			
	5.2.3	Chloride Concentrations	8			
	5.2.4	Total Dissolved Solids (TDS) Concentrations	9			
6.0	DEMONSTRATION THAT SSIS WERE NOT CAUSED BY SCL4A IMPACT					
7.0	REFERENCES12					

Tables

- Table 1 November 2019 Detection Monitoring Results
- Table 2 Review of Statistically Significant Increases
- Table 3 Types of CCR and Typical Indicator Parameters

Figures

- Figure 1 Site Monitoring Well Location and Aerial Map
- Figure 2 Time Series Plot for Boron Concentrations
- Figure 3 Time Series Plot for Sulfate Concentrations South of the SCL4A
- Figure 4 Pre-CCR Boron Plots Utility Waste Landfill
- Figure 5 Pre-CCR Sulfate Plots Utility Waste Landfill
- Figure 6 Sulfate Concentrations Compared to 2019 Flooding Event
- Figure 7 Changes in Redox Constituents
- Figure 8 Time Series Plot for Chloride Concentrations
- Figure 9 Pre-CCR Chloride Plots Utility Waste Landfill
- Figure 10 Time Series Plot for Total Dissolved Solids South of the SCL4A
- Figure 11 Time Series Plot for Total Dissolved Solids at TMW-2 and Background Locations
- Figure 12 Pre-CCR Total Dissolved Solids Plots Utility Waste Landfill

1.0 CERTIFICATION STATEMENT

This SCL4A – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this SCL4A – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, *Missouri, USA* located at 8501 Missouri 94, West Alton, Missouri 63386 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G.

Principal, Practice Leader

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this SCL4A – Alternative Source Demonstration has been prepared to document an Alternative Source Demonstration (ASD) for Statistically Significant Increases (SSIs) identified for Ameren Missouri's (Ameren) Sioux Energy Center (SEC), Utility Waste Landfill (UWL) Cell 4A - SCL4A. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused the SSIs and that the apparent SSIs were the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

Ameren owns and operates the SEC in St. Charles County, Missouri located approximately 12 miles westnorthwest of the confluence of the Mississippi and Missouri Rivers. **Figure 1** depicts the site location and layout, including the location of the SCL4A. The SEC is approximately 1,025 acres and is located in the floodplain between the Mississippi and Missouri Rivers. The SEC is bounded to the north by wooded areas associated with the Mississippi River. The property is bounded to the south by a railroad. The SEC is bounded to the east and west by agricultural fields.

3.1 Geological and Hydrogeological Setting

The SCL4A lies between the Mississippi River to the north and the Missouri River to the south. Flow and deposition from these rivers have resulted in thick alluvial deposits which lie unconformably on top of bedrock. These alluvial deposits, which can range from approximately 100 to 130 feet thick, make up the uppermost aquifer called the Alluvial Aquifer. Overall, this aquifer is described as a fining upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Drilling in the Alluvial Aquifer identified different sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are highly variable.

Beneath the Alluvial Aquifer lies the bedrock aquifer. Bedrock in this region includes Mississippian-aged rocks of the Meramecian Series. Formations include primarily limestone, dolomite, and shale and are comprised of the Salem Formation overlying the Warsaw Formation and the Burlington-Keokuk Formation.

3.2 Utility Waste Landfill Cell 4A – SCL4A

UWL Cell 4A is referred to by Ameren as the SCL4A, or "Landfill Cell 4A." The SCL4A is approximately 15 acres in size and is located south of the generating plant on the south side of Highway 94 (**Figure 1**). The CCR Unit manages Coal Combustion Residuals (CCR) from the SEC including "fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels" (Gredell and Reitz & Jens, 2014). These wastes are managed using a dry disposal

process and are moisture conditioned (30-40% moisture content) to minimize dust and ease in disposal. The CCR waste is trucked across Highway 94 from the plant and disposed of in the SCL4A.

The SCL4A was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil HDPE

geomembrane liner. Information on the design of the UWL is available in the 2014 Proposed Construction Permit Modification, Construction Permit Number 0918301 (Gredell and Reitz & Jens, 2014).

A groundwater monitoring well network was installed in 2007 and 2008 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 16 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). These monitoring wells are installed in the uppermost portions of the Alluvial Aquifer, just below the seasonally low elevation for groundwater. Quarterly groundwater samples have been collected in these monitoring wells since June 2008 for the state required UWL parameters.

The permit for the Sioux UWL was issued July 30, 2010 (permit #0918301) for the SCPC (Cell 1). Nine (9) sampling events were performed prior to July 30, 2010 and represent groundwater quality prior to CCR placement in the SCPC. The SCL4A was the second cell that was constructed at this UWL. The SCL4A construction was not completed until 2014 and no CCR was placed in the unit until after the final revisions to the Proposed Construction Permit Modification on August 16, 2014. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following were completed prior to the October 17, 2017 deadline: (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of the CCR Rule.

The groundwater monitoring system for the SCL4A consists of six (6) monitoring wells screened in the uppermost aquifer (Alluvial Aquifer) as shown on **Figure 1**. One (1) existing monitoring well (UG-3) was installed by Gredell Engineering Resources, Inc., in December 2007 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-1, TMW-2, TMW-3, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information on the design and installation of the monitoring wells is provided in the SCL4A GMP and the SCL4A 2017 Annual Report.

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the SCL4A. After baseline sampling, the first Detection Monitoring event was completed in November 2017 and Detection Monitoring has continued on a semi-annual basis thereafter. Laboratory testing was performed for the following Appendix III constituents during Detection Monitoring:

- Boron
- Calcium
- Chloride
- 🔹 pH
- Sulfate
- Total dissolved solids (TDS)
- Fluoride

In January 2018, background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPLs). After the August 2019 sampling event, the UPLs were updated with at least four (4) new results at each well as outlined in the statistical analysis plan. These UPLs have been compared to the Detection Monitoring results from each semiannual Detection Monitoring event. If results from Detection Monitoring were higher than the calculated UPL, it is considered an initial exceedance, in which case a verification sample is then collected and tested in accordance with the SCL4A Statistical Analysis Plan.

During the November 2019 Detection Monitoring event, five (5) initial exceedances were identified including sulfate and TDS at UG-3 and sulfate, TDS, and chloride at TMW-2. Verification sampling did not confirm the SSIs of sulfate and TDS at UG-3, however, the initial exceedances for chloride, sulfate and TDS were confirmed at TMW-2. Results from the November 2019 Detection Monitoring event and the subsequent verification event are included in **Table 1**.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

As indicated above, monitoring well TMW-2 had thee confirmed SSIs during the November 2019 sampling event (chloride, sulfate, and TDS). The results from these SSIs are displayed on **Table 1**. TMW-2 is screened in the upper portion of the Alluvial Aquifer, just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-2 is located to the south of the SCL4A, south of Highway 94, the generating plant, and the two (2) surface impoundments near the plant (SCPA and SCPB).

Based on Golder's review of the pre-disposal data, discussed in Section 3.2 above, and our comparison of those pre-disposal data with the results from the eight (8) CCR-rule baseline events, it was concluded that the groundwater at the SCL4A contained low-level impacts from CCR that pre-dated construction and operation of the SCL4A. As a result of these pre-existing impacts, the SCL4A statistical analysis plan uses intrawell UPLs to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

The intrawell UPLs for the SSIs in question are provided below in **Table 2**. This table also displays the range of values obtained during baseline sampling and the values obtained since baseline sampling as a part of the Detection Monitoring program.

		UPL Based on Baseline	August 2019	Baseline Sampling Event Range (May	Detection Monitoring Sampling Range (November 2017 -	November 2019	January 2020
Constituent	Well ID	Events	Updated UPL	2016 - June 2017)	January 2020)	Results	Results
Chloride (mg/L)		4.151	3.954	2.4 - 3.9	2.2 - 4.7	4.5	4.7
Sulfate (mg/L)	TMW-2	37.9	52.1	30.0 - 35.5	26.4 - 85.8	75.1	85.8
Total Dissolved Solids (mg/L)		476.5	495.8	403 - 450	411 - 721	502	513

Table 2: Review of Statistically Significant Increases

Notes:

- 1) Results in mg/L (milligrams per liter).
- 2) UPL upper prediction limit.
- 3) UPLs calculated using Sanitas[™] software.

