Intended for

AmerenEnergy Medina Valley CoGen, LLC

Date

January 27, 2021

Project No.

1940100091

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION ASH POND A

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A

Project name Former Hutsonville Power Station - Ash Pond A

Project no. **194010091**

Recipient AmerenEnergy Medina Valley CoGen, LLC

Jake J. Walczak, PG

Document type 2020 Annual Report

Revision **0**Version **Final**

Checked by

Date January 27, 2021
Prepared by Ruta S. Deshpande

Approved by Sarah Meyer

Ramboll

333 W. Wacker Drive

Suite 2700

Chicago, IL 60606

USA

T 312-288-3800 F 414-837-3608 https://ramboll.com

Ruta S. Deshpande, EIT Environmental Engineer

Beshpande

Jake J. Walczak, PG Senior Hydrogeologist

CONTENTS

Introduction	4
Background	4
Groundwater Quality Overview – 2017 to 2020	5
Summary of Cover System Construction and Maintenance	5
Summary of 2017 to 2020 Groundwater Quality Data Review	5
Conclusion	6
Groundwater Monitoring Plan Compliance	7
Applicable Groundwater Quality Standards	7
On-Site Groundwater Standards	7
Off-Site Groundwater Standards	7
Demonstration of Compliance	7
Compliance Determination	8
Data Analysis	9
Groundwater Flow	9
Review of Analytical Data (2019-2020)	9
Statistical Analyses	10
Outlier Analysis	10
Sen's Estimate of Slope	10
Mann-Kendall Trend Analysis	10
Site Inspection	11
Evaluation of Compliance	12
Conclusions	13
References	14
	Background Groundwater Quality Overview – 2017 to 2020 Summary of Cover System Construction and Maintenance Summary of 2017 to 2020 Groundwater Quality Data Review Conclusion Groundwater Monitoring Plan Compliance Applicable Groundwater Quality Standards On-Site Groundwater Standards Off-Site Groundwater Standards Demonstration of Compliance Compliance Determination Data Analysis Groundwater Flow Review of Analytical Data (2019-2020) Statistical Analyses Outlier Analysis Sen's Estimate of Slope Mann-Kendall Trend Analysis Site Inspection Evaluation of Compliance Conclusions

TABLES

Table 1-1	Groundwater Monitoring Program Schedule
Table 1-2	Groundwater Monitoring System Monitoring Wells
Table 1-3	Groundwater Monitoring Program Parameters
Table 3-1	Trend Analysis Results
Table 3-2	Summary of Trend Analyses

FIGURES

Figure 1-1	Site Location Map
Figure 1-2	Site Base Map
Figure 1-3	Boron concentrations since 2017 at compliance wells MW-2D and MW-2R
Figure 1-4	Boron concentrations since 2017 at compliance wells MW-3 and MW-3D
Figure 1-5	Boron concentrations since 2017 at compliance wells MW-4, MW-5, and MW-12
Figure 1-6	Boron concentrations since 2017 at compliance wells MW-22S and MW-22D
Figure 1-7	Boron concentrations since 2017 at compliance wells MW-23S and MW-23D
Figure 1-8	Sulfate concentrations since 2017 at compliance wells MW-2D and MW-2R
Figure 1-9	Sulfate concentrations since 2017 at compliance wells MW-3 and MW-3D
Figure 1-10	Sulfate concentrations since 2017 at compliance wells MW-4, MW-5, and MW-12
Figure 1-11	Sulfate concentrations since 2017 at compliance wells MW-22S and MW-22D
Figure 1-12	Sulfate concentrations since 2017 at compliance wells MW-23S and MW-23D
Figure 3-1	Q1 Upper Migration Zone Groundwater Elevation Contour Map – February 3, 2020

igure 3-2	Q2 Upper Migration Zone Groundwater Elevation Contour Map - May 4, 2020
igure 3-3	Q3 Upper Migration Zone Groundwater Elevation Contour Map – August 3, 2020
igure 3-4	Q4 Upper Migration Zone Groundwater Elevation Contour Map – October 26, 2020
igure 3-5	Groundwater Elevations Near Groundwater Collection Trench
igure 3-6	Box-whisker plot showing distribution of boron concentration by monitoring well for data collected in 2019 and 2020
igure 3-7	Boron concentrations during the reporting period (2019–2020) at all compliance wells
igure 3-8	Box-whisker plot showing distribution of sulfate concentration by monitoring well for data collected in 2019 and 2020
igure 3-9	Sulfate concentrations during the reporting period (2019–2020) at all compliance wells
Figure 3-10A-B	Box-whisker plot showing distribution of manganese concentration by monitoring well for data collected in 2019 and 2020
Figure 3-11A-B	Manganese concentrations during the reporting period (2019–2020) at all compliance wells
igure 3-12	Box-whisker plot showing distribution of total dissolved solids concentration by monitoring well for data collected in 2019 to 2020
Figure 3-13	Total dissolved solids concentrations during the reporting period (2019-2020) at all compliance wells

APPENDICES

Appendix A Groundwater Monitoring Results 2019-2020

Appendix B Site Inspection Reports
Appendix C Statistical Output (on CD)

C1 Outlier TestC2 Test Descriptions

ACRONYMS AND ABBREVIATIONS

Ameren Ameren Energy Medina Valley Cogen, LLC

CCW Coal Combustion Waste

GMZ Groundwater Management Zone

HDPE High Density Polyethylene

Hutsonville Former Hutsonville Power Station

IAC Illinois Administrative Code ILCS Illinois Compiled Statutes

mg/L milligrams per liter

NRT Natural Resource Technology, Inc.

TDS Total Dissolved Solids

1. INTRODUCTION

1.1 Background

This report has been prepared for AmerenEnergy Medina Valley Cogen, LLC (Ameren) for the former Hutsonville Power Station (Hutsonville). Ameren completed closure activities for Ash Pond D in 2013 in accordance with the site-specific closure requirements of 35 Illinois Administrative Code (IAC) 840. Closure activities for Ash Pond D included placement of a 40-mil high density polyethylene (HDPE) cap covered with a three-foot thick vegetative soil layer, construction of surface water control structures, and construction of a groundwater collection system (i.e., Collection Trench). Operation of the Collection Trench began in April 2015. Ash Pond B, Ash Pond C, and the Bottom Ash Sluice Pond were clean-closed by relocating accumulated ash to Ash Pond A and re-grading the pond areas for proper drainage. Ash Pond A, originally constructed with an 80 mil HDPE liner, was in service between 1986-2011 to receive sluiced fly ash and provide subsequent treatment. Closure activities for Ash Pond A included placement of ash transferred from the other ash ponds and spoils from clean-up of the coal yard, grading according to the Ash Ponds Closure, Closure Plan, dated September 15, 2014 (Closure Plan) (Hanson, Natural Resource Technology [NRT], 2014a), and capping with a low permeability geosynthetic (40-mil HDPE) membrane covered with protective soil. Closure activities for the coal combustion waste (CCW) ponds consisting of Ash Pond A, Ash Pond B, Ash Pond C, and the Bottom Ash Sluice Pond were completed in June 2016 in accordance with the Closure Plan (Hanson, NRT, 2014a), and the site-specific Ash Pond D rule 35 IAC 840 to the extent feasible. The Ash Pond A Closure Completion Report (Ameren, 2017) was approved by the Illinois Environmental Protection Agency (EPA) in March 2017. Since Ash Pond B, Ash Pond C, and the Bottom Ash Sluice Pond were clean-closed, the Ash Ponds Closure, Groundwater Monitoring Plan, dated September 15, 2014 (Groundwater Monitoring Plan) (Hanson, NRT, 2014b) and associated annual reports are for Ash Pond A.

Groundwater has been monitored at the site since 1984. The groundwater monitoring system for Ash Pond A, as defined by the Groundwater Monitoring Plan (Hanson, NRT, 2014b), originally consisted of two background monitoring wells, MW-10 and MW-10D, and ten downgradient compliance monitoring wells.¹, MW-2R, MW-2D, MW-3D, MW-4, MW-5, MW-12, MW-22S, and MW-22D. Background wells MW-10 and MW-10D were destroyed due to construction unrelated to Ameren operations after the first quarter, 2016 monitoring period. No trace of the former background wells was found using a metal detector, probes, or digging. As a result, these wells were replaced with background monitoring wells MW-23S and MW-23D in November 2017. In addition, several other monitoring wells and piezometers located at Hutsonville are measured for groundwater level so that groundwater elevation contour maps can be created for the entire site. Ash Pond A is located near the southwest portion of the former Hutsonville Power Station, as shown on Figure 1-1, with the sampled monitoring wells shown on Figure 1-2.

In conjunction with Ameren's request for approval of the Closure Plan (Hanson, NRT, 2014a), Ameren submitted a request to establish a groundwater management zone (GMZ) pursuant to 35 IAC 620.250(a)(2): Ash Ponds Closure, Groundwater Management Zone Application, dated September 8, 2014 (GMZ Application) (Hanson, NRT, 2014c), which was approved along with the Closure Plan (Hanson, NRT, 2014a). The GMZ is a three-dimensional region containing

¹ Note that in the 2017 Annual Report, well MW-9 was mistakenly listed as a compliance well. Well MW-9 is used for groundwater elevation, only.

groundwater being managed to mitigate impacts from a potential release of leachate from the facility. Observed impacts during 2011-2014 included concentrations for boron, sulfate, manganese, and Total Dissolved Solids (TDS) higher than Class I groundwater quality standards within the GMZ. The GMZ is shown on Figure 1-2.

The Groundwater Monitoring Plan (Hanson, NRT, 2014b), in accordance with 35 IAC 840.114 and 35 IAC 840.116, outlines groundwater monitoring and sampling procedures, establishes the parameters and methods to be used for analyzing the groundwater samples, and describes evaluation methods to assess post-closure groundwater quality and trends to demonstrate compliance with the applicable groundwater standards. The Groundwater Monitoring Program Schedule is provided in Table 1-1.

Monitoring well locations, installation dates, construction information, and the groundwater zone they monitor are provided in Table 1-2. Field and laboratory parameters for evaluating groundwater quality are shown in Table 1-3.

Post-closure groundwater monitoring began in 2016. Annual reporting according to the Groundwater Monitoring Plan (Hanson, NRT, 2014b) and the Ash Ponds Closure, Post-Closure Care Plan, dated September 8, 2014 (Post-Closure Care Plan) (Hanson, NRT, 2014d) began after the Closure Completion Report (Ameren, 2017) was approved by Illinois EPA in March 2017. This fourth annual report includes the following elements:

- A summary of groundwater monitoring data collected in 2019 and 2020. Data tables are included in Appendix A.
- Quarterly Site Inspection Forms, including observations and descriptions of any maintenance activities performed on the pond cap, embankment, and groundwater collection trench and discharge system (Appendix B).
- Annual trend and statistical analysis results per Section 7.2.1 of the Groundwater Monitoring Plan (Hanson, NRT, 2014b), including an assessment of any statistically significant increasing trends (Appendix C).

1.2 Groundwater Quality Overview - 2017 to 2020

1.2.1 Summary of Cover System Construction and Maintenance

Ash Pond A was originally constructed with an 80 mil HDPE liner, and closure activities for Ash Pond A included grading according to the Closure Plan, and capping with a low permeability geosynthetic (40-mil HDPE) membrane covered with protective soil.

Inspections of the cover system are performed on a quarterly schedule. Routine maintenance activities are performed at Ash Pond A, as needed and as soon as practicable after issues are identified, and include recontouring the ground surface, repairing drainage channels, repairing and replacing lining material, revegetating areas, and removing woody vegetation. Maintenance activities can be found in more detail in the Post-Closure Care Plan (Hanson, NRT, 2014d).

1.2.2 Summary of 2017 to 2020 Groundwater Quality Data Review

Groundwater quality data since the approval of the Ash Pond A Closure Completion Report in 2017 were reviewed to assess the overall condition of the groundwater and the performance of the cover system. This review was performed independently from the compliance evaluations required by the Groundwater Monitoring Plan (Hanson, NRT, 2014b), which are focused on

specific compliance criteria and proposed mitigation actions. This review is intended as a big-picture view of groundwater quality over time since closure.

Boron was identified as the primary indicator constituent for coal ash leachate impacts to groundwater at Ash Pond A in the Closure Plan (Hanson, NRT, 2014a). As such, boron was selected for this groundwater quality data review. Boron concentrations over time since 2017 are presented in Figures 1-3 through 1-7. On the figures, the lines through the concentration data represent the best fit linear regressions for boron concentrations in each well. Best fit linear regression lines are included in the figures to provide a convenient means of evaluating general concentration "trends" over time. It should be noted that the regression lines are not equivalent to the statistical trends discussed in the groundwater compliance section of this report. Generally, boron concentrations in most compliance monitoring wells have been stable or decreasing since 2017 and are currently below the Class I Groundwater Standard for the majority of the compliance groundwater monitoring wells.

Sulfate was also identified as an indicator constituent for coal ash at Ash Pond A in the Closure Plan (Hanson, NRT, 2014a); however, sulfate can have other anthropogenic sources for elevated concentrations in groundwater, and sulfate concentrations can decrease in groundwater under strongly reducing conditions. These caveats make sulfate a less reliable indicator for coal ash impacts than boron. Sulfate concentrations over time since 2017 are presented in Figures 1-8 through 1-12. Similar to boron, sulfate concentrations have been stable or decreasing since the closure completion.

In addition, since 2017, several decreasing trends for various analytical parameters were identified and are discussed in Section 3.3 and summarized on Tables 3-1 and 3-2.

1.2.3 Conclusion

The stable or decreasing boron and sulfate concentrations in the majority of compliance monitoring wells across the site is a strong indication that the cover system is functioning to improve overall groundwater quality beneath the pond. This observation is consistent with the results of groundwater modeling performed to simulate changes in groundwater quality resulting from pond closure. Modeling results suggested that boron concentrations will stabilize shortly after the closure plan is implemented in monitoring wells with low concentrations (wells MW-5 and MW-9), while other wells are predicted to take as long as 40 years to stabilize.

2. GROUNDWATER MONITORING PLAN COMPLIANCE

2.1 Applicable Groundwater Quality Standards

2.1.1 On-Site Groundwater Standards

A GMZ has been established around the maximum predicted area of on-site groundwater impacts associated with Ponds A, B, and C. As described in Section 5.1.1 of the Groundwater Monitoring Plan (Hanson, NRT, 2014b) and pursuant to 35 IAC 840.16(a):

- Prior to the completion of the post-closure care period, the on-site applicable groundwater quality standards at Ash Pond A are the greater of either the actual groundwater monitoring result, or the Class I Potable Resource Groundwater standard set forth in 35 IAC 620.410.
- After completion of the post-closure care period, the on-site concentrations of contaminants
 from Ash Pond A as determined by groundwater monitoring, if those concentrations exceed
 the numeric standards for Class I Potable Resource Groundwater set forth in 35 IAC 620.410,
 are the applicable groundwater standards at Ash Pond A if the following criteria are
 addressed to the satisfaction of the Illinois EPA:
 - To the extent practicable, the exceedance has been minimized and beneficial use, as appropriate for the class of groundwater, has been returned on site.
 - Any threat to public health or the environment on site has been minimized.
 - An institutional control prohibiting potable uses of groundwater is placed on Ash Pond A in accordance with the Uniform Environmental Covenants Act (765 Illinois Compiled Statutes (ILCS) 122) or an alternative instrument authorized for environmental uses under Illinois law and approved by the Illinois EPA. Existing potable uses of groundwater may be preserved as long as such uses remain fit for human consumption in accordance with accepted water supply principles.

2.1.2 Off-Site Groundwater Standards

For off-site groundwater compliance, the groundwater quality standards are the Class I potable resource groundwater standards [35 IAC 620.410]. Although the established GMZ does not extend south of the former Hutsonville Power Station's property boundary, an agreement² exists between Ameren and the south property owner regarding shallow well drilling. This restriction covers the first 25 feet of the water table and lies within a 500-ft offset south of the southern property boundary of the former Hutsonville Power Station.

2.2 Demonstration of Compliance

Compliance will be based on attainment of groundwater quality that meets the numeric standards for Class I potable resource groundwater as set forth in 35 IAC 620.410. Groundwater quality that does not meet the Class I standard will be considered in compliance when no statistically significant increasing trend can be attributed to the ash ponds at the compliance GMZ boundary for four (4) consecutive years, which must be approved by the Illinois EPA. Post-closure groundwater compliance monitoring will continue for a minimum of ten years from the Illinois EPA's approval of the Closure Plan.

 $^{^2}$ Available at: http://www.ipcb.state.il.us/documents/dsweb/Get/Document-65177 as Chapter 9 of the Rulemaking Technical Support Documents.

2.2.1 Compliance Determination

As described in Section 7.2.1 of the Groundwater Monitoring Plan:

- GMZ compliance is demonstrated by performing an annual trend analysis for each monitoring
 well located at the down-gradient boundaries of the former Hutsonville Power Station
 (Table 1-2) for all constituents listed in Table 1-3. The analysis shall use Sen's Estimate of
 Slope and be performed on a minimum of four consecutive samples.
- If the results of sampling and analysis show a positive slope at any compliance monitoring well located at the downgradient boundaries of the former Hutsonville Power Station, a Mann-Kendall test will be performed at 95 percent confidence to determine whether or not the increasing slope represents a statistically significant increasing trend. Ameren will investigate the cause of a statistically significant increasing trend as described below.
 - If the investigation attributes a statistically significant increasing trend to a superseding cause, Ameren will notify the Illinois EPA in writing, stating the cause of the increasing trend and providing the rationale used in such a determination.
 - If there is no superseding cause and the statistically significant increasing trend continues to be observed over two or more consecutive years, a hydrogeologic investigation (and additional site investigation(s), if necessary) will be performed.

Based on the outcome of the investigation above, Ameren will take action to mitigate statistically significant increasing trends that are causing, threatening or allowing exceedances of off-site groundwater quality standards. Such actions will be proposed as a modification to the post-closure care plan within 180 days after completion of the investigation activities described above.

3. DATA ANALYSIS

3.1 Groundwater Flow

Groundwater flow for 2020 is represented using groundwater elevation contour maps for each quarterly sampling event (Figures 3-1 through 3-4). Groundwater in the upper (shallow) migration zone generally flowed from west to east and northeast towards the Wabash River during 2020, which is consistent with past evaluations. The Groundwater Collection Trench began operation in April 2015, and following startup, groundwater elevations have exhibited localized flow toward the trench with groundwater elevations generally lower near the trench (Table 1-2 and Figure 3-5). In the depictions of groundwater elevation contours, dashed lines have been used to infer the localized drawdown of groundwater levels resulting from trench operation, which is necessary with limited wells situated laterally along the length of the trench.

The horizontal hydraulic gradient in the upper migration zone beneath the northern extent of Ash Pond A was approximately 0.004 feet/feet during 2020. There was little variability in horizontal hydraulic gradient across Ash Pond A between sampling events. Horizontal hydraulic gradient was not calculated near the southern end of the pond due to the potential influence of the trench on groundwater flow.

Groundwater flow within the lower (deep alluvial) migration zone along the edge of the Wabash River valley was not contoured since all the deep alluvial monitoring wells are within a narrow zone between Ash Pond D and the Wabash River. Groundwater within the lower zone generally flows from southwest to northeast towards the Wabash River.

3.2 Review of Analytical Data (2019-2020)

Groundwater samples from the most recent eight monitoring events were collected on February 25, 2019, June 17, 2019, August 26, 2019, October 28, 2019, February 3, 2020, May 4, 2020, August 3, 2020, and October 26, 2020. All field and laboratory analytical results are tabulated in Appendix A. Sampling anomalies, such as wells that were dry, had water levels too low for sampling, or were not sampled during a sampling event for other reasons, are noted below:

- MW-3: Not sampled in the first, second, third, and fourth quarters of 2019 and first, second, and fourth quarter of 2020 due to insufficient water level.
- During the October 2019 data review, inversion was observed for analytical data from MW-22S, MW-22D, MW-23S, and MW-23D. Investigation indicated possible mislabeling or data switch from MW-22S to MW-23S and similarly from MW-22D to MW-23D.

Results of groundwater monitoring for constituents that exceeded the Class I Groundwater Standard when the GMZ was established (boron, sulfate, manganese, and TDS) are discussed below:

• Boron has been identified as the primary indicator constituent for coal ash impacts to groundwater at Ash Pond A (see Section 1.2.2). In the 2019-2020 monitoring period, boron concentrations ranged from 0.1 to 3.9 milligrams per liter (mg/L) in shallow compliance monitoring wells. In deep monitoring wells, boron concentrations ranged from 0.05 to 9.4 mg/L (Figure 3-6 and Figure 3-7). As discussed in Sections 1.2.2-1.2.3, boron concentrations have been stable or decreasing in the majority of compliance monitoring wells across the site since closure. During the current monitoring period, boron concentrations continue to be stable over

time which indicates that the cover system is functioning to improve overall groundwater quality beneath the ponds.

- Sulfate has also been identified as an indicator for coal ash impacts to groundwater at
 Ash Pond A (see Section 1.2.2). In the 2019-2020 monitoring period, sulfate concentrations
 ranged from 9.6 to 3,800 mg/L in shallow compliance monitoring wells. In deep monitoring
 wells, sulfate concentrations ranged from 2.1 to 3,700 mg/L (Figure 3-8 and Figure 3-9).
 Sulfate concentrations were highest at MW-22S, MW-22D, and MW-3D in 2019 and 2020,
 where boron concentrations were also highest. Overall, during this reporting period, sulfate
 distribution was similar to boron distribution at Ash Pond A.
- Box-whisker plots and timeseries plots illustrating concentrations for the most recent eight monitoring events (2019-2020), were developed for additional parameters manganese and TDS (Figures 3-10 through 3-12). Similar to the identified indicator parameters, these parameters showed generally stable trends during this reporting period.

3.3 Statistical Analyses

Analytical data were evaluated to identify short-term (compliance) data trends in the 2019-2020 dataset. Trends were evaluated according to the procedure outlined in the Groundwater Monitoring plan (Hanson, NRT, 2014b).

3.3.1 Outlier Analysis

The Grubbs outlier test determines whether there is statistical evidence of a high or low observation that differs significantly from the other data and provides statistical evidence of potential outliers. The test methodology and results are listed in Appendix C1. Outliers identified during the compliance period (2019-2020) by the Grubbs outlier test based on the date range of 1984-2020 were not eliminated from further statistical analysis due the lack of documentation indicating that the results don't represent actual field conditions. In addition, these outliers did not have any influence on the short-term compliance trends.

3.3.2 Sen's Estimate of Slope

Sen's estimate of slope is a non-parametric estimator of trend. It is the median of all slopes between all possible unique pairs of individual data points in the time period being analyzed. The slopes represent the rate of change of the measured parameter, with the y-axis being the parameter value and the x-axis being calendar time. The method is robust, and fairly insensitive to the presence of a small fraction of outliers and non-detect data values. The test methodology and results are listed in Appendix C2.

Data collected in 2019-2020 show 9 cases with positive slopes, 20 cases with negative slopes, and 246 cases with no slope (Table 3-1). Sen's Estimate of Slope requires a minimum of four consecutive samples. The 9 cases with positive slopes were tested using the Mann-Kendall test to determine if the positive slopes represented increasing trends.

3.3.3 Mann-Kendall Trend Analysis

The Mann-Kendall test is a non-parametric, one-tailed test to determine whether a dataset has a statistically significant increasing or decreasing trend. The test methodology is in Appendix C2. Increasing short-term (compliance) trends are identified in Tables 3-1 and 3-2.

The Mann-Kendall test detected three cases of increasing trends in the 2019-2020 dataset. The increasing short-term trends occurred for iron (MW-22D) and fluoride (MW-22S and MW-22D). For these three cases, only the iron concentration at MW-22D was above the Class I Groundwater Standard (5 mg/L) for all sampling events during this reporting period except the fourth quarter of 2019.

3.4 Site Inspection

The Post-Closure Care Plan (Hanson, NRT, 2014d) requires quarterly inspection until completion of the post-closure period. Inspections are also required after storm events defined as a 25-year, 24-hour event, or approximately 5.37 inches of precipitation. Discontinuation of the site inspections will occur after Illinois EPA approval of the certified Post-Closure Care Report.

Site inspections include assessment of the condition and need for repair of final cover and vegetation, as wells as fencing, monitoring points, and surface water control features. The inspection reports for 2020 are included in Appendix B.

