REPORT 2020012463

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

Prepared for

Prepared by

October 2021

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

TABLE OF CONTENTS

Page

1.0	
1.0	
1.1	Purpose1
2.0	LABADIE ENERGY CENTER CCR UNIT
2.1	Owner and Operator
2.2	CCR Unit Location
2.3	CCR Unit Identification and Purpose
2.4	CCR Unit Watershed
2.5	Geomorphology and Foundation Geology
2.6	Surveillance, Maintenance and Repair of the CCR Units
3.0	LCPA (BOTTOM ASH POND)
3.1	History of Construction7
3.2	Modifications to Embankment Geometry and Operation
3.3	Foundation and Abutment Geology9
3.4	Embankment Material
3.5	Operating Pool Surface Elevations
3.6	CCR Unit Outlet Works
3.7	Impounded CCR
3.8	Instrumentation11
3.9	Structural Instability
4.0	LCPB (FLY ASH POND)12
4.1	History of Construction
4.2	Modifications to Embankment Geometry and Operation13
4.3	Foundation and Abutment Geology13
4.4	Embankment Material
4.5	Operating Pool Surface Elevations14
4.6	CCR Unit Outlet Works
4.7	Impounded CCR

Section

4.8	Instrumentation1	.4
4.9	Structural Instability1	4
5.0	PERIODIC HAZARD POTENTIAL CLASSIFICATION1	5
6.0	PERIODIC STRUCTURAL STABILITY ASSESSMENT1	6
7.0	PERIODIC SAFETY FACTOR ASSESSMENT1	7
8.0	HYDROLOGIC AND HYDRAULIC CAPACITY REQUIREMENTS 1	.8
9.0	CLOSURE	9
10.0	REFERENCES	20

LIST OF FIGURES

Figure 1	Site Map
Figure 2	USGS 7.5 Minute Quadrangle Map for Labadie Energy Center
Figure 3	
Figure 4	LB-DWG-PROP-000002
Figure 5	

LIST OF TABLES

Table 1	
Table 2	
Table 3	Bottom Ash Pond (LCPA)
Table 4	Bottom Ash Pond (LCPA) estimated volume and depth of impounded CCR
Table 5	Fly Ash Pond (LCPB)
Table 6	Fly Ash Pond (LCPB) estimated volume and depth of impounded CCR

LIST OF APPENDICES

APPENDIX A	2012 LABADIE BOTTOM ASH AND FLY ASH POND EMBANKMENT O&M MANUAL
	1966 TEST BORING REPORT RAYMOND CONCRETE PILE DIVISION
	2010 LABADIE DAM SAFETY REPORT BORINGS AND SOIL LABORATORY TESTS
	2015 LABADIE PLANT BOTTOM ASH POND CLOSURE BORING LOGS
APPENDIX B APPENDIX C APPENDIX D	PERIODIC HAZARD CLASSIFICATION PERIODIC STRUCTURAL STABILITY ASSESSMENT PERIODIC SAFETY FACTOR ASSESSMENT

APPENDIX E HYDROLOGY AND HYDRAULICS

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

The purpose of this report is to document evaluations and assessments completed for the Ameren Missouri Labadie Energy Center CCR Units as required by select sections within 40 CFR Part 257, the final rule to regulate the disposal of CCR as solid waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA). Specifically Reitz & Jens completed assessments and evaluations as required by :

- A. §257.73(c)(1), History of Construction
- B. §257.73(a)(2), Periodic Hazard Potential Classification
- C. §257.73(d)(1), Periodic Structural Stability Assessment
- D. §257.73(e)(1), Periodic Safety Factor Assessment
- E. §257.82, Hydrologic and Hydraulic Capacity Requirements, and
- F. §257.83(b), Inspection Requirements for CCR Surface Impoundments

The evaluations and assessments required by 257.73(c)(1) are discussed in the body of this report. The evaluations and assessments required by the remaining applicable sections of 40 CFR Part 257 are contained in the Appendices.

2.0 LABADIE ENERGY CENTER CCR UNIT

2.1 Owner and Operator

The CCR Units at the LEC are owned and operated by Ameren Missouri. LEC plant personnel have the primary responsibility of CCR unit operation. The LEC is located at 226 Labadie Power Plant Road in Labadie, Missouri 63055. The Ameren Missouri Dam Safety Group performs CCR unit inspections, and reviews all updates to the Operations and Maintenance (O&M) Manual. A copy of the 2012 Labadie Bottom Ash and Fly Ash Pond Embankment O&M manual is included in Appendix A. The Ameren Missouri Dam Safety Group is located at 3700 South Lindbergh Boulevard in St. Louis, Missouri 63127.

2.2 CCR Unit Location

The CCR Units are located as identified on the most recent 7.5 minute topographic quadrangle map in Sections 18 and 19, Township 44 North, Range 2 East of the 5th Principal Meridian. A plot of the USGS topographic quadrangle map showing the location of the LEC is attached as Figure 2.

2.3 CCR Unit Identification and Purpose

There are two active surface impoundment at the LEC used to store CCR. The surface impoundments are called the LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). LCPA and LCPB have been dewatered and are currently being closed. Prior to closure construction, decant water from the LCPB was pumped into the LCPA by two 6-inch submersible pumps. LCPA decant water was discharged by gravity into a man-made channel through Outfall #002. The NPDES permit number for the LCPA outfall is MO-0004812. The outfall on the man-made channel is approximately 0.5 miles upstream of its confluence with the Missouri River. The LCPA outfall was converted into a new gravity outfall for surface water runoff from the closed impoundment. The embankments for the surface impoundments are not regulated as dams by the Missouri Department of Natural Resources (MDNR) because the heights of the perimeter dams are less than 35 feet.

CCR Unit	CCR Type	Operational Status	
Bottom Ash Pond	Bottom Ash	Active	
(LCPA)			
Fly Ash Pond (LCPB)	Fly Ash	Active	

Table 1 - Labadie Energy Center CCR Units

2.4 CCR Unit Watershed

The LEC is located adjacent to the Missouri River within 100-year floodplain at approximate river mile 57.5 above the confluence with the Mississippi River. According to the current Flood Insurance Rate Map (FIRM), the regulatory 100-year flood elevation at the site is el. 483 to 485 feet. The LEC facility is built on hydraulic fill that has a minimum elevation of about 490 feet. The Missouri River is to the north of the CCR units. Labadie Creek, which flows to the Missouri River, is located immediately to the west

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

of the LCPA. Outfall #002 discharges into man-made channel extending approximately 0.5 miles to the Missouri River. The Missouri River has a watershed area of approximately 520,000 square miles at the site. The Labadie Energy Center does not receive stormwater run-on from areas outside the facility. The LCPB has an area of approximately 79 acres and does not receive stormwater run-on from areas outside of the impoundment. The LCPA has an area of approximately 164 acres and has a tributary area of approximately 397 acres.

2.5 Geomorphology and Foundation Geology

The geology at the LEC consists of natural alluvium, approximately 100 feet thick, deposited by the Missouri River which is underlain by Paleozoic Era sedimentary rocks of the Ordovician System.

The natural alluvium generally consists of 7 to 10 feet of silts and clays at the ground surface. The upper stratum of clays and silts is underlain by complex fluvial depositional sequences of predominately sands followed by gravels, silts and lesser amounts of clay to about 105 feet. In general, the fluvial sequences of coarse-grained sand are overlain by very fine- to fine-grained sand, which in turn, are overlain by very fine-grained sand interbedded with silt and clay, followed by interbedded silt, silty clay, and clay. Some gravel, cobbles and boulders are present in the lower part of the sand stratum. Limestone rock exists beneath the alluvium.

Groundwater levels at the LEC closely follow the stage of the adjacent Missouri River. The direction of groundwater flow is intrinsically related to the Missouri River elevation. When river elevations are relatively high, groundwater movement is generally east to southeast away from the river. When river elevations are relatively low, groundwater movement is generally north to northwest towards the river.

2.6 Surveillance, Maintenance and Repair of the CCR Units

The Labadie Bottom Ash & Fly Ash Pond Embankments O&M manual outlines objectives, responsibilities, and procedures for Ameren personnel who are responsible for the management of the CCR units. The embankments of the CCR units are visually inspected weekly by Ameren plant operations staff. Ameren Missouri Dam Safety Group personnel perform annual inspections and periodic inspections or assessments with plant operations staff. In addition, the Ameren Missouri Dam Safety Group may conduct unannounced safety inspections. Descriptions of each type of inspection or assessment are included in the following sections. Checklists used during inspection of the CCR Units are included in the attached O&M manual.

2.6.1 Surveillance

2.6.1.1 Weekly Inspections

Weekly inspections are conducted by plant staff or support staff familiar with the pond/dam. The weekly inspections consist of visually inspecting the crest and slopes of each ash pond embankment to identify new or changed conditions. Checklists are completed and are made available to the Dam Safety Group for review.

2.6.1.2 Annual Inspection

These inspections are conducted annually by the plant staff and the Ameren Missouri Dam Safety Group staff. The annual inspection is a detailed visual inspection of the ash pond embankment crest, interior and exterior slopes, downstream toe area, inlet/outlet works, and appurtenant structures.

An annual inspection report is to be prepared by the Ameren Missouri Dam Safety Group staff that includes a description of the observations of the visual inspection, photographs of the facilities taken during the inspection, and a written evaluation of the results. A record of maintenance activities for the ash pond embankments is also kept current by the Ameren Missouri Dam Safety Group.

2.6.1.3 Periodic Structural Stability Assessments

The Periodic Structural Stability Assessments are conducted every 5 years by the Ameren Missouri Dam Safety Group staff to document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein in general accordance with 40 CFR Part §257.73(d)(1).

Ameren Missouri Dam Safety Group staff will prepare a periodic structural stability assessment report which at a minimum will document whether the CCR unit has been designed, constructed, operated, and maintained with:

- i. Stable foundations and abutments;
- ii. Adequate slope protection to protect against surface erosion, wave action, and adverse effects of sudden drawdown;
- iii. Dikes (embankments) mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit;
- iv. Vegetated slopes of dikes and surrounding areas not to exceed a height of 6 inches above the slope of the dike, except for slopes which have an alternate form of slope protection;
- v. A single spillway or a combination of spillways designed, constructed, operated, and maintained to adequately manage flow during and following the peak discharge from the design flood event. The spillways must be either of non-erodible construction and designed to carry sustained flows; or earth or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected;
- vi. Hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure;
- vii. For CCR units with downstream slopes which can be inundated by the pool level of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

If a deficiency or a release is identified during the periodic assessment, Ameren Missouri will remedy the deficiency or release as soon as feasible and prepare documentation detailing the corrective measures taken.

Page 4

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

2.6.1.4 Periodic Hazard Potential Classification

Ameren Missouri Dam Safety Group staff will update the hazard potential classification every 5 years in general accordance with 40 CFR Part §257.73(a)(2). Ameren Missouri Dam Safety Group staff will prepare documentation of the hazard potential classification of each CCR unit as either high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment, and the basis for each hazard potential classification. Ameren Missouri Dam Safety Group staff will prepare and maintain a written Emergency Action Plan if it is determined that a CCR unit is either a high hazard potential surface impoundment or a significant hazard surface impoundment.

2.6.1.5 Periodic Safety Factor Assessment

Ameren Missouri Dam Safety Group staff will conduct periodic safety factor assessments every 5 years in general accordance with 40 CFR Part §257.73(e)(1). The periodic safety factor assessments will be conducted for each CCR unit and will document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in §257.73(e)(1) for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments will be supported by appropriate engineering calculations.

2.6.1.6 Periodic Inflow Design Flood Control System Plan

Ameren Missouri Dam Safety Group staff will prepare an inflow design flood control system plan every 5 years in general accordance with 40 CFR Part §257.82. The plan will document how the inflow design flood control system has been designed, constructed, operated and maintained to adequately manage flow by definition or regulation into the CCR surface impoundment during and following the peak discharge of the inflow design flood. The inflow design flood is the probable maximum flood for a high hazard potential CCR surface impoundment, the 1000-year flood for a significant hazard potential CCR surface impoundment, the 1000-year flood for a significant hazard potential CCR surface impoundment, the 25-year flood for an incised surface impoundment.

2.6.1.7 Special Inspections

Special inspections are conducted when extreme events which may impact stability (seismic activity, severe flooding, etc.) occur. Special inspections are similar to the annual inspection, but may be focused on a particular area. If conditions are discovered during a weekly or annual inspection which create concern for the LEC plant, personnel, or surrounding properties, a special inspection will be conducted. Responsibility for performance of special inspections will be evaluated based on the severity of the event and potential damage.

2.6.1.8 Unannounced Inspections

The Ameren Missouri Chief Dam Safety Engineer (CDSE) may conduct unannounced inspections at the site as deemed appropriate. The inspection may include a visual inspection of the facility, a review of the

inspection documentation, and interviews with plant personnel to review their understanding of the required inspection procedures.

2.6.1.9 Inspection Findings

Observations made during the inspections are rated with a condition code as shown in the following Table 2. The timeliness of response to deficiencies observed depends on the severity of the condition.

Table 2 - Ameren Missouri dam safety inspection condition codes

Condition Code	Description
EC	Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, emergency repairs, work stoppage, plant stoppage.
IM	Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.
MM	Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.
OB	Condition requires regular observation and potential future minor maintenance.
GC	Good Condition.
NO	No observation possible.
NI	Not Inspected. State reason in comment column.

2.6.2 Maintenance and Repair of the CCR Units

The O&M requires that timely repairs must be made after problem areas are identified. The plant engineer is to specify the work to be completed using Ameren's Work Control Process and provide direction to correct items noted in the operation and maintenance, and engineering inspections. The work request by the plant engineer will be reviewed with the Dam Safety Group to ensure proper emphasis has been placed on the request. The O&M specifies the minimum maintenance activities and requires that maintenance activities be documented. The O&M further specifies that no alterations or repairs to structural elements should be made without the approval of the Chief Dam Safety Engineer and the concurrence of the MDNR Water Resources Center.

3.0 LCPA (BOTTOM ASH POND)

3.1 History of Construction

The design plans for the LCPA were issued for construction in 1969 and construction was completed shortly after. The LCPA is located south of the plant and has an approximate area of 164 acres. The location of the LCPA and the pond's significant features are shown in Figure 1. The embankment forms a ring dam which ties into plant fill on the north side of the impoundment. The embankment height is the greatest on the south and west sides of the pond, the maximum dam height is 26.3 feet. The north side of the impoundment is adjacent to plant fill, the embankment height is generally less than 5 feet. The embankment dam was constructed of compacted fill with upstream slopes of 2 horizontal (H) to 1 vertical (V) and downstream slopes of 3H to 1V. The minimum crown width is approximately 20 feet. The width of the embankment section is increased considerably on the west side of the impoundment because of fill placed for the plant access road and over a distance of 2000 lineal feet along the south side of the impoundment because of a beneficial fill. Drawings for the LCPA are presented in the O&M manual in Appendix A.

The LCPA has been dewatered, no longer receives CCRs and is being closed. Previously, LCPA received process water used to sluice bottom ash, flow from the plant combined drain sump (CDS), and discharge from the LCPB. The impoundment received both bottom and fly ash prior to completion of the LCPB. Discharge from the LCPB was near the southeast corner of the impoundment, and the water generally flowed east to west through ditches in the CCR. The CDS discharged near the northeast corner of the impoundment and collected stormwater from an area of approximately 154 acres.

The LCPA contained a principal and emergency spillway; however, these have been repurposed or removed. The principal spillway for the LCPA consisted of an 8-foot diameter galvanized corrugated metal pipe (CMP) skimmer and 36-inch diameter carbon steel pipe. On the upstream end the carbon steel pipe was upturned to el. 478.5 feet, and the invert on the downstream end was el. 472.0 feet. Flow through this pipe and the pool elevation was regulated by two motor operated butterfly valves. The LCPA also had a 75-foot-long broad crested emergency spillway that is located on the southwest side of the pond.

A summary of pertinent data for the LCPA is summarized in Table 3.

Table 3 – Bottom Ash Pond (LCPA)

CCR Unit	Maximum Pond Area (acres)	Maximum Dam Height (feet)	Minimum Crest Width (feet)	Crest Length (feet)	Upstream Slope Steepness (H:V)	Downstream Slope Steepness (H:V)
Bottom Ash Pond (LCPA)	164	26.3	20	10,500	2:1	3:1

3.2 Modifications to Embankment Geometry and Operation

3.2.1 1990s Embankment Raise

In the early 1990's, the LCPA embankment was raised 8.5 feet to increase its storage capacity. The new embankment fill consisted of a mixture of bottom and fly ash that was blended and compacted to achieve a hydraulic conductivity of 1×10^{-6} cm/sec. The compacted ash was covered with a minimum of 1 foot of earthen cover, except for the access road at the crest of the embankment. A plan for the embankment raise is attached as Figure 3.

At the same time, the original spillway was replaced with the principal spillway in its current configuration. The original spillway consisted of two pumps and discharge piping which ran over the embankment dam and discharged just south of the current outlet works. A plan showing the original spillway is presented in the O&M manual.

3.2.2 2006 and 2008 Beneficial Fill

A beneficial fill was constructed in 2006 and 2008 parallel to the southern embankment section for a new concrete packaging facility. Over a distance of approximately 2000 lineal feet, the fill increased the embankment section width from 70 to 225 feet. The fill was constructed of compacted bottom and fly ash. The approximate extents of the beneficial fill are shown in Figure 1.

3.2.3 2011 Slurry Wall and Anti Seepage Collar Construction

In 2011 Ameren constructed a 500 foot long slurry wall near the southwest corner of the pond. The wall was constructed to help mitigate seepage that was occurring at this location. The wall was constructed through the crest of the embankment with a width of 2.5 feet. The wall was terminated in fine grain foundation soil, or at a minimum depth of 30 feet. The wall had a minimum hydraulic conductivity of 1×10^{-6} cm/sec. A plan showing the slurry wall is presented in Figure 4.

At the same time an anti-seepage collar was constructed around the spillway conduit to help prevent a small amount of seepage that was occurring. The seepage collar consisted of a compacted soil and bentonite mixture to the extents shown in Figure 5.

3.2.4 2012 Emergency Spillway

In 2012 an emergency spillway was constructed near the southwest corner of the pond. The emergency spillway is a 75-foot long broad crested weir with an elevation of 490.0. The spillway was constructed of MoDOT Type 4 riprap on the upstream and downstream slopes, and the crest is constructed of aggregate sufficient to withstand design flows. Design computations for the spillway are presented in the O&M manual presented in Appendix A.

3.2.5 2013 Slurry Wall

Seepage was identified below the emergency spillway that was constructed in 2012. To cut-off the seepage, a soil-bentonite slurry wall was constructed through the crest of the embankment. The extent of the slurry wall was approximately from the southern extent of the slurry wall constructed in 2011 and continued 600 feet east.

3.2.6 2015 Seepage Collar and Valve Replacement

In 2015 slight seepage was still occurring at the outlet works and a concrete collar was constructed around the outfall pipe to help reduce seepage. At the same time, the area surrounding the downstream outlet works was graded to drain and armored with riprap. The upstream outlet works butterfly valve was also replaced in 2015.

3.2.7 West Detention Basin

The West Detention Basin was constructed over an approximate 8-acre area on the north side of the LCPA. The area was filled and graded to form the basin. The area was then capped with HDPE geomembrane inside the basin, and HDPE geomembrane and closure turf outside the basin. The West Detention Basin is used for plant stormwater management and water quality treatment.

3.2.8 Closure Construction (2019 to 2021)

Closure of LCPA was initiated in 2019 and is planned to be complete in 2021. Closure includes grading the remaining exposed CCR to facilitate drainage and capping the CCR with HDPE geomembrane overlain by 2 feet of soil. The principal spillway has been converted to a stormwater inlet and gravity outfall for stormwater runoff from a closed section of the pond. The emergency spillway has been removed. Stormwater is routed to 5 stormwater outlets through the perimeter embankment.

3.3 Foundation and Abutment Geology

The typical soil profile for the LCPA foundation consists of an upper most stratum of stiff to very stiff clay that is 5 feet thick. The clay is intermittently silty, and low to high plastic. The clay is underlain by silt and silty sand with a thickness of 5 to 15 feet. This silt is generally medium dense, and triaxial shear strength tests show the friction angle ranges from 30 to 33°. Sand is encountered beneath the silt, and is fine to coarse, medium dense and with some silty layers and gravel. Typically at a depth of about 40 to 50 feet beneath the original ground surface the sands become gravelly sand or sandy gravel. Limestone bedrock exists beneath the alluvium at a depth of 100 to 120 feet. Geotechnical investigations which document the foundation geology at the LCPA are presented in Appendix A.

3.4 Embankment Material

There are no construction documents or records for the original construction of the LCPA Dam. The embankment was raised 8.5 feet in the early 1990's using a mixture of bottom and fly ash. Fill placed to raise the embankments was blended and compacted to achieve permeability no greater than $1x10^{-6}$ cm/sec. Based on borings conducted in 2010, the top 9 to 10 feet of the embankment is medium dense to very dense and consists of bottom and fly ash. Beneath the ash fill are 1 to 3 foot thick layers of clay, silt and sand. The coarse grain layers have an estimated friction angle of 30 to 33°. The fine grain soils have an undrained strength that ranges from 1400 to 1500 psf, based on UU tests and correlations for N-values, and CPT tip resistance and skin friction.

3.5 **Operating Pool Surface Elevations**

The LCPA has been dewatered and is currently being closed.

3.6 CCR Unit Outlet Works

The principal spillway has been converted to a stormwater inlet and gravity outfall for stormwater runoff from a closed section of the pond. The emergency spillway has been removed. Stormwater is routed to 5 stormwater outlets through the perimeter embankment.

3.7 Impounded CCR

The LCPA impounds bottom and fly ash. Table 4 summarizes the approximate volume and depth of the CCR stored in the unit.

Table 4 – Bottom Ash Pond (LCPA) estimated volume and depth of impounded CCR

CCR Unit	Est. Volume of CCR (CY)	Approximate Bottom Elev. of CCR Unit (feet)	Est. Maximum CCR Elev. (feet)	Est. Average Depth of CCR (feet)	Est. Maximum Depth of CCR (feet)
LCPA	16,208,668	407.6	507	68	97

Up until the 1990's the LCPA received both bottom and fly ash. In the early 1990's the LCPB was constructed and put in service, and only bottom ash was sluiced to the LCPA. Borings through the LCPA show that the fly ash and bottom ash are deposited in layers of varying thickness and density. The fly ash and bottom ash are interbedded in some zones. The measured N_{60} -values would be classified as "very loose" to "medium-dense". Borings conducted in the interior of the pond are presented in Appendix A.

A sample of bottom ash was obtained from the LEC and the particle-size distribution showed that the material is poorly-graded with particle-sizes ranging from fine gravel to fine sand, with only about 1% fines. The specific gravity of the bottom ash sample was 2.80. The minimum and maximum density determined by laboratory tests (ASTM D4253 and D4254) was 83.6 pcf and 109.6 pcf, in that order.

3.8 Instrumentation

The LCPA has been dewatered and is currently being closed. Currently there are no instruments monitored to check impoundment operation.

3.9 Structural Instability

There are no records of structural instability for the LCPA.

4.0 LCPB (FLY ASH POND)

4.1 History of Construction

The LCPB was built in the 1990's and has an area of approximately 79 acres. The location of the LCPB and the pond's significant features are shown in Figure 1. The LCPB is located east of the LCPA and south of the plant. The embankment forms a ring dam which ties into plant fill near the northwest corner of the impoundment. The embankment height is greatest on the east and south sides of the pond, the maximum dam height is 29.5 feet. The western embankment section separates the pond from the LCPA. The embankment dam was constructed of earth fill with upstream slopes of 2H to 1V and 3H to 1V, and downstream slopes of 3H to 1V. Earth fill was obtained from the incised portion of the pond, the lowest elevation at the bottom of the pond is at 460.0 feet. The crown width is 10 feet near the northwest corner of the pond where the embankment height is generally less than 10 feet. The crown width for the remainder of the pond has a minimum width of 20 feet. Excluding the length of the western embankment section that was originally constructed for the LCPA, the crest length of the dam is approximately 6,100 feet. The interior of the LCPB is lined with 60 MIL HDPE on the interior slopes, and 40 MIL HDPE on the pond bottom. Drawings for the LCPB are presented in the O&M manual in Appendix A.

The LCPB has been dewatered, no longer receives CCRs and is being closed. Historically, the LCPB received process water used to sluice fly ash. The LCPB did not receive run-on from areas outside of the perimeter embankment. Water was sluiced to ditches excavated in the ash. Fly ash settled in the ditches, and the decant water flowed to the outlet works on the south side of the pond. The ditches were periodically excavated to remove the settled ash, and the excavated material was placed in large stockpiles built within the pond.

The LCPB outlet works were removed during closure construction. The outlet works were located near the southwest corner of the pond. The principal spillway consisted of two manually operated 6-inch diameter submersible pumps that discharged into 6-inch diameter PVC pipes. The LCPB also contained a 50-foot-long broad crested weir emergency spillway which is also located near the southwest corner of the pond. Both the principal and emergency spillways discharged into the LCPA.

A summary of pertinent data for the LCPB is summarized in Table 5.

Table 5 – Fly Ash Pond (LCPB)

CCR Unit	Maximum Pond Area (acres)	Maximum Dam Height (feet)	Minimum Crest Width (feet)	Crest Length (feet)	Upstream Slope Steepness (H:V)	Downstream Slope Steepness (H:V)
Fly Ash Pond (LCPB)	79	29.5	10	6,100	2:1 & 3:1	3:1

4.2 Modifications to Embankment Geometry and Operation

4.2.1 2012 Emergency Spillway

In 2012 an emergency spillway was constructed near the southwest corner of the pond. The emergency spillway is a 50-foot long broad crested weir with an elevation of 491.7. The spillway was constructed of MoDOT Type 4 riprap on the upstream and downstream slopes, and the crest is constructed of aggregate sufficient to withstand design flows. Design computations for the spillway are presented in the O&M manual presented in Appendix A.

4.2.2 Planned Haul Road (2016-2017)

Construction of a haul road on the crest of the north embankment is began in late 2016 and was completed in 2017. The construction lowered the crest of the embankment to el. 491, and the HDPE liner to el. 490. The haul road was paved with 12 inches of non-reinforced concrete that is underlain by 12 inches of compacted MoDOT Type 1 Aggregate Base Course.

4.2.3 Closure Construction (2019 – 2021)

Closure of LCPB was initiated in 2019 and is planned to be complete in 2021. Closure includes grading the remaining exposed CCR to facilitate drainage and capping the CCR with HDPE geomembrane overlain by 2 feet of soil. Stormwater is routed to 5 stormwater outlets through the perimeter embankment.

4.3 Foundation and Abutment Geology

The typical soil profile for the LCPB foundation consists of a thin upper most stratum of firm to stiff clay that is 2 to 5 feet thick. The foundation soil then becomes clayey or sandy silt and loose to mediumdense. The thickness of the silty soil is typically 4 to 10 feet. Underlying the silt is poorly graded, fine to coarse sand which is medium dense to dense. Typically at a depth of about 40 to 50 feet beneath the original ground surface the sands become gravelly sand or sandy gravel. Limestone bedrock exists beneath the alluvium at a depth of 100 to 120 feet. Geotechnical investigations which document the foundation geology at the LCPB are presented in Appendix A.

4.4 Embankment Material

The embankment was constructed of earth fill borrowed from the interior of the pond. The design plans note that the top 6 feet of the foundation soil inside the perimeter berm should be used as fill. CPT soundings conducted in 2010 showed that the embankment fill is heterogeneous and consists of sand, silt and clay that were generally placed in 8 to 12 inch thick lifts. The coarse grain lifts are generally medium dense and the fine grain lifts are firm to stiff.

4.5 **Operating Pool Surface Elevations**

The LCPB has been dewatered and is currently being closed.

4.6 CCR Unit Outlet Works

During closure construction the principal and emergency spillways have been removed. Rainfall falling within the footprint of the LCPB is routed to 5 stormwater outlets around the perimeter embankment.

4.7 Impounded CCR

The LCPB impounds fly ash. Table 6 summarizes the approximate volume and depth of the CCR stored in the unit.

Table 6 – Fly Ash Pond (LCPB) estimated volume and depth of impounded CCR

CCR Unit	Est. Volume of CCR (CY)	Approximate Bottom Elev. of CCR Unit (feet)	Est. Maximum CCR Elev. (feet)	Est. Average Depth of CCR (feet)	Est. Maximum Depth of CCR (feet)
LCPB	3,861,136	460.0	501.0	31.0	41

Fly ash impounded in the LCPB consists of uniform silt-size and clay-size particles, with some fine sandsize particles. The specific gravity of the ash is approximately 2.87. The fly ash is very pozzalanic and hardens in a few minutes after it is mixed with water. The undrained shear strength of the ash when mixed with water and tested at 1 day cure time varies from about 81 psi at a moisture content of 15% to 6.3 psi at a moisture content of 40%.

4.8 Instrumentation

The LCPB has been dewatered and is currently being closed. Currently there are no instruments monitored to check impoundment operation.

4.9 Structural Instability

There are no records of structural instability for the LCPB.

5.0 PERIODIC HAZARD POTENTIAL CLASSIFICATION

40 CFR Part 257 Periodic Hazard Potential Classification Assessments for CCR Surface Impoundments §257.83(a)(2)

The 2020 Periodic Hazard Potential Classification Assessment was conducted for active CCR surface impoundments LCPA and LCPB at the Labadie Energy Center. These CCR surface impoundments are low hazard potential because failure of the impoundment is not expected to cause a loss of human life, and the economic, environmental and lifeline losses are expected to be low and generally limited to the owner. The hazard potential classification was completed in general accordance with Federal Guidelines for Dam Safety: Hazard Potential Classification for Dams by the Federal Emergency Management Agency (January 2004).

CCR Unit	Hazard Potential Classification		
LCPA	Low		
LCPB	Low		

The basis for the hazard potential classification is documented in Appendix B: Labadie Energy Center Hazard Potential Classification. The subsequent assessment of the hazard potential must be conducted within 5 years of this initial assessment.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 15, 2021

6.0 PERIODIC STRUCTURAL STABILITY ASSESSMENT

40 CFR Part 257

Periodic Structural Stability Assessment for CCR Surface Impoundments §257.73(d)(1)

The 2020 Periodic Structural Stability Assessment was conducted for the active CCR surface impoundments LCPA and LCPB at the Labadie Energy Center. The structural stability assessment was completed in general accordance with 40 CFR Part §257.73(d)(1). Assessment of both CCR Units found no structural stability deficiencies, no significant issues with the current operations and maintenance, and that the design and construction are adequate, however some corrective measures were recommended.

Requirement	LCPA (Bottom Ash Pond)	LCPB (Fly Ash Pond)
Periodic assessment was completed in general accordance with the requirements of 40 CFR Part §257.73(d)(1)	Yes	Yes

Refer to Appendix C for the 2020 Periodic Structural Stability Assessment report. The first subsequent Periodic Structural Stability Assessment must be conducted within 5 years of this initial assessment.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 15, 2021

7.0 PERIODIC SAFETY FACTOR ASSESSMENT

40 CFR Part 257 Periodic Safety Factor Assessment for CCR Surface Impoundments §257.73(e)(1)

The initial periodic safety factor assessments for LCPA and LCPB were completed in October 2016. The initial assessment found that the calculated factors of safety for the critical cross-sections of each CCR unit exceed the minimum factors of safety for each loading condition required by 40 CFR §257.73(e). LCPA and LCPB no longer receive CCRs, have been dewatered and are currently being closed. The current conditions are no longer representative of those used in the 2016 assessment. A separate safety factor assessment for the closed condition has been performed by Reitz & Jens. This assessment found that the static and seismic stability factors of safety meet or exceed the minimum requirements.

Requirement	LCPA	LCPB
The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.	≥1.50	≥1.50
The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.	≥1.40	≥1.40
The calculated seismic factor of safety must equal or exceed 1.00.	≥1.00	≥1.00
The calculated liquefaction factor of safety must equal or exceed 1.20.	≥1.20	≥1.20

Reitz & Jens's initial periodic safety factor assessment and closure stability report is included in Appendix D.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 15, 2021

8.0 HYDROLOGIC AND HYDRAULIC CAPACITY REQUIREMENTS

40 CFR Part 257 Initial Hydrologic and Hydraulic Capacity Requirements for CCR Surface Impoundment §257.82

The initial inflow design flood control system plan was completed in 2016 for LCPA and LCPB in general accordance with 40 CFR Part §257(e)(1) using the 100-year design flood for low hazard potential CCR surface impoundments. LCPA and LCPB have been dewatered and are currently being closed. Closure of LCPA and LCPB was designed so that water is not permanently impounded within the perimeter embankments.

Requirement	LCPA	LCPB
The periodic inflow design flood control system plan meets the requirements of 40 CFR Part §257.82	Yes	Yes

Refer to Appendix E for the Initial Inflow Design Control System Plan.

Engineer's Seal

Jeff Bertel, P.E. License: PE-2010025265 Date: October 15, 2021

9.0 CLOSURE

The preceding history of construction is regarded as a living document. If there is a significant change to any information or there are periodic updates, Ameren must update the relevant information and place it in the facility's operating record.

10.0 REFERENCES

Ameren Missouri. (2012). "Operation and Maintenance Manual; Labadie Bottom Ash & Fly Ash Pond Embankments, Labadie, Missouri, Franklin County." Dam Safety and Hydro Engineering, St. Louis, Missouri.

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

							_
1							
				BottomiRe			С
th Dispa Fond	sal	No. and No.			La bad o Boltom Rd		_
	adie F	attanta	0	-	Partie Boo		В
LOCAT						-	_
-PLACE/ 0 ⁻⁶ cm/se	PERN ec OR	IAMEN	T HYDR	AULIC			
VINIMUN FROM SI FERMINA MINIMU ON FIEL WALL SI	1 30 II URFA ATES JM 50 _D OE HALL	NCHES CE MIN IN NAT 0 FEET SERV/ BE WI ⁻¹	NIMUM 3 TURAL F , LENG ATIONS THIN 3 F	30 FEET, INE GRA TH MAY E EET OF	VERIFY 1 INED SO BE EXISTING	ГНАТ IL Э	
SLURR	Y WA	LL TO	BE CON	/IPLETEC	BY OTH	ERS	А
AND PERSONAL VSIBILITY ONLY D DISCLAIMS PI RESPONSIBILITY TIMATES, REPO TS NOT SEALED TO OR INTENDE F THE PROJEC	SEAL FOR URSUANT FOR ALL RTS OR D BY THE ED TO BE T TO	PF	REPARED F	OR MAnneren			
WN		LA			LANT		
D. V.	-	S	LURRY	WALL SC	HEMATIC	;	
D.	LOCATIO	N 1	SHEI LABA	<u>ET 1 OF 2</u> DIE PLANT	2	CLASS 02010	
¥ Ameren	ST. LOUIS	MISSOURI	LB-D\	NG-PROF	P-000002	REV.	
			1				I

Figure 4

		ה
1		
	~	
	C	
$\overline{\mathbf{x}}$		
GRADE		
COMPACTED SOIL BENTONITE		
MIXTURE		
0		
8	_	
(MINIMUM)		
		l
	в	
LAR NOTES		ľ
OLLAR SHALL BE EXCAVATED 1 FOOT INTO THE		
NOT WALL AND TEOOR.		
OLLAR SHALL BE A MINIMUM OF 7 FEET LONG.	_	
SOIL MIXTURE SHALL CONSIST OF THREE PARTS		
S AND COMPACTED INTO THE WIDENED		
ND THE CONDUIT. THE MIXTURE SHOULD BE		
USED, MIXED STOCK MORE THAN 6 HOURS OLD		
ALL BE COMPACTED TO AT LEAST 85% OF THE R DENSITY (ASTM D-1557)		
UARDRAIL REMOVAL TO ACCESS SITE SHALL BE		
JARDRAIL AFTER COMPLETING WORK.	A	
AND PERSONAL SEAL		
ISBILITY ONLY FOR D DISCLAIMS PURSUANT ESPONSIBILITY FOR ALL		
BOTTOM ASH POND		
ANTI SEEPAGE COLLAR SHEET 2 OF 2		
D. LOCATION CLASS 001004 LABADIE PLANT 02010		
NZ- MARTEN ST. LOUIS, MISSOURI LB-DWG-PROP-000003		
1		J,

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

APPENDIX A

2012 LABADIE BOTTOM ASH AND FLY ASH POND EMBANKMENT O&M MANUAL

1966 TEST BORING REPORT RAYMOND CONCRETE PILE DIVISION 2010 LABADIE DAM SAFETY REPORT BORINGS AND SOIL LABORATORY TESTS

2015 LABADIE PLANT BOTTOM ASH POND CLOSURE BORING LOGS

OPERATION AND MAINTENANCE MANUAL

LABADIE BOTTOM ASH & FLY ASH POND EMBANKMENTS LABADIE, MISSOURI FRANKLIN COUNTY

SEPTEMBER 19, 2012

DAM SAFETY & HYDRO ENGINEERING 3700 S. LINDBERGH BLVD ST. LOUIS, MO 63127

OPERATION AND MAINTENANCE PLAN LABADIE BOTTOM ASH & FLY ASH POND EMBANKMENTS FRANKLIN CO., MO

TABLE OF CONTENTS

<u>TITLE</u>	. <u>PAGE</u>
SECTION 1 - GENERAL	
Reasons for Development and Dissemination of the O&M Manual General Responsibilities Concerning Ash Pond Embankments	1 1
SECTION 2 – DEFINITIONS	2
SECTION 3 - INFORMATION ABOUT THE ASH POND EMBANKMENT	
Location Description of Ash Pond Embankment and Appurtenances Hazard Classification Purpose of Ash Pond Embankment Pertinent Data.	5 6 6 6
SECTION 4 - OPERATION ACTIVITIES	
Normal Operation Instrumentation Monitoring Data Types of Ash Pond Embankment Inspections SECTION 5 - MAINTENANCE ACTIVITIES	8 8 8
SECTION 6 – EMERGENCY CONDITIONS	13
FIGURES	
Figure 1 Location Map Figure 2 Aerial View	
APPENDICES	
Appendix A Operation and Maintenance Inspection Checklist Appendix B Herbicides Appendix C Supplemental Calculations Appendix D Project Drawings	

SECTION 1

GENERAL

This operation and maintenance plan, (hereafter referred to as the O&M Manual), outlines objectives, proposed policies, responsibilities, and procedures for Ameren personnel who are responsible for the management of the Labadie Bottom Ash and Fly Ash Ponds.

REASONS FOR DEVELOPMENT AND DISSEMINATION OF THE O&M MANUAL

As an ash pond embankment owner, Ameren is responsible for the safety of the public and for maintaining the structures within the Ameren's jurisdiction for both safety and economy. The overall public interest is served by providing a document to serve as a basis for the safe and economical operation and maintenance of the ash pond embankment during both emergency and day-to-day conditions.

GENERAL RESPONSIBILITIES CONCERNING ASH POND EMBANKMENTS

Shift Supervisor

Contacts local agencies when emergency conditions exist at the Labadie Bottom Ash or Fly Ash Ponds.

Plant Engineer

Ensures operation and maintenance program is being implemented as outlined in this document. Ensures performance of weekly inspections. Performs annual assessment of the Operation and Maintenance Manual.

Chief Dam Safety Engineer

Reviews all updates to the Operation and Maintenance Manual.

Dam Safety Group

Performs annual bottom ash and fly ash pond embankment inspection with the Plant Engineer. Reviews weekly dam safety inspection reports.

SECTION 2

DEFINITIONS

Abutment - That part of the valley side or concrete walls against which the dam is constructed. Right and left abutments are those on respective sides of an observer when viewed looking downstream.

Appurtenant Works - The structures or machinery auxiliary to dams that are built to operate and maintain dams; such as outlet works, spillways, gates, valves, channels, etc.

Auxiliary Spillway - A spillway that works in conjunction with the principal spillway to control flood flows and is constructed of non-erodible materials.

Boil - A stream of water discharging from the ground surface downstream of the dam carrying with it a volume of soil that is distributed around the hole formed by the discharging water.

Berm - A horizontal step or bench in the sloping profile of an embankment dam.

Breach - A break, gap, or opening (failure) in a dam that releases impoundment water.

Concrete Block - An erosion protection method using interlocking concrete blocks, usually with openings that are filled with soil and grass.

Core - A zone of material of low permeability in an earthen dam.

Dam - A barrier built for impounding or diverting the flow of water.

Dike (Levee) - An embankment or structure built alongside a river to prevent high water from flooding bordering land.

Drain, Layer or Blanket - A layer of pervious material in a dam to facilitate the drainage of the embankment, including such items as a toe drain, a weep hole, and a chimney drain.

Drawdown - The resultant lowering of water surface level due to the controlled release of water from the impoundment.

Embankment - Fill material, usually earth or rock, placed with sloping sides.

Emergency Spillway - A spillway designed to operate very infrequently, only during exceptionally large floods, usually constructed of materials expected to erode slowly.

Earthen Dam - Any dam constructed of excavated natural materials.

Failure - An incident resulting in the uncontrolled release of water from a dam.

Freeboard - The vertical distance between a stated water level and the top of a dam.

Gate or Valve - In general, a device in which a leaf or member is moved across the waterway to control or stop the flow.

Groin - The junction of the upstream or downstream face of the dam with the valley wall.

Maintenance - The upkeep, involving labor and materials, necessary for efficient operation of dams and their appurtenant works.

Operation - The administration, management, and performance needed to operate the dam and appurtenant works.

Operation and Maintenance Inspection - Inspections conducted by the Plant Engineer. These inspections are frequent visual inspections of the dam surface and appurtenant works.

Outlet - An opening through which water can freely discharge for a particular purpose from an impoundment.

Phreatic Surface - The upper surface of saturation in an embankment.

Piping - The progressive development of internal erosion by seepage, appearing downstream as a hole or seam, discharging water that contains soil particles.

Principal Spillway - The main spillway that controls both normal and flood flows and is constructed of non-erodible materials.

Riprap - A layer of large stones, broken rock or precast blocks placed in a random fashion, usually on the upstream slope of an embankment dam, on a reservoir shore, or on the sides of a channel as a protection against current, wave and ice action.

Silt/Sediment - Soil particles and debris in an impoundment.

Slump/Slide Area - A portion of earth embankment that moves downslope, sometimes suddenly, often with cracks developing.

Spillway System - A structure or structures over or through which flows are discharged. If the flow is controlled by gates, it is considered a controlled spillway. If the elevation of the spillway crest is the only control of the flows, it is considered an uncontrolled spillway.

Stilling Basin - A basin constructed to dissipate the energy of fast flowing water, such as from a spillway, and to protect the stream bed from erosion.

Toe of Embankment - The junction of the face of the dam with the ground surface in the floodplain upstream or downstream of the dam.

Trash Rack - A structure of metal or concrete bars located in the waterway at an intake to prevent the entry of floating or submerged debris.

SECTION 3

INFORMATION ABOUT THE ASH POND EMBANKMENT

LOCATION

The Labadie Power Station is located in northeastern Franklin County, Missouri in the flood plain of the Missouri River. The plant is located north of the Town of Labadie on the south bank of the Missouri River at river mile marker 57.5. The plant is located in Sections 18 and 19, Township 44 North, Range 2 East of the 5th Principal Meridian.

DESCRIPTION OF ASH POND EMBANKMENT AND APPURTENANCES

The Labadie Ash Ponds are a single stage industrial ash pond embankment. The embankment impounds an area of approximately 233-acres for coal combustion ash sedimentation purposes. The perimeter of the ash pond embankment has a length of approximately 11,700-lineal-feet (lf) and a maximum height of 29.5-ft. The ash pond embankment forms the perimeter of two impoundments which are separated by an interior levee. The two impoundments are the Bottom Ash Pond and Fly Ash Pond.

Bottom Ash Pond

The Bottom Ash pond is located south of the plant and forms the southwest portion of the ash impoundment area. The Bottom Ash Pond is approximately 154-acres. Design plans for the Bottom Ash Pond were issued for construction in 1969 and construction was completed shortly after. The dam was constructed of compacted earth fill with design slopes of 2 horizontal (H) to 1 vertical (V) upstream slopes and 3H:1V downstream slopes. The pond embankment was raised from its original design approximately 8.5 feet to create additional storage due to the amount of bottom ash deposited in the pond. The material used for the levee raise consisted of bottom and fly ash and was blended to achieve a permeability of 1 x 10^{-6} centimeters per second or less.

A 75-ft wide broad crested weir emergency spillway is located on the southwest side of the bottom ash pond. The emergency spillway is constructed of MODOT Type 4 Rip-Rap on the upstream and downstream slopes. The crest of the emergency spillway is constructed of aggregate sufficient to withstand design flows.

Fly Ash Pond

The Fly Ash Pond is located to the east of the plant and is in the northeast portion of the ash impoundment area. The Fly Ash Pond was built in the 1990's and has an area of approximately 79 acres. The upstream slopes of the Fly Ash Pond range from 2H:1V to 3H:1V. The downstream slopes are primarily 3H:1V with a short section of 2H:1V in the northwest corner. The Fly Ash Pond is also lined with a 60 mil high-density polyethylene
(HDPE) liner from the bottom to an elevation of 491-ft. No data was provided regarding the initial geotechnical design assumptions or construction criteria.

A 50-ft wide broad crested weir emergency spillway is located on the southwest side of the fly ash pond. The emergency spillway is constructed of MODOT Type 4 Rip-Rap on the upstream and downstream slopes. The crest of the emergency spillway is constructed of aggregate sufficient to withstand design flows.

HAZARD CLASSIFICATION

The Labadie Dam Impoundment is not currently subject to MDNR dam safety regulations. If regulations did apply, the Labadie Dam would be classified as a Class III, LOW HAZARD POTENTIAL, as defined by Missouri Department of Natural Resources (MDNR), because there are no dwellings downstream. In addition, there are no dams currently registered with MDNR directly influencing the Labadie Ash Ponds.

PURPOSE OF ASH POND EMBANKMENT

The dam forms the perimeter of two impoundments which are separated by an interior levee. The two impoundments are the Bottom Ash and Fly Ash Ponds. The active reservoirs are used for coal combustion (Bottom Ash and Fly Ash) sedimentation storage.

PERTINENT DATA

Pertinent data about the ash pond embankment, appurtenant works, and reservoir is presented in Table 1.

TABLE 1PROJECT DATA

Drainage Area	387-Acres
Ash Pond Embankment:	
Туре	Earth Embankment
Elevation, Top of Embankment	Varies from 491 to 494 feet
Height Above Streambed	Approximately 29.5 feet
Length	11,700 feet
Top Width	Varies
Minimum Freeboard Requirements	2.5 Feet
Bottom Ash Pond:	
Upstream Slope	2 (H) on 1 (V)
Downstream Slope	3 (H) on 1 (V)
Elevation, Top of Embankment	492.7 to 494.6 feet (490.0 – Flow Line of
	Emergency Spillway)
Elevation, Normal Pool	484 feet
Area	154 acres
Freeboard, Normal Pool	8.3 feet
Liner	Not Lined
<u>Outlet Works:</u>	
Structure Type	8 ft CMP Skimmer, 36" dia. metal discharge
	pipe, Two 36' dia, motor operated butterfly
	valves
Inlet Invert Elevation	478.5 feet
Outlet Invert Elevation	472 feet
Emergency Spillway	75' Broad Crested Weir (Elevation 490.0 feet)
Fly Ash Pond:	
Upstream Slope	3 (H) on 1 (V)
Downstream Slope	3 (H) on 1 (V)
Elevation, Top of Embankment	492.7 to 494 feet (491.7 – Flow Line of
	Emergency Spillway)
Elevation, Normal Pool	485 feet
Area	79 acres
Freeboard, Normal Pool	7.7 feet
Liner	60 MIL HDPE from bottom to El. 491'
Outlet Works:	
Structure Type	Two submersible pumps discharge into 6" PVC
	pipes, original construction included a 10 ft CMP
	Skimmer that is currently not used
Inlet Invert Elevation	Pumps at El. 460 feet
Outlet Invert Elevation	Discharge into BA Pond at El. 491.3 feet
Emergency Spillway	50' Broad Crested Weir (Elevation 491.7 feet)

SECTION 4

OPERATION ACTIVITIES

NORMAL OPERATION

The Fly Ash Pond receives flow from sluice water used to transport coal combustion fly ash. The water is carried through a series of open ditches and eventually flows into a pond where the ash is settled out. The Fly Ash Pond level is regulated by two submersible pumps that discharge through two, six-inch diameter PVC pipes. The discharge from the Fly Ash Pond flows into the Bottom Ash Pond.