5.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the three SSIs for well TMW-2 are not caused by a release from the SCL4A, but are from an alternative source. The following section describes the different lines of evidence, listed below, that demonstrate this position.

- Review of concentrations in nearby and background monitoring wells.
- Review of concentrations prior to CCR placement in the SCL4A.
- Documentation of the construction of the SCL4A with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Impacts from flooding event from March to July, 2019.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 3** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)		
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	 Boron Molybdenum Lithium Sulfate 		
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	 Bromide Potassium Sodium Fluoride 		
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride 		

Table 3: Types of CCR and Typical Indicator Parameters

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the SCL4A has historically received fly ash and boiler slag/bottom ash. FGD type wastes at the SEC are managed at the SCPC, located to the west of the SCL4A.

5.2 SSIs at TMW-2

5.2.1 Boron Concentrations at TMW-2

Boron is typically the key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early indicator of impacts from a CCR Unit. If groundwater was impacted by the SCL4A, current boron concentrations should be statistically elevated with respect to pre-CCR placement, background monitoring wells, and compared to those in the baseline sampling.

Figure 2 displays historical boron concentrations at TMW-2, as well as background wells BMW-1S and BMW-3S and nearby wells TMW-1 and TMW-2. If the SSIs for chloride, sulfate, and TDS were caused by impacts from the SCL4A, boron concentrations would also be expected to increase as a first indicator of CCR influence on the groundwater. **Figure 2** demonstrates that current boron concentrations are similar to those from previous sampling events and are similar to background levels. This information displays that TMW-2 does not have boron impacts, and therefore, a source other than CCR is likely the cause of SSIs for chloride, sulfate, and TDS at TMW-2.

5.2.2 Sulfate Concentrations

Sulfate, much like boron, can be an indicator of CCR impact, because sulfate is highly mobile in most hydrogeological environments, except where conditions are strongly reducing. The groundwater around the SCL4A does not demonstrate strongly reducing conditions, such as negative oxidation reduction potential (ORP) and dissolved iron concentrations above 1 mg/L. No hydrogen sulfide odors have been reported in the groundwater at the SCL4A. Therefore, if the SSIs for chloride, sulfate, and TDS were caused by impacts from the SCL4A, it would be expected that sulfate values would increase following placement of CCR. Given that boron concentrations are not indicative of CCR impacts, it follows that the elevated sulfate values in well TMW-2 are from an alternative source.

As displayed on **Figure 3**, during baseline sampling at TMW-2, sulfate ranged from 30.0-35.5 milligrams/liter (mg/L). During the November 2019 and January 2020 sampling events, sulfate increased to 75.1 and 85.8 mg/L, respectively. As displayed in **Figure 1**, TMW-1 (west) and TMW-3 (east) are located within 400 feet to the east and west of TMW-2. **Figure 3** shows that sulfate concentrations in wells TMW-1 and TMW-3 have been stable or decreasing since the beginning of sampling in May 2016. Additionally, site background concentrations in BMW-1S and BMW-3S, located approximately 1-mile to the northwest of SCL4A, have ranged from 23.1 to 41.4 mg/L. As shown in **Figure 3**, the concentration of sulfate in well TMW-2 for the April 2020 sampling event has decreased to 60.5 mg/L, which is back within the range of UPLs for the three downgradient monitoring wells at the SCL4A.

As described above, the SEC, including the SCL4A, lies between the Mississippi and Missouri Rivers approximately 12 miles west-northwest of the confluence of the two rivers. TMW-2 is located approximately 4,800 feet north of the Missouri River and approximately 6,600 feet south of the Mississippi River. During the 2006 detailed site investigation, sulfate concentrations were 130 mg/L in the Missouri River and 47 mg/L in the Mississippi River. The magnitudes of these results have been confirmed in additional studies including the following:

- 1) Concentrations in the Missouri River near Weldon Spring in St. Charles County (upgradient) had an average sulfate concentration of 115 mg/L and ranged from 95 to 180 mg/L (Kleeschulte, 1993).
- 2) During the 2014 human health risk reporting for the Labadie Energy Center, sulfate concentrations in publicly available Missouri River stations ranged from 51.6 to 157 mg/L (AECOM, 2014).
- 3) During the 2014 human health risk reporting for the Rush Island Energy Center, sulfate concentrations in publicly available Mississippi River stations ranged from 32.2 to 96.4 mg/L (AECOM, 2014).
- 4) Samples collected near the Sioux Energy Center reported sulfate concentrations ranging from 188 to 196 mg/L in the Missouri River and 29.9 to 40.5 mg/L in the Mississippi River (Corrective Measures Assessment, Haley and Aldrich, 2019).

Based on these results, sulfate concentrations in the rivers can be higher than those in TMW-2 during the November 2019 sampling event and are typically higher than those in groundwater near the SCL4A. Thus, the Missouri River flooding impacts, which inundated the TMW-2 well, should be considered a potential source for the elevated sulfate concentrations reported recently in well TMW-2.

Sulfate concentrations in the Missouri River are typically higher than those in the Mississippi River, indicating that the wells located closer to the Missouri River may have different baseline sulfate concentrations than those nearer to the Mississippi River. To investigate the geochemical variability of sulfate in this area, a review of the data in the state UWL wells prior to the receipt of CCR was completed. **Figure 4** displays a box and whisker plot of boron concentrations prior to June 2010 in the monitoring wells around the UWL. Based on these results, UG-1A and UG-2 were not be used for this analysis, because those two wells appear to be impacted by CCR influence of the upgradient SCPA during this timeframe.

Figure 5 displays a box and whisker plot of sulfate concentrations during the same timeframe with wells UG-01A and UG-2 removed. **Figure 5** also includes a line denoting the November 2019 sulfate concentration reported for well TMW-2. This figure demonstrates that recent sulfate concentrations in well TMW-2 are within the range of values present prior to any CCR being placed in the UWL. Additionally, as indicated above, to the sulfate concentrations reported in site background wells BMW-1S and BMW-3S, located near the Mississippi River, are much lower than sulfate concentrations reported for the well data displayed on **Figure 5**. Therefore, since increases in sulfate during the November 2019 sampling event are not likely from CCR impacts, the increase in sulfate may be a result of natural variability in the Alluvial Aquifer, because background sulfate concentrations in groundwater located near the UWL and the Missouri River are similar to recent sulfate values reported for well TMW-2.

As discussed in the 2019 Annual Report for the SCP4A, from March through July 2019, monitoring wells within the floodplain that were not on the elevated plant property were submerged by flooding of both the Mississippi and Missouri Rivers. Based on nearby gauges, flooding elevations in the Mississippi River were estimated to have reached approximately 436 feet above mean sea level (feet MSL) and approximately 440 feet MSL for the Missouri River. After the flooding subsided, on July 17, 2019, a post flood survey was completed to determine if any monitoring wells were impacted by flooding conditions. At the UWL, there was evidence of flooding impacts in monitoring wells UG-3, TMW-2, DG-1, and DG-4, and possible flooding impacts at TMW-1 and UG-1A. All these monitoring wells were re-developed prior to the August 2019 sampling event to attempt to remove flooding impacts to the monitoring wells.

Figure 6 is a time series plot of sulfate concentrations from November 2017 through April 2020 in several wells that had possible flooding impacts near the SCL4A. As noted above, sulfate concentrations in the Missouri River have ranged up to 196 mg/L, which is higher than sulfate concentrations present in TMW-2. These results display that two of the monitoring wells, UG-3 and TMW-2, had larger spikes in sulfate after the flooding, while one well (DG-1) displayed a minor increase in sulfate concentrations and three wells (UG-1A, TMW-1, and DG-4) had almost no change. Each of the wells that displayed increased sulfate had strong evidence of impacts from the flood (i.e., mud deposited inside the well protective casings and on the sides of the well seal). Therefore, even though these wells were re-developed prior to sampling, not all of the impact from the flooding may have been removed or river water may have recharged into the aquifer near TMW-2, resulting in elevated sulfate concentrations during subsequent sampling events. As displayed on **Figure 6**, sulfate results reported for the three impacted wells from the April 2020 event are returning to pre-flood levels, suggesting that impacts from the flooding event are decreasing with time. Thus, the Spring 2019 flooding event is considered a likely source for the elevated sulfate concentrations reported recently in well TMW-2.