The site inspections performed on March 4, 2020, July 7, 2020, September 22, 2020, and December 16, 2020 noted a small amount of vegetation and debris in the drainage channels and some vegetation that had been cut short and was being monitored for re-growth.

4. EVALUATION OF COMPLIANCE

Those parameters and wells with increasing short-term trends and concentrations above the Class I Groundwater Standard have been identified in Section 3.3.3 and in Table 3-1 for the most recent eight monitoring events (2019-2020). Only iron at MW-22D had both an increasing short-term trend and concentration above the Class I Groundwater Standard during the compliance period (2019-2020). This case was isolated and not repeated from the 2018-2019 monitoring period; as such, no further action is required at this time.

5. CONCLUSIONS

Cover system construction and maintenance, as well as stable or decreasing boron and sulfate concentrations in the majority of compliance monitoring wells across the site is a strong indication that the cover system is functioning to improve overall groundwater quality beneath the pond.

Statistical analyses of analytical results for the most recent eight rounds of groundwater samples collected for 2019 to 2020 compliance period at the Hutsonville Ash Pond A identified an increasing short-term trend for iron and concentrations above the Class I Groundwater Standard (5 mg/L) at MW-22D. This case was isolated and not repeated from the 2018-2019 monitoring period; as such, no further action is required at this time. The concentration of iron at this location will continue to be monitored and evaluated in 2021.

6. REFERENCES

Ameren, 2017. Closure Completion Report. March 30, 2017.

Hanson, Natural Resource Technology, Inc. (NRT), 2014a. *Ash Ponds Closure, Closure Plan – Hutsonville Power Station*. September 15, 2014.

Hanson, Natural Resource Technology, Inc. (NRT), 2014b. *Ash Ponds Closure, Groundwater Monitoring Plan – Hutsonville Power Station.* September 15, 2014.

Hanson, Natural Resource Technology, Inc. (NRT), 2014c. Ash Ponds Closure, Groundwater Management Zone Application – Hutsonville Power Station. September 8, 2014.

Hanson, Natural Resource Technology, Inc. (NRT), 2014d. *Ash Ponds Closure, Post-Closure Care Plan – Hutsonville Power Station*. September 8, 2014.

35 Illinois Administrative Code 620: Groundwater Quality.

35 Illinois Administrative Code 840: Site-Specific Closures of Coal Combustion Waste Surface Impoundments.

TABLES

Table 1-1. Groundwater Monitoring Program Schedule 2020 Annual Report Former Hutsonville Power Station - Ash Pond A

Frequency	Duration	Sampling Quarter	Report Due Date
	Begins: January 2016		
		January- March (1)	May 31
Quarterly		April - June (2)	August 31
Quarterry		July - September (3)	November 30
	Ends: After successful completion of the post-closure activities required and approval of the Illinois EPA.	October - December (4)	February 28

Table 1-2. Groundwater Monitoring System Wells 2020 Annual Report Former Hutsonville Power Station - Ash Pond A

Well	Installation Date	Surface Elevation ¹ (ft, MSL ²)	TOC ^{1, 3} Elevation (ft, MSL ²)	Top of Screen Elevation ⁴ (ft, MSL ²)	Bottom of Screen Elevation ⁴ (ft, MSL ²)	Total Well Depth ⁵ (ft, BGS ²)	Objective	Position	Monitoring Zone ⁶
Ash Pond A Groundwater Monitoring System Wells: Water Quality and Groundwater Elevations									
MW-2R	6/4/2012	453.0	455.37	446.0	435.3	17.8	Compliance	Downgradient	UZ - s&g
MW-2D	10/14/2015	452.9	455.42	435.1	430.4	23.1	Compliance	Downgradient	UZ - ss
MW-3	2/9/1984	453.7	454.84	447.7	442.7	11.0	Compliance	Downgradient	UZ - s&g
MW-3D	10/6/1998	453.57	455.01	433.6	428.6	25.0	Compliance	Downgradient	UZ - ss
MW-4	2/13/1984	454.0	456.76	449.4	441.9	12.1	Compliance	Downgradient	UZ - s&g, ss
MW-5	2/13/1984	452.1	454.67	447.3	434.3	17.8	Compliance	Downgradient	UZ - s&g, ss
MW-10 ⁷	10/7/1998	452.9	454.23	447.2	442.2	10.7	Background	Upgradient	UZ - si s&g, ss
MW-10D ⁷	10/7/1998	452.9	454.65	436.6	431.6	21.3	Background	Upgradient	UZ - ss
MW-23S ⁷	11/28/2017	453.4	456.03	444.2	438.9	14.5	Background	Upgradient	UZ - s si, si s, ss
MW-23D ⁷	11/28/2017	453.5	455.90	434.0	428.7	24.8	Background	Upgradient	UZ - ss, sh
MW-12	10/8/1998	455.5	456.74	448.6	438.6	16.9	Compliance	Downgradient	UZ - s&g
MW-22S	10/14/2015	449.2	451.48	441.9	437.2	12.7	Compliance	Downgradient	UZ - si s&g, ss
MW-22D	10/14/2015	449.1	451.36	431.7	427.0	22.7	Compliance	Downgradient	UZ - si s&g, ss
Other Monitoring Wells	and Piezometers:	Groundwater E	levations						
MW-6	2/9/1984	438.7	443.17	433.9	427.5	11.2			UZ - s&g, ss
MW-7	2/8/1984	439.9	442.28	422.9	412.9	27.0			UZ - si s&g
MW-7D	10/5/1998	438.9	442.75	398.2	393.2	45.7			LZ - si s&g
MW-8	2/8/1984	440.0	443.65	422.9	417.9	22.1			UZ - si sand
MW-9	2/14/1984	451.7	454.38	443.5	433.5	18.2			UZ - s&g
MW-11R	10/3/2001	440.4	443.01	435.4	425.4	15.0			UZ - s&g
MW-14	10/3/2001	440.1	442.89	412.9	407.9	32.2			LZ - s&g
MW-115S	5/1/2004	438.7	440.88	408.4	403.4	35.3			LZ - s&g
MW-115D	5/1/2004	439.1	441.39	356.4	351.4	87.7			LZ - s&g
MW-121	10/2/2001	439.2	440.23	403.8	398.8	40.3			LZ - s&g

Notes:

[O: JJW 4/22/19; C:EDP 4/22/19]

 $^{1. \} Well \ survey \ data \ collected \ by \ Lamac \ Engineering \ November \ 30, \ 2017 \ to \ December \ 1, \ 2017.$

^{2.} BGS = below ground surface; MSL = mean sea level.

^{3.} TOC = top of casing

^{4.} Screen elevations presented in the table reflect values provided in boring logs or well construction forms and assume no changes to the screen elevations occurred after well installation.

^{5.} The total well depth is assumed to be equal to the depth to the bottom of screen from ground surface when data is not available in boring logs or well construction forms.

^{6.} UZ = Upper Zone, LZ = Lower Zone (deep alluvial aquifer); s = sand or sandy, s&g = sand and gravel, si = silt or silty, ss = sandstone, sh = shale

^{7.} Background wells MW-10 and MW-10D were damaged and replaced with background wells MW-23D and MW-23S.

⁻⁻ Not applicable. Wells listed are for development of groundwater elevation contour maps only.

Table 1-3. Groundwater Monitoring Program Parameters 2020 Annual Report

Former Hutsonville Power Station - Ash Pond A

Field Parameters	STORET Code			
pH ²	00400			
Specific Conductance ²	00094			
Temperature (Fahrenheit)	00011			
Depth to Water (BMP)	72109			
Elevation of GW Surface ²	71993			
Depth of Well (BGS) ²	72008			
Elevation of Measuring Point	72110			
Laboratory Parameters ¹	STORET Code			
Boron ²	01020			
lron ²	01046			
Manganese ²	01056			
Sulfate ²	00946			
Total Dissolved Solids (TDS) ²	70300			
Antimony	01095			
Arsenic	01000			
Barium	01005			
Beryllium	01010			
Cadmium	01025			
Chloride	00941			
Chromium	01030			
Cobalt	01035			
Copper	01040			
Cyanide	00720			
Fluoride	00950			
Lead	01049			
Mercury	71890			
Nickel	01065			
Nitrate as N	00618			
Selenium	01145			
Silver	01075			
Thallium	01057			
Vanadiium	01085			
Zinc	01090			

[O: YD/SJC, C: YD/SJC]

Notes:

¹ Reported as dissolved (filtered) concentrations.

² Mandatory monitoring parameter per 35 IAC 840.114(a).

Table 3-1. Trend Analysis Results 2020 Annual Report Former Hutsonville Power Station - Ash Pond A

	MW-2R	MW-2D	MW-3	MW-3D	MW-4	MW-5	MW-12	MW-22D	MW-22S	MW-23D	MW-23S
Number of Samples	8	8	1	8	8	8	8	8	8	8	8
Antimony, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Arsenic, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Barium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Beryllium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Boron, dissolved	None	None	ID	-	None	None	None	1	+	None	None
Cadmium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Chloride, dissolved	None	None	ID	None	None	None	Decrease	None	None	Decrease	None
Chromium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Cobalt, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Copper, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Cyanide, total	None	None	ID	None	None	None	None	None	None	None	None
Fluoride, dissolved	None	None	ID	None	None	None	None	Increase	Increase	None	None
Iron, dissolved	None	+	ID	None	None	None	None	Increase	-	+	None
Lead, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Manganese, dissolved	None	None	ID	-	None	None	None	+	-	None	None
Mercury, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Nickel, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Nitrate nitrogen, dissolved	Decrease	None	ID	None	-	Decrease	-	None	None	None	None
Selenium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Silver, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Sulfate, dissolved	-	None	ID	-	None	None	-	+	-	None	None
Thallium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Total Dissolved Solids	None	Decrease	ID	Decrease	None	Decrease	Decrease	+	-	None	None
Vanadium, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Zinc, dissolved	None	None	ID	None	None	None	None	None	None	None	None
Notes:									[O: F	SD 1/7/2021, C:	RAB 1/7/2021]

Notes:

- "+" indicates that the Sen's non-parametric estimate of the median slope is positive

- "-" indicates that the Sen's non-parametric estimate of the median slope is negative
- Statistically significant positive/negative slopes are hereby referred to as increasing/decreasing trends
- Mann Kendall Trend analysis done with non-detects at one half the detection limit
- The most recent eight sampling events were used for analysis; date range for this analysis is 1/1/2019-12/31/2020
- Green shading indicates increasing trends as determined using the Mann-Kendall test at 95% confidence for constituents with maximum concentration than the Class I groundwater quality standard.
- Yellow shading indicates increasing trends as determined using the Mann-Kendall test at 95% confidence for constituents with maximum concentration in the Class I groundwater quality standard.
- ID indicated that there was insufficient data to perform Sen's Estimate of Slope.

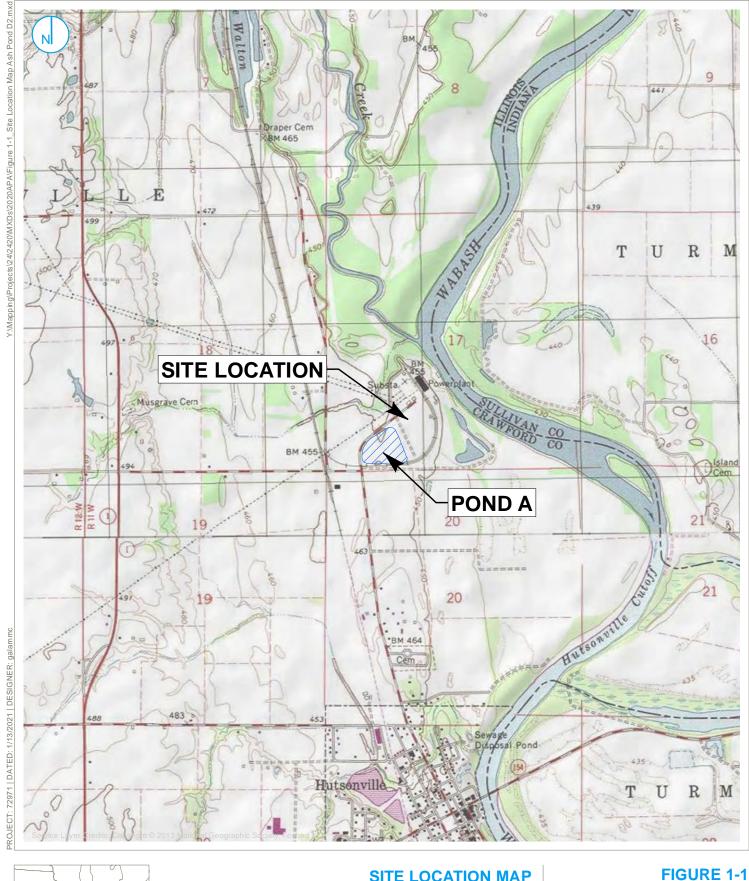
Table 3-2. Summary of Trend Analyses

2020 Annual Report

Former Hutsonville Power Station - Ash Pond A

Time Period	Short-Term Statistically Significant Increasing Trends	Long-Term Statistically Significant Decreasing Trends
2016-2017	8	•
2017-2018	9	1
2018-2019	10	-
2019-2020	3	12

[O:RSD 1/7/2021, C: RAB 1/7/2021]


Notes:

Trends based on data collected during the specified periods.

The number of samples per well location are noted on Table 3-1.

Long-terms trends were calculated with data since completion of closure in March 2017.

FIGURES

Map Scale: 1:1:24,000; Map Center: 87°39'45"W 39°7'53"N

1,000 2,000 → Feet

SITE LOCATION MAP

2020 ANNUAL REPORT FORMER HUTSONVILLE

POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

ASH POND D MONITORING WELL LOCATION

NESTED ASH POND D MONITORING WELL LOCATION

MONITORING WELL LOCATION

NESTED MONITORING WELL LOCATION

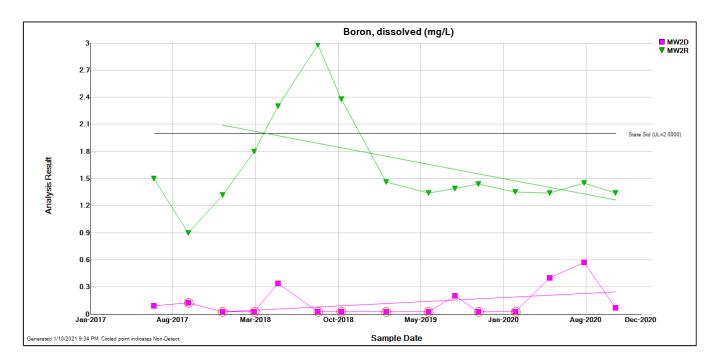
ABANDONED NESTED MONITORING WELL LOCATION 150

■ PROPERTY LINE

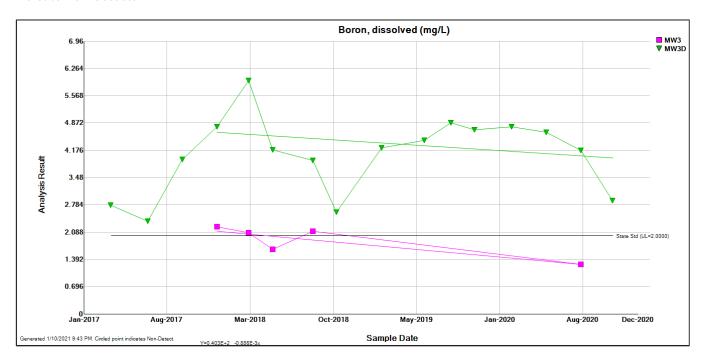
■ ■ ■ APPROXIMATE BOUNDARY OF CAPPED
■ ■ ■ ASH POND

GROUNDWATER COLLECTION TRENCH (BEGAN OPERATION APRIL 2015)

LIMITS OF GROUNDWATER MANAGEMENT ZONE


SITE BASE MAP

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY


2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

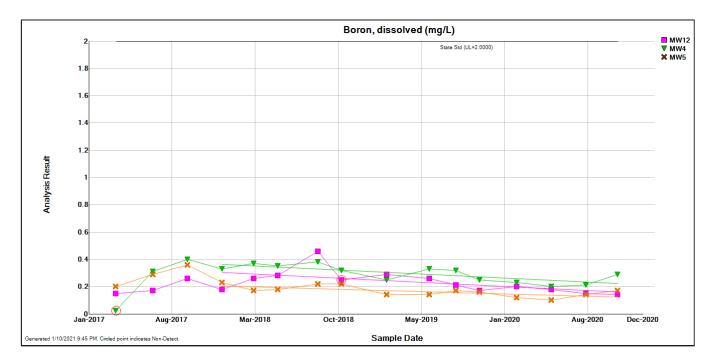


Figure 1-3. Boron concentrations since 2017 at compliance wells MW-2D and MW-2R. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

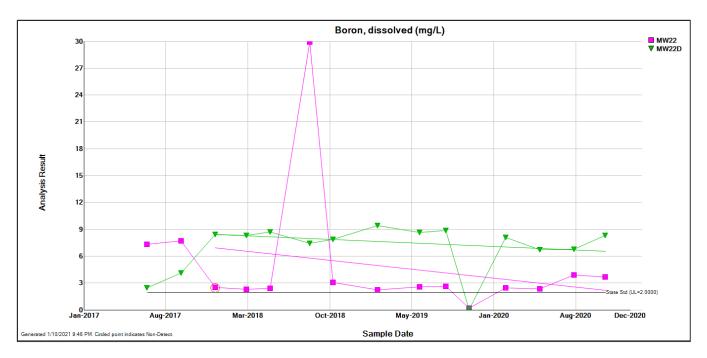


Figure 1-4. Boron concentrations since 2017 at compliance wells MW-3 and MW-3D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

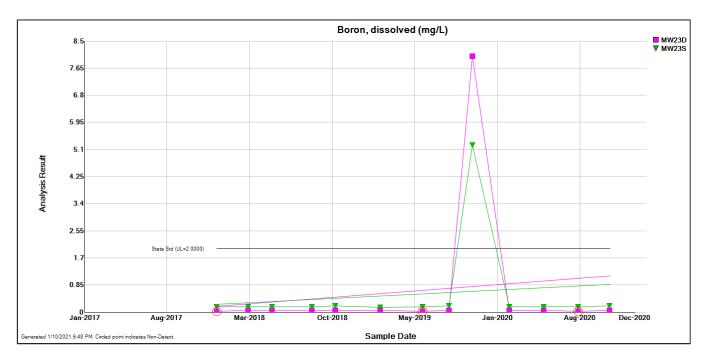


Figure 1-5. Boron concentrations since 2017 at compliance wells MW-4, MW-5 and MW-12. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

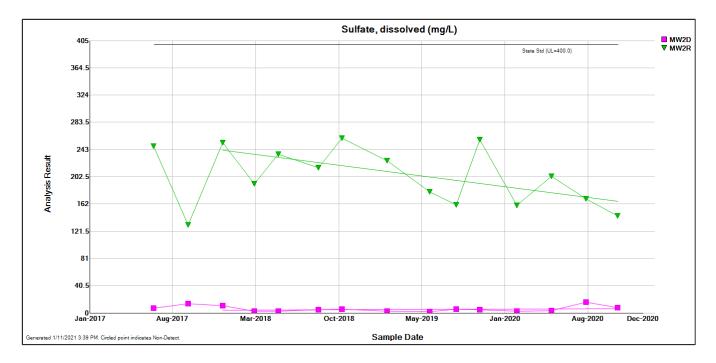


Figure 1-6. Boron concentrations since 2017 at compliance wells MW-22S and MW-22D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

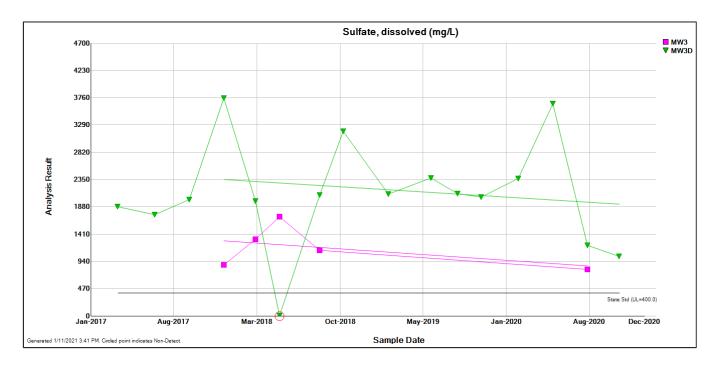


Figure 1-7. Boron concentrations since 2017 at compliance wells MW-23S and MW-23D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

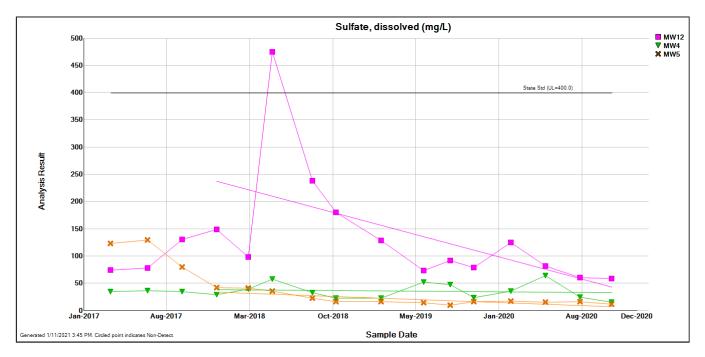


Figure 1-8. Sulfate concentrations since 2017 at compliance wells MW-2D and MW-2R. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

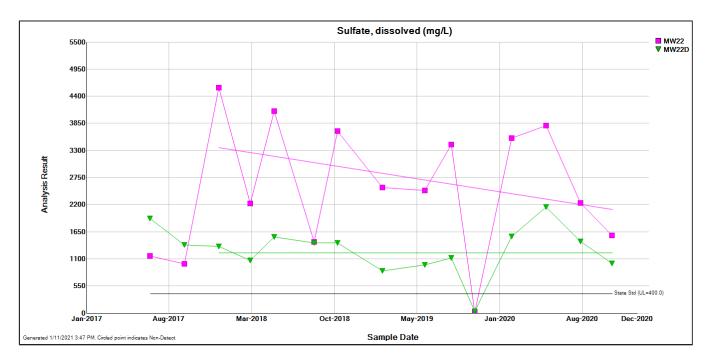


Figure 1-9. Sulfate concentrations since 2017 at compliance wells MW-3 and MW-3D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only. Circled results indicate non-detects.