The Bottom Ash Pond receives discharge from the Fly Ash Pond and flow from sluice water used to transport coal combustion bottom ash. The Bottom Ash Pond also receives flow from the Combined Drain Sump (CDS) which collects drainage from approximately 154 acres of the plant facility. The Bottom Ash Pond outfall structure consists of an 8-ft diameter galvanized CMP skimmer and a 36-in diameter carbon steel pipe. Upstream, the 36-in diameter pipe is upturned to an elevation of 478.5-ft and the invert elevation on the downstream end is 472-ft. Two 36-in diameter motor operated butterfly valves are installed within the pipe. The outfall discharges to a canal running along the west boundary of the plant. A National Pollutant Discharge Elimination System (NPDES) permit is required at the discharge of the Bottom Ash Pond.

INSTRUMENTATION MONITORING DATA

There is a staff gage mounted at the skimmer in the Bottom Ash Pond. The staff gage is checked weekly to ensure that the reservoir level is at or below the standard operating level of 485-feet. The Fly Ash Pond does not have a staff gage.

TYPES OF ASH POND EMBANKMENT INSPECTIONS

Weekly visual inspections are conducted at the ash pond embankment by plant operations staff. The Ameren Missouri Dam Safety Group performs annual inspections with plant operations. In addition, the Ameren Missouri Dam Safety Group may conduct unannounced safety inspections. The following sections describe each type of inspection.

Pond water level elevations should be maintained in accordance with Table 1. At no time should the water levels be above the minimum required 2.5 foot freeboard.

Weekly Inspection:

Weekly inspections are conducted by plant staff or support staff familiar with the ash pond embankments. The weekly inspection consists of visually inspecting the crest and slopes of the ash pond embankment to identify any new or changed conditions. Checklists are completed and are made available to the Dam Safety Group for review. A recommended inspection checklist for the weekly inspection is included in *Appendix A*.

Annual Inspection:

These inspections are conducted annually by the plant staff and the Ameren Missouri Dam Safety Group staff. The annual inspection is a detailed visual inspection of the Bottom Ash Pond and Fly Ash Pond. Items inspected include the embankment crest, interior and exterior slopes, downstream toe area, inlet/outlet works, and appurtenant structures. A recommended inspection checklist for the annual inspection is included in *Appendix A*.

An inspection report is prepared by the Ameren Missouri Dam Safety Group staff that includes a description of the observations of the visual inspection, photographs of the facilities taken during the inspection, and a written evaluation of the results. A record of activities occurring at the ash pond embankment is to be kept current by the Ameren Missouri Dam Safety Group.

Special Inspection:

These inspections are conducted when extreme events which may impact stability (seismic activity, severe flooding, etc.). Special inspections are similar to the annual inspection, but may be focused on a particular area. If conditions are discovered during a weekly or annual inspection which create concern for the plant or dam safety staff, a special inspection will be conducted. Responsibility for performance of special inspections will be evaluated based on severity of the event. An annual inspection checklist (included in *Appendix A*) can be utilized when conducting a special inspection.

Unannounced Inspections:

The Ameren Missouri Chief Dam Safety Engineer (CDSE) may conduct unannounced inspections at the site as deemed appropriate. The inspection may include a visual inspection of the facility, a review of the inspection documentation, and interviews with plant personnel to review their understanding of the required inspection procedure.

The inspection checklists are to be completed and filed for each inspection. Checklists for inspections are located in *Appendix A*. Condition codes are given to each item listed on the inspection checklist. The condition codes are defined below.

EC - Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

Examples: Whirlpools, piping situation, embankment slough extending through half crest width, sinkhole in crest

IM - Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

Examples: Sinkhole on downstream slopes, gate of valve failure

MM - Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

Examples: Crest rutting, rodent holes and animal burrows, tree growth on embankment slope, minor downstream embankment slough

OB - Condition requires regular observation to ensure that the condition does not become worse.

Examples: Minor seepage - No evidence of material movement

- GC Good Condition.
- NE No evidence of a problem.
- NI Not Inspected. Reason should be stated in comment.

SECTION 5

MAINTENANCE ACTIVITIES

Timely repairs are a must after problem areas have been identified. The Plant Engineer is to specify the work by generating a Job Request (JR) and provide direction to correct items noted in the operation and maintenance and engineering inspections. Prioritization of maintenance JR's should be reviewed with the Dam Safety Group to ensure proper emphasis has been placed on the JR. Such items include mowing, seeding, tree and brush removal, painting, replacing riprap, repairing fences and locks, clearing debris, etc. The maintenance activities specified in the following sections are minimum requirements. Maintenance activities should be documented. NOTE: NO alterations or repairs to structural elements should be made without the approval of the Chief Dam Safety Engineer.

Ash Pond Stacking: Ash may be temporarily stacked up to an elevation of 15 feet above the top levee elevation with the toe of the slope of the stacked ash a minimum of 125 feet from the existing ash containment levee. The ash stack slope shall be a minimum 3 horizontal to 1 vertical. No perched water level above the crest of the perimeter embankment is permissible.

Debris: Remove all trash, logs and other debris that may obstruct flow from the outlet works.

Concrete Block and Rip Rap: Replace or level blocks and rip rap as needed to provide adequate protection against erosion.

Vegetation Control:

- A good grass cover on the embankment should be maintained by seeding, fertilizing and mulching areas that are refilled, barren, or thinly vegetated. Seeding mixtures used for maintenance reseeding shall result in cover compatible with adjacent cover.
- (2) Grassed areas such as the embankment and areas beyond the embankment toe for a distance of approximately 20 feet should be mowed at least twice annually, where physically accessible.
- (3) All eroded areas should be filled and compacted, reseeded, fertilized and mulched to establish a thick erosion resistant cover.
- (4) All trees and brush on the ash pond embankment should be removed to prevent development of a root system that could provide seepage paths. Herbicides utilized for tree and brush control are discussed in *Appendix B*.
- (5) All brush and trees should be removed to a distance of approximately 20 feet beyond the toe of the ash pond embankment, where physically accessible.

Animal Damage: Rodent holes should be filled with compacted clay dirt and reseeded. If rodents become a nuisance, an effective rodent control program as approved by the Missouri Department of Natural Resources District Wildlife Biologist should be implemented.

Concrete: Spalled and cracked areas on concrete structures should be patched to guard against any further deterioration of the structure. Concrete construction joints should be filled with a suitable joint filler, such as a bituminous sealant, to protect against weathering.

Drains: All drains and weep holes should be kept open and functional by cleaning them of silt and debris.

Painting: All metal work, fencing, railing, etc. should be properly prepared and repainted as necessary to protect against rusting.

Signs: All warning signs and staff gages should be maintained (repaired, painted, or replaced) as needed.

SECTION 6

EMERGENCY CONDITIONS

If a condition arises where there is a possibility of ash pond embankment failure, the following plan will be put into effect (Refs. Labadie Emergency Implementing Procedure LB -EIP-DAMINT-16 and LB-EIP-NOTIFY-17).

- (1) The pond level will be lowered by the outlet structure, and the area will be closely monitored for changes in conditions. If the outlet structure should become inoperable, supplemental pumps will be used to lower the level of the pond.
- (2) The following agencies would be notified by Ameren concerning the status of the ash pond embankment. These agencies will inform the public as to what action would be taken. Ameren will do whatever possible to minimize damage at downstream locations.

A.	Franklin County Sheriff	636-583-2560
B.	Franklin County Emergency Management	636-583-1679
C.	MDNR –Dam Safety	573-368-2175
D.	Army Corps of Engineers (St. Louis District)	314-331-8567
E.	Ameren Chief Dam Safety Engineer	314-210-4356

FIGURES

Aerial View Labadie Power Plant Labadie, MO

APPENDIX A INSPECTION CHECKLISTS

Page 1 of 2

Fly Ash Pond

Annual Inspection Checksheet

Date Inspector Lake Level Temperature Weather

	Item	Condition Code *	Comments
	Obstruction		
let	Inlet Piping Supports		
Out	Leakage		
tand	Outfall Condition		
lnle	Outfall Gate		
	Other		
	Vertical & Horizontal Alignment of Crest		
	Liner		
<u>+</u>	Seepage		
men	Erosion		
mbank	Fencing		
Earth Ei	Vegetation		
	Unusual Movement or Cracking At or Beyond Toe		
	Other		

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work IM = Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

MM = Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Codition.

NE = No evidence of a problem.

NI = Not Inspected. Reason should be stated in comment

_

Bottom Ash Pond Annual Inspection Checksheet

Page 2 of 2 Date Inspector Lake Level Temperature Weather

	ltem	Condition Code *	Comments
	Obstruction		
tlet	Inlet Piping Supports		
ō	Leakage		
tanc	Outfall Concrete Condition		
Inle	Outfall Valve		
	Other		
	Vertical & Horizontal Alignment of Crest		
	Liner		
ent	Seepage		
bankm	Erosion		
th Em	Fencing		
Ear	Vegetation		
	Unusual Movement or Cracking At or Beyond Toe		
	Other		
Condition	Codes		
EC = Em	nergency Condition. A seri	ous dam saf	ety condition exists that needs immediate action.
IM = Iten	n needing immediate main	tenance to re	estore or ensure its safety or integrity. Remediation should
MM = Ite	m needing minor maintena	ance and/or r	repairs within the year. The safety or integrity of the item is
OB = Co	ndition requires regular ob	servation to	ensure that the condition does not become worse.
GC = Go	od Codition.		
NE = No	evidence of a problem.		
NI = Not	Inspected. Reason should	be stated in	comment

Page 1 of 2

Labadie Fly Ash Pond Weekly Inspection Checksheet

weekiy inspection checksheet

Date
Inspector
Lake Level
Temperature
Weather

	ltem	Condition Code *	Comments
et	Structure / Supports		
Outle	Outfall Condition		
nlet /	Other		
-			
	Vertical & Horizontal Alignment of Crest		
÷	Pond Liner		
men	Seepage		
ank	Erosion		
Emb	Vegetation		
arth	Unusual Movement or Cracking		
ш	Other		

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

MM = Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

-

_

_

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Codition.

NE = No evidence of a problem.

_ _

NI = Not Inspected. Reason should be stated in comment

- -

_

Labadie Bottom Ash Pond Weekly Inspection Checksheet

Page 2 of 2

Date

Inspector
Lake Level

Temperature

Weather

	Item	Condition Code *	Comments
	Obstruction		
tlet	Structure / Supports		
Out	Leakage		
tand	Outfall Condition		
Inlet	Other		
	Vertical & Horizontal Alignment of Crest		
ent	Seepage (known seepage at SWC)		
nkm	Erosion		
nbai	Vegetation		
u ≣ ₽	Unusual Movement or Cracking		
Ear	Other		

Condition Codes

EC = Emergency Condition. A serious dam safety condition exists that needs immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety or integrity. Remediation should be completed within 1 month.

MM = Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation to ensure that the condition does not become worse.

GC = Good Codition.

NE = No evidence of a problem.

NI = Not Inspected. Reason should be stated in comment

APPENDIX B

HERBICIDES

HERBICIDES

Site personnel should check with the Missouri Department of Natural Resources, Regional Fisheries Biologist and the Regional Wildlife Biologist before using any herbicide. Read the product label prior to use and follow the use directions and precautions accordingly.

On March 1, 1979 the U.S. Environmental Protection Agency (U.S.E.P.A.) halted the use of the herbicide 2, 4, 5-T in parks and recreation areas. The use of silvex (2, 4, 5-TP) around water has also been banned.

Some examples of approved herbicides are:

1)	Tordon RTU by DOW Chemical. (Can be obtained with blue dye.)
2)	WEEDONE 170 by Union Carbide
3)	WEEDONE, 2, 4-DP by Union Carbide
4)	A 1% to 2% solution of ROUNDUP
5)	Garlon by DOW Chemical
6)	Banvel by Sandoz

Your distributor may carry brand name herbicides other than those listed above. Be certain that the product does not contain the ingredients 2, 4, 5-T or 2, 4, 5-TP. An example of an unacceptable product is ESTERON 2, 4, 5 by DOW Chemical.

APPENDIX C

SUPPLEMENTAL CALCULATIONS

Engineering Design Calculation	s Form – GEN-FRM-ADM-3205-01
	tion 1
Calculation Number: LB-CALC-000068	
Plant / Station: Labadie Energy Center	
Project Title & ID: Labadie Fly Ash and Bottom Ash	h Pond Emergency Spillway
Description: Calculate Peak Discharge and Size E	mergency Spillway for Fly Ash and Bottom Ash Pond
Date: May 5, 2012	Rev.: 0
Calculation Performed by: Gene Campbell	Company: Ameren Missouri
Independent Reviewer: Matt Balven	Company: Ameren Missouri
Sec	tion 2
Index:	
Design Control Number (DCN) (If Applicable): LB	3-2012-DC-0005
Design Assumptions: See Calculation	
List Formula(s): See Calculation	
Define Symbols: See Calculation	
Define Units: See Calculation	
Reference Material: See Calculation	
Computer Generated Information: See Calculatio	n
Sect	lion 3
Calculation Performed By: <u>Herre</u> Q. Constant	Down Date: 35/7/201 Bignature
Independent Reviewer: Matthew 9	ignature Date: 5/7/20
Supervisor: <u>POLA</u>	ignature Date: 5-/-7/20
	V

]

Engineering Design Calculations Form Instructions (Calculations Performed By Ameren)

(GEN-FRM-ADM3205-01) Page 1 of 2

Section 1

Calculation No: Enter the unique calculation number as assigned by the Electronic Document Management System (EDMS).

Plant: Identify name of power plant / station.

Project Title & ID: Enter the project title or study title and Project ID (WO) number that calculation is associated with.

Description: Define the scope of the calculation, including the reason for the calculation, description of constraints, and the design objectives.

Date: Provide the date the calculation was initiated.

Rev.: Provide current revision for the calculation.

Calculation Performed By / Company: Identify who performed the calculation and the name of the company for which they work.

Independent Reviewer / Company: Identify who was assigned to perform the independent review of the calculation and associated documentation and the name of the company for which they work.

Section 2

Index: Provide an index on the first page.

Design Assumptions: List design assumptions on the first page.

List Formulas: List any formulas that were used in the performance of the calculation(s).

Define Symbols: List and define symbols used.

Define Units: List and define units used.

Design Basis Review: Perform a review of the existing design basis documentation. If the design basis documentation does not exist or is inadequate, then address this per GEN-ADM-3203, Design Basis. Ensure that the new design basis documentation is filed and/or submitted to the Document Control Administrator per GEN-ADM-2100, Document Control. The Document Control Number (DCN) shall be recorded on the Engineering Design Calculations Form – GEN-FRM-ADM3205-01.

Perform Calculations: Perform calculation; ensuring calculation is neat and legible.

Number Pages: Ensure that the pages are numbered in the proper order to align with the above Index

Engineering Design Calculations Form Instructions (Calculations Performed By Ameren)

(GEN-FRM-ADM3205-01) Page 2 of 2

Reference Material: If applicable, include copies of reference material (codes, standards, catalogs, other handwritten or computer calculations, other inputs to the calculation, etc.).

Computer-Generated Information: If applicable, document the computer software used, version number and any applicable certification for computer generated calculations. Label copies of computer-generated information such as tables, graphs, input and output data, etc., and include them at the end of the calculation.

Self-Check: When the calculation package is complete, the engineer performs a self-check of the package. When the self-check is complete, submit the calculation package to an Independent Reviewer.

Independent Review: Independent Reviewer checks the calculation package for completeness, technical accuracy and compliance with applicable codes, laws and regulations; industry standards; specific project requirements (including acceptable margins of safety); Ameren standards and policies; and stated assumptions. Special, intricate or unusual designs shall be checked in detail.

Reconcile and Review: If necessary, the engineer reconciles the Independent Reviewer's comments, revises the calculation package, and initials and dates the revisions.

P.E. Seal: If required, the engineer provides or obtains a Professional Engineer's Seal on the package.

Section 3

Calculation Performed By / Date: Signature and date of the engineer who performed the calculation.

Independent Reviewer / Date: Signature and date of the Independent Reviewer.

Supervisor / Date: Signature and date of the Supervisor. Supervisor Reviews to ensure calculation has been prepared and processed in accordance with this procedure.

GEN-ADM-3205 – Engineering Design Calculations

Calculation Review Form – C	GEN-FRM-ADM3205-03
Date: May 5, 2012	
Calculation Number: LB-CALC-000068	Revision: 0
Calculation Performed by: Gene Campbell	Company: Ameren Missouri
Independent Reviewer: Matt Balven	Company: Ameren Missouri

Comment Number	Page Number	Commen (Independent Re	t eviewer)	Comme (Origin	nt Resolution al Preparer)
1	2 + 17	Include stone siz	ing chart	· · · · · · · · · · · · · · · · · · ·	
				·········	
		· · · · · · · · · · · · · · · · · · ·			
	1	1			
Independe	nt Reviewe	: Matthe	8. Bal	ne_	Date: 5/7/12
			Signature		-

	PROJECT Fly Ash and Bottom Ash Pond Emerg	jency Spillway
Dam Safety &	NAME Gene Campbell	DATE
AMEREN Hydro Engineering	CHK'D. Matt Balven	DATE
SUBJECT Labadie Fly Ash and Bottom Ash Pond Emergency Spillway	Design	W.O. # 0A263
LOCATION Labadie Energy Center		SHEET 1 OF 30
Fly Ash Pond		
Install an Emergency Overflow Spillwa	von	
the South West Corner of the Fly Ash F	Pond	
Watershed Area = 79 Acres		
Low Elevation = 492.70 ft.		
Area of Pond at Overtopping = 62.4 Ac	cres	
Design Flood = 100 yr. 24 hr. Storm		
CN = 98 (WinTR-55 Limitation)		
tc = 0.1 hr (WinTR-55 Limitation)		
Assume no Discharge from Outfall		
Assume 14-cfs Sluice Water from Plant		
-Try 50 Foot Long Broad Crested Emer	aency Snillway @ 491 70 ft	F
which is 12" below the lowest spot of t	the existing levee	
"		
-Peak Outflow = 44.68 cfs (WinTR-55)	+ 14 cfs (Plant Sluice) = 58	.68 cfs
- A 50' Broad Crested Emergency Spilly	way will peak at 492.26 ft.	
······································	, I	
-Recommend using a 50' Long Emerge	ency Spillway with traffical	ole
side slopes.	,	
30' 25' 2-	5' 30'	
		- 494.5
0.56		
FOR MAXELOW DE DESB 68 CFC	ND DEPTH D=056	
FLOW AREA = $(50ft)(0.56ft) + (2)(0.5)(0.5)$	$(6+t)(6+t) = 51.4+t^{-1}$	

	Dam Safety &										NAME Gene Campbell													DATE												
	AMEREN Hydro Engineering											CHK'D. Matt Balven													DATE											
UBJE	СТ	Labadie Fly Ash and Bottom Ash Pond Emergency Spillway Design																w	1.0. ;	# 0 <i>F</i>	126	3	_													
OCAT	ON	Labad	die	Ene	rgy	Cei	nter																								S	HEE	т 2	. 0	F3	0
A	P P	ROAC	- H	V	ΙĒ	6	۱ ک	τV		V	=	Q/	Ά							• • • • • •																
V	: 5	8 68	2	<u>rt</u>	3	Ś		I	o .	ר <i>ר</i>	<u>,</u> т																									
		31.	4	fł	2-			· . 	0	1 1	~	5	0	0	US	ΞE	Ч	"	STO	5~	E	PR	OP	ER	- Y	ß	EC	De	D	4	2	<u>3</u> ک	٦G	D		
															N	/د	F	╘╘	ER	ų							• • • • •									
																									• • • • •											
											-																									
,																																				

3/30

WinTR-55 Current Data Description

--- Identification Data ---

G Campbell Date: 05/03/2012 User: Units: English Project: Labadie Spillway SubTitle: Fly Ash Pond Areal Units: Acres Missouri State: County: Franklin Filename: G:\Hydro_DamSafety\Dam Safety & Hydro Engineering\Labadie\Projects\0A263_Labadie Spillway\

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Fly Ash	Pond	ES	79	98	0.100

Total area: 79 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.5	4.5	5.1	5.8	6.5	7.2	3.0

Storm Data Source: Rainfall Distribution Type: Dimensionless Unit Hydrograph: <standard>

Franklin County, MO (NRCS) Type II

05/03/2012 10:43:05 AM

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.5	4.5	5.1	5.8	6.5	7.2	3.0

Storm Data Source:	Franklin County, MO (NRCS)
Rainfall Distribution Type:	Type II
Dimensionless Unit Hydrograph:	<standard></standard>

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Watershed Peak Table

Sub-Area or Reach Identifier	ANALYSIS: (cfs)	Peak	Flow	by	Rainfall	Return	Period
SUBAREAS Fly Ash	728.55	;			-		

REACHES

ES	728.55
Down	44.68

OUTLET 44.68

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Hydrograph Peak/Peak Time Table

Sub-Area or Reach Identifier	Peak ANALYSIS: (cfs) (hr)	Flow	and	Peak	Time	(hr)	by	Rainfall	Return	Period
SUBAREAS										
Fly Ash	728.55									
	11.93									
REACHES										
ES	728.55									
	11.93									
Down	44.68									
	12.75									
OUTLET	44.68									

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Structure Output Table

Reach Peak Flow (PF), Storage Volume (SV), Stage (STG) by Rainfall Return Period Identifier Structure Identifier ANALYSIS: Reach: ES Weir : ES 50(ft) PF (cfs) 44.68 SV (ac ft) 26.88 STG (ft) .45

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description	
Fly Ash	79.00	0.100	98	ES	Pond	

Total Area: 79 (ac)

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Reach Summary Table

Reach Identifier	Receiving Reach Identifier	Reach Length (ft)	Routing Method	
ES	Outlet		STRUCTURE (ES)	

WinTR-55, Version 1.00.09

Page 1

05/03/2012 10:43:06 AM

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Fly Ash User-provid	ed						0.100

0.100 Time of Concentration _____

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier	Land Use	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Fly Ash	CN directly entered by user		79	98
	Total Area / Weighted Curve Number		79 ==	98 ==

Page l

05/03/2012 10:43:06 AM

.

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Reach Channel Rating Details

Reach Identifier	Reach Length (ft)	Reach Manning's n	Friction Slope (ft/ft)	Botto Widt (ft	m Side h Slope)
ES	(This rea	ch is a struct	ure: ES)		
Reach Identifier	Stage (ft)	Flow (cfs)	End Area (sq ft)	Top Width (ft)	Friction Slope (ft/ft)
ES	(This rea	ch is a struct	ure: ES}		
Labadie Spillway Fly Ash Pond Franklin County, Missouri

Structure Description - User Entered

Reach Identifier	Surface Area @ Crest (ac)	Height Above Crest (ft)	Surface Area @ Ht Above (ac)	Pipe Diameter (in)	Head on Pipe (ft)	Weir Length (ft)
ES	58.6	1	62.4			50

WinTR-55, Version 1.00.09

Page 1

05/03/2012 10:43:06 AM

Labadie Spillway Fly Ash Pond Franklin County, Missouri

Structure Rating Details - Computed

Reach Idendifier	Stage (ft)	Pool Storage (ac ft)	Flow Length #1 50ft	rs (cfs) @ Wein Length #2 ft	Length Length #3 ft	
ES	0	0.00	0.000			
	0.5	29.78	49.497			
	1	60.50	140.000			
	2	124.80	395.980			
	5	340.50	1565.248			
	10	776.00	4427.189			
	20	1932.00	12521.981			

WinTR-55, Version 1.00.09

Page 1

2

05/03/2012 10:43:06 AM

	PROJECT Fly Ash and Bottom Ash Pond Emerg	ency Spillway
Dam Safety &	NAME Gene Campbeli	DATE
Ameren Hydro Engineering	CHK'D. Matt Balven	DATE
SUBJECT Labadie Fly Ash and Bottom Ash Pond Emergency Spillway	Design	W.O. # 0A263
LOCATION Labadie Energy Center		SHEET 160F30
SUBJECT Labadie Fly Ash and Bottom Ash Pond Emergency Spillway LOCATION Labadie Energy Center Bottom Ash Pond Install an Emergency Overflow Spillway Ash Pond. Watershed Area = 308 Acres Low Elevation = 492.69 ft. Area of Pond at Overtopping = 123.5 Å Design Flood = 100 yr. 24 hr. Storm CN = 98 (WinTR-55 Limitation) tc = 0.1 hr (WinTR-55 Limitation) tc = 0.1 hr (WinTR-55 Limitation) Peak Discharge from Fly Ash Pond = 50 Assume no Discharge from Outfall Assume 14-cfs Sluice Water from Plant Assume 50-cfs from Plant CDS -Try 75 foot Long Broad Crested Emerger -Peak Outflow = 72.55 cfs (WinTR-55) + (Plant CDS)+ 58.68 cfs (Fly Ash Pond) = - A 75' Broad Crested Emergency Spillv -Recommend using a 75' Long Emerger slopes.	Design y on the South Side of the Acres 8.68 cfs 9	w.o. # 0A263 SHEET 160F30 Bottom

																	0	. F	- 4		0		Ľ	2RC	JE(;T	iy.	Ash	an	d B	otto	m A	\sh	Por	id E	:me	rge	ncy	sp	UEIW	ay		
		Ĩ					_		_				مەل	Di L	an	n E	5	at ~*	et	y i	Č.			VAN	ΛE (Gen	e C	am	pbe									DA	ΤE				
	[e	FI I	ıy	CHK'D. Matt Balven								DATE																					
BJ	EC	CT Labadie Fly Ash and Bottom Ash Pond Emergency S						y S	spill	lway Design							w.	0.#	04	263	;																						
CA	TIC	ON	Ŀ	Labadie Energy Center																					SH	IEE.	۱ ۲2	OF	:3	0													
ſ	=0	R	Μ	AX		F١	0	N	۵	2 =	:	19	5,	23	4.	٢s		A	ي د	>	Þ٤	ĒP	тH	1) =	C), ⁽	9 5	5														
1	=7	0	W	Δ	RC	E A		(-	15	5f	t)	lc).¢	15	1	4-	(2)	\rangle/c	о.	51	/c	, ¢	15	<u>,</u>	/11	D. (bf	F)	=	ę	31.	3.	fł	2									
												5		.~	J		<u> </u>																										
	Ai	99	Rc	A	<u>с</u> н		V	εl	.0	6 I	тү		N	/ =		9 2	<u>5</u> 31	2	<u>3</u> , f	$\frac{c}{t^2}$	<u>ک</u>	I		2.	4	f	£ /	s	0 î	>	0 31 5	SE SD 1/	Ч DE F 11	0	5 T N N E R	۲0 ۵ د	¢د , ،	۹ عد	20 57	PE EI	ρ <i>2</i> >	Y	~
																																											<u> </u>
																				,																							
																																											ļ
																					·																						
																		•••••																									
																														•													
																																									-		
																					-																						
									-																																		
																										,								•									
				-																																							
														-																													
																			• • •							(
		<u>.</u>																		-																						<u>.</u>	

18/30

WinTR-55 Current Data Description

--- Identification Data ---

User:G CampbellDate:05/03/2012Project:Labadie SpillwayUnits:EnglishSubTitle:Bottom Ash PondAreal Units:AcresState:MissouriCounty:FranklinFilename:G:\Hydro_DamSafety\Dam Safety & HydroEngineering\Labadie\Projects\0A263_Labadie Spillway\

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
Bottom Ash	Pond	ES	154	98	0.100

Total area: 154 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.5	4.5	5.1	5.8	б.5	7.2	3.0

Storm Data Source:	Franklin County, MO (NRCS)
Rainfall Distribution Type:	Type II
Dimensionless Unit Hydrograph:	<standard></standard>

WinTR-55, Version 1.00.09

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.5	4.5	5.1	5.8	6.5	7,2	3.0

Storm Data Source:	Franklin County, MO (NRCS)
Rainfall Distribution Type:	Type II
Dimensionless Unit Hydrograph:	<standard></standard>

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Watershed Peak Table

Sub-Area Peak Flow by Rainfall Return Period or Reach ANALYSIS: Identifier (cfs) SUBAREAS Bottom Ash 1420.22 REACHES

.

ES		1420.22
	Down	72.55

OUTLET 72.55

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Hydrograph Peak/Peak Time Table

Sub-Area or Reach Identifier	Peak ANALYSIS: (cfs) (hr)	Flow	and	Peak	Time	(hr)	by	Rainfall	Return	Period
SUBAREAS Bottom Ash	1420.22 11.93									
REACHES										

ES	1420.22
	11.93
Down	72.55
	13.00

OUTLET 72.55

١

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Structure Output Table

 Reach
 Peak Flow (PF), Storage Volume (SV), Stage (STG)

 Identifier
 by Rainfall Return Period

 Structure
 Identifier ANALYSIS:

 Reach: ES

 Weir:
 ES

 75(ft)
 PF (cfs) 72.55

 SV (ac ft)
 54.80

 STG (ft)
 .49

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description	
Bottom Ash	154.00	0.100	98	ES	Pond	
Total Area:	154 (ac)					

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Reach Summary Table

Reach Identifier	Receiving Reach Identifier	Reach Length (ft)	Routing Method	
ES	Outlet		STRUCTURE (ES)	

25/30

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Bottom Ash User-provid	led						0.100
				m.ł	me of Conce	atwation	0 100

Time of Concentration 0.100

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier Land Use	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Bottom AshCN directly entered by user	-	154	98
Total Area / Weighted Curve Number		154	98

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Reach Channel Rating Details

Reach Identifier	Reach Length (ft)	Reach Manning's n	Friction Slope (ft/ft)	Botto Widt (ft	m Side h Slope)	
ES	(This rea	ch is a structu	ıre: ES)			
Reach Identifier	Stage	Flow	End Area	Top Width	Friction Slope	

(ft) (cfs) (sq ft) (ft) (ft/ft)

ES (This reach is a structure: ES)

28/30

WinTR-55, Version 1.00.09

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Structure Description - User Entered

Reach Identifier	Surface Area @ Crest (ac)	Height Above Crest (ft)	Surface Area @ Ht Above (ac)	Pipe Diameter (in)	Head on Pipe (ft)	Weir Length (ft)
ES	111	2.69	123.5			75

Page 1

Labadie Spillway Bottom Ash Pond Franklin County, Missouri

Structure Rating Details - Computed

Reach Idendifier	Stage (ft)	Pool Storage (ac ft)	Flows Length #1 75ft	s (cfs) @ Wei: Length #2 ft	r Length Length #3 ft	
ES	0	0.00	0.000			
	0.5	56.08	74.246			
	1	113.32	210.000			
	2	231.29	593.970			
	5	613.09	2347.871			
	10	1342.34	6640.783			
	20	3149.37	18782.971			

Page 1

APPENDIX D

PROJECT DRAWINGS

+ O----

+

+

+

+

1	
Э.	с
2 13 14 15 15 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18	
5300 N 5250.28 E7359.98 ELEV. 498.0	
N. 5200	в
AREA TO BE SURFACED WITH G"-IO" RIP. RAP, 24" MIN. THICKNESS (SEE NOTE 5)	-
5100	
NOTES: 1. CONSTRUCTION SHALL BE IN ACCORDANCE WITH UNION ELECTRIC SPECIFICATION EC-1999. 2. COORDINATES AND BEARINGS CAN BE DETERMINED USING SUBVEY MONUMENTS 102-1 4 102-2. 3. CONTRACTOR; TAKE CARE NOT TO COVER OF BLOCK. ASH LINES OR FLANT. DISCHARGES, IF STILL IN SERVICE. 1. SLOPE TOP OF DIKE FROMELEV. 498.0 TO ELEV. 494.0 AT POINTS THAT ARE SHOWN KEEPING SUDE TO SIDE FLAT.	A
S. INDICATED RIP-RAP AREAS ARE APPROXIMATE. RIP-RAP SHOULD BE PLACED ON TOP OF ONE FOOT THICK COTER LAYER. VERALL DIKE AREANGEMENT SEE 8500-Y-113367 OMMN 92988 PO. CMOT NOT SUPPORTY - YARD PLAN CMOT SUPPORTY - YARD PLAN CONSTRUCT SUPPORTY - YARD PLAN CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CONSTRUCT CHANNER CONSTRUCT CONSTRUCT <td>\$2.4 MILE1-25</td>	\$2.4 MILE1-25

SCALE RATIO = THIS DRAWING HAS BEEN REFERENCED TO FILE(S):

Elevation Profile Survey Limits Locations of Cross-section and Borings

KEY TO BORING LOGS

Symbol Description

KEY TO SOIL SYMBOLS

Crushed Limestone

Miscellaneous FILL

Low plastic Clayey SILT (ML)

Inorganic, non-plastic SILT (ML)

Silty SAND or Sandy SILT (SM)

Poorly-graded SAND (SP)

High plastic CLAY (CH)

MISCELLANEOUS SYMBOLS

Boring continues

Moisture content (%)

SOIL SAMPLERS

2-in. O.D. Split-Spoon

3-in. O.D. Shelby Tube

Notes:

1. Details of the drilling and sampling program are presented in the general introduction of the report

2. Stratification lines shown on the log represent approximate soil boundaries; actual changes in strata may be gradual or occur between samples.

Figure 2-0

REITZ & JENS, INC. CONSULTING ENGINEERS BORING LOG B-1											
Ash	Pon	d S	Stabi	lit	y		-	-			
DEPTH (FEET)	ELEVATION	WATER TABLE	ОКАРНІС LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPTION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (PASSING #200 SIEVE) PI		
35 -	- 435 - - -				78	Becoming medium dense	2-5-9				
40 -	- 430 - - - -				67	Becoming fine to medium grain sand, and trace coarse sand	6-5-6				
45 -	- 425 - - -				89	Becoming dense	9-12-19				
50 -	- 420 - - -				89	Becoming medium grain sand with fine and coarse grain sand, trace fine gravel Boring terminated at 50'-0"	9-12-17				
55 -	- 415 - - -										
60 -	- 410 - - -										
65 -	- 405 - - -										
70 -	- 400 - -										

File: 2010012488

₹		RE co			<u>&</u>	<u>ENS, INC.</u> engineers	BOF	RING	G	LOG PZ-1		
Ash Pond StabilityLOCATION: N 990578.486 E 725699.Labadie Power PlantELEVATION: 493.6DATUM: NAVCLIENT: Ameren MissouriDATE DRILLED: 06-25-10									578.486 e 725699.099 datum: NAVD88 -25-10			
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPT	ΓΙΟΝ	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (PASSING #200 SIEVE)		
0	-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			67	FILL, consisting mostly of bottom with sand, high plastic clay, silty cl ash, medium dense, dry	ash, layered ay and fly	2-7-9	16.5	20 40 60		
						Becoming very dense		4-6-7 6-22-32	17.0 14.6			
- - 10 -	- 485 - -	, , , , , ,			89			12-22-21	16.9			
	- 480 - -				100	Becoming dense, moist		7-11-17	27.2			
	- 475 - -		Ĭ		100	CLAY (CH), gray, high plastic, wit fine sand, stiff	th silt and	2-3-6	23.8			
	- - 470 -				96	PZ-1, screened interval from 22'6" Becoming gray-brown and dark gra with silty clay, clayey silt and very	to 27'6" ayish tan, fine sand	98.4	23.9			
30	- - 465 - -		I I I I I I		100	CLAY (CH), gray-brown, high plas variable silt content, stiff	stic, with	2-3-6	24.0			
DRIL MET TYPI HAM LOG	DRILLER: Terra Drill WATER LEVELS: DURING DRILLING _33_ FEET METHOD: HSA/Mud Rotary STRATIFICATION LINES ARE N BORING DRY AT COMPLETION OF DRILLING TYPE OF SPT HAMMER: Automatic STRATIFICATION LINES ARE N BORING DRY AT COMPLETION OF DRILLING HAMMER EFFICIENCY (%): 88.6 GRADUAL OR MAY OCCUR BETWEEN AT FEET AFTER HOURS LOGGED BY: JJJP PIEZOMETER: INSTALLED AT FEET											

Ł	REITZ & JENS, INC. CONSULTING ENGINEERSBORING LOG PZ-1											
Asł	n Pon	d S	tabi	lit	y			_				
DЕРТН (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPTION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (PASSING #200 SIEVE) PL ↓ ↓ ↓ ↓ ↓			
- - 35 —	- 460 -	Ţ	Δ	Z	100	SAND (SP), tan, fine grain, loose	2-3-2					
	- - - 455 -			Ζ	100	Began mud rotary drilling at 35' Becoming medium dense	7-10-12					
	- - - 450 -				72	Becoming dense, fine to medium grain with some clay laminations, trace fine gravel	8-16-23					
	- - - 445 -			Z	100	Becoming fine to coarse grain with fine gravel	11-20-23					
- - - 55 — -	- - 440 - -					Borng terminated at 30-0						
- 60 — -	- - 435 - -											
- 65 — -	- - 430 - -											
70 -	- 425 - -											

Į ₹		RF co	EIT.		<u>&</u>	<u>ENS, INC.</u> Engineers	BOF	RING	G	LOG PZ-2		
Ash Lat	n Pon badie	d S Po An	stab wer	ilit · P	ty lant Mis	t	LOCA ELEV DATE	TION: N ATION: 4 DRILLED	9891 89.2	158.946 e 722726.691 datum: NAVD88 -23-10		
рертн (геет)	ELEVATION	Ameren Missouri DA						DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	SHEAR STRENGTH, tsf A QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MOISTURE CONTENT, % O % FINES (PASSING #200 SIEVE)			
0		-			92	FILL, consisting of bottom ash, fly trace coal, very dense, dry	ash and	18-50/5	24.7			
5-	5 - 485				94	Trace crushed limestone		12-28-40	14.7	•		
-					100		10-18-20	15.2				
10	- 480 - - -	2			100	FILL, brown, clayey silt, very stiff, PZ-2, screened interval from 11'4"	moist to 21'4"	4-6-8	20.5			
	- 475 -	Ţ		×	92	Becoming sandy silt, and gray and SAND (SP), tan, fine grain, very de	brown ense Began	109.5	20.3			
20-	- 470 				94	mud rotary drilling at 15.5'		10-18-16				
25	- 465 - -			/	100	Silty SAND (SM), gray, fine grain, dense	medium	2-6-8	22.2			
30	- 460 - -				100	Becoming tan-brown, loose, very n	noist	1-2-5	30.1			
DRIL MET TYPI HAM LOG	Image: Construction of the second system											
Ł			EITZ DNSU	<u>7</u>	<u>&</u>	JENS, INC. BC		N G	LOG PZ-2			
---------------------	----------------------	-------------	--------------	-------------	------------------	---	---	---------------------------------------	--			
Asł	ı Pon	d S	stabi	lit	y							
DЕРТН (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPTION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (PASSING #200 SIEVE) PL ↓ ↓ ↓ ↓			
	- 455 - -				78	Becoming medium dense	5-7-8					
- 40 -	- 450 -				89 	Sandy SILT (SM), medium-gray, medium dense, fine sand, with trace carbon and clay Boring terminated at 40'-0" in silty sand	1-3-7	52.9				
- 45 — -	- 445 -											
- 50 — -	- 440 - -											
- 55 — -	- - 435 - -											
- 60 — - -	- - 430 - -											
 65 	- 425 - - -											
- 70 — -	- 420											

File: 2010012488

Γ

LEGEND

Symbol Description KEY TO SOIL SYMBOLS

 \gg

1

Organic Material	qc = Cone Tip Pressure, tons/sq. ft.
Clay	fs = Skin Friction, tons/sq. ft.
Silty Clay to Clay	Rf = Friction ratio (fs/qc) in %
Clayey Silt to Silty Clay	u2 = Porewater Pressure, psi
Sandy Silt to Clayey Silt	N60 = Calculated Equivalent N-value, blows/foot, (Standard Penetration Test)
Silty Sand to Sandy Silt	Su = Calculated Undrained Shear Strength, ksf
Sand to Silty Sand	Phi = Friction Angle, degrees
 Sand	

Gravelly Sand to Sand

Notes:

- Details of the drilling and sampling program are presented in the general introduction of the report. 1.
- 2. Stratification lines shown on the log represent approximate soil boundaries; actual changes in strata may be gradual.

¹ Robertson et al. (1986) Use of piezometer cone data. Proceedings of the ASCE Specialty Conference: In

Situ 86: Use of In Situ Tests in Geotechnical Engineering. ASCE 1986 ² Lunne, T. Robertson, P.K. and Powell, J.J.M. (1997) <u>Cone Penetration Testing in Geotechnical Practice</u>, Published by Blackie Academic & Professional. ³ Bowles, Joseph E. (1996) <u>Foundation Analysis and Design</u>. McGraw-Hill. 5th ed. Page 180.

8-C-50 PADS 9-63			R	AYM	[O]	JD)	•			
			CON	CRETE PII AND INTERN	LE DIVI	ISION					
			140 CE	DAR STREET - I	NEW YORK	C 6, N.Y.					•
SVEDADID ANA	PAPCEL A	ND 8550018	TTS INC.			n		NAVEN			10.65
Arease 915 OLIVE	ST.	ST. LOUIS	. MISSOURI) 		D	ate	- NUVEL	<u>1054 19</u> 8	L	19.00
We	have comp	leted the fol	llowing boring	s for you at LA	BADIE, NI	SSOURI	PRO	POSED P	OWER PL	ANT	
th results show	vn below.	. In accord	lance with	your instructions	s, we have	e sent	labelled	samples	of the	strata	encountered
0 <u>58ME AS AB</u>	<u>UVE</u>			under date	of			Ra	ymond Co	oncrete	Pile Division
aymond Internati	onal Inc.	LOCATION	PLAN	SCALE 1"							
							F				
			TEST	BORINI	S REP	ORY					
									i		
	6			FUI	ĸ		·	·			
			PROPO	SED POI	VER P	LAN	r				
			LAB	ADIE, I	11550	URI					
								(
				<u>1 N D I</u>	X						
	Ť	LOCATION GENERATIN INLET AND SWITCH Y/	PLAN NG UNITS D OUTLET ST ARD	RUCTURES		Sheet Sheet Sheet Sheet	2 3-6 7 8-9	. •	1,	-	
		LOAL STOF ASH PIT EXTERIOR	AGE AREA	NGS		SHEET Sheet Sheet	10-12 13-15 16-18				

Compass Points

This boring report prepared in the <u>ST. 1001S</u> OFFICE of the Raymond Concrete Pile Division RAYMOND-INTERNATIONAL INC. By**S.a. F.a.** & S.S.a. Job No. B.<u>CB-5247</u> Sheet 1 of.<u>18</u>

CB-5247-KC SHEET 2 OF 18

	FINE SAND, SMALL TO	0	35			29		GRAY WET F.TO CO.		
<u>_410</u> _	MEDIUM GRAVEL AND	3-3-3				4-4-4 4		BRAV VET FINE TA	-5-6 ×	
	LIMESTONE FRAGS.		1	• .		<u> </u>	62.09	CO. SAND TROSMO		
405		; 	36	64.0	ORAY HET FINE TO	63		ERAGS .		
	GRAY FINE TO	4-6-5				9-12-8		GRAY WET SMALL TO	13-18-	n n n n n n n n n n n n n n n n n n n
	COARSE SAND TRACE	2	34	.:	MEDIUM SAND TRACE	35		FINE TO CO. SAND		
400	SMALL TO MED .GVL.	0 - 0		69.5*	SMALL GRAVEL AND	2.0.0	Т. Т. С.	AND LIMESTONE	1	70.01
	GRAY AND BROWN	0=/+0				3=2=3		GRAY WET SMALL TO	6	
305	COARSE SAND TR.	.	40		LIMESTONE FRAGMENT	\$, 25		HEDIUM GRAVEL.TR.		
<u></u>	MEDIUM TO FINE					2-2-3		FINE TO COARSE	6-8-8	
	ACTION TO FINE	, , ,	·		1			CAND I INCOME	· .	
390	SAND AND SMALL		50		DIV UCT FINE TO	36	79.0*	SANU, LIMESTUNE		
	GRAVEL	4-5-6	';		CO.SAND TR.SH.GVL.	3-3-3	81.01	FRAGMENTS, GRAY.	3-3-44	
	1 1		AP	*	BROWN MEDIUM TO			CLAY SEAMS AND		65
			40		COARSE SAND TRACE			ORGANIC MATTER		
		1	r n		FINE SAND, LIME	14-0-5			x-2-2	87.00
			90 69	•	STONE EPACMENTS	37				50
38.0	5	5-7-9		01.01	STONE PRASTENTS	3-2-5 15		DRUWN AND GRAY	3-2-3	
	BR.CO.SANDTR.MED.	()	- 50	92.0	ANU SMALL GRAVEL			AFL WEDLOW 10		
375	TO FINE SAND &		74			35	de la compañía	COARSE SAND TRACE	· .	78.
,	CRAV AND PROLAT	5-8-16	×			2-2-54		SMALL GRAVEL AND	2-3-3	
alar Alar	BRAT AND BRUNN		84					LIMESTONE FRAGS.		
370	CUARSE SAND TRACE		8 0		· ·	69	· · ·			/1 · · · ·
	MEDIUM TO FINE SAND, SMALL GRAVEL	5-8-12	2			5-8-8×			10-20-	
	& LIMESTONE FRAGS	 	87	103.0*			103.5%			
. 365	GRAY ADN BROWN CO. SAND TR. MEDIUM	F96	00		BR . A GRAY COMPAF. TO MED SD . TR . CO .	8 63	104.70		3	
	TO FINE SAND AND	0-0-0	~~		LIMESTONE & DOLO-	You -	63		J-J-J%e	
268			, 73		M/SDST SLIGHTLY		4		tert	108.3
	territa international to the second statement	1.77	<u></u>	910.2			10207	LIMESTONE AND	60	
	LIMESTONE AND	. 80			LIMESTONE & DOLO-	60		POLOMITE WITH	Res.	
355	DOLOMITE (SOME	(and		118 31	PARTINGS SOME	TIA	11.4.79	SHALE PARTINGS	\rightarrow	
1. 1	SANDY) WITH SHALE	$\gamma \gamma$	r	112 46	SANDSTONE			TRACE SANDSTONE	國外	
	PARTINGS. SOME	(69)			1 	(B)			17/	118.5
<u>350:</u>	SANDSTONE	. 99/	•	120.2*	and the second s	\overline{ZZ}	119.71		11	
gan ang Ngang	PANDOTONE	11	,	· · · ·	MASING BLOUS - IN	LOATE NUM	EP OF		152	
					BLOWS REQ UIRED TO	O DRIVE CAS	SING		VII	123.5
345	3 3 * 			125.2	FALLING 24 INCHES	PU LDOWEIGN •	ч 	•		
	BORING ADVANCED BY	AUGER	TO 1	5°04	BORING ADVANCED BY	Y AUGER TO	14.09 .	BORING ADVANCED BY	AUGER	10 16-01
	USED 110" OF N X C WATER ENCOUNTERED	ÁSING. At 151	0		USED 104.5" OF NX WATER LEVEL ENCOU	CASING. UNTERED AT	14.01 .	USED 108.3' OF NX WATER ENCOUNTERED	CASING	32
) 	ATER LEVEL 15.0º 0	N COMP	LETIO	to	WATER LEVEL 17.0"	BEFORE PULL	LING CAS.	WATER LEVEL 13.0"	ON COM	LETION
 5.≱ ⇒ 1	NDICATES NO RECOVE	'RY-			INDICATES		A _ AMA	IRIT DENETDATED IN	tointern	
FIO	ANY SAMPLE OBTAINE	D .	eum-		SHELBY TUBE			UNT RECOVERED (IN'I	aehes)	2
FRACI	IONS - NUMERATOR -	NO. 0	SHUWN	AS S (IN II	VS .)		v — 0116			
	DENOMINATOR-	PENET	RATIO	(IN IN	ROCK CORE		A - AMO	UNT CORED (IN INCHE UNT OF CORE RECOVER	S) Ed (in	INCHES
	9/22-23-24/66	aade b	v visu	al inspe	ction. 9/16-17-18-	-19/66		9/14-15-16/	66	
$r_{\rm p} = V$	Vater levels (WL).	Figur	e indi	cates tir	ne of reading (hou	rs) after c	om- Tot	al Footage 368.4	*	
pleti	on of boring. Wai made, or as noted.	ter lev Poros	els in sity of	dicated the soil	are those observed strata, variations (when bor of rainfall.	site For	eman A. J. HOUSE		
topo	graphy, etc., may ca	use cl	anges	in these	e levels.		Cla	ssification by F	oreman. 8	
EACH F	D. sampling pipe X	a colu Maximu	mnin XX usi	aicate n ng 140-lb	umber of blows rec b. weight falling 30	juirea to d inches.	rive Sue	V 8	···	
	Ś	IX INC	HES					and the state of the second	÷.,	1997 - 19

TEST BORING REPORT RAYMOND

1 3.5

F-3Ш	1-11 30 PADS 2-6 30 4	÷				- ¥.,		•	
			i i state	ESI BURING	REPOR				
			L	(AYM)	JNI)			
			,CC	NCRETE PILE	COMPAN	Y	-		
То	SVERDRUP AND PARC	EL AND	ASSOCIATES I	NC. T	ION Data OCTOBI	R 26.	102466 7.1 31	60 _63/7	
Lo	cation of Borings_	LABADIE	HISSOURI	1	ROPOSED POW	TR PLANT	198 <u>00</u> _Job No.	<u>69-224-780</u>	
All	boringe are platte	dian	inclo of I'' -	- BI &	WATIONS AP	FIRMICUCO			
	. Sorings are protte			II. lising	LVATIONS NO	FUNITIONED	as a fixe	ed datum.	
	No 45	•••••		No. 46			No. 47		
				CDOUND					
	GROUND			SURFACE	<u>_</u>				
_470	- FLEV - 460 - 41	7	0.0	ELEV. 469.8"	K	0.0	GROUND		
	DARK BROWN MOIST	- f	1	DARK BROWN DRY		2.01			
	LT.BR.DRY STY. V.	3-3-4	200	LT. BROWN DRY	1-1-1	3.0	DARK BROWN MOIST		<u>0.0</u>
465	E-SAND TRACE CLAY	+	4.0	- SILTY CLAY	16	5.01	SILTY TOPSOIL		
te g Linte i s	SILTY CLAY	1-2-3	6.0	T BROWN DOV	1-2-3	6.01	LT.BROWN DRY	24 24	
450		-1	8.0	- SILT TRACE CLAY	3-3-5	*0.8.0*	LT.BROWN MOIST	207-01	6.5
400	LIGHT BROWN MOIST	2-2-3		· · · · ·	2 44	10.0*	CLAYEY SILT	2423	0.4
-	CLAYEY SILT	<u> </u>	12.0	LT.BROWN DRY VER	γ2-2-3			2-2-3	
455	GRAY CLAYEY SILT	1-1-1	14.0"						
	BROWN VARIOUS	1-3	1 1 1	FILLE SILTY SAND	4-5-7	16.01	·		13.0
	FINE TO FINE SAND	12		LT BROWN WET V.		:	GRAY WET SILTY	1-2-4	
450	- LACE MEDIUM SAND		19.5	TRACE SILT	- D D A 1	19.51	umai sina sina		
	GRAY WET VERY FIN	2-3-4		SAND TR-V-FINE	L-2-4	:	VERY FINE SAND		
	TO FINE SAND		24.01	SAND & ORG MATTER		. 24.01		1-1-2	N. A.
445	BROWN MED.TO CO.	2-2-8	2400	GRAY WET VERY FIN	E 3-4-4	;	:		
	AND TR SM GRAVEL	R	27.0*	SAND TRISILT AND		:			
440	GRAY SILT VERY			FINE SAND		;	- {	2=1=2	27 .01
	FINE SAND TRACE	5-5-6	*-		5-6-7	30,3*	BROWN AND GRAY		
	FINE SAND		33.01	GRAY AND BROWN			SAND, TRACE SMALL	4-4-4	
435	-		L	WET FINE TO COARS			GRAY CLAY SEAMS		
	GRAY WET MEDIUM TO	93-4-6		SAND TR .SM .GRAVEL	3-0-0 x	37 .0%	AND ORGANIC		34-51
	COARSE SAND TRACE			GRAY AND BROWN			GRAY F.TO MED. SAND TR.CO.SAND SM	2-10-	36.51
_430	FINE SAND AND	D	* *	WET FINE TO COARS	E 8-7-7.*		GROCLAY SMS .& GVL		38.0'
	SMALL GRAVEL	:-0-10	42.01	GRAVEL AND LIME-		49.01	TR .CO.SAND .SM		
425	GR.WET MED.TO CO. SAND TR.F.SAND,		44.0*	OTONE TRAGILENIS		43.60*	&LIMESTONE FRAGS	4-6-9	
<u></u>	LIMESTONE FRAGE .	4-4-4		GRAY WET COARSE	4-7-6	÷	SAND TRACE GOARSE	33	42.5
				SAND TR. MEDIUM		:	SARU, SMOGRAY-GLAY	12-10-	
420	GRAY WET MEDIUM TO			TO FINE SAND, SM.		*		14	
•	COARSE SAND TRACE	3-4-6	1	TO MEDIUM GRAVEL	0-3-3¥	•	GRAY WET COARSE	28	
	FINE SAND AND		27	AND LIMESTONE			TO MEDIUM SAND	4-5-6	. :
415	SMALL GRAVEL	5.7.0	20 	FRAGMENTS	7-6-10	:	TRACE FINE SANDA		
		; ∪=/=∪ ;	-		T T	-	SMALL TO MEDIUM	39	
ALT.	ODAY VET MED TO		29 58 01 30		36	3	GRAVEL, AND	6-6-7	
<u>_41U</u> _	COARSE SAND TRACE	2-4-5		· · · · · · · · · · · · · · · · · · ·	13-9 ₅ ¥	1	LIMESTONE FRAGS.		
	GRAVEL AND LINE-		30		-	63,51	· · ·	20000	
	STONE FRAGMENTS		80 63.51	LIMESTONE BOULDER	\$;;	· · ·		. 1
	GRAY FINE DENSE	18-24-32	76	SAND TR SM .GRAVEL	9-110	67 .01	·	50	64000
	FRAGS. LAYERS TR.	أستنجل	72 68.01	- GRAY WET SILTY	95		GRAY FINE SAND TR MED. SAND.CO.SAND	SA174	1 . s. [
Ann.	PRACE TON AND	$\{1, \dots, m\}$	11 C. C. 42 C	PELIT PA MERICIAL	1				. I

TEST BORING REPORT RAYMOND

. .