In addition to increases in sulfate in TMW-2 after the flooding event, changes in redox conditions were also present. As shown in **Figure 7**, the increase in sulfate concentrations after the flooding event corresponds with an increase in alkalinity and a decrease in iron, which would be expected when more oxic river water mixes with the more reduced groundwater.

All of the preceding points indicate that the elevated sulfate concentration in TMW-2 in November 2019 was not caused by a release from the SCL4A, but instead is likely due to flooding impacts. The source of the recent elevated sulfate concentrations in well TMW-2 appear to be a result of natural geochemical variability or intrusion of water during the Spring 2019 flood event.

5.2.3 Chloride Concentrations

Chloride is not known to be a key indicator of fly ash or boiler slag/bottom ash (EPRI 2012) but can be an indicator for FGD type wastes and is commonly found in shallow groundwater systems near salt and brine treated roadways. At the SEC, FGD wastes are managed in the SCPC, located west of the SCL4A (see **Figure 1**). The nearest roadways to TMW-2 are highway 94 approximately 1,400 feet to the north, and Dwiggins Road approximately 1,100 feet to the south.

Chloride concentrations for the November 2019 sampling event and subsequent verification sampling event are 4.5 and 4.7 milligrams per liter (mg/L), respectively. These values are just above the original calculated UPL of 4.151 mg/L for chloride concentrations at TMW-2, which was calculated based on eight baseline sampling events in 2016 and 2017 during which time chloride concentrations ranged from 2.4 to 3.9 mg/L. In August 2019, UPLs were updated, in accordance with the Statistical Analysis Plan, following completion of four (4) new sampling events. The updated UPL is slightly lower than the original UPL at 3.954 mg/L. Nearby monitoring wells TMW-1 and TMW-3, located less than 400 feet to the east and west of TMW-2 have displayed very similar chloride concentrations ranging from 1.6 to 3.9 mg/L and UPLs of 4.463 (TMW-1) and 3.1 (TMW-3) mg/L. Chloride concentrations in site background monitoring wells located 1-mile to the northeast of SCL4A (wells BMW-1S and BMW-3S) display concentrations ranging from 6.3 to 12.0 mg/L.

Figure 8 displays chloride results in the monitoring wells south of the SCL4A (TMW-1, TMW-2, and TMW-3) compared to background results from site background wells BMW-1S and BMW-3S. This figure displays that the concentrations of 4.5 and 4.7 mg/L are well below those reported for background wells at 6.3 – 12.0 mg/L and are consistent with those in other monitoring wells located south of the SCL4A. This demonstrates that the results

from TMW-2 are well below those of unimpacted background limits for chloride in the shallow zone of the Alluvial Aquifer. Additionally, **Figure 9** displays a box and whisker plot of chloride concentrations compared to UWL wells prior to the receipt of CCR (June 2010) at all wells except UG-1A and UG-2. This figure clearly demonstrates that the concentrations at TMW-2 are well within chloride concentrations present prior to the receipt of CCR.

As discussed above, values from the Missouri and Mississippi River need to be assessed as a possible alternative source due to the flooding that occurred in 2019. During the 2006 detailed site investigation, chloride concentrations were 21 mg/L in the Missouri River and 20 mg/L in the Mississippi River. The magnitudes of these results have been confirmed in additional studies including the following:

- 1) Concentrations in the Missouri River near Weldon Spring in St. Charles County (upgradient) had an average chloride concentration of 21 mg/L and ranged from 15 to 27 mg/L (Kleeschulte, 1993).
- Samples collected near the Sioux Energy Center had chloride concentrations ranging from 23.3 to 23.9 mg/L in the Missouri River and 22.2 to 41.0 mg/L in the Mississippi River (Corrective Measures Assessment, Haley and Aldrich, 2019).

Based on these results, chloride concentrations in the rivers can be higher than those in TMW-2 during the November 2019 sampling event and are typically higher than those in groundwater south of the SCL4A away from roadways that are treated with road salt or brine. Thus, 2019 flooding impacts from these rivers should be considered a potential source for the elevated chloride concentrations reported recently in well TMW-2.

These results indicate that relatively low calculated UPLs for TMW-2 do not reflect the full, natural variability within the Alluvial Aquifer. When November 2019 results from TMW-2 are compared to the background and historical datasets, the results are well within the range of values reported for other monitoring wells in the Alluvial Aquifer both near the Mississippi and Missouri Rivers. In addition to natural geochemical variability, the recent increased concentrations reported for chloride in well TMW-2 are also potentially due to the intrusion of flood waters in the well/aquifer during the spring/summer 2019. Finally, the April 2020 result for chloride in TMW-2 is 3.8 mg/L, which is below the UPL for this well, so the most recent concentration for chloride in well TMW-2 is in compliance.

5.2.4 Total Dissolved Solids (TDS) Concentrations

TDS alone is not a key indicator of CCR or WFGD impacts (EPRI 2017, EPRI 2012). The concentration of TDS is largely based on the concentration of major ions in groundwater (calcium, magnesium, sodium, potassium, carbonates, chloride, sulfate, etc.). Although TDS alone is not a key indicator of CCR impacts, an increase in some of the major ions associated with CCR (calcium, sodium, chloride, sulfate) can represent CCR impacts, and thus increased TDS can be indicative of CCR impact.

As displayed on **Figure 10**, concentrations for the November 2019 and subsequent verification sampling event are 502 and 513 mg/L respectively. These results are lower than the result reported for May 2018 of 721 mg/L, which was flagged as an outlier in the database. Furthermore, these values are just above the calculated UPL of 495.8 mg/L for TDS at TMW-2. This UPL is calculated based on 12 (twelve) sampling events collected from May 2016 through August 2019, during which time TDS concentrations ranged from 403 to 484 mg/L. TMW-2 is not sampled as part of the state UWL sampling program; therefore, no historical data prior to the receipt of CCR in the SCL4A is available from this well. However, TMW-1 and TMW-3, which are located within 400 feet to the east and west of well TMW-2, ranged from 323-493 mg/L during this same timeframe. The UPLs for wells TMW-1 and TMW-3 are 485.1 mg/L and 505.9 mg/L, respectively. As shown in **Figure 10** and described above, the November 2019 result from TMW-2 is within the recent range of TDS concentrations for the area south of the
SCL4A. Therefore, the SSI for TDS is not a result of impacts from the SCL4A, but is likely due to a low UPL for TMW-2 resulting from a limited dataset used for the calculation which is not representative of the full natural variability in groundwater at well TMW-2.

In addition, **Figure 11** displays the TDS concentrations of the background monitoring wells BMW-1S and BMW-3S compared to TMW-2. Background TDS results at monitoring wells BMW-1S and BMW-3S ranged between 409-565 mg/L (with outliers at 721 and 1,170 mg/L) and a calculated UPL of 565 mg/L. This figure demonstrates that TDS concentrations are well within those of background monitoring wells. **Figure 12** displays a box and whisker plot of chloride concentrations compared to UWL wells prior to the receipt of CCR (June 2010) at all wells except UG-1A and UG-2. This figure clearly demonstrates that the concentrations at TMW-2 are well within the range of TDS concentrations present prior to the receipt of CCR.