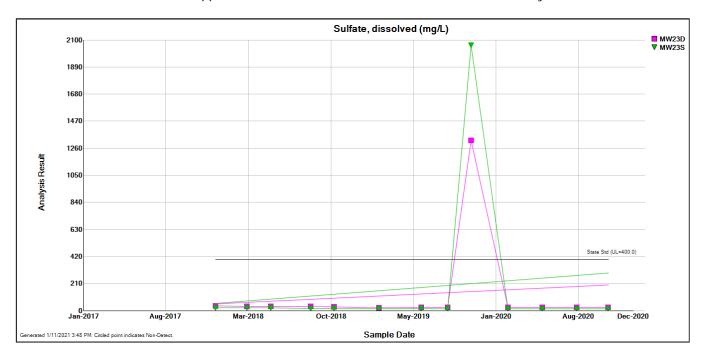


Figure 1-10. Sulfate concentrations since 2017 at compliance wells MW-4, MW-5 and MW-12. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

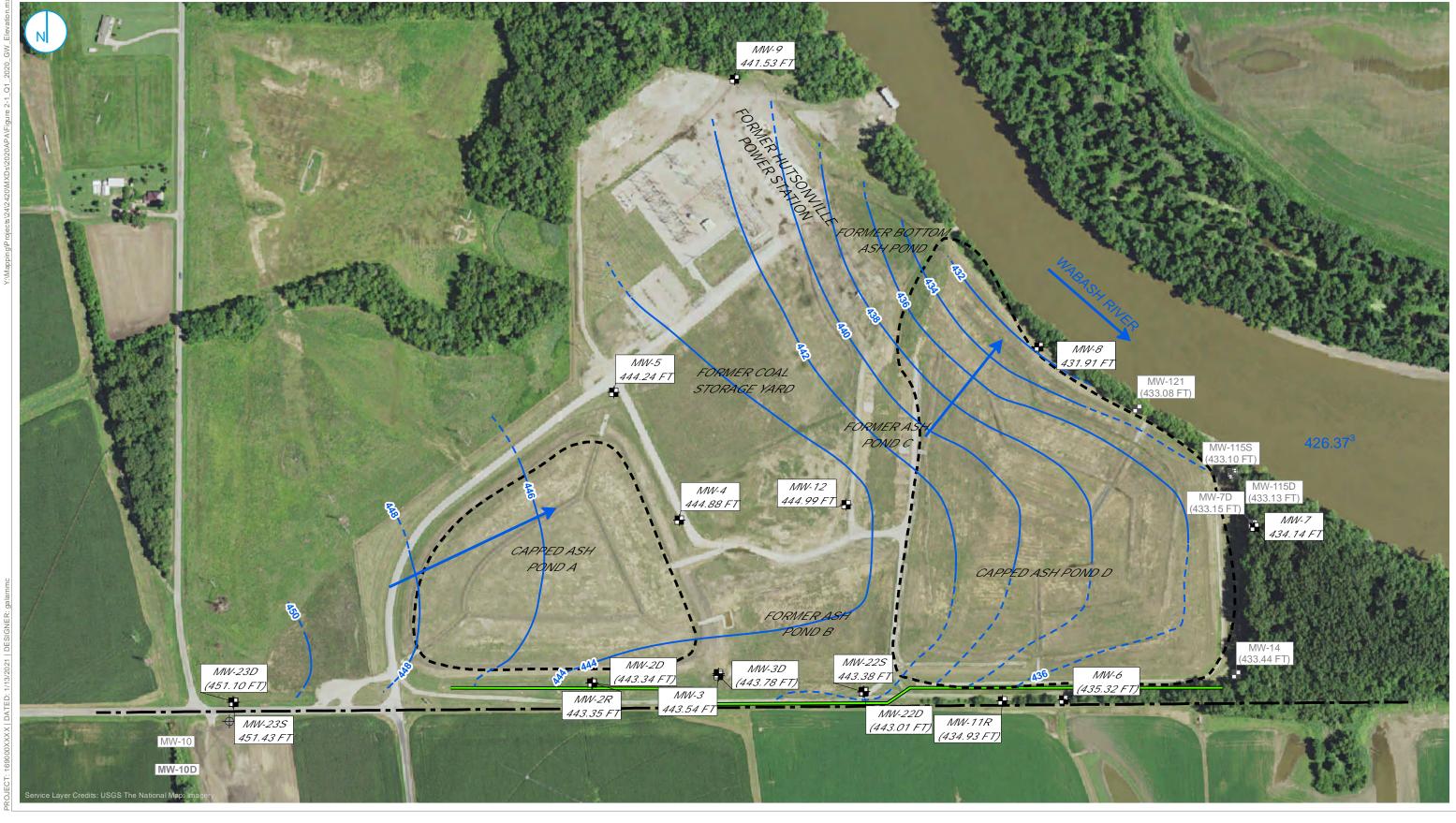


Figure 1-11. Sulfate concentrations since 2017 at compliance wells MW-22S and MW-22D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

Figure 1-12. Sulfate concentrations since 2017 at compliance wells MW-23S and MW-23D. The Class I Groundwater Standard is not applicable within the GMZ and is shown for reference only.

UPPER MIGRATION ZONE MONITORING WELL

DEEP MIGRATION ZONE MONITORING WELL

ABANDONED MONITORING WELL

■ PROPERTY LINE

0 150 300

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL)

- - INFERRED GROUNDWATER ELEVATION CONTOUR

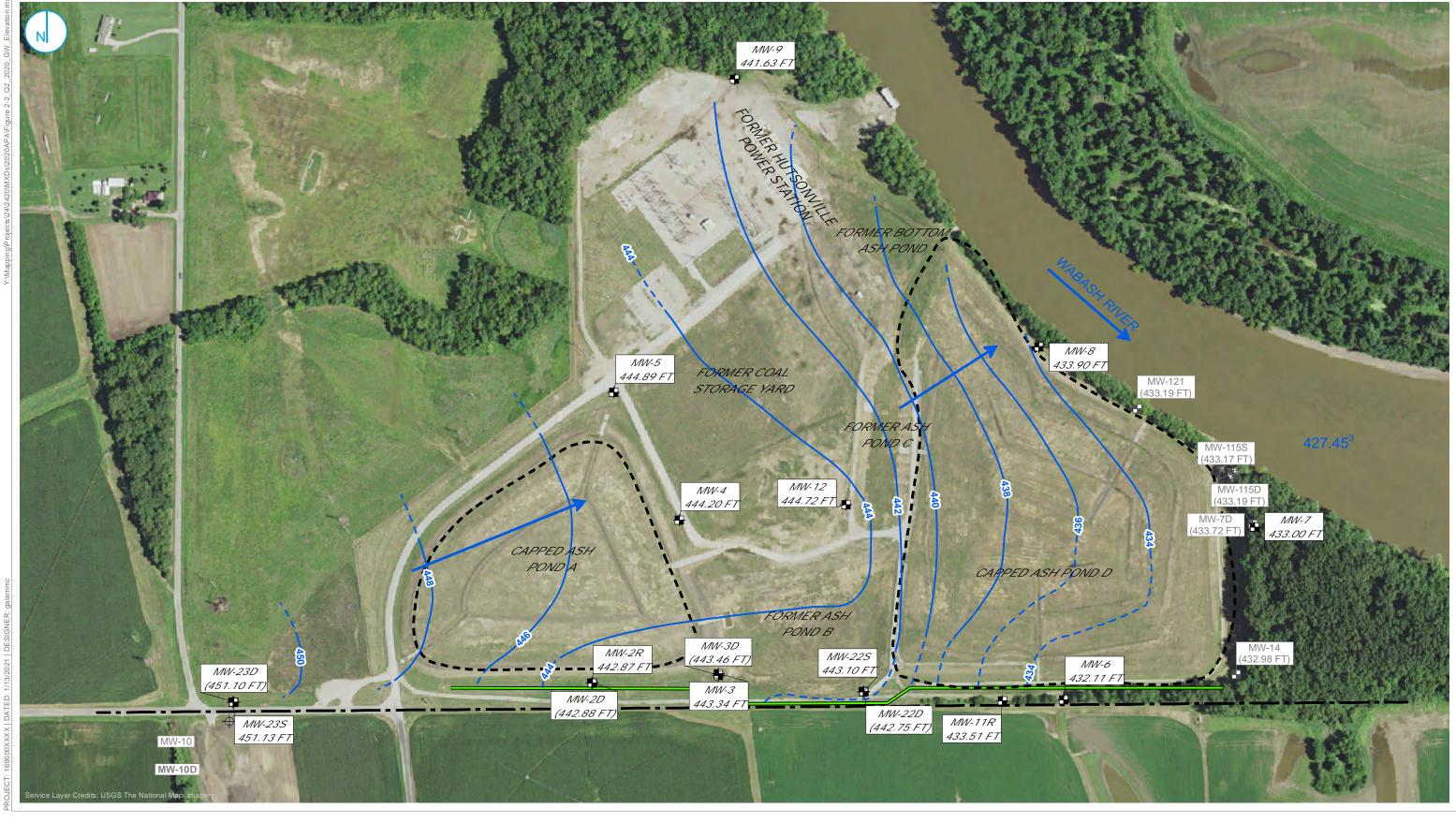
GROUNDWATER FLOW DIRECTION

■ ■ ■ ■ ■ APPROXIMATE BOUNDARY OF CAPPED

GROUNDWATER COLLECTION TRENCH (BEGAN OPERATION APRIL 2015)

VATION

1) GROUNDWATER AND RIVER ELEVATIONS REPORTED IN FEET NORTH AMERICAN VERTICAL


2) GROUNDWATER ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
3) WABASH RIVER ELEVATIONS AS REPORTED BY USGS FROM USGS 03342000 WABASH RIVER
AT RIVERTON, IN LOCATED APPROXIMATELY 12.5 RIVER MILES DOWNSTREAM. RIVER ELEVATION
REPORTED IN FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929 AND CONVERTED TO FEET
NORTH AMERICAN VERTICAL DATUM OF 1988.

Q1 UPPER MIGRATION ZONE GROUNDWATER ELEVATION CONTOUR MAP FEBRUARY 3, 2020

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

FIGURE 3-1

UPPER MIGRATION ZONE MONITORING WELL

DEEP MIGRATION ZONE MONITORING WELL

ABANDONED MONITORING WELL LOCATION

■ PROPERTY LINE

0 150 300

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL)

- - INFERRED GROUNDWATER ELEVATION CONTOUR

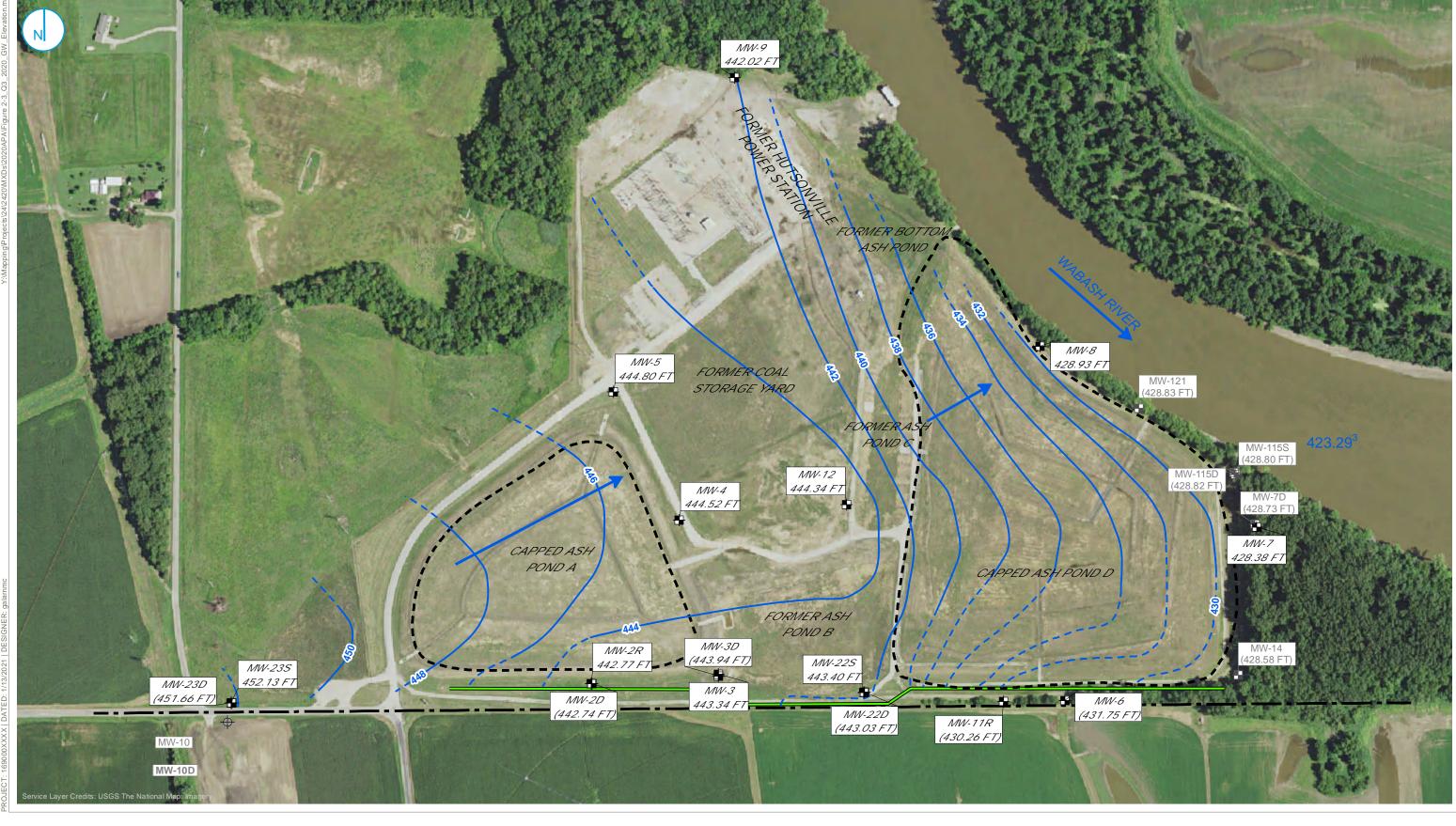
GROUNDWATER FLOW DIRECTION

■ ■ ■ ■ ■ APPROXIMATE BOUNDARY OF CAPPED

GROUNDWATER COLLECTION TRENCH (BEGAN OPERATION APRIL 2015)

VATION

1) GROUNDWATER AND RIVER ELEVATIONS REPORTED IN FEET NORTH AMERICAN VERTICAL DATUM OF 1988.


2) GROUNDWATER ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
3) WABASH RIVER ELEVATIONS AS REPORTED BY USGS FROM USGS 03342000 WABASH RIVER
AT RIVERTON, IN LOCATED APPROXIMATELY 12.5 RIVER MILES DOWNSTREAM. RIVER ELEVATION
REPORTED IN FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929 AND CONVERTED TO FEET
NORTH AMERICAN VERTICAL DATUM OF 1988.

Q2 UPPER MIGRATION ZONE GROUNDWATER ELEVATION CONTOUR MAP MAY 4, 2020

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

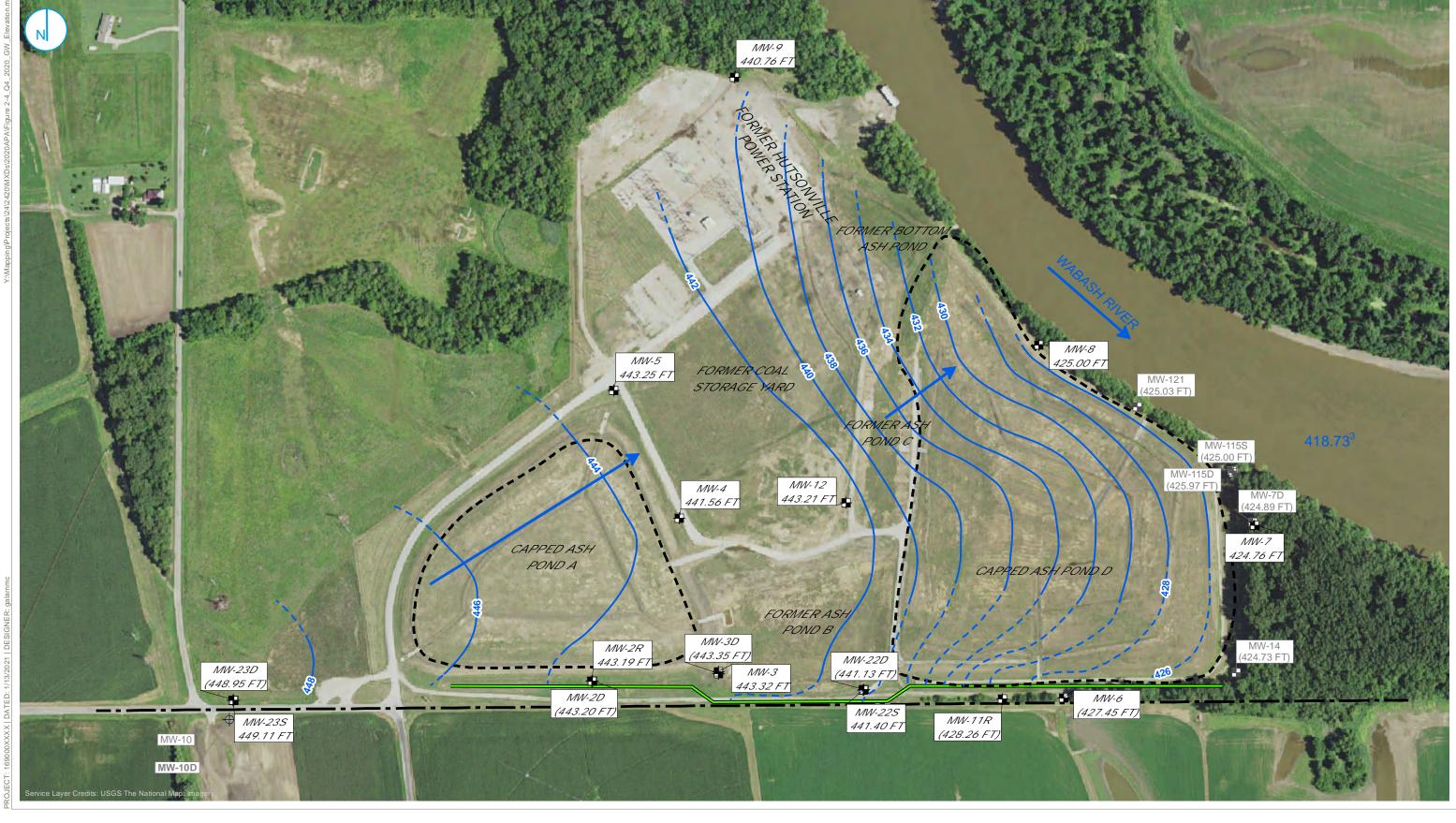
FIGURE 3-2

- DEEP MIGRATION ZONE MONITORING WELL
- ABANDONED MONITORING WELL
- PROPERTY LINE
- 0 150 300

- GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL)
- - INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
- P APPROXIMATE BOUNDARY OF CAPPED
 ASH POND
- GROUNDWATER COLLECTION TRENCH (BEGAN OPERATION APRIL 2015)

VATION

1) GROUNDWATER AND RIVER ELEVATIONS REPORTED IN FEET NORTH AMERICAN VERTICAL DATUM OF 1988.


2) GROUNDWATER ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
3) WABASH RIVER ELEVATIONS AS REPORTED BY USGS FROM USGS 03342000 WABASH RIVER
AT RIVERTON, IN LOCATED APPROXIMATELY 12.5 RIVER MILES DOWNSTREAM. RIVER ELEVATION
REPORTED IN FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929 AND CONVERTED TO FEET
NORTH AMERICAN VERTICAL DATUM OF 1988.

Q3 UPPER MIGRATION ZONE GROUNDWATER ELEVATION CONTOUR MAP AUGUST 3, 2020

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

FIGURE 3-3

UPPER MIGRATION ZONE MONITORING

DEEP MIGRATION ZONE MONITORING WELI

ABANDONED MONITORING WELL

■ PROPERTY LINE

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

■ ■ APPROXIMATE BOUNDARY OF CAPPED

GROUNDWATER COLLECTION TRENCH (BEGAN OPERATION APRIL 2015)

1) GROUNDWATER AND RIVER ELEVATIONS REPORTED IN FEET NORTH AMERICAN VERTICAL

2) GROUNDWATER ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.
3) WABASH RIVER ELEVATIONS AS REPORTED BY USGS FROM USGS 03342000 WABASH RIVER
AT RIVERTON, IN LOCATED APPROXIMATELY 12.5 RIVER MILES DOWNSTREAM. RIVER ELEVATION
REPORTED IN FEET NATIONAL GEODETIC VERTICAL DATUM OF 1929 AND CONVERTED TO FEET
NORTH AMERICAN VERTICAL DATUM OF 1988.

Q4 UPPER MIGRATION ZONE GROUNDWATER ELEVATION CONTOUR MAP OCTOBER 26, 2020

2020 ANNUAL REPORT FORMER HUTSONVILLE POWER STATION - ASH POND A AMEREN ENERGY MEDINA VALLEY COGEN, LLC HUTSONVILLE, IL

FIGURE 3-4

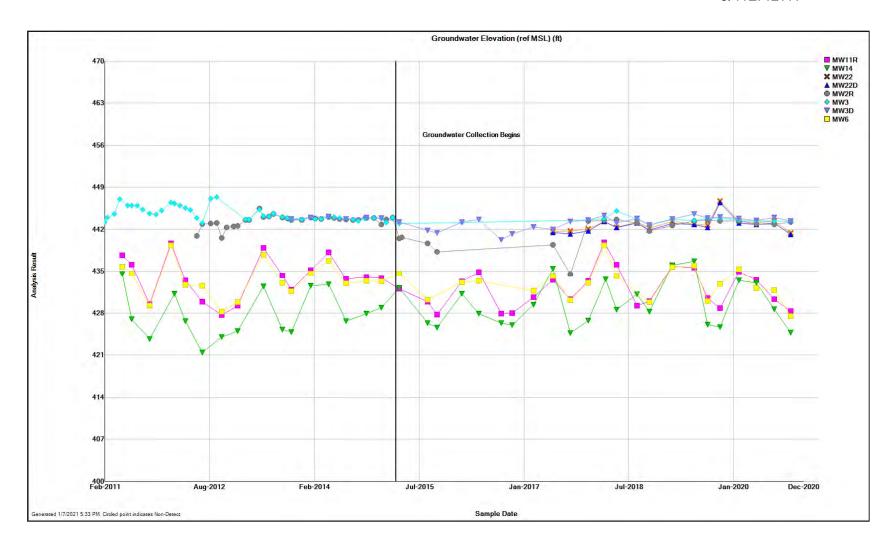
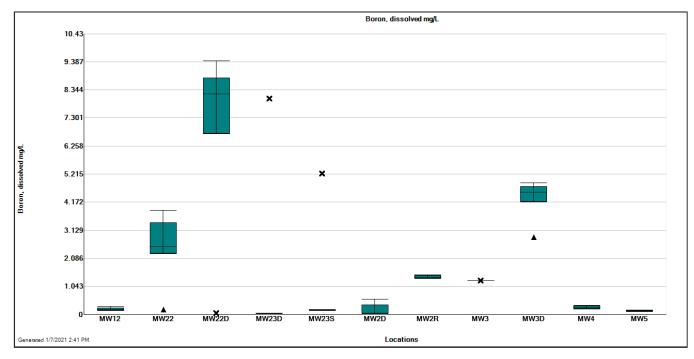
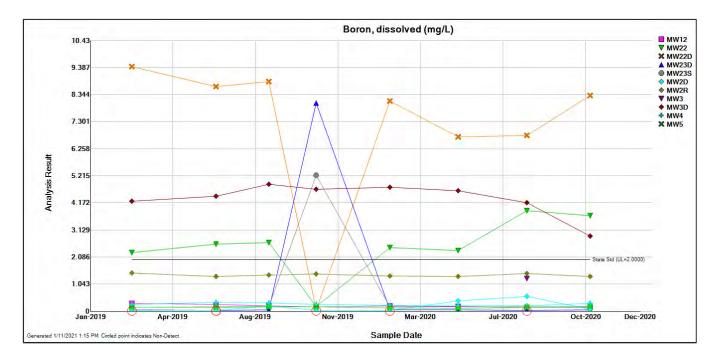




Figure 3-5. Groundwater elevations near groundwater collection trench

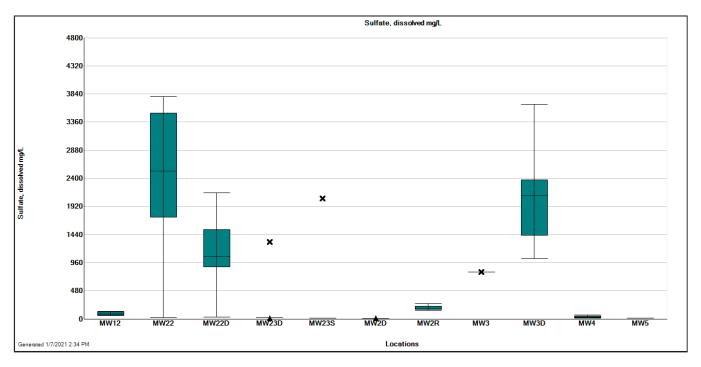


Figure 3-6. Box-whisker plot showing distribution of **boron** concentration by monitoring well for data collected in 2019 and 2020

Figure 3-7. Boron concentrations during the reporting period (2019-2020) at all compliance wells. Circled results indicate non-detects.

Figure 3-8. Box-whisker plot showing distribution of **sulfate** concentration by monitoring well for data collected in 2019 and 2020.