• .									• •	14	• • •
F- 344-4	4- 30 PADS 2-62			TES	ST BORING	REP	ORT	ž	۲ ۲		
2				P	AYMO	NC	m)	•		
				CON	ICRETE PILE	COMP	ANY	•	с с		
•					GOW DIVISI	ION					
To_S	VERDRUP AND PARCEL	AND A	SSOCIA	TES, IN	C., [)ate_NO	VEMBER	1,		CB=5247-1	KC .
Loca	tion of Borings_L	ABADIE	, Hiss	OURI		PROPOSE) POWE	R PLANT			
All b	orings are plotted	toase	cale of	1″==.	8º ft. using EL	EVATIONS	S AS F	URNISHED	as a fixe	d datum.	
•	· No /9			•	No. 49	`		5	No 50		
:	!			÷	6 3 4 A			-	744		•
					SURFACE				GROUND		
	GROUND	с	ASING	-			BLOWS	2	SURFACE		
470	SURFACE		LOWS		FLEV. 469.8' DR.BR. MOIST STY.	<u>k</u>		0+0!	FLEV. 468.31	×	0_01
1	ELEV. 468.4" LT. BR.MO. STY.	F		<u>0.0</u> v	Y .F . SANDY TOPS	2.2.2	1		V.F. SANDY TOPS		1.=01
ARE	TOPS .TR .V .F .SDY .CY	2-2-3		3.0%	VERY FINE SAND	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			LI. BR. DRY SILTY VERY FINE SAND	2-2-3	3.5
400	VERY FINE SAND	,			BROWN MOIST	24	17	6 E1	DK. BR. W/ TRACE	1-2-3	5.51
	DARK BROWN & GRAY Moist silty clay	1-2-2		6.09	ULATET SELI				SILT & FINE SAND	24 24	· · · · · · · · · · · · · · · · · · ·
460	LIGHT BROWN DRY	24	22	8.0	LIGHT BROWN DRY	5-6-7		C+	LIGHT BROWN MOIST VERY FINE	1-2-2	ئلنھ کے جب
	SILT TRACE VERY	2-2-2	1		SILTY VERY FINE	,	-		SAND & SILT		11 01
- 1	TINE SANU & CLAY		•	12.0	SAND		.		LT. BROWN DRY	7-3-2	
455	BR . VARI COLORED	2-2-1	and also an average shapers	13.0	(AND	1.5.0			MEDIUM SAND	·	-14-0°
	GRAY WET SOFT	Q=10a	·····		LT. BR. WET FINE	4=5=0		16-01	BROWN MOIST FINE	7-7-7	
. •	SILTY CLAY	- ''8	1		TO MEDIUM SAND TR			18.5	SAND WITH TRACE		
450	BROWN VARICOLORED	·			GRAVEL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		• .	FINE SAND & COAPE	e i i i i i i i i i i i i i i i i i i i	
	SAND TRACE MEDIUM	2-4-4	•		MEDIUM SAND, TR.			220!	CAND	2-3-3	
	SAND)		SAND LAYERS, &				O ANU		•
445			:		BROWN FINE SAND	4-3-3	:		1 6 7	2.2.4	-
9 Nga 1	•	6-7-8	÷.,		GRAY WET V.F. SAN	a				<u>به صل سي</u>	27.08
				2/ 00*	TRACE ORGANIC				GRAY & BROWN WET		بینی دروان میلی در است. ۱
U	FINE TO COARSE		i		GRAY FINE TO			30,37	MEDILM TO COLDER	1-4-5	5 7
	GRAVEL,& ORGANIC	4-4-5			COARSE SAND, TRACE				THEDIAN TO COARSE		
_435	MATTER			33.0*	GRAY FINE TO				SAND TRACE FINE		1
	GRAY FINE MEDIUM	4.9.6	- 4	an a	MEDIUM SAND TRACE	8-6-8			SAND & SMALL	2-3-4	
X.	TRACE SMALL GRAVEL	- 4 ⊷3≕0			COADCE CAND				GRAVEL		37.00*
430		3. 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		38.0%	DUAROL DANU		<u>.</u>	-40+0!	GRAY WET VERY FIN	ε	
-	GR. FINE TO COARSE SAND TR. SMALL TO	:4-7-10	, İ		· · · · · · · · · · · · · · · · · · ·	6	-		TO FINE SAND	6-92	
	MED. GRAVEL, LIME- STONE FRASS - CHERT			42.51	GRAY FINE TO				GRAY NET FINE TO		42.0%
425	GRAVEL	-			COARSE SAND TRACE	9-9-			COARSE SAND TRACE		
		4-5-5		\$	SMALL GRAVEL,	11	1		LIMESTONE FRAGS .	5-79-	-
· - •	: • •	;		•	LIMESTONE FRAGS.				· · · · · · · · · · · · · · · · · · ·		48.0
420	- - -	5				5-6-9			SAME MORE DENSE	14-18	
	GRAY FINE TO MEDIUM COARSE SAND	:4 -5-8					25		•		
4 15	TRACE SMALL TO	F 1	22		1		20		·		53.0*
م کلیک م	LIMESTONE FRAGS .,	1	22		4	4-5-5	·		SAME LESS DENSE	4-7-7	and the second
	DRGANIC MATTER	4-5-6					24 25			•	
_410			36 47			3.2 6		•	•		1. Contraction 1. Con
		7-8-7				(3 −3− 3	~~~		. <u></u>	2-5-7	<u>60_0*</u>
		//					- 30	63.0!	GRAY WET FINE TO COARSE SAND TRACF		5
405_			28 33		BRAY & BROWN FINE	- 5-5-6		•	SMALL GRAVEL,	•	
- 		5-8-12			TO DOLOGIC SAND		30	· · . · ·	A ORGANIC MATTER	3-3-3	1
		-	50	67.0*	U CUARSE SAND		36				•
		-									

· ······	an internet and an and the second					in <u>an a</u> tradication de la com	<u>- An</u> o anta ang sang sang sang sang sang sang sang)*** +	· •• .
ी प्रेचन -	ана 49-22 ст. н.		TE: R. COM	ST BORING	G REPORT				
To_	SVERDRUP AND PAR	CEL_AND ASSO	CLATES IN	GOW DIV	ISION Date NOVEMBER	2.2	108 66 Job No.		Ve
Loc	ation of Borings_	LABADIE, M	ILSSOURI		PROPOSED POWER	PLANT	198.00_JOB 100.	<u>, p=) 24 / =</u>	
All	borings are plotted	l to a scale	of 1" = .	8' ft. using	LEVATIONS AS FU	IRNISHED	sa a fixe	d datum	
	No 51			No			Na 52		•
	GROUND			3 (10 ⁻⁰			140		
	SURFACE	7	~						
470_	ELEV. 469.9'	BLOWS	0-0*	:			GROUND SURFACE		
	DK. BR. MO. SILTY V.F. SANDY TOPS.		0.5					CAS	ING
	DK. BROWN MOIST	1-2-3	. 2.5'	· •		EL	EV. 466.6"	ELC	WS 0.0"
465	SILT V.F. SAND TRACE CLAY	2-1-2	5.51			DK	ABR MO CLY TOPS	a	2.5
	LIGHT BROWN SILTY		2			LT	. BR. SILTY	2-2-4	4.5"
460	VERY FINE SAND				-	DK	BROWN MOIST	2-3-4	
		2-3-4	1				- BROWN VERY	3-8-	
		1				E FI	NE SAND TRACE	10	
455	BR. WET V.F. TO	3-2-4	15.01		· · ·	0P	AV UET SILTV	2-2-3	i 11 +0*
	FINE SAND.	and the second	16.5",			. ur			
4 5∩	TO MEDIUM SAND TR	•				;*L 7D	ACE ORDANIC	2-2-2	
- habel	ORGANIC MATTER	, 2-3-5	21 +0*	·		_ 1 T. 	TTED		i .
	GRAY WET VERY	<u>}</u>				ELW.	IILN	2-2-2	
445	FINE TO FINE	· 3-6-7						2-2-2	
	SAND	1					AN UST MODY		
4.40	COAV NET FINE TO	vesto de to ti t	28.0			GR	AY WEL VERY	2-2-1	
44U	MEDIUM SAND	1013 5				F1	NE TO FINE SAND		27.5*
	ODAY NET YEDY	1	33 .0.			ĞR	AY WET FINE TO	~ ~ .	
435	FINE SAND TRACE	10-1 <i>6</i> -				co	ARSE SAND TRACE	2	ĩ
	SILI	- 1 3	36.0!	• -		SH	ALL GRAVEL	-	i. I
	MEDIUM SAND TRACE	· · ·						3-4-6	
430	SMALL GRAVEL	11-11			•				:
									39.0'
.425_		10-9-	. 44.5!			GR	AY MEDIUM TO	24-15 14	1
	LEDGE OR LAYERS	г8	45.0			co	ARSE SAND TRACE		
	GR.FINE TO COARSE	9. T				FI	NE SAND, CHERT	7-7-74	
420	SAND TR.SMALL TO MED.GRAVEL,&	8-18-				RO	CK W/ SMALL		
	LIMESTONE FRAGS.	- 	1.52+0*			LA	YERS LIMESTONE		
415.	GRAY MEDIUM TO COARSE SAND TR.		: :	•	•	FR	AGMENTS	6-4-6*	
	SMALL GRAVEL	4-3-5	· _						5
	1 1		580*		•			6-8-9	
_410	GRAY MEDIUM TO COARSE SAND TR.	4-3-4				(2	7
	FINE SAND, SMALL							12	in the second second

EACH Figures inx Story hand column indicate number of blows required to drive 2" O.D. sampling pipe gagyfagt, using 140-lb. weight falling 30 inches.

Classification by_ FOREMAN_____ Sheet____6___0f____18_

TEST BORING REPORT RAYMOND CONCRETE PILE COMPANY

206-1-30 PADS 7-57

A DIVISION OF RAYMOND INTERNATIONAL INC.

A	All borings are plotsed to		of $1'' = 8!$ for using	FLEVATIONS AS FURNI	SHED		
ŕ	Boring No. 53	J 4 SCAR	Bosing No.	Basia N.	54		as a fixed datum.
	Doring 100		Doring INO	boring INO.			Boring No
	i.		х 1				
			· ·	1 1 1			
				GROUND			•
	GROUND				na segura ya T		
470	SOM AVE			ELEV. 459.9"	de t	0.0	
	ELEV. 468.1" /	0.01		DK GR V F SAND	M L		
	SILT, TOPSOIL	0.51 2.51		LT.BR.SILTY V.F. SAND	2-3-3	4.0°	
465	SILTY SAND	4.0		BR .V .F . SANDY SILT & STY .V.	1-2-3		
	BR -F -SAND TR -			F-SAND LAYERS	1	7°0°	
460	BR .F .SANDY SILT	7.0		LT+BROWN V+F+ TO FINE SILTY	2-3-3	1	
	BROUM FINE SAND			SAND		11.0%	
	ODV		•	LIGHT BROWN	4-7-		
455	4-6-7				10		
				FINE SAND TRAC	8 7 7		
		17+01			5=/+4		
450	BROWN FINE TO			SILT .		21.0*	•
	MEDIUM SAND			GRAY WET			
445	(wet)			FINE SAND	4-7-0		
	7-7-	24+0*				27.01	· •
	10			GRAY FINE TO			
440	GRAY FINE TO		·	MEDILIM SAND	9-16-		
	4-8-			TRUE CONDE	12		
125	MEDION SAND 14			CAND			ť
435			· · · · · · · · · · · · · · · · · · ·	SAND	7-10-	36.5"	• •
	579	37.01	· ·	ODAY SINE TO			
430		J/ #U		ORAT FINE TO	-11 / - 1 / -		• • •
	GRAY FINE TO			COARSE SAND AN	0,		
	MEDIUM SAND PTE	42.51		LIMESTONE FRAG			
425	IN+ CU OSANU	-12 007		OR SM. BOULDER	Sp-11+		······
	GRAY MEDIUM TO -6-5				7		
400	CONDER SAND W		: •				
420	CUARSE SAND W/				3-2-2	51.0	•
	LIMESTONE BLORS		, .	GRAY FINE TO			
415	A SH . TO MED . CVL	54.5	ана — 4 	COARSE SAND			:
	GRAY VERY FINE			AND SMALL	3-4-6		· · · ·
	TO FINE SAND		•	GRAVEL			
410	TRACE SILT			Construction and Base			- •

.410	TRACE SILT GRAY FINE SAND W/CC.SAMC AND SM.GRAVCL LENS	59.0°	
405			
400			
395			
390	• · ·		
385			
380		b	
375	· ·		
370		- - - - - -	• · ·
365		- - -	
360	•		
355		:	، ، ج
35.0	USED 59.00 OF NX WATER ENCOUNTERED WATER LEVEL 15.3*	CASING. AT 15.5'. ON COMPLETION.	
	10/6/65		

GRAVEL		
	6-7-9	61 • 0°
GRAY FINE TO		
MED. SAND LENS	10-23	. .
OF MEDIUM TO CO. SAND TRACE SMALL GRAVEL	2	- 69 • 0°
GRAY FINE TO	10-97	· · · · ·
COARSE SAND TR.		
SMALL GRAVEL		76 . 0ª
BROWNFINE TO MED. SAND SOME COARSE SAND TR. LIMESTONE GRAVEL GRAY FINE TO COARSE SAND TR.	14-10 15-13	 83.0°
SMALL GRAVEL		
2	10-12	-
BROWN AND GRAY	11-5- 7	96 <u>°0</u> ,
FINE TO MED.		-
& CO. SAND W	12-15-	- <u>20</u> 2
LIMESTONE AND SMALL BOULDERS		105.19
LIMESTONE W/SD. SOME SOFT PARTS	60 26	
LIMESTONE AND DOLOMITE WITH SAND (MOSTLY POROUS)	60	1185
	24	115.51

USED 105.01 OF NX CASING.

WATER LEVEL 16.0'- 16 HOURS AFTER COMPLETION.

10/10-12/66

INDICATES Rock core	A - AMOUNT CORED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES	FIGURES IN RIGHT HAND COLUMN SHOWN AS FRACTIONS - NUMERATOR - NO. OF BLOWS (IN INCHES) DEMOMINATOR- PENETRATION (IN INCHES)
	t	

Classifications age made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

ACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe XNXXXXXX using 140 lb. weight falling 30 inches. SIX INCHES

Total Footage 176.08
Foreman JAMES TURNER
Job No. <u>CB-5247-KC</u>
Classification by FOREMAN
Sheet 7 of 18

TEST BORING REPORT

F 344 5 30 PATA Service

...470

RAYMON

CONCRETE PILE COMPANY GOW DIVISION Date NOVEMBER 4, TO SVERDRUP AND PAFCEL AND ASSOCIATES 103766 Joh No. CB-5247-KC Location of Borings_LABADLE, MISSOURI All borings are plotted to a scale of $1'' = \underline{e^{-} ft}$. using ELEVATIONS AS EURNISHED _____ as a fixed datum. No. 37 No 38 No.____ 36_____ GROUND SURFACE GROUND GROUND SURFACE SURFACE ELEV. 470.4" _____ 0 0 0° ELEV. 469.5" ____0.0"___ LT.BR.MO.STY.TOPS _____1.0"___ LT. BROWN MOIST 1.01 0.0* ELEV. 468.9' SILTY TOPSOIL DARK BROWN MOIST 1.51 LT. BR. MOIST STY LT.BR. MOIST SILT 2-2-3 STY.TOPS.TR.STY. 3.0' 2.51 W/ CLAY LENS TRACE CLAY & V.F. 2-2-9 FINE SAND& CLAY /

1-2-3 465 LIGHT BROWN MO. LOOSE V.F. SAND LT.BR.MO. V.F. SAND 1-2-2: 6:5! 2-2-2 - 8:5 SAND TR. SILT ... 6.0 MOTTLED BROWN & DARK BROWN MOIS 1 24 8.5 GRAY MOIST 2-2-3 7.5' 24 18 CLAYEY-SILT-CI AY LIGHT BROWN MOIST 14 8.0' CLAYEY SILT LIGHT BROWN MCIST 5-7-9 >9.51 1 460 CLAYEY SILT LOOSE SLIGHTLY 1-1-1 BR. & TR. GR.FINE 5-7-9 TRACE VERY FINE CLAYEY SILT 10.5' 5-7-8 12-2-3 SAND 13.0 TO-MED -SAND-TR .STY LT. BR. LOOSE V.F. LIGHT BROWN DRY 13.0!.... 13+01 SAND TR. SILT SILT VERY FINE GRAY & BROWN 455_ SAND 4-7-4-5-7 BROWN & GRAY FINE 4-5-5 SILTY FINE TO SAND TRACE SILT BROWN WET FINE 17.0 MEDIUM SAND SILTY SAND 4-5-8 GRAY VERY FINE 450 2-3-4 3-4-6 TO FINE SAND 22.0" TRACE MEDIUM . 22 0! GRAY FINE SAND TRACE MEDIUM SAND AND ORGANIC 3-4-5 GRAY FINE SAND 445. SEAMS 10-11 6-8-27 .0* • 12 SOME MEDIUM 14 LIGHT GRAY FINE TO 1 MEDIUM SAND TRACE SILT W/ SCATTERED 28.40* 7-8-2 440 12 GRAY FINE TO SMALL GRAVEL 8-12-4-7-8 32.01 4 11 LIGHT GRAY VERY MEDIUM SAND FINE TO FINE 22-35-SAND TRACE SILT 435 41 ÷ 10-11 7-9-8 37.01 15 GRAY FINE TO MED. GRAY FINE TO TRACE COARSE SAND 29-41- WOOD 27 NOTED 39.0' 430 COARSE SAND FEW GRAY FINE TO GRAY FINE SAND & 5-6-8-18-LIMESTONE LEDGE COARSE SAND & SCATTERED SMALL 10 42 AND LIMESTONE 42.0 OR BOULDERS GRAVEL 43.0"___ FRAGMENTS OR SMALL 22-23-BOULDERS GRAY FINE SAND $\{\cdot\}^{p}$ 425 14 TRACE COURSE GRAY FINE TO 9-11-12-9-6 , SAND 14 47.0 COARSE SAND WITH 12-10-GRAY FINE TO LIMESTONE FRAG3 . 420 8 7-8-4-5 1 2 3 COARSE SAND TRACE 12 52.01 7 . 1.53.51 i in SMALL GRAVEL i GRAY MEDIUM TO 415 3.3 7-8-2-12-COARSE SAND 10 14 TRACE SMALL 410 60.51 GRAVEL 8-7-11 5-6-5 60.51.....

USED 59.0" OF NX CASING.

WATER ENCOUNTERED AT 17.0°. WATER LEVEL 14.5' ON COMPLETION. USED 59.0° OF NX CASING.

WATER ENCOUNTERED AT 17.6'. WATER LEVEL USED 29.0" OF 3 1/2" CASING.

WATER ENCOUNTERED AT 17.0% . WATER LEVEL 14.0% ON COMPLETION.

9/27/66

9/29-30/66 10/1/66 9/26/66

INDICATES SHELBY TUBE A B

A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY YUBE NUMBER

Ż

\$

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive Z'' 0.D. sampling pipe decoders, using 140-lb, weight falling 30 inches,

S	ł	X	1	1/CH	ES.	

 174.59

 Foreman_____JAMES TURNER_____

 Classification by_____FOREMAN_____

 Sheet_____8___of____18

200	8-1-30 PADS 7-57		TEST BORING	REPORT	
	•		RAYM	OND	
			CONCRETE PILE	COMPANY	
			A DIVISION OF RAYMOND IN	TERNATIONAL INC.	
T	SVERDRUP AND PAI	RCEL AND ASSOCIATE	S, INC.		NOVEMBER 15, 1966
<u>.</u>	ocation of Borings.	LABAUTE, MISSUUR		PROPUSED FUWER PLANT	
A	ll Borings are plott	ed to a scale of $1''$ =	= <u>8</u> ft. using <u>ELEV</u>	ATIONS AS FURNISHED	as a fixed datum.
	Boring No3	9 Boring	g No	Boring No. 40	Boring No. 41
				4	
	•				· · · · ·
75	GROUND				GROUND
	SURFACE	•••••• •		GROUND	SURFACE
	ELEV . 471.1" /	0.07		SURFACE	EKEV. 470.69 / 0.01
70	LT.BR.LOOSE V.	2.0%		ELEV. 469.0"	0.09 LT.BR.DRY LOOSE
	LT.BR.LOOSE V. 2	-4-4	Ļ	BR-SILTY VERY	SILT TROCLAY & 3,0° VoFoSAND 2-3-3
65	MOTTLED BR .AND			1=2-2	3.5" MOTTLED BR. & 1-2-4 5.8"
	GRAY SOFT VERY	24.21	b	BROWN SILT	22 5.5; GR.MO.LOOSE / 2427 5:
	LT.BR.LOOSE	<1,≦3,8,5° ->-2	,	DK.BR.SILT 1-1-2	LT.BROWN DRY
60	SAND AND CLAY	11,00		BROWN CLAYEY 1-2-3	CLAY & V.F.SAND 11.0"
	COMPACT V.F.	-9-10		OF CLAY	10.5. W/STY.ULAY LENS
	SAND TR-SILT	14.5	1	2	2232.5" LIGHT GRAY V.F.
55	MOTTLED BROWN	-8-6	4	BROWN SILLY 5-8-	TO F. SAND TR.
	AND GRAY FINE			FINE SAND	17.0º ORGANIC 5-7-10 96.5
50	SAND SILTY 3-	-6-0 21.0*		BROWN FINE SAND	GRAY & BR. FINE -5-0
	ODAY FINE TO		· -	TRACE MED SAND 3-4-7	20.5 TRACE SILT 22.0
	UCOLUM CAND	-5-8	, A	GRAY FINE TO	DAY FINE SAND
45	MEDIUM SAND	- 		MEDIUM SAND	
	FEW CU.SAND	· •	•	12	27-8° DIND TRIAT OUT
	AND SMALL 5				SAND TRACE SILT
40	GRAVEL LENS			GRAY MEDIUM	
			•	TO CO SAND	32.09
35	••••••••••••••••••••••••••••••••••••••	2-15- 36.0"		GRAY FINE SAND	7=9=
	GRAY F.TO CO. SAND SCATTERED	38.0*		TRACE SILT 2-2-5	GRAY FINE TO
	SMALL GRAVEL			DECAYED WOOD	COARSE SAND W/
30	SAND & LIMEST.	22		GRAY VERY	GRAVEL SMALL 7-9-8
	FRAGMENTS	43.0		FINE SAND	CRAY FINE TO
	GRAY FINE TO	-7-12			43.0°
2	004000 0440		· - :	GRAY FINE TO	FEW LIMEST .FRAG. 47.0"
	CUARSE SAND			LIMESTONE, SM.	47 •0"
20	TRACE SMALL TO B	-8-9		GAL .SUNE MED .	GRAT MEDICA ID
			1	GRAY FINE TO	CURKSE SAND SUTE
	MEDIUH GRAVEL	4.2	,	COARSE SAND,	FINE TRACE SMA
15	6	1		SMALL TO LARGE	TO MED GRAVEL 4-4-3
,				GRAVEL TR. 4-4-5	
10	5	-6-9 60.51		LIMESTONE GVL.	5-7-7 60.5
I U	2		;	4-5-7	60.51

6-9 60.5*

USED 59.0' OF NX CASING. WATER ENCOUNTERED AT 17.0'.

9/28/66

LIMESTONE GVL.

USED 54.0' OF 3 1/2" CASING. WATER ENCOUNTERED AT 18.0" WATER LEVEL 14.0' ON COMPLETION. USED 59.0° OF NX CASING. WATER ENCOUNTERED AT 17.0° BORING CAVED AT 17.5°.

5-7-7 60.5

9/20-21/66

9/28/66

INDICATES SHELBY TUBE A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY TUBE NUMBER

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EAGH Figures in right hand column indicate number of blows required to drive 2" O.D. samping pipexwaxfaxfa, using 140 lb. weight falling 30 inches.

Total Footage 181.51
Foreman JAMES TURNER
Job No. 68-5247-KC
Classification by FOREMAN
Sheet 9 of 18

TEST BORING REPORT

CONCRETE PILE COMPANY

A DIVISION OF RAYMOND INTERNATIONAL INC.

Date_ NOVEMBER 9, 1966 TO SVERDRUP AND PARCEL AND ASSOCIATES INC., PROPOSED POWER PLANT Location of Borings LABADIE, MISSOURI as a fixed datum. ft. using ELEVATIONS AS FURNISHED All borings are plotted to a scale of $1'' = 8^\circ$ Boring No._ 21 20 19 Boring No .: Boring No. Boring No.___ 475 GROUND GROUND GROUND SURFACE SURFACE SURFACE ELEV. 470.11 0.0* 470 0.01 0,0* ELEV. 469.0" ELEV. 469.01 BR.DRY STY.TOPS. 1.51 BR.MO.STY.TOPS. 1 .0 BROWN DRY SILTY 0.5' BROWN DRY SILT 1-2-3 3.01 LIGHT BROWN TOPSOIL -2-3 _3.0º DK.BROWN DRY 3.01 24 3424 5.01 DRY SILT 24 5.01 DK.BROWN MOIST 1. CLAYEY SILL 24 5.01 465 TRACE CLAY SILTY CLAY .6.0* 1 LIGHT BROWN DRY 6.0 7-2-1 BROWN MO.CLY. CLAYEYSILT -2-....7 .0* LT. BROWN DAMP SILT TR .V .F .SD 8.0" SILT 1 +2-1 GR.& BR. MOIST 8.5 -2-3 9.5 24 460 LIGHT BROWN DRY SILTY CLAY BROWN MOIST VERY 2411.0 - 2 2 VERY FINE SAND 0 11.5 LIGHT BROWN DRY 2 11-28 FINE SANDYSILT 13.5 -3-Z VERY FINE SAND 14.5% _455 LIGHT BROWN 4-5-7 TR. FINE SAND -2-2 2-2-3 MOIST VERY GRAY WET VERY 19.0 FINE SAND FINE SAND TRACE 450 GR.MO.STY.CLAY 1-1-4 TR.V.F.SAND 20.0 21 .09 5-0-A SMALL GR.CY.SMS 12 GRAY WET V.F. 21.5 SAND TRACE SILT _22=0? GRAY WET SILTY GRAY SILTY VERVI-2-BR.WET F. TO MED. SAND TR. COARSE SAND FINE TO MED. 445 25.01 FINE SAND WITH ठन ज 27.0* SAND TR.CO.SAND BROWN WET SILTY TR. ORGANIC MATTA 27.5 VERY FINE SAND 27 .5' GRAY WET FINE GRAY WET SILTY GR.AND BROWN 440 -151 FINE TO MEDIUM TO MEDIUM SAND FINE TO MEDILM 1-32 28 SAND TR. CO. TR.CO. SAND AND SAND, SM.GVL & ORGANIC MATTER 33.0* 33.0* SAND £ 435 SMALL GRAVEL GRAY WET FINE .O...7 X 9-90× GRAY AND BROWN WET COARSE SAND 37.0* TO COARSE SAND TR . F . TO MED . SAND & SM.GVL. GRAY WET FINE 38.51 TR. SM. GRAVEL. 430 -6 TO MEDIUM SAND 6-5-5 MED.GRAVEL, & 8-8-8× GRAY WET FINE TRACE CO. SAND. SM.GRAY CLAY 44000 SFAMS TO MEDIUM SAND 425 SMALL GRAVEL, 8-9-12 5-5-6 3 7-63 & LIMESTONE SAME MORE DENSE TR. COARSE SAND 48,51 FRAGS. 48.5 GRAY FINE TO 420 COARSE SAND TR. 4-5-6 GRAY WET FINE 50.0" GROWET SILTY V. 3-124 -11* TO COARSE SAND 51.51 SM.TO MED.GVL. TRACE SM.GRAVEL INE SAND 촱 &GRAY CLAY SEAMS & LIMESTONE FRA 53.51 53.5% GRAY FINE TO 415 SAME MORE DENSER-9-1 57.0" SMALL GRAVEL GRAY WET SMALL TO MEDIUM GRAVED TRACE MEDIUM TO GR.WET CO. SAND COARSE SAND 58 .5 % TR.MED.SAND,Sha 58.31 GVL & LIMEST .FR6.07-C GRAY WET BM. TO _410 60<u>.5</u>* GRAY WET SM.TO -7-9 60,51 COOGVLO TRO MED. GRAVEL TR . 13-19-60.51 LIMESTONE FRAGA CO.SAND & HED. FAND

:	USED 59.0° OF NX C WATER ENCOUNTERED WATER LEVEL 13.0' COMPLETION.	ASING. AT 14.0°. ON	USED 59.0" OF N WATER ENCOUNTER WATER LEVEL 12.	IX CAS RED AT OT ON	ING. 14.0". COMPLET	FON•	•	USED 59.00 OF WATER ENCOUNTE WATER LEVEL 12	NX CASI RED AT •0° ON	1 NG . 14.0*
:	USED 59.0° OF NX C WATER ENCOUNTERED WATER LEVEL 13.0' COMPLETION.	ASING. AT 14.0°.	USED 59.0" OF N WATER ENCOUNTER WATER LEVEL 12.	IX CAS RED AT O ⁴ ON	ING. 14.0". COMPLET	I ON .	•	USED 59.00 OF WATER ENCOUNTE WATER LEVEL 12	NX CASI RED AT .0° ON	1NG . 14.0*
				-					*	
	•				•					
	. •			,					-	-
				-						
		•		· ·						
	· :	4		•						
	0/7 0/55	:	0/8-0/66					9/6-7/6	6	÷
	97 7-07 00		370 3700	-						
	:			• •		r 			-	
						1 • •				:
	:			-					i. I	:
	•			· .				•		•
				:						
			i	•			• • •		11	:
			i			1			5 	
			i i	:						
			•	•		i i			:	
									1	
	•		¥ - INDICATES	NO RE	OVERY					
			WASH SAMPL	E OBT	AINED.					
	•		FIGURES IN RIG FRACTION - NUM DEM	HT HAN HERATO LOMINA	ND COLUM R - NO. Tor-Pene	N SHOWN AS OF BLOWS (IN IN TRATION (IN INC	iches) :Hes)	÷		
		<u>}</u>	INDICATES	1	B	A - AMOUNT PEN	ETRATED (IN	INCHES)	-	
		1	SHELBY TUBE	\vdash	q	B - AMOUNT REC C - SHELBY TUE	OVERED (IN SE. NUMBER	INCHES)	a transfer	
				:		8				
	• •				1	-				!
				•	· ;		•			:
) 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Classifications are made Water levels (WL). Fi Water levels indicated of the soil strata, varia levels. Figures in right hand o	by visual in gure indica are those of tions of rain column indi	nspection. tes time of reading observed when bori nfall, site topograp icate number of bl	(hour ngs we hy, etc ows rec	s) after o re made, ., may ca quired to	completion of bori or as noted. Poros use changes in th drive 2" O.D. sar	ng. Total Fo sity Foreman ese Job No. np- Classific	Dotage 181.5% 1 AsJcHOUSE C8-5247-KC ation by EOREMA 0 of 18		

E 344-4 30 PADS 7 6.5

TEST BORING REPORT RAYMOND

CONCRETE PILE COMPANY

BORING ADVANCED BY AUGER TO 25.01 . USED 50.01 OF DRILLING MUD.

BORING ADVANCED BY AUGER TO 18 57 .

BORING ADVANCED BY AUGER TO 13.50 . INTE TO AN OF R 1/2" CASING.

COARSE SAND AND

SMALL GRAVEL

TRACE BOULDERS 6-6-13 410

BORING ADVANCED BY AUGER TO 25.0". USED 50.0" OF DRILLING MUD. USED 54.0" OF 3 1/2" CASING. USED DRILLING MUD FROM 55.0" TO 60.0".

WATER ENCOUNTERED AT 16.5".

b

9/15-16/66

BORING ADVANCED BY AUGER TO 18.5" . USED 26.0" OF 3 1/2" CASING.

GRAVEL 5-4-4 60.**S*** BORING ADVANCED BY AUGER TO 13.5%. USED 59.0% OF 3 1/2% CASING.

MEDIUM TO COARSE

SAND THACE SMALL

WATER ENCOUNTERED AT 15.5".

5~5~4

WATER ENCOUNTERED AT 17.01. WATER LEVEL 16.01 - 12 HOURS AFTER COMPLETION. • :

9/13-14/66

9/19/68

A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) **LND | CATES** В В С SHELBY TUBE C - SHELBY TUBE NUMBER

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strate, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe &EXXXXXX, using 140-lb. weight falling 30 inches. S

į	X	t	N	CF	IES
---	---	---	---	----	-----

Total Footage____ 170.5' Foreman___JAMES TURNER Classification by_ FOREMER Sheet 12 of 18
206-1-30 PAD	\$ 7-57
--------------	---------

TEST BORING REPORT

CONCRETE PILE COMPANY A DIVISION OF RAYMOND INTERNATIONAL INC.

Date NOVEMBER 11. 1966 TO SVERDRUP AND PARCEL AND ASSOCIATES Location of Borings_LABADIE, MISSOURI All borings are plotted to a scale of 1''= 8' ft. using ELEVATIONS AS FURNISHED as a fixed datum. Boring No.__12 Boring No.__11 Boring No. Boring No.___10 GROUND SURFACE GROUND GROUND SURFACE ELEV. 470.0' 0+01 470 SURFACE BROWN MOIST ELEV. 467 5' 0.01 1.0* ELEV-466-0" 0.0' BROWN MOIST VERY FINE DARK BROWN SILD 4.51 SILTY TOPSOIL 24 _465__ CLAYEY TOPSOIL 2.5% SANDY SILT 6.5 BROWN MOIST DARK BROWN WET BS #1 85 1 -2--SILTY CLAY 9.5 CLAYEY SILT TRA 24 460 7.0' 24 V.F. SAND LT. BROWN MOIST A-8-7 .11.5 SILTY VERY FINE 8S #2 SAND TRACE FINE BROWN SILTY BROWN MOIST 85#2 11.5 8-3-85 #1 LSAND. 4-5-5 FINE SAND 12.0 455 SILTY VERY LIGHT BROWN WET 8S#3 VERY FINE TO FINE SAND TRACE k-2-3 BR.FINE SAND FINE SAND 17/51 SEAMS GRAY CLY. 15.0 BS#2 SILT SOME MED. MEDIUM SAND, SILT, AND SMALL GRAY CLAYEY BROWN WET FINE 450 GRAY FINE SAND SEAMS SAND TRACE SILT 12 1-3-2 SOME MEDIUM 8-7-8 - x A VERY FINE BS#3 445 TRACE SILT. SAND 27.+0 26.0 •3 GRAY WET FINE BROWN & GRAY TO MEDIUM SAND 440. BS#1 FINE TO MEDIUM TR .COARSE SAND 29.0 28.0 & SMALL GRAY 8S#4 LIGHT GRAY VERY SAND TRACE CLAY SEAMS V , Ÿ FINE TO FINE GRAY WET R-1 2-COARSE SAND & SMALL GRAVEL -- 435-SAND TRACE COMPACT V .F . 1685#4 36 0. SILT & ORGANIC SAND TR.FINE Ľ, MATTER TG MEDIUM 19-29 GRAY WET FINE SAND 37 .O' TO COARSE SAND TRACE SMALL 37.01 430 GRAY WET FINE HO.D GRAY FINE TO GRAVEL & SMALL IAAEE SANDEIR. GRAY CLAY SEAMS H2.0 TRACE COURSE 8-8-GRAY WET DENSE 44 .0. 11 V.F. SAND TR. FINE TO MEDIUM GRAY WET V.F. -12-185#4 425 42.0' SAND TR.SILT ' 12 ł SAND SHALL GR .CLAY 47.5' B5#5 LIGHT GRAY FINE 8S#6 GRAY FINE TO ًا..... COARSE SAND TR. SAND TRACE SILT GRAY WET FINE BS#5 420 SMALL GRAVEL 51.01 ĽÝ. TO COARSE SAND AND SOME MEDIUM GRAY WET **~4~6** <u>۲</u>2-SAND TRACE SMALL COMPACT V.+F.+ 26 26-35 SAND TRACE 415 GRAVEL SILT .58 .51 56.0* GRAY WET FINE 59.01 410 TO COARSE SAND, LIGHT GRAY FINE TRACE SMALL GRAVEL -10-TO MEDIUM SAND .62.0* 405 LENS OF MEDIUM GRAY WET FINE TO MEDIUM SAND BS ∦7 TO COARSE SAND _____ TRACE COARSE 400 BS₿6

.390.-

_385__

HISED 74.0" NX CASENG.

USED 29.0" OF 21/2 INCH CASING AND DRILLING MUD.

WATER ENCOUNTERED AT 11.5" -WATER LEVEL 12.0' ON COMPLETION.

WATER ENCOUNTERED AT 15.0 WATER LEVEL 13.0' ON COMPLETION.

8/30/66

USED 59.0" NX CASING.

WATER ENCOUNTERED AT 14.0'.

0/2/66

9/24/66

85- INDICATES BAG SAMPLE OBTAINED

Ŕ

INDICATES SHELBY TUBE A- AMOUNT PENETRATED IN INCHES B- AMOUNT RECOVERED IN INCHES C- SHELBY TUBE NUMBER

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe MXXXXX, using 140 lb. weight falling 30 inches. SIX INCHES

4

Total Footage204.5!
Foreman A.J. HOUSE & JAMES TURNER
Job NoC8-5247-KC
Classification by EQREMAN
Sheet 13 of 18

TEST BORING REPORT

~

RAYMOND CONCRETE PILE COMPANY

Loc	ation of Borings LABA	DIE, MISSOURI		PRO	POSED POVER	PLANT		
All I	borings are plotted to	a scale of 1" ==	81_ft. using ELEV.	AT10NS	AS FURNISHED	as a fize	d datu	ш.,
	No. 23		No. 24			No. 25		
		\$						
<i>8</i> 75	· .							
#(<u>1</u>	GROUND		0001800			GROUND		
	SURFACE	<u>-</u> .	SURFACE			SURFACE	····· ··· ··· ···	
470	ELEV. 470.7			ĺ		CLEV AGO 51	2	
DR V	ET SILL	_ 1 •5†	ELEV. 469.01	J		BROWN DRY SILTY	1	<u></u> X
	TRACE VERY FINE	3	SILT		2.5	TOPSOIL	2-2-3	
465	SAND 1-2	-2 5.5	BROWN VOF. SANDY	2-2-4: 24-	1	SAND &SILT TR.CY.		
-00	DK.BR.DRY SILTY CK	24 237 5	BROWN AND GRAY	1_ ²	21.5.0"	DK.BR.DRY CLY.SIL	<u>11-2-2</u>	5
	SAND TRACE SILT 2-4	~6 9.0	SILI & V.F. SAND	2-2-3	6,51	CLAYEY SILT	24	24 7
460	T BROWN DRY V.F.		BR .AGR .SILT TR .CY .	1-3-3		LT BR DRY SILTY	2-4-5	
400	SAND TRACE SILT		BROWN SILTY	2-3-4		VERY FINE SAND	ן, ע	
	SILT SEAMS	14.09	FINE SAND			SILT TR. F. SAND	Here	: 13
455	T BROUN DRY VERY 2-3		RD.A. CD.F.SOV.SHT		13.0*	LIGHT BROWN DRY		
4J.J. (FINE SAND TRACE			1-2-8	<u>14</u> e5*.	CLAYEY SILT TRACK	2-2-2	
	SILT AND F. SAND	18.0	BROWN FINE SAND			ORGANIC MATTER		17
150	0+1	oa	TRACE SILT	: !	10.01	GRAY WET CLAYEN	1-2-2	
400	SAME MORE DENSE	23		3-4-6		SILT	24	2421
			SAND TR. SILT AND	-		a processor and the second se	3~5=0	22
4 AF	8-1	1 24•5 1x	ORGANIC MATERIAL		24.0*	GRAY WET SILTY	L	1
440	SAND TRACE SIL	27.51		4-7-8	u tree ie	VERY FINE SAND	2∞3∞3	Ì
		1	GRAY FINE SAND		• .	1	1	28
440	GRAY WET FINE TO	-4	TRACE SILT AND			GRAY WET FINE TO		+
440			ORGANIC MATERIAL	8-13-	* .	MEDIUM SAND TR.	6-8-4	f.
	COARSE SAND TRACE			, ',		GVL & ORGANIC MA	Π.	1 22
		3 1		• •	24.08	COAV HET EAME TO		1
450	SMALL GRAVEL		GRAY FINE TO	10-10-	, .,	UNAL MEL TINE IU	8 -1 0-1	5 %
			COARSE SAND	10	37 • 0*	MEDIUM SAND TR.		
	01	0	GRAY MEDIUM TO	.		CO. SAND, SMALL	3	1
430		12 42.51		7-4-5		GRAY CLAY SEAMS	6-10-	<u>ې</u>
	GRAY WET FINE TO		COARSE SAND TRACE				1	
		12	SMALL GRAVEL		43.0			44
425	MEDIUM SAND TR.CO.	*13	COARSE SAND SOME	20-14		GRAY SMALL TO MEE	.4-5-6	*
	SAND & SMOCLAY SMS	48 .5	LIMESTONE FRAGS.	15	40+0*	TR. MED. SAND ANI	и Э.:	1
	GRAY FINE TO	~	GRAY FINE TO			LIMESTONE FRAGS.	· 	49
420	MEDIUM SAND TRACE	TE	COARSE SAND TR.	8-7-8			5-10-	,
	SMALL CLAY SEAMS		SMALL GRAVEL			SAME MORE DENSE	i (1	
	DELA CINC TO MAL	54.0						
415	SAND TR.CO.SAND,			8-9-	55.0°		f 1	. FR
	SM . CY . SMS . TR.		<u> </u>	- 11		GRAY FINE TO CO.		÷
	PERTURN FARE STALEA &					ISAND TR. SMALL		
÷.	GRAY WET COSSAND					lon		

USED 59.0" OF NX CASING.