As discussed above, Missouri and Mississippi River TDS concentrations are a possible alternative source due to the flooding that occurred in 2019. During the 2006 detailed site investigation, TDS concentrations were 420 mg/L in the Missouri river and 330 mg/L in the Mississippi River. The magnitudes of these results have been confirmed in the corrective measures assessment for the SCPA, where TDS values ranged from 465-497 mg/L in the Missouri River and 218-344 mg/L in the Mississippi River (Haley and Aldrich, 2019). Based on these results, TDS concentrations in the rivers are typically at similar levels to those displayed at TMW-2. Thus, like the recent sulfate and chloride increases identified above, the recent increases in TDS in TMW-2 are likely a result of flooding influence on the groundwater. In fact, the increased TDS in TMW-2 is directly related to the increases in sulfate and chloride concentrations, because TDS concentrations are directly dependent on the concentration of dissolved major ions in the solution, including alkalinity, sulfate, chloride, calcium, magnesium, sodium, and potassium. An increase in the major ion concentrations will result in a direct increase in TDS and vice versa.

The information provided in this section demonstrates that the SSI for TDS at TMW-2 was not caused by impacts from the SCL4A, but instead can be attributed to one, two or all of the following alternative sources: natural geochemical variability in the Alluvial Aquifer, the Spring 2019 flooding event, and a statistical impact resulting from a limited background dataset and the resulting lower than expected UPL.

6.0 DEMONSTRATION THAT SSIS WERE NOT CAUSED BY SCL4A IMPACT

Based on the information presented in Section 5 above, the recent SSIs for sulfate, chloride, and TDS in TMW-2 were not caused by impacts from the SCL4A. These SSIs appear to be the result of several possible factors, but are primarily attributed to natural geochemical variability within the Alluvial Aquifer and/or flooding impacts during the Spring 2019.

As described in Section 5.0, after flooding, a post-flood survey of each monitoring well noted that TMW-2 had impacts from the 2019 flooding event. The monitoring well was re-developed after flooding impacts; however, it appears that some of the intruded water in TMW-2 may not have been removed during this process or river water may have recharged into the aquifer near TMW-2. A review of sulfate, and chloride concentrations from the Mississippi and Missouri Rivers displays that flooding impacts would increase these concentrations in TMW-2. A sudden increase in concentrations after flooding, along with a spike in other oxic water conditions, provides evidence that TMW-2 was likely impacted by the flooding.

Additionally, boron concentrations in well TMW-2 did not increase following the flood event and have remained within the range of background levels. Boron is a key indicator of CCR impacts and would almost certainly show

an increase if the noted SSIs were from CCR impacts. Based on the evidence presented above, the SSIs at TMW-2 were not caused by CCR impacts from the SCL4A and no further actions are necessary with respect to these results. SCL4A will remain in Detection Monitoring during the upcoming second semiannual monitoring event of 2020.

7.0 **REFERENCES**

- AECOM. 2014. Groundwater and Surface Water Data Demonstrate no Adverse Human Health Impact From Coal Ash Management at the Ameren Labadie Energy Center.
- AECOM, 2014. Groundwater and Surface Water Data Demonstrate No Off-Site Impact from Rush Island Energy Center.
- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Sioux Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, SCL4A Sioux Energy Center St. Charles County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center - St. Charles County, Missouri, USA
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center St. Charles County, Missouri, USA
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, SCPB Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA
- Golder Associates Inc., 2020a, 2019 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center St. Charles County, Missouri, USA
- Golder Associates Inc., 2020b, 2019 Annual Groundwater Monitoring Report, SCPB Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA
- Golder Associates Inc., 2019b, Updated Statistical Limits With Additional Background Data SCL4A.
- Golder Associates Inc., 2019c, Updated Statistical Limits With Additional Background Data SCPB.
- GREDELL Engineering Resources, Inc. 2006. Detailed Geologic and Hydrologic Site Investigation Report. AmerenUE Sioux Power Plant Proposed Utility Waste Disposal Area. St. Charles County, Missouri. August 2006.
- GREDELL Engineering Resources, Inc. 2009. Background Groundwater Monitoring Report. AmerenUE Sioux Power Plant. St. Charles County, Missouri. June 2009.
- Haley and Aldrich. 2019. Corrective Measures Assessment, Ameren Missouri Sioux Energy Center, St. Charles County, Missouri.

- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D
- Kleeschulte, Michael J., 1993., Water-Quality Data for the Missouri River and Missouri River Alluvium Near Weldon Spring, St. Charles County, Missouri – 1991-92, United States Geological Survey, Open-File Report 93-109.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc. 2014. Ameren Missouri Sioux Power Plant Utility Waste Landfill Proposed Construction Permit Modification Construction Permit Number 0918301 St. Charles County, Missouri, revised August 2014.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

Tables

Table 1November 2019 Detection Monitoring ResultsSCL4A - Landfill Cell 4ASioux Energy Center, St. Charles County, MO

		BACKGR	OUND	GROUNDWATER MONITORING WELLS							
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-3	UG-3	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			N	lovember 201	9 Detection N	Ionitoring Eve	nt				
DATE	NA	11/15/2019	11/15/2019	NA	11/14/2019	NA	11/14/2019	NA	11/14/2019	NA	11/14/2019
рН	SU	6.88	7.13	6.243-7.648	7.08	6.216-7.528	6.93	6.441-7.519	6.90	6.337-7.638	6.99
BORON, TOTAL	μg/L	118	80.1 J	1,027	976	DQR	79.7 J	DQR	98.1 J	114.8	97.6 J
CALCIUM, TOTAL	μg/L	143,000 J	102,000	160,085	135,000 J	115,800	95,100	134,272	120,000	150,887	116,000
CHLORIDE, TOTAL	mg/L	6.4	7.6	102.2	83.5	4.463	1.8	3.954	4.5	3.1	2.4
FLUORIDE, TOTAL	mg/L	0.28	0.23	0.3772	0.33	0.4264	0.34	0.4061	0.35	0.3573	0.28
SULFATE, TOTAL	mg/L	26.5	34.4	165.7	185 J	50.29	36.9	52.1	75.1	60.9	36.7
TOTAL DISSOLVED SOLIDS	mg/L	551	418	698.7	721	485.1	387	495.8	502	505.9	454
				January 2020	Verification S	ampling Even	t				
DATE	NA				1/3/2020				1/2/2020		
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L								4.7		
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L				66.2				85.8		
TOTAL DISSOLVED SOLIDS	mg/L				576				513		

NOTES:

1. Unit Abbreviations: $\mu g/L$ - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. Prediction Limits calculated using Sanitas Software.

5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).

7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Figures

LEGEND)			
L	Siou	ux Energy Cent	ter Property Bounda	ary
	SCF	PA - Bottom As	h Surface Impoundr	ment
	SCF	PB - Fly Ash Su	urface Impoundment	t
	SCF	PC - Active WF	GD Disposal Area	
	SCL	4A - Active Dry	y CCR Disposal Are	a
	SCF	D - Proposed	WFGD Disposal Are	ea
Mon	itorin	g Well Netw	orks	
Φ	Corr	rective Action N	Monitoring Well	
÷	SCF	PA Detection ar	nd Assessment Mor	nitoring Well
¢	SCF Mon	PB Detection M Nitoring Well	Ionitoring and Corr	ective Action
÷	SCF	PB Detection N	Ionitoring Well	
÷	SCF Well	PC Detection N	Ionitoring and State	e UWL Monitoring
¢	Prop Stat	posed SCPD an e UWL Monitor	nd SCPC Detection ring Well	Monitoring and
¢	Prop Mon	posed SCPD D nitoring Well	etection Monitoring	and State UWL
¢	SCL Mon	-4A Detection I vitoring, and St	Monitoring, Correct tate UWL Monitorin	ive Action g Well
¢	SCL Well	_4A Detection I I	Monitoring and Sta	te UWL Monitoring
+	200 Sam	6 Detailed Site	Investigation Piez	ometer and
\oplus	Exis CCF	sting UWL Mon R Monitoring	itoring Well Not Cu	irrently Used for
0		1,000	2,000	3,000
				Feet
1.) ALL I 2.) UWL 3.) WFG 4.) CCR 5.) UWL ON DRA REFERI 1.) AME 2011. 2.) COO	BOUNDA - UTILIT D - WET - COAL BOUND WINGS ENCE(S) EREN MIS DRDINAT	IRIES AND LOCATIO Y WASTE LANDFILL FLUE GAS DESULF COMBUSTION RESI IARIES, DESIGNATIO IN THE UWL PROPO SSOURI SIOUX ENE FE SYSTEM: NAD 198	NS ARE APPROXIMATE. URIZATION. DUALS. JNS AND EXISTING MONIT. JSED LANDFILL PERMIT (# RGY CENTER, SIOUX PRO 83 STATE PLANE MISSOUF	ORING WELL LOCATIONS BASED 0918301). PPERTY CONTROL MAP, FEBRUARY RI EAST FIPS 2401 FEET.
3.) AME CONST 4.) 2006 GEOLO CLIENT	RUCTION 6 PIEZON GIC AND	N PERMIT MODIFICA METER AND SAMPLI HYDROLOGIC SITE	ATION (#0918301), AUGUST LOCATIONS FROM APPE NVESTIGATION REPORT	I ZONGEL PROPOSED 1 2014. NDIX 13 OF THE DETAILED
		AISSOURI		Ameren
	MONI) AERIAL MAP
CONSU	LTANT		YYYY-MM-DD	2020-05-20
			DESIGNED	JSI
· 👝		GOLD	ER PREPARED	JSI
		GOLD	ER PREPARED REVIEWED	JSI EMS
PROJE	CT NO.	GOLD	ER PREPARED REVIEWED APPROVED	JSI EMS MNH REV. FIGURE

III IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROI

eries	Plot	for	Boron	Concentrations

	NC A	0.	FI	GURE	2	

- **TMW-3**
- **TMW-2**

TMW-1

- BMW-3
- BMW-1
- TMW-2 UPL (DQR PQL of 100 µg/L)

South of the SCL4A

-	Г	Ľ	Г	L	Е	
1	^					

Box & Whiskers Plot

Pre-CCR Boron Plots– Utility Waste Landfill

sτι	TL	E	
/Α			

Sulfate Concentrations Compared to 2019 Flooding Event

	Г	Ľ	Т	1	F	
	•	•	•	-	-	
1	^					

Background BMW-1S/BMW-3S UPL (12.32 mg/L)

Time Series Plot for Chloride Concentrations

-	Г	1-	г	L	E	
1	٨	-	-	_	_	

REV. NO. N/A

CR Chloride Plots- Utility V	Waste
Landfill	

BTITLE N/A	REV. NO. N/A	FIGURE 9	

TITLE Time Series Plot for Total Dissolved Solids South of the SCL4A

SUBTITLE

REV. NO. N/A

TITLE Time Series Plot for Total Dissolved Solids at TMW-2 and Background Locations

REV. NO. N/A

Box & Whiskers Plot

Pre-CCR Total Dissolved Solids Plots-**Utility Waste Landfill**

JBTI	TLE
N/A	

golder.com

APPENDIX C

Alternative Source Demonstration – April 2020 Sampling Event

REPORT SCL4A - Alternative Source Demonstration

Sioux Energy Center, St. Charles County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Avenue, St. Louis, MO 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

+1 314 984-8800

153-140602

November 30, 2020

Table of Contents

1.0	CERT	IFICATION STATEMENT	2				
2.0	INTRO	DDUCTION	3				
3.0	SITE DESCRIPTION AND BACKGROUND						
	3.1	Geological and Hydrogeological Setting	3				
	3.2	Utility Waste Landfill Cell 4A – SCL4A	3				
	3.3	CCR Rule Groundwater Monitoring	4				
4.0	REVIE	EW OF THE STATISTICALLY SIGNIFICANT INCREASE	5				
5.0	EVIDE	ENCE OF SSI FROM ALTERNATIVE SOURCE	6				
	5.1	CCR Indicators	6				
	5.1.1	Fluoride Concentrations	7				
6.0	DEMO	ONSTRATION THAT SSI WAS NOT CAUSED BY SCL4A IMPACT	8				
7.0	REFE	RENCES	9				

Tables

- Table 1 Review of Statistically Significant Increases
- Table 2 Types of CCR and Typical Indicator Parameters

Figures

- Figure 1 Site Monitoring Well Location and Aerial Map
- Figure 2 UG-3 Fluoride Time Series Plot
- Figure 3 UG-3 Fluoride Time Series Plot and Pre-CCR Placement UPL

1.0 CERTIFICATION STATEMENT

This SCL4A – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this SCL4A – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, *Missouri, USA* located at 8501 Missouri 94, West Alton, Missouri 63386 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G.

Principal, Practice Leader

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this SCL4A – Alternative Source Demonstration has been prepared to document an Alternative Source Demonstration (ASD) for Statistically Significant Increases (SSIs) identified for Ameren Missouri's (Ameren) Sioux Energy Center (SEC), Utility Waste Landfill (UWL) Cell 4A - SCL4A. This document satisfies the requirements of §257.94(e)(2), which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused the SSIs and that the apparent SSIs were the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

Ameren owns and operates the SEC in St. Charles County, Missouri, located approximately 12 miles westnorthwest of the confluence of the Mississippi and Missouri Rivers. **Figure 1** depicts the site location and layout, including the location of the SCL4A. The SEC is approximately 1,025 acres and is located in the floodplain between the Mississippi and Missouri Rivers. The SEC is bounded to the north by wooded areas associated with the Mississippi River; to the south by a railroad; and to the east and west by agricultural fields.

3.1 Geological and Hydrogeological Setting

Hydrogeologically, the SCL4A lies between the Mississippi River to the north and the Missouri River to the south. Flow and deposition from these rivers have resulted in thick alluvial deposits which lie unconformably on top of bedrock. These alluvial deposits, which can range from approximately 100 to 130 feet thick, make up the uppermost aquifer called the alluvial aquifer. Overall, this aquifer is described as a fining upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Drilling in the alluvial aquifer identified different sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are highly variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region includes Mississippian-aged rocks of the Meramecian Series. Formations include primarily limestone, dolomite, and shale and are comprised of the Salem Formation overlying the Warsaw Formation and the Burlington-Keokuk Formation.

3.2 Utility Waste Landfill Cell 4A – SCL4A

UWL Cell 4A is referred to by Ameren as the SCL4A, or "Landfill Cell 4A." The SCL4A is approximately 15 acres in size and is located south of the generating plant on the south side of Highway 94 (**Figure 1**). The CCR Unit manages Coal Combustion Residuals (CCR) from the SEC including "fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels" (Gredell and Reitz & Jens, 2014). These wastes are managed using a dry disposal

process and are moisture conditioned (30-40% moisture content) to minimize dust and facilitate disposal. The CCR waste is trucked across Highway 94 from the plant and disposed in the SCL4A.

The SCL4A was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil HDPE geomembrane liner. Information on the design of the UWL is available in the 2014 Proposed Construction Permit Modification, Construction Permit Number 0918301 (Gredell and Reitz & Jens, 2014).

A groundwater monitoring well network was installed in 2007 and 2008 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 16 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). These monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonal low elevation for groundwater. Quarterly groundwater samples have been collected in these monitoring wells since June 2008 for the analysis of state required UWL parameters.

The permit for the Sioux UWL was issued July 30, 2010 (permit #0918301) for the SCPC (Cell 1). Nine (9) sampling events were performed prior to July 30, 2010 and represent groundwater quality prior to CCR placement in the SCPC. The SCL4A was the second cell that was constructed at this UWL. The SCL4A construction was not completed until 2014 and no CCR was placed in the unit until after the final revisions to the Proposed Construction Permit Modification on August 16, 2014. The results from these pre-disposal monitoring events are used, in conjunction with other site information, in the ASD presented below.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following were completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and (4) the required eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of the CCR Rule.

The groundwater monitoring system for the SCL4A consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. One (1) existing monitoring well (UG-3) was installed by Gredell Engineering Resources, Inc., in December 2007 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-1, TMW-2, TMW-3, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information on the design and installation of the monitoring wells is provided in the SCL4A GMP and the SCL4A 2017 Annual Report.