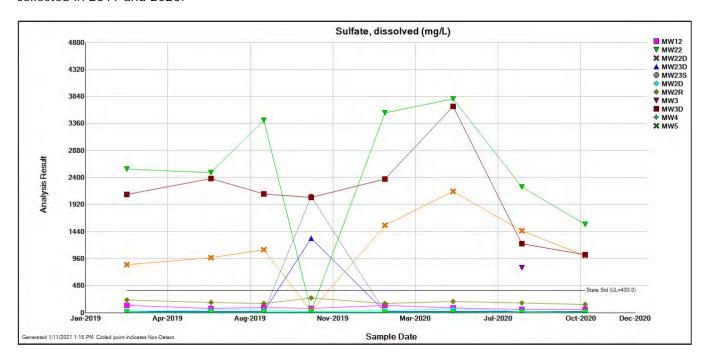
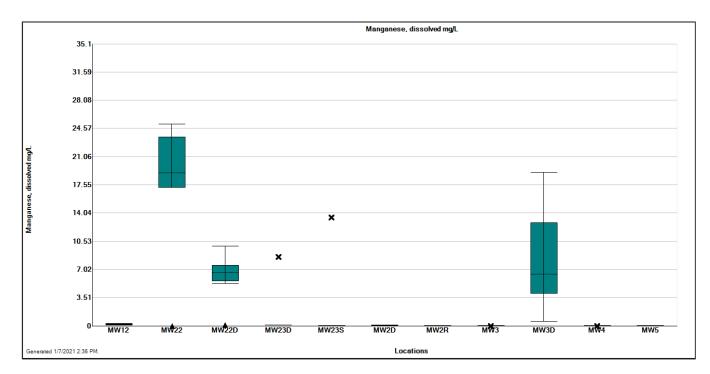
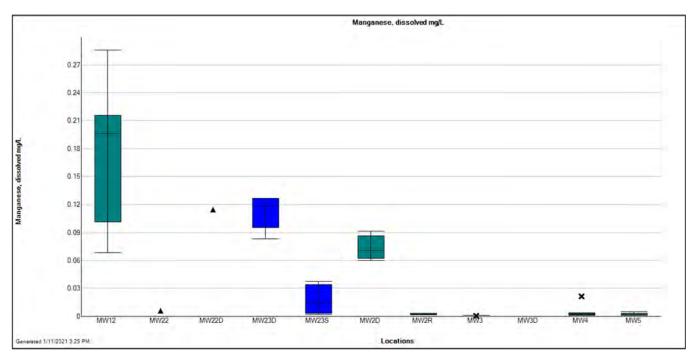




Figure 3-9. Sulfate concentrations during the reporting period (2019-2020) at all compliance wells.

Figure 3-10A. Box-whisker plot showing distribution of **manganese** concentration by monitoring well for data collected in 2019 and 2020.

Figure 3-10B. Box-whisker plot showing distribution of **manganese** concentration by monitoring well for data collected in 2019 and 2020 (zoomed in).

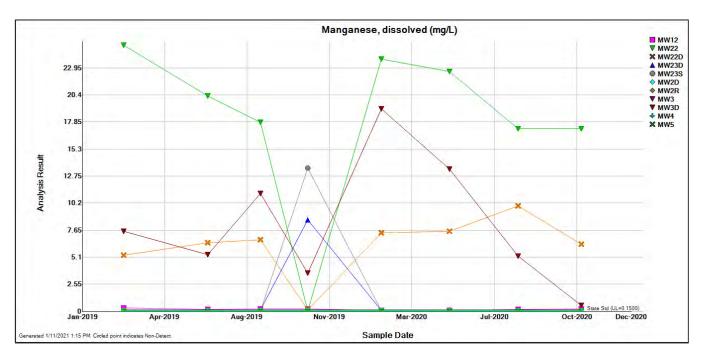
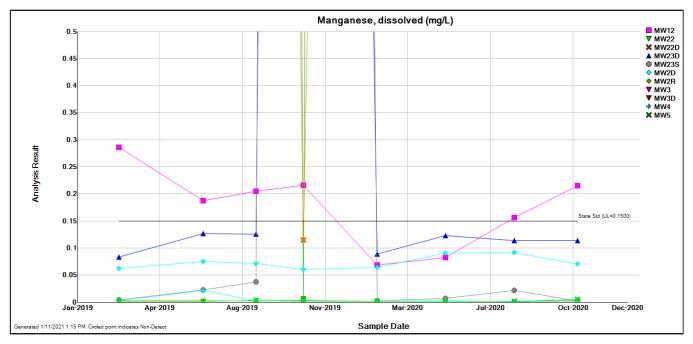
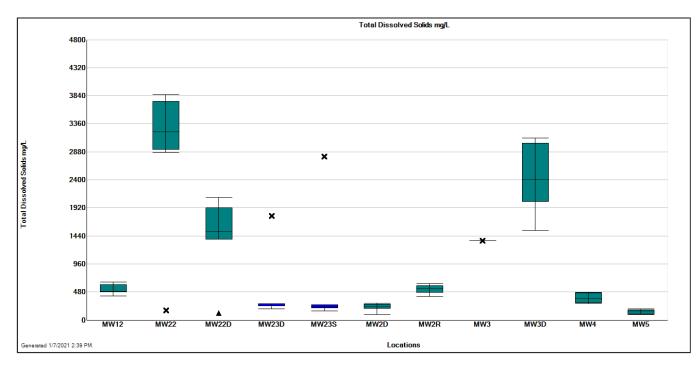




Figure 3-11A. Manganese concentrations during the reporting period (2019-2020) at all compliance wells.

Figure 3-11B. Manganese concentrations during the reporting period (2019-2020) at all compliance wells. Zoomed in to show the Class I groundwater standard.

Figure 3-12. Box-whisker plot showing distribution of **total dissolved solids** concentration by monitoring well for data collected in 2019 and 2020.

Figure 3-13. Total dissolved solids concentrations during the reporting period (2019-2020) at all compliance wells.

APPENDIX A GROUNDWATER MONITORING RESULTS 2019-2020

Date Range: 01/01/2019 to 12/31/2020

Well: MW2D

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	0.0052	0.0138	0.0117	0.0064	0.0055	0.0054	0.0068	0.0095
B, diss, mg/L	< 0.0250	< 0.0250	0.2000	< 0.0250	< 0.0250	0.4000	0.5700	0.0700
Ba, diss, mg/L	0.064	0.075	0.090	0.060	0.066	0.085	0.103	0.062
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	9.8	16.5	11.7	13.1	11.7	10.9	12.6	11.6
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.2
Fe, diss, mg/L	0.393	3.560	2.880	0.327	0.651	0.758	1.480	1.280
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0617	0.0750	0.0714	0.0600	0.0637	0.0905	0.0916	0.0708
Ni, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	0.0002
NO3, diss, mg/L	< 0.050	0.128	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
SO4, diss, mg/L	2.7	2.1	5.7	4.9	2.6	3.2	16.1	8.0
TDS, mg/L	264	286	274	234	208	196	220	92
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01

Date Range: 01/01/2019 to 12/31/2020

Well: MW2R

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
B, diss, mg/L	1.4600	1.3400	1.3900	1.4400	1.3500	1.3400	1.4500	1.3400
Ba, diss, mg/L	0.033	0.029	0.030	0.035	0.029	0.030	0.035	0.032
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	17.1	22.4	22.7	25.8	20.7	19.3	21.1	20.1
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0003	0.0003
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
Fe, diss, mg/L	< 0.010	< 0.010	0.213	0.210	< 0.010	< 0.010	0.040	0.116
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0019	0.0020	0.0024	0.0032	0.0012	0.0013	0.0015	0.0029
Ni, diss, mg/L	< 0.0003	0.0004	0.0002	< 0.0003	0.0002	< 0.0003	0.0002	< 0.0003
NO3, diss, mg/L	1.990	1.660	1.320	1.630	1.350	1.040	0.839	< 0.100
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	0.0037	0.0049	0.0037	0.0042	0.0043	0.0033	0.0027	0.0028
SO4, diss, mg/L	226.0	180.0	161.0	258.0	160.0	203.0	170.0	144.0
TDS, mg/L	608	624	534	544	472	404	472	542
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Date Range: 01/01/2019 to 12/31/2020

	8/3/2020
Ag, diss, mg/L	<0.0003
As, diss, mg/L	< 0.0003
B, diss, mg/L	1.2600
Ba, diss, mg/L	0.010
Be, diss, mg/L	< 0.0010
Cd, diss, mg/L	< 0.0003
Cl, diss, mg/L	1.3
CN, total, mg/L	< 0.01
Co, diss, mg/L	< 0.001
Cr, diss, mg/L	0.0005
Cu, diss, mg/L	< 0.0005
F, diss, mg/L	0.3
Fe, diss, mg/L	0.069
Hg, diss, mg/L	< 0.0001
Mn, diss, mg/L	0.0006
Ni, diss, mg/L	0.0004
NO3, diss, mg/L	1.690
Pb, diss, mg/L	< 0.001
Sb, diss, mg/L	< 0.002
Se, diss, mg/L	0.0056
SO4, diss, mg/L	803.0
TDS, mg/L	1360
Tl, diss, mg/L	< 0.0003
V, diss, mg/L	< 0.001
Zn, diss, mg/L	0.03

Date Range: 01/01/2019 to 12/31/2020

Well: MW3D

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	0.0010	0.0015	0.0033	0.0024	0.0010	0.0011	0.0008
B, diss, mg/L	4.2400	4.4300	4.8800	4.7000	4.7700	4.6400	4.1700	2.8900
Ba, diss, mg/L	0.010	0.011	0.012	0.014	0.014	0.009	0.020	0.012
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	0.0031	0.0029	0.0051	0.0049	0.0050	0.0045	< 0.0025	0.0009
Cl, diss, mg/L	15.5	16.5	12.4	14.1	14.3	15.6	9.4	5.0
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	0.029	0.014	0.163	0.150	0.206	0.143	0.097	0.008
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0010
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	0.4	1.3	0.9	0.9	0.7	< 0.1	0.3	0.4
Fe, diss, mg/L	0.060	0.736	0.171	0.169	5.970	0.027	0.022	0.120
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	7.5300	5.3500	11.1000	3.5800	19.1000	13.4000	5.1900	0.5220
Ni, diss, mg/L	0.2240	0.1940	0.2460	0.1710	0.2560	0.2260	0.1340	0.0239
NO3, diss, mg/L	0.278	0.839	1.140	2.560	1.310	0.232	0.952	0.861
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0031
SO4, diss, mg/L	2100.0	2380.0	2110.0	2050.0	2370.0	3660.0	1220.0	1030.0
TDS, mg/L	3120	2850	2380	2060	2440	3090	2020	1530
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	0.02	0.03	0.03	0.04	0.03	0.03	0.04	0.02

Date Range: 01/01/2019 to 12/31/2020

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
B, diss, mg/L	0.2500	0.3300	0.3200	0.2500	0.2300	0.2000	0.2100	0.2900
Ba, diss, mg/L	0.015	0.021	0.026	0.023	0.018	0.019	0.027	0.023
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	1.7	2.9	2.5	1.2	3.0	1.5	0.7	1.2
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	0.0004	0.0004	0.0004	0.0006	0.0004	0.0005	0.0006	0.0007
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	< 0.1	0.2	0.2	0.3	< 0.1	<0.1	0.2	0.3
Fe, diss, mg/L	< 0.010	0.062	0.221	0.238	< 0.010	0.025	0.042	0.139
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0026	0.0216	0.0027	0.0017	0.0012	0.0034	0.0006	0.0012
Ni, diss, mg/L	0.0003	0.0004	0.0002	< 0.0003	< 0.0003	0.0003	< 0.0003	< 0.0003
NO3, diss, mg/L	1.970	7.340	4.290	0.455	3.370	3.660	0.900	1.030
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	0.0017	0.0060	0.0036	0.0011	0.0023	0.0027	0.0014	0.0016
SO4, diss, mg/L	22.1	52.4	47.6	23.2	35.7	63.8	24.1	15.1
TDS, mg/L	444	468	472	278	308	282	334	402
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01

Date Range: 01/01/2019 to 12/31/2020

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
B, diss, mg/L	0.1400	0.1400	0.1700	0.1600	0.1200	0.1000	0.1400	0.1700
Ba, diss, mg/L	0.020	0.017	0.023	0.027	0.018	0.017	0.029	0.027
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	2.3	5.2	5.8	2.2	2.6	4.7	3.6	2.6
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	0.0003	0.0003	0.0005	0.0003	0.0003	0.0004	0.0004	0.0005
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	< 0.1	0.2	0.2	0.2	<0.1	< 0.1	< 0.1	< 0.1
Fe, diss, mg/L	< 0.010	< 0.010	0.242	0.242	< 0.010	< 0.010	0.042	0.185
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0006	0.0015	0.0031	0.0022	0.0011	0.0015	0.0010	0.0049
Ni, diss, mg/L	0.0005	0.0004	0.0004	0.0012	< 0.0003	0.0002	0.0004	0.0008
NO3, diss, mg/L	1.270	0.661	0.248	0.585	0.427	0.509	0.383	0.291
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	0.0021	0.0019	0.0012	0.0010	0.0020	0.0013	0.0011	< 0.0010
SO4, diss, mg/L	16.1	14.1	9.6	15.8	17.4	15.2	16.2	11.7
TDS, mg/L	192	170	172	146	172	102	96	94
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.01	0.01

Date Range: 01/01/2019 to 12/31/2020

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
B, diss, mg/L	0.2900	0.2600	0.2100	0.1700	0.2000	0.1800	0.1500	0.1400
Ba, diss, mg/L	0.021	0.018	0.020	0.023	0.017	0.017	0.025	0.018
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	4.6	4.4	4.2	4.4	3.6	2.9	2.5	1.8
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0003
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
Fe, diss, mg/L	< 0.010	< 0.010	0.178	0.239	< 0.010	< 0.010	0.030	0.151
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.2860	0.1870	0.2050	0.2160	0.0685	0.0827	0.1560	0.2150
Ni, diss, mg/L	0.0018	0.0013	0.0012	0.0010	0.0008	0.0007	0.0008	0.0009
NO3, diss, mg/L	3.030	1.810	1.500	2.200	1.440	1.630	1.110	2.220
Pb, diss, mg/L	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	0.0042	0.0040	0.0023	0.0014	0.0029	0.0031	0.0022	0.0013
SO4, diss, mg/L	128.0	72.8	91.6	78.5	125.0	81.6	60.5	58.1
TDS, mg/L	654	620	550	490	490	478	414	468
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0025	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01

Date Range: 01/01/2019 to 12/31/2020

Well: MW22D

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0025	< 0.0003
As, diss, mg/L	< 0.0003	0.0008	0.0007	0.0028	0.0017	0.0017	0.0014	0.0008
B, diss, mg/L	9.4300	8.6500	8.8400	0.0500	8.1000	6.7100	6.7800	8.3000
Ba, diss, mg/L	0.025	0.023	0.031	0.049	0.028	0.027	0.038	0.029
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	0.0008	0.0009	0.0011	< 0.0003	0.0014	0.0012	< 0.0025	0.0010
Cl, diss, mg/L	6.5	8.1	7.5	6.6	8.4	8.0	8.1	8.2
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	0.068	0.073	0.097	< 0.001	0.091	0.078	0.074	0.057
Cr, diss, mg/L	< 0.0010	< 0.0010	0.0003	< 0.0010	< 0.0010	< 0.0010	0.0003	0.0004
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	<0.1	0.3	<0.1	< 0.1	0.4	0.5	0.5	0.3
Fe, diss, mg/L	15.600	42.300	35.900	0.408	57.700	75.400	80.000	58.500
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	5.2900	6.4800	6.7400	0.1150	7.4100	7.5400	9.9100	6.3100
Ni, diss, mg/L	0.0299	0.0308	0.0359	< 0.0003	0.0420	0.0431	0.0433	0.0321
NO3, diss, mg/L	0.284	< 0.050	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Pb, diss, mg/L	< 0.001	0.005	0.004	< 0.001	0.007	0.008	< 0.010	0.003
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0050	< 0.0025	< 0.0050	< 0.0005	< 0.0050	< 0.0025	< 0.0050	< 0.0025
SO4, diss, mg/L	856.0	973.0	1120.0	31.1	1550.0	2150.0	1450.0	1010.0
TDS, mg/L	1380	1640	1380	126	1700	2100	2000	1390
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	0.08	0.11	0.12	< 0.01	0.16	0.15	0.19	0.13

Date Range: 01/01/2019 to 12/31/2020

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	0.0046	0.0060	0.0061	< 0.0003	0.0082	0.0082	0.0060	0.0084
B, diss, mg/L	2.2500	2.5900	2.6400	0.1900	2.4500	2.3300	3.8800	3.6700
Ba, diss, mg/L	0.005	0.006	< 0.010	0.042	0.006	0.006	0.014	0.009
Be, diss, mg/L	0.0071	0.0067	0.0075	< 0.0010	0.0068	0.0054	0.0082	< 0.0100
Cd, diss, mg/L	0.0028	0.0034	0.0032	< 0.0003	0.0030	0.0032	0.0042	0.0041
Cl, diss, mg/L	9.0	8.8	8.7	2.9	10.3	8.2	8.5	<0.3
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	0.104	0.095	0.084	< 0.001	0.114	0.104	0.086	0.083
Cr, diss, mg/L	0.0007	0.0004	0.0007	< 0.0010	0.0005	0.0005	0.0005	0.0006
Cu, diss, mg/L	0.0084	0.0073	0.0086	< 0.0005	0.0055	0.0071	< 0.0005	0.0072
F, diss, mg/L	0.4	0.5	0.6	< 0.1	0.6	0.6	0.7	1.0
Fe, diss, mg/L	495.000	<1.000	340.000	0.201	401.000	333.000	248.000	233.000
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	25.1000	20.3000	17.8000	0.0060	23.8000	22.6000	17.2000	17.2000
Ni, diss, mg/L	0.0977	0.0933	0.0866	0.0003	0.1020	0.0938	0.1020	0.0926
NO3, diss, mg/L	< 0.050	< 0.050	< 0.100	0.249	< 0.100	< 0.100	< 0.100	< 0.100
Pb, diss, mg/L	0.005	0.005	< 0.010	< 0.001	0.006	0.006	0.005	0.006
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0050	< 0.0100	< 0.0050	< 0.0005	< 0.0050	< 0.0025	< 0.0250	0.0504
SO4, diss, mg/L	2550.0	2490.0	3420.0	18.7	3550.0	3800.0	2230.0	1570.0
TDS, mg/L	3620	3240	3200	164	3860	3790	3080	2870
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0025	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	0.002	0.002	0.002	< 0.001	0.002	< 0.001	0.002	0.002
Zn, diss, mg/L	0.66	0.43	0.40	< 0.01	0.44	0.40	0.64	0.37

Date Range: 01/01/2019 to 12/31/2020

Well: MW23D

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	0.0022	0.0036	0.0040	0.0017	0.0022	0.0028	0.0032	0.0036
B, diss, mg/L	0.0500	< 0.0250	0.0500	8.0200	0.0500	0.0500	< 0.0250	0.0500
Ba, diss, mg/L	0.042	0.041	0.047	0.029	0.045	0.045	0.056	0.049
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	0.0016	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	5.4	6.4	5.9	9.7	5.3	5.0	4.7	5.0
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	0.105	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cu, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	<0.1	< 0.1	<0.1	0.6	< 0.1	<0.1	<0.1	< 0.1
Fe, diss, mg/L	0.221	0.797	0.858	70.000	0.277	0.412	0.565	0.697
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0832	0.1270	0.1260	8.6000	0.0887	0.1230	0.1140	0.1140
Ni, diss, mg/L	0.0002	0.0003	0.0004	0.0465	0.0002	< 0.0003	< 0.0003	0.0003
NO3, diss, mg/L	< 0.050	< 0.050	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
Pb, diss, mg/L	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0050	< 0.0005	< 0.0005	< 0.0005	< 0.0005
SO4, diss, mg/L	20.0	26.4	25.5	1320.0	23.8	25.0	26.0	24.6
TDS, mg/L	238	282	244	1790	242	188	240	260
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	0.19	< 0.01	< 0.01	< 0.01	< 0.01

Date Range: 01/01/2019 to 12/31/2020

Well: MW23S

	2/25/2019	6/17/2019	8/26/2019	10/28/2019	2/3/2020	5/4/2020	8/3/2020	10/26/2020
Ag, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
As, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	0.0092	< 0.0003	< 0.0003	< 0.0003	< 0.0003
B, diss, mg/L	0.1500	0.1700	0.1900	5.2400	0.1600	0.1700	0.1700	0.1900
Ba, diss, mg/L	0.031	0.033	0.040	0.009	0.039	0.043	0.049	0.040
Be, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0082	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cd, diss, mg/L	< 0.0003	< 0.0003	< 0.0003	0.0051	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Cl, diss, mg/L	2.1	7.0	2.7	10.1	2.3	2.3	2.0	2.0
CN, total, mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Co, diss, mg/L	< 0.001	< 0.001	< 0.001	0.091	< 0.001	< 0.001	< 0.001	< 0.001
Cr, diss, mg/L	< 0.0010	< 0.0010	< 0.0010	0.0003	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Cu, diss, mg/L	< 0.0005	< 0.0005	0.0064	0.0078	< 0.0005	< 0.0005	< 0.0005	< 0.0005
F, diss, mg/L	< 0.1	< 0.1	< 0.1	0.9	<0.1	< 0.1	< 0.1	0.6
Fe, diss, mg/L	< 0.010	< 0.010	0.249	204.000	< 0.010	< 0.010	0.059	0.148
Hg, diss, mg/L	< 0.0001	< 0.0001	< 0.0010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mn, diss, mg/L	0.0037	0.0230	0.0375	13.5000	0.0021	0.0068	0.0219	0.0020
Ni, diss, mg/L	0.0003	0.0003	0.0005	0.1190	0.0004	0.0002	0.0004	0.0002
NO3, diss, mg/L	0.371	0.180	< 0.100	< 0.100	0.287	0.363	0.395	< 0.100
Pb, diss, mg/L	< 0.001	< 0.001	< 0.010	0.007	< 0.001	< 0.001	< 0.001	< 0.001
Sb, diss, mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Se, diss, mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0050	< 0.0005	< 0.0005	< 0.0005	< 0.0005
SO4, diss, mg/L	13.5	15.6	15.3	2060.0	14.3	14.1	14.8	14.0
TDS, mg/L	152	264	230	2800	196	206	224	240
Tl, diss, mg/L	< 0.0003	< 0.0003	< 0.0025	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
V, diss, mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zn, diss, mg/L	< 0.01	< 0.01	< 0.01	0.60	< 0.01	< 0.01	< 0.01	< 0.01

APPENDIX B SITE INSPECTION REPORTS

Quarterly Site Inspection Checksheet

Date	03/04/2020
Inspector	MRK
Temperature	52 degrees F
Weather	Overcast

	Item	Condition Code *	Comments
Pond Cap	Vent Pipes	GC	
	Drainage Berms	GC	
	Vegetation	GC	Short in some areas. Will inspect areas closer in 2Q 2020
	Erosion on Cap	GC	
	Liner	GC	
	Water Control Features (berms, vegetated flumes, etc.)	GC	Small amount of vegetation, debris in drainage channels
	Other		
	Vegetation	GC	
jut	Liner	GC	
 	Erosion	GC	
Embankment	Fencing	GC	
	Drainage Channels (rip-rap, paved flumes, etc.)	GC	
4	Other		
	Control Panels	GC	Exterior looks fine - did not open
on Je	Drainage Sumps / Manholes	GC	
ollecti scharg	Pumps	NI	
Groundwater Collection Trench and Discharge System	Groundwater Monitoring Wells	GC	
oundv rench	Flow Meter Totalizer	NI	Not in service
์ โ	Diver-Mate Data Collector (data download)	NI	Not in service
	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month.