WATER ENCOUNTERED AT 16.0° WATER LEVEL 14.0° ON COMPLETION WITH CASING IN PLACE. WATER LEVEL 15.0° ON COMPLETION WITH CASING REMOVED. BORING ADVANCED BY AUGERTO 25.0°

USED 26.0° OF 3 1/2" CASING & DRILLING MUD. WATER ENCOUNTERED AT 16.5°. USED 59.0º OF NX CASING.

WATER ENCOUNTERED AT 13.5° . WATER LEVEL 13.0° ON COMPLETIONS

- INDICATES NO RECOVERY. WASH SAMPLE OBTAINED.

9/12-14/66

9/12-13/66

ð

₿

A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY TUBE NUMBER

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Poronity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACHF igures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe XXXXXXXX, using 140-lb. weight falling 30 inches. SIX ENCHES Total Footage 176.09 Foreman JAMES TURNER AND A.J.HOUSE Classification by FOREMEN Sheet 19 01 18

9/9/66

USED 59.0" OF NX CASING.

WATER ENCOUNTERED AT 14.0* WATER LEVEL 13.5" ON COMPLETION. USED 59.0" OF NX CASING.

WATER ENCOUNTERED AT 11.5" . WATER LEVEL 11.5' ON COMPLETION. USED 20.00 OF DRILLING RUD AND 3 1/2" CASING. WAYER ENCOUNTERED AT 15.0% . WATER LEVEL 14.0º ON COMPLETION.

8/29-30/66

9/1-2/66

BS - INDI ATES BAG SAMPLE OBTAINED.

B

C

INDICATE SHELBY TUBE

A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY TUBE NUMBER

9/23/66

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe XXXXXXXX, using 140-lb. weight falling 30 inches.

SIX INCHES

Total Footage_____ 181.00 Foreman___A.J. HOUSE AND JAMES TURNER Classification by_ FOREMEN____ Sheet 14 of 18

			RAYMON: CONCRETE PILE COMPA	D
			GOW DIVISION	
To_ Loc	SVERDRUP AND PARCE	LAND ASSOCIAT	ES, INC., Date NOVE	MBER 8, 19366 Job No. CB-5247-KC
A 11	Let 1 to 1 borings_	LADADIC1 11000		
	porings are plotted	1 to a scale of .	$I'' = \underline{B^{*}}$ it. using <u>ELEVATIONS</u>	as furnishedas a fixed datum.
	· No16		No17	No18
·				
	·			
470	GROUND			4
			GROUND	GROUND
265	LIGHT BROWN		ELEM AGE OR	
400	DRY SILT		BROWN MOIST	1.0° SROWN MOIST SILYY 1.0° CLAYEY TOPSOIL
		2-3-4		LT-BR-LODSE SILT RecLive 223- 30
460		0,0	BR.MO. SILT TRACE	LT-BR-LOOSE SILT 6.0
	LIGHT CRAY AND	BS#1	VERY FINE SAND 2-1-2	TRACE CLAY
455	LIGHT BROWN VERY	4-4-3	BROWN AND GRAY WET	LIGHT BROWN MOIST SILTY VOFINE SAND
	FINE SANDY SILT		VERY FINE SAND	2 GRAY WET SILTY BS #2
450		BS # 2		A CLINE SANDY
		لا ا	2-1-1	16.0° SILT W/CLAY LAYERS
	GRAY DAMP SILTY	19.5	ORAY WET FINE TO BS	
445	FINE SAND	22.0	MEDIUM SAND TRACE	GRAY SILTY FINE
	GRAY WET FINE	BS#3	SMALL GR.CLAY SMS.	22.0° SAND TRACE ORGANIC
. 440		20.0	P RRAY WET FINE TO	the Antraction
	MEDIUM SAND TRACE		CO. SAND TR. 53	* 27 .5* _
435	SMALL GRAVEL	BS#4 ──X 31.5	50	30-
	GRAY WET FINE	20.29	8-8-10	GRAY FINE TO
	SAND TR. SILT, COARSE SAND AND		GRAY FINE TO	MEDIUM SAND TRACE
430	SMALL GRAVEL	37.0	COARSE SAND TRACE	\$ILT 5-5-5
	GRAY AND BROWN	10-10-		BS∦4 ↓38。
425	WET FINE TO MED.	12	SMALL GRAVEL AND	GRAY FINE TO
÷	SAND TRACE COARSE	; ;	BLACK SLATE	COARSE SAND TRACE
420	SAND AND SMALL	8S#6		SMALL GRAVEL AND
- 	GRAVEL	¥		MEDIUM GRAVEL AND
	۶ ۹ ۶	5-6-9		ORGANIC MATTER.
415	۱ ــــــــــــــــــــــــــــــــــــ		7-9-7	
		4		
- 1	GRAY FINE TO			53.51 53.0
41.0	GRAY FINE TO COARSE SAND TRACE	₿S # 7	GRAY FINE TO	53.5° 53.0

	GRAY FINE TO			53-51	<u>;</u>	53 _° 0°
410	COARSE SAND TRACE	RS#7	GRAY FINE TO COAPSE SAND TRACE	BS #5	GRAY FINE TO	10-?p2
105	SM.OR. CLAY SEAMS	<u>0.00 1</u>	SMALL GRAY CLAY	-	COARSE SAND AND	
405			SEAMS AND SMALL	63.0"	SMALL GRAVEL SOME	:
400			GRAY FINE TO COARSE SAND TRACE \$MALL GRAVEL AND LIMESTONE FRAGS.	BS#6 68.09	MEDIUM TO COAPSE	8-7-7
395			GRAY COARSE SAND		ġ	
390			MEDIUM SAND	74,0	USED 29.01 OF 3 1, DRILLING MUD.	7-5-7 75.09 /2" CASING WITH

USED 57.0" OF NX CASING.

WATER ENCOUNTERED AT 14.5". WATER LEVEL 14.0" ON COMPLETION. USED 74.0" OF NX CASING.

8/31/66

9/1/66

WATER LEVEL 12.0" ON COMPLETION.

9/21-22/66

WATER ENCOUNTERED AT 15.09

WATER LEVEL 14.0" ON COMPLETION,

8/26-29/66

BS - INDICATES BAG SAMPLE OBTAINED.

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strate, variations of rainfall, site topography, etc., may cause changes in these levels

ACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe pressures, using 140-lb. weight falling 30 inches.

SIX INCHES

Total Footage 209.00 Foreman_AsloHOUSE AND JAMES TURNER Classification by FOREMEN Sheet 15 of 18

USED 59.0" OF NX CASING WATER ENCOUNTERED AT 9.0" WATER LEVEL 12.0" ON COMPLETION. USED 59.0° OF NX CASING. WATER ENCOUNTERED AT 16.0°. WATER LEVEL 14.5° ON COMPLETION.

USED 50.0" OF NX CASING. WATER ENCOUNTERED AT 16.0". WATER LEVEL 14.5" ON COMPLETION WITH CASING IN PLACE.

IND | CATES 8 SHELBY TUBE

A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY TUBE NUMBER

10/6-7/66

10/3-4/66

10/4-5/68

ß

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipe MEXXMENT, using 140-lb. weight falling 30 inches. SIX INCHES

Total Footage____ 181 25* Foreman JAMES TURNER Classification by FOREMAN Sheet_ 16______ 18____

TEST BORING REPORT

E KNO H SO PAD

.

RAYMOND CONCRETE PILE COMPANY

			GOW DIVIS	ION				
To_ Loc	VERDRUP AND PARCEL	<u>AND ASSOCIATES IN</u> LABADIE. MISSOURI	PROP	Date <u>N</u> OSED POI	OVEMBER 7, WER PLANT	195_ <u>66</u> _Job No.	<u>CB-5247</u>	<u>-KC</u> _
All	borings are plotted	to a scale of $1'' =$	= 8 ¹ ft us ag EL	EVATION	S AS FURNISHE	D	d datar	
	No. 31		No. 32			** 33	u darmi	13.
•	110		130			No. <u></u> 55	;	
	GROUND SURFACE	~	GROUND			SURFACE	. /	
470	ELEV. 468.79	£ 0,0*	SURFACE	/				0.00
	LIGHT BROWN SILTY		ELEV. 467.2"	14	0°0°	DARK BROWN CLAYEY		. 000.
465_	VERY FINE SAND	2-2-4	LIGHI BRUWN VERY			5ILT	1-2-3	3°08
			FINE SANDY SILT	5-5-6	. 4.0*	BROWN SILT TRACE		
		8.0	LT.BROWN SILT & V.F. TO F. SAND	5-5-5	6.5°.	VERY FINE SAND	1-2-3	8.09
460	LT.BROWN FINE SAID	9,0%	LIGHT BROWN FINE	5-7-10				
	LT. BROWN SILTY VERY FINE SAND	12 58	SAND TRACE SILT		10.0*	VERY FINE SAND	1-3-5	
455		1202	BROWN FINE SAND	3-3-4		TRACE ORGANIC MATT	•	13.00
	BROWN FINE SAND	4-5-7	& ORGANIC MATERIA		. 14.0*	BROWN FINE TO MED.	5-9-8	
	TRACE SILT	18.0%	BROWN VERY FINE TO FINE SAND TR.	3-4-5	17.08	SAND TRACE COARSE		
450	GRAY AND BROWN	2-5-5	SILT		17 601	SAND	2.2.4	
	FINE SAND TR. MED		GRAY VERY FINE	4-5-6				21.00
445	SAND	23.0*	SANU		23.01	BROWN AND GRAY		
	GRAY FINE SAND	4-6-5		Badad	2000	FINE TO MEDIUM	7-7-1	
	TRACE MED. SAND		GRAT FINE SAND			SAND TR.CO.SAND		27,00
440		6 6 5	SOME MEDIUM SAND	/ 1 - 1		GRAY FINE TO CO.	- 1	
	· · · · · · ·	31.0		12-10-	74 . 01	STONE FRACMENTS	7=7=9	32.0
435	GRAY FINE TO		ODAY PINE TO NED	1 44	2100.		• • • • • • • • • • • • • • • • • • •	
	MEDIUM SAND	7-9-11	GRAT FINE TO MED.			CO CAND AND LINE	15-21-	
_		37.0*	SAND IRACE CUARSE	9-11- 13		STONE LEDORE OF	31	
430	GRAY FINE TO	6 7 0	DANU			BOULCEDE TO FINE	· ·	
		0-7-7	1	11-8-		CAND	9-11-2	
425	COARSE SAND AND		4 1 2 4	10	43.0*	SAND	·	
	SMALL GRAVEL, TR.	6-10-	GRAY FINE TO CO.			ŝ	8-12-	
			GVL. & LIMESTONE	8-13 1 4	47.0%	: 	13	47 °0°
420	LIMESIONE FRAGS .	17-9-4			· · · ·	GRAY FINE TO		
	(SHALL . BOULDERS)			4-6-7		COARSE SAND TRACE	13-13-	
415			CUARGE SAND SUME			PEA GRAVEL	: :	
		5-14-9	SMALL CRAVEL		• * * •	8 - -		
			; ;					
.410	B	17-27-				DAY CINC DOANES	192.00	59.5%
		-9	:	0-0-	60 Et	CANO AND CH.YO	LCOIDE	* Co UV

10/7-8-9/66

10/5/66

10/1/66

INDICATES ROCK CORE

A - AMOUNT CORED (IN INCHES)

AMOUNT OF CORE RECOVERED (IN INCHES) в – C -

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACH Figures in right hand column indicate number of blows required to drive 2" O.D. sampling pipexsnextees, using 140-lb. weight falling 30 inches.

SIX INCHES

Total Footage____133.0° Foreman JAMES TURNER Classification by ____ FOREMAN Sheet_17_of_18

					м	
344×4	-30 PAD - 1 - 3	т	EST BORING	REPORT		
÷ .		F	AYM	OND		
		CC	NCRETE PILE	COMPANY		
m 6		AND ASSOCIATES I	GOW DIVI:	BION NOVEMBER 7.	10366 Job No C	B-5247-KC
10.2	tion of Borings	ABADIE, HISSOURI	PROPO	SED POWER PLANT		
Allh	oringe are plotted	to a scale of 1" =	= 8° ft. using El	EVATIONS AS FURNISHEE)as a fixed	datum.
un n	ormas are protieu	to a scale of X =		· ·	a. 35	· · ·
	No34		No		No	
-		$(1,1,1,\dots,1) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} + 1$				
4/5	GROUND				GROUND	
	_SURFACE		. · :			an a
47.0	ELEY. 470.41	<u> </u>		· · ·	ELEV. 459.9"	0,0 ³
	LIGHT BROWN DRY				FINE SAND BROWN FINE TO	
AFE	FINE TO MEDIUM	-/9			MEDIUM SAND TRACE	-4-0
405	SAND TRACE SILT	7.51				-3-5
1		-3-3		•	GRAY SILT	<u> </u>
460	BROWN DRT LOUSE	11.51			LIGHT GRAY SILTY	-3-5
	SAND TRACE VERY	24 22 12 51	* *		VERY FINE SAND	1 3_0²
455	SMAGRAVEL & CLAY	2-1-2		· ·	BROWN FINE SAND 7	-10- 11
	BROWN WET FINE	10.0		·	TRACE STEL	19eV*
•	AND MEDIUM SAND	5-7-11			MEDIUM SAND TRACE	
450	TR.CO.SAND & SILT,	22.01				21,09
	BROWN AND GRAY :	E SU	•		GRAY AND BROWN	¢
445	SAND TR. SILT	4-4-6			FINE TO MEDIUM	3-4-5
2 					SAND TR.CO.SAND	2002
	GRAT AND BROWN		•		GRAY FINE SAND	30.0
440	FINE TO MEDIUM	5-7-8			GRAY FINE TO	3+7-8
	SAND TRACE COARSE	•		•	COARSE SAND TR.	i i
435	SAND	4-6-6			SMALL GRAVEL	8-4-3
	COMPACT LIMESTONE	3045	.			37 00*
420	BOULDER OR LEDGES	10.40.	;		SANDSTONE BOULDER	21-46-
450	MEDIUM SAND	42.0*		• .	F.TO CO. SAND	9 42.01
· · ·			2 -		ADAY FINE TA	Ţ
.425	GRAY FINE TO	10-12- 16		. • <u>.</u> .	CONDEE CAND TOAPE	1412
1	COARSE SAND TRACE	1		• •	COALC OAKO INAVE	•
420		8-8-12	•		SHALL GRAVEL	8-9-11
يەت 184 لەر	LIMESTONE FRAGS.	- м. т. м. т. н.		•	:	
		•				
<u>415</u>	;	6-9-9		۰. ^۱ .		
•			2.	• •		CA #3
410		5-7-8. 00-51			GRAY FINE SAND	20-41- 60.50
	اری میشوند. میرند است. این این این این این این این این این این					43

and the state of the state of the

.

410 5-7-8 \$0,51

" USED 59.0" OF NX CASING. WATER ENCOUNTERED AT 18.0". USED 59.5° OF NX CASING. WATER ENCOUNTERED AT 18.0°. WAVER LEVEL 17.0° ON COMPLETION.

10/2/66

8

Ś

10/3/66

INDICATES SHELBY TUBE C B A - AMOUNT PENETRATED (IN INCHES) B - AMOUNT RECOVERED (IN INCHES) C - SHELBY TUBE NUMBER

Classifications are made by visual inspection.

Water levels (WL). Figure indicates time of reading (hours) after completion of boring. Water levels indicated are those observed when borings were made, or as noted. Porosity of the soil strata, variations of rainfall, site topography, etc., may cause changes in these levels.

EACHFigures in right hand column indicate number of blows required to drive Z" O.D. sampling pipe Six Thomas 140-lb. weight falling 30 inches.

Total Footage.	121.0	· · · · · · · · · · · · · · · · · · ·
Foreman_JAM	ES TURNI	
Classification	by ۴۱	OR <u>EHAN</u>
Sheet_18	.o.	19

KEY TO BORING LOGS

Symbol	Description	Symbol	Description
<u>KEY TO</u>	SOIL SYMBOLS	<u>SOIL SA</u>	MPLERS
	Fly Ash and/or Bottom ASH (FILL)		2-in. O.D. Split-Spoon
	Poorly-graded SAND (SP)		
	Silty SAND (SM)		
0000 0000 0000 0000	Crushed Limestone		
	Low plastic Clayey SILT (ML)		
	Inorganic, non-plastic SILT (ML)		
MISCELI	ANEOUS SYMBOLS		
	Water table during drilling		
<u> </u>	Boring continues		
	N-value from Standard Penetration Test, ASTM D-1586 (blows/ft)		
•	Shear strength from Pocket Penetrometer (tsf)		

Notes:

1. Borings were drilled on October 28 through November 3, 2015, by Midwest Drilling, Inc., Florissant, Missouri, under subcontract with Reitz & Jens. Borings were made using a CME 550X ATV-mounted drill rig. Borings were advanced with 3.75-inch I.D. hollow-stem, continuous-flight augers (HSA) or 4.25-inch O.D. solid continuous-flight augers (CFA). When ground water was encountered, the augers were flooded with water or mud and rotary driling was begun. Borings were backfilled with cement grout and topped with cuttings.

2. Boring locations were staked before drilling using a hand held GPS. Stakes were left at the drilled locations for later identification. The coordinates and elevations of the borings were surveyed by Kuhlmann Design Group (KdG) for Ameren.

3. The borings were logged in the field by a Reitz & Jens' NICET-Certified Soils Technician based upon the recovered samples, cuttings and drilling characteristics. Samples were transported to Reitz & Jens' lab for testing. Field logs were revised, if needed, based upon laboratory classification. The field work was done under the supervision of Chris Cook, P.E.

4. Stratification lines shown on the logs represent approximate soil boundaries; actual changes in soil strata may be gradual or occur between samples.

Figure A-0

BORING LOG TH-2

Am Clo	eren	: L	abac	lie	e Pla	ant Bottom Ash Pond		FION: N	9912	37.6	б, Е ́	7235 TLINA	549. • N	1	10	0.00	
CLIENT: Gredell Engineering Resources DATE DRILLED						: 11-	-02-	15		. 11	AVI	117	00				
MATERIAL DESCRIPTION						ION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT		QU/2 STAN N-VA MOIS % FIN	CHEAF	R STF PP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RENGT	TION R LAS , %	f C TES ST F	TV ST OOT)	
0-	- - - 495					BOTTOM ASH, dark brown, find grain, with gravel-sized cinders (medium-dense	e sand-size <3/8"),				2	0	4	0	6	0	
5	- - - - 490			Ζ	50			4-5-5									
	-			Ζ	72	Becoming loose, with cinders <1/	2"	1-3-2									
	- 485 - - -			Ζ	89	FLY ASH, gray, silt- to fine sand very loose, with trace fine sand	-size grain,	1-2-1									
	- 480 - - -			Ζ	100	Becoming moist		1-0-1									
	- 475 - - - - 470	Ā		Ζ	44	Becoming saturated		1-0-1									
30 -	- -				100			0-0-0									
DRIL MET TYPE HAM LOG	DRILLER: Midwest Drilling WATER LEVELS METHOD: HSA / Mud Rotary STRATIFICATION LINES ARE APPROXIMATE SOIL BOUNDARIES ONLY; ACTUAL CHANGES MAY BE GRADUAL OR MAY OCCUR BETWEEN SAMPLES. BUD AND AND AND AND AND AND AND AND AND AN							R LEVELS : METER:	DURI <u>N</u> AT _ AT _ INST	NG D BO	RILLI RING D FEE FEE D AT	NG DRY AT T AF1 T AF1 F	23 COM FER FER FEET	FEET IPLETIO	DN OF HOU HOU	⁼ DRI JRS JRS	LLING

	ŀ
--	---

<u>REITZ & JENS, INC.</u> Consulting engineers

BORING LOG TH-2

u u	Am	Ameren: Labadie Plant Bottom Ash Pond Closure								
Image: Section of the section of t								ŝ		SHEAR STRENGTH, tsf
age age age be	Ē		LE	9	Ë	ECOVERY	MATERIAL DESCRIPTION	EIGHT (PCF) 6 INCHES QUALITY DE	CONTENT Y WEIGHT	△ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST A NUALUE (BLOWS PEP LAST FOOT)
B a s	PTH (FEE	EVATION	VTER TAB			RCENT RI		Y UNIT W OWS PER ID= ROCK	ISTURE C RCENT B	 MOISTURE CONTENT, % % FINES (SILTS & CLAYS)
465 7 100 Becoming medium-dense 6-5-4 40 60 460 40 56 DOTTOM ASII, dark gray, fine to coarse sand-size grain, nedium-dense 6-9-13 40 40 45 45 56 Becoming dark brown, fine sand-size grain, switched to mud rotary drilling. 9-10-7 40 40 45 56 Becoming silt to coarse sand grain, loose 5-5-0 40 40 450 7 56 Becoming silt to coarse sand grain, loose 5-5-0 40 445 7 50 Becoming silt to coarse sand grain, loose 5-5-0 40 445 7 100 Becoming silt to coarse sand grain, loose 5-5-0 4 60 435 8 8 9 9 9 9 435 8 8 9	ä	EL	Ň	<u> </u>	SA	PE		R J R	MO	PL LL
-465 7100 Becoming medium-dense 6-5-4 -460 -65 BOTTOM ASH, dark gray, fine to coarse sand-size grain medium-dense 6-9-13 -455 -65 Becoming dark brown, fine sand-size grain Note: 3 feet fall in after SS-9, filled IISA, switched to mud rotary drilling. 9-10-7 -450 -65 Becoming silt to coarse sand grain, loose 5-5-0 -440 -645 -63 -63 -440 -645 -6445 -6445 -430 Boring terminated at 60'-0" in sand -24-5	-									
403 100 Recoming medium-dense 6-5-4 400 56 BOTTOM ASII, dark gray, fine to coarse sand-size grain, medium-dense 6-9-13 400 56 Bocoming dark brown, fine sand-size grain, Note: 3 feet fall in after SS-9, filled IISA, switched to mud rotary drilling. 9-10-7 45 56 Becoming silt to coarse sand grain, loose 5-5-0 50 445 55 61 440 33 62 435 Boring terminated at 60'-0" in sand	-	_ 165								
35 100 Becoming medium-dense 6-5-4 40 56 BOTTOM ASH, dark gray, fine to coarse sand-size grain, medium-dense 6-9-13 45 56 Becoming dark brown, fine sand-size grain, Note: 3 feet fall in after SS-9; filled IISA, switched to mud rotary drilling. 9-10-7 450 56 Becoming silt to coarse sand grain, loose 5-5-0 50 445 55 440 33 2-4-5 60 435 Boring terminated at 60'-0" in sand		403								
35 460 40 56 BOTTOM ASII, dark gray, fine to coarse sand-size grain, medium-dense 40 455 56 Becoming dark brown, fine sand-size grain, Note: 3 feet fall in after SS-9; filled HSA, switched to mud rotary drilling. 9-10-7 450 56 Becoming silt to coarse sand grain, loose 5-5-0 50 445 55 56 60 445 55 56 61 33 2-4-5 62 435 61		_				100	Becoming medium-dense	6-5-4		
460 7 56 BOTTOM ASH, dark gray, fine to coarse sand-size grain, medium-dense 6-9-13 45 455 56 Becoming dark brown, fine sand-size grain Note: 3 feet fall in after SS-9, filled IISA, switched to mud rotary drilling. 9-10-7 450 45 450 7 60 7 100 Becoming silt to coarse sand grain, loose 5-5-0 440 55 56 SAND (SP), tan medium gray, medium-dense, fine 2-4-5 4 440 60 435 80ring terminated at 60'-0" in sand 100 Boring terminated at 60'-0" in sand	35 -	_								
40 7 56 BOTTOM ASH, dark gray, fine to coarse sand-size grain, medium-dense 6-9-13 45 455 7 56 Becoming dark brown, fine sand-size grain Note: 3 feet fall in after SS-9; filled HSA, switched to mud rotary drilling. 9-10-7 450 450 7 60 7 60 5-5-0 6 440 8 8 60 5-5-0 6 6 440 8 8 8 6 5-5-0 6 440 8 8 8 6 5 5 6 440 8 8 8 8 6 6 6 6 433 8 8 8 8 8 8 6 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_								
40 56 BOTTOM ASH, dark gray, fine to coarse sand-size grain, medium-dense 6-9-13 45 56 Becoming dark brown, fine sand-size grain Note: 3 feet fall in after SS-9, filled IISA, switched to mud rotary drilling. 9-10-7 450 56 Becoming silt to coarse sand grain, loose 5-5-0 50 100 Becoming silt to coarse sand grain, loose 5-5-0 51 445 33 SAND (SP), tan medium gray, medium-dense, fine 60 435 Boring terminated at 60'-0" in sand 2-4-5		- 460								
40 -455 -56 Becoming dark brown, fine sand-size grain, medium-dense -6-9-13 45 -56 Becoming dark brown, fine sand-size grain, Note: 3 feet fall in after SS-9; filled HISA, switched to mud rotary drilling. 9-10-7 -4 45 -450 -69-13 -6-9-13 -6-9-13 50 -450 -6-9-13 -6-9-13 -6-9-13 50 -440 -6-9-13 -6-9-13 -6-9-13 51 -445 -6-9-13 -6-9-13 -6-9-13 54 -6-9-13 -6-9-13 -6-9-13 -6-9-13 55 -6-9-13 -6-9-13 -6-9-13 -6-9-13 54 -6-9-13 -6-9-13 -6-9-13 -6-9-13 55 -6-9-13 -6-9-13 -6-9-13 -6-9-13 60 -6-435 -6-9-13 -6-9-13 -6-9-13 60 -6-430 -6-9-13 -6-9-13 -6-9-13 61 -6-9-13 -6-9-13 -6-9-13 -6-9-13 62 -6-9-13 -6-9-13 -6-9-13 -6-9-13 63 -6-9-13 -6-9-13 -6-9-13 -6-9-13 64 -6-9-13 -6-9-13 -6-9-13 -6-9-13 65 -6-9-13 -6-9-13 -		-			7		BOTTOM ASH dark gray fine to coarse	6 0 1 0		
45 45 45 45 45 45 45 45 45 45	40-	_			_	56	sand-size grain, medium-dense	6-9-13		
45 45 45 45 45 45 45 45 45 45		-								
45 7 56 Becoming dark brown, fine sand-size grain Note: 3 feet fall in after SS-9; filled HSA, switched to mud rotary drilling. 9-10-7 4 450 7 100 Becoming silt to coarse sand grain, loose 5-5-0 50 - 445 5-5-0 5-5-0 445 55 - - - -445 - SAND (SP), tan medium gray, medium- dense, fine - - 60 - - - - - 435 - - - - - 60 - - - - - 430 - - - - -		-								
45 45 45 45 45 45 50 445 55 445 55 445 55 445 55 445 55 445 55 445 55 445 55 445 55 445 55 445 55 5		-455								
45 -450 50 -450 50 -445 55 -445 -440 -440 -440 -445 -440 -445 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -430 -430		_			Δ	56	Becoming dark brown, fine sand-size grain	9-10-7		
450 100 Becoming silt to coarse sand grain, loose 50 -445 55 -445 55 -440 60 -440 440 33 60 -435 61 -435 62 -430	45 -	_			-		Note: 3 feet fall in after SS-9; filled HSA,			
-450 7100 Becoming silt to coarse sand grain, loose 5-5-0 4 -445 -445	-	_								
50 445 51 5-5-0 -445 -445 55 -445 -440 -440 60 -435 61 -435	-	- 450								
50 -445 55 -445 55 -440 60 -440 61 -435 62 -430		-					Becoming silt to coarse sand grain loose			
30 -445 55 -440 60 -440 60 -435 61 -435 62 -430	50	_				100	becoming site to coarse sand gram, toose	5-5-0		
-445 55 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -440 -435 -435 -435 -430		_								
-445 55 -440 SAND (SP), tan medium gray, medium-dense, fine 60 -440 80 -435 65 -430		_								
55 -		- 445								
55 -		-								
-440 SAND (SP), tan medium gray, medium-dense, fine 60 33 -435 Boring terminated at 60'-0" in sand	55 -	_								
-440 -440 60 -435 -435 -435 -430 -430		_		*****			SAND (SP) tan medium gray medium-			
$\begin{array}{c} 435 \\ 65 \\ -430 \end{array}$		- 440					dense, fine			
60										
60		_				33		2-4-5		
	00	_					Boring terminated at 60'-0" in sand			
		_								
		-435								
		-								
	65 -	_								
	-	_								
	-	/20								
		430								

A			EITZ Nsu		<u>&</u> ти б	ENS, INC.	BOF	RING	G	LOG TH-3	
Am Clo	eren sure	: L	abac	lie	e Pla	ant Bottom Ash Pond	LOCATION: N 991801.5, E 723758.8 ELEVATION: 497.3 DATUM: NAVD 1988				
CLII	ENI:	Gr	ede		Lng	ineering Resources	DATE	DRILLED	: 10-	30-15 SHEAR STRENGTH tsf	
					ΈRΥ			T (PCF) CHES LITY DES.	ENT IGHT	$\triangle QU/2 \blacksquare PP \Box SV \Leftrightarrow TV$ $1 \qquad 2 \qquad 3$	
EET)	NO	TABLE	5 LOG	түре	T RECOV	MATERIAL DESCRIPT	ΓΙΟΝ	T WEIGH PER 6 INC	RE CONT	STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT)	
DEPTH (I	ELEVATI	WATER 1	GRAPHIC	SAMPLE	PERCEN			dry Uni Blows I Rqd= Rc	MOISTUR	MOISTURE CONTENT, % % FINES (SILTS & CLAYS) PL	
0	_		~~~~				<u> </u>			20 40 60	
-	- 495					FLY ASH, gray-brown, fine sand grain, with bottom ash, cinders an coal, very dense, dry	1-size nd unburnt				
-	-				89			12-28-35			
5 -	_			\vdash				12 20 33			
-	- 490 -										
_	-				78	Becoming medium-dense		7-8-7			
10	- - 485										
- 15 —	-				78	Becoming dark brown, with trace (<1/2")	e cinders	5-8-14			
-	- 480 				80	Becoming very dense, with silt- t	o fine	15 22 24			
20 -	_				89	sand-size grains, trace cinders (<	1/2")	13-22-34			
-	- 475 -										
-	-				67	BOTTOM ASH, dark gray to bla fine sand-size trace up to <1/4"	ck, silt- to dense	11-19-13			
	- - - 470										
-	-				89	Sandy SILT (SM), gray, trace cla	y, with	1-3-3			
30 -	_					Clay lenses, loose, dry Boring terminated at 30'-0" in sar	ndy silt				
DRIL	LER:		1	Mid	west	Drilling	WATE	R LEVELS:	DURI	NG DRILLING Dry FEET	
MET		РТ⊦	AWW	FR	HS :	Automatic STRATIFICATION LINES ARE APPROXIMATE SOIL BOUND	ARIES		Y AT	BORING DRY AT COMPLETION OF DRILLING FEET AFTFR HOURS	
НАМ	IMER E	FFIC	CIENC	CY ((%):	GRADUAL OR MAY OCCUR E	BETWEEN		AT _	FEET AFTER HOURS	
LOG	GED B	Y: _			J. 1	Pruett	PIEZO	METER:	INST	ALLED AT FEET	

902
20
51
6
~
File

REITZ & JENS, INC. CONSULTING ENGINEERS
Ameren: Labadie Plant Bottom Ash Pond
Closure
CLIENT: Gredell Engineering Resources

BORING LOG TH-4

Am Clo	eren: sure	: L	aba	die	e Pla	ant Bottom Ash Pond	LOCA ⁻ ELEVA	tion: N ation: 5	9917 28.9	723.6, E 724216.7 DATUM: NAVD 1988
CLI	ENT:	Gı	rede		Eng	ineering Resources	DATE	DRILLED	: 10-	-28&29-2015
					ERY			(PCF) HES .ITY DES.	NT SHT	SHEAR STRENGTH, tsf $\triangle QU/2 \square PP \square SV \Leftrightarrow TV$ $1 \qquad 2 \qquad 3$
FEET)	NO	TABLE	c LOG	TYPE	T RECOVE	MATERIAL DESCRIPT	ION	T WEIGHT PER 6 INC DCK QUAI	RE CONTE T BY WEIG	STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT)
DEPTH (ELEVAT	WATER '	GRAPHI	SAMPLE	PERCEN			DRY UNI BLOWS RQD= R(MOISTU	MOISTURE CONTENT, % % FINES (SILTS & CLAYS) PL LL
0	-					BOTTOM ASH, dark brown, find sand-size grains, medium-dense, up to 1/2"	e to coarse with trace			
5	- 525 - -				67			6-5-4		
	- - 520 -			/	56	With trace silt-size particles (fly a	ash)	2-1-13		
 15 	- 515				33	Becoming loose, dark golden bro fine sand-size grains	wn and	1-3-2		
	- 510 				78	Becoming medium-dense		4-6-7		
25 —	- - 505 - -				78	BOTTOM ASH/FLY ASH MIX, fine sand size grains, loose	with silt to	3-3-3		
- 30 -	- 500				89	Becoming medium-dense, with period to 3/4"	articles up	5-5-5		
DRIL MET TYPE HAM	LER: _ HOD: _ E OF SI MER E	PT F		Mic CFA IER CY	lwest / Mu R: (%):	Drilling STRATIFICATION LINES ARE A Rotary APPROXIMATE SOIL BOUND/ Automatic ONLY; ACTUAL CHANGES MA GRADUAL OR MAY OCCUR B SAMPLES	WATEI ARIES AY BE ETWEEN	R LEVELS:	DUR N AT AT	ING DRILLING <u>58</u> FEET BORING DRY AT COMPLETION OF DRILLING FEET AFTER HOURS FEET AFTER HOURS
LOG	GED B	Y: _			J. I	Pruett Sawir LLS.	PIEZOI	METER:	INST	ALLED AT FEET

Sheet 1 of 3

REITZ & JENS, INC.

BORING LOG TH-4

Am	Ameren: Labadie Plant Bottom Ash Pond Closure								
							ES.		SHEAR STRENGTH, tsf
отн (FEET)	VATION	ter table	APHIC LOG	APLE TYPE	SCENT RECOVERY	MATERIAL DESCRIPTION	/ UNIT WEIGHT (PCF) JWS PER 6 INCHES D= ROCK QUALITY DI	ISTURE CONTENT RCENT BY WEIGHT	△ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) MOISTURE CONTENT, % N/ FINES (SILTS * CLAYS)
DEF		Ŵ	GRJ	SAN	PEF		DR) BLC RQI	MOI	
	-								
35 -	- 495 - - -				89	BOTTOM ASH, fine sand-size to fine gravel-size grains and coal (<3/4"), medium-dense	3-7-12		
 40 	- 490 - -				67		5-3-13		
 45 	- 485 - -				83		8-8-9		
50 -	- 480 - -				89	Becoming dark brown to black, trace gravel-size grains (<3/8")	3-11-11		
	- - 475 - - -	L ا							
60	- 470 - - -	-			94	Becoming black to dark gray, with traces of gravel-size grains and coal	3-8-10		
65 — 	- 465 - - -								

File: 2015120902

Æ		RF co	NSUL	<u>&</u>	J <u>ENS, INC.</u> BC	RI	N G	LOG TH-4
Am	eren	: L	abadi	e Pl	ant Bottom Ash Pond Closure			
				VERY		IT (PCF) CHES ALITY DES.	IENT EIGHT	SHEAR STRENGTH, tsf △ QU/2 ■ PP □ SV ◇ TV 1 2 3
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	PERCENT RECOV	MATERIAL DESCRIPTION	DRY UNIT WEIGH BLOWS PER 6 IN RQD= ROCK QU/	MOISTURE CONT PERCENT BY WE	 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PL ├───── LL
70 -	- 460 - -			100	grains with fine gravel-size grains	3-6-17		
-	_							
- 75 -	- 455 -							
_	_							
80 -	- 450 -			100	FLY ASH, dark gray, silt to fine sand-size grains, very loose	2-2-2		
-	_				Note: no drilling mud return, 80' to 86'.			
_	- 445							
85 -	_							
-	- 			100	Becoming black, silt-size particles	0-2-2		
90 -	_				mud; rods clogging.			
-	- - - 435				Silty SAND (SM), gray, fine, medium-			
95 -	_		7	83	dense, with some gray slity clay	6-12-12		
_	-				Boring terminated at 96'-6" in silty sand			
-	- 430 -							
-	_							
-	- 425							
105 -	-							

File: 2015120902

Figure A-3 Sheet 3 of 3

BORING LOG TH-26

Am	eren	: L	abac	lie	e Pla	ant Bottom Ash Pond	FION: N	9920	27.8, E 724055.9	
CLIE	ENT:	Gr	ede		Eng	ineering Resources	DATE	DRILLED	90.1 : 10-	-30-2015
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPT	ION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 PP SV TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PL
0	- - 495					FLY ASH, tan and gray-brown, s fine sand-size grains, very dense, traces bottom ash (<3/8")	ilt to very with			20 40 60
5	-				67	CRUSHED LIMESTONE with 1		22-40-44		
	- 490 - -				56	bottom ash, medium-dense		14-10-8		
	- 485 - - -				100	Clayey SILT FILL (ML), greenis trace bottom ash, very loose	h gray,	1-1-1		
	- 480 - - -				89	BOTTOM ASH, dark brown, find grains, with fly ash and cinders, t clay, dense	e sand-size race silty	12-21-21		
25 -	- 475 - - -	∇		Ζ	67	Becoming medium dense, with un coal, moist	ıburnt	15-15-10		
30 -	- 4 /0 - -	-11-		Ζ	89	SAND (SP), gray, fine, slightly si with trace fine gravel, saturated Boring terminated at 30'-0" in sar	ilty, dense,	6-14-15		
DRILLER: Midwest Drilling WATER LEVELS METHOD: HSA STRATIFICATION LINES ARE TYPE OF SPT HAMMER: Automatic ONLY; ACTUAL CHANGES MAY BE HAMMER EFFICIENCY (%): GRADUAL OR MAY OCCUR BETWEEN LOGGED BY: J. Pruett PIEZOMETER:									DURI <u>N</u> AT _ AT _ INST	NG DRILLING <u>28</u> FEET BORING DRY AT COMPLETION OF DRILLING FEET AFTER HOURS FEET AFTER HOURS ALLED AT FEET

BORING LOG TH-27

Am	eren	: L	abad	lie	e Pla	ant Bottom Ash Pond	LOCA	ATION: N 992223.7, E 724329.1				
	ENT:	Gr	ede	1	Eng	ineering Resources	DATE	DRILLED	92.0 : 10-	-29-2015		
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPT	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tsf △ QU/2 PP SV > TV 1 2 3 STANDARD PENETRATION TEST N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PI			
0	- - - 490					FLY ASH, grayish greenish brow fine sand-size grains, dense	/n, silt- to					
5	- - - - 485				56	Perched water at 6.5'		9-22-14				
	- - - - 480				. 86	Becoming very dense, dry		.23-50/1"		▲100+-→		
	- - - - 475	Ā			89	BOTTOM ASH, dark gray-brown to coarse sand-size grains, some size (<1/2"), medium-dense	n, medium fine gravel-	5-7-9				
20	- - - - 470				100	Becoming gray, fine to coarse san grains, very dense	nd-size	50/5"				
25 -	-				89	SAND (SP), gray-tan, fine, dense Boring terminated at 25'-0" in sar	nd	2-7-22				
- - 30 - -	- - 465 - -											
DRIL Met Type Ham Log	DRILLER: Midwest Drilling WATER LEVELS: DURING DRILLING _18_ FEET METHOD: HSA STRATIFICATION LINES ARE											

File: 2015120902

Æ			EITZ Dnsu	<u>Z</u>	<u>}</u>]	ENS, INC. Engineers	BOF	RING	G	LOG	TH	I-30	
Am Clo	eren sure	: L	abac	lie	Pla	ant Bottom Ash Pond	LOCA ELEVA	tion: N ation: 4	9914 92.8	79.9, E 72 Dati	23339.6 JM: NA	4VD 19	88
CLIE	ENT:	G	ede		Eng	ineering Resources	DATE	DRILLED	: 11-	-03-2015			:
)ES.		5H			
					DVERY			HT (PC) NCHES	VTENT	1 QU/2	PP 2	3	♦ IV
FEET)	NOI	TABLE	C LOG	ТҮРЕ	UT RECO	MATERIAL DESCRIPT	ION	IT WEIG PER 6 I OCK QU	RE CON VT BY M	STAND/ ▲ N-VALU	ARD PENE JE (BLOW	ETRATION S PER LAS	TEST ST FOOT)
ОЕРТН (ELEVAT	WATER	GRAPHI	SAMPLE	PERCEN			DRY UN BLOWS RQD= R	MOISTU	MOISTU O % FINE PI	JRE CON S (SILTS (TENT, % & CLAYS)	
0 -			×××××							20	40	60)
-	-					BOTTOM ASH, dark brown, find	e sand-size						
_	-					grams, trace tan ity asii, medium-	uciise						
_	- 490												
_	-				89			3-4-6					
5 —	-			H									
_	-												
_	-										<u></u>		
-	- 485			L.		Decoming damas fine and size t	a. amaxxal						
-	_				94	size grains, with unburnt coal and	l cinders	15-14-19					
10 -	_			<u> </u>									
_	_												
_	- 480												
15 _	_				83			9-14-14					
15	-										/		
_	-												
_	- 475												
-	-				67	Becoming medium-dense, fine to	medium	569					
20 -	-			4	6/	sand-size grains		5-0-8					
	-												
-	-												
-	-470	Ţ											
-	-			7	100	Becoming fine to coarse sand-siz	e grains,	5-7-4					
25 –	-			4		with cinders $(<1/2")$, moist							
_	-												
-	-					SILT (ML) tannish grav. trace of							
_	- 465					SILT (WIL), taimisi gray, trace ci	ay, 100se						
_	-				100			2-2-4					
30 -	-			H									
	-		шųш								i i I		
DRIL	LER:		1	Mid	west	Drilling	WATE	R LEVELS:	DURI		Э <u>22.75</u> г	EET	
METI		ртι		FR	HS.	A STRATIFICATION LINES ARE Automatic APPROXIMATE SOIL BOUND	ARIES		N AT	BORING DR	Y AT COMF	LETION OF ווסע	DRILLING
HAM	MER E	FFI	CIENC	сіх. УҮ (%):	ONLY; ACTUAL CHANGES M/ GRADUAL OR MAY OCCUR E	AY BE BETWEEN		AT _	FEET	AFTER	HOU	IRS
LOG	GED B	Y: _			J. F	Pruett SAMPLES.	PIEZO	METER:	INST	ALLED AT	_ FEET		

Æ	REITZ & JENS, INC. CONSULTING ENGINEERS BORING LOG TH-30									
Am	eren	: L	abad	lie	e Pla	ant Bottom Ash Pond Closure				
DEPTH (FEET)	ELEVATION	WATER TABLE	GRAPHIC LOG	SAMPLE TYPE	PERCENT RECOVERY	MATERIAL DESCRIPTION	DRY UNIT WEIGHT (PCF) BLOWS PER 6 INCHES RQD= ROCK QUALITY DES.	MOISTURE CONTENT PERCENT BY WEIGHT	SHEAR STRENGTH, tst △ QU/2 ■ PP □ SV ◇ TV 1 2 3 STANDARD PENETRATION TEST ▲ N-VALUE (BLOWS PER LAST FOOT) ● MOISTURE CONTENT, % ○ % FINES (SILTS & CLAYS) PL → ↓	
-	- 460 				1.7	Silty SAND (SM), tan, fine, medium-dense				
35	- - 455 -				17	Boring terminated at 35'-0" in silty sand	3-5-7			
40	- - 450 -									
45	- - 445 -									
50	- - 440 -									
55	- - 435 -									
60	- - 430 -									
65 —	- - - 425									

File: 2015120902

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

APPENDIX B

PERIODIC HAZARD CLASSIFICATION

REITZ & JENS, INC.

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

APPENDIX B: PERIODIC HAZARD POTENTIAL CLASSIFICATION 257.73(a)(2)

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION	. 1
1.1	Purpose	. 1
2.0	LABADIE ENERGY CENTER CCR UNITs	. 2
2.1	LCPA (Bottom Ash Pond)	. 3
2.2	LCPB (Fly Ash Pond)	. 3
3.0	CONCLUSION	. 4
4.0	REFERENCES	. 5

LIST OF FIGURES

Figure 1	
----------	--

LIST OF TABLES

Table 1	Active surface impoundments at the Labadie Energy Center
Table 2	Methodology used in the FEMA hazard classification of dams

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

APPENDIX B: PERIODIC HAZARD POTENTIAL CLASSIFICATION §257.73(a)(2)

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

40 CFR Part \$257.73(a)(2) requires the owner or operator of an existing surface impoundment to conduct an initial and periodic hazard potential classification assessment of the CCR unit. The owner or operator must document the hazard classification of each CCR unit as either a high hazard potential CCR surface impoundment, a significant hazard potential CCR surface impoundment, or a low hazard potential CCR surface impoundment. The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and each subsequent periodic classification was conducted in accordance with the requirements of \$257.73(a)(2). The following documents Reitz & Jens, Inc.'s periodic hazard potential classification for LCPA and LCPB at the Ameren Missouri Labadie Energy Center.

2.0 LABADIE ENERGY CENTER CCR UNITS

The Labadie Energy Center has two active surface impoundments; LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. Historically, the surface impoundments were used to store CCR, water retention, water clarification and alkalinity adjustment prior to discharge through Outfall #002 of NPDES permit number MO-0004812. The surface impoundment location and the centerline of the embankments are shown in Figure 1.

The hazard potential classifications were determined for the active surface impoundments at the Labadie Energy Center based on the Federal Emergency Management Agency (FEMA) hazard potential classification criteria. Pertinent data regarding each surface impoundment are shown in Table 1.

Table 1 – Active surface impoundments at the Labadie Energy Center

CCR Unit	Maximum Surface Area (acres)	Dam Height (feet)	Crest Length (feet)	Normal Pool Elevation (feet)
LCPA (Bottom Ash Pond)	164	26.3	10,500	NA
LCPB (Fly Ash Pond)	79	29.5	6,100	NA

The FEMA classification system has three levels of Hazard Potential Classification: Low, Significant, and High. The hazard potential classification system categorizes dams based on the probable loss of human life and the impacts on economic, environmental, and lifeline interests should the dam fail. The classification system relies heavily on judgement and common sense, because all possibilities cannot be defined. Allowances for evacuation or emergency actions by the population were not considered because emergency procedures should not be a substitute for appropriate design, construction, and maintenance of dam structures. A summary for the FEMA hazard classification system of dams is shown in Table 2.

Table 2 - FEMA hazard classification system of dams

Hazard Potential		Economic, Environmental,
Classification	Loss of Human Life	Lifeline Losses
Low	None expected	Low and generally limited to
		owner
Significant	None expected	Yes
High	Probable. One or more expected	Yes (but no necessary for this
		classification)

2.1 LCPA (Bottom Ash Pond)

The design plans for the LCPA were issued for construction in 1969 and construction was completed shortly after. The LCPA is located south of the plant and has an approximate area of 164 acres. The location of the LCPA and the pond's significant features are shown in Figure 1. The embankment forms a ring dam which ties into plant fill on the north side of the impoundment. The embankment height is the greatest on the south and west sides of the pond, and the maximum dam height is 26.3 feet. The LCPA has been dewatered, no longer receives CCRs and is being closed. Previously, LCPA received process water used to sluice bottom ash, flow from the plant combined drain sump (CDS), and discharge from the LCPB. The impoundment received both bottom and fly ash prior to completion of the LCPB. Discharge from the LCPB was near the southeast corner of the impoundment, and the water generally flowed east to west through ditches in the CCR. The LCPA contained a principal and emergency spillway; however, these have been repurposed or removed. Drawings for the LCPA are presented in the O&M manual in Appendix A of the *Ameren Missouri Labadie Energy Center: Evaluation of CCR Units* report.