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the SCL4A. After baseline sampling, the first Detection Monitoring event was completed in and Detection Monitoring has continued on a semi-annual basis thereafter. Laboratory testing was performed for the following Appendix III constituents during Detection Monitoring:

- Boron
- Calcium
- Chloride
- 🔹 pH
- Sulfate
- Total dissolved solids (TDS)
- Fluoride

In January 2018, background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPLs). These UPLs were then compared to the Detection Monitoring results from the

November 2017 samples and subsequent semi-annual detection monitoring sampling events. If results from Detection Monitoring were higher than the calculated UPL, it was considered an initial exceedance, in which case a verification sample was then collected and tested in accordance with the SCL4A Statistical Analysis Plan. The following provide a summary of the detection monitoring results to date:

- In November 2017, there were no initial exceedances.
- In May 2018, three (3) initial exceedances were identified including chloride at UG-3; as well as sulfate and TDS at TMW-2. Verification sampling results confirmed all three (3) SSIs. All three (3) SSIs were determined to be from an alternate source and the ASD for the May 2018 sampling event can be found in the 2018 Annual Report for the SCL4A.
- In November 2018, one (1) initial exceedance was identified, sulfate at TMW-2. Verification sampling did not confirm the initial exceedance and no SSIs were identified for the November 2018 event.
- In May 2019, six (6) initial exceedances were identified including boron, calcium, chloride, and TDS at UG-3; as well as sulfate and TDS at TMW-2. Verification sampling results confirmed all six (6) SSIs. All six (6) SSIs were determined to be from an alternate source and the ASD for the May 2019 sampling event can be found in the 2019 Annual Report for the SCL4A.
- In November 2019, five (5) initial exceedances were identified including sulfate and TDS at UG-3; as well as chloride, sulfate, and TDS at TMW-2. Only the initial three (3) exceedances at TMW-2 were verified in the subsequent verification sampling event. All three (3) SSIs were determined to be from an alternative source, as described in the ASD for the November 2019 sampling event, dated June 5, 2020.
- In April 2020, three (3) initial exceedances were identified including fluoride at UG-3; as well as sulfate and TDS at TMW-2. Only fluoride at UG-3 was confirmed by verification sampling.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASE

The SSI for fluoride occurred at monitoring well UG-3. UG-3 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown in **Figure 1**, UG-3 is located north of the SCL4A, and south of Highway 94, the generating plant, as well as the two surface impoundments near the plant (SCPA and SCPB).

Based on Golder's review of the pre-disposal data (discussed in Section 3.2 above), as well as our comparison of those pre-disposal data with the results from the eight CCR-rule baseline events, it was concluded that the groundwater at the SCL4A contained low-level pre-existing impacts from CCR that pre-dated SCL4A operation. As a result of these pre-existing impacts, the SCL4A statistical analysis plan uses intrawell upper prediction limits (UPL) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

The intrawell UPL for fluoride at UG-3 was 0.3771 milligrams per liter (mg/L) based on the results from the initial 8 baseline sampling events that ranged from 0.28 to 0.35 mg/L, as summarized in **Table 1** and **Figure 2**. The results from this small dataset where normally distributed, and a calculated UPL was used. In August 2019, the baseline data set was expanded to include the next four (4) sampling events, and the UPL changed from 0.3771 to 0.3772 mg/L. During the April 2020 detection monitoring event, a concentration of 0.39 mg/L was reported for

fluoride in UG-3, which was confirmed in June by a verification result of 0.38 mg/L. These values represent an SSI, but it is important to note they are very low (within 0.013 mg/L of the UPLs) and close to the laboratory PQL.

Table 1: Review of Statistically Significant Increase

Constituent	Well ID	UPL Based on Baseline Events	August 2019 Updated UPL	Baseline Sampling Event Range	State UWL Program Sampling Events Range	April 2020 Results	June 2020 Results
Fluoride (mg/L)	UG-3	0.3771	0.3772	0.28-0.35	0.24-0.39	0.39	0.38

Notes:

- 1) mg/L milligrams per liter.
- 2) UPL upper prediction limit.
- 3) UPLs calculated using Sanitastm software.
- 4) UWL Utility Waster Landfill.

5.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at the SCL4A are not caused by a release from the SCL4A, but rather from an alternative source. The following section describes the different lines of evidence, listed below, that demonstrate this position.

- Documentation of pre-existing, low-level concentrations of CCR indicators in groundwater that pre-date the SCL4A operation, especially on the northern side of the SCL4A.
- Review of historical and current fluoride concentrations at UG-3.
- Documentation of the construction of the SCL4A with a 60-mil geomembrane liner and a 2-foot thick clay barrier.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)		
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	 Boron Molybdenum Lithium Sulfate 		
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	 Bromide Potassium Sodium Fluoride 		
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride 		

Table 2: Types of CCR and Typical Indicator Parameters

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the SCL4A has historically received fly ash. FGD type wastes at the SEC are managed at the SCPC, located to the west of the SCL4A.

5.1.1 Fluoride Concentrations

As indicated in the table above in Section 5.1, fluoride can be an indicator of CCR impacts for fly ash and bottom ash wastes, because fluoride is mobile in most hydrogeologic environments. However, fluoride is not always present at high concentrations within all CCR wastes. At the Sioux Energy Center, fluoride has been analyzed in the pore-water of both the SCPA and the SCPB. The results of the pore-water testing show that fluoride ranges from 0.22 - 2.9 mg/L in the SCPA and from 1.1 to 2.8 mg/L in the SCPB.

As shown on **Figure 3**, current fluoride concentrations in monitoring well UG-3 are similar to those reported prior to the operation of the SCL4A. Historical data indicate that fluoride concentrations in well UG-3 ranged from 0.26 - 0.38 mg/L prior to the placement of CCR in the SCL4A and have ranged from 0.24 - 0.39 mg/L since that time. Based on the similarity of variation prior to and after the receipt of CCR materials, as well as the observations reported below, the variability in fluoride concentrations over time is not a result of impacts from the SCL4A, but rather the result of geochemical variability of pre-existing impacts in the alluvial aquifer.

Using only the fluoride results from well UG-3 prior to placement of CCR waste (6/27/2008 - 8/13/2014), a UPL of 0.4063 mg/L is calculated. This value is approximately 0.03 mg/L higher than the UPL calculated for the CCR rule

(see **Table 1**) and 0.01 mg/L higher than the result reported for the April 2020 sampling event (**Figure 3**). Therefore, the prediction limit calculated for fluoride for the CCR Rule was biased low because the results reported during the initial 8 baseline and subsequent CCR Rule sampling rounds were low relative to historical results in this well. If the historical data prior to the placement of CCR are used to calculate the UPL, no SSI would be triggered for fluoride at UG-3.

In addition, the verification sample collected in June 2020 was less than 0.003 mg/L above the baseline UPL of 0.3772 mg/L and 0.0263 mg/L below the UPL calculated using pre-CCR values. This further demonstrates that the concentrations reported for well UG-3 are not an SSI, but rather are due to variability or pre-existing impacts within the alluvial aquifer and/or a result of the statistical method used. In addition, the SSI for fluoride in well UG-3 is a result of variability of testing results near the PQL, which can result in laboratory testing inaccuracy and variability, leading to variability in results.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY SCL4A IMPACT

Based on the information presented in Section 5 above, the SSI at well UG-3 was not a result of influence from the SCL4A. Instead, the SSI for fluoride in well UG-3 appears to be caused by several factors, but primarily by pre-existing low concentrations of CCR indicators that pre-date the SCL4A, as well as a relatively low calculated UPL resulting from a small dataset that does not reflect the full natural variability of fluoride within the alluvial aquifer. Because only 12 samples were collected prior to updating the UPL, these 12 sampling events do not capture the full extent of the natural spatial and temporal variability in the alluvial aquifer (especially for those results near the laboratory PQL). When results are compared to historical data from the state sampling program, it is apparent that there are no impacts from the SCL4A.