MM = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Quarterly Site Inspection Checksheet

Date	07/07/2020
Inspector	MRK
Temperature	84 degrees F
Weather	Mostly Sunny

_	Item	Condition Code *	Comments
Pond Cap	Vent Pipes	GC	
	Drainage Berms	GC	
	Vegetation	GC	
	Erosion on Cap	GC	
	Liner	GC	
	Water Control Features (berms, vegetated flumes, etc.)	GC	Small amount of vegetation, debris in drainage channels
	Other		
	Vegetation	GC	Cut short in 1 area. Will inspect in 3Q 2020
ınt	Liner	GC	
kme	Erosion	GC	
Embankment	Fencing	GC	
	Drainage Channels (rip- rap, paved flumes, etc.)	GC	
4	Other		
	Control Panels	GC	Exterior looks fine - did not open
uc e	Drainage Sumps / Manholes	GC	
ollectic scharg	Pumps	NI	
Groundwater Collection Trench and Discharge System	Groundwater Monitoring Wells	GC	
oundv	Flow Meter Totalizer	NI	Not in service
_ o 	Diver-Mate Data Collector (data download)	NI	Not in service
Conditio	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month. **MM** = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Quarterly Site Inspection Checksheet

Date	09/22/2020
Inspector	MRK
Temperature	71 degrees F
Weather	Sunny

_	Item	Condition Code *	Comments
Pond Cap	Vent Pipes	GC	
	Drainage Berms	GC	
	Vegetation	GC	Very short in 3 separate areas. Looks as if was cut too short.
	Erosion on Cap	GC	
	Liner	GC	
	Water Control Features (berms, vegetated flumes, etc.)	GC	Small amount of vegetation, debris in drainage channels
	Other		
	Vegetation	GC	
ınt	Liner	GC	
	Erosion	GC	
Embankment	Fencing	GC	
	Drainage Channels (rip- rap, paved flumes, etc.)	GC	
4	Other		
	Control Panels	GC	Exterior looks fine - did not open
ou Je	Drainage Sumps / Manholes	GC	
ollections scharg	Pumps	NI	
Groundwater Collection Trench and Discharge System	Groundwater Monitoring Wells	GC	
oundv	Flow Meter Totalizer	NI	Not in service
ចំ	Diver-Mate Data Collector (data download)	NI	Not in service
Conditio	Other		

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month. **MM** = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

Quarterly Site Inspection Checksheet

Date	12/16/2020
Inspector	MRK
Temperature	43 degrees F
Weather	Cloudy/Hazy

Vent Pipes GC Drainage Berms GC Vegetation GC Erosion on Cap GC Liner GC Water Control Features (berms, vegetated flumes, etc.) Other Vegetation GC Inner GC Water Control Features (berms, vegetated flumes, etc.) Other GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) Other GC Other	
Vegetation GC Erosion on Cap GC Liner GC Water Control Features (berms, vegetated flumes, etc.) Other Vegetation GC Liner GC Erosion GC Drainage Channels (rip-rap, paved flumes, etc.) GC Erosion GC Drainage Channels (rip-rap, paved flumes, etc.) GC	
Erosion on Cap Erosion on Cap GC Water Control Features (berms, vegetated flumes, etc.) Other Vegetation GC Liner GC Small amount of vegetation, debris in drainage channels etc.) Cther Vegetation GC Erosion GC Fencing GC Drainage Channels (riprap, paved flumes, etc.) GC	
Liner GC Water Control Features (berms, vegetated flumes, etc.) Other Vegetation GC Liner GC Erosion GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Fencing GC	
Liner GC Water Control Features (berms, vegetated flumes, etc.) Other Vegetation GC Liner GC Erosion GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) GC Small amount of vegetation, debris in drainage channels CR Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Fencing GC GC GC GC GC GC GC GC	
(berms, vegetated flumes, etc.) Other Vegetation GC Liner Erosion GC Erosion GC Drainage Channels (rip-rap, paved flumes, etc.) GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC Small amount of vegetation, debris in drainage channels GC CC Erosion GC GC GC GC	
Vegetation GC Liner GC Erosion GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) GC	
Liner GC Erosion GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) GC	
Erosion GC Fencing GC Drainage Channels (rip-rap, paved flumes, etc.) GC	
Drainage Channels (rip-rap, paved flumes, etc.)	
Drainage Channels (rip-rap, paved flumes, etc.)	
Drainage Channels (rip-rap, paved flumes, etc.)	
Other	
Control Panels GC Exterior looks fine - did not open	
Drainage Sumps / GC Manholes	
Collection NI Pumps NI	
Pumps NI Groundwater Monitoring Wells Flow Meter Totalizer NI Not in service	
Flow Meter Totalizer NI Not in service	
Diver-Mate Data Collector (data download) NI Not in service	
Other	

Condition Codes

IM = Item needing Immediate Maintenance. Remediation should be completed within 1 month. **MM** = Item needing Minor Maintenance and/or repairs within the year.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Condition. Working properly.

NE = No Evidence of a problem.

APPENDIX C STATISTICAL OUTPUT

APPENDIX C1 OUTLIER TEST

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Antimony, dissolved, mg/L

Location: MW12

Mean of all data: 0.00160

Standard Deviation of all data: 0.00200

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 4.20

T Critical of all data: Ter = 2.66

Outlier Outlier LT Value Low Side High Side Sample Date Value

09/18/2017 < 0.0100 True

Antimony, dissolved, mg/L

Location: MW22

Mean of all data: 0.00200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT Value High Side Sample Date Value Low Side

No Outliers

Antimony, dissolved, mg/L

Location: MW22D

Mean of all data: 0.00200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Sample Date Value LT Value Low Side High Side

No Outliers

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: MW23D

Mean of all data: 0.00200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, dissolved, mg/L

Location: MW23S

Mean of all data: 0.00200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Antimony, dissolved, mg/L

Location: MW2D

Mean of all data: 0.00200

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: MW2R

Mean of all data: 0.00223

Standard Deviation of all data: 0.00362

Largest Observation Concentration of all data: Xn = 0.0180

Test Statistic, high extreme of all data: Tn = 4.35

T Critical of all data: Ter = 2.60

Sample Date Value LT_Value Outlier Outlier

Low Side High Side

04/21/2014 0.0180 False

Antimony, dissolved, mg/L

Location: MW3

Mean of all data: 0.00182

Standard Deviation of all data: 0.00256

Largest Observation Concentration of all data: Xn = 0.00900

Test Statistic, high extreme of all data: Tn = 2.80

T Critical of all data: Tcr = 2.23

Antimony, dissolved, mg/L

Location: MW3D

Mean of all data: 0.00127

Standard Deviation of all data: 0.000962

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 0.760

T Critical of all data: Ter = 2.68

Sample Date Value LT Value Low Side High Side

No Outliers

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Antimony, dissolved, mg/L

Location: MW4

Mean of all data: 0.00142

Standard Deviation of all data: 0.00121

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 2.97

T Critical of all data: Ter = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 04/21/2014
 0.00500
 False
 1

Antimony, dissolved, mg/L

Location: MW5

Mean of all data: 0.00125

Standard Deviation of all data: 0.00104

Largest Observation Concentration of all data: Xn = 0.00300

Test Statistic, high extreme of all data: Tn = 1.68

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Arsenic, dissolved, mg/L

Location: MW12

Mean of all data: 0.000174

Standard Deviation of all data: 0.000150

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 2.84

T Critical of all data: Tcr = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

03/13/2017 0.000600 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Arsenic, dissolved, mg/L

Location: MW22

Mean of all data: 0.00526

Standard Deviation of all data: 0.00284

Largest Observation Concentration of all data: Xn = 0.00840

Test Statistic, high extreme of all data: Tn = 1.11

T Critical of all data: Tcr = 2.41

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Arsenic, dissolved, mg/L **Location: MW22D**

Mean of all data: 0.00160

Standard Deviation of all data: 0.00178

Largest Observation Concentration of all data: Xn = 0.00650

Test Statistic, high extreme of all data: Tn = 2.75

T Critical of all data: Tcr = 2.41

Outlier Outlier

Sample Date Value LT Value Low Side High Side 06/19/2017 0.00650False

Arsenic, dissolved, mg/L **Location: MW23D**

Mean of all data: 0.00279

Standard Deviation of all data: 0.000968

Largest Observation Concentration of all data: Xn = 0.00410

Test Statistic, high extreme of all data: Tn = 1.35

T Critical of all data: Tcr = 2.33

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L Location: MW23S

Mean of all data: 0.000938

Standard Deviation of all data: 0.00248

Largest Observation Concentration of all data: Xn = 0.00920

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 0.00920
 False
 1

Arsenic, dissolved, mg/L

Location: MW2D

Mean of all data: 0.00771

Standard Deviation of all data: 0.00273

Largest Observation Concentration of all data: Xn = 0.0138

Test Statistic, high extreme of all data: Tn = 2.24

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Arsenic, dissolved, mg/L Location: MW2R

Mean of all data: 0.000391

Standard Deviation of all data: 0.000827

Largest Observation Concentration of all data: Xn = 0.00400

Test Statistic, high extreme of all data: Tn = 4.36

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L

Location: MW3

Mean of all data: 0.000205

Standard Deviation of all data: 0.000292

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 04/21/2014
 0.00100
 False
 1

Arsenic, dissolved, mg/L Location: MW3D

Mean of all data: 0.000910

Standard Deviation of all data: 0.00124

Landard Beviation of an data. 0.00121

Largest Observation Concentration of all data: Xn = 0.00540

Test Statistic, high extreme of all data: Tn = 3.63

T Critical of all data: Tcr = 2.68

Arsenic, dissolved, mg/L

Location: MW4

Mean of all data: 0.000277

Standard Deviation of all data: 0.000572

Largest Observation Concentration of all data: Xn = 0.00300

Test Statistic, high extreme of all data: Tn = 4.76

T Critical of all data: Ter = 2.68

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Arsenic, dissolved, mg/L

Location: MW5

Mean of all data: 0.000221

Standard Deviation of all data: 0.000375

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 4.75

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 07/21/2014
 0.00200
 False
 1

 $Barium,\,dissolved,\,mg/L$

Location: MW12

Mean of all data: 0.0189

Standard Deviation of all data: 0.00394

Largest Observation Concentration of all data: Xn = 0.0260

Test Statistic, high extreme of all data: Tn = 1.80

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

 $Barium,\,dissolved,\,mg/L$

Location: MW22

Mean of all data: 0.0127

Standard Deviation of all data: 0.0109

Largest Observation Concentration of all data: Xn = 0.0420

Test Statistic, high extreme of all data: Tn = 2.70

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 0.0420 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, dissolved, mg/L Location: MW22D

Mean of all data: 0.0266

Standard Deviation of all data: 0.00972

Largest Observation Concentration of all data: Xn = 0.0490

Test Statistic, high extreme of all data: Tn = 2.31

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Barium, dissolved, mg/L Location: MW23D

Mean of all data: 0.0431

Standard Deviation of all data: 0.00717

Largest Observation Concentration of all data: Xn = 0.0560

Test Statistic, high extreme of all data: Tn = 1.80

T Critical of all data: Ter = 2.33

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Barium, dissolved, mg/L Location: MW23S

Mean of all data: 0.0325

Standard Deviation of all data: 0.0102

Largest Observation Concentration of all data: Xn = 0.0490

Test Statistic, high extreme of all data: Tn = 1.61

T Critical of all data: Tcr = 2.33

Outlier Outlier Wilder

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Barium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.0729

Standard Deviation of all data: 0.0136

Largest Observation Concentration of all data: Xn = 0.103

Test Statistic, high extreme of all data: Tn = 2.22

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Barium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.0355

Standard Deviation of all data: 0.00601

Largest Observation Concentration of all data: Xn = 0.0500

Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Tcr = 2.60

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Barium, dissolved, mg/L

Location: MW3

Mean of all data: 0.00873

Standard Deviation of all data: 0.00403

Largest Observation Concentration of all data: Xn = 0.0150

Test Statistic, high extreme of all data: Tn = 1.56

T Critical of all data: Tcr = 2.23

Outlier Outlier

Sample Date <u>Value LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

rumber of outliers, one outlier

Barium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.0142

Standard Deviation of all data: 0.00336

Largest Observation Concentration of all data: Xn = 0.0210

Test Statistic, high extreme of all data: Tn = 2.03

T Critical of all data: Ter = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Barium, dissolved, mg/L

Location: MW4

Mean of all data: 0.0203

Standard Deviation of all data: 0.00364

Largest Observation Concentration of all data: Xn = 0.0270

Test Statistic, high extreme of all data: Tn = 1.84

T Critical of all data: Tcr = 2.68

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Barium, dissolved, mg/L

Location: MW5

Mean of all data: 0.0326

Standard Deviation of all data: 0.0148

Largest Observation Concentration of all data: Xn = 0.0710

Test Statistic, high extreme of all data: Tn = 2.59

T Critical of all data: Ter = 2.71

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: MW12

Mean of all data: 0.000800

Standard Deviation of all data: 0.00100

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 4.20

T Critical of all data: Ter = 2.66

Beryllium, dissolved, mg/L

Location: MW22

Mean of all data: 0.00623

Standard Deviation of all data: 0.00250

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 1.50

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: MW22D

Mean of all data: 0.00205

Standard Deviation of all data: 0.00201

Largest Observation Concentration of all data: Xn = 0.00720

Test Statistic, high extreme of all data: Tn = 2.57

T Critical of all data: Tcr = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Beryllium, dissolved, mg/L

Location: MW23D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Beryllium, dissolved, mg/L

Location: MW23S

Mean of all data: 0.00155

Standard Deviation of all data: 0.00200

Largest Observation Concentration of all data: Xn = 0.00820

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

Outlier Outlier Sample Date Value LT Value Low Side High Side

10/28/2019 0.00820False

Beryllium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.000682

Standard Deviation of all data: 0.000477

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.667

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: MW3

Mean of all data: 0.000455

Standard Deviation of all data: 0.000522

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 1.04

T Critical of all data: Tcr = 2.23

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Beryllium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.000658

Standard Deviation of all data: 0.000571

Largest Observation Concentration of all data: Xn = 0.00210

Test Statistic, high extreme of all data: Tn = 2.52

T Critical of all data: Tcr = 2.68

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

14

1

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Beryllium, dissolved, mg/L

Location: MW4

Mean of all data: 0.000615

Standard Deviation of all data: 0.000496

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Ter = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Beryllium, dissolved, mg/L

Location: MW5

Mean of all data: 0.000571

Standard Deviation of all data: 0.000504

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.850

T Critical of all data: Ter = 2.71

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

 $Boron,\,dissolved,\,mg/L$

Location: MW12

Mean of all data: 0.193

Standard Deviation of all data: 0.0814

Largest Observation Concentration of all data: Xn = 0.460

Test Statistic, high extreme of all data: Tn = 3.28

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

08/28/2018 0.460 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Boron, dissolved, mg/L

Location: MW22

Mean of all data: 5.01

Standard Deviation of all data: 7.15

Largest Observation Concentration of all data: Xn = 29.9

Test Statistic, high extreme of all data: Tn = 3.48

T Critical of all data: Tcr = 2.41

Outlier Outlier LT_Value Low Side High Side Sample Date Value 08/28/2018 29.9 False

Boron, dissolved, mg/L **Location: MW22D**

Mean of all data: 6.95

Standard Deviation of all data: 2.67

Largest Observation Concentration of all data: Xn = 9.43Test Statistic, high extreme of all data: Tn = 0.929

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date LT Value Low Side Value 10/28/2019 0.0500 False -1

Boron, dissolved, mg/L **Location: MW23D**

Mean of all data: 0.657

Standard Deviation of all data: 2.21

Largest Observation Concentration of all data: Xn = 8.02

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

Outlier Outlier Sample Date Value LT Value Low Side High Side 10/28/2019 8.02 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L

Mean of all data: 0.561

Location: MW23S

Standard Deviation of all data: 1.41

Largest Observation Concentration of all data: Xn = 5.24

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 5.24
 False
 1

Boron, dissolved, mg/L

Location: MW2D

Mean of all data: 0.133

Standard Deviation of all data: 0.171

Largest Observation Concentration of all data: Xn = 0.570

Test Statistic, high extreme of all data: Tn = 2.56

T Critical of all data: Tcr = 2.41

 $Boron,\,dissolved,\,mg/L$

Location: MW2R

Mean of all data: 1.85

Standard Deviation of all data: 0.781

Largest Observation Concentration of all data: Xn = 3.55

Test Statistic, high extreme of all data: Tn = 2.18

T Critical of all data: Tcr = 2.98

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Boron, dissolved, mg/L

Location: MW3

Mean of all data: 3.15

Standard Deviation of all data: 1.94

Largest Observation Concentration of all data: Xn = 7.78

Test Statistic, high extreme of all data: Tn = 2.38

T Critical of all data: Tcr = 2.98

Outlier Outlier

LT_Value Low Side High Side Sample Date Value

No Outliers

Boron, dissolved, mg/L

Location: MW3D

Mean of all data: 3.51

Standard Deviation of all data: 1.16

Largest Observation Concentration of all data: Xn = 5.96

Test Statistic, high extreme of all data: Tn = 2.11

T Critical of all data: Tcr = 2.68

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Boron, dissolved, mg/L

Location: MW4

Mean of all data: 0.277

Standard Deviation of all data: 0.123

Largest Observation Concentration of all data: Xn = 0.831

Test Statistic, high extreme of all data: Tn = 4.50

T Critical of all data: Tcr = 3.09

Outlier Outlier Sample Date LT Value High Side Value Low Side

06/11/2012 0.831 False 1

18

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Boron, dissolved, mg/L

Location: MW5

Mean of all data: 0.221

Standard Deviation of all data: 0.135

Largest Observation Concentration of all data: Xn = 0.710

Test Statistic, high extreme of all data: Tn = 3.64

T Critical of all data: Ter = 3.10

Sample Date Outlier Outlier Outlier

Low Side High Side

09/06/2011 0.710 False

Cadmium, dissolved, mg/L

Location: MW12

Mean of all data: 0.000200

Standard Deviation of all data: 0.000250

Largest Observation Concentration of all data: Xn = 0.00125

Test Statistic, high extreme of all data: Tn = 4.20

T Critical of all data: Tcr = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 09/18/2017
 <0.00125</td>
 True
 1

Cadmium, dissolved, mg/L

Location: MW22

Mean of all data: 0.00303

Standard Deviation of all data: 0.00105

Largest Observation Concentration of all data: Xn = 0.00420

Test Statistic, high extreme of all data: Tn = 1.11

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

10/28/2019 <0.000250 True -1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Cadmium, dissolved, mg/L

Location: MW22D

Mean of all data: 0.00172

Standard Deviation of all data: 0.00119

Largest Observation Concentration of all data: Xn = 0.00450

Test Statistic, high extreme of all data: Tn = 2.35

T Critical of all data: Tcr = 2.41

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Cadmium, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000354

Standard Deviation of all data: 0.000374

Largest Observation Concentration of all data: Xn = 0.00160

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

Outlier Outlier Sample Date Value LT Value Low Side High Side

10/28/2019 0.00160False

Cadmium, dissolved, mg/L

Location: MW23S

Mean of all data: 0.000623

Standard Deviation of all data: 0.00135

Largest Observation Concentration of all data: Xn = 0.00510

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

Outlier Outlier Sample Date LT Value Low Side High Side Value 10/28/2019 0.00510 False 1

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cadmium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cadmium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.000170

Standard Deviation of all data: 0.000119

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.667

T Critical of all data: Tcr = 2.60

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Cadmium, dissolved, mg/L

Location: MW3

Mean of all data: 0.000114

Standard Deviation of all data: 0.000131

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 1.04

T Critical of all data: Tcr = 2.23

Outlier Outlier White IT VI

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Cadmium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.00242

Standard Deviation of all data: 0.00250

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 3.03

T Critical of all data: Ter = 2.68

Outlier Outlier LT_Value Low Side High Side Sample Date Value

03/12/2018 0.0100 False

Cadmium, dissolved, mg/L

Location: MW4

Mean of all data: 0.000154

Standard Deviation of all data: 0.000124

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Tcr = 2.68

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Cadmium, dissolved, mg/L

Location: MW5

Mean of all data: 0.000143

Standard Deviation of all data: 0.000126

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.850

T Critical of all data: Tcr = 2.71

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: MW12

Mean of all data: 4.17

Standard Deviation of all data: 2.54

Largest Observation Concentration of all data: Xn = 11.5

Test Statistic, high extreme of all data: Tn = 2.89

T Critical of all data: Ter = 2.66

Chloride, dissolved, mg/L

Location: MW22

Mean of all data: 8.57

Standard Deviation of all data: 4.35

Largest Observation Concentration of all data: Xn = 20.6

Test Statistic, high extreme of all data: Tn = 2.76

T Critical of all data: Tcr = 2.41

 $Chloride,\,dissolved,\,mg/L$

Location: MW22D

Mean of all data: 8.06

Standard Deviation of all data: 1.79

Largest Observation Concentration of all data: Xn = 14.2

Test Statistic, high extreme of all data: Tn = 3.42

T Critical of all data: Tcr = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: MW23D

Mean of all data: 5.89

Standard Deviation of all data: 1.25

Largest Observation Concentration of all data: Xn = 9.70Test Statistic, high extreme of all data: Tn = 3.05

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 9.70
 False
 1

Chloride, dissolved, mg/L

Location: MW23S

Mean of all data: 3.49

Standard Deviation of all data: 2.38

Largest Observation Concentration of all data: Xn = 10.1Test Statistic, high extreme of all data: Tn = 2.78

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 10.1
 False
 1

 $Chloride,\,dissolved,\,mg/L$

Location: MW2D

Mean of all data: 11.6

Standard Deviation of all data: 1.65

Largest Observation Concentration of all data: Xn = 16.5Test Statistic, high extreme of all data: Tn = 2.98

T Critical of all data: Tcr = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Chloride, dissolved, mg/L

Location: MW2R

Mean of all data: 18.8

Standard Deviation of all data: 4.33

Largest Observation Concentration of all data: Xn = 26.8

Test Statistic, high extreme of all data: Tn = 1.85

T Critical of all data: Ter = 2.60

Outlier Outlier

LT_Value Low Side High Side Sample Date Value

No Outliers

Chloride, dissolved, mg/L

Location: MW3

Mean of all data: 7.23

Standard Deviation of all data: 6.78

Largest Observation Concentration of all data: Xn = 21.9

Test Statistic, high extreme of all data: Tn = 2.16

T Critical of all data: Ter = 2.23

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Chloride, dissolved, mg/L

Location: MW3D

Mean of all data: 13.1

Standard Deviation of all data: 3.75

Largest Observation Concentration of all data: Xn = 18.6

Test Statistic, high extreme of all data: Tn = 1.46

T Critical of all data: Tcr = 2.68

Outlier Outlier Sample Date LT Value High Side Value Low Side

09/14/2015 1.00 -1 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chloride, dissolved, mg/L

Location: MW4

Mean of all data: 2.01

Standard Deviation of all data: 1.37

Largest Observation Concentration of all data: Xn = 5.70

Test Statistic, high extreme of all data: Tn = 2.70

T Critical of all data: Ter = 2.68

Chloride, dissolved, mg/L

Location: MW5

Mean of all data: 3.44

Standard Deviation of all data: 2.47

Largest Observation Concentration of all data: Xn = 8.30

Test Statistic, high extreme of all data: Tn = 1.97

T Critical of all data: Ter = 2.73

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Chromium, dissolved, mg/L

Location: MW12

Mean of all data: 0.00105

Standard Deviation of all data: 0.00142

Largest Observation Concentration of all data: Xn = 0.00600

Test Statistic, high extreme of all data: Tn = 3.48

T Critical of all data: Tcr = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

09/22/2014 0.00600 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L Location: MW22

2.5

Mean of all data: 0.00100

Standard Deviation of all data: 0.000889

Largest Observation Concentration of all data: Xn = 0.00410

Test Statistic, high extreme of all data: Tn = 3.49

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

05/14/2018 0.00410 False 1

Chromium, dissolved, mg/L

Location: MW22D

Mean of all data: 0.00145

Standard Deviation of all data: 0.00164

Largest Observation Concentration of all data: Xn = 0.00590

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

05/14/2018 0.00590 False 1

 $Chromium,\,dissolved,\,mg/L$

Location: MW23D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Chromium, dissolved, mg/L

Location: MW23S

Mean of all data: 0.000946

Standard Deviation of all data: 0.000194

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.277

T Critical of all data: Ter = 2.33

Outlier Outlier LT Value High Side Sample Date Value Low Side

10/28/2019 0.000300 False -1

Chromium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Chromium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.00144

Standard Deviation of all data: 0.00293

Largest Observation Concentration of all data: Xn = 0.0140

Test Statistic, high extreme of all data: Tn = 4.29

T Critical of all data: Tcr = 2.60

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

04/21/2014 0.0140 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: MW3

Mean of all data: 0.00259

Standard Deviation of all data: 0.00429

Largest Observation Concentration of all data: Xn = 0.0140

Test Statistic, high extreme of all data: Tn = 2.66

T Critical of all data: Ter = 2.23

Sample Date Outlier Outlier Outlier

Low Side High Side

04/21/2014 0.0140 False

Chromium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.000731

Standard Deviation of all data: 0.000667

Largest Observation Concentration of all data: Xn = 0.00300

Test Statistic, high extreme of all data: Tn = 3.40

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/19/2015 0.00300 False 1

Chromium, dissolved, mg/L

Location: MW4

Mean of all data: 0.00154

Standard Deviation of all data: 0.00298

Largest Observation Concentration of all data: Xn = 0.0140

Test Statistic, high extreme of all data: Tn = 4.18

T Critical of all data: Tcr = 2.68

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

04/21/2014 0.0140 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Chromium, dissolved, mg/L