Failure of the LCPA would result in the release of water and CCR into a man-made channel, Labadie Creek and/or the surrounding terrain. The failure should not cause loss of life or significant environmental impacts. Economic and lifeline losses of the impoundment would generally be limited to the owner. Therefore, according to the FEMA Hazard Potential Classification of Dams, the LCPA should have a Low Hazard Potential Classification.

2.2 LCPB (Fly Ash Pond)

The LCPB was built in the 1990's and has an area of approximately 79 acres. The location of the LCPB and the pond's significant features are shown in Figure 1. The LCPB is located east of the LCPA and south of the plant. The embankment forms a ring dam which ties into plant fill near the northwest corner of the impoundment. The embankment height is greatest on the east and south sides of the pond, and the maximum dam height is 29.5 feet. The western embankment section separates the pond from the LCPA. The LCPB has been dewatered, no longer receives CCRs and is being closed. Historically, the LCPB received process water used to sluice fly ash. The LCPB did not receive run-on from areas outside of the perimeter embankment. The LCPB outlet works were removed during closure construction. Drawings for the LCPB are presented in the O&M manual in Appendix A of the *Ameren Missouri Labadie Energy Center: Evaluation of CCR Units* report.

Failure of the LCPB would result in the release of water and CCR into the surrounding terrain. The failure should not cause loss of life or significant environmental impacts. Economic and lifeline losses of the impoundment would generally be limited to the owner. Therefore, according to the FEMA Hazard Potential Classification of Dams, the LCPB should have a Low Hazard Potential Classification.

Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Hazard Potential Classification October 2021

3.0 CONCLUSION

The initial hazard potential classifications for the active CCR surface impoundments at the Labadie Energy Center is Low Hazard Potential for the LCPA and LCPB. The hazard potential classification should be re-evaluated within 5 years of the initial hazard potential classification.

4.0 **REFERENCES**

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

Federal Emergency Management Agency. (2004). "Federal Guidelines for Dam Safety, Hazard Potential Classification System for Dams." Interagency Committee on Dam Safety.

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

APPENDIX C

PERIODIC STRUCTURAL STABILITY ASSESSMENT

REITZ & JENS, INC.

AMEREN MISSOURI LABADIE ENERGY CENTER **EVALUATION OF CCR UNITS 40 CFR PART 257** FRANKLIN COUNTY, MISSOURI

APPENDIX C: PERIODIC STRUCTURAL STABILITY ASSESSMENT 257.73(d)(1)

TABLE OF CONTENTS

Sectio	<u>n</u>	<u>Page</u>
1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	FIELD INSPECTION	2
2.1	LCPA (Bottom Ash Pond)	2
2.2	LCPB (Fly Ash Pond)	3
3.0	OPERATIONS AND MAINTENANCE REVIEW	4
3.1	LCPA (Bottom Ash Pond)	5
3.2	LCPB (Fly Ash Pond)	5
4.0	DESIGN AND CONSTRUCTION DOCUMENT REVIEW	6
4.1	LCPA (Bottom Ash Pond)	6
4.2	LCPB (Fly Ash Pond)	8
5.0	PERIODIC STRUCTURAL STABILITY ASSESSMENT SUMMARY	9
5.1	LCPA (Bottom Ash Pond)	9
5.2	LCPB (Fly Ash Pond)	9
6.0	REFERENCES	10

LIST OF FIGURES

Figure 1Site	Map
--------------	-----

LIST OF TABLES

Table 1	Volume and depth of impounded	CCR in Bottom Ash Pond
Table 2	Volume and depth of impour	nded CCR in Fly Ash Pond

LIST OF APPENDICES

APPENDIX I	2020 PERIODIC INSPECTION CHECK SHEETS
	2020 PERIODIC INSPECTION PHOTOGRAPH LOG
	2019 LABADIE ENERGY CENTER ANNUAL INSPECTION CHECK SHEET
APPENDIX II	DVD CONTAINING 2020 PERIODIC INSPECTION PHOTOGRAPHS
AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

APPENDIX C: PERIODIC STRUCTURAL STABILITY ASSESSMENT 257.73(d)(1)

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

40 CFR Part 257.73(d)(1) specifies that the owner or operator of all existing CCR surface impoundments, except for incised CCR units, shall conduct periodic structural stability assessments and document whether the design, construction, operation and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein.

The purpose of this periodic structural stability assessment for LCPA and LCPB at the Labadie Energy Center is to provide the information required by 40 CFR Part 257.73(d)(1). The periodic structural stability assessment consisted of field inspections, design and construction document review, and review of operation and maintenance records. Additional information for the LCPA and LCPB are included in the History of Construction Report.

2.0 FIELD INSPECTION

A field inspection of the existing surface impoundment at the Labadie Energy Center was conducted on October 28, 2020 by Reitz & Jens, Inc. personnel Jeff Bertel, P.E., Laura Sutton, P.E. and Ashley Martinez, E.I.; who were accompanied by Ameren Missouri personnel Marc Lueckenhoff, P.E. The weather was cloudy with temperatures around 45 degrees (F). The Missouri River stage at the LEC was elevation 452.0. The field inspection consisted of walking the crest and toe of the LCPA and LCPB perimeter berms, and visually reviewing the hydraulic outlet structures.

Observations made during the inspection were recorded on the Ameren Annual Inspection Check Sheet for each surface impoundment and is included in Appendix I. A photograph log of the main inspection findings is also included in Appendix I. Photographs taken during the inspection are included on a DVD contained in Appendix II. Observations from the field inspection are summarized below for each CCR unit.

2.1 LCPA (Bottom Ash Pond)

2.1.1 Embankment and Foundation Stability

Field inspection of the LCPA perimeter berm found no signs of instability. There was no visible vertical or horizontal misalignment of the crest. No slides, sloughs, tension cracking, slope depressions or bulges were observed in the crest or downstream slope. The downstream slope had recently been mowed and the vegetation was in good condition. No animal burrow activity was observed.

The downstream slopes have been inundated due to high water levels in the Missouri River and there were no signs of instability due to sudden drawdown.

Active closure construction was observed during the inspection. Some areas of the crest and upstream slopes have been disturbed due to the construction. The closure plans indicate that these areas will be repaired in latter stages of construction.

The weekly inspection reports from January 2019 to May 2020 describe minor erosion along Crest Rd. No deficiency was noted during the current inspection in this area and we assume it has been repaired.

2.1.2 Slope Protection

The downstream slopes for the LCPA are vegetated on the south and west sides of the pond. The southern embankment section width over a distance of approximately 2000 feet is considerable because of an adjacent beneficial fill. On the north side of the pond the downstream slope in this area is poorly defined given the thick section width, and low embankment height that tapers at a shallow slope angle into the adjacent plant fill. The downstream slope on the north side of the pond is vegetated or consists of bottom ash. The east embankment downstream slope was nearly indistinguishable during the current inspection. The vegetated downstream embankment slopes had recently been mowed and were in good condition.

The upstream slopes have been disturbed by closure construction. The upstream slopes are planned to be capped with an HDPE geomembrane liner overlain by 2 feet of soil that is vegetated.

2.1.3 Hydraulic Structures

The principal spillway has been converted to a stormwater inlet and gravity outfall for stormwater runoff from a closed section of the pond. The emergency spillway has been removed. Stormwater is routed to 5 stormwater outlets through the perimeter embankment.

Some minor deficiencies were observed at the locations of the new stormwater outlets. Specifically, the duckbill valve at Station 8+00 was no longer fixed to the outfall, the duckbill valve at Station 16+00 was partially buried in sediment and there is ponding above the invert of the duckbill at Station 21+00. We recommend reinspecting these outfalls after completion of closure construction to verify that they have been adequately addressed.

2.1.4 LCPA Investigation Conclusions

There were no significant deficiencies or signs of instability observed during the field inspection of LCPA, however there are maintenance items and additional monitoring that should occur. The following remedial items should be addressed as soon as feasible. Ameren should prepare documentation detailing the corrective measures taken as these items are addressed.

• Inspect areas disturbed by closure construction to verify that these areas have been restored and adequately armored for erosion protection. Inspect the stormwater outlets to verify that they have been installed in accordance with closure plans.

2.2 LCPB (Fly Ash Pond)

2.2.1 Embankment and Foundation Stability

Field inspection of the LCPB perimeter berm found no signs of instability. There was no visible vertical or horizontal misalignment of the crest. No slides, sloughs, tension cracking, slope depressions or bulges were observed in the crest or downstream slope.

The downstream slopes have been inundated by the Missouri River and there were no signs of instability due to sudden drawdown.

Ruts due to closure construction were observed on the embankment crest on the east and south sides of the impoundment. Verify that these ruts are repaired at the completion of closure construction.

There is good access to the embankment for surveillance of the crest and slopes. No operational activities or adjacent developments were observed that might threaten the integrity of the embankment.

The weekly inspection reports from January 2019 to May 2020 describe only minor deficiencies related to disturbance from closure construction.

Page 3

2.2.2 Slope Protection

The downstream slopes of the LCPB are vegetated, and the upstream slopes are currently being capped with an HDPE geomembrane overlain by 2 feet of soil.

The vegetation on the downstream slopes has been highly disturbed by closure construction. A portion of the slopes has been seeded but vegetation has not been established. We recommend inspecting the downstream slopes after construction has been completed to verify that they are adequately vegetated.

2.2.3 Hydraulic Structures

During closure construction the principal and emergency spillways have been removed. Rainfall falling within the footprint of the LCPB is routed to 5 stormwater outlets around the perimeter embankment.

2.2.4 LCPB Investigation Conclusions

There were no significant deficiencies or signs of instability observed during the field inspection of LCPB, however there are maintenance items and additional monitoring that should occur. The following remedial items should be addressed as soon as feasible. Ameren should prepare documentation detailing the corrective measures taken as these items are addressed.

- Verify that rutting on the embankment crest has been repaired at the completion of closure construction.
- We recommend inspecting the downstream slopes after construction has been completed to verify that they are adequately vegetated.

3.0 OPERATIONS AND MAINTENANCE REVIEW

The available operations and maintenance records were reviewed as part of the periodic structural stability assessment. The review included the Labadie Bottom Ash & Fly Ash Pond Embankments O&M Manual, the preceding weekly and annual inspections for a period of 1 year, on-site meetings to discuss ongoing maintenance, and the most recent survey data provided by Ameren Missouri.

The O&M Manual specifies minimum requirements for maintenance and establishes operational requirements for CCR placement. The manual states that no alterations or repairs to structural elements should be made without the approval of the Chief Dam Safety Engineer. The O&M Manual is attached in Appendix A of the *Ameren Missouri Labadie Energy Center: Evaluation of CCR Units* report.

3.1 LCPA (Bottom Ash Pond)

3.1.1 Operations

The LCPA has been dewatered and is currently being closed. The LCPA historically received bottom ash sluice flow, discharge from the LCPB, and flow from the Combined Drain Sump (CDS) which collects stormwater from the plant facility and coal pile, and wastewater treatment plant effluent.

Table 1 includes pertinent data regarding the volume and depth of impounded CCR in the LCPA.

Table 1 – Volume and depth of impounded CCR in LCPA

CCR	Est.	Est.	Est.	Est.	Est.	Est.
Unit	Volume of	Bottom	Minimum	Minimum	Maximum	Maximum
	Water	Elev. of	CCR Elev.	Depth of	CCR Elev.	Depth of
	and CCR	CCR Unit	(feet)	CCR (feet)	(feet)	CCR (feet)
	(CY)	(feet)				
LCPA	16,208,668	407.6	478	68	507	97

3.1.2 Maintenance

Weekly inspection check sheets from January 2019 to May 2020, and the 2019 annual inspection check sheet were reviewed. The following is a summary of observations from these inspections and their condition during the current inspection. The 2019 Labadie Annual Levee Inspection is included in Appendix I.

Weekly inspection reports describe erosion along Crest Rd at the discharge. During the current inspection no erosion was observed in this location.

In general, the inspection reports indicate the level of maintenance within the last year is adequate, and nearly all deficiencies recorded during the weekly and annual inspection reports within the last year have been addressed or are related to closure construction. During the current inspection the vegetated embankment slopes had recently been mowed. The current frequency of mowing and spraying should be adjusted as necessary to prevent excess vegetation growth and to promote dense vegetative cover.

3.2 LCPB (Fly Ash Pond)

3.2.1 Operations

The LCPB has been dewatered, no longer receives CCRs and is being closed. Historically, the LCPB received process water used to sluice fly ash. There is no contributing watershed to this pond outside of the perimeter dike.

Table 2 includes pertinent data regarding the volume and depth of impounded CCR in the LCPB.

CCR Unit	Est. Volume of Water and CCR (CY)	Est. Bottom Elev. of CCR Unit (feet)	Est. Minimum CCR Elev. (feet)	Est. Minimum Depth of CCR (feet)	Est. Maximum CCR Elev. (feet)	Est. Maximum Depth of CCR (feet)
LCPB	3,861,136	460	481	21	501	41

Table 2 – Volume and depth of impounded CCR in LCPB

3.2.2 Maintenance

Weekly inspection check sheets from January 2019 to May 2020, and the 2019 annual inspection check sheet were reviewed. The following is a summary of observations from these inspections and their condition during the current inspection. The 2019 Labadie Annual Levee Inspection is included in Appendix I.

Weekly inspection reports minor deficiencies such as erosion or HDPE liner disturbance that are generally related to closure construction.

The 2019 annual inspection noted small holes in the liner on the east side of the impoundment but further describes that they will be repaired as part of closure construction. Ponding was noted at the downstream toe on the east side of the impoundment from a recent flood. No flowing water was observed. The report recommended that the area be monitored during routine inspections. The report also describes ruts on the embankment crown, probably related to closure construction.

In general, the inspection reports indicate the level of maintenance within the last year is adequate, and nearly all deficiencies recorded during the weekly and annual inspection reports within the last year have been addressed or are related to closure construction. During the current inspection the downstream slopes were highly disturbed and should be reinspected at the completion of closure to verify they are adequately vegetated.

4.0 DESIGN AND CONSTRUCTION DOCUMENT REVIEW

4.1 LCPA (Bottom Ash Pond)

4.1.1 Embankment and Foundation Stability

There are no construction documents or records for the original construction of the LCPA Dam. The embankment was raised 8.5 feet in the early 1990's using a mixture of bottom and fly ash. Fill placed to raise the embankments was blended and compacted to achieve permeability no greater than 1x10-6 cm/sec. Based on borings conducted in 2010, the top 9 to 10 feet of the embankment is medium dense to very dense and consists of bottom and fly ash. Beneath the ash fill are 1 to 3 foot thick layers of clay, silt and sand. The coarse grain layers have an estimated friction angle of 30 to 33°. The fine grain soils have an undrained strength that ranges from 1400 to 1500 psf, based on UU tests and correlations for N-values, and CPT tip resistance and skin friction.

The embankment dam was constructed of compacted fill with upstream slopes of 2 horizontal (H) to 1 vertical (V) and downstream slopes of 3H to 1V. The minimum crown width is approximately 20 feet. The width of the embankment section is increased considerably on the west side of the impoundment because of fill placed for the plant access road and over a distance of 2000 lineal feet along the south side of the impoundment because of a beneficial fill.

The initial periodic safety factor assessment for LCPA were completed in October 2016. LCPA has been dewatered and is currently being closed. Reitz & Jens completed analyses of LCPA for the closed condition. Reitz & Jens's report is included in Appendix D. The initial periodic safety factor assessment was completed by Reitz & Jens, and is also included in Appendix D.

REITZ & JENS, INC.

Page 7

4.1.2 Slope Protection

The perimeter berm of the LCPA was originally designed with vegetated downstream and upstream slopes. Presently, the downstream slopes are vegetated. The upstream slopes are being capped with HDPE geomembrane overlain by 2 feet of soil. There are no design documents for the slope protection. No significant erosion concerns were observed during the inspection.

4.1.3 Spillways

The principal spillway has been converted to a stormwater inlet and gravity outfall for stormwater runoff from a closed section of the pond. The emergency spillway has been removed. Stormwater is routed to 5 stormwater outlets through the perimeter embankment.

4.2 LCPB (Fly Ash Pond)

4.2.1 Embankment and Foundation Stability

The original construction plans for the LCPB are presented in the O&M Manual. The embankment dam was constructed of earth fill with upstream slopes of 2H to 1V and 3H to 1V, and downstream slopes of 3H to 1V. Earth fill was obtained from the incised portion of the pond, and the lowest elevation at the bottom of the pond is at 460.0 feet. The crown width is 10 feet near the northwest corner of the pond where the embankment height is generally less than 10 feet. The crown width for the remainder of the pond has a minimum width of 20 feet. The interior of the LCPB is lined with 60 MIL HDPE on the interior slopes, and 40 MIL HDPE on the pond bottom.

The embankment was constructed of earth fill burrowed from the interior of the pond. The design plans note that the top 6 feet of the foundation soil inside the perimeter berm should be used as fill. CPT soundings conducted in 2010 showed that the embankment fill is heterogeneous and consists of sand, silt and clay that were generally placed in 8 to 12 inch thick lifts. The coarse grain lifts are generally medium dense and the fine grain lifts are firm to stiff.

The initial periodic safety factor assessment for LCPB were completed in October 2016. LCPB has been dewatered and is currently being closed. Reitz & Jens completed analyses of LCPB for the closed condition. Reitz & Jens's report is included in Appendix D. The initial periodic safety factor assessment was completed by Reitz & Jens, and is also included in Appendix D.

4.2.2 Slope Protection

The LCPB was originally designed with vegetated downstream slopes and upstream slopes lined with 60mil HDPE. The vegetation on the downstream slopes has been highly disturbed by closure construction. A portion of the slopes has been seeded but vegetation has not been established. We recommend inspecting the downstream slopes after construction has been completed to verify that they are adequately vegetated. The upstream slopes are being capped with HDPE geomembrane overlain by 2 feet of soil. There are no design documents for the slope protection. No significant erosion concerns were observed during the inspection.

4.2.3 Spillways

During closure construction the principal and emergency spillways have been removed. Rainfall falling within the footprint of the LCPB is routed to 5 stormwater outlets around the perimeter embankment.

5.0 PERIODIC STRUCTURAL STABILITY ASSESSMENT SUMMARY

The initial periodic structural stability assessment found no structural stability deficiencies, no significant issues with the current operations and maintenance, and that the design and construction of the embankments and spillways were adequate for the range of loading conditions under which the CCR unit should be subjected. However, the deficiencies listed below do need to be addressed.

5.1 LCPA (Bottom Ash Pond)

• Inspect areas disturbed by closure construction to verify that these areas have been restored and adequately armored for erosion protection. Inspect the stormwater outlets to verify that they have been installed in accordance with closure plans.

5.2 LCPB (Fly Ash Pond)

- Verify that rutting on the embankment crest has been repaired at the completion of closure construction.
- We recommend inspecting the downstream slopes after construction has been completed to verify that they are adequately vegetated.

6.0 **REFERENCES**

Ameren Missouri. (2012). "Operation and Maintenance Manual; Labadie Bottom Ash & Fly Ash Pond Embankments, Labadie, Missouri, Franklin County." Dam Safety and Hydro Engineering, St. Louis, Missouri.

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

APPENDIX I

2020 PERIODIC INSPECTION CHECK SHEETS

2020 PERIODIC INSPECTION PHOTOGRAPH LOG

2019 LABADIE ENERGY CENTER ANNUAL INSPECTION CHECK SHEET

REITZ & JENS, INC.

December 14, 2020

Jeffrey Greer, P.E. Manager of Dam Safety & Hydro Licensing Ameren Missouri 11149 Lindbergh Business Ct. St. Louis, MO 63123

RE: Ameren Missouri – Labadie Energy Center 2020 Annual Inspection Landfill Cell 1 (LCL1), Fly Ash Pond (LCPB) and Bottom Ash Pond (LCPA)

Dear Matt,

Enclosed herewith are Annual Inspection Check Sheets for the 2020 Annual Inspection of the active surface impoundments Fly Ash Pond (LCPB) and Bottom Ash Pond (LCPA), and active landfill Cell 1 (LCL1) at Ameren Missouri's Labadie Energy Center conducted on October 28, 2020 by Reitz & Jens and Ameren Personnel. The Annual Inspection was in general accordance with 40 CFR Part 257.83(b), and included a review of available information regarding the status and condition of the CCR unit, including files available in the operating record.

No signs of structural weakness which would impact the operation and safety of the unit were observed. Minor maintenance items observed in the 2020 Annual Inspection associated with routine upkeep, presently do not impact the structural integrity of the embankment. Nonetheless, Ameren should address these minor maintenance items in a timely manner.

The following documents were reviewed as part of the Inspection:

- 1. Ameren Missouri. (2012). "Operation and Maintenance Manual; Labadie Bottom Ash & Fly Ash Pond Embankments, Labadie, Missouri, Franklin County." Dam Safety and Hydro Engineering, St. Louis, Missouri.
- 2. Ameren Missouri. (2016). Operation and Maintenance Manual for Cell 1 and Pond 1, Labadie Energy Center Utility Waste Landfill, Franklin County, Missouri. "Power Operations Services, St. Louis, Missouri.
- 3. Ameren Missouri. (2016). "Ameren Missouri Labadie Energy Center Construction Permit Modifications for Permitted Utility Waste Landfill, Permit Number 0907101, Franklin County, Missouri."
- 4. Ameren Missouri. (2016). "2016 Labadie Annual Inspection Checklist." September 23, 2016

- 5. Ameren Missouri. (2017). "2017 Labadie Annual Inspection Checklist." September 21, 2017
- 6. Ameren Missouri. (2018). "2018 Labadie Annual Inspection Checklist." September 19, 2018
- 7. Ameren Missouri. (2018). "Labadie Energy Center Ash Pond Closures 95% Construction Drawings Franklin County, Missouri Revised February 2020."
- 8. Ameren Missouri. (2019). "2019 Labadie Annual Inspection Checklist." September 17, 2019
- 9. Ameren Missouri. (2019). "Cell 1, Labadie Fly Ash Pond, and Labadie Bottom Ash Pond, Weekly Inspection Checksheet." January 4 to December 31, 2019
- 10. Ameren Missouri. (2020). "Cell 1, Labadie Fly Ash Pond, and Labadie Bottom Ash Pond, Weekly Inspection Checksheet." January 8 to May 19, 2020
- 11. Ameren Ash Volumes Inventory, Excel Spreadsheet
- 12. Ameren CCR Unit Inventory, Excel Spreadsheet
- Environmental Protection Agency (EPA). (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities." 40 CFR Parts 257 to 261. Vol. 80. No. 74. Federal Register
- 14. O'Brien & Gere. (2011). "Dam Safety Assessment of CCW Impoundments, Labadie Power Station." USEPA Contract Number; EP-10W000673

The subsequent annual inspection must be conducted no later than October 28, 2021.

Sincerely,

Jeff Bertel, P.E. Project Manager Reitz & Jens, Inc.

P:\Amerenue\2020012463\Labadie\2020 Inspection\Labadie Annual Inspection Cover Letter.docx

LABADIE ENERGY CENTER

Bottom Ash Pond (LCPA) Annual Inspection Check Sheet

Date	10/28/2020
Inspector	J. Bertel, L. Sutton, A.
-	Martinez, M. Lueckenhoff
Pool Level	NA
River Level	El. 452
Temperature	45°F
Weather	Cloudy

Date of Previous Annual Inspection: 09/17/2019

Date of Previous Periodic Inspection: 09/23/2015

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection:

None

Describe any action taken to restore or improve safety and integrity of impounding structure:

The impoundment is currently being closed and no longer contains impounded water.

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

The interior of the impoundment is being capped with 2 feet of soil and an HDPE geomembrane. The interior has been graded to drain surface water to conduits through the perimeter embankment, the HDPE geomembrane has been installed, and soil is being placed on top of the geomembrane.

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

Impoundment no longer used for ash handling and disposal, and is being closed.

List the approximate remaining storage capacity of the impounding structure: NA

List the approximate maximum, minimum and present depth and elevation of the impounded water since the previous annual inspection: Max – el. 484.99 ft, depth 75.09 ft; Min – el. 477.85 ft, depth 68.04 ft; Present – None

List the approximate maximum, minimum and present depth and elevation of the impounded CCR since the previous annual inspection: Max – el. 507 ft, depth 97 ft; Min – el. 478 ft, depth 68 ft; Present – el. 507, depth 97 feet

Approximate volume of impounded water and CCR at the time of the inspection: 16,208,668 CY of CCR, no impounded free water

Describe any changes to the downstream watershed:

None

LABADIE ENERGY CENTER Bottom Ash Pond (LCPA) Annual Inspection Check Sheet

	Inlet and Outlet Works				
ltem	Condition Code	Comments			
Outlet Condition	NI	The outlet has been retrofitted to serve as a pipe for stormwater only surface drainage from the closed impoundment.			
Valve Condition/ Operability	NI	The existing gate valves no longer serve any purpose.			
Discharge Piping Condition	NI				
Leakage	NI				
Outfall Condition	NI				
Outlet Channel	GC	The outlet channel appeared in good condition. (IMG_3866)			
Discharge (color and/or sediment)	NI	Discharge was from stormwater runoff from a portion of closed impoundment.			
Obstructions	GC	No obstructions were observed in outlet channel.			
Instrumentation	NI				
Inlet Piping and Supports Condition	NI	Inlet piping has been removed.			
Emergency Spillway Condition	NI	Emergency spillway has been filled as part of closure. (IMG_3848)			
Other					

	Earth Embankment					
ltem	Condition Code	Comments				
Vertical & Horizontal Alignment of Crest	GC	There was no visible vertical or horizontal misalignment of the crest. (IMG_3851 and IMG_3853).				
Seepage/Wetness/	GC	No seepage, wetness or ponding areas were observed.				

LABADIE ENERGY CENTER Bottom Ash Pond (LCPA) Annual Inspection Check Sheet

	Earth Embankment				
ltem	Condition Code	Comments			
Ponding Areas					
Erosion	GC	No erosion was observed.			
Fencing	GC	The perimeter fence is in good condition. (IMG_20201028_091024)			
Vegetation	GC	Vegetation on the downstream embankment had recently been mowed and was in an adequate condition. (IMG_20201028_091654)			
Sloughs/Slides/ Cracks	GC	No sloughs, slides or cracks were observed.			
Animal Control	GC				
Other	ММ	The duckbill valve at Station 8+00 is no longer fixed to the outfall. Reattach duckbill valve. (IMG_20201028_091336) The duckbill valve at Station 16+00 is partially buried in sediment. Remove sediment and create positive drainage away from the valve. (IMG_20201028_091901) There is ponding above the invert of the duckbill valve at Station 21+00. Create positive drainage away from the outfall. (IMG_20201028_092702)			

Note location of observation on attached plan sheet.

Condition Code

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

Figure 1 –LCPA outlet channel in good condition.

Figure 2 – LCPA emergency spillway has been removed as part of closure.

Figure 3 – Embankment crest on southwest side of LCPA.

Figure 4 – Embankment crest on the west side of the impoundment.

Figure 5 – The perimeter fence is in good condition.

Figure 6 – Vegetation on downstream slope..

Figure 7 – Duckbill valve at Station 8+00 is no longer attached.

Figure 8 – The duckbill valve at Station 16+00 is partially buried in sediment.

Figure 9 – There is ponding above the invert of the duckbill valve at Station 21+00.

LABADIE ENERGY CENTER

Fly Ash Pond (LCPB) Annual Inspection Check Sheet

Date	10/28/2020
Inspector	J. Bertel, L. Sutton, A.
-	Martinez, M. Leuckenhoff
Pool Level	NA
River Level	El. 452
Temperature	45°
Weather	Cloudy

Date of Previous Annual Inspection: 09/17/2019

Date of Previous Periodic Inspection: 09/23/2015

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection:

None

Describe any action taken to restore or improve safety and integrity of impounding structure:

The impoundment is currently being closed and no longer contains impounded water.

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

The perimeter embankment on the east and south sides has been lowered to el. 488 feet. The interior of the impoundment is being capped with 2 feet of soil and an HDPE geomembrane. The interior has been graded to drain surface water to conduits through the perimeter embankment, the HDPE geomembrane has been installed, and soil is being placed on top of the geomembrane.

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

Impoundment no longer used for ash handling and disposal, and is being closed.

List the approximate remaining storage capacity of the impounding structure: NA

List the approximate maximum, minimum and present depth and elevation of the impounded water since the previous annual inspection:

<u>Max. – el. 481.5 feet, depth 21.5 feet, Min. – el. 467.75 feet, depth 7.75 feet, Present - None</u>

List the approximate maximum, minimum and present depth and elevation of the impounded CCR since the previous annual inspection:

Max. – el. 501 feet, depth 41 feet, Min. – el. 481 feet, depth 21 feet, Present – el. 501 feet, depth 41 feet.

Approximate volume of impounded water and CCR at the time of the inspection: 3,861,136 CY of CCR, no impounded free water

Describe any changes to the downstream watershed: None.

LABADIE ENERGY CENTER Fly Ash Pond (LCPB) Annual Inspection Check Sheet

	Inlet and Outlet Works				
ltem	Condition Code	Comments			
Outlet Condition	NO	Outlet has been removed as part of closure.			
Pump Condition/ Operability	NO				
Outfall Condition	NO				
Leakage	NO				
Discharge (color and/or sediment)	NO				
Obstructions	NO				
Instrumentation	NO				
Inlet Piping and Supports	NO	Inlet piping has been removed as part of closure.			
Emergency Spillway Condition	NO	Emergency spillway has been removed as part of closure.			
Other					

Earth Embankment					
ltem	Condition Code	Comments			
Vertical & Horizontal Alignment of Crest	GC	There was no visible vertical or horizontal misalignment of the crest. (IMG_3807 and IMG_3812).			
HDPE Liner	NI	The bottom HDPE liner is covered with soil used for closure.			
Seepage/Wetness/ Ponding Areas	GC	No seepage/wetness or ponding areas observed.			
Erosion/Rutting	OB	Rutting was observed on the embankment crest on the east and south sides. (IMG_3802) It is likely the ruts will be addressed during closure construction.			
Fencing	GC	The perimeter fence is in good condition.			

LABADIE ENERGY CENTER Fly Ash Pond (LCPB) Annual Inspection Check Sheet

	Earth Embankment				
ltem	Condition Code	Comments			
Vegetation	ММ	The vegetation on the downstream slopes has been highly disturbed by closure construction (IMG_1339). A portion of the slopes has been reseeded but vegetation has not been established. We recommend inspecting the downstream slopes after construction has been completed.			
Animal Control	GC				
Sloughs/Slides/ Cracks	GC	No sloughs, slides or cracks were observed.			
Other					

Note location of observation on attached plan sheet.

LABADIE ENERGY CENTER Fly Ash Pond (LCPB) Annual Inspection Check Sheet

Condition Code

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.
IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

Figure 1 –LCPB embankment crest with ruts on east side of the impoundment.

Figure 2 – LCPB embankment crest with ruts on east side of the impoundment.

Figure 3 – LCPB embankment crest with ruts on east side of the impoundment.

Figure 4 – The downstream slopes have been highly disturbed by closure construction.

Figure 5 – LCPB outlet works have been removed.

LABADIE ENERGY CENTER

Cell 1 (LCL1) and Pond 1

Date	10/28/2020
Inspector	J. Bertel, M. Lueckenhoff
Weather	45°
Temperature	Cloudy

Date of Previous Annual Inspection: 09/17/2019

Date of Previous Periodic Inspection: <u>12/14/2016</u>

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection:

None

Describe any action taken to restore or improve safety and integrity of impounding structure:

None

Describe any modifications to the geometry of the impounding structure since the previous annual inspection: None.

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

Currently installing the UWL return water line to help manage water levels in Pond 1.

List the approximate remaining storage capacity of the impounding structure: 2,293,608 CY

List the approximate maximum, minimum and present depth and elevation of the impounded CCR in Cell 1 since the previous annual inspection:

		Maxim	um	Minim	um	Present	
		Elevation Depth		Elevation	Depth	Elevation	Depth
		(ft) (ft)		(ft)	(ft)	(ft)	(ft)
Cel	11	484	6	479	2	484	6

Approximate volume of CCR at the time of the inspection: 121,353 CY

Describe any changes to the downstream watershed:

None.

Is water ponded in Cell 1? (Y or N)	No
Water Level in Pond 1 (Meter at Pump Wet Well)	127.1
Elapsed Hours on Cell 1 North Leachate Pump (#1)	9,646.5
Elapsed Hours on Cell 1 South Leachate Pump (#2)	10,165.5

Cell 1		
ltem	Condition Code	Comments
Erosion, sloughing, sliding, boils, seepage	GC	None observed. (IMG_3931, IMG_3934 and IMG_3935)
Settlement, depression or crack in embankment	GC	The FCM revetment has a small crack near the downstream toe where it curves downward into the anchor trench. This condition does not seem indicate a larger issue related to embankment stability. Monitor during future inspections. (IMG_3948)
Erosion or rutting gravel top & perimeter roads and external ramps	GC	No erosion or rutting observed. (IMG_3936)
Storm Water Inlet to Pond 1 – settlement, cracking, depression	OB	Small cracks have developed in the center slabs. Monitor the cracks during future inspections. (IMG_3933)
FCM revetment below Storm Water Inlet in Pond 1	GC	
HDPE Liner – damage, folds, etc.	NI	HDPE liner is not exposed.
HDPE Rain Flap – damage, folds, out of position	GC	The rain flap appeared to be adequately secured. (IMG_3937)
Leachate Pump No. 1 (North) – note alarm, damage, slide erosion	GC	⊠ Check if pump test passed.

Cell 1		
ltem	Condition Code	Comments
Leachate Pump No. 1 (North) – record both leachate level meters	GC	Pump Level – 13.4" Secondary Level – 10.9"
Leachate Pump No. 2 (South) – note alarm, damage, slide, erosion	GC	⊠ Check if pump test passed.
Leachate Pump No. 2 (South) – record both leachate level meters	GC	Pump Level – 16.4" Secondary Level – 17.2"
Storm Water Sump Pump – running, alarm, power on, discharge to Pond	GC	Stormwater pump was not actively running but appeared functional.

Leachate Tank		
ltem	Condition Code	Comments
Leachate Tank – record leachate level, note alarm, leakage, damage	OB	Level in Tank – -144.2" Verify that level sensor is calibrated and the reading is meaningful.
Leachate Tank Heat Trace – note alarm, any damage	MM	Alarm indication lights were on for the heat trace. Repair heat trace electrical system. (IMG_3925)
Main Electric Panel – note any alarms, damage, any problems	GC	

Evaporator No. 1 (West)		
ltem	Condition Code	Comments
Evaporator – note if running, any alarm, leaking, hose, any problems	GC	Evaporator was running. (IMG_3930)
Booster Pump – note if running, any alarms, leaks, hoses, any problems	GC	Booster pump was running. (IMG_3933)
Electric Panel – note any alarm, any problems, check cables	NO	

Evaporator No. 2 (East)		
ltem	Condition Code	Comments
Evaporator – note if running, any alarm, leaking, hose, any problems	GC	Evaporator was running. (IMG_3930)
Booster Pump – note if running, any alarms, leaks, hoses, any problems	GC	Booster pump was running. (IMG_3932)
Electric Panel – note any alarm, any problems, check cables	NO	

Pond 1		
ltem	Condition Code	Comments
Perimeter erosion, sloughing, slides, boils, seepage	GC	None observed. (IMG_3927 and IMG_3929)
Settlement, depression or crack in embankment	GC	No settlement, depressions or cracks observed.
Erosion or rutting gravel top & perimeter roads and external ramps	GC	No erosion or rutting observed.
Emergency Spillway – settlement, cracking, depression	GC	The emergency spillway was in good condition. (IMG_3920 and IMG_3921)
Imminent discharge through emergency spillway	GC	The water level was several feet below the spillway invert. (IMG_3920)
HDPE Liner – damage, folds, etc.	GC	The HDPE liner appeared in good condition.
Pipes from Leachate Tank and Evaporator Booster Pumps	GC	

Storm Water Wet Well		
ltem	Condition Code	Comments
Gate Valve to Pond 1 – normally should be fully open	GC	
Gate Valve to Exterior Flood Water Inlet – should be fully closed	OB	Some corrosion on handwheel, gate stem, valve housing and stem brackets. Some corrosion on handrail adjacent to metal grating. Remove corrosion and paint. (IMG_3913 to IMG_3916)

Storm Water Wet Well		
ltem	Condition Code	Comments
Storm Water Pump No. 1 – note if running, any alarms, valve position	NI	Storm water pump was not running during the inspection.
Storm Water Pump No. 2 – note if running, any alarms, valve position	NI	Stormwater pump was not running during the inspection.
Storm Water Pumps Electrical Panel – note any alarms, problems	GC	
Flood Water Inlet – note any discharge, accumulation of debris	GC	

Other		
ltem	Condition Code	Comments
Hydrant	NI	
Overpass	NI	
Overpass Abutments & Wing Walls – seepage, settlement, problems	NI	
Lights, Security Cameras	NI	
Perimeter Fence & Gate – holes, breaks, vandalism, gates unlocked	GC	

Condition Code

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

Drive slowly around tops of embankments looking for visible signs of present or developing major problems. Indicate location(s) of problems or anomalies on inspection plan - sign, date and attach sheet to report.

If a problem is noted, email or FAX report to appropriate persons. If emergency condition is noted, immediately contact the Shift Operations Supervisor and Chief Dam Safety Engineer.

Campbell, Gene A

From: Sent: To: Cc: Subject: Attachments: Campbell, Gene A Friday, November 22, 2019 11:58 AM Becker, Albert W; Morrell, Patrick G Frerking, Matthew K; Greer, Jeff W Labadie 2019 Annual Dam Safety Levee Inspection BAP.pdf; FAP.pdf; Landfill.pdf

All,

The 2019 Labadie Pond LCPA (Bottom Ash Pond), Pond LCPB (Fly Ash Pond), and Landfill LCL1 (Labadie Landfill) inspection checklists are attached. The inspection was performed by Gene Campbell and Albert Becker on September 17, 2019.

Inspection photos are located at <u>P:\Labadie\Dam Safety\Annual Inspection\2019 Inspection\09-17-19 Final</u> Inspection Photos

Overall the ponds and landfill are in good condition with minor maintenance items identified. The following are recommended action items from the annual inspection. Please review the action items and give me a call if you have any questions. Dam Safety will coordinate with our vegetation contractor to continue maintaining the vegetation on the levee.

Dam Safety and Maintenance Items from the Annual Inspection

Pond LCPA (Bottom Ash Pond)

- 1. Known leak through the discharge on valve 2.
- 2. Standing water was noted at the toe of the levee on the south side due to tire ruts. This rutting should be repaired to create positive drainage.
- 3. Standing water was noted at the toe of the levee on the west side of the pond. This area should continue to be inspected during the plant weekly inspections.
- 4. Continue to clear vegetation on the slopes of the embankment
- 5. Repair the erosion on the upstream side of the levee near the emergency spillway.
- 6. Clean the staff gage.

Pond LCPB (Fly Ash Pond)

1. Continue to clear the vegetation on the embankments and on the crest.

Landfill (Cell 1 and Pond 1)

- 1. Minor erosion area noted on the upstream side at the northeast corner of the landfill. This area should continue to be inspected during the plant weekly inspections.
- 2. There is a tear in the HDPE rain flap on the upstream southwest corner of the Landfill. This should be repaired.
- 3. There is a faulty level sensor for Leachate Pump 1 and 2. Parts are on order.
- 4. There is a faulty level sensor on the leachate tank. Parts are on order.
- 5. Erosion was noted on the perimeter ramps. The ramps should be repaired.

Completed actions since the last inspection

1. Vegetation management completed Dam Safety's Vegetation Contractor.

Please let me know if you have any questions or comments.

Thank you,

.....

GENE CAMPBELL, P.E., PMP Career Engineer Dam Safety & Hydro Engineering T 314.957.3432 C 618.444.0823 E gcampbell2@ameren.com

.....

Ameren Missouri 11149 Lindbergh Business Ct. St. Louis, Missouri 63123 AmerenMissouri.com

Please consider the environment before printing this e-mail.

40 CFR Parts 257

Checklist for Inspection Requirements for CCR Surface Impoundments 257.83 (b)

Labadie Power Station – LCPA (Bottom Ash Pond)

1. Annual Inspection

Requirements	Signs of actual or potential	Disruptions or potential		
	structural weakness	disruption to the operation and		
		safety of the unit		
CCR Unit and appurtenant	None Observed	None Observed		
structures 257.83(b)(ii)				
Hydraulic structures underlying	None Observed	None Observed		
the base of the CCR unit				
257.83(b)(iii)				

The 2019 Annual Inspection included a review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record in general accordance with 257.83(b)(i).

Minor maintenance items (e.g. animal burrows, ruts, etc.) associated with routine upkeep observed during the 2019 Annual Inspection, presently do not impact the structural integrity of the embankment. Ameren plans to address these items in a timely manner through Ameren's work control process.

Engineer's Seal

Gene Campbell, P.E. License: PE- 2011020071 Date: November 22, 2019

Date	9/17/2019	
Inspector	G. Campbell	
	A. Becker	
Pool Level	478.78	
River Level	464.1	
Temperature	85°F	
Weather	Partly Cloudy	

Date of Previous Annual Inspection: 09/19/2018

Date of Previous Periodic Inspection: Not Applicable

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection: None

Describe any action taken to restore or improve safety and integrity of impounding structure:

None

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

Pond LCPA is currently being closed.

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

Pond LCPA is currently being closed.

List the approximate remaining storage capacity of the impounding structure: Approx. 2,414,961 CY

List the approximate maximum, minimum and present depth and elevation of the impounded water since the previous annual inspection: Max: el. 486.1, depth – 76.2 ft.; Min: el. 474.7 depth – 64.8 ft. Present: el. 478.8, depth – 68.9 ft.

List the approximate maximum, minimum and present depth and elevation of the impounded CCR since the previous annual inspection: Max. – el. 515 & depth = 105 feet, Min – el. 410 & depth=0ft, Avg depth = 60ft

Approximate volume of impounded water and CCR at the time of the inspection: Approx. 16,325,039 CY

Describe any changes to the downstream watershed: None

Inlet and Outlet Works			
ltem	Condition Code	Comments	
Outlet Condition	OB	The outlet structure is generally in good condition, with some corrosion on metal parts. The crane mast is bent and may be repaired as necessary.	
Valve Condition/ Operability	MM	Valve 1 is stuck in the open position. Minor leak past valve 2.	
Discharge Piping Condition	GC	The discharge piping appears to be in good condition.	
Leakage	GC/MM	No leakage was observed around the discharge pipe. Minor leak through valve 2 in the discharge pipe (see valve condition/operability). Valve 1 is stuck in the open position (see valve condition/operability).	
Outfall Condition	GC	The outfall is in good condition.	
Outlet Channel	GC		
Discharge (color and/or sediment)	GC	Discharge water was clear.	
Obstructions	GC	No obstructions observed.	
Instrumentation	MM	Clean staff gage.	
Inlet Piping and Supports Condition	GC		
Emergency Spillway Condition	GC	The emergency spillway is in good condition.	
Other			

Earth Embankment			
ltem	Condition Code	Comments	
Vertical & Horizontal Alignment of Crest	GC	No visual displacement observed.	
Seepage/Wetness/ Ponding Areas	ММ	There is ponding water at the south and west downstream toe of the levee from the recent 2019 flood. There is no flowing water. This area should continue to be observed during routine inspections.	
Erosion	MM	Erosion noted on the upstream slope of the bottom ash pond near the emergency spillway. The erosion should be repaired.	
Fencing	GC		
Vegetation	MM	Unable to mow vegetation at the west and south downstream toe of the levee due to standing water. Clear additional vegetation on the south downstream slope. Continue to clear vegetation on the crest and downstream side of the levee.	
Sloughs/Slides/ Cracks	GC	None observed.	
Animal Control	GC	No presence of burrowing activity.	
Other	GC	Repaired upstream erosion on the west slope.	

Note location of observation on attached plan sheet.

Condition Code

kn

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

DIKE EL 492.7

SEE EMERGENCY SPILLWAY DETAIL ON SHEET 2

SEE EMERGENCY SPILLWAY

OBSERVAT

40 CFR Parts 257

Checklist for Inspection Requirements for CCR Surface Impoundments 257.83 (b)

Labadie Power Station – LCPB (Fly Ash Pond)

1. Annual Inspection

Requirements	Signs of actual or potential structural weakness	Disruptions or potential disruption to the operation and safety of the unit
CCR Unit and appurtenant structures 257.83(b)(ii)	None Observed	None Observed
Hydraulic structures underlying the base of the CCR unit 257.83(b)(iii)	None Observed	None Observed

The 2019 Annual Inspection included a review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record in general accordance with 257.83(b)(i).

Minor maintenance items (e.g. animal burrows, ruts, etc.) associated with routine upkeep observed during the 2019 Annual Inspection, presently do not impact the structural integrity of the embankment. Ameren plans to address these items in a timely manner through Ameren's work control process.

Engineer's Seal

Gene Campbell, P.E. License: PE- 2011020071 Date: November 22, 2019

Date	9/17/2019		
Inspector	G. Campbell		
	A. Becker		
Pool Level	NA - Drained		
River Level	464.1		
Temperature	85°F		
Weather	Partly Cloudy		

Date of Previous Annual Inspection: 09/19/2018

Date of Previous Periodic Inspection: Not Applicable

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection: None

Describe any action taken to restore or improve safety and integrity of impounding structure:

None

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

Pond LCPB is currently being closed. The pond is drained. The pond is no longer receiving processed water or CCR material.

Describe any modifications to the operation of the impounding structure since the previous annual inspection:

Pond LCPB is currently being closed. The pond is drained.

List the approximate remaining storage capacity of the impounding structure: Approx. 337,488 CY

List the approximate maximum, minimum and present depth and elevation of the impounded water since the previous annual inspection:

Max: el. 481.8, depth – 21.8 ft.; Min: Pond is being closed, no impounded water.; Present: Pond is being closed, no impounded water.

List the approximate maximum, minimum and present depth and elevation of the impounded CCR since the previous annual inspection: Max. el. 504 & depth = 29ft; Min. el 460 & depth = 0ft; Present avg. depth = 20 ft,

Approximate volume of impounded water and CCR at the time of the inspection: Approx. 3,662,512 CY

Describe any changes to the downstream watershed: None

Inlet and Outlet Works			
ltem	Condition Code	Comments	
Outlet Condition	NI	The pond is drained. The outlet has been removed for pond closure.	
Pump Condition/ Operability	NI	The pond is drained. Pumps have been removed for pond closure.	
Outfall Condition	NI	The pond is drained. There is no outfall.	
Leakage	NI	The pond is drained.	
Discharge (color and/or sediment)	NI	The pond is drained and no longer discharging.	
Obstructions	NI	The pond is drained. The outlet has been removed for pond closure.	
Instrumentation	NI	The pond is drained. There is no instrumentation.	
Inlet Piping and Supports	NI	No longer sluicing to the pond.	
Emergency Spillway Condition	NI	The pond is drained. The emergency spillway has been removed for pond closure.	
Other			

Earth Embankment			
ltem	Condition Code	Comments	
Vertical & Horizontal Alignment of Crest	GC/MM	There was no visible vertical or horizontal misalignment of the crest. Clear additional minor vegetation on the crest road	
HDPE Liner	OB	There were small holes noted in the liner on the east side of the pond. This will be addressed as part of the ongoing pond closure. No action required.	
Seepage/Wetness/ Ponding Areas	OB	There is ponding water at the east downstream toe of the levee from the recent 2019 flood. There is no flowing water. This area should continue to be observed during routine inspections.	
Erosion/Rutting	OB	Minor rutting observed on the crest of the levee.	
Fencing	GC		
Vegetation	MM	Unable to mow vegetation at the east downstream toe of the levee due to standing water. Clear vegetation at the northwest corner of the pond, downstream of the landfill haul road. Clear small area of vegetation at the north downstream side of the levee. Spray vegetation on the upstream side of the levee. Continue to clear vegetation on the crest and downstream side of the levee.	
Animal Control	GC	No animal burrows were observed.	
Sloughs/Slides/ Cracks	GC	None observed.	
Other	GC	Repaired erosion area on the south downstream side of the levee.	