As required by the CCR Rule, eight (8) baseline samples were collected prior to the October 2017 deadline which were used to calculate the UPL at each compliance well around the SCL4A. According to the Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (USEPA 2009), eight (8) samples is the minimum number of samples recommended in order to complete statistical tests. This value was updated with four more results in August 2019; however, despite the addition to the background, the full extent of the natural spatial and temporal variability is not reflected by the current background data set. Using 25 historical sampling results from the period prior to CCR placement in the SCL4A results in a higher UPL. The recent fluoride results at well UG-3 are in compliance with the higher UPL. In addition, inaccuracy of laboratory testing at low levels near the PQL can produce results higher than the UPL when the baseline dataset is small. Finally, the construction of the SCL4A, which includes a 2-foot compacted clay overlain by a 60-mil HDPE liner, also limits the likelihood that the SSI for fluoride in well UG-3 is a result of groundwater influence from SCL4A.

In summary, there are no indications to support migration of CCR contaminants from the SCL4A. Instead, the data indicate that the cause for the SSIs is due to geochemical variability in the alluvial aquifer, pre-existing CCR impacts from the SCPA, limited data available for the calculation of the UPL, and laboratory variability around the PQL.

7.0 REFERENCES

- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Sioux Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, SCL4A Sioux Energy Center St. Charles County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center - St. Charles County, Missouri, USA
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center St. Charles County, Missouri, USA
- Golder Associates Inc., 2019b, Updated Statistical Limits With Additional Background Data SCL4A.
- Golder Associates Inc., 2020, 2019 Annual Groundwater Monitoring Report, SCL4A Utility Waste Landfill Cell 4A, Sioux Energy Center St. Charles County, Missouri, USA
- GREDELL Engineering Resources, Inc. 2006. Detailed Geologic and Hydrologic Site Investigation Report. AmerenUE Sioux Power Plant Proposed Utility Waste Disposal Area. St. Charles County, Missouri. August 2006.
- GREDELL Engineering Resources, Inc. 2009. Background Groundwater Monitoring Report. AmerenUE Sioux Power Plant. St. Charles County, Missouri. June 2009.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc. 2014. Ameren Missouri Sioux Power Plant Utility Waste Landfill – Proposed Construction Permit Modification – Construction Permit Number 0918301 – St. Charles County, Missouri, revised August 2014.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

Figures

LEGEN	D							
1.20	l Sio	ux Energy Cent	er Property Boundar	-y				
	SC	PA - Bottom Ash	n Surface Impoundm	nent				
	SC	PB - Fly Ash Su	rface Impoundment					
	SC	PC - Active WF	GD Disposal Area					
	SC	L4A - Active Dry	CCR Disposal Area	a				
	SC	PD - Proposed	WFGD Disposal Are	а				
Mon	itorir	ng Well Netwo	orks					
\oplus	Cor	rrective Action M	Ionitoring Well					
÷	SC	SCPA Detection and Assessment Monitoring Well						
¢	SC Mo	SCPB Detection Monitoring and Corrective Action Monitoring Well						
÷	SC	PB Detection M	Ionitoring Well					
÷	SC We	SCPC Detection Monitoring and State UWL Monitoring Well						
¢	Pro Sta	Proposed SCPD and SCPC Detection Monitoring and State UWL Monitoring Well						
¢	Pro Moi	Proposed SCPD Detection Monitoring and State UWL Monitoring Well						
¢	SC Mo	SCL4A Detection Monitoring, Corrective Action Monitoring, and State UWL Monitoring Well						
¢	SC We	SCL4A Detection Monitoring and State UWL Monitoring Well						
¢	200 Sar	2006 Detailed Site Investigation Piezometer and Sample Locations						
\oplus	Exi: CC	sting UWL Mon R Monitoring	itoring Well Not Cur	rently Used for				
0		1,000	2,000	3,000				
				Feet				
1.) ALL 2.) UWL 3.) WFG 4.) CCR 5.) UWL ON DR/ REFER 1.) AME 2011. 2.) COO	BOUND - UTILI GD - WE COAL BOUNE AWINGS ENCE(S EREN M ORDINA	ARIES AND LOCATION TY WASTE LANDFILL. T FLUE GAS DESULF COMBUSTION RESI DARIES, DESIGNATIO S IN THE UWL PROPO SI IISSOURI SIOUX ENER TTE SYSTEM: NAD 1980	VS ARE APPROXIMATE. URIZATION. DUALS. NS AND EXISTING MONITO SED LANDFILL PERMIT (#09 RGY CENTER, SIOUX PROP 33 STATE PLANE MISSOURI	RING WELL LOCATIONS BASED 918301). PERTY CONTROL MAP, FEBRUARY EAST FIPS 2401 FEET.				
3.) AME CONST 4.) 200 GEOLO CLIENT	RUCTIC 6 PIEZO 9 GIC AN	INSPORT STOUX POW ON PERMIT MODIFICA OMETER AND SAMPLE D HYDROLOGIC SITE	ER PLANT UTILITY WASTE TION (#0918301), AUGUST 2 LOCATIONS FROM APPEN INVESTIGATION REPORT.	LANDFILL PROPOSED 2014. IDIX 13 OF THE DETAILED				
	REN I IX EN CT	MISSOURI IERGY CENTEI		Mameren 🕅				
	MON			AERIAL MAP				
CONSU	JLTANT		YYYY-MM-DD	2020-05-20				
			DESIGNED	JSI				
			DEGIGINED					
_		GOLD	ER PREPARED	JSI				
		GOLD	ER PREPARED REVIEWED	JSI EMS				
PROJE	CT NO.	GOLD	ER PREPARED REVIEWED APPROVED	JSI EMS MNH REV. FIGURE				

III IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROI

APPENDIX D

2020 Potentiometric Surface Maps

223	Sioux Energy Center Property Boundary	Groundw (FT MSL)	ater Elevation Contour
CCR Unit	s SCPA - Bottom Ash Surface Impoundment SCPB - Fly Ash Surface Impoundment		Groundwater Elevation Contour (FT MSL) Inferred Groundwater Elevation Contour (FT MSL)
	SCPC - WFGD Surface Impoundmet	Measurer	nent Locations
	SCL4A - Dry CCR Disposal Area		SCPA Bottom Ash Surface Impoundment Gauge
\mathbf{R}	Groundwater Flow Direction	• •	River Gauge Location Monitoring Well or
-		Ŷ	Fiezonielei

NOTES

ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE.
GROUNDWATER AND SURFACE WATER ELEVATIONS DISPLAYED IN FEET ABOVE MEAN SEA LEVEL (FT MSL).
GROUNDWATER ELEVATION MEASUREMENTS OBTAINED BY GOLDER.
MISSOURI RIVER ELEVATION ESTIMATED BASED ON NEARBY UNITED STATES GEOLOGICAL SURVEY (USGS) RIVER GAUGING LOCATIONS.
MISSISSIPPI RIVER ELEVATION PROVIDED BY AMEREN MISSOURI.

REFERENCE

1.) AMEREN MISSOURI SIOUX ENERGY CENTER, SIOUX PROPERTY CONTROL MAP. FEBRUARY 2011

Feet

2.) COORDINATE SYSTEM: NAD 1983 STATE PLANE MISSOURI EAST FIPS 2,401 FEET.

3.) USGS NATIONAL WATER INFORMATION SYSTEM, USGS GAUGES 06935965 (ST. CHARLES), 07010000 (ST. LOUIS), 05587498 (ALTON), GRAFTON (05587450).