Location: MW5

Mean of all data: 0.000786

Standard Deviation of all data: 0.00137

Largest Observation Concentration of all data: Xn = 0.00700

Test Statistic, high extreme of all data: Tn = 4.53

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 04/21/2014
 0.00700
 False
 1

Cobalt, Dis, mg/L Location: MW12

Mean of all data: 0.000640

Standard Deviation of all data: 0.000490

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.735

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Cobalt, Dis, mg/L Location: MW22

Mean of all data: 0.103

Standard Deviation of all data: 0.0372

Largest Observation Concentration of all data: Xn = 0.180

Test Statistic, high extreme of all data: Tn = 2.07

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

10/28/2019 <0.00100 True -1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Cobalt, Dis, mg/L **Location: MW22D**

Mean of all data: 0.0793

Standard Deviation of all data: 0.0265

Largest Observation Concentration of all data: Xn = 0.112

Test Statistic, high extreme of all data: Tn = 1.24

T Critical of all data: Tcr = 2.41

Outlier Outlier LT Value High Side Sample Date Value Low Side

10/28/2019 < 0.00100 True -1

Cobalt, Dis, mg/L **Location: MW23D**

Mean of all data: 0.00992

Standard Deviation of all data: 0.0287

Largest Observation Concentration of all data: Xn = 0.105

Test Statistic, high extreme of all data: Tn = 3.31

T Critical of all data: Tcr = 2.33

Outlier Outlier High Side Sample Date Value LT Value Low Side 10/28/2019 0.105 False 1

Cobalt, Dis, mg/L **Location: MW23S**

Mean of all data: 0.00792

Standard Deviation of all data: 0.0250

Largest Observation Concentration of all data: Xn = 0.0910

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

10/28/2019 0.0910 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, Dis, mg/L Location: MW2D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, Dis, mg/L Location: MW2R

Mean of all data: 0.000682

Standard Deviation of all data: 0.000477

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.667

T Critical of all data: Ter = 2.60

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Cobalt, Dis, mg/L Location: MW3

Mean of all data: 0.00127

Standard Deviation of all data: 0.00162

Largest Observation Concentration of all data: Xn = 0.00600

Test Statistic, high extreme of all data: Tn = 2.92

T Critical of all data: Tcr = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 Sample Date
 Value
 E1_value
 Low side
 Fight Side

 04/20/2015
 0.00600
 False
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cobalt, Dis, mg/L Location: MW3D

Mean of all data: 0.0883

Standard Deviation of all data: 0.0806

Largest Observation Concentration of all data: Xn = 0.332

Test Statistic, high extreme of all data: Tn = 3.02

T Critical of all data: Ter = 2.68

Cobalt, Dis, mg/L Location: MW4

Mean of all data: 0.000615

Standard Deviation of all data: 0.000496

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cobalt, Dis, mg/L Location: MW5

Mean of all data: 0.000571

Standard Deviation of all data: 0.000504

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.850

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Copper, dissolved, mg/L

Location: MW12

Mean of all data: 0.000500

Standard Deviation of all data: 0.000456

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 3.29

T Critical of all data: Ter = 2.66

Outlier Outlier LT Value Low Side High Side Sample Date Value

04/20/2015 0.00200 False

Copper, dissolved, mg/L

Location: MW22

Mean of all data: 0.00649

Standard Deviation of all data: 0.00404

Largest Observation Concentration of all data: Xn = 0.0116

Test Statistic, high extreme of all data: Tn = 1.27

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Copper, dissolved, mg/L **Location: MW22D**

Mean of all data: 0.00291

Standard Deviation of all data: 0.00710

Largest Observation Concentration of all data: Xn = 0.0273

Test Statistic, high extreme of all data: Tn = 3.44

T Critical of all data: Tcr = 2.41

Outlier Outlier Sample Date LT Value Low Side High Side Value 1

06/19/2017 0.0273 False

34

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Copper, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Copper, dissolved, mg/L

Location: MW23S

Mean of all data: 0.00152

Standard Deviation of all data: 0.00249

Largest Observation Concentration of all data: Xn = 0.00780

Test Statistic, high extreme of all data: Tn = 2.52

T Critical of all data: Ter = 2.33

Outlier Outlier

Sample Date Value LT Value Low Side High Side 10/28/2019 0.00780False

Copper, dissolved, mg/L

Location: MW2D

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Copper, dissolved, mg/L **Location: MW2R**

Mean of all data: 0.000614

Standard Deviation of all data: 0.000510

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Ter = 2.60

Outlier Outlier LT Value Low Side High Side Sample Date Value 04/21/2014 0.00200 False

Copper, dissolved, mg/L

Location: MW3

Mean of all data: 0.00360

Standard Deviation of all data: 0.00499

Largest Observation Concentration of all data: Xn = 0.0170

Test Statistic, high extreme of all data: Tn = 2.69

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date Value LT Value Low Side 07/28/1994 0.0170 False 1

Copper, dissolved, mg/L

Location: MW3D

Mean of all data: 0.00129

Standard Deviation of all data: 0.00263

Largest Observation Concentration of all data: Xn = 0.0130

Test Statistic, high extreme of all data: Tn = 4.46

T Critical of all data: Tcr = 2.68

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

03/07/2016 0.0130 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Copper, dissolved, mg/L

Location: MW4

Mean of all data: 0.00728

Standard Deviation of all data: 0.0352

Largest Observation Concentration of all data: Xn = 0.200

Test Statistic, high extreme of all data: Tn = 5.47

T Critical of all data: Tcr = 2.77

Sample Date Outlier Outlier Outlier

Low Side High Side

12/27/1991 0.200 False

Copper, dissolved, mg/L

Location: MW5

Mean of all data: 0.000672

Standard Deviation of all data: 0.00131

Largest Observation Concentration of all data: Xn = 0.00700

Test Statistic, high extreme of all data: Tn = 4.83

T Critical of all data: Ter = 2.77

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 07/28/1994
 0.00700
 False
 1

Cyanide, total, mg/L Location: MW12

Mean of all data: 0.00820

Standard Deviation of all data: 0.0176

Largest Observation Concentration of all data: Xn = 0.0900

Test Statistic, high extreme of all data: Tn = 4.66

T Critical of all data: Tcr = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

05/14/2018 0.0900 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50

Confidence Level: 95% Transform: None **Number of Outliers: One Outlier**

Cyanide, total, mg/L Location: MW22

Mean of all data: 0.00767

Standard Deviation of all data: 0.00258

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 0.904

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: MW22D

Mean of all data: 0.0107

Standard Deviation of all data: 0.0112

Largest Observation Concentration of all data: Xn = 0.0500

Test Statistic, high extreme of all data: Tn = 3.52

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

05/14/2018 0.0500 False 1

Cyanide, total, mg/L Location: MW23D

Mean of all data: 0.00808

Standard Deviation of all data: 0.00253

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 0.760

T Critical of all data: Tcr = 2.33

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Cyanide, total, mg/L **Location: MW23S**

Mean of all data: 0.00808

Standard Deviation of all data: 0.00253

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 0.760

T Critical of all data: Ter = 2.33

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Cyanide, total, mg/L **Location: MW2D**

Mean of all data: 0.00867

Standard Deviation of all data: 0.00399

Largest Observation Concentration of all data: Xn = 0.0200

Test Statistic, high extreme of all data: Tn = 2.84

T Critical of all data: Tcr = 2.41

Outlier Outlier Sample Date Value LT Value Low Side High Side

08/28/2018 0.0200 False

Cyanide, total, mg/L **Location: MW2R**

Mean of all data: 0.00614

Standard Deviation of all data: 0.00671

Largest Observation Concentration of all data: Xn = 0.0300

Test Statistic, high extreme of all data: Tn = 3.55

T Critical of all data: Tcr = 2.60

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

10/26/2020 0.0300 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cyanide, total, mg/L Location: MW3

Mean of all data: 0.00273

Standard Deviation of all data: 0.00344

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 2.12

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: MW3D

Mean of all data: 0.00462

Standard Deviation of all data: 0.00422

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 1.27

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Cyanide, total, mg/L Location: MW4

Mean of all data: 0.00519

Standard Deviation of all data: 0.00458

Largest Observation Concentration of all data: Xn = 0.0150

Test Statistic, high extreme of all data: Tn = 2.14

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Cyanide, total, mg/L Location: MW5

Mean of all data: 0.00736

Standard Deviation of all data: 0.0131

Largest Observation Concentration of all data: Xn = 0.0700

Test Statistic, high extreme of all data: Tn = 4.78

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 09/26/2016
 0.0700
 False
 1

 $Fluoride,\,dissolved,\,mg/L$

Location: MW12

Mean of all data: 0.114

Standard Deviation of all data: 0.101

Largest Observation Concentration of all data: Xn = 0.454

Test Statistic, high extreme of all data: Tn = 3.36

T Critical of all data: Ter = 2.66

Fluoride, dissolved, mg/L

Location: MW22

Mean of all data: 0.554

Standard Deviation of all data: 0.237

Largest Observation Concentration of all data: Xn = 0.950

Test Statistic, high extreme of all data: Tn = 1.67

T Critical of all data: Tcr = 2.37

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Fluoride, dissolved, mg/L

Location: MW22D

Mean of all data: 0.322

Standard Deviation of all data: 0.231

Largest Observation Concentration of all data: Xn = 0.900

Test Statistic, high extreme of all data: Tn = 2.50

T Critical of all data: Ter = 2.37

Fluoride, dissolved, mg/L

Location: MW23D

Mean of all data: 0.158

Standard Deviation of all data: 0.151

Largest Observation Concentration of all data: Xn = 0.600

Test Statistic, high extreme of all data: Tn = 2.93

T Critical of all data: Tcr = 2.29

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 0.600
 False
 1

Fluoride, dissolved, mg/L

Location: MW23S

Mean of all data: 0.223

Standard Deviation of all data: 0.256

Largest Observation Concentration of all data: Xn = 0.900

Test Statistic, high extreme of all data: Tn = 2.65

T Critical of all data: Ter = 2.29

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

ansform: None

Fluoride, dissolved, mg/L

Location: MW2D

Mean of all data: 0.250

Standard Deviation of all data: 0.0627

Largest Observation Concentration of all data: Xn = 0.400

Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Ter = 2.37

Sample Date Outlier Outlier Outlier

Low Side High Side

03/12/2018 0.400 False 1

Fluoride, dissolved, mg/L

Location: MW2R

Mean of all data: 1.05

Standard Deviation of all data: 4.50

Largest Observation Concentration of all data: Xn = 21.2

Test Statistic, high extreme of all data: Tn = 4.48

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/02/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 12/02/15
 <t

11/02/2015 21.2 False 1

Fluoride, dissolved, mg/L

Location: MW3

Mean of all data: 0.250

Standard Deviation of all data: 0.288

Largest Observation Concentration of all data: Xn = 0.984

Test Statistic, high extreme of all data: Tn = 2.55

T Critical of all data: Tcr = 2.23

Sample Date Value LT Value Low Side High Side

04/20/2015 0.984 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Fluoride, dissolved, mg/L

Location: MW3D

Mean of all data: 0.292

Standard Deviation of all data: 0.370

Largest Observation Concentration of all data: Xn = 1.30

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Ter = 2.68

Fluoride, dissolved, mg/L

Location: MW4

Mean of all data: 0.230

Standard Deviation of all data: 0.110

Largest Observation Concentration of all data: Xn = 0.484

Test Statistic, high extreme of all data: Tn = 2.31

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Fluoride, dissolved, mg/L

Location: MW5

Mean of all data: 0.145

Standard Deviation of all data: 0.100

Largest Observation Concentration of all data: Xn = 0.418

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 11/02/2015
 0.418
 False
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: MW12

Mean of all data: 0.139

Standard Deviation of all data: 0.214

Largest Observation Concentration of all data: Xn = 0.710

Test Statistic, high extreme of all data: Tn = 2.67

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 01/10/2015
 0.712
 F. I.
 1.1.
 1.1.

01/19/2015 0.710 False

Iron, dissolved, mg/L Location: MW22

Mean of all data: 277.

Standard Deviation of all data: 182.

Largest Observation Concentration of all data: Xn = 522. Test Statistic, high extreme of all data: Tn = 1.34

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Iron, dissolved, mg/L Location: MW22D

Mean of all data: 58.3

Standard Deviation of all data: 85.6

Largest Observation Concentration of all data: Xn = 354.

Test Statistic, high extreme of all data: Tn = 3.46

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 06/19/2017
 354.
 False
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: MW23D

Mean of all data: 5.79

Standard Deviation of all data: 19.3

Largest Observation Concentration of all data: Xn = 70.0

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

Iron, dissolved, mg/L Location: MW23S

Mean of all data: 15.7

Standard Deviation of all data: 56.6

Largest Observation Concentration of all data: Xn = 204. Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 204.
 False
 1

Iron, dissolved, mg/L Location: MW2D

Mean of all data: 1.07

Standard Deviation of all data: 1.01

Largest Observation Concentration of all data: Xn = 3.56

Test Statistic, high extreme of all data: Tn = 2.47

T Critical of all data: Tcr = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L

Location: MW2R

Mean of all data: 0.157

Standard Deviation of all data: 0.185

Largest Observation Concentration of all data: Xn = 0.603

Test Statistic, high extreme of all data: Tn = 2.41

T Critical of all data: Ter = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Iron, dissolved, mg/L

Location: MW3

Mean of all data: 0.289

Standard Deviation of all data: 0.729

Largest Observation Concentration of all data: Xn = 2.89

Test Statistic, high extreme of all data: Tn = 3.57

T Critical of all data: Tcr = 2.90

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 01/19/2015
 2.89
 False
 1

Iron, dissolved, mg/L Location: MW3D

Mean of all data: 4.13

Standard Deviation of all data: 4.59

Largest Observation Concentration of all data: Xn = 15.0

Test Statistic, high extreme of all data: Tn = 2.37

T Critical of all data: Tcr = 2.68

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Iron, dissolved, mg/L Location: MW4

Mean of all data: 0.0924

Standard Deviation of all data: 0.155

Largest Observation Concentration of all data: Xn = 0.751

Test Statistic, high extreme of all data: Tn = 4.24

T Critical of all data: Tcr = 3.01

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 01/30/2012
 0.751
 False
 1

Iron, dissolved, mg/L Location: MW5

Mean of all data: 0.0742

Standard Deviation of all data: 0.143

Largest Observation Concentration of all data: Xn = 0.840

Test Statistic, high extreme of all data: Tn = 5.37

T Critical of all data: Tcr = 3.03

Lead, dissolved, mg/L Location: MW12

Mean of all data: 0.00116

Standard Deviation of all data: 0.00210

Largest Observation Concentration of all data: Xn = 0.0100

Eargest Observation Concentration of an data. All 0.0100

Test Statistic, high extreme of all data: Tn = 4.22

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 08/26/2019
 <0.0100</td>
 True
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: MW22

Mean of all data: 0.00527

Standard Deviation of all data: 0.00255

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 1.86

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, dissolved, mg/L Location: MW22D

Mean of all data: 0.00507

Standard Deviation of all data: 0.00356

Largest Observation Concentration of all data: Xn = 0.0120

Test Statistic, high extreme of all data: Tn = 1.95

T Critical of all data: Ter = 2.41

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Lead, dissolved, mg/L Location: MW23D

Mean of all data: 0.00108

Standard Deviation of all data: 0.000277

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 0.00200 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: MW23S

Mean of all data: 0.00215

Standard Deviation of all data: 0.00288

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 2.72

T Critical of all data: Ter = 2.33

Lead, dissolved, mg/L Location: MW2D

Mean of all data: 0.00100

Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, dissolved, mg/L Location: MW2R

Mean of all data: 0.000727

Standard Deviation of all data: 0.000456

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.598

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Location: MW3

Lead, dissolved, mg/L

Mean of all data: 0.000455

Standard Deviation of all data: 0.000522

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 1.04

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Lead, dissolved, mg/L Location: MW3D

Mean of all data: 0.000615

Standard Deviation of all data: 0.000496

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Tcr = 2.68

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Lead, dissolved, mg/L

Location: MW4

Mean of all data: 0.000615

Standard Deviation of all data: 0.000496

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Tcr = 2.68

Outlier Outlier Hill City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Lead, dissolved, mg/L Location: MW5

Mean of all data: 0.000571

Standard Deviation of all data: 0.000504

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 0.850

T Critical of all data: Tcr = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Manganese, dissolved, mg/L

Location: MW12

Mean of all data: 0.241

Standard Deviation of all data: 0.404

Largest Observation Concentration of all data: Xn = 1.66Test Statistic, high extreme of all data: Tn = 3.51

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 08/28/2018
 1.66
 False
 1

Manganese, dissolved, mg/L

Location: MW22

Mean of all data: 24.8

Standard Deviation of all data: 23.5

Largest Observation Concentration of all data: Xn = 106.

Test Statistic, high extreme of all data: Tn = 3.46

T Critical of all data: Ter = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, dissolved, mg/L

Location: MW22D

Mean of all data: 7.17

Standard Deviation of all data: 4.48

Largest Observation Concentration of all data: Xn = 19.6

Test Statistic, high extreme of all data: Tn = 2.77

T Critical of all data: Tcr = 2.41

Manganese, dissolved, mg/L

Location: MW23D

Mean of all data: 0.779

Standard Deviation of all data: 2.35

Largest Observation Concentration of all data: Xn = 8.60

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 $Manganese, \, dissolved, \, mg/L$

Location: MW23S

Mean of all data: 1.07

Standard Deviation of all data: 3.73

Largest Observation Concentration of all data: Xn = 13.5

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 13.5
 False
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Manganese, dissolved, mg/L

Location: MW2D

Mean of all data: 0.0706

Standard Deviation of all data: 0.0116

Largest Observation Concentration of all data: Xn = 0.0916

Test Statistic, high extreme of all data: Tn = 1.81

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Manganese, dissolved, mg/L

Location: MW2R

Mean of all data: 0.00823

Standard Deviation of all data: 0.0129

Largest Observation Concentration of all data: Xn = 0.0534

Test Statistic, high extreme of all data: Tn = 3.50

T Critical of all data: Tcr = 2.98

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

11/02/2015 0.0534 False 1

Manganese, dissolved, mg/L

Location: MW3

Mean of all data: 0.0732

Standard Deviation of all data: 0.133

Largest Observation Concentration of all data: Xn = 0.708

Test Statistic, high extreme of all data: Tn = 4.78

T Critical of all data: Tcr = 2.98

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

04/20/2015 0.708 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Manganese, \, dissolved, \, mg/L$

Location: MW3D

Mean of all data: 12.9

Standard Deviation of all data: 9.53

Largest Observation Concentration of all data: Xn = 43.7

Test Statistic, high extreme of all data: Tn = 3.23

T Critical of all data: Ter = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/13/2017
 43.7
 False
 1

Manganese, dissolved, mg/L

Location: MW4

Mean of all data: 0.0340

Standard Deviation of all data: 0.161

Largest Observation Concentration of all data: Xn = 1.25

Test Statistic, high extreme of all data: Tn = 7.55

T Critical of all data: Tcr = 3.09

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 07/09/2012
 1.25
 False
 1

 $Manganese, \, dissolved, \, mg/L$

Location: MW5

Mean of all data: 0.00361

Standard Deviation of all data: 0.00720

Largest Observation Concentration of all data: Xn = 0.0380

Test Statistic, high extreme of all data: Tn = 4.78

T Critical of all data: Tcr = 3.10

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Mercury, dissolved, mg/L

Location: MW12

Mean of all data: 0.000116

Standard Deviation of all data: 0.000210

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 4.22

T Critical of all data: Ter = 2.66

Outlier Outlier LT Value Low Side High Side Sample Date Value 08/26/2019 < 0.00100 True

Mercury, dissolved, mg/L

Location: MW22

Mean of all data: 0.000160

Standard Deviation of all data: 0.000232

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 3.61

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date LT Value Low Side Value 08/26/2019 < 0.00100 True 1

Mercury, dissolved, mg/L

Location: MW22D

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: MW23S

Mean of all data: 0.000169

Standard Deviation of all data: 0.000250

Largest Observation Concentration of all data: Xn = 0.00100

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 08/26/2019
 <0.00100</td>
 True
 1

Mercury, dissolved, mg/L

Location: MW2D

Mean of all data: 0.000100 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Mercury, dissolved, mg/L

Location: MW2R

Mean of all data: 0.0000727

Standard Deviation of all data: 0.0000550

Largest Observation Concentration of all data: Xn = 0.000200

Test Statistic, high extreme of all data: Tn = 2.31

T Critical of all data: Ter = 2.60

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Mercury, dissolved, mg/L

Location: MW3

Mean of all data: 0.0000417

Standard Deviation of all data: 0.0000515

Largest Observation Concentration of all data: Xn = 0.000100

Test Statistic, high extreme of all data: Tn = 1.13

T Critical of all data: Tcr = 2.29

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Mercury, dissolved, mg/L

Location: MW3D

Mean of all data: 0.0000654

Standard Deviation of all data: 0.0000562

Largest Observation Concentration of all data: Xn = 0.000200

Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Tcr = 2.68

Outlier Outlier

Sample Date Value LT_Value High Side Low Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Mercury, dissolved, mg/L

Location: MW4

Mean of all data: 0.0000654

Standard Deviation of all data: 0.0000562

Largest Observation Concentration of all data: Xn = 0.000200

Test Statistic, high extreme of all data: Tn = 2.40

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Mercury, dissolved, mg/L

Location: MW5

Mean of all data: 0.0000893

Standard Deviation of all data: 0.000166

Largest Observation Concentration of all data: Xn = 0.000900

Test Statistic, high extreme of all data: Tn = 4.87

T Critical of all data: Ter = 2.71

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

04/21/2014 0.000900 False

Nickel, dissolved, mg/L

Location: MW12

Mean of all data: 0.00267

Standard Deviation of all data: 0.00237

Largest Observation Concentration of all data: Xn = 0.00780

Test Statistic, high extreme of all data: Tn = 2.16

T Critical of all data: Tcr = 2.66

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT Value</u> <u>Low Side</u> <u>High Side</u>

1

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L Location: MW22

Mean of all data: 0.0871

Standard Deviation of all data: 0.0306

Largest Observation Concentration of all data: Xn = 0.122

Test Statistic, high extreme of all data: Tn = 1.14

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 0.000300 False -1

Nickel, dissolved, mg/L Location: MW22D

Mean of all data: 0.0451

Standard Deviation of all data: 0.0238

Largest Observation Concentration of all data: Xn = 0.105

Test Statistic, high extreme of all data: Tn = 2.52

T Critical of all data: Tcr = 2.41

Nickel, dissolved, mg/L Location: MW23D

Mean of all data: 0.00411

Standard Deviation of all data: 0.0128

Largest Observation Concentration of all data: Xn = 0.0465

Test Statistic, high extreme of all data: Tn = 3.32

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT Value
 Low Side
 High Side

10/28/2019 0.0465 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L Location: MW23S

Mean of all data: 0.00968

Standard Deviation of all data: 0.0328

Largest Observation Concentration of all data: Xn = 0.119

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 0.119
 False
 1

Nickel, dissolved, mg/L Location: MW2D

Mean of all data: 0.000270

Standard Deviation of all data: 0.0000922

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 3.58

T Critical of all data: Tcr = 2.41

Nickel, dissolved, mg/L Location: MW2R

Mean of all data: 0.00170

Standard Deviation of all data: 0.00287

Largest Observation Concentration of all data: Xn = 0.0120

Test Statistic, high extreme of all data: Tn = 3.59

T Critical of all data: Tcr = 2.60

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L

Location: MW3

Mean of all data: 0.0121

Standard Deviation of all data: 0.0119

Largest Observation Concentration of all data: Xn = 0.0300

Test Statistic, high extreme of all data: Tn = 1.50

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Nickel, dissolved, mg/L

Location: MW3D

Mean of all data: 0.153

Standard Deviation of all data: 0.0860

Largest Observation Concentration of all data: Xn = 0.369

Test Statistic, high extreme of all data: Tn = 2.51

T Critical of all data: Tcr = 2.68

Outlier Outlier

Sample Date Value LT_Value Low Side High Side

No Outliers

Nickel, dissolved, mg/L

Location: MW4

Mean of all data: 0.00250

Standard Deviation of all data: 0.00628

Largest Observation Concentration of all data: Xn = 0.0310

Test Statistic, high extreme of all data: Tn = 4.54

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 01/30/2012
 0.0310
 False
 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nickel, dissolved, mg/L