Note location of observation on attached plan sheet.

Condition Code

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

40 CFR Parts 257

Checklist for Inspection Requirements for CCR Landfills 257.84 (b)

Labadie Power Station – LCL1 (Landfill Cell 1)

1. Annual Inspection

Requirements	Signs of actual or potential structural weakness	Disruptions or potential disruption to the operation and safety of the unit
CCR Unit and appurtenant structures 257.84(b)(ii)	None Observed	None Observed

The 2019 Annual Inspection included a review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record in general accordance with 257.84(b)(i).

Engineer's Seal

Gene Campbell, P.E. License: PE- 2011020071 Date: November 22, 2019

LABADIE ENERGY CENTER

Cell 1 (LCL1) and Pond 1

Date	9/17/2019
Inspector	G. Campbell
	A. Becker
Weather	Partly Cloudy
Temperature	85°F

Date of Previous Annual Inspection: 09/19/2018

Date of Previous Periodic Inspection: Not Applicable

Description of Emergency (EC) or Immediate Maintenance (IM) conditions observed since the last annual inspection:

None

Describe any action taken to restore or improve safety and integrity of impounding structure:

None

Describe any modifications to the geometry of the impounding structure since the previous annual inspection:

None

Describe any modifications to the operation of the impounding structure since the previous annual inspection: None

List the approximate remaining storage capacity of the impounding structure: 2,209,772 CY

List the approximate maximum, minimum and present depth and elevation of the impounded CCR in Cell 1 since the previous annual inspection:

1	Maximum		Minimum		Present	
	Elevation (ft)	Depth (ft)	Elevation (ft)	Depth (ft)	Elevation (ft)	Depth (ft)
Cell 1	484	6	479	2	481.5	4

Approximate volume of CCR at the time of the inspection: 90,228 CY

Describe any changes to the downstream watershed: None

Is water ponded in Cell 1? (Y or N)	No
Water Level in Pond 1 (Meter at Pump Wet Well)	211 inches
Elapsed Hours on Cell 1 North Leachate Pump (#1)	5959.9
Elapsed Hours on Cell 1 South Leachate Pump (#2)	6263.3

	Cell 1				
ltem	Condition Code	ondition Code Comments			
Erosion, sloughing, sliding, boils, seepage	OB	Minor erosion at the upstream northeast and northwest corners of the landfill.			
Settlement, depression or crack in embankment	GC				
Erosion or rutting gravel top & perimeter roads and external ramps	GC				
Storm Water Inlet to Pond 1 – settlement, cracking, depression	GC				
FCM revetment below Storm Water Inlet in Pond 1	OB	There is a tear in the FMC blanket near the toe where the FMC is anchored into the ground. The tear is along the entire length of the FCM.			
HDPE Liner – damage, folds, etc.	NI	Liner is not exposed to inspect.			
HDPE Rain Flap – damage, folds, out of position	MM	There is a tear in the HDPE rain flap on the upstream southwest corner of the Landfill.			
Leachate Pump No. 1 (North) – note alarm, damage, slide erosion	GC	☑Check if pump test passed.			

Cell 1		
ltem	Condition Code	Comments
Leachate Pump No. 1 (North) – record both leachate level meters	MM	Pump Level – 55.0" – High level alarm is on Secondary Level – 51.4" The high level alarm is due to a faulty level sensor. Parts are on order to replace. Pump is running.
Leachate Pump No. 2 (South) – note alarm, damage, slide, erosion	GC	☑Check if pump test passed.
Leachate Pump No. 2 (South) – record both leachate level meters	MM	Pump Level – 56.5" – High level alarm is on Secondary Level – 57.1" The high level alarm is due to a faulty level sensor. Parts are on order to replace. Pump is running.
Storm Water Sump Pump – running, alarm, power on, discharge to Pond	GC	Pump was bumped and ran without issue.

Leachate Tank			
ltem	Condition Code	Comments	
Leachate Tank – record leachate level, note alarm, leakage, damage	MM	Level in Tank – 7.1". Faulty level sensor. Parts are on order to replace.	
Leachate Tank Heat Trace – note alarm, any damage	GC		
Main Electric Panel – note any alarms, damage, any problems	GC		

Evaporator No. 1 (West)				
Item	Item Condition Code Comments			
Evaporator – note if running, any alarm, leaking, hose, any problems	GC	Evaporator was running during the inspection.		
Booster Pump – note if running, any alarms, leaks, hoses, any problems	GC	Booster Pump was running during the inspection.		
Electric Panel – note any alarm, any problems, check cables	GC			

Evaporator No. 2 (East)		
Item	Condition Code	Comments
Evaporator – note if running, any alarm, leaking, hose, any problems	GC	Evaporator was running during the inspection.
Booster Pump – note if running, any alarms, leaks, hoses, any problems	GC	Booster Pump was running during the inspection.
Electric Panel – note any alarm, any problems, check cables	GC	

	Pond 1		
ltem	Condition Code	Comments	
Perimeter erosion, sloughing, slides, boils, seepage	GC		
Settlement, depression or crack in embankment	GC		
Erosion or rutting gravel top & perimeter roads and external ramps	MM	Erosion noted on the perimeter ramps. This is an ongoing maintenance item. These ramps will be regraded.	
Emergency Spillway – settlement, cracking, depression	GC		
Imminent discharge through emergency spillway	GC	See water level reading.	
HDPE Liner – damage, folds, etc.	GC		
Pipes from Leachate Tank and Evaporator Booster Pumps	GC		

Storm Water Wet Well		
ltem	Condition Code	Comments
Gate Valve to Pond 1 – normally should be fully open	GC	
Gate Valve to Exterior Flood Water Inlet – should be fully closed	GC	

Storm Water Wet Well		
ltem	Condition Code	Comments
Storm Water Pump No. 1 – note if running, any alarms, valve position	NI	Storm water pump was not running during the inspection.
Storm Water Pump No. 2 – note if running, any alarms, valve position	NI	Storm water pump was not running during the inspection.
Storm Water Pumps Electrical Panel – note any alarms, problems	GC	
Flood Water Inlet – note any discharge, accumulation of debris	GC	

Other		
ltem	Condition Code	Comments
Hydrant	GC	
Overpass	GC	
Overpass Abutments & Wing Walls – seepage, settlement, problems	GC	
Lights, Security Cameras	GC	
Perimeter Fence & Gate – holes, breaks, vandalism, gates unlocked	GC	

Condition Code

EC = Emergency Condition. A serious dam safety condition exists that need immediate action. Emergency measures implemented as instructed by Chief Dam Safety Engineer; pool draw down, work stoppage, plant stoppage.

IM = Item needing immediate maintenance to restore or ensure its safety and integrity. Remediation should be complete within 1 month or as required.

MM = Minor Maintenance. Item needing minor maintenance and/or repairs within the year. The safety or integrity of the item is not yet imperiled.

OB = Condition requires regular observation and potential future minor maintenance.

GC = Good Condition

NO = No observation possible.

NI = Not Inspected. State reason in comment column.

Drive slowly around tops of embankments looking for visible signs of present or developing major problems. Indicate location(s) of problems or anomalies on inspection plan - sign, date and attach sheet to report.

If a problem is noted, email or FAX report to appropriate persons. If emergency condition is noted, immediately contact the Shift Operations Supervisor and Chief Dam Safety Engineer.

APPENDIX II

DVD CONTAINING 2020 PERIODIC INSPECTION PHOTOGRAPHS

REITZ & JENS, INC.

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

APPENDIX D

PERIODIC SAFETY FACTOR ASSESSMENT

REITZ & JENS, INC.

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.73(e)

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	CONCLUSIONS	2 2
5.0 4.0	DEEEDENCES	<u>′</u>
4.0	KETEKENCES	,
<u>LIST</u>	OF FIGURES	
Figure	e 1 Site Map)
<u>LIST</u>	OF TABLES	

Table 1..... Minimum safety factors

LIST OF APPENDICES

Section

APPENDIX I INITIAL SAFETY FACTOR ASSESSMENT FOR LCPA AND LCPB APPENDIX II GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI ENERGY CENTER BOTTOM ASH POND CLOSURE GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI ENERGY CENTER FLY ASH POND CLOSURE

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.73(e)

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

40 CFR §257.73(e) requires that the owner or operator of an existing CCR surface impoundment to conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum factors of safety for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments should be supported by appropriate engineering calculations. The specified minimum safety factors are shown in Table 1.

Table 1 - Minimum Safety Factors

Loading Condition	Minimum Factor of Safety
Static, long-term, maximum storage pool	1.50
Static, maximum surcharge pool	1.40
Seismic	1.00
Liquefaction	1.20

2.0 REVIEW OF PREVIOUS SAFETY FACTOR ASSESSMENT

The initial periodic safety factor assessment for LCPA and LCPB was completed in October 2016. The Initial Periodic Safety Factor Assessment report documents the analyses performed and includes graphical outputs of the results of the stability analyses is included in Appendix I. The LCPA and LCPB no longer receives CCRs, have been dewatered and are currently being closed. The current conditions are no longer representative of those used in the 2016 assessment. Reitz & Jens completed analyses of LCPA and LCPB for the closed condition. Reitz & Jens's geotechnical analyses reports for closure of LCPA and LCPB are included in Appendix II.

3.0 CONCLUSIONS

The initial periodic safety factor assessment for the LCPA and LCPB found that the calculated factors of safety for the critical cross-sections for the CCR units exceed the minimum factors of safety for each loading condition required by 40 CFR §257.73(e). The LCPA and LCPB have been dewatered and are currently being closed. A safety factor assessment for the closed condition has been performed by Reitz & Jens. They found that the static and seismic analyses meet or exceed the minimum requirements.

Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Safety Factor Assessment October 2021

4.0 **REFERENCES**

- Reitz & Jens (2017), "Geotechnical Analyses for Ameren Missouri Labadie Energy Center Bottom Ash Pond Closure." Ameren Missouri, St. Louis, Missouri.
- Reitz & Jens (2017), "Geotechnical Analyses for Ameren Missouri Labadie Energy Center Fly Ash Pond Closure." Ameren Missouri, St. Louis, Missouri.

APPENDIX I

INITIAL SAFETY FACTOR ASSESSMENT FOR LCPA AND LCPB

REITZ & JENS, INC.

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.73(e)

TABLE OF CONTENTS

Section

Page

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	PERIODIC SAFETY FACTOR ASSESSMENT	2
2.1	Static Stability Analyses	2
2.2	Seismic Stability Analyses	2
2.3	Liquefaction Stability Analyses	2
3.0	LCPA (BOTTOM ASH POND)	3
3.1	Critical Section and Assumptions	3
3.2	Stability Analysis Results	4
4.0	LCPB (FLY ASH POND)	4
4.1	Critical Section and Assumptions	4
4.2	Stability Analysis Results	6
5.0	CONCLUSIONS	6
6.0	REFERENCES	7

LIST OF FIGURES

Figure 1	Site Map
Figure 2	
Figure 3	2010 Locations of Cross-sections and Borrings
Figure 4	Bottom Ash Pond Cross-section 4
Figure 5	

LIST OF TABLES

Table 1	
Table 2	Soil Properties Assumed in the Bottom Ash Pond Critical Section Stability Analyses
Table 3	Bottom Ash Pond Stability Analyses Results
Table 4	Soil Properties Assumed in the Fly Ash Pond Critical Section Stability Analyses
Table 5	

Reitz	& J	ENS.	INC.
		,	

LIST OF APPENDICES

APPENDIX I GRAPHICAL DEPICTIONS OF STABILITY ANALYSES

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

APPENDIX D: SAFETY FACTOR ASSESSMENT §257.73(e)

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments are used for managing coal combustion residuals (CCR). Decant water in the LCPB is pumped into LCPA, and a NPDES permitted outfall from LCPA discharges into Labadie Creek. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

40 CFR §257.73(e) requires that the owner or operator of an existing CCR surface impoundment to conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum factors of safety for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments should be supported by appropriate engineering calculations. The specified minimum safety factors are shown in Table 1.

Table 1 - Minimum Safety Factors

Loading Condition	Minimum Factor of Safety
Static, long-term, maximum storage pool	1.50
Static, maximum surcharge pool	1.40
Seismic	1.00
Liquefaction	1.20

A periodic safety factor assessment has been conducted for the active surface impoundments at the Labadie Energy Center, which includes the Bottom Ash Pond and Fly Ash Pond.

2.0 PERIODIC SAFETY FACTOR ASSESSMENT

2.1 Static Stability Analyses

Slope stability analyses were performed in general accordance with United States Army Corps of Engineers (USACE) EM1110-2-1902 *Slope Stability* and MSHA's 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, and using the computer program SLIDE 6.0. This program uses the Spencer method in a limit-equilibrium analysis, which resolves the static forces on each vertical slice of soil profile along a given circular or irregular assumed failure surface. The program searches for the minimum Factor of Safety (FS) against slope failure for each center point in the grid by incrementally varying the radius of the failure surface. The plotted results from the program show the minimum FS, and the center and radius of the failure surface with the minimum FS. The output of the program also plots contours of equal FS within the grid of possible center points.

2.2 Seismic Stability Analyses

The critical cross-section was analyzed using a pseudo-static acceleration as a horizontal body force on the soil mass to calculate the minimum factor of safety for a seismic event. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground Acceleration (PHGA) for seismic loading event with a 2% probability of exceedance in 50 years. The PHGA was factored for the seismic site class in accordance with ASCE 7 *Minimum Design Loads for Buildings and Other Structures, International Building Code*. A seismic coefficient of 0.5 was applied to the PHGA, which is consistent with MSHA's 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, in particular Chapter 7, "Seismic Design: Stability and Deformation Analyses." The manual cites research by Hynes-Griffen and Franklin (1984) which found that for seismic coefficient of 0.5 would result in deformations of less than 3 feet for a safety factor of 1.0.

The published 2014 USGS hazard map for the Labadie Energy Center is reproduced in Figure 2. This is the latest map available from the USGS website. The probabilistic PHGA for the design earthquake at the Labadie site is 0.180g (that is, 18.0% of standard gravity acceleration of 32.2 feet/sec²). This value takes into account attenuation of bedrock shaking with distance from the probable sources and general soil interactions such as damping for a hypothetical soil profile. This value is meant to be a conservative estimate. Based upon the data, the most probable earthquake magnitudes (M_w) for these accelerations are between 7.0 and 8.0. We applied a multiplier of 1.440 to the base PHGA to account for the soil profile at the LEC to obtain a site specific PHGA of 0.259g. Therefore, the pseudo-static seismic load was 0.130g.

2.3 Liquefaction Stability Analyses

The liquefaction slope stability analysis is a post-earthquake, static analysis which includes the effects of potential liquefaction or softening of the soils. Liquefaction occurs when ground shaking is sufficient to produce cyclic particle movements that cause excess pore water pressures to build to the point that most of the shear strength of the soil is lost. Liquefaction occurs in loose sandy soils with less than about 35% fines (soils which are finer than standard U.S. #200 or 0.075mm). Liquefaction can occur in very loose soils with up to 50 percent fines, and soils up to the size of fine gravel. Liquefaction only occurs below the ground water table (phreatic surface). The presence of soil susceptible to liquefaction in the top 50 feet of the soil profile at the LEC typically included the foundation clays, silts and sands. Conservative

Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Safety Factor Assessment October 2016

estimates of post-earthquake or residual shear strengths in the liquefied strata were assumed using a correlation between the normalized residual shear strength ratio for liquefied soils and overburden-correction CPT penetration resistance recommended by Idriss and Boulanger (2008).

3.0 LCPA (BOTTOM ASH POND)

3.1 Critical Section and Assumptions

The critical section for the Bottom Ash Pond is located at the southeast corner of the perimeter berm. The location of the section is shown as Cross-section 4 in Figure 3, and a cross section at the location is presented in Figure 4. The height of the section at this location is about 21 feet.

For stability analysis, the groundwater table was assumed to be at the ground surface at the downstream toe or el. 471.6. The groundwater level for the post-earthquake load case was conservatively assumed at el. 464; however lower than the static analysis because the probability of high river levels and a seismic event occurring simultaneously are remote. The line of seepage through the section was conservatively assumed based on nearby boring logs. A 30 foot deep slurry wall was constructed in this location in 2013, and the line of seepage is likely lower than that assumed. For the static, long-term, maximum storage pool load case the water level in the Bottom Ash Pond was assumed to be at the normal pool of el. 484.5. The water surface elevation was increased to el. 491.3 for the maximum surcharge pool load case.

Soil parameters used for stability analyses of the Bottom Ash Pond critical section were derived from borings and CPT soundings completed in 2010 for the Ash Pond Stability Analyses Project and original plant borings drilled in 1966. The boring and CPT sounding logs are included in Appendix A of the *Ameren Missouri Labadie Energy Center: Evaluation of CCR Units* report.

The perimeter berm was constructed of primarily fine-grained soil excavated from the incised portion of the pond. A CPT sounding and a geotechnical boring through the crest of the embankment were used to develop conservative assumptions for the undrained and effective stress parameters. The CPT sounding located through the section showed primarily silts and clays with some sand in the embankment fill. The top of the berm at this section was about el. 493.5 feet with the natural ground surface at about el. 472.5 feet. For stability analysis the embankment fill was assumed to consist of an upper fill. The upper fill consists of a mixture of fly and bottom ash and has a thickness of about 9 feet. The upper fill was followed by clayey fill to about el. 478.5 feet, and a lower fill consisting of a mixture of sands, silts and clays from el. 478.5 feet to the natural ground surface. Results from CU triaxial tests on similar fill material sampled along the Bottom Ash Pond southwest embankment were referenced for effective and total stress parameters in the lower fill.

The CPT sounding through the section showed the foundation material to be primarily silty sand, sandy silt or clayey silt, with intermittent clay lenses to the sounding termination depth at el. 443.5 feet. The silty soils are primarily medium dense, but occasionally loose and dense. The original plant borings in the vicinity of the ash pond show that fine to coarse sand underlie the silt layers to a depth of 100 to 110 feet when bedrock is encountered. The sand is intermittently gravelly and generally medium-dense to dense.

Liquefaction analysis (Idriss and Boulanger, 2008) determined that layers within the foundation silts and sands would liquefy during post-earthquake conditions. Undrained residual strengths for the liquefied
Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Safety Factor Assessment October 2016

layers were chosen based on correlations for normalized residual shear strength ratio of liquefied sand versus equivalent clean-sand SPT corrected blow count or normalized residual shear strength ratio for liquefied soil versus overburden-corrected CPT penetration resistance (Idriss and Boulanger, 2008).

The soil parameters assumed in the stability analyses are summarized in Table 2.

Material **Unit Weight** Normal/Max Pool Seismic Liquefaction γ(pcf) γ' (pcf) c' (psf) **¢' (°)** c (psf) **(°)** c (psf) **(°) Upper Fill** 120 58 1 30 1 30 1 30 **Clay Fill** 25 25 120 58 100 100 1200 0 120 33 40 33 40 33 **Lower Fill** 58 40 Sand & Silt 120 28 28 28 58 1 1 1 230 120 58 0 Liq 1 _ _ _ _ Liq 2 120 370 58 0 _

Table 2 – Soil Properties Assumed in the Bottom Ash Pond Critical Section Stability Analyses

3.2 Stability Analysis Results

The Bottom Ash Pond stability analysis results for each load case are presented in Table 3. The search for critical failure surfaces was limited to those that significantly impact the dike. The analyses show that the calculated factors of safety exceeds the minimum presented in §257.73(e) for each loading condition. Graphical outputs of the results of the stability analyses are shown in Appendix I.

Table 3 – Bottom Ash Pond Stability Analyses Results

Loading Condition	Minimum Factor of Safety	Calculated Factor of Safety
Static, long-term, maximum storage pool	1.50	1.81
Static, maximum surcharge pool	1.40	1.52
Seismic	1.00	1.16
Liquefaction	1.20	1.30

4.0 LCPB (FLY ASH POND)

4.1 Critical Section and Assumptions

The critical section for the Fly Ash Pond is at along the southern half of the east berm. The location of the section is shown as Cross-section 2 in Figure 3, and a cross section at the location is presented in Figure 5. The height of the section at this location is about 28.8 feet.

For stability analysis, the groundwater table was assumed to be at the ground surface at the downstream toe or el. 464.0. The Fly Ash Pond has a 60-mil HDPE liner which hydraulically separates the ponded water from the natural groundwater. This analysis assumes the groundwater table was not influenced by

Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Safety Factor Assessment October 2016

the pond level, and there was no seepage from the pond. The normal storage and maximum surcharge pools were assumed to be at el. 485 and 491.3, respectively.

Soil parameters used for stability analyses of the Bottom Ash Pond critical section were derived from borings and CPT soundings completed in 2010 for the Ash Pond Stability Analyses Project and original plant borings drilled in 1966. The boring and CPT sounding logs are included in Appendix A of the *Ameren Missouri Labadie Energy Center: Evaluation of CCR Units* report.

The embankment was constructed of earth fill borrowed from the interior of the pond. The design plans note that the top 6 feet of the foundation soil inside the perimeter berm should be used as fill. CPT soundings conducted in 2010 showed that the embankment fill is heterogeneous and consists of sand, silt and clay that were generally placed in 8 to 12 inch thick lifts. A CPT sounding near the section showed primarily silts and clays with some sand in the embankment fill. The top of the berm at this section was about el. 493 feet with the natural ground surface at about el. 464 feet. For stability purposes the fill assumed to consist of an upper, middle and lower layer. The upper fill was assumed from the top of the berm to about el. 489 feet, followed by the middle fill to about el. 472 feet, and the lower fill to the natural ground surface. The clayey embankment fill is stiff, and the sandy and silty fill is medium dense to dense.

A CPT sounding at the critical section shows the foundation material is clay to about el. 459 feet, followed by silty clay and clayey silt to about el. 455 feet. The silt and clay was underlain by sand that was intermittently silty and with clay lenses, from about el. 455 feet to the sounding termination depth at el. 443 feet. The foundation clays are generally firm to stiff, and the sand and silt stratum are medium dense to dense. The original plant borings in the vicinity of the ash pond show that fine to coarse sand underlie the silt layers to a depth of 100 to 110 feet when bedrock is encountered. The sand is intermittently gravelly and generally medium-dense to dense.

Liquefaction analysis (Idriss and Boulanger, 2008) determined layers within the foundation clays, silts and sands would liquefy during post-earthquake conditions. Undrained residual strengths for the liquefied layers were chosen based on correlations for normalized residual shear strength ratio of liquefied sand versus equivalent clean-sand SPT corrected blow count or normalized residual shear strength ratio for liquefied soil versus overburden-corrected CPT penetration resistance (Idriss and Boulanger, 2007). The undrained residual strengths were assumed to be a ratio of the confining pressure, so liquefied strata outside the footprint of the embankment typically have lower strengths.

The soil parameters used in the stability analyses were conservatively assumed and are summarized in Table 4.

Material	Unit V	Veight	Normal/Max Pool		Seismic		Liquefaction	
	γ(pcf)	γ (pcf)	c' (psf)	¢' (°)	c (psf)	¢ (°)	c (psf)	¢ (°)
Upper Fill	115	53	1	25	1	25	1	25
Middle Fill	118	56	5	28	5	28	5	28
Lower Fill	120	58	1	29	1	29	1	29
Clay	120	58	0	25	0	25	0	25

Table 4 – Soil Properties Assumed in the Fly Ash Pond Critical Section Stability Analyses

REITZ & JENS, INC.

Ameren Missouri Labadie Energy Center Evaluation of CCR Units – Periodic Safety Factor Assessment October 2016

Material	Unit V	Veight	Normal/Ma	ax Pool	Seisi	mic	Liquefa	ction
	γ(pcf)	γ (pcf)	c' (psf)	¢' (°)	c (psf)	ф (°)	c (psf)	¢ (°)
Silt & Clay	120	58	1	25	1	25	1	25
Sand	120	58	1	31	1	31	1	31
Liq 1	112	50	-	-	-	-	180	0
Liq 2	120	58	-	-	-	-	275	0
Liq 3	120	58	-	-	-	-	30	0
Liq 4	120	58	-	-	-	-	85	0
Liq 5	120	58	-	-	-	-	150	0

4.2 Stability Analysis Results

The Fly Ash Pond stability analysis results for each load case are presented in Table 5. The search for critical failure surfaces was limited to those that significantly impact the dike. The analyses show that the calculated factors of safety exceeds the minimum presented in §257.73(e) for each loading condition. Graphical outputs of the results of the stability analyses are shown in Appendix I.

Table 5 – Fly Ash Pond Stability Analyses Results

Loading Condition	Minimum Factor of Safety	Calculated Factor of Safety
Static, long-term, maximum storage pool	1.50	1.64
Static, maximum surcharge pool	1.40	1.64
Seismic	1.00	1.08
Liquefaction	1.20	1.27

5.0 CONCLUSIONS

The initial periodic safety factor assessment for the Labadie Energy Center Ash Pond found that the calculated factors of safety for the critical cross-sections at each CCR unit exceed the minimum factors of safety for each loading condition required by 40 CFR §257.73(e). The subsequent periodic safety factor assessment should be conducted within 5 years of the date of this report.

6.0 **REFERENCES**

Ameren Missouri (2012), "Operation and Maintenance Manual; Labadie Bottom Ash & Fly Ash Pond Embankments, Labadie, Missouri, Franklin County." Dam Safety and Hydro Engineering, St. Louis, Missouri.

American Society of Civil Engineers (2013), *Minimum Design Loads for Buildings and Other Structures*, Standards ASCE/SEI 7-10, 3rd Printing.

EM1110-2-1902 (2003), Slope Stability. U.S. Army Corps of Engineers, Washington, D.C.

Hynes-Griffen, M.E. and A.G. Franklin (1984), "Rationalizing the Seismic Coefficient Method," Miscellaneous Paper GL-84-13, U.S. Department of the Army, Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Idriss, I.M. and R.W. Boulanger (2008), "Soil Liquefaction During Earthquakes," Earthquake Engineering Research Institute, Oakland, California, EERI Publication No. MNO-12.

Mine Safety and Health Administration (2010), *Engineering and Design Manual, Coal Refuse Disposal Facilities*. Second Edition.

Naval Facilities Engineering Command (1986). *Soil Mechanics, Design Manual 7.01*. Alexandria, Virginia.

Elevation Profile Survey Limits Locations of Cross-section and Borings

Figure 3

Labadie Power Station

Figure 4

Labadie Power Station

Figure 5

APPENDIX I

GRAPHICAL RESULTS OF SLOPE STABILITY ANALYSES

REITZ & JENS, INC.

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_4
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Static, Maxium Storage Pool
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 4 - Bottom Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Clay Fill	Lower Fill	Sand & Silt	Bottom Ash
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120	120
Cohesion [psf]	1	100	40	1	1
Friction Angle [deg]	30	25	33	28	20
Water Surface	Water Table				
Hu Value	1	1	1	1	1

Global Minimums

Method: spencer

FS	1.810180
Center:	-57.825, 531.106
Radius:	72.427
Left Slip Surface Endpoint:	-99.695, 472.008
Right Slip Surface Endpoint:	3.923, 493.252
Resisting Moment:	5.03595e+006 lb-ft
Driving Moment:	2.78202e+006 lb-ft
Resisting Horizontal Force:	62424 lb
Driving Horizontal Force:	34485 lb
Total Slice Area:	1542.04 ft2

Method: gle/morgenstern-price

FS	1.814170
Center:	-57.825, 532.997
Radius:	74.074
Left Slip Surface Endpoint:	-99.870, 472.013
Right Slip Surface Endpoint:	4.652, 493.202
Resisting Moment:	5.17225e+006 lb-ft
Driving Moment:	2.85103e+006 lb-ft
Resisting Horizontal Force:	62720.6 lb
Driving Horizontal Force:	34572.6 lb
Total Slice Area:	1540.89 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:5924Number of Invalid Surfaces:4647

Error Codes:

Error Code -103 reported for 4635 surfaces Error Code -108 reported for 12 surfaces

Method: gle/morgenstern-price

Number of Valid Surfaces: 5924 Number of Invalid Surfaces: 4647

Error Codes:

Error Code -103 reported for 4635 surfaces Error Code -108 reported for 12 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.81018

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.11429	641.015	-33.3683	Sand & Silt	1	28	47.5648	86.1009	222.292	62.2414	160.051
2	4.11429	1829.91	-29.5483	Sand & Silt	1	28	107.41	194.431	585.451	221.66	363.791
3	4.11429	2860.33	-25.8684	Sand & Silt	1	28	151.715	274.632	873.41	358.782	514.628
4	4.11429	3864.38	-22.3003	Sand & Silt	1	28	191.183	346.075	1137.41	488.413	648.992
5	4.11429	4775.23	-18.8216	Sand & Silt	1	28	223.924	405.343	1362.36	601.905	760.458
6	4.11429	5662.07	-15.4137	Sand & Silt	1	28	251.61	455.46	1570.34	715.622	854.715
7	4.11429	6517.61	-12.061	Sand & Silt	1	28	280.904	508.486	1764.1	809.658	954.441
8	4.11429	7447.23	-8.74995	Sand & Silt	1	28	322.227	583.288	1973.85	878.723	1095.12
9	4.11429	8265.12	-5.46817	Sand & Silt	1	28	356.831	645.928	2145.58	932.648	1212.93
10	4.11429	8965.8	-2.20435	Sand & Silt	1	28	384.887	696.714	2280.2	971.757	1308.45
11	4.11429	9550.58	1.0523	Sand & Silt	1	28	407.044	736.823	2380.1	996.22	1383.88
12	4.11429	10019.7	4.31237	Sand & Silt	1	28	423.804	767.161	2447.01	1006.06	1440.95
13	4.11429	10372.2	7.58654	Sand & Silt	1	28	435.554	788.431	2482.11	1001.17	1480.94
14	4.11429	10605.9	10.8859	Sand & Silt	1	28	442.595	801.176	2486.18	981.261	1504.92
15	4.11429	10755.3	14.2224	Sand & Silt	1	28	447.678	810.378	2468.13	945.92	1522.21
16	4.11429	10836.1	17.6091	Sand & Silt	1	28	452.12	818.418	2431.87	894.522	1537.35
17	4.11429	10783.9	21.0608	Sand & Silt	1	28	452.058	818.306	2363.36	826.228	1537.14
18	4.11429	10589.2	24.595	Sand & Silt	1	28	447.52	810.092	2261.59	739.919	1521.68
19	4.11429	10240.3	28.2325	Sand & Silt	1	28	438.533	793.824	2125.2	634.119	1491.08
20	4.11429	9721.64	31.9992	Sand & Silt	1	28	425.079	769.469	1952.15	506.867	1445.28
21	4.68367	10185.6	36.2153	Lower Fill	40	33	500.146	905.354	1675.57	343.04	1332.53
22	4.68367	8960.77	40.9663	Lower Fill	40	33	467.182	845.684	1374.7	134.058	1240.65
23	5.62573	7992.22	46.6647	Clay Fill	100	25	304.215	550.684	966.494	0	966.494
24	3.16966	2659.4	51.9431	Fill	1	30	169.504	306.832	529.717	0	529.717
25	3.16966	942.783	56.2336	opper Fill	1	30	56.7932	102.806	176.333	0	176.333

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.81417

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.12944	628.428	-32.6867	Sand & Silt	1	28	35.5551	64.503	179.417	59.9858	119.432
2	4.12944	1795.05	-28.9631	Sand & Silt	1	28	86.1242	156.244	508.053	216.081	291.972
3	4.12944	2805.82	-25.3696	Sand & Silt	1	28	132.501	240.379	800.807	350.6	450.207
4	4.12944	3794.22	-21.8806	Sand & Silt	1	28	179.255	325.199	1087.52	477.788	609.73
5	4.12944	4693.88	-18.4752	Sand & Silt	1	28	221.693	402.188	1343.75	589.225	754.525
6	4.12944	5573.34	-15.1364	Sand & Silt	1	28	258.545	469.045	1582.09	701.823	880.266
7	4.12944	6421.59	-11.8497	Sand & Silt	1	28	294.697	534.631	1798.9	795.288	1003.61
8	4.12944	7350.01	-8.60219	Sand & Silt	1	28	340.463	617.657	2023.53	863.771	1159.76
9	4.12944	8169.7	-5.38242	Sand & Silt	1	28	376.54	683.107	2200.21	917.36	1282.85
10	4.12944	8873.55	-2.17966	Sand & Silt	1	28	402.809	730.764	2328.85	956.363	1372.49
11	4.12944	9462.86	1.01628	Sand & Silt	1	28	420.327	762.545	2413.2	980.941	1432.26
12	4.12944	9937.81	4.21539	Sand & Silt	1	28	430.391	780.803	2457.71	991.12	1466.59
13	4.12944	10297.5	7.42777	Sand & Silt	1	28	434.399	788.073	2467.06	986.788	1480.28
14	4.12944	10540	10.6639	Sand & Silt	1	28	433.718	786.839	2445.64	967.691	1477.95
15	4.12944	10700.8	13.9349	Sand & Silt	1	28	432.177	784.042	2406.12	933.423	1472.69
16	4.12944	10794.8	17.2532	Sand & Silt	1	28	431.832	783.417	2354.92	883.403	1471.52
17	4.12944	10758	20.6325	Sand & Silt	1	28	429.502	779.189	2280.41	816.839	1463.57
18	4.12944	10581.5	24.0889	Sand & Silt	1	28	425.65	772.202	2183.11	732.686	1450.42
19	4.12944	10254.4	27.6417	Sand & Silt	1	28	420.452	762.772	2062.25	629.57	1432.68
20	4.12944	9762.26	31.3146	Sand & Silt	1	28	413.711	750.542	1915.36	505.675	1409.68
21	4.81335	10503.9	35.4706	Lower Fill	40	33	496.186	900.166	1668.61	344.071	1324.54
22	4.81335	9270.17	40.1948	Lower Fill	40	33	474.463	860.757	1399.63	135.778	1263.86
23	5.78834	8235.75	45.8481	Clay Fill	100	25	316.627	574.416	1017.39	0	1017.39
24	3.25914	2737.51	51.07	Upper Fill	1	30	185.402	336.35	580.844	0	580.844
25	3.25914	963.623	55.2905	Upper Fill	1	30	63.763	115.677	198.626	0	198.626

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.81018

Cline	х	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-99.695	472.008	0	0	0
2	-95.5807	469.298	798.236	145.482	10.329
3	-91.4664	466.966	2606.1	474.973	10.329
4	-87.3521	464.971	4973.44	906.428	10.329
5	-83.2378	463.284	7680.16	1399.74	10.329
6	-79.1236	461.881	10513	1916.03	10.329
7	-75.0093	460.747	13330.6	2429.55	10.329
8	-70.895	459.868	16038.4	2923.06	10.329
9	-66.7807	459.235	18615.5	3392.75	10.329
10	-62.6664	458.841	20930.3	3814.62	10.329
11	-58.5521	458.682	22876.6	4169.36	10.329
12	-54.4378	458.758	24373.3	4442.13	10.329
13	-50.3235	459.068	25359.7	4621.9	10.329
14	-46.2092	459.616	25793.5	4700.96	10.329
15	-42.0949	460.407	25649.3	4674.68	10.329
16	-37.9806	461.45	24919.5	4541.67	10.329
17	-33.8663	462.756	23606	4302.28	10.329
18	-29.7521	464.34	21723.6	3959.2	10.329
19	-25.6378	466.224	19307.7	3518.9	10.329
20	-21.5235	468.433	16419.2	2992.46	10.329
21	-17.4092	471.004	13151.4	2396.9	10.329
22	-12.7255	474.433	9749.56	1776.89	10.329
23	-8.04185	478.5	6349.69	1157.26	10.329
24	-2.41612	484.463	2300.27	419.233	10.329
25	0.753537	488.511	693.474	126.388	10.329
26	3.92319	493.252	0	0	0

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.81417

SLIDE SIDE	EINTERPRET 7.018				
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	-99.8704	472.013	0	0	0
2	-95.7409	469.363	622.313	18.2044	1.67558
3	-91.6115	467.078	2139.33	124.2	3.32261
4	-87.4821	465.119	4254.89	365.771	4.91334
5	-83.3526	463.461	6799.1	765.25	6.42171
6	-79.2232	462.081	9569.09	1314.86	7.82385
7	-75.0937	460.964	12404.6	1986.58	9.09858
8	-70.9643	460.098	15180.9	2739.02	10.2276
9	-66.8349	459.473	17851.7	3533.33	11.1957
10	-62.7054	459.084	20263.6	4303.64	11.9905
11	-58.576	458.927	22294	4984.3	12.6024
12	-54.4465	459	23854	5517.91	13.0246
13	-50.3171	459.305	24884.3	5860.5	13.2522
14	-46.1877	459.843	25351	5984.78	13.283
15	-42.0582	460.621	25241.5	5881.54	13.1165
16	-37.9288	461.645	24561.9	5559.83	12.7545
17	-33.7993	462.928	23326	5043.72	12.2011
18	-29.6699	464.482	21555.1	4370.66	11.4623
19	-25.5405	466.329	19283.3	3590.31	10.547
20	-21.411	468.491	16560.7	2761.38	9.46657
21	-17.2816	471.004	13458.4	1947.88	8.23543
22	-12.4682	474.433	10125.4	1177.53	6.6334
23	-7.65488	478.5	6718.48	573.921	4.88259
24	-1.86654	484.462	2486.37	114.369	2.63366
25	1.3926	488.497	747.413	17.2727	1.32387
26	4.65175	493.202	0	0	0

List Of Coordinates

SLIDEINTERPRET 7.018

Water Table

х	Y
-250	471.47
-162.22	471.12
-89.2	471.72
-81.54	472.18
-74.04	473.19
0	479.5
30.13	484.45
250	484.45

External Boundary

Х	Y
-8.63	493.19
-9.48	492.66
-34.6222	484.475
-41.61	482.2
-54.9275	478.5
-74.04	473.19
-81.54	472.18
-85.3128	471.953
-89.2	471.72
-113.25	472.38
-147.31	472
-162.22	471.12
-183.37	471.47
-250	471.47
-250	400
250	400
250	410
250	411.16
250	484.45
30.13	484.45
14.93	492.5
0	493.52

Material Boundary

х	Y
30.13	484.45
42.0276	478.5
57.0175	471.004
179	410
250	410

Material Boundary

Х	Y
-34.6222	484.475
30.13	484.45

Material Boundary

Х	Y
-54.9275	478.5
42.0276	478.5

Material Boundary

х	Y
-84.9558	471.72
-78.55	471.004
57.0175	471.004

Material Boundary

х	Y
-85.3128	471.953
-84.9558	471.72

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_4 MAX
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Static, Maxium Surcharge Pool
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 4 - Bottom Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Clay Fill	Lower Fill	Sand & Silt	Bottom Ash
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120	120
Cohesion [psf]	1	100	40	1	1
Friction Angle [deg]	30	25	33	28	20
Water Surface	Water Table				
Hu Value	1	1	1	1	1

Global Minimums

Method: spencer

FS	1.524790
Center:	-58.368, 544.090
Radius:	83.763
Left Slip Surface Endpoint:	-101.099, 472.047
Right Slip Surface Endpoint:	7.990, 492.974
Left Slope Intercept:	-101.099 472.194
Right Slope Intercept:	7.990 492.974
Resisting Moment:	4.85555e+006 lb-ft
Driving Moment:	3.1844e+006 lb-ft
Resisting Horizontal Force:	53368.2 lb
Driving Horizontal Force:	35000.3 lb
Total Slice Area:	1513.82 ft2

Method: gle/morgenstern-price

FS	1.528040
Center:	-55.700, 544.090
Radius:	83.402
Left Slip Surface Endpoint:	-97.552, 471.949
Right Slip Surface Endpoint:	10.090, 492.831
Left Slope Intercept:	-97.552 472.140
Right Slope Intercept:	10.090 492.831
Resisting Moment:	4.90159e+006 lb-ft
Driving Moment:	3.20777e+006 lb-ft
Resisting Horizontal Force:	54090.7 lb
Driving Horizontal Force:	35398.8 lb
Total Slice Area:	1525.76 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:	6798
Number of Invalid Surfaces:	3773

Error Codes:

Error Code -103 reported for 3557 surfaces Error Code -107 reported for 192 surfaces Error Code -108 reported for 23 surfaces Error Code -111 reported for 1 surface

Method: gle/morgenstern-price

Number of Valid Surfaces:6801Number of Invalid Surfaces:3770

Error Codes:

Error Code -103 reported for 3557 surfaces Error Code -107 reported for 192 surfaces Error Code -108 reported for 21 surfaces

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-108 = Total driving moment or total driving force < 0.1. This is to limit the calculation of extremely high safety factors if the driving force is very small (0.1 is an arbitrary number).

-111 = safety factor equation did not converge

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.52479

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.40272	659.495	-28.9519	Sand & Silt	1	28	41.2175	62.8481	199.444	83.1257	116.319
2	4.40272	1810.07	-25.5614	Sand & Silt	1	28	107.17	163.412	526.076	220.624	305.452
3	4.40272	2797.71	-22.2647	Sand & Silt	1	28	156.145	238.088	784.265	338.368	445.897
4	4.40272	3712.8	-19.0442	Sand & Silt	1	28	200.221	305.295	1010.12	437.829	572.294
5	4.40272	4632.02	-15.8853	Sand & Silt	1	28	234.652	357.795	1222.57	551.54	671.034
6	4.40272	5501.6	-12.7753	Sand & Silt	1	28	266.647	406.58	1414.7	651.914	762.785
7	4.40272	6379.7	-9.70333	Sand & Silt	1	28	299.542	456.738	1602.44	745.324	857.119
8	4.40272	7356.75	-6.65932	Sand & Silt	1	28	338.578	516.26	1808.45	839.383	969.063
9	4.40272	8212.66	-3.63414	Sand & Silt	1	28	369.745	563.783	1977.12	918.679	1058.44
10	4.40272	8945.34	-0.619105	Sand & Silt	1	28	393.591	600.143	2110.24	983.42	1126.82
11	4.40272	9555.54	2.39421	Sand & Silt	1	28	410.826	626.424	2209.94	1033.69	1176.25
12	4.40272	10042.9	5.41419	Sand & Silt	1	28	422.017	643.487	2277.81	1069.46	1208.35
13	4.40272	10406.2	8.44938	Sand & Silt	1	28	427.614	652.021	2314.97	1090.57	1224.4
14	4.40272	10656.1	11.5087	Sand & Silt	1	28	428.984	654.11	2325.05	1096.73	1228.32
15	4.40272	10859	14.6018	Sand & Silt	1	28	431.494	657.938	2323.02	1087.51	1235.51
16	4.40272	10941.2	17.7392	Sand & Silt	1	28	429.946	655.578	2293.39	1062.32	1231.07
17	4.40272	10881.6	20.9328	Sand & Silt	1	28	423.437	645.652	2232.77	1020.36	1212.41
18	4.40272	10671.3	24.1962	Sand & Silt	1	28	412.12	628.396	2140.58	960.626	1179.96
19	4.40272	10299.4	27.5458	Sand & Silt	1	28	396.114	603.991	2015.84	881.788	1134.05
20	5.58808	12245.4	31.4861	Lower Fill	40	33	464.297	707.956	1793.79	765.233	1028.56
21	5.58808	10940.5	36.0937	Lower Fill	40	33	420.959	641.874	1527.36	600.558	926.801
22	3.36483	5424.69	39.9611	Clay Fill	100	25	305.961	466.527	1226.95	440.928	786.02
23	3.36483	4271.75	43.0374	Clay Fill	100	25	256.816	391.59	921.925	296.609	625.316
24	3.76542	3124.93	46.4827	Upper Fill	1	30	172.121	262.449	571.859	119.017	452.842
25	3.76542	1085.45	50.3729	Upper Fill	1	30	68.6908	104.739	179.681	0	179.681

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.52804

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.5572	700.133	-28.3409	Sand & Silt	1	28	31.2574	47.7625	174.391	86.4437	87.9474
2	4.5572	1897.82	-24.8369	Sand & Silt	1	28	89.9407	137.433	481.194	224.601	256.593
3	4.5572	2987.41	-21.4299	Sand & Silt	1	28	148.92	227.556	767.966	341.876	426.09
4	4.5572	4070.28	-18.101	Sand & Silt	1	28	202.552	309.508	1048.97	468.753	580.219
5	4.5572	5099.09	-14.8343	Sand & Silt	1	28	253.131	386.794	1309.65	584.08	725.574
6	4.5572	6126.03	-11.6165	Sand & Silt	1	28	302.442	462.144	1558.05	690.763	867.287
7	4.5572	7254.44	-8.43552	Sand & Silt	1	28	354.883	542.275	1815.51	797.524	1017.99
8	4.5572	8246.8	-5.28061	Sand & Silt	1	28	394.718	603.145	2020.67	888.198	1132.47
9	4.5572	9100.97	-2.14174	Sand & Silt	1	28	421.985	644.81	2173.93	963.104	1210.83
10	4.5572	9818.42	0.990689	Sand & Silt	1	28	437.83	669.021	2278.78	1022.41	1256.37
11	4.5572	10399.4	4.1261	Sand & Silt	1	28	443.856	678.23	2339.83	1066.14	1273.69
12	4.5572	10842.8	7.27397	Sand & Silt	1	28	441.909	675.255	2362.27	1094.18	1268.09
13	4.5572	11177.7	10.4442	Sand & Silt	1	28	436.19	666.516	2357.93	1106.27	1251.66
14	4.5572	11452.3	13.6471	Sand & Silt	1	28	431.951	660.038	2341.46	1101.98	1239.48
15	4.5572	11582.6	16.8944	Sand & Silt	1	28	424.601	648.807	2299.07	1080.72	1218.35
16	4.5572	11557	20.1987	Sand & Silt	1	28	414.966	634.085	2232.33	1041.68	1190.65
17	4.5572	11366.2	23.5751	Sand & Silt	1	28	403.811	617.04	2142.37	983.768	1158.61
18	4.5572	10997.7	27.041	Sand & Silt	1	28	391.457	598.162	2028.7	905.594	1123.1
19	3.77923	8707.41	30.3024	Lower Fill	40	33	472.209	721.554	1865.24	815.739	1049.5
20	3.77923	8225.86	33.3606	Lower Fill	40	33	455.633	696.226	1726.51	716.008	1010.5
21	3.77923	7341.17	36.5307	Lower Fill	40	33	413.947	632.527	1510.25	597.837	912.413
22	3.398	5511.4	39.6628	Clay Fill	100	25	309.462	472.87	1266.66	467.037	799.622
23	3.398	4305.55	42.7694	Clay Fill	100	25	261.074	398.931	964.216	323.155	641.061
24	3.73949	3052.52	46.2162	Upper Fill	1	30	174.318	266.365	607.182	147.556	459.626
25	3.73949	1059.89	50.0747	Upper Fill	1	30	73.2127	111.872	192.036	0	192.036

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.52479

Slice	X Y		Interslice	Interslice	Interslice	
Number coordinate		coordinate - Bottom	Normal Force	Shear Force	Force Angle	
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]	
1	-101.099	472.047	0.682783	0	0	
2	-96.6959	469.611	666.777	118.779	10.1007	
3	-92.2932	467.505	2245.96	400.091	10.1006	
4	-87.8905	465.703	4348.37	774.612	10.1006	
5	-83.4877	464.183	6766.53	1205.38	10.1006	
6	-79.085	462.93	9331.85	1662.36	10.1006	
7	-74.6823	461.932	11919.3	2123.29	10.1006	
8	-70.2796	461.179	14445.3	2573.27	10.1007	
9	-65.8769	460.665	16866.6	3004.58	10.1006	
10	-61.4741	460.385	19048.3	3393.24	10.1006	
11	-57.0714	460.338	20882.7	3720.01	10.1006	
12	-52.6687	460.522	22285.8	3969.96	10.1006	
13	-48.266	460.939	23194.5	4131.83	10.1006	
14	-43.8632	461.593	23564.3	4197.72	10.1007	
15	-39.4605	462.489	23370	4163.09	10.1006	
16	-35.0578	463.636	22606.5	4027.08	10.1006	
17	-30.6551	465.045	21270.6	3789.11	10.1006	
18	-26.2524	466.729	19375.8	3451.57	10.1006	
19	-21.8496	468.707	16956.6	3020.63	10.1007	
20	-17.4469	471.004	14072.5	2506.86	10.1007	
21	-11.8588	474.426	10529.4	1875.7	10.1007	
22	-6.27075	478.5	6660.88	1186.56	10.1006	
23	-2.90592	481.32	4231.62	753.814	10.1006	
24	0.458909	484.461	2199.74	391.859	10.1006	
25	4.22433	488.427	580.543	103.417	10.1006	
26	7.98975	492.974	0	0	0	

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.52804
SLIDEINTERPRET 7.018					
Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	-97.5522	471.949	1.13949	0	0
2	-92.995	469.491	570.402	17.7409	1.78146
3	-88.4378	467.382	1995.6	123.04	3.52814
4	-83.8806	465.593	4049.78	369.014	5.20639
5	-79.3234	464.104	6535.42	777.544	6.78481
6	-74.7662	462.897	9270.75	1341.73	8.23508
7	-70.209	461.96	12109.3	2033.43	9.53235
8	-65.6518	461.284	14954.2	2813.69	10.6558
9	-61.0946	460.863	17604.9	3610.06	11.5884
10	-56.5374	460.692	19899.3	4344.91	12.3169
11	-51.9802	460.771	21715.9	4946.27	12.8315
12	-47.423	461.1	22970.3	5356.12	13.1255
13	-42.8658	461.682	23610.9	5535.86	13.1953
14	-38.3086	462.522	23618.8	5470.26	13.0401
15	-33.7514	463.628	22997.4	5166.56	12.6618
16	-29.1942	465.012	21751.1	4649.14	12.065
17	-24.637	466.689	19900.3	3961.18	11.2577
18	-20.0798	468.677	17480.9	3161.33	10.2509
19	-15.5226	471.004	14546.7	2319.36	9.05912
20	-11.7434	473.212	12212.4	1704.13	7.94381
21	-7.96414	475.7	9639.18	1136.87	6.72654
22	-4.18491	478.5	6976.13	662.11	5.42175
23	-0.786902	481.317	4459.5	326.477	4.18712
24	2.6111	484.461	2316.27	117.64	2.90747
25	6.35059	488.362	599.366	15.3115	1.46337

492.831

0

0

0

List Of Coordinates

10.0901

Water Table

26

Х	Y
-250	471.47
-163.957	471.149
-113.25	472.38
-85.3128	471.953
-74.04	473.19
17.1958	491.3
250	491.3

External Boundary

Х	Y
-8.63	493.19
-9.48	492.66
-34.6222	484.475
-41.61	482.2
-54.9275	478.5
-74.04	473.19
-81.54	472.18
-85.3128	471.953
-89.2	471.72
-113.25	472.38
-147.31	472
-162.22	471.12
-183.37	471.47
-250	471.47
-250	400
250	400
250	410
250	411.16
250	484.45
30.13	484.45
14.93	492.5
0	493.52

х	Y
30.13	484.45
42.0276	478.5
57.0175	471.004
179	410
250	410

Material Boundary

Х	Y
-34.6222	484.475
30.13	484.45

Material Boundary

Х	Y
-54.9275	478.5
42.0276	478.5

х	Y
-84.9558	471.72
-78.55	471.004
57.0175	471.004

х	Y
-85.3128	471.953
-84.9558	471.72

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_4 PS LT		
Slide Modeler Version:	6.035		
Project Title:	Periodic Safety Factor Assessment		
Analysis:	Seismic		
Author:	J. Bertel		
Company:	Ameren - Labadie Energy Center		
Comments			
	2015012432		
	Section 4 - Bottom Ash Pond		
	J. Gilliam		

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.13

Material Properties

Property	Upper Fill	Clay Fill	Lower Fill	Sand & Silt	Bottom Ash
Color					
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120	120
Cohesion [psf]	1	100	40	1	1
Friction Angle [deg]	30	25	33	28	20
Water Surface	Water Table				
Hu Value	1	1	1	1	1

Global Minimums

Method: spencer

FS	1.160710
Center:	-61.606, 548.253
Radius:	87.817
Left Slip Surface Endpoint:	-105.454, 472.166
Right Slip Surface Endpoint:	6.701, 493.062
Resisting Moment:	5.75538e+006 lb-ft
Driving Moment:	4.95849e+006 lb-ft
Resisting Horizontal Force:	60114.5 lb
Driving Horizontal Force:	51791.1 lb
Total Slice Area:	1479.37 ft2

Method: gle/morgenstern-price

FS	1.157350
Center:	-63.497, 546.362
Radius:	86.341
Left Slip Surface Endpoint:	-107.759, 472.229
Right Slip Surface Endpoint:	4.544, 493.210
Resisting Moment:	5.55026e+006 lb-ft
Driving Moment:	4.79566e+006 lb-ft
Resisting Horizontal Force:	58854.9 lb
Driving Horizontal Force:	50853.2 lb
Total Slice Area:	1467.99 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 6272 Number of Invalid Surfaces: 4299

Error Codes:

Error Code -103 reported for 4267 surfaces Error Code -112 reported for 32 surfaces

Method: gle/morgenstern-price

Number of Valid Surfaces:6272Number of Invalid Surfaces:4299

Error Codes:

Error Code -103 reported for 4267 surfaces Error Code -112 reported for 32 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

-112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the passive zone.