AMEREN MISSOURI SIOUX ENERGY CENTER

CCR GROUNDWATER MONITORING PROGRAM

TITLE

JANUARY 02, 2020 POTENTIOMETRIC SURFACE MAP

CONSULTANT 2020-02-10 YYYY-MM-DD PREPARED BTT DESIGN JSI REVIEW EMS GOLDER APPROVED MNH PROJECT No. PHASE 153-140602 0003 D1

223	Sioux Energy Center Property Boundary	Groundwa (FT MSL)	ater Elevation Contour
CCR Unit	SCPA - Bottom Ash Surface Impoundment		Groundwater Elevation Contour (FT MSL) Inferred Groundwater Elevation Contour (FT MSL)
	SCPC - WFGD Surface	Ground/S Measuren	ourface Water nent Locations
	SCL4A - Dry CCR Disposal Area Groundwater Flow Direction	▲ ● ●	River Gauge Location
- •		Ψ	Piezometer

NOTES

 ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE.
GROUNDWATER AND SURFACE WATER ELEVATIONS DISPLAYED IN FEET ABOVE MEAN SEA LEVEL (FT MSL).
GROUNDWATER ELEVATION MEASUREMENTS OBTAINED BY GOLDER.
MISSOURI RIVER ELEVATION ESTIMATED BASED ON NEARBY UNITED STATES GEOLOGICAL SURVEY (USGS) RIVER GAUGING LOCATIONS.
MISSISSIPPI RIVER ELEVATION PROVIDED BY AMEREN MISSOURI.
DE CAMUGE NOT HISTED FOR THE DATEMUMENTED GUTERACE MEAN 6) DG-12 WAS NOT USED FOR POTENTIOMETRIC SURFACE MAP CONTOURING DUE TO WATER LEVEL MEASUREMENT ERROR.

REFERENCE

1.) AMEREN MISSOURI SIOUX ENERGY CENTER, SIOUX PROPERTY CONTROL MAP, FEBRUARY 2011.

Feet

2.) COORDINATE SYSTEM: NAD 1983 STATE PLANE MISSOURI EAST FIPS 2,401 FEET.

3.) USGS NATIONAL WATER INFORMATION SYSTEM, USGS GAUGES 06935965 (ST. CHARLES), 07010000 (ST. LOUIS), 05587498 (ALTON), GRAFTON (05587450).

CCR GROUNDWATER MONITORING PROGRAM

APRIL 22, 2020 POTENTIOMETRIC SURFACE MAP

		YYYY-MM-DD	2020-05-14	
		PREPARED	BTT	
		DESIGN	JSI	
		REVIEW	KAB	
GOLDER	APPROVED	MNH		
PROJECT No. 153-140602	PHASE 0003			FIGURE

	Sioux Energy Center Property Boundary	Groundw (FT MSL)	ater Elevation Contour
CCR Unit	S		Groundwater Elevation Contour (FT MSL)
	SCPA - Bottom Ash Surface Impoundment		Inferred Groundwater
	SCPB - Fly Ash Surface Impoundment		Elevation Contour (FT MSL)
	SCPC - WFGD Surface Impoundmet	Ground/S Measurer	urface Water nent Locations
	SCL4A - Dry CCR Disposal Area		SCPA Bottom Ash Surface Impoundment Gauge
\sim	Groundwater Flow	•	River Gauge Location
2	Direction	\oplus	Monitoring Well or Piezometer

NOTES

 ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE.
GROUNDWATER AND SURFACE WATER ELEVATIONS DISPLAYED IN FEET ABOVE MEAN SEA LEVEL (FT MSL).
GROUNDWATER ELEVATION MEASUREMENTS OBTAINED BY GOLDER.
MISSOURI RIVER ELEVATION ESTIMATED BASED ON NEARBY UNITED STATES GEOLOGICAL SURVEY (USGS) RIVER GAUGING LOCATIONS.
MISSISSIPPI RIVER ELEVATION PROVIDED BY AMEREN MISSOURI.
DR300 MIGNION DETENTION FOR METRIC SUPERACE MUSED 6.) PZ-9D WAS NOT USED FOR POTENTIOMETRIC SURFACE MAP CONTOURING DUE TO WATER LEVEL MEASUREMENT ERROR.

REFERENCE

1.) AMEREN MISSOURI SIOUX ENERGY CENTER, SIOUX PROPERTY CONTROL MAP, FEBRUARY 2011.

Feet

2.) COORDINATE SYSTEM: NAD 1983 STATE PLANE MISSOURI EAST FIPS 2,401 FEET.

3.) USGS NATIONAL WATER INFORMATION SYSTEM, USGS GAUGES 06935965 (ST. CHARLES), 07010000 (ST. LOUIS), 05587498 (ALTON), GRAFTON (05587450).

CLIENT AMEREN MISSOURI SIOUX ENERGY CENTER

CCR GROUNDWATER MONITORING PROGRAM

TITLE

JUNE 15, 2020 POTENTIOMETRIC SURFACE MAP

GOLDER		YYYY-MM-DD	2020-06-24	
		PREPARED	BTT	
		DESIGN	JSI	
		REVIEW	EMS	
		APPROVED	MNH	
PROJECT No. 153-140602	PHASE 0003			FIGURE

CCR Units Groundwater Elevation Contour (FT MSL) SCPA - Bottom Ash Surface Impoundment Inferred Groundwater Elevation Contour (FT MSL) SCPB - Fly Ash Surface Impoundment Inferred Groundwater Elevation Contour (FT MSL) SCPC - WFGD Surface Impoundmet Ground/Surface Water Measurement Locations SCL4A - Dry CCR Disposal Area SCPA Bottom Ash Surface Impoundment Gauge Groundwater Flow Direction Impoundment Gauge Monitoring Well or Piezometer Monitoring Well or	223	Sioux Energy Center Property Boundary	Groundwa (FT MSL)	ater Elevation Contour
SCPC - WFGD Surface Impoundmet Ground/Surface Water Measurement Locations SCL4A - Dry CCR Disposal Area	CCR Unit	SCPA - Bottom Ash Surface Impoundment SCPB - Fly Ash Surface Impoundment		Groundwater Elevation Contour (FT MSL) Inferred Groundwater Elevation Contour (FT MSL)
SCL4A - Dry CCR Disposal SCPA Bottom Ash Surface Impoundment Gauge Groundwater Flow • Direction Monitoring Well or Piezometer		SCPC - WFGD Surface Impoundmet	Ground/S Measuren	urface Water nent Locations
Groundwater Flow Direction Groundwater Flow Direction Monitoring Well or Piezometer Piezometer		SCL4A - Dry CCR Disposal Area		SCPA Bottom Ash Surface Impoundment Gauge
Monitoring Well or Piezometer		Groundwater Flow Direction	•	River Gauge Location
	Ś		\oplus	Monitoring Well or Piezometer

NOTES

 ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE.
GROUNDWATER AND SURFACE WATER ELEVATIONS DISPLAYED IN FEET ABOVE MEAN SEA LEVEL (FT MSL).
GROUNDWATER ELEVATION MEASUREMENTS OBTAINED BY GOLDER.
MISSOURI RIVER ELEVATION ESTIMATED BASED ON NEARBY UNITED STATES GEOLOGICAL SURVEY (USGS) RIVER GAUGING LOCATIONS.
MISSISSIPPI RIVER ELEVATION PROVIDED BY AMEREN MISSOURI. 6.) AM-15 WAS NOT USED IN POTENTIONETRIC SURFACE CONTOURING DUE TO WATER LEVEL MEASUREMENT ERROR.

REFERENCE

1.) AMEREN MISSOURI SIOUX ENERGY CENTER, SIOUX PROPERTY CONTROL MAP. FEBRUARY 2011

Feet

2.) COORDINATE SYSTEM: NAD 1983 STATE PLANE MISSOURI EAST FIPS 2,401 FEET.

3.) USGS NATIONAL WATER INFORMATION SYSTEM, USGS GAUGES 06935965 (ST. CHARLES), 07010000 (ST. LOUIS), 05587498 (ALTON), GRAFTON (05587450).

CLIENT AMEREN MISSOURI SIOUX ENERGY CENTER

CCR GROUNDWATER MONITORING PROGRAM

TITLE NOVEMBER 11, 2020 POTENTIOMETRIC SURFACE MAP

GOLDER		YYYY-MM-DD	2020-11-25	
		PREPARED	BTT	
		DESIGN	JSI	
		REVIEW	BTT	
		APPROVED	MNH	
PROJECT No. 153-140602	PHASE 0003			FIGURE

golder.com