Location: MW5

Mean of all data: 0.00150

Standard Deviation of all data: 0.00208

Largest Observation Concentration of all data: Xn = 0.00800

Test Statistic, high extreme of all data: Tn = 3.13

T Critical of all data: Tcr = 2.71

Nitrate nitrogen, dissolved, mg/L

Location: MW12

Mean of all data: 1.45

Standard Deviation of all data: 0.668

Largest Observation Concentration of all data: Xn = 3.03

Test Statistic, high extreme of all data: Tn = 2.37

T Critical of all data: Ter = 2.66

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

 $Nitrate\ nitrogen,\ dissolved,\ mg/L$

Location: MW22

Mean of all data: 0.110

Standard Deviation of all data: 0.0843

Largest Observation Concentration of all data: Xn = 0.350

Test Statistic, high extreme of all data: Tn = 2.85

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 0011ier
 Outlier
 High Side

03/12/2018 0.350 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Nitrate nitrogen, dissolved, mg/L

Location: MW22D

Mean of all data: 0.126

Standard Deviation of all data: 0.106

Largest Observation Concentration of all data: Xn = 0.450

Test Statistic, high extreme of all data: Tn = 3.06

T Critical of all data: Tcr = 2.41

Outlier Outlier LT_Value Low Side High Side Sample Date Value

03/12/2018 0.450 False

Nitrate nitrogen, dissolved, mg/L

Location: MW23D

Mean of all data: 0.0731

Standard Deviation of all data: 0.0259

Largest Observation Concentration of all data: Xn = 0.100

Test Statistic, high extreme of all data: Tn = 1.04

T Critical of all data: Tcr = 2.33

Outlier Outlier High Side Sample Date Value LT Value Low Side

No Outliers

Nitrate nitrogen, dissolved, mg/L

Location: MW23S

Mean of all data: 0.237

Standard Deviation of all data: 0.131

Largest Observation Concentration of all data: Xn = 0.450

Test Statistic, high extreme of all data: Tn = 1.62

T Critical of all data: Tcr = 2.33

Outlier Outlier

Sample Date Value LT Value Low Side High Side

64

1

Hutsonville Ash Impoundment Outlier Analysis Results

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: MW2D

Mean of all data: 0.0838

Standard Deviation of all data: 0.0440

Largest Observation Concentration of all data: Xn = 0.200

Test Statistic, high extreme of all data: Tn = 2.64

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 12 (10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (2017)
 10 (20

12/18/2017 0.200 False 1

Nitrate nitrogen, dissolved, mg/L

Location: MW2R

Mean of all data: 2.19

Standard Deviation of all data: 2.69

Largest Observation Concentration of all data: Xn = 12.7Test Statistic, high extreme of all data: Tn = 3.91

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 09/18/2017
 12.7
 False
 1

Nitrate nitrogen, dissolved, mg/L

Location: MW3

Mean of all data: 1.34

Standard Deviation of all data: 1.07

Largest Observation Concentration of all data: Xn = 3.88

Test Statistic, high extreme of all data: Tn = 2.36

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/07/2016 3.88 False

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Nitrate nitrogen, dissolved, mg/L

Location: MW3D

Mean of all data: 0.557

Standard Deviation of all data: 0.684

Largest Observation Concentration of all data: Xn = 2.56

Test Statistic, high extreme of all data: Tn = 2.93

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 2.56
 False
 1

Nitrate nitrogen, dissolved, mg/L

Location: MW4

Mean of all data: 1.43

Standard Deviation of all data: 1.73

Largest Observation Concentration of all data: Xn = 7.34

Test Statistic, high extreme of all data: Tn = 3.43

T Critical of all data: Tcr = 2.68

 $Nitrate\ nitrogen,\ dissolved,\ mg/L$

Location: MW5

Mean of all data: 1.41

Standard Deviation of all data: 1.39

Largest Observation Concentration of all data: Xn = 5.06

Test Statistic, high extreme of all data: Tn = 2.62

T Critical of all data: Tcr = 2.71

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

pH (field), STD **Location: MW12**

Mean of all data: 6.96

Standard Deviation of all data: 0.34

Largest Observation Concentration of all data: Xn = 8.18 Test Statistic, high extreme of all data: Tn = 3.59

T Critical of all data: Tcr = 3.01

Outlier Outlier LT_Value Low Side High Side Sample Date Value 03/29/1999 8.18 False

pH (field), STD **Location: MW22**

Mean of all data: 4.21

Standard Deviation of all data: 1.01

Largest Observation Concentration of all data: Xn = 6.99Test Statistic, high extreme of all data: Tn = 2.74

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date LT Value Low Side Value 10/28/2019 6.99 False 1

pH (field), STD **Location: MW22D**

Mean of all data: 5.32

Standard Deviation of all data: 0.73

Largest Observation Concentration of all data: Xn = 7.17

Test Statistic, high extreme of all data: Tn = 2.54

T Critical of all data: Tcr = 2.41

Outlier Sample Date Value LT Value Low Side High Side 10/28/2019 7.17 False 1

Outlier

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD Location: MW23D

Mean of all data: 7.18

Standard Deviation of all data: 0.59

Largest Observation Concentration of all data: Xn = 7.62

Test Statistic, high extreme of all data: Tn = 0.74

T Critical of all data: Ter = 2.33

Sample Date Value LT_Value Outlier Outlier

Low Side High Side

10/28/2019 5.28 False -1

pH (field), STD Location: MW23S

Mean of all data: 6.76

Standard Deviation of all data: 0.92

Largest Observation Concentration of all data: Xn = 7.35

Test Statistic, high extreme of all data: Tn = 0.64

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT Value
 Low Side
 High Side

10/28/2019 3.75 False -1

pH (field), STD Location: MW2D

Mean of all data: 7.50

Standard Deviation of all data: 0.09

Largest Observation Concentration of all data: Xn = 7.68

Test Statistic, high extreme of all data: Tn = 2.04

T Critical of all data: Ter = 2.41

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD Location: MW2R

Mean of all data: 7.37

Standard Deviation of all data: 0.15

Largest Observation Concentration of all data: Xn = 7.64

Test Statistic, high extreme of all data: Tn = 1.80

T Critical of all data: Tcr = 2.98

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

09/20/2013 6.85 False -1

pH (field), STD Location: MW3

Mean of all data: 9.65

Standard Deviation of all data: 34.98

Largest Observation Concentration of all data: Xn = 440.00

Test Statistic, high extreme of all data: Tn = 12.30

T Critical of all data: Tcr = 3.53

pH (field), STD Location: MW3D

Mean of all data: 6.16

Standard Deviation of all data: 0.38

Largest Observation Concentration of all data: Xn = 7.50

Test Statistic, high extreme of all data: Tn = 3.50

T Critical of all data: Tcr = 3.03

 Sample Date
 Value
 LT Value
 Low Side
 High Side

05/05/2003 7.50 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

pH (field), STD Location: MW4

Mean of all data: 9.14

Standard Deviation of all data: 24.70

Largest Observation Concentration of all data: Xn = 320.00

Test Statistic, high extreme of all data: Tn = 12.58

T Critical of all data: Ter = 3.54

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 00/17/2010
 200 00
 F. I.
 1

08/17/2010 320.00 False

pH (field), STD Location: MW5

Mean of all data: 7.81

Standard Deviation of all data: 10.36

Largest Observation Concentration of all data: Xn = 150.00

Test Statistic, high extreme of all data: Tn = 13.73

T Critical of all data: Tcr = 3.55

Selenium, dissolved, mg/L

Location: MW12

Mean of all data: 0.00273

Standard Deviation of all data: 0.00223

Largest Observation Concentration of all data: Xn = 0.0112

Test Statistic, high extreme of all data: Tn = 3.81

T Critical of all data: Tcr = 2.66

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 Sample Date
 Value
 LI_Value
 Low Side
 High Side

 03/12/2018
 0.0112
 False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Selenium, dissolved, mg/L

Location: MW22

Mean of all data: 0.0117

Standard Deviation of all data: 0.0133

Largest Observation Concentration of all data: Xn = 0.0504

Test Statistic, high extreme of all data: Tn = 2.90

T Critical of all data: Tcr = 2.41

Outlier Outlier LT_Value Low Side High Side Sample Date Value 10/26/2020 0.0504 False

Selenium, dissolved, mg/L

Location: MW22D

Mean of all data: 0.00870

Standard Deviation of all data: 0.0128

Largest Observation Concentration of all data: Xn = 0.0500

Test Statistic, high extreme of all data: Tn = 3.23

T Critical of all data: Tcr = 2.41

Outlier Outlier High Side Sample Date LT Value Low Side Value 06/19/2017 < 0.0500 True 1

Selenium, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000846

Standard Deviation of all data: 0.00125

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

Outlier Outlier Sample Date Value LT Value Low Side High Side 1

10/28/2019 < 0.00500 True

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, dissolved, mg/L

Location: MW23S

Mean of all data: 0.000846

Standard Deviation of all data: 0.00125

Largest Observation Concentration of all data: Xn = 0.00500

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 <0.00500 True 1

Selenium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.000500 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier Utab Side Use State Utab Side

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Selenium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.00548

Standard Deviation of all data: 0.00368

Largest Observation Concentration of all data: Xn = 0.0156

Test Statistic, high extreme of all data: Tn = 2.75

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

11/02/2015 0.0156 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Selenium, dissolved, mg/L

Location: MW3

Mean of all data: 0.0138

Standard Deviation of all data: 0.00890

Largest Observation Concentration of all data: Xn = 0.0365

Test Statistic, high extreme of all data: Tn = 2.55

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/07/2016 0.0365 False 1

Selenium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.00425

Standard Deviation of all data: 0.00963

Largest Observation Concentration of all data: Xn = 0.0500

Test Statistic, high extreme of all data: Tn = 4.75

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

03/12/2018 <0.0500 True 1

 $Selenium,\,dissolved,\,mg/L$

Location: MW4

Mean of all data: 0.00266

Standard Deviation of all data: 0.00225

Largest Observation Concentration of all data: Xn = 0.00970

Test Statistic, high extreme of all data: Tn = 3.12

T Critical of all data: Ter = 2.68

Outlier Outlier

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 05/14/2018
 0.00970
 False
 1

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Selenium, dissolved, mg/L

Location: MW5

Mean of all data: 0.00203

Standard Deviation of all data: 0.00147

Largest Observation Concentration of all data: Xn = 0.00480

Test Statistic, high extreme of all data: Tn = 1.89

T Critical of all data: Tcr = 2.71

Outlier Outlier

LT_Value Low Side High Side Sample Date Value

No Outliers

Silver, dissolved, mg/L **Location: MW12**

Mean of all data: 0.000200

Standard Deviation of all data: 0.000250

Largest Observation Concentration of all data: Xn = 0.00125

Test Statistic, high extreme of all data: Tn = 4.20

T Critical of all data: Ter = 2.66

Outlier Outlier Sample Date High Side Value LT Value Low Side

09/18/2017 < 0.00125 True

Silver, dissolved, mg/L **Location: MW22**

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Ter = 0.0

Outlier Outlier

Sample Date LT Value Low Side High Side Value

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, dissolved, mg/L Location: MW22D

Mean of all data: 0.000400

Standard Deviation of all data: 0.000581

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 3.61

T Critical of all data: Tcr = 2.41

Silver, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: MW23S

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Silver, dissolved, mg/L Location: MW2D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L Location: MW2R

Mean of all data: 0.000670

Standard Deviation of all data: 0.00157

Largest Observation Concentration of all data: Xn = 0.00600

Test Statistic, high extreme of all data: Tn = 3.39

T Critical of all data: Tcr = 2.60

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

01/19/2015 0.00600 False

Silver, dissolved, mg/L Location: MW3

Mean of all data: 0.000277

Standard Deviation of all data: 0.000520

Largest Observation Concentration of all data: Xn = 0.00180

Test Statistic, high extreme of all data: Tn = 2.93

T Critical of all data: Tcr = 2.23

Sample Date Value LT Value Low Side High Side

01/19/2015 0.00180 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50

Confidence Level: 95% Transform: None **Number of Outliers: One Outlier**

Silver, dissolved, mg/L Location: MW3D

Mean of all data: 0.000154

Standard Deviation of all data: 0.000124

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.775

T Critical of all data: Ter = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Silver, dissolved, mg/L

Location: MW4

Mean of all data: 0.000167

Standard Deviation of all data: 0.000151

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 2.87

T Critical of all data: Tcr = 2.68

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/19/2017 0.000600 False 1

Silver, dissolved, mg/L Location: MW5

Mean of all data: 0.000152

Standard Deviation of all data: 0.000142

Largest Observation Concentration of all data: Xn = 0.000500

Test Statistic, high extreme of all data: Tn = 2.46

T Critical of all data: Tcr = 2.71

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance (field), micromhos/cm

Location: MW12

Mean of all data: 840

Standard Deviation of all data: 490

Largest Observation Concentration of all data: Xn = 3090

Test Statistic, high extreme of all data: Tn = 5

T Critical of all data: Tcr = 3

Specific Conductance (field), micromhos/cm

Location: MW22

Mean of all data: 2685

Standard Deviation of all data: 876

Largest Observation Concentration of all data: Xn = 3560

Test Statistic, high extreme of all data: Tn = 1

T Critical of all data: Tcr = 2

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 396
 False
 -1

Specific Conductance (field), micromhos/cm

Location: MW22D

Mean of all data: 1761

Standard Deviation of all data: 545

Largest Observation Concentration of all data: Xn = 2690

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 2

 Sample Date
 Value
 LT Value
 Low Side
 High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance (field), micromhos/cm

Location: MW23D

Mean of all data: 582

Standard Deviation of all data: 484

Largest Observation Concentration of all data: Xn = 2180

Test Statistic, high extreme of all data: Tn = 3

T Critical of all data: Tcr = 2

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 2180
 False
 1

Specific Conductance (field), micromhos/cm

Location: MW23S

Mean of all data: 543

Standard Deviation of all data: 688

Largest Observation Concentration of all data: Xn = 2800

Test Statistic, high extreme of all data: Tn = 3

T Critical of all data: Tcr = 2

Specific Conductance (field), micromhos/cm

Location: MW2D

Mean of all data: 476

Standard Deviation of all data: 55

Largest Observation Concentration of all data: Xn = 550

Test Statistic, high extreme of all data: Tn = 1

T Critical of all data: Tcr = 2

 Sample Date
 Value
 LT Value
 Low Side
 High Side

 12/18/2017
 331
 False
 -1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Specific Conductance (field), micromhos/cm

Location: MW2R

Mean of all data: 832

Standard Deviation of all data: 124

Largest Observation Concentration of all data: Xn = 1120

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Specific Conductance (field), micromhos/cm

Location: MW3

Mean of all data: 2282

Standard Deviation of all data: 854

Largest Observation Concentration of all data: Xn = 3990

Test Statistic, high extreme of all data: Tn = 2

T Critical of all data: Tcr = 3

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Specific Conductance (field), micromhos/cm

Location: MW3D

Mean of all data: 2275

Standard Deviation of all data: 847

Largest Observation Concentration of all data: Xn = 3230

Test Statistic, high extreme of all data: Tn = 1

T Critical of all data: Tcr = 3

Outlier Outlier Hill City

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Specific Conductance (field), micromhos/cm

Location: MW4

Mean of all data: 702

Standard Deviation of all data: 229

Largest Observation Concentration of all data: Xn = 1570

Test Statistic, high extreme of all data: Tn = 4

T Critical of all data: Tcr = 3

Outlier Outlier LT_Value Low Side High Side Sample Date Value 12/09/1987 1570 False

Specific Conductance (field), micromhos/cm

Location: MW5

Mean of all data: 445

Standard Deviation of all data: 155

Largest Observation Concentration of all data: Xn = 925

Test Statistic, high extreme of all data: Tn = 3

T Critical of all data: Tcr = 3

Outlier Outlier LT Value High Side Sample Date Value Low Side

No Outliers

Sulfate, dissolved, mg/L

Location: MW12

Mean of all data: 110.

Standard Deviation of all data: 87.6

Largest Observation Concentration of all data: Xn = 475. Test Statistic, high extreme of all data: Tn = 4.17

T Critical of all data: Tcr = 2.66

Outlier Outlier Sample Date Value LT Value Low Side High Side 05/14/2018 475. False

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

 $Sulfate,\,dissolved,\,mg/L$

Location: MW22

Mean of all data: 2520.

Standard Deviation of all data: 1320.

Largest Observation Concentration of all data: Xn = 4570.

Test Statistic, high extreme of all data: Tn = 1.56

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Sulfate, dissolved, mg/L

Location: MW22D

Mean of all data: 1280.

Standard Deviation of all data: 490.

Largest Observation Concentration of all data: Xn = 2150.

Test Statistic, high extreme of all data: Tn = 1.77

T Critical of all data: Ter = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 31.1 False -1

Sulfate, dissolved, mg/L

Location: MW23DMean of all data: 127.

Standard Deviation of all data: 358.

Largest Observation Concentration of all data: Xn = 1320.

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 1320. False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Sulfate, dissolved, mg/L

Location: MW23S

Mean of all data: 174.

Standard Deviation of all data: 567.

Largest Observation Concentration of all data: Xn = 2060.

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 2060. False 1

 $Sulfate,\,dissolved,\,mg/L$

Location: MW2D

Mean of all data: 6.26

Standard Deviation of all data: 4.34

Largest Observation Concentration of all data: Xn = 16.1

Test Statistic, high extreme of all data: Tn = 2.27

T Critical of all data: Tcr = 2.41

Outlier Outlier

Value LT Value Law Side Law Side

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Sulfate, dissolved, mg/L

Location: MW2R

Mean of all data: 182.

Standard Deviation of all data: 59.6

Largest Observation Concentration of all data: Xn = 312.

Test Statistic, high extreme of all data: Tn = 2.18

T Critical of all data: Tcr = 2.98

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Sulfate, dissolved, mg/L

Location: MW3

Mean of all data: 963.

Standard Deviation of all data: 469.

Largest Observation Concentration of all data: Xn = 1930.

Test Statistic, high extreme of all data: Tn = 2.06

T Critical of all data: Tcr = 2.98

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

Sulfate, dissolved, mg/L

Location: MW3D

No Outliers

Mean of all data: 1980.

Standard Deviation of all data: 766.

Largest Observation Concentration of all data: Xn = 3750.

Test Statistic, high extreme of all data: Tn = 2.31

T Critical of all data: Tcr = 2.68

Outlier Outlier

<u>Sample Date</u> <u>Value</u> <u>LT_Value</u> <u>Low Side</u> <u>High Side</u>

No Outliers

Sulfate, dissolved, mg/L

Location: MW4

Mean of all data: 59.4

Standard Deviation of all data: 48.1

Largest Observation Concentration of all data: Xn = 288.

Test Statistic, high extreme of all data: Tn = 4.75

T Critical of all data: Tcr = 3.09

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/11/2012 288. False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Sulfate, dissolved, mg/L

Location: MW5

Mean of all data: 49.0

Standard Deviation of all data: 36.3

Largest Observation Concentration of all data: Xn = 180.

Test Statistic, high extreme of all data: Tn = 3.61

T Critical of all data: Ter = 3.10

Outlier Outlier LT_Value Low Side High Side Sample Date Value

02/22/2011 180. False

Thallium, dissolved, mg/L

Location: MW12

Mean of all data: 0.000290

Standard Deviation of all data: 0.000524

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 4.22

T Critical of all data: Tcr = 2.66

Outlier Outlier Sample Date LT Value Low Side High Side Value 08/26/2019 < 0.00250 True

Thallium, dissolved, mg/L

Location: MW22

Mean of all data: 0.000400

Standard Deviation of all data: 0.000581

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 3.61

T Critical of all data: Tcr = 2.41

Outlier Outlier Sample Date Value LT Value Low Side High Side

08/26/2019 < 0.00250

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% **Number of Outliers: One Outlier**

Transform: None

Thallium, dissolved, mg/L

Location: MW22D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Thallium, dissolved, mg/L

Location: MW23D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier

Sample Date Value LT Value Low Side High Side

No Outliers

Thallium, dissolved, mg/L

Location: MW23S

Mean of all data: 0.000423

Standard Deviation of all data: 0.000624

Largest Observation Concentration of all data: Xn = 0.00250

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

Outlier Outlier Sample Date LT Value High Side Value

Low Side

08/26/2019 < 0.00250 1 True

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Thallium, dissolved, mg/L

Location: MW2D

Mean of all data: 0.000250 Standard Deviation of all data: 0.0

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.0

T Critical of all data: Tcr = 0.0

Outlier Outlier LT_Value Low Side High Side Sample Date Value

No Outliers

Thallium, dissolved, mg/L

Location: MW2R

Mean of all data: 0.000261

Standard Deviation of all data: 0.000404

Largest Observation Concentration of all data: Xn = 0.00200

Test Statistic, high extreme of all data: Tn = 4.30

T Critical of all data: Tcr = 2.60

Outlier Outlier Sample Date Value LT Value Low Side High Side

04/21/2014 0.00200 False

Thallium, dissolved, mg/L

Location: MW3

Mean of all data: 0.000314

Standard Deviation of all data: 0.000409

Largest Observation Concentration of all data: Xn = 0.00120

Test Statistic, high extreme of all data: Tn = 2.17

T Critical of all data: Tcr = 2.23

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95%

Transform: None

Number of Outliers: One Outlier

Thallium, dissolved, mg/L

Location: MW3D

Mean of all data: 0.000242

Standard Deviation of all data: 0.000294

Largest Observation Concentration of all data: Xn = 0.00130

Test Statistic, high extreme of all data: Tn = 3.60

T Critical of all data: Tcr = 2.68

Outlier Outlier LT_Value Low Side High Side Sample Date Value

09/26/2016 0.00130 False

Thallium, dissolved, mg/L

Location: MW4

Mean of all data: 0.000177

Standard Deviation of all data: 0.000148

Largest Observation Concentration of all data: Xn = 0.000600

Test Statistic, high extreme of all data: Tn = 2.86

T Critical of all data: Tcr = 2.68

Outlier Outlier Sample Date LT Value Low Side High Side Value

09/26/2016 0.000600 False 1

Thallium, dissolved, mg/L

Location: MW5

Mean of all data: 0.000143

Standard Deviation of all data: 0.000126

Largest Observation Concentration of all data: Xn = 0.000250

Test Statistic, high extreme of all data: Tn = 0.850

T Critical of all data: Tcr = 2.71

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: MW12

Mean of all data: 538.

Standard Deviation of all data: 129.

Largest Observation Concentration of all data: Xn = 933.

Test Statistic, high extreme of all data: Tn = 3.07

T Critical of all data: Tcr = 2.98

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 05/14/2018
 933.
 False
 1

Total Dissolved Solids, mg/L

Location: MW22

Mean of all data: 3080.

Standard Deviation of all data: 1080.

Largest Observation Concentration of all data: Xn = 4320.

Test Statistic, high extreme of all data: Tn = 1.15

T Critical of all data: Ter = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 164.
 False
 -1

Total Dissolved Solids, mg/L

Location: MW22D

Mean of all data: 1770.

Standard Deviation of all data: 728.

Largest Observation Concentration of all data: Xn = 3650.

Test Statistic, high extreme of all data: Tn = 2.58

T Critical of all data: Tcr = 2.41

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: MW23D

Mean of all data: 372.

Standard Deviation of all data: 427.

Largest Observation Concentration of all data: Xn = 1790.

Test Statistic, high extreme of all data: Tn = 3.32

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 1790. False 1

Total Dissolved Solids, mg/L

Location: MW23S

Mean of all data: 415.

Standard Deviation of all data: 718.

Largest Observation Concentration of all data: Xn = 2800.

Test Statistic, high extreme of all data: Tn = 3.32

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 2800. False 1

Total Dissolved Solids, mg/L

Location: MW2D

Mean of all data: 201.

Standard Deviation of all data: 104.

Largest Observation Concentration of all data: Xn = 299. Test Statistic, high extreme of all data: Tn = 0.939

Test Statistic, high extreme of an data. Th = 0.939

T Critical of all data: Tcr = 2.41

Outlier Outlier

Sample Date Value LT Value Low Side High Side

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: MW2R

Mean of all data: 513.

Standard Deviation of all data: 156.