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.16071

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.75637	690.387	-28.1939	Sand & Silt	1	28	100.965	117.191	263.123	44.6008	218.523
2	4.75637	1968.56	-24.7246	Sand & Silt	1	28	201.912	234.361	633.811	194.923	438.888
3	4.75637	3049.68	-21.3499	Sand & Silt	1	28	264.546	307.061	899.32	323.702	575.618
4	4.75637	3988.46	-18.0516	Sand & Silt	1	28	306.377	355.615	1100.72	433.784	666.935
5	4.75637	4932.19	-14.8142	Sand & Silt	1	28	344.523	399.891	1289.43	539.221	750.205
6	4.75637	5829.16	-11.6247	Sand & Silt	1	28	374.955	435.214	1453.92	637.276	816.64
7	4.75637	6706.45	-8.47138	Sand & Silt	1	28	401.481	466.003	1604.42	729.876	874.542
8	4.75637	7718.77	-5.34384	Sand & Silt	1	28	456.492	529.855	1787.32	792.69	994.632
9	4.75637	8652.89	-2.23224	Sand & Silt	1	28	506.35	587.726	1941.12	837.65	1103.47
10	4.75637	9439.36	0.872765	Sand & Silt	1	28	543.821	631.218	2051.73	866.469	1185.27
11	4.75637	10078.5	3.98034	Sand & Silt	1	28	570.711	662.43	2123.15	879.176	1243.97
12	4.75637	10569.2	7.09974	Sand & Silt	1	28	588.418	682.983	2158.28	875.662	1282.62
13	4.75637	10909.2	10.2405	Sand & Silt	1	28	598.041	694.152	2159.3	855.663	1303.64
14	4.75637	11116.1	13.4128	Sand & Silt	1	28	602.373	699.18	2131.85	818.759	1313.09
15	4.75637	11259.2	16.6277	Sand & Silt	1	28	608.255	706.008	2090.27	764.347	1325.93
16	4.75637	11246.3	19.8976	Sand & Silt	1	28	608.368	706.139	2017.79	691.611	1326.18
17	4.75637	11056	23.2369	Sand & Silt	1	28	602.239	699.025	1912.27	599.476	1312.8
18	4.75637	10675.4	26.6622	Sand & Silt	1	28	590.358	685.234	1773.4	486.539	1286.86
19	3.86184	8250.88	29.8515	Lower Fill	40	33	717.028	832.262	1585.77	365.791	1219.98
20	3.86184	7743.21	32.8032	Lower Fill	40	33	692.814	804.156	1416.22	239.52	1176.7
21	3.86184	7124.28	35.8567	Lower Fill	40	33	667.317	774.561	1226.44	95.3168	1131.13
22	3.50111	5612.92	38.8786	Clay Fill	100	25	502.865	583.681	1037.26	0	1037.26
23	3.50111	4416.74	41.8801	Clay Fill	100	25	395.737	459.336	770.598	0	770.598
24	3.97654	3330.95	45.2575	Upper Fill	1	30	242.973	282.021	486.742	0	486.742
25	3.97654	1159.41	49.0817	Upper Fill	1	30	80.7587	93.7374	160.626	0	160.626

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.15735

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.54755	656.938	-29.1127	Sand & Silt	1	28	70.7846	81.9226	191.075	38.8817	152.193
2	4.54755	1877.27	-25.7105	Sand & Silt	1	28	156.377	180.983	527.04	188.542	338.498
3	4.54755	2918.12	-22.4033	Sand & Silt	1	28	233.918	270.725	824.958	317.679	507.279
4	4.54755	3792.97	-19.1733	Sand & Silt	1	28	298.611	345.597	1075.93	427.836	648.092
5	4.54755	4603.93	-16.0057	Sand & Silt	1	28	355.663	411.627	1298.64	526.364	772.277
6	4.54755	5397.17	-12.8877	Sand & Silt	1	28	406.18	470.093	1498.8	616.569	882.235
7	4.54755	6175.52	-9.80823	Sand & Silt	1	28	443.909	513.758	1670.51	706.153	964.357
8	4.54755	6932.08	-6.75719	Sand & Silt	1	28	473.364	547.848	1812.98	784.511	1028.47
9	4.54755	7818.8	-3.72534	Sand & Silt	1	28	522.749	605.004	1970.71	834.744	1135.97
10	4.54755	8604.31	-0.70393	Sand & Silt	1	28	556.648	644.236	2079.66	869.909	1209.75
11	4.54755	9258.85	2.31551	Sand & Silt	1	28	574.416	664.8	2138.53	890.099	1248.43
12	4.54755	9782.14	5.34143	Sand & Silt	1	28	579.734	670.955	2155.28	895.28	1260
13	4.54755	10172.8	8.38241	Sand & Silt	1	28	576.317	667.001	2137.86	885.291	1252.57
14	4.54755	10428.1	11.4474	Sand & Silt	1	28	567.508	656.805	2093.23	859.837	1233.39
15	4.54755	10556.6	14.5462	Sand & Silt	1	28	557.125	644.789	2029.27	818.474	1210.79
16	4.54755	10629.1	17.6891	Sand & Silt	1	28	553.654	640.772	1963.83	760.591	1203.24
17	4.54755	10567.8	20.8883	Sand & Silt	1	28	551.276	638.019	1883.43	685.377	1198.06
18	4.54755	10345.6	24.1575	Sand & Silt	1	28	548.816	635.172	1784.48	591.775	1192.7
19	4.54755	9950.66	27.5129	Sand & Silt	1	28	545.97	631.878	1664.93	478.42	1186.51
20	5.61986	11457.8	31.3996	Lower Fill	40	33	667.026	771.982	1451.68	324.528	1127.15
21	5.61986	10163.8	35.8869	Lower Fill	40	33	642.809	743.955	1204.52	120.525	1084
22	3.40632	5360.67	39.6573	Clay Fill	100	25	505.311	584.822	1039.7	0	1039.7
23	3.40632	4265.52	42.6626	Clay Fill	100	25	408.938	473.284	800.511	0	800.511
24	3.92373	3278.8	46.0768	Upper Fill	1	30	263.22	304.638	525.916	0	525.916
25	3.92373	1163.16	49.9789	Upper Fill	1	30	91.4365	105.824	181.56	0	181.56

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.16071

Slice Number	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-105.454	472.166	0	0	0
2	-100.698	469.616	1062.7	312.552	16.3892
3	-95.9417	467.426	3157.99	928.799	16.3892
4	-91.1854	465.567	5695.36	1675.07	16.3892
5	-86.429	464.017	8344.48	2454.2	16.3892
6	-81.6726	462.759	10968.6	3225.98	16.3892
7	-76.9162	461.78	13421.8	3947.51	16.3892
8	-72.1599	461.072	15601.5	4588.58	16.3892
9	-67.4035	460.627	17570.6	5167.7	16.3892
10	-62.6471	460.442	19220.7	5653.03	16.3892
11	-57.8907	460.514	20438.8	6011.27	16.3892
12	-53.1344	460.845	21148	6219.86	16.3892
13	-48.378	461.438	21302	6265.15	16.3892
14	-43.6216	462.297	20880.8	6141.28	16.3892
15	-38.8652	463.431	19890.8	5850.11	16.3892
16	-34.1089	464.851	18359.2	5399.64	16.3892
17	-29.3525	466.573	16325.2	4801.4	16.3891
18	-24.5961	468.615	13855.1	4074.94	16.3892
19	-19.8397	471.004	11047.8	3249.26	16.3891
20	-15.9779	473.22	9237.39	2716.81	16.3891
21	-12.1161	475.709	7388.7	2173.1	16.3892
22	-8.25422	478.5	5623.75	1654	16.3891
23	-4.75311	481.323	3731.52	1097.48	16.3892
24	-1.25201	484.462	2127.69	625.778	16.3892
25	2.72454	488.475	710.535	208.976	16.3892
26	6.70108	493.062	0	0	0

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.15735

Slice	Х	Ŷ	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-107.759	472.229	0	0	0
2	-103.211	469.697	720.995	32.3931	2.57247
3	-98.6639	467.507	2343.45	208.873	5.09335
4	-94.1163	465.633	4576.39	603.591	7.51351
5	-89.5688	464.051	7145.15	1232.7	9.78846
6	-85.0212	462.747	9861.15	2074.44	11.8798
7	-80.4737	461.706	12569.7	3077.14	13.7558
8	-75.9261	460.92	15102.7	4157.65	15.3918
9	-71.3785	460.381	17335.1	5223.57	16.7691
10	-66.831	460.085	19283.9	6218.97	17.8743
11	-62.2834	460.029	20817.8	7045.76	18.6983
12	-57.7359	460.213	21838	7620.03	19.2356
13	-53.1883	460.638	22291.3	7886.21	19.4827
14	-48.6408	461.309	22162.1	7821.16	19.4383
15	-44.0932	462.229	21464.5	7433.84	19.1026
16	-39.5457	463.409	20236	6762.03	18.4775
17	-34.9981	464.86	18528.5	5865.85	17.567
18	-30.4506	466.595	16397.8	4819.21	16.3777
19	-25.903	468.635	13913.6	3707.33	14.92
20	-21.3554	471.004	11163.9	2620.26	13.2087
21	-15.7356	474.434	8450.4	1608.08	10.7744
22	-10.1157	478.5	5850.71	826.071	8.03656
23	-6.7094	481.324	3942.53	432.306	6.25759
24	-3.30308	484.463	2270.71	175.11	4.40974
25	0.620652	488.537	736.613	28.5746	2.2215
26	4.54439	493.21	0	0	0

List Of Coordinates

Water Table

SLIDEINTERPRET 7.018

х	Y
-250	471.47
-162.22	471.12
-89.2	471.72
-81.54	472.18
-74.04	473.19
0	479.5
30.13	484.45
250	484.45

External Boundary

Х	Y
-8.63	493.19
-9.48	492.66
-34.6222	484.475
-41.61	482.2
-54.9275	478.5
-74.04	473.19
-81.54	472.18
-85.3128	471.953
-89.2	471.72
-113.25	472.38
-147.31	472
-162.22	471.12
-183.37	471.47
-250	471.47
-250	400
250	400
250	410
250	411.16
250	484.45
30.13	484.45
14.93	492.5
0	493.52

х	Y
30.13	484.45
42.0276	478.5
57.0175	471.004
179	410
250	410

Material Boundary

Х	Y
-34.6222	484.475
30.13	484.45

Material Boundary

Х	Y
-54.9275	478.5
42.0276	478.5

х	Y
-84.9558	471.72
-78.55	471.004
57.0175	471.004

х	Y
-85.3128	471.953
-84.9558	471.72

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_4 POST EQ
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Liquefaction
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 4 - Bottom Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Clay Fill	Lower Fill	Sand & Silt	LIQ 1	LIQ 2	Bottom Ash
Color							
Strength Type	Mohr-Coulomb	Undrained	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Mohr-Coulomb
Unit Weight [lbs/ft3]	120	120	120	120	120	120	120
Cohesion [psf]	1		40	1			1
Friction Angle [deg]	30		33	28			20
Cohesion Type		1200			230	370	
Water Surface	Water Table	None	Water Table	Water Table	None	None	Water Table
Hu Value	1		1	1			1
Ru Value		0			0	0	

Global Minimums

Method: spencer

FS	1.295320
Center:	-48.199, 531.825
Radius:	74.376
Left Slip Surface Endpoint:	-92.116, 471.800
Right Slip Surface Endpoint:	14.930, 492.500
Resisting Moment:	4.27055e+006 lb-ft
Driving Moment:	3.29692e+006 lb-ft
Resisting Horizontal Force:	48058.8 lb
Driving Horizontal Force:	37101.9 lb
Total Slice Area:	1902.08 ft2

Method: gle/morgenstern-price

FS	1.292080
Center:	-48.199, 531.825
Radius:	74.376
Left Slip Surface Endpoint:	-92.116, 471.800
Right Slip Surface Endpoint:	14.930, 492.500
Resisting Moment:	4.25988e+006 lb-ft
Driving Moment:	3.29692e+006 lb-ft
Resisting Horizontal Force:	47910.4 lb
Driving Horizontal Force:	37080.1 lb
Total Slice Area:	1902.08 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:961Number of Invalid Surfaces:0

Method: gle/morgenstern-price

Number of Valid Surfaces: 961 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.29532

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.46572	790.292	-34.1126	Sand & Silt	1	28	110.259	142.821	266.727	0	266.727
2	4.46572	2392.03	-30.047	Sand & Silt	1	28	310.176	401.777	753.753	0	753.753
3	4.46572	3850.83	-26.143	Sand & Silt	1	28	471.844	611.189	1147.6	0	1147.6
4	3.9695	4597.74	-22.5705	LIQ 1	230	0	177.562	230	1268.59	0	1268.59
5	3.9695	5667.63	-19.2943	LIQ 1	230	0	177.562	230	1526.83	0	1526.83
6	3.9695	6792.19	-16.0827	LIQ 1	230	0	177.562	230	1798.32	0	1798.32
7	3.9695	7807.01	-12.9224	LIQ 1	230	0	177.562	230	2040.92	0	2040.92
8	3.9695	8712.58	-9.80166	LIQ 1	230	0	177.562	230	2254.91	0	2254.91
9	3.9695	9512.47	-6.71015	LIQ 1	230	0	177.562	230	2441.33	0	2441.33
10	3.9695	10209.1	-3.63822	LIQ 1	230	0	177.562	230	2600.94	0	2600.94
11	5.46631	15001.4	0	LIQ 1	230	0	177.562	230	2753.52	0	2753.52
12	3.9695	11457.9	3.63822	LIQ 1	230	0	177.562	230	2874.93	0	2874.93
13	3.9695	11859.6	6.71015	LIQ 1	230	0	177.562	230	2957.96	0	2957.96
14	3.9695	12200.6	9.80166	LIQ 1	230	0	177.562	230	3025.05	0	3025.05
15	3.9695	12435.9	12.9224	LIQ 1	230	0	177.562	230	3064.91	0	3064.91
16	3.9695	12562	16.0827	LIQ 1	230	0	177.562	230	3076.72	0	3076.72
17	3.9695	12574	19.2943	LIQ 1	230	0	177.562	230	3059.26	0	3059.26
18	3.9695	12465.6	22.5705	LIQ 1	230	0	177.562	230	3010.99	0	3010.99
19	4.09576	12611.4	25.9818	Sand & Silt	1	28	829.324	1074.24	2650.6	632.128	2018.47
20	4.09576	12205.6	29.5508	Sand & Silt	1	28	799.308	1035.36	2494.55	549.213	1945.34
21	4.09576	11560.9	33.2514	Sand & Silt	1	28	757.086	980.668	2287.28	444.789	1842.49
22	4.52014	11213.5	37.3283	Lower Fill	40	33	798.801	1034.7	1839.66	307.952	1531.71
23	4.52014	9189.05	41.8566	Lower Fill	40	33	668.432	865.833	1402.91	131.241	1271.67
24	5.49445	7650.93	47.3181	Clay Fill	1200	0	926.412	1200	411.219	0	411.219
25	5.78712	2929.66	54.2606	Upper Fill	1	30	135.711	175.789	302.743	0	302.743

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.29208

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.46572	790.292	-34.1126	Sand & Silt	1	28	103.357	133.545	249.281	0	249.281
2	4.46572	2392.03	-30.047	Sand & Silt	1	28	297.953	384.979	722.159	0	722.159
3	4.46572	3850.83	-26.143	Sand & Silt	1	28	462.528	597.623	1122.08	0	1122.08
4	3.9695	4597.74	-22.5705	LIQ 1	230	0	178.008	230	1269.4	0	1269.4
5	3.9695	5667.63	-19.2943	LIQ 1	230	0	178.008	230	1535.54	0	1535.54
6	3.9695	6792.19	-16.0827	LIQ 1	230	0	178.008	230	1813.97	0	1813.97
7	3.9695	7807.01	-12.9224	LIQ 1	230	0	178.008	230	2061.84	0	2061.84
8	3.9695	8712.58	-9.80166	LIQ 1	230	0	178.008	230	2278.7	0	2278.7
9	3.9695	9512.47	-6.71015	LIQ 1	230	0	178.008	230	2465.26	0	2465.26
10	3.9695	10209.1	-3.63822	LIQ 1	230	0	178.008	230	2622.29	0	2622.29
11	5.46631	15001.4	0	LIQ 1	230	0	178.008	230	2768.78	0	2768.78
12	3.9695	11457.9	3.63822	LIQ 1	230	0	178.008	230	2881.92	0	2881.92
13	3.9695	11859.6	6.71015	LIQ 1	230	0	178.008	230	2957.18	0	2957.18
14	3.9695	12200.6	9.80166	LIQ 1	230	0	178.008	230	3016.78	0	3016.78
15	3.9695	12435.9	12.9224	LIQ 1	230	0	178.008	230	3050.43	0	3050.43
16	3.9695	12562	16.0827	LIQ 1	230	0	178.008	230	3058.23	0	3058.23
17	3.9695	12574	19.2943	LIQ 1	230	0	178.008	230	3039.93	0	3039.93
18	3.9695	12465.6	22.5705	LIQ 1	230	0	178.008	230	2994.73	0	2994.73
19	4.09576	12611.4	25.9818	Sand & Silt	1	28	827.162	1068.76	2640.31	632.128	2008.18
20	4.09576	12205.6	29.5508	& Sand Silt	1	28	798.681	1031.96	2488.16	549.213	1938.95
21	4.09576	11560.9	33.2514	Sand & Silt	1	28	758.988	980.673	2287.28	444.789	1842.49
22	4.52014	11213.5	37.3283	Lower Fill	40	33	802.977	1037.51	1843.99	307.952	1536.04
23	4.52014	9189.05	41.8566	Lower Fill	40	33	675.102	872.286	1412.85	131.241	1281.61
24	5.49445	7650.93	47.3181	Clay Fill	1200	0	928.735	1200	392.43	0	392.43
25	5.78712	2929.66	54.2606	Upper Fill	1	30	139.145	179.786	309.667	0	309.667

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.29532

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	-92.1156	471.8	0	0	0
2	-87.6499	468.775	1299.88	67.1612	2.95768
3	-83.1842	466.192	4633.96	239.424	2.95769
4	-78.7185	464	9259.3	478.402	2.95768
5	-74.749	462.35	12058.2	623.012	2.95768
6	-70.7795	460.96	14885.7	769.103	2.95768
7	-66.81	459.816	17649.6	911.903	2.95767
8	-62.8405	458.905	20214.2	1044.41	2.95768
9	-58.871	458.219	22466.3	1160.77	2.95768
10	-54.9015	457.752	24312.2	1256.14	2.95767
11	-50.932	457.5	25674.5	1326.53	2.95768
12	-45.4656	457.5	26646.4	1376.74	2.95767
13	-41.4961	457.752	26626.5	1375.72	2.95769
14	-37.5266	458.219	25950.8	1340.81	2.95769
15	-33.5571	458.905	24582.1	1270.09	2.95769
16	-29.5876	459.816	22496.5	1162.33	2.95768
17	-25.6181	460.96	19681.1	1016.87	2.95769
18	-21.6486	462.35	16135.6	833.678	2.95767
19	-17.6791	464	11873.4	613.463	2.95767
20	-13.5834	465.996	9983.96	515.842	2.95768
21	-9.48761	468.318	7469.56	385.931	2.95768
22	-5.39184	471.004	4432.18	228.998	2.95768
23	-0.871707	474.45	1706.47	88.1682	2.95767
24	3.64843	478.5	-949.204	-49.0427	2.95768
25	9.14288	484.458	1697.65	87.7126	2.95768
26	14.93	492.5	0	0	0

SLIDEINTERPRET 7.018

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.29208

Slice	Х	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-92.1156	471.8	0	0	0
2	-87.6499	468.775	1215.78	10.1694	0.47924
3	-83.1842	466.192	4412.28	73.1797	0.95019
4	-78.7185	464	8938	219.177	1.40472
5	-74.749	462.35	11739.3	366.59	1.78863
6	-70.7795	460.96	14580	546.895	2.14815
7	-66.81	459.816	17362.8	751.527	2.47843
8	-62.8405	458.905	19947.5	966.87	2.775
9	-58.871	458.219	22217	1177.52	3.03389
10	-54.9015	457.752	24075.2	1367.76	3.25159
11	-50.932	457.5	25443.9	1522.9	3.42525
12	-45.4656	457.5	26417.3	1656.54	3.58813
13	-41.4961	457.752	26396.8	1683.38	3.64893
14	-37.5266	458.219	25722.5	1645.55	3.6604
15	-33.5571	458.905	24360.6	1542.19	3.62237
16	-29.5876	459.816	22289.2	1377.07	3.53535
17	-25.6181	460.96	19496.1	1158.46	3.40052
18	-21.6486	462.35	15978.5	898.827	3.21962
19	-17.6791	464	11744.2	614.481	2.9951
20	-13.5834	465.996	9863.11	468.736	2.72089
21	-9.48761	468.318	7357.76	309.322	2.40731
22	-5.39184	471.004	4325.09	155.485	2.05887
23	-0.871707	474.45	1599.79	45.8013	1.63991
24	3.64843	478.5	-1068.94	-22.2408	1.19195
25	9.14288	484.458	1697.59	18.3652	0.619824
26	14.93	492.5	0	0	0

List Of Coordinates

Water Table

SLIDEINTERPRET 7.018

Х	Y
-250	464
-146.396	464
-91.1625	464
-70.49	464.736
-60.057	465.983
-43.627	469.453
4.923	479.295
30.13	484.45
250	484.45

External Boundary

Х	Y
-8.63	493.19
-9.48	492.66
-34.6222	484.475
-41.61	482.2
-54.9275	478.5
-74.04	473.19
-81.54	472.18
-85.3128	471.953
-89.2	471.72
-113.25	472.38
-147.31	472
-162.22	471.12
-183.37	471.47
-250	471.47
-250	464
-250	458
-250	457.5
-250	452
-250	450.5
-250	450
-250	445
-250	444.5
-250	443
-250	400
250	400
250	410
250	411.16
250	484.45
30.13	484.45
14.93	492.5
0	493.52

х	Y
30.13	484.45
42.0276	478.5
57.0175	471.004
71.0218	464
83.0193	458
84.0191	457.5
95.0169	452
98.0163	450.5
99.0161	450
109.014	445
110.014	444.5
113.013	443
179	410
250	410

Material Boundary

Γ

Х	Y
-34.6222	484.475
30.13	484.45

х	Y
-54.9275	478.5
42.0276	478.5

Material Boundary

х	Y
-84.9558	471.72
-78.55	471.004
57.0175	471.004

Material Boundary

х	Y
-85.3128	471.953
-84.9558	471.72

Material Boundary

х	Y
-250	464
71.0218	464

Material Boundary

Х	Y
-250	457.5
84.0191	457.5

Material Boundary

х	Y
-250	450.5
98.0163	450.5

х	Y
-250	444.5
110.014	444.5

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_2
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Static, Maxium Storage Pool
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 2 - Fly Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Middle Fill	Lower Fill	Clay	Silt and Clay	Sand	Fly Ash
Color							
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mahr Caulamh	Mahr Caulamh	No strength
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	wonr-Coulomb	Monr-Coulomb	
Unit Weight [lbs/ ft3]	115	118	120	120	120	120	112
Cohesion [psf]	1	5	1	0	1	1	
Friction Angle [deg]	25	28	29	25	25	31	
Water Surface	Water Table	Water Table	None				
Hu Value	1	1	1	1	1	1	
Ru Value							0

Global Minimums

Method: spencer

FS	1.637960
Center:	-86.107, 536.093
Radius:	80.329
Left Slip Surface Endpoint:	-121.127, 463.800
Right Slip Surface Endpoint:	-20.165, 490.218
Resisting Moment:	4.43418e+006 lb-ft
Driving Moment:	2.70714e+006 lb-ft
Resisting Horizontal Force:	50291.7 lb
Driving Horizontal Force:	30703.9 lb
Total Slice Area:	1136.85 ft2

Method: gle/morgenstern-price

FS	1.637650
Center:	-86.107, 546.319
Radius:	90.487
Left Slip Surface Endpoint:	-123.234, 463.800
Right Slip Surface Endpoint:	-13.533, 492.273
Resisting Moment:	5.57784e+006 lb-ft
Driving Moment:	3.40601e+006 lb-ft
Resisting Horizontal Force:	56380.3 lb
Driving Horizontal Force:	34427.6 lb
Total Slice Area:	1258.43 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:7436Number of Invalid Surfaces:0

Method: gle/morgenstern-price

Number of Valid Surfaces: 7436 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.63796

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress Ipsfl	Pore Pressure [psf]	Effective Normal Stress Ipsfl
1	4 3819	516 165	-24 134	Clav	0	25	25 9356	42 4814	152 355	61 2532	91 1017
2	4 3819	1468 81	-20.75	Clav	0	25	69 1201	113 216	417 096	174 303	242 793
- 3	4.3819	2267.21	-17.4404	Clav	0	25	100.468	164.563	621.957	269.05	352.907
4	3.97726	2710.54	-14.338	Silt and Clay	1	25	129.759	212.54	797.366	343.718	453.648
5	3.97726	3466.88	-11.4265	Silt and Clay	1	25	171.012	280.111	999.072	400.517	598.555
6	3.97726	4314.45	-8.54481	Silt and Clay	1	25	221.182	362.288	1219.03	444.242	774.785
7	3.97726	5085.19	-5.68475	Silt and Clay	1	25	265.796	435.364	1406.74	475.239	931.497
8	3.97726	5760.39	-2.83887	Silt and Clay	1	25	303.943	497.846	1559.23	493.745	1065.49
9	3.97726	6341.11	0	Silt and Clay	1	25	336.318	550.876	1679.11	499.899	1179.21
10	3.97726	6830.94	2.83887	Silt and Clay	1	25	363.726	595.768	1769.23	493.745	1275.49
11	3.97726	7291.81	5.68475	Silt and Clay	1	25	391.141	640.674	1847.03	475.239	1371.79
12	3.97726	7675.87	8.54481	Slit and Clay	1	25	415.232	680.134	1900.65	444.242	1456.41
13	3.97726	7959.59	11.4265	Clay	1	25	434.71	712.037	1925.34	400.517	1524.82
14	3.97726	8143.31	14.338	Clay	1	25	450.056	737.174	1922.45	343.718	1578.73
15	4.0314	8335.22	17.3082	Clay	0	25	460.942	755.004	1891.92	272.804	1619.11
16	4.0314	8304.81	20.3479	Clay	0	25	468.703	/6/./1/	1833.34	186.961	1646.37
17	4.0314 4.72943	8155.3 9199.65	23.4489	Lower	0	25 29	472.781 542.74	774.396 888.987	1746.46	85.7571 0	1660.7
19	4.72943	8593.78	30.763	Lower Fill	1	29	486.317	796.567	1435.24	0	1435.24
20	4.72943	7723.89	34.7802	Lower Fill	1	29	417.875	684.463	1233	0	1233
21	4.19354	5876.04	38.7523	Middle Fill	5	28	332.248	544.209	1014.1	0	1014.1
22	4.19354	4728.58	42.706	Middle Fill	5	28	255.269	418.121	776.969	0	776.969
23	4.19354	3303.91	46.9322	Middle Fill	5	28	169.483	277.607	512.699	0	512.699
24	4.19354	1525.28	51.5275	Middle Fill	5	28	74.5342	122.084	220.203	0	220.203
25	1.00967	64.1768	54.553	Upper Fill	1	25	10.6796	17.4927	35.3686	0	35.3686

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.63765

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.7146	555.334	-22.6069	Clay	0	25	19.274	31.5641	128.94	61.2509	67.6896
2	4.7146	1580.51	-19.4071	Clay	0	25	56.9609	93.282	374.367	174.323	200.044
3	4.7146	2439.55	-16.2692	Clay	0	25	90.5596	148.305	587.113	269.072	318.041
4	4.17878	2795.66	-13.3543	Silt and Clay	1	25	120.947	198.069	765.566	342.95	422.616
5	4.17878	3540.27	-10.6481	Silt and Clay	1	25	163.868	268.359	971.769	398.414	573.355
6	4.17878	4423.15	-7.96577	Silt and Clay	1	25	219.408	359.313	1209.58	441.171	768.404
7	4.17878	5256.08	-5.30096	Silt and Clay	1	25	271.584	444.759	1423.16	471.512	951.645
8	4.17878	5990.84	-2.64764	Silt and Clay	1	25	315.958	517.428	1597.12	489.638	1107.48
9	4.17878	6628.4	0	Silt and Clay	1	25	352.456	577.199	1731.33	495.667	1235.66
10	4.17878	7174.45	2.64764	Silt and Clay	1	25	381.81	625.271	1828.39	489.638	1338.75
11	4.17878	7697.85	5.30096	Silt and Clay	1	25	409.54	670.683	1907.65	471.512	1436.14
12	4.17878	8138.84	7.96577	Clay	1	25	432.08	707.596	1956.47	441.171	1515.3
13	4.17878	8477.62	10.6481	Clay	1	25	449.126	735.511	1973.58	398.414	1575.17
14	4.17878	8714.3	13.3543	Clay	1	25	461.873	756.386	1962.88	342.95	1619.93
15	4.3373	9181.67	16.1439	Clay	0	25	470.789	770.988	1926.22	272.829	1653.39
16	4.3373	9200.85	19.0262	Clay	0	25	477.854	782.558	1865.19	186.992	16/8.2
17	4.3373 5.11147	9091.64 10383.1	25.2297	Lower	1	25 29	482.862	915.219	1781.55	85.7636	1695.79
19	5.11147	9799.15	28.8671	Lower	1	29	507.463	831.046	1497.44	0	1497.44
20	5.11147	8904.68	32.6374	Lower Fill	1	29	445.708	729.913	1314.99	0	1314.99
21	4.63073	7050.24	36.3808	Middle Fill	5	28	367.817	602.355	1123.46	0	1123.46
22	4.63073	5836.03	40.1197	Middle Fill	5	28	298.712	489.186	910.621	0	910.621
23	4.63073	4321.89	44.0785	Middle Fill	5	28	218.175	357.295	662.569	0	662.569
24	4.63073	2439.88	48.3252	Middle Fill	5	28	122.383	200.42	367.532	0	367.532
25	2.7206	411.452	51.9277	Upper Fill	1	25	31.4809	51.5547	108.415	0	108.415

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.63796

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.63765

SLIDEINTERPRET 7.018						
	Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
	1	-123.234	463.8	0	0	0
	2	-118.519	461.837	343.975	14.7302	2.45211
	3	-113.805	460.176	1234.24	104.747	4.85093
	4	-109.09	458.8	2468.88	309.516	7.14572
	5	-104.911	457.808	3733.59	595.053	9.05554
	6	-100.732	457.022	5181.64	990.264	10.8193
	7	-96.5536	456.438	6805.53	1497.95	12.4133
	8	-92.3748	456.05	8491.88	2088.64	13.818
	9	-88.196	455.857	10120.4	2715.2	15.0182
	10	-84.0172	455.857	11592.8	3324.62	16.002
	11	-79.8384	456.05	12834.6	3865.43	16.7609
	12	-75.6596	456.438	13805.8	4297.14	17.2891
	13	-71.4809	457.022	14466.8	4584.35	17.5828
	14	-67.3021	457.808	14792.5	4703.79	17.6399
	15	-63.1233	458.8	14774.8	4647.19	17.4602
	16	-58.786	460.055	14397.8	4408.56	17.0244
	17	-54.4487	461.551	13680.1	4010.18	16.338
	18	-50.1114	463.3	12658.1	3488.16	15.4065
	19	-44.9999	465.709	11541.6	2878.82	14.0055
	20	-39.8885	468.526	9915.1	2161.09	12.2959
	21	-34.777	471.8	7887.85	1434.22	10.3053
	22	-30.1463	475.212	5757.72	838.963	8.29028
	23	-25.5155	479.114	3587.18	383.961	6.10951
	24	-20.8848	483.598	1626.15	108.112	3.80362
	25	-16.2541	488.8	280.8	6.95312	1.41846
	26	-13.5335	492.273	0	0	0

List Of Coordinates

Water Table

Х	Y
-250	463.8
150	463.8

Focus Search Line

Х	Y
-78	449
-78	467

External Boundary

х	Y
-8.81	492.89
-12.64	492.55
-24.7427	488.8
-41.17	483.71
-76.5298	472
-77.1337	471.8
-81.18	470.46
-102.38	464.5
-107	463.8
-250	463.8
-250	458.8
-250	454.8
-250	400
150	400
150	454.8
150	458.8
150	460
150	484.45
37.12	484.45
22.5371	488.8
8.39	493.02
0	492.9

Х	Y
37.12	484.45
73.7826	472
74.3715	471.8
97.9298	463.8
99.4022	463.3
109.12	460
150	460

Material Boundary

х	Υ
-24.7427	488.8
22.5371	488.8

Material Boundary

х	Y
-77.1337	471.8
74.3715	471.8

Х	Y
-107	463.3
-107	463.8

х	Y
-107	463.3
99.4022	463.3

Material Boundary

Х	Y
-250	458.8
150	458.8

Х	Y
-250	454.8
150	454.8

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	max. xsect_2
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Static, Maxium Surcharge Pool
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 2 - Fly Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical	
Analysis Methods Used		
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer	
Number of slices:	25	
Tolerance:	0.005	
Maximum number of iterations:	50	
Check malpha < 0.2:	Yes	
Initial trial value of FS:	1	
Steffensen Iteration:	Yes	

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Middle Fill	Lower Fill	Clay	Silt and Clay	Sand	Fly Ash
Color							
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mahr Caulamh	Mahr Caulamh	No strongth
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	wonr-Coulomb	Monr-Coulomb	No strength
Unit Weight [lbs/ ft3]	115	118	120	120	120	120	112
Cohesion [psf]	1	5	1	0	1	1	
Friction Angle [deg]	25	28	29	25	25	31	
Water Surface	Water Table	Water Table	None				
Hu Value	1	1	1	1	1	1	
Ru Value							0

Global Minimums

Method: spencer

FS	1.637240
Center:	-86.320, 539.120
Radius:	83.833
Left Slip Surface Endpoint:	-123.129, 463.800
Right Slip Surface Endpoint:	-17.681, 490.988
Resisting Moment:	4.94721e+006 lb-ft
Driving Moment:	3.02169e+006 lb-ft
Resisting Horizontal Force:	53775.6 lb
Driving Horizontal Force:	32845.3 lb
Total Slice Area:	1225.33 ft2

Method: gle/morgenstern-price

FS	1.637730
Center:	-86.320, 543.600
Radius:	88.139
Left Slip Surface Endpoint:	-123.744, 463.800
Right Slip Surface Endpoint:	-14.993, 491.821
Resisting Moment:	5.39866e+006 lb-ft
Driving Moment:	3.29642e+006 lb-ft
Resisting Horizontal Force:	55893.9 lb
Driving Horizontal Force:	34128.8 lb
Total Slice Area:	1262.8 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:7436Number of Invalid Surfaces:0

Method: gle/morgenstern-price

Number of Valid Surfaces: 7436 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.63724

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.26475	496.038	-24.4439	Clay	0	25	25.6364	41.9729	150.493	60.4818	90.0112
2	4.26475	1417.08	-21.2786	Clay	0	25	68.8897	112.789	414.66	172.784	241.876
3	4.26475	2200.47	-18.1803	Clay	0	25	101.115	165.549	623.324	268.303	355.021
4	4.36636	2938.15	-15.1006	Silt and Clay	1	25	126.165	206.563	789.59	348.759	440.831
5	4.36636	3740.79	-12.0291	Silt and Clay	1	25	162.294	265.715	982.23	414.548	567.682
6	4.36636	4708.6	-8.99254	Silt and Clay	1	25	213.206	349.07	1211.57	465.135	746.439
7	4.36636	5652.65	-5.98127	Silt and Clay	1	25	263.47	431.364	1423.89	500.967	922.919
8	4.36636	6475.36	-2.98655	Silt and Clay	1	25	306.184	501.296	1595.24	522.348	1072.89
9	4.36636	7178.22	0	Silt and Clay	1	25	342.203	560.268	1728.81	529.456	1199.35
10	4.36636	7767.68	2.98655	Silt and Clay	1	25	372.612	610.056	1828.47	522.348	1306.13
11	4.36636	8318.56	5.98127	Silt and Clay	1	25	402.909	659.659	1913.47	500.967	1412.5
12	4.36636	8765	8.99254	Clay	1	25	428.941	702.279	1969.03	465.135	1503.9
13	4.36636	9085.25	12.0291	Clay	1	25	449.789	736.412	1991.64	414.548	1577.1
14	4.36636	9277.85	15.1006	Clay	1	25	465.912	762.81	1982.47	348.759	1633.71
15	3.91/6/	8381.45	18.0544	Clay	0	25	4/6.563	/80.248	1945.4	272.156	16/3.25
16	3.91/6/	8329.46	20.8958	Clay	0	25	483.576	/91./3	1883.52	185.647	1697.87
17	3.91767 4.73079	9490.51	23.7923	Lower	0	25 29	487.263	915.725	1795.91	85.0907	1/10.82
19	4.73079	8879.27	30.769	Lower	1	29	502.907	823.38	1483.61	0	1483.61
20	4.73079	7998.36	34.6156	Lower Fill	1	29	434.051	710.646	1280.24	0	1280.24
21	4.27281	6235.05	38.4449	Middle Fill	5	28	347.773	569.388	1061.46	0	1061.46
22	4.27281	5067.87	42.2836	Middle Fill	5	28	270.348	442.624	823.051	0	823.051
23	4.27281	3625.03	46.3743	Middle Fill	5	28	184.114	301.438	557.518	0	557.518
24	4.27281	1829.02	50.8021	Middle Fill	5	28	88.4586	144.828	262.979	0	262.979
25	1.58761	154.842	54.0369	Upper Fill	1	25	16.8777	27.6328	57.1143	0	57.1143

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.63773

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.46393	520.911	-23.5422	Clay	0	25	19.1876	31.4241	128.07	60.6805	67.3893
2	4.46393	1486.73	-20.4111	Clay	0	25	56.8217	93.0586	372.752	173.188	199.564
3	4.46393	2304.99	-17.3426	Clay	0	25	90.7897	148.689	587.371	268.507	318.864
4	4.36943	2924.26	-14.3563	Silt and Clay	1	25	120.666	197.618	768.541	346.892	421.649
5	4.36943	3698.84	-11.441	Silt and Clay	1	25	161.654	264.746	974.979	409.374	565.605
6	4.36943	4646.16	-8.55559	Silt and Clay	1	25	217.707	356.545	1219.94	457.473	762.468
7	4.36943	5576.75	-5.69189	Silt and Clay	1	25	273.055	447.191	1448.43	491.57	956.86
8	4.36943	6391.88	-2.84242	Silt and Clay	1	25	319.479	523.22	1631.83	511.926	1119.9
9	4.36943	7092.84	0	Silt and Clay	1	25	356.953	584.592	1770.21	518.695	1251.52
10	4.36943	7686.05	2.84242	Silt and Clay	1	25	386.399	632.817	1866.86	511.926	1354.94
11	4.36943	8246.5	5.69189	Slit and Clay	1	25	413.748	677.608	1942.56	491.57	1450.99
12	4.36943	8708.35	8.55559	Clay	1	25	435.466	713.176	1984.74	457.473	1527.27
13	4.36943	9050.26	11.441	Clay	1	25	451.462	739.373	1992.82	409.374	1583.45
14	4.36943	9271.31	14.3563	Clay	1	25	463.082	758.403	1971.15	346.892	1624.26
15	4.10218	8795.11	17.2185	Clay	0	25	470.605	770.724	1925.16	2/2.336	1652.82
10	4.10218	8//1.03	20.0338	Clay	0	25	476.191	779.873	1858.44	186.002	1672.44
17	4.10218	8634.54 10013.9	22.9008	Lower Fill	0	25 29	480.042 553.607	906.658	1771.24	85.2663 0	1685.97
19	4.92744	9413.63	29.762	Lower Fill	1	29	501.454	821.247	1479.76	0	1479.76
20	4.92744	8522.02	33.5288	Lower Fill	1	29	439.298	719.452	1296.12	0	1296.12
21	4.47802	6736.84	37.2799	Middle Fill	5	28	361.254	591.636	1103.3	0	1103.3
22	4.47802	5539.48	41.0395	Middle Fill	5	28	291.558	477.494	888.633	0	888.633
23	4.47802	4054.32	45.0295	Middle Fill	5	28	210.476	344.703	638.889	0	638.889
24	4.47802	2208.96	49.323	Middle Fill	5	28	113.944	186.609	341.556	0	341.556
25	2.29379	304.682	52.7895	Upper Fill	1	25	27.5533	45.1249	94.6263	0	94.6263

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.63724

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	-123.129	463.8	0	0	0
2	-118.864	461.861	401.032	99.1398	13.8858
3	-114.6	460.201	1383.46	342.007	13.8858
4	-110.335	458.8	2687.55	664.394	13.8858
5	-105.969	457.622	4168.54	1030.51	13.8858
6	-101.602	456.691	5790.85	1431.56	13.8857
7	-97.2359	456	7558.67	1868.59	13.8858
8	-92.8695	455.543	9360.11	2313.93	13.8858
9	-88.5032	455.315	11060	2734.16	13.8858
10	-84.1368	455.315	12553.7	3103.42	13.8858
11	-79.7705	455.543	13763.6	3402.53	13.8858
12	-75.4041	456	14647	3620.9	13.8857
13	-71.0377	456.691	15158.7	3747.41	13.8858
14	-66.6714	457.622	15269	3774.67	13.8858
15	-62.305	458.8	14967	3700.01	13.8858
16	-58.3873	460.077	14349	3547.25	13.8858
17	-54.4697	461.573	13425.8	3319.01	13.8858
18	-50.552	463.3	12232.1	3023.92	13.8858
19	-45.8212	465.718	10887.3	2691.46	13.8857
20	-41.0904	468.535	9086.84	2246.37	13.8858
21	-36.3596	471.8	6959.06	1720.36	13.8858
22	-32.0868	475.192	4844.04	1197.5	13.8857
23	-27.814	479.078	2800.68	692.361	13.8858
24	-23.5412	483.561	1087.83	268.925	13.8858
25	-19.2684	488.8	87.839	21.7148	13.8858
26	-17.6808	490.988	0	0	0

SLIDEINTERPRET 7.018 To sasience

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.63773

.