Largest Observation Concentration of all data: Xn = 1010.

Test Statistic, high extreme of all data: Tn = 3.18

T Critical of all data: Tcr = 2.98

Sample Date Value LT Value Low Side High Side

11/12/2012 1010. False

Total Dissolved Solids, mg/L

Location: MW3

Mean of all data: 2360.

Standard Deviation of all data: 669.

Largest Observation Concentration of all data: Xn = 4000.

Test Statistic, high extreme of all data: Tn = 2.45

T Critical of all data: Tcr = 3.54

 Sample Date
 Value
 LT Value
 Low Side
 High Side

No Outliers

Total Dissolved Solids, mg/L

Location: MW3D

Mean of all data: 2680.

Standard Deviation of all data: 282.

Largest Observation Concentration of all data: Xn = 3140.

Test Statistic, high extreme of all data: Tn = 1.62

T Critical of all data: Tcr = 2.99

 Sample Date
 Value
 LT Value
 Low Side
 High Side

10/26/2020 1530. False -1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Total Dissolved Solids, mg/L

Location: MW4

Mean of all data: 463.

Standard Deviation of all data: 224.

Largest Observation Concentration of all data: Xn = 1780.

Test Statistic, high extreme of all data: Tn = 5.87

T Critical of all data: Ter = 3.54

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/09/1987 1780. False 1

Total Dissolved Solids, mg/L

Location: MW5

Mean of all data: 319.

Standard Deviation of all data: 182.

Largest Observation Concentration of all data: Xn = 1010.

Test Statistic, high extreme of all data: Tn = 3.80

T Critical of all data: Tcr = 3.55

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

12/11/2014 1010. False 1

Zinc, dissolved, mg/L Location: MW12

Mean of all data: 0.00517

Standard Deviation of all data: 0.00426

Largest Observation Concentration of all data: Xn = 0.0170

Test Statistic, high extreme of all data: Tn = 2.77

T Critical of all data: Ter = 2.66

Sample Date Value LT Value Low Side High Side

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 03/07/2016
 0.0170
 False

92

Based on Grubbs one-sided outlier test

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: MW22

Mean of all data: 0.436

Standard Deviation of all data: 0.185

Largest Observation Concentration of all data: Xn = 0.670

Test Statistic, high extreme of all data: Tn = 1.27

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: MW22D

Mean of all data: 0.171

Standard Deviation of all data: 0.114

Largest Observation Concentration of all data: Xn = 0.500

Test Statistic, high extreme of all data: Tn = 2.90

T Critical of all data: Tcr = 2.41

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

06/19/2017 0.500 False 1

Zinc, dissolved, mg/L Location: MW23D

Mean of all data: 0.0192

Standard Deviation of all data: 0.0513

Largest Observation Concentration of all data: Xn = 0.190

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Tcr = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

10/28/2019 0.190 False 1

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: MW23S

Mean of all data: 0.0508

Standard Deviation of all data: 0.165

Largest Observation Concentration of all data: Xn = 0.600

Test Statistic, high extreme of all data: Tn = 3.33

T Critical of all data: Ter = 2.33

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

 10/28/2019
 0.600
 False
 1

Zinc, dissolved, mg/L Location: MW2D

Mean of all data: 0.00533

Standard Deviation of all data: 0.00129

Largest Observation Concentration of all data: Xn = 0.0100

Test Statistic, high extreme of all data: Tn = 3.61

T Critical of all data: Tcr = 2.41

Zinc, dissolved, mg/L Location: MW2R

Mean of all data: 0.00771

Standard Deviation of all data: 0.00777

Largest Observation Concentration of all data: Xn = 0.0280

Test Statistic, high extreme of all data: Tn = 2.61

T Critical of all data: Ter = 2.60

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020 LT Multiplier: x 0.50 Confidence Level: 95% Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: MW3

Mean of all data: 0.0832

Standard Deviation of all data: 0.0494

Largest Observation Concentration of all data: Xn = 0.172

Test Statistic, high extreme of all data: Tn = 1.80

T Critical of all data: Ter = 2.23

 Sample Date
 Value
 LT_Value
 Low Side
 High Side

No Outliers

Zinc, dissolved, mg/L Location: MW3D

Mean of all data: 0.0228

Standard Deviation of all data: 0.0200

Largest Observation Concentration of all data: Xn = 0.0900

Test Statistic, high extreme of all data: Tn = 3.36

T Critical of all data: Tcr = 2.68

Zinc, dissolved, mg/L Location: MW4

Mean of all data: 0.00608

Standard Deviation of all data: 0.00762

Largest Observation Concentration of all data: Xn = 0.0390

Test Statistic, high extreme of all data: Tn = 4.32

T Critical of all data: Tcr = 2.68

User Supplied Information

Date Range: 01/17/1984 to 10/26/2020

Confidence Level: 95%

Number of Outliers: One Outlier

Transform: None

Zinc, dissolved, mg/L Location: MW5

Mean of all data: 0.00601

Standard Deviation of all data: 0.00672

Largest Observation Concentration of all data: Xn = 0.0330

Test Statistic, high extreme of all data: Tn = 4.01

T Critical of all data: Tcr = 2.71

APPENDIX C2 TEST DESCRIPTIONS

MANAGES

Groundwater Data Management and Evaluation Software

Software Manual Product ID #1012581

Software Manual, February 2010

EPRI Project Manager K. Ladwig

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

ELECTRIC POWER RESEARCH INSTITUTE, INC. ("EPRI") RESERVES ALL RIGHTS IN THE PROGRAM AS DELIVERED. THE PROGRAM OR ANY PORTION THEREOF MAY NOT BE REPRODUCED IN ANY FORM WHATSOEVER EXCEPT AS PROVIDED BY LICENSE, WITHOUT THE CONSENT OF EPRI.

A LICENSE UNDER EPRI'S RIGHTS IN THE PROGRAM CAN BE OBTAINED DIRECTLY FROM EPRI.

THE EMBODIMENTS OF THIS PROGRAM AND SUPPORTING MATERIALS MAY BE INDEPENDENTLY AVAILABLE FROM ELECTRIC POWER SOFTWARE CENTER (EPSC) FOR AN APPROPRIATE DISTRIBUTION FEE.

Electric Power Software Center (EPSC) 9625 Research Drive Charlotte, NC 28262

THIS NOTICE MAY NOT BE REMOVED FROM THE PROGRAM BY ANY USER THEREOF.

NEITHER EPRI, ANY MEMBER OF EPRI, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

- 1. MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS OF ANY PURPOSE WITH RESPECT TO THE PROGRAM; OR
- ASSUMES ANY LIABILITY WHATSOEVER WITH RESPECT TO ANY USE OF THE PROGRAM OR ANY PORTION THEREOF OR WITH RESPECT TO ANY DAMAGES WHICH MAY RESULT FROM SUCH USE.

RESTRICTED RIGHTS LEGEND: USE, DUPLICATION, OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO RESTRICTION AS SET FORTH IN PARAGRAPH (G) (3) (I), WITH THE EXCEPTION OF PARAGRAPH (G) (3) (I) (B) (5), OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE IN FAR 52.227-14, ALTERNATE III.

Research Contractor Company Name (add others on lines below if more than one)

NOTICE: THIS REPORT CONTAINS PROPRIETARY INFORMATION THAT IS THE INTELLECTUAL PROPERTY OF EPRI, ACCORDINGLY, IT IS AVAILABLE ONLY UNDER LICENSE FROM EPRI AND MAY NOT BE REPRODUCED OR DISCLOSED, WHOLLY OR IN PART, BY ANY LICENSEE TO ANY OTHER PERSON OR ORGANIZATION.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2009 Electric Power Research Institute, Inc. All rights reserved.

10 STATISTICAL ANALYSIS

Stand-Alone Statistical Tests

Statistical Evaluation Report

The Statistical Evaluation Report is comprised of a series of subreports as described below.

User Selections:

- One location.
- Sample date range for data selection.
- Interval length: the length of the averaging period in months (1,2,3,4, or 6).
- One parameter.
- Non-detect processing: multiplier between 0 and 1.
- One-sided confidence $(1-\alpha)$ level -0.90, 0.95 or 0.99.
- Limit type: used in the statistical overview to determine exceedances.

Mann-Kendall Trend and Seasonal Analysis Tests

The Mann-Kendall test for trend is insensitive to the presence or absence of seasonality. The test is non-parametric and does not assume any type of data distribution. Nonetheless, two forms of the test are provided in MANAGES, one ignoring data seasonality even if it is present, and one considering data seasonality. In the test, the null hypothesis, H_0 , is that the Sen trend is zero, and the alternate hypothesis, H_a , is that the trend is non-zero.

In general, the Mann-Kendall test considering seasonality indicates a larger range for allowable Sen estimate of trend when seasonality is actually present than the range indicated by the test performed ignoring seasonality.

In the Mann-Kendall Trend Analysis, available in under the Statistical Evaluation Report and in the Statistical Procedure for Detection Monitoring, and Mann-Kendall Seasonal Analysis, found under the Statistical Evaluation Report, MANAGES first calculates the Sen slope and the upper and lower confidence limits of the Sen slope, and then determines whether the Sen slope is statistically significant. Slope is statistically significant if it is non-zero.

Mann-Kendall Test for Sen Slope Significance – a two-sided, non-parametric method for data sets as small as 10, unless there are many tied (e.g., equal, NDs are treated as tieds) values (Gilbert, 1987; p. 208)

$= 1 \text{ if } (x_{ij} - x_{jk}) > 0$
$= 0 \text{ if } (x_{ij} - x_{jk}) = 0$
$= -1 \text{ if } (x_{ij} - x_{jk}) < 0$
where $x_{i1}, x_{i2},, x_{in}$ are the time ordered data (n_i is total of data in the ith season).
$= \sum_{k=1}^{m-1} \sum_{j=k+1}^{m} \operatorname{sgn}(x_{ij} - x_{jk})$
$VAR(S_i) =$
$\frac{1}{18} \left\{ n_i (n_i - 1)(2n_i + 5) - \sum_{p=1}^{g_i} t_{ip} (t_{ip} - 1)(2t_{ip} + 5) - \sum_{q=1}^{h_i} u_{iq} (u_{iq} - 1)(2u_{iq} + 5) \right\}$
$+ \underbrace{\sum_{p=1}^{g_i} t_{ip}(t_{ip} - 1)(t_{ip} - 2) \sum_{q=1}^{h_i} u_{iq}(u_{iq} - 1)(u_{iq} - 2)}_{9n_i(n_i - 1)(n_i - 2)}$
$+\underbrace{\sum_{p=1}^{g_i} t_{ip}(t_{ip}-1) \sum_{q=1}^{h_i} u_{iq}(u_{iq}-1)}_{2n_i(n_i-1)}.$
The variable g_i is the number of tied groups (equal-valued) data in the
i-th season, t_{ip} is the number of tied data in the p-th group for the i-th
season, h_i is the number of sampling times (or time periods) in the i-th season that contain multiple data, u_{iq} is the number of multiple data in
the q-th time period in the i-th season, and n_i is the number of data values in the i-th season.

Test Statistic,	If $S' = \sum_{i=1}^{K} S_i$, where K is the number of seasons, then the test statistic
Z	Z is computed as:
	$Z = \begin{cases} \frac{S'-1}{[VAR(S')]^{1/2}} & \text{iff } S' > 0 \\ 0 & \text{iff } S' = 0 \end{cases}$ $\frac{S'+1}{[VAR(S')]^{1/2}} & \text{iff } S' < 0$
	$Z = \begin{cases} 0 & \text{iff } S' = 0 \end{cases}$
	$\frac{S'+1}{[VAR(S')]^{1/2}} iff S' < 0$
	Where "iff" is an acroym meaning: if-and-only-if. A positive Z value means an upward trend and a negative Z value means a negative trend.
Hypothesis Test:	Accept the null hypothesis H_0 of no trend
H_0 = no trend	if $Z \leq Z_{1-\alpha/2}$
H_a = trend present	Reject the null hypothesis H_0
This is a two-sided test at the α significance level.	if $Z > Z_{1-\alpha/2}$
	where $Z_{1-\alpha/2}$ is obtained from Table A1 in Gilbert (1987; p. 254).

Kruskal-Wallis Analysis (Test for Seasonality)

To perform the Kruskal-Wallis test for data seasonality, data points are first segmented according to season (Gilbert, 1987). The null hypothesis, H_0 , is that all seasons have the same mean value. The alternative hypothesis, H_a , is that at least one season has a mean larger or smaller than the mean of at least one other season. Montgomery et al. (1987) provide additional information on groundwater data seasonality. This is a two-sided, non-parametric test.

In MANAGES, the Kruskal-Wallis Test for Seasonality is found under Data Review // Non-Parametric Methods // Kruskal-Wallis Analysis. It determines whether the seasonal means for the specified parameter at the specified location are statistically the same.

	or $Z_i \ge SCL$.
--	--------------------

Outlier Tests

Outlier tests are useful in detecting inconsistencies of measurement within a data set. An outlier is defined as an observation that appears to deviate markedly from other values of a sample set. There are many possible reasons for the presence of an outlier, including 1) the presence of a true but extreme value from a single population, resulting from random variability inherent in the data; 2) an improper identification of the underlying distribution describing the population from which the sample set comes from; 3) the occurrence of some unknown event(s) such as a spill, creating a mixture of two or more populations; 4) a gross deviation from prescribed sampling procedures or laboratory analysis; 5) a transcription error in the data value or data unit of measurement.

USEPA (1989; p. 8-11) states that the purpose of a test for outliers is to determine whether or not there is statistical evidence that an observation that appears extreme does not fit the distribution of the rest of the data. If an observation is identified as an outlier, then steps need to be taken to determine whether it is the result of an error or a valid extreme observation. If a true error, such as in transcription, dilution, or analytical procedure, can be identified, then the suspect value should be replaced with its corrected value. If the source of the error can be determined but no correction is possible, then the observation is deleted and the reason for deletion is reported along with any statistical analysis. If no source of error can be documented, then it must be assumed that the observation is a true but extreme value of the data set. If this is the case, the outlier observation(s) must not be altered or excluded from any statistical analysis. Identification of an observation as an outlier but with no error documented could be used to suggest resampling to confirm the value (USEPA, 1989; p. 8-13).

The outlier tests provided in MANAGES are based on either the single outlier test of Grubbs (1969), which is used by USEPA (1989; pp. 8-10 to 8-13) or the single outlier test of Dixon (1951, 1953), which is used by USEPA (2000; pp. 4-24) and by ASTM (1998). The outlier tests assume the data come from a normal distribution. Only one outlier, either an extreme low or an extreme high, can be detected during a single analysis of a data set. Additional outliers can be detected by temporarily removing a previously detected outlier from a data set and then repeating the test on the remaining, reduced, data set. During each pass of the outlier test, the sample mean, standard deviation, and sample size used in the test statistics are computed using only the data remaining in the set. The process can be continued until there is either an insufficient amount of data remaining (a minimum of 3 values) or when no additional outliers are found. When using MANAGES, the user will be asked how many outliers are to be checked and it will then automatically perform all of the recursive calls and data reductions with the Grubbs or Dixon routine. When done, a report can be generated that will show each outlier marked with a flag indicating the sequential order in which the outliers were identified.

Critical values used in the one-sided Grubbs test are taken directly from those in Grubbs and Beck (1972) for sample sizes smaller than 147 observations. Critical values for sample sizes larger than 147 were generated numerically using a Monte Carlo routine, where each sampling event was simulated 100,000 times. Sample sizes ranging from 148 to 5,000 where used and then their resultant test statistic T_n curve fitted at specific significance levels. By this method, it was possible to match Grubbs results to at least four significant digits for corresponding tabulated values.

Critical values used in the one-sided Dixon outlier test are taken directly from tables given in Dixon (1951), Dixon (1953; page 89), and USEPA (2000; p. A-5, Table A-3). The critical values were then curve fitted for every sample size between 3 and 25 as a function of the significance level. By this method, it was possible to match Dixon's results to at least four significant digits for corresponding tabulated values. Note that the Dixon test assumes the data are either normally or lognormally distributed. Hence, sample sizes can only range between 3 and 25, inclusive. Dixon never developed an outlier test for sample sizes larger than 25.

User Selections:

- One or up to 100 locations: a separate test is performed for each location.
- One or up to 100 parameters: a separate test is performed for each parameter.
- Evaluation date range.
- Confidence $(1-\alpha)$ level: 0.90, 0.95 or 0.99.
- Non-detect processing: multiplier between 0 and 1.
- Data transformation option: none and log (base e).
- Number of outliers: one, two, first 5%, first 10%. Selecting any option other than one causes MANAGES to rerun the test, with outliers from prior tests removed, until either no outliers are detected or the specified number of outliers are detected.

Technical Details

Grubbs Outlier Test – The Grubbs outlier test determines whether there is statistical evidence that an observation does not fit the remaining data (USEPA, 1989; p. 8-11). This significance test looks at either the highest or the lowest observation in normal samples.	
The number of observations taken during a specified scoping period; n	n

Mean of the observed data during the scoping period; \overline{X}	$X = \frac{1}{n} \sum_{i=1}^{n} X_i$
	where X_i is the i-th observation.
Standard deviation of observed data; S_x .	$S_{x} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$
Test statistics: T_l & T_n	Sort the data into ascending order, then compute the statistics
	$T_{l} = (\overline{X} - X_{l}) S_{x}$ $T_{n} = (X_{n} - \overline{X}) S_{x}$
	where X_l is the smallest value of the n observations and X_n is the largest value of the n observations.
One-sided test with a $(1-\alpha)$ confidence level that there is a single extreme outlier within the n observations	Grubbs single, one-sided test of either an extreme low outlier:
within the n observations.	X_l is an outlier if $T_l \ge T_{cr(1-\alpha,n)}$
	or an extreme high outlier:
	X_n is an outlier if $T_n \ge T_{cr(1-\alpha,n)}$.
	The function $T_{cr(1-\alpha,n)}$ is the critical value,
	given in Grubbs and Beck (1972; Table 1) and USEPA (1989; p. B-11, Table 8). Note that the critical value assumes that the mean and standard deviation are computed from the sample being tested.

Dixon Outlier Test – The Dixon outlier test determines whether there is statistical evidence that an extreme observation does not fit the remaining data (USEPA, 2000; p. 4-24 and ASTM D6312, 1998). This significance test looks at both the highest and the

lowest observations in a sample data set. However, the routine will only perform the outlier tests if several conditions are first satisfied. For example, the Dixon outlier algorithm checks the distribution of the sample data for both normality and lognormality using the Shapiro-Wilk W-test. The outlier routine will not proceed with a data set if the W-test fails. In addition, the Dixon outlier test is limited to a minimum of 3 and a maximum sample size n of 25 data values.

The number of observations taken during a specified scoping period; n	Number of observations, n , where $3 \le n \le 25$.
Sorting the sample data	Sort the data into ascending order, with the minimum data value $X_{(1)}$ first and the maximum data value $X_{(n)}$ last. Use the natural log of the data values if data are lognormally distributed, i.e., $X_{(j)} = Ln[X_{(j)}]$.
Goodness-of fit tests	After temporarily excluding either the minimum or maximum value of the data set, the Shapiro-Wilk's W-test is used to determine if the remaining $n-1$ values are normally or lognormally distributed. If not, the Dixon outlier test can't be used.
Test statistic, T_s , for the minimum data value	Compute the T_s test statistic for $X_{(1)}$ as an outlier: $T_s = \frac{X_{(2)} - X_{(1)}}{X_{(n)} - X_{(1)}} for 3 \le n \le 7$ $T_s = \frac{X_{(2)} - X_{(1)}}{X_{(n-1)} - X_{(1)}} for 8 \le n \le 10$ $T_s = \frac{X_{(3)} - X_{(1)}}{X_{(n-1)} - X_{(1)}} for 11 \le n \le 13$ $T_s = \frac{X_{(3)} - X_{(1)}}{X_{(n-2)} - X_{(1)}} for 14 \le n \le 25.$
Test statistic, T_s , for the maximum data value	Compute the T_s test statistic for $X_{(n)}$ as an outlier:

	$T_{s} = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(1)}} for 3 \le n \le 7$ $T_{s} = \frac{X_{(n)} - X_{(n-1)}}{X_{(n)} - X_{(2)}} for 8 \le n \le 10$ $T_{s} = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(2)}} for 11 \le n \le 13$ $T_{s} = \frac{X_{(n)} - X_{(n-2)}}{X_{(n)} - X_{(3)}} for 14 \le n \le 25.$
Critical value T _c	USEPA (2000; p. A-5, Table A-3) lists the critical values of the Dixon test as a function of sample size for a one-sided extreme value test at the significance levels α of 0.1, 0.05, and 0.01.
One-sided test with a $(1-\alpha)$ confidence level that there is a single extreme outlier within the n observations.	Dixon's single, one-sided test for statistical evidence of either an extreme low-valued outlier: $X_{(1)} \text{ is an outlier if } T_s \geq T_c$ or an extreme high-valued outlier: $X_{(n)} \text{ is an outlier if } T_s \geq T_c.$ The function T_c is the critical value, given in Dixon (1953; page 89) and USEPA (2000; p. A-5, Table A-3). Note that the critical value assumes that the data are either normally or lognormally distributed.

Other Statistical Calculations Used in MANAGES

Sen Estimate of Slope

The Sen estimate of slope is the median of all slopes between all possible unique pairs of individual data points in the time period being analyzed (Gilbert, 1987). The slopes represent the rate of change of the measured parameter, with the y-axis being the parameter value and the x-axis being calendar days. Sen's estimate of slope is a non-parametric estimator of trend. The method is robust, and fairly insensitive to the presence of a small fraction of outliers and non-detect data values. In contrast, linear regression and other least squares estimators of slope are significantly more sensitive, and more likely to give erroneous slope indications, even when only a few outlier values are present.

When data averaging is not activated, the Sen slope is calculated using individual data points and actual sampling dates. When data averaging is activated, multiple data points within each specified season period are reduced to one data point by arithmetic averaging over each of the season periods. These averaged values are then assigned to the day that corresponds to the middle of that season's period.

The approximate lower and upper confidence limits for the Sen slope can also be calculated using normal theory (Gilbert, 1987). It should be noted that confidence limits for the Sen slope are not necessarily symmetrical about the estimated slope since ranked values of slope are used in the calculation.

MANAGES calculates Sen slope in the Sen Slope Overlay Graph, Statistical Summary reports and in the two Mann-Kendall tests performed under the Statistical Evaluation Report.

Sen's Estimate of Slope – two-sided, non-parametric method that calculates the trend of a single data series. It is less sensitive to outliers and non-detect values than linear regression (Gilbert, 1987; p. 217).	
Slope, Q	where $X_{i'}$ and x_{i} are data values at times i' and i , respectively, and where $i' > i$. Typically, i' and i are expressed in units of either days for trend analysis or years for seasonal analysis.
N'	Number of unique data point pairs that can be made for the observations in the data set, for $i'>i$. For n monitoring events, N' is given as: $N' = n(n-1)/2$

Sen's Slope Estimate	Sen's slope estimator = median slope
	= $Q_{[(N'+1)/2]}$ if N' is odd = $\frac{1}{2}(Q_{[N'/2]} + Q_{[(N'+2)/2]})$ if N' is even
	where the Q values have first been ranked from smallest to largest.
$Z_{ ext{l}-lpha/2}$	Statistic for the cumulative normal distribution (Gilbert, 1987; p. 254) for the two-sided, α significance level.
Variance estimate of the Mann-Kendall S Statistic, VAR(S)	VAR(S) $= \frac{1}{18} \left[n(n-1)(2n+5) - \sum_{p=1}^{g} t_p(t_p-1)(2t_p+5) \right]$
	where g is the number of tied groups, t_p is the number of data in the p th group, and n is the number of data values.
C_{α}	$=Z_{1-\alpha/2}\overline{VAR(S)}$
Sen's Slope, a two-sided test at the α significance level	$M_1 = \frac{(N' - C_{\alpha})}{2}$ $M_2 = \frac{(N' + C_{\alpha})}{2}$
	Lower limit of confidence interval is the M_1 -th largest slope, and upper limit of confidence interval is the (M_2+1) -th largest of the N' ordered slope estimates.

Coefficient of Skewness for Normality

The coefficient of skewness is another measure for data normality (Gilbert, 1987). MANAGES provides the value of the coefficient of skewness in the Statistical Evaluation Report, Statistical Overview. Additional information on data normality is given by Montgomery, et al. (1987).