70)	SLIDE	EINTERPRET 7.018				
	5151	ence				
s	lice	X	Y	Interslice	Interslice	Interslice
Nu	umber	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
		[π]	[ft]	נוסגן	נומון	[degrees]
	1	-123.744	463.8	0	0	0
	2	-119.28	461.855	334.766	13.4531	2.30128
	3	-114.816	460.194	1207.69	96.2603	4.55719
	4	-110.352	458.8	2431.93	286.728	6.72421
	5	-105.982	457.682	3818.85	585.799	8.721
	6	-101.613	456.797	5387.62	1004.53	10.5616
	7	-97.2436	456.14	7141.16	1546.34	12.2181
	8	-92.8741	455.705	8965.5	2180.24	13.6679
	9	-88.5047	455.488	10716	2849.96	14.8933
	10	-84.1353	455.488	12276.3	3492.53	15.8807
	11	-79.7659	455.705	13560.2	4047.85	16.6209
	12	-75.3964	456.14	14522.8	4469.73	17.107
	13	-71.027	456.797	15121.6	4720.06	17.3352
	14	-66.6576	457.682	15332.7	4776.78	17.304
	15	-62.2881	458.8	15152.5	4636.45	17.0134
	16	-58.186	460.071	14636.3	4337.26	16.5064
	17	-54.0838	461.567	13810.6	3901.88	15.7765
	18	-49.9816	463.3	12711.2	3365.4	14.8293
	19	-45.0541	465.717	11490.4	2740.81	13.4161
	20	-40.1267	468.535	9792.85	2031.78	11.7212
	21	-35.1993	471.8	7726.49	1330.7	9.77194
	22	-30.7212	475.209	5583.81	765.812	7.80932
	23	-26.2432	479.107	3425.92	341.838	5.69811
	24	-21.7652	483.59	1504.89	91.4124	3.47608
	25	-17.2872	488.8	235.683	4.87676	1.1854
	26	-14.9934	491.821	0	0	0

List Of Coordinates

SLIDEINTERPRET 7.018

Water Table

Х	Y
-250	463.8
150	463.8

Focus Search Line

х	Y
-71	449
-70.7033	470.104

External Boundary

Х	Y
-8.81	492.89
-12.64	492.55
-24.7427	488.8
-41.17	483.71
-76.5298	472
-77.1337	471.8
-81.18	470.46
-102.38	464.5
-107	463.8
-250	463.8
-250	458.8
-250	454.8
-250	400
150	400
150	454.8
150	458.8
150	460
150	491.3
14.969	491.3
8.39	493.02
0	492.9

х	Y
14.969	491.3
22.5873	488.8
73.7826	472
74.3715	471.8
97.9298	463.8
99.4022	463.3
109.12	460
150	460

Material Boundary

Х	Υ
-77.1337	471.8
74.3715	471.8

Material Boundary

Х	Y
-107	463.3
-107	463.8

Material Boundary

х	Y
-107	463.3
99.4022	463.3

Х	Y
-250	458.8
150	458.8

Material Boundary

Х	Y
-250	454.8
150	454.8

Material Boundary

х	Y
-24.7427	488.8
22.5873	488.8

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	seismic xsect_2	
Slide Modeler Version:	6.035	
Project Title:	Periodic Safety Factor Assessment	
Analysis:	Seismic	
Author:	J. Bertel	
Company:	Ameren - Labadie Energy Center	
Comments		
	2015012432	
	Section 2 - Fly Ash Pond	
	J. Gilliam	

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.13

Material Properties

Property	Upper Fill	Middle Fill	Lower Fill	Clay	Silt and Clay	Sand	Fly Ash
Color							
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mahr Coulomb	Mahr Caulamh	No strongth
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Moni-Coulomb	wom-coulomb	No strength
Unit Weight [lbs/ ft3]	115	118	120	120	120	120	112
Cohesion [psf]	1	5	1	0	1	1	
Friction Angle [deg]	25	28	29	25	25	31	
Water Surface	Water Table	Water Table	None				
Hu Value	1	1	1	1	1	1	
Ru Value							0

Global Minimums

Method: spencer

FS	1.076260
Center:	-92.367, 538.620
Radius:	83.099
Left Slip Surface Endpoint:	-128.524, 463.800
Right Slip Surface Endpoint:	-26.199, 488.349
Resisting Moment:	3.85203e+006 lb-ft
Driving Moment:	3.57909e+006 lb-ft
Resisting Horizontal Force:	42703.3 lb
Driving Horizontal Force:	39677.5 lb
Total Slice Area:	1035.76 ft2

Method: gle/morgenstern-price

FS	1.076980
Center:	-92.367, 536.043
Radius:	80.842
Left Slip Surface Endpoint:	-128.649, 463.800
Right Slip Surface Endpoint:	-27.357, 487.990
Resisting Moment:	3.73912e+006 lb-ft
Driving Moment:	3.47184e+006 lb-ft
Resisting Horizontal Force:	42499.9 lb
Driving Horizontal Force:	39462 lb
Total Slice Area:	1041.86 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces:5511Number of Invalid Surfaces:1925

Error Codes:

Error Code -103 reported for 1925 surfaces

Method: gle/morgenstern-price

Number of Valid Surfaces:5511Number of Invalid Surfaces:1925

Error Codes:

Error Code -103 reported for 1925 surfaces

Error Codes

The following errors were encountered during the computation:

-103 = Two surface / slope intersections, but one or more surface / nonslope external polygon intersections lie between them. This usually occurs when the slip surface extends past the bottom of the soil region, but may also occur on a benched slope model with two sets of Slope Limits.

Slice Data

Global Mir	nimum Qu	iery (spen	cer) - Safety	Factor: 1.0	7626						
Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.34859	508.706	-24.1491	Clay	0	25	50.2375	54.0686	176.781	60.8305	115.95
2	4.34859	1450.7	-20.901	Clay	0	25	128.207	137.984	469.379	173.473	295.906
3	4.34859	2246.57	-17.722	Clay	0	25	179.764	193.473	683.548	268.643	414.905
4	4.20205	2798.19	-14.6505	Silt and Clay	1	25	213.288	229.553	836.408	346.273	490.135
5	4.20205	3294.04	-11.6736	Silt and Clay	1	25	231.423	249.071	939.624	407.634	531.99
6	4.20205	3830.48	-8.72839	Silt and Clay	1	25	260.026	279.856	1052.86	454.849	598.009
7	4.20205	4528.89	-5.80636	Silt and Clay	1	25	313.091	336.967	1208.79	488.309	720.483
8	4.20205	5284.08	-2.89944	Silt and Clay	1	25	374.58	403.145	1370.68	508.281	862.404
9	4.20205	5933.42	0	Silt and Clay	1	25	424.782	457.176	1493.19	514.921	978.274
10	4.20205	6475.44	2.89944	Silt and Clay	1	25	465.175	500.649	1579.78	508.281	1071.5
11	4.20205	6909.73	5.80636	Silt and Clay	1	25	497.095	535.004	1633.49	488.309	1145.18
12	4.20205	7272.23	8.72839	Silt and Clay	1	25	525.376	565.441	1665.3	454.849	1210.45
13	4.20205	7586.52	11.6736	Silt and Clay	1	25	552.919	595.085	1681.65	407.634	1274.02
14	4.20205	7780.77	14.6505	Silt and Clay	1	25	573.298	617.018	1667.33	346.273	1321.06
15	3.99744	7474.82	17.5938	Clay	0	25	586.553	631.283	1626.24	272.451	1353.79
16	3.99744	7436.55	20.5112	Clay	0	25	595.369	640.772	1560.38	186.244	1374.14
17	3.99744	7285.72	23.4855	Clay	0	25	599.665	645.395	1469.45	85.3924	1384.05
18	3.57434	6290.96	26.3637	Lower Fill	1	29	695.01	748.011	1347.64	0	1347.64
19	3.57434	5982.76	29.1502	Lower Fill	1	29	634.158	682.519	1229.49	0	1229.49
20	3.57434	5575.21	32.0147	Lower Fill	1	29	566.049	609.216	1097.25	0	1097.25
21	3.57434	5059	34.972	Lower Fill	1	29	490.9	528.336	951.34	0	951.34
22	4.19168	5113.57	38.3181	Middle Fill	5	28	390.728	420.525	781.488	0	781.488
23	4.19168	4003.85	42.1085	Middle Fill	5	28	288.631	310.642	574.828	0	574.828
24	4.19168	2630.46	46.1428	Middle Fill	5	28	178.263	191.857	351.427	0	351.427
25	4.19168	936.408	50.5014	Middle Fill	5	28	60.8036	65.4405	113.672	0	113.672

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.07698

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base	Base Material	Base Cohesion [psf]	Base Friction Angle	Shear Stress [psf]	Shear Strength Ipsfl	Base Normal Stress	Pore Pressure Ipsfl	Effective Normal Stress
			[degrees]		[621]	[degrees]	[[951]	[621]	[psf]	[621]	[psf]
1	4.14301	481.251	-25.0463	Clay	0	25	32.6513	35.1648	135.814	60.4031	75.4111
2	4.14301	1375.33	-21.8437	Clay	0	25	97.7623	105.288	398.412	172.622	225.79
3	4.14301	2136.98	-18.7115	Clay	0	25	157.743	169.886	632.538	268.218	364.32
4	3.97555	2651.84	-15.6976	Silt and Clay	1	25	208.958	225.044	827.324	346.86	480.464
5	3.97555	3133.62	-12.7893	Silt and Clay	1	25	246.501	265.477	977.048	409.876	567.172
6	3.97555	3581.21	-9.91416	Silt and Clay	1	25	280.313	301.891	1104.97	459.711	645.263
7	3.97555	4170.25	-7.06411	Silt and Clay	1	25	332.902	358.529	1263.49	496.762	766.724
8	3.97555	4862.64	-4.23157	Silt and Clay	1	25	396.874	427.425	1435.78	521.31	914.471
9	3.97555	5489.33	-1.40938	Silt and Clay	1	25	448.775	483.322	1567.88	533.539	1034.34
10	3.97555	6022.52	1.40938	Silt and Clay	1	25	486	523.412	1653.86	533.539	1120.32
11	3.97555	6462.22	4.23157	Silt and Clay	1	25	510.647	549.957	1698.55	521.31	1177.24
12	3.97555	6809.38	7.06411	Silt and Clay	1	25	525.491	565.943	1708.28	496.762	1211.52
13	3.97555	7122.63	9.91416	Silt and Clay	1	25	539.581	581.118	1703.78	459.711	1244.07
14	3.97555	7362.86	12.7893	Silt and Clay	1	25	550.736	593.132	1679.71	409.876	1269.83
15	3.97555	7498.71	15.6976	Silt and Clay	1	25	557.916	600.864	1633.27	346.86	1286.41
16	3.80529	7208.86	18.584	Clay	0	25	562.018	605.282	1570.11	272.082	1298.03
17	3.80529	7141.14	21.4559	Clay	0	25	565.871	609.432	1492.43	185.502	1306.93
18	3.80529	6971.68	24.3856	Clay	0	25	568.943	612.74	1399.05	85.0201	1314.03
19	4.60172	8043.14	27.7086	Lower Fill	1	29	648.859	698.808	1258.88	0	1258.88
20	4.60172	7425.89	31.463	Lower Fill	1	29	570.677	614.608	1106.98	0	1106.98
21	4.60172	6573.81	35.3755	Lower Fill	1	29	484.617	521.923	939.77	0	939.77
22	3.98403	4810.65	39.1979	Middle Fill	5	28	386.883	416.665	774.229	0	774.229
23	3.98403	3761.21	42.9492	Middle Fill	5	28	296.072	318.864	590.293	0	590.293
24	3.98403	2467.43	46.9469	Middle Fill	5	28	191.25	205.972	377.974	0	377.974
25	3.98403	877.606	51.2727	Middle Fill	5	28	68.2783	73.5344	128.894	0	128.894

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.07626

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.07698

SLIDE					
Slice	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-128.649	463.8	0	0	0
2	-124.506	461.864	335.942	18.0802	3.08065
3	-120.363	460.203	1224.72	130.741	6.09335
4	-116.22	458.8	2489.48	393.148	8.97425
5	-112.245	457.683	3901.64	798.234	11.5625
6	-108.269	456.78	5358.12	1329.61	13.9364
7	-104.294	456.085	6777.19	1951.42	16.0632
8	-100.318	455.593	8183.87	2646.33	17.9191
9	-96.3426	455.299	9555.29	3381.31	19.4872
10	-92.367	455.201	10783	4086.82	20.757
11	-88.3915	455.299	11774.7	4690.87	21.7216
12	-84.4159	455.593	12469.5	5133.92	22.3779
13	-80.4404	456.085	12836.3	5375.85	22.724
14	-76.4649	456.78	12876.3	5401.89	22.7591
15	-72.4893	457.683	12597.6	5213.79	22.4833
16	-68.5138	458.8	12020.7	4831.62	21.8972
17	-64.7085	460.079	11218	4316.68	21.0467
18	-60.9032	461.575	10215.7	3701.17	19.9156
19	-57.0979	463.3	9065.69	3034.9	18.5089
20	-52.4962	465.717	7969.95	2353.43	16.4512
21	-47.8945	468.533	6519.31	1628.54	14.0256
22	-43.2927	471.8	4829.13	962.149	11.268
23	-39.3087	475.049	3232.95	491.892	8.65118
24	-35.3247	478.758	1736.98	178.458	5.86601
25	-31.3406	483.022	567.98	29.4015	2.96327
26	-27.3566	487.99	0	0	0

List Of Coordinates

SLIDEINTERPRET 7.018

Water Table

Х	Y
-250	463.8
150	463.8

External Boundary

Х	Y
-8.81	492.89
-12.64	492.55
-24.7427	488.8
-41.17	483.71
-76.5298	472
-77.1337	471.8
-81.18	470.46
-102.38	464.5
-107	463.8
-250	463.8
-250	458.8
-250	454.8
-250	400
150	400
150	454.8
150	458.8
150	460
150	484.45
37.12	484.45
22.5371	488.8
8.39	493.02
0	492.9

х	Y
37.12	2 484.45
73.7826	6 472
74.3715	5 471.8
97.9298	8 463.8
99.4022	463.3
109.12	2 460
150	460

Material Boundary

х	Υ
-24.7427	488.8
22.5371	488.8

Material Boundary

х	Y
-77.1337	471.8
74.3715	471.8

Material Boundary

Х	Y
-107	463.3
-107	463.8

Х	Y
-107	463.3
99.4022	463.3

Material Boundary

Х	Y
-250	458.8
150	458.8

Material Boundary

Х	Y
-250	454.8
150	454.8

Slide Analysis Information Periodic Safety Factor Assessment

Project Summary

File Name:	xsect_2 POST EQ
Slide Modeler Version:	6.035
Project Title:	Periodic Safety Factor Assessment
Analysis:	Liquefaction
Author:	J. Bertel
Company:	Ameren - Labadie Energy Center
	Comments
	2015012432
	Section 2 - Fly Ash Pond
	J. Gilliam

General Settings

Units of Measurement:	Imperial Units
Time Units:	seconds
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
GLE/Morgenstern-Price with interslice force function:	Half Sine Spencer
Number of slices:	25
Tolerance:	0.005
Maximum number of iterations:	50
Check malpha < 0.2:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Use negative pore pressure cutoff:	Yes
Maximum negative pore pressure [psf]:	0
Advanced Groundwater Method:	None

Random Numbers

Pseudo-random Seed:10116Random Number Generation Method:Park and Miller v.3

Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	10
Composite Surfaces:	Disabled
Reverse Curvature:	Create Tension Crack
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Material Properties

Property	Upper Fill	Middle Fill	Lower Fill	Clay	Silt and Clay	Sand	Fly Ash	LIQ 1
Color								
Strongth Tuno	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	Mohr-	No	Undrained
Strength Type	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb	strength	Unuraineu
Unit Weight [lbs/ ft3]	115	118	120	120	120	120	112	120
Cohesion [psf]	1	5	1	0	1	1		
Friction Angle [deg]	25	28	29	25	25	31		
Cohesion Type								180
Water Surface	Water Table	Water Table	None	None				
Hu Value	1	1	1	1	1	1		
Ru Value							0	0

Property	LIQ 2	LIQ 3	LIQ 4	LIQ 5
Color				
Strength Type	Undrained	Undrained	Undrained	Undrained
Unit Weight [lbs/ft3]	120	120	120	120
Cohesion Type	275	30	85	150
Water Surface	None	None	None	None
Ru Value	0	0	0	0

Global Minimums

Method: spencer

FS	1.274630
Center:	-68.868, 560.386
Radius:	105.202
Left Slip Surface Endpoint:	-110.564, 463.800
Right Slip Surface Endpoint:	11.223, 492.175
Resisting Moment:	7.4873e+006 lb-ft
Driving Moment:	5.87408e+006 lb-ft
Resisting Horizontal Force:	64081.8 lb
Driving Horizontal Force:	50274.7 lb
Total Slice Area:	2020.54 ft2

Method: gle/morgenstern-price

FS	1.262510
Center:	-57.100, 545.997
Radius:	87.248
Left Slip Surface Endpoint:	-93.893, 466.886
Right Slip Surface Endpoint:	11.503, 492.091
Resisting Moment:	5.03766e+006 lb-ft
Driving Moment:	3.9902e+006 lb-ft
Resisting Horizontal Force:	51191.1 lb
Driving Horizontal Force:	40547.1 lb
Total Slice Area:	1728.11 ft2

Valid / Invalid Surfaces

Method: spencer

Number of Valid Surfaces: 7436 Number of Invalid Surfaces: 0

Method: gle/morgenstern-price

Number of Valid Surfaces:7436Number of Invalid Surfaces:0

Slice Data

Global Minimum Query (spencer) - Safety Factor: 1.27463

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	0.232412	1.33637	-23.2808	Upper Fill	1	25	2.65272	3.38124	8.22658	3.12	5.10658
2	4.70655	601.815	-21.8311	LIQ 3	30	0	23.5362	30	156.365	0	156.365
3	4.70655	1914.68	-19.0938	LIQ 3	30	0	23.5362	30	455.057	0	455.057
4	4.70655	3433.8	-16.4013	LIQ 3	30	0	23.5362	30	793.51	0	793.51
5	0.487834	443.012	-14.9277	Clay	0	25	292.258	372.521	1114.93	316.058	798.875
6	5.33331	5811.95	-13.2977	Silt and Clay	1	25	351.502	448.035	1318.11	359.443	958.67
7	5.33331	7485.93	-10.3287	Silt and Clay	1	25	447.288	570.127	1649.59	429.097	1220.5
8	6.03736	10274.3	-7.19496	LIQ 4	85	0	66.686	85	1774.88	0	1774.88
9	6.03736	12096.7	-3.88955	LIQ 4	85	0	66.686	85	2054.09	0	2054.09
10	6.03736	13693.8	۔ 0.597097	LIQ 4	85	0	66.686	85	2289.01	0	2289.01
11	6.03736	15038.1	2.69338	LIQ 4	85	0	66.686	85	2476.58	0	2476.58
12	6.03736	16130	5.9928	LIQ 4	85	0	66.686	85	2618.34	0	2618.34
13	6.21492	17473.8	9.36163	Silt and Clay	1	25	846.473	1078.94	2758.93	447.284	2311.65
14	6.21492	18074	12.813	Silt and Clay	1	25	876.027	1116.61	2763.64	371.216	2392.42
15	0.916348	2701.54	14.807	Clay	0	25	888.728	1132.8	2748.85	319.558	2429.29
16	5.46486	16145.6	16.6184	LIQ 3	30	0	23.5362	30	2769.51	0	2769.51
17	7.70935	22552.2	20.4122	Clay	0	25	898.488	1145.24	2576.69	120.711	2455.98
18	5.40879	15395.5	24.2686	Lower Fill	1	29	1032.17	1315.64	2371.68	0	2371.68
19	5.40879	14737	27.546	Lower Fill	1	29	951.123	1212.33	2185.3	0	2185.3
20	5.40879	13809	30.9246	Lower Fill	1	29	856.217	1091.36	1967.06	0	1967.06
21	5.08638	11497.8	34.3191	Middle Fill	5	28	704.666	898.188	1679.84	0	1679.84
22	5.08638	9332.74	37.7484	Middle Fill	5	28	548.749	699.452	1306.07	0	1306.07
23	5.08638	6818.63	41.3457	Middle Fill	5	28	383.42	488.719	909.743	0	909.743
24	5.08638	3980.45	45.1555	Middle Fill	5	28	213.606	272.268	502.658	0	502.658
25	3.00159	736.493	48.3501	Upper Fill	1	25	60.2406	76.7845	162.52	0	162.52

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.26251

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.49093	862.255	-23.3359	Lower Fill	1	29	109.053	137.681	246.58	0	246.58
2	4.49093	2508.95	-20.1587	Lower Fill	1	29	318.275	401.826	723.109	0	723.109
3	2.57989	2131.66	-17.6985	Clay	0	25	358.457	452.555	1027.39	56.8861	970.507
4	4.44888	4780.55	-15.2946	LIQ 3	30	0	23.7622	30	1159.87	0	1159.87
5	4.44888	6141.95	-12.2848	LIQ 3	30	0	23.7622	30	1483.03	0	1483.03
6	4.44888	7368.85	-9.30921	LIQ 3	30	0	23.7622	30	1766.29	0	1766.29
7	4.44888	8469.3	-6.35877	LIQ 3	30	0	23.7622	30	2008.38	0	2008.38
8	4.44888	9446.16	-3.42522	LIQ 3	30	0	23.7622	30	2208.9	0	2208.9
9	5.97313	13994.3	0	LIQ 3	30	0	23.7622	30	2389.69	0	2389.69
10	3.69385	9306.51	3.17649	LIQ 3	30	0	23.7622	30	2518.49	0	2518.49
11	3.69385	9713.86	5.61012	LIQ 3	30	0	23.7622	30	2587.2	0	2587.2
12	3.69385	10050.8	8.05398	LIQ 3	30	0	23.7622	30	2635.49	0	2635.49
13	3.69385	10312	10.5127	LIQ 3	30	0	23.7622	30	2664.69	0	2664.69
14	5.02444	14264.6	13.4429	Clay	0	25	930.401	1174.64	2682.73	163.708	2519.02
15	5.02444	14366.4	16.8635	Clay	0	25	928.713	1172.51	2593.18	78.7191	2514.46
16	4.52292	12857.7	20.17	Lower Fill	1	29	1079.13	1362.41	2456.03	0	2456.03
17	4.52292	12614.9	23.3704	Lower Fill	1	29	1015.27	1281.79	2310.61	0	2310.61
18	4.52292	12197.5	26.6503	Lower Fill	1	29	942.868	1190.38	2145.72	0	2145.72
19	4.52292	11574.5	30.0277	Lower Fill	1	29	861.308	1087.41	1959.94	0	1959.94
20	3.99635	9248.16	33.3137	Middle Fill	5	28	729.916	921.526	1723.73	0	1723.73
21	3.99635	7961.99	36.5171	Middle Fill	5	28	610.977	771.365	1441.32	0	1441.32
22	3.99635	6480.12	39.8598	Middle Fill	5	28	484.55	611.749	1141.13	0	1141.13
23	3.99635	4821.58	43.3751	Middle Fill	5	28	352.163	444.609	826.784	0	826.784
24	3.99635	2940.42	47.109	Middle Fill	5	28	210.533	265.8	490.494	0	490.494
25	2.71898	641.363	50.4392	Upper Fill	1	25	60.2339	76.0459	160.936	0	160.936

Interslice Data

Global Minimum Query (spencer) - Safety Factor: 1.27463

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	-110.564	463.8	0	0	0
2	-110.331	463.7	1.44021	0.3205	12.546
3	-105.625	461.815	407.216	90.6207	12.546
4	-100.918	460.185	1259.56	280.3	12.546
5	-96.2118	458.8	2469.8	549.621	12.546
6	-95.724	458.67	2757.61	613.67	12.546
7	-90.3907	457.409	6296.88	1401.29	12.546
8	-85.0574	456.437	10289.8	2289.85	12.5459
9	-79.02	455.675	12045.8	2680.63	12.546
10	-72.9827	455.265	13292.2	2958.01	12.546
11	-66.9453	455.202	13839.5	3079.8	12.546
12	-60.908	455.486	13539.4	3013.02	12.546
13	-54.8706	456.12	12283.2	2733.47	12.546
14	-48.6557	457.144	14725.9	3277.06	12.546
15	-42.4408	458.558	16273	3621.35	12.546
16	-41.5244	458.8	16422.9	3654.7	12.546
17	-36.0595	460.431	12034.5	2678.13	12.546
18	-28.3502	463.3	11580.4	2577.07	12.546
19	-22.9414	465.739	11389	2534.47	12.546
20	-17.5326	468.56	10376.9	2309.24	12.546
21	-12.1238	471.8	8641.88	1923.14	12.546
22	-7.03745	475.272	6399.32	1424.09	12.546
23	-1.95107	479.21	4051.69	901.652	12.546
24	3.13531	483.686	1933.43	430.26	12.546
25	8.22169	488.8	451.085	100.383	12.546
26	11.2233	492.175	0	0	0

Global Minimum Query (gle/morgenstern-price) - Safety Factor: 1.26251

Slice	Х	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	-93.8925	466.886	0	0	0
2	-89.4016	464.949	967.855	33.756	1.9975
3	-84.9106	463.3	3590.46	248.209	3.95457
4	-82.3307	462.477	5361.76	473.372	5.04537
5	-77.8819	461.26	6878.69	825.664	6.84459
6	-73.433	460.291	8421.21	1260.4	8.51226
7	-68.9841	459.562	9815.1	1734.13	10.0196
8	-64.5352	459.066	10916.6	2189.73	11.3423
9	-60.0864	458.8	11610.6	2565.62	12.4605
10	-54.1132	458.8	11752.6	2846.32	13.6141
11	-50.4194	459.005	11324.2	2848.09	14.1174
12	-46.7255	459.368	10473.3	2699.79	14.4549
13	-43.0317	459.891	9183.58	2396.27	14.6241
14	-39.3378	460.576	7444.88	1942.53	14.6237
15	-34.3134	461.777	8901.29	2277.34	14.3509
16	-29.289	463.3	9621.55	2357.66	13.7684
17	-24.766	464.961	10425.5	2404.24	12.986
18	-20.2431	466.916	10505	2227.03	11.9693
19	-15.7202	469.186	9902.25	1876.84	10.7323
20	-11.1973	471.8	8677.11	1419.89	9.2933
21	-7.20092	474.426	7068.95	977.38	7.87202
22	-3.20457	477.385	5247.62	582.125	6.33001
23	0.791782	480.722	3377.9	277.078	4.68929
24	4.78814	484.498	1664.5	86.4867	2.97439
25	8.78449	488.8	396.426	8.38677	1.21197
26	11.5035	492.091	0	0	0

List Of Coordinates

SLIDEINTERPRET 7.018

Water Table

Х	Y
-250	463.8
150	463.8

Focus Search Line

х	Y
-23.3589	447.537
-23.3589	465.537

External Boundary

Х	Y
-8.81	492.89
-12.64	492.55
-24.7427	488.8
-41.17	483.71
-76.5298	472
-77.1337	471.8
-81.18	470.46
-102.38	464.5
-107	463.8
-250	463.8
-250	463.7
-250	458.8
-250	458.7
-250	456.7
-250	454.8
-250	454.7
-250	444.7
-250	442.7
-250	400
150	400
150	445.5
150	448.5
150	454.8
150	458.5
150	458.8
150	459.5
150	460
150	484.45
37.12	484.45
22.5371	488.8
8.39	493.02
0	492.9

Х	Y
37.12	484.45
73.7826	472
74.3715	471.8
97.9298	463.8
99.4022	463.3
109.12	460
150	460

Material Boundary

х	Y
-24.7427	488.8
22.5371	488.8

Material Boundary

-

Х	Y
-77.1337	471.8
74.3715	471.8

Х	Y
-107	463.3
-107	463.567
-107	463.8

Material Boundary

1	Х	Y
	-107	463.3
	-100.952	463.3
	99.4022	463.3

Material Boundary

Х	Y
-250	458.8
-15	458.8
150	458.8

Material Boundary

х	Y
-250	454.8
-100.5	454.8
150	454.8

Material Boundary

Y
463.7
463.7
463.567
463.3
459.5
459.5

Material Boundary

Х	Y
-250	458.7
-110	458.7
-15	458.5
150	458.5

Material Boundary

Х	Y
-15	458.8
-15	459.5

	Х	Y
-	-250	444.7
-	-110	444.7
	-15	448.5
	150	448.5

Material Boundary

Х	Y
-250	442.7
-110	442.7
-15	445.5
150	445.5

Material Boundary

Х	Y
-250	456.7
-110	456.7
-15	455.7

Material Boundary

Ī	Х	Y
	-250	454.7
	-110	454.7
	-100.5	454.8
	-15	455.7

Material Boundary

Х	Y
-15	445.5
-15	448.5

APPENDIX II

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI ENERGY CENTER BOTTOM ASH POND CLOSURE

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI ENERGY CENTER FLY ASH POND CLOSURE

REITZ & JENS, INC.

FINAL REPORT 2015120902

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER BOTTOM ASH POND CLOSURE

and

GREDELL Engineering Resources, Inc.

ENVIRONMENTAL ENGINEERING LAND - AIR - WATER

Prepared by

September 27, 2017

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER BOTTOM ASH POND CLOSURE

TABLE OF CONTENTS

Page

INTRODUCTION	1
MISSOURI RIVER FLOOD LEVELS	1
SETTLEMENT	1
Settlement Due to Liquefaction	4
SLOPE STABILITY	5
Seismicity	5
Liquefaction	6
Results of Stability Analyses	6
SHRINKAGE	7
SUITABILITY OF SOIL FOR VEGETATIVE COVER	7
CONSTRUCTABILITY	8
RECOMMENDATIONS FOR EARTHWORK	8
Clearing and Grubbing	8
Compaction of CCR	8
Compaction of Clay Cap	9
Compaction of Vegetative Cover	9
Excavations	9

LIST OF TABLES

	Table
Results of Field Density Tests on CCR	
Shrinkage and Shrinkage Factors	

LIST OF FIGURES

	Figure
Approximate Locations of Borings, CPT Soundings, Profiles and Section	1
Plan of Surface Loads for New Grading Plan	2
Settlement Due to New CCR Fill in New Grading Plan	
Total Settlement Due to CCR Fills and Dewatering	4
Initial and Total Settlement Along Profile BAP2	5
Design and Net Final Grade Along Profile BAP2	6
Initial and Total Settlement Along Profile BAP4	7
Design and Net Final Grade Along Profile BAP4	8
Initial and Total Settlement Along Profile BAP6	9
Design and Net Final Grade Along Profile BAP6	
Initial and Total Settlement Along Profile BAP8	11
Design and Net Final Grade Along Profile BAP8	
Results of Slope Stability Analyses, Section 3 – Static	13
Results of Slope Stability Analyses, Section 3 – Seismic, Undrained	14
Results of Slope Stability Analyses, Section 3 – Seismic, Drained	15
Results of Slope Stability Analyses, Section 3 – Liquefaction (Post Earthquake)	16

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER BOTTOM ASH POND CLOSURE

INTRODUCTION

The geotechnical analyses and recommendations presented in this report are for the design of the permanent closure of the Bottom Ash Pond (BAP) at the Ameren Missouri Labadie Energy Center (LEC). This work was done for GREDELL Engineering Resources (GER), the designer of the closure. Reitz & Jens, Inc. (R&J) was a subconsultant to GER.

The findings from the geotechnical investigation for the permanent closure are presented in the Data Report for the Bottom Ash and Fly Ash Ponds Closure, dated August 15, 2017. A summary of the history of the site is included in the Data Report.

MISSOURI RIVER FLOOD LEVELS

According to panel 29071C0190D of the Flood Insurance Rate Map (FIRM) for Franklin County, effective October 18, 2011, the existing ponds are within Zone AE of the 100-year floodplain with a Base (100-year) Flood Elevation (BFE) of 484 NGVD. The FIRM also shows the areas outside of the perimeter berms to be within the Zone AE and the regulatory floodway with a BFE of 483 NGVD. However, the BFEs in this area are created entirely by backwater flooding from the Missouri River. As a result, proposed improvements will not decrease the conveyance of the Missouri River or create a rise in the BFE. GER used this information to set the elevation of the top of the perimeter berm.

CDG Engineers completed a detailed Missouri River Floodplain Analysis for the Labadie Energy Center in June 2012. According to this analysis, the BFE along the perimeter berms (River Mile Sections 57.52 to 58.15) increases from 484.34 to 485.52 NGVD.

SETTLEMENT

Settlement analyses were completed using the computer program SETTLE3D 3.013. The program calculates the effective vertical stress at depths for a uniform surface load on an assumed elastic half-space using the Boussinesq stress distribution. Settlement of the BAP was estimated for loading due to added CCR fill, in accordance with the preliminary grading plan developed by GER, dated July 6, 2017, as well as lowering of the water level in the pond. The water in the BAP is maintained at about el. 484. We anticipated that the water level initially would be lowered to about el. 480 to complete the grading over most of the BAP, outside of the existing detention pond on the west end of the BAP. We assumed that over time the water level within the BAP would be lowered by natural drainage to about el. 465, that is slightly above the prevailing high groundwater table surrounding the BAP.

R&J performed a geotechnical investigation for the West Detention Basin (WDB) which is being constructed along the northern portion of the BAP (see Figure 1). Our findings were presented in a report to Ameren Missouri and GER dated May 3, 2016. We completed a settlement analysis of the WDB in May 2017. We estimated that the construction of the perimeter berms would produce settlements of 3 to 8 inches. We estimated that the initial filling of the WDB would produce additional settlements of 6.5 to 9 inches. Because the estimated differential settlements could affect the liner and the buried pipes, we recommended placing a preload fill over the area of the WDB using bottom ash. We also recommended

1

monitoring the settlements produced by the preload fill, to verify the magnitude of the estimated settlement and time required for the settlement to occur, which we estimated would primarily occur during the construction of the preload fill. Settlement plates were installed after the area had been prepared and prior to the placement of fill. The preload fill was completed on May 2, 2017. We monitored the settlement through May 25, at which point it appears that the primary settlement was 90% or more completed. The settlements ranged from 0.6 inches to 5.0 inches. The distribution of settlements was in general agreement with the anticipated settlements.

The BAP stratigraphy was estimated using field data obtained from the fall of 2015, which included CPT soundings and borings. The site consists of varying thicknesses of coarse and fine ash underlain by silty sand and sand. The ash thickness varied from 24 to 82 feet throughout the BAP. The stratigraphy at those five locations are shown below:

The CPT measurements of side friction and cone resistance reflect the material's engineering behavior rather than the composition and was used to estimate Equivalent Standard Penetration Test (SPT) N_{60} values, with empirical corrections developed by R&J. A correlation for the stress-strain elastic soil modulus (E_s) was used which accounted for the percent fines in a non-cohesive material and the N_{60} corrected value (Source: Das, *Principles of Foundation Engineering* 2007) as follows:

$$E_s = p_a \alpha N_{60}$$
where p_a = atmospheric pressure of approximately 2 ksf α = 5 for sands with fines, 10 for clean normally consolidated sand N_{60} = the corrected SPT blow count

The values of E_S were estimated as described above. These values were then modified by multiple analyses to approximate the settlements which were measured for the WDB preload fill. The following tables presents the estimated E_S and the adjusted E_S for the various materials in the BAP.

1 a0	ie of Estimated an	la Majustea Es Iol			10000 (1001	jmeirs	
	E (tsf)	E adjusted (tsf)	CPT 29	CPT 21	CPT 6	CPT 12	CPT 16
Fine Ash 1	50	100	0	0	0	17	8
Coarse Ash 1	60	180	0	0	3	0	0
Coarse Ash 2	300	900	0	4	0	3	0
Mixed Ash	80	240	15	24	0	0	0
Fine Ash 1	50	100	0	0	5	13	0
Soft Fine Ash	20	40	4	0	11	0	21
Mixed Ash	80	240	0	0	12	0	5
Fine Ash 2	100	300	43	3	0	0	0
Mixed Ash	80	240	0	2	0	0	0
Soft Fine Ash	20	40	0	0	10	0	0
Coarse Ash 2	300	900	0	0	0	6	0
Fine Ash 1	50	100	0	0	18	23	0
Sand 1	100	300	0	0	3	0	4
Sand 2	250	750	5	29	0	9	9
Gravelly Sand	400	1200	0	12	5	0	0

Table of Estimated and Adjusted Es for the BAP and Thicknesses (feet) in CPT's

Settlement will have two components: elastic deformation based upon the Es, and one-dimensional consolidation. The elastic deformation component would occur quickly due to changes in stress conditions. Settlement will also occur from dissipation of excess pore pressures which result in consolidation of the materials. We calculated the settlement based upon the adjusted Es in the above table for the full depth of the CCR. As a check, we also calculated the strain due to consolidation in the fine-grain materials. Materials, such as fine fly ash, which exhibited increases in pore pressures during the CPT sounding were modeled as consolidating layers. One-dimensional consolidation test laboratory results on ponded and recompacted fly ash from May 2016 were used to estimate the field properties of sluiced fly ash. Layers, which did not exhibit excessive pore pressures from the CPT soundings, such as coarse ash, interbedded fine and coarse ash or sand, were only modeled as elastic materials.

The applied load was assumed to have a moist unit weight of 120 pcf, which is an estimate of the compacted ash fill. The model of the applied surface loads in the SETTLE3D analyses is shown in Figure 2. The plan of the resulting settlement due to the CCR fills is shown in Figure 3. As shown in Figures 2 and 3, "imaginary" boreholes had to be incorporated in the model to replicate the boundaries of the initial excavation of the BAP, that is where the thickness of the CCR are much greater than around the perimeter of the BAP. The parameters for these "imaginary" boreholes were inferred based upon the closest actual borings and CPT soundings. These results are plotted along the profiles of the proposed drainage channels, BAP2, BAP4, BAP6 and BAP8, in Figures 5 through 12, and are termed "Initial Settlement"

because we judge that most of this settlement will occur during placement and grading of the CCR fills, as it did for the WDB. To check the impact of this assumption, we also substituted estimated consolidation properties for the fine-grain ash layers. This resulted in settlements that are approximately 10% greater than those shown in Figures 3 and 5 through 12. This is within the accuracy of the data used in our settlement analyses, so we judge that the settlements shown in Figures 3 and 5 through 12 are the most reasonable estimates.

Similarly, increases in the stress condition will occur in the materials as the water level in the BA Pond is lowered. Lowering the water level increases the effective stresses in the materials by decreasing the pore water pressure. This will result in settlement due to the consolidation of the materials, in particular the fine-grain materials. This consolidation is time-dependent. SETTLE3D provides a means to model the lowering of the water level. The plan of the resulting total settlement due to both the placement of the CCR fills and the subsequent lowering of the water level is shown in Figure 4. These results are also plotted in the profiles in Figures 5 through 12. Again, substituting estimated consolidation properties for the fine-grain ash layers resulted in total settlements that are approximately 10% greater than those shown in Figures 4 and 5 through 12.

Significant amounts of estimation and judgement were required to build the model in SETTLE3D for these settlement analyses, as described briefly in the foregoing paragraphs. Even in the best conditions with homogeneous soils, and extensive field investigation and laboratory testing, research has shown that these methods of settlement analysis are usually conservative, overestimating settlement by up to 40%. We have tried to be conservative in our analyses; however, it must be recognized that our estimates of settlement are approximate. Our distinction of "initial" and "total" settlement is also based upon judgement. At least a portion of the "initial" settlement will take time to occur and may not be complete at the end of construction.

If all of the "initial" settlement does occur during construction, then this will result in an apparent "shrinkage" for the contractor, that is more CCR will have to be moved and placed to achieve the specified surface grades than would be calculated based upon the initial topographic survey and the specified surface grades. We estimated the volume of the "initial" settlement using the end-area method. The calculated volume of the "initial" settlement was about 67,000 cubic yards.

The net final grades along the proposed drainage channels are plotted in Figures 6, 8, 10 and 12. Based upon our estimate of the total settlement, that is the long-term settlement primarily due to the lowering of the water level in the BA Pond, it appears that the proposed profiles along these channels will have a positive slope toward the south perimeter embankment as intended as the total estimated settlement had occurred. We estimate that there may be a settlement of the CCR of 3 to 6 inches at the proposed storm water inlets (at el. 480). Therefore, some maintenance of grade should be anticipated at each of these inlets.

Settlement Due to Liquefaction

We reviewed published papers on recent research of the liquefaction potential of ponded fly ash. Some research indicates that ponded fly ash is less likely to liquefy than natural soils of the same consistency and grain-size distribution due to diagenesis of ponded fly ash (i.e. changes in chemistry, density and cementation), and because fly ash tends to be more dilatant under shear stress than natural soil. Other research indicates that ponded fly ash may liquefy at lower cyclic stress ratios than natural soils because

fly ash has a lower specific gravity. Although, we measured the specific gravity of fly ash and bottom ash samples from Labadie and found that the specific gravities are similar to natural soils (see Data Report). It is possible that some irregular, differential settlements may occur due to liquefaction after a large earthquake, which may require repairing and re-grading the cap.

SLOPE STABILITY

Reitz & Jens completed a geotechnical investigation of the BAP and the FAP at the Labadie EC in 2010. The purpose of that investigation was to evaluate the stability of the ash pond perimeter embankments. Slope stability analyses were conducted for the load cases required by the Missouri Department of Natural Resources (MDNR) Dam Safety Program (DSP). These findings were submitted in a report to Ameren Missouri, dated November 16, 2010. The investigation included four borings and 8 CPT soundings, the approximate locations of which are shown in Figure 1. These borings and CPT soundings were made through the perimeter embankments and at the exterior toe of the embankments of the BAP and the FAP. Two temporary piezometers were installed to help define the line of seepage through the embankment. The piezometers were located as close to the downstream crest as possible, with the tips located in the lower most embankment fill above the native soils. The locations of the piezometers are shown in Figure 1 (PZ-1 and PZ-2). These were removed at the end of the investigation. The logs of the 2010 borings and CPT soundings are included in the Data Report, as well as the results of the laboratory testing of samples obtained from the borings.

Reitz & Jens evaluated the periodic safety factor assessments for the Labadie ash ponds in accordance with the 2015 EPA CCR Rule - 40 CFR §257.73(e). The findings were submitted to Ameren Missouri in June 2016. The model of the geometry of the BAP perimeter berm and the properties of the berm and foundation soil strata were developed for slope stability analyses of two critical sections. The basis for the models is presented in the 2016 report. Only Section 3 in the 2016 report was re-analyzed for this study because Section 3 would be modified by the proposed grading plan for the BAP closure. The location of Section 3 is shown in Figure 1. These results of this re-evaluation are presented in this section.

Seismicity

The critical cross-section was analyzed using a pseudo-static acceleration as a horizontal body force on the soil mass to calculate the minimum factor of safety for a seismic event. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground Acceleration (PHGA) for seismic loading event with a 2% probability of exceedance in 50 years. The PHGA was factored for the seismic site class in accordance with ASCE 7 *Minimum Design Loads for Buildings and Other Structures, International Building Code*. A seismic coefficient of 0.5 was applied to the PHGA, which is consistent with MSHA's 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, in particular Chapter 7, "Seismic Design: Stability and Deformation Analyses." The manual cites research by Hynes-Griffen and Franklin (1984) which found that for seismic coefficient of 0.5 would result in deformations of less than 3 feet for a safety factor of 1.0.

The probabilistic PHGA for the design earthquake at the Labadie site is 0.180g (that is, 18.0% of standard gravity acceleration of 32.2 feet/sec^2). This value takes into account attenuation of bedrock shaking with distance from the probable sources and general soil interactions such as damping for a hypothetical soil profile. This value is meant to be a conservative estimate. Based upon the data, the most probable

earthquake magnitudes (M_w) for these accelerations are between 7.0 and 8.0. We applied a multiplier of 1.440 to the base PHGA to account for the soil profile at the LEC to obtain a site specific PHGA of 0.259g. Therefore, the pseudo-static seismic load was 0.130g, which was used in the re-evaluation of the critical cross-section presented herein.

Liquefaction

The liquefaction slope stability analysis is a post-earthquake, static analysis which includes the effects of potential liquefaction or softening of the soils. Liquefaction occurs when ground shaking is sufficient to produce cyclic particle movements that cause excess pore water pressures to build to the point that most of the shear strength of the soil is lost. Liquefaction occurs in loose sandy soils with less than about 35% fines (soils which are finer than standard U.S. #200 or 0.075mm). Liquefaction can occur in very loose soils with up to 50 percent fines, and soils up to the size of fine gravel. Liquefaction only occurs below the ground water table (phreatic surface). The presence of soil susceptible to liquefaction in the top 50 feet of the soil profile at the LEC typically included the foundation silts and sands. Conservative estimates of post-earthquake or residual shear strengths in the liquefied strata were assumed using a correlation between the normalized residual shear strength ratio for liquefied soils and overburdencorrection CPT penetration resistance recommended by Idriss and Boulanger (2008).

Results of Stability Analyses

The slope stability of Section 3 was evaluated for four load cases using the computer program SLIDE 6.0. This program uses the Spencer method, which resolves the static forces on each vertical slice of soil profile along a given circular or irregular assumed failure surface. The program searches for the minimum factor of safety (FS) against slope failure for each center point in the grid by incrementally varying the radius of the failure surface. The plotted results from the program show the minimum FS, the center and radius of the failure surface with the minimum FS. The output of the program also plots contours of equal FS within the grid of possible center points. The input to the slope stability analyses and graphical representations of the results are included in Figures 13 through 16.

The first analysis was the "static" case, using the drained strength properties of the embankment and subsurface soil strata, as shown in Figure 13. The bottom ash was assumed to have no shear strength, which is very conservative but had no effect on the critical failure surfaces through the exterior slope of the embankment. The minimum FS was 2.69, much greater that the minimum acceptable FS of 1.5.

The seismic load was analyzed for both undrained shear strength properties for the embankment and subsurface soil strata (Figure 14) and using the drained shear strength properties (Figure 15). The minimum FS for the seismic-undrained case was 1.99, and 1.85 for the seismic-drained case. The minimum acceptable FS for the seismic load case is 1.0.

The fourth analysis was the post-earthquake condition in which reduced shear strength properties are used in the subsurface soil strata that have been identified as having a high liquefaction potential, as shown in Figure 16. The identification of the liquefiable strata and the post-liquefaction shear strength properties are discussed in the 2016 CCR periodic safety factor assessment. The minimum FS for this condition was 1.69. The minimum FS in the CCR Rule is 1.20.

Therefore, the re-analyses of the slope stability for the critical Section 3 with the proposed modifications demonstrated that the slope stability is acceptable.

SHRINKAGE

R&J excavated test pits at various locations in the BAP and the FAP to measure the *in-situ* densities of the bottom ash and the fly ash. The approximate locations of the test pits are shown in Appendix H in the Data Report. The field densities were measured with a nuclear density gage. Because of the problems associated with measuring the moisture content of CCR with a nuclear density gauge, a bag sample or a drive tube was collected for each field density test. The corrected field dry densities are listed in the Table 1. Test Pits BA-1, BA-2 and BA-3 were made along the southern berm of the BAP. BA-1 and BA-2 were made in temporary roads constructed by Charah for the field investigation using bottom ash. The bottom ash in these 3 test pits were well compacted, with an average dry unit weight (γ_d) or dry density (DD) of 99.9 PCF. Test Pits BA-5 and BA-6 were made in the stockpiled bottom ash. These test pits were excavated in 1-foot increments and the dry density was measured at each increment. Test Pits BA-7 and BA-8 were also made in the stockpiled bottom ash. The DD of the stockpiled bottom ash ranged from 86.3 to 102.9 PCF, and averaged 94.1 PCF. Test Pits BA-9 and BA-10 were made in the bottom ash outside the area of stockpiled bottom ash, and are thought to represent the general bottom ash that has been moved and graded but not compacted. The DD from these 2 test pits averaged 81.8 PCF. The overall average DD of the (corrected) field tests on the bottom ash was 93.7 PCF (see Table 2).

The standard calculation for Shrinkage = $\left(1 - \frac{In Situ Dry Density}{Target Dry Density}\right) x 100\%$

For the *in-situ* Dry Density, we recommend using the average *in-situ* Dry Density minus one Standard Deviation. We recommend using a Target Dry Density of 94 PCF for the bottom ash. This was the average DD measured for the stockpiled bottom ash, which represents the level of compaction effort for the placement and grading of the bottom ash in the BAP. It is also the required DD for the construction of the berms of the West Detention Basin (Relative Density, $D_r = 75\%$) for the gray and tan bottom ash from the stockpile. The computed Shrinkage for the bottom ash field density tests are listed in Table 2. The overall Shrinkage for the bottom ash is about 8% if the Standard Deviation of the field density tests is included.

The standard calculation of Shrinkage Factor (SF) = $1 - \frac{\text{Shrinkage}}{100\%} = \left(\frac{\ln \text{Situ Dry Density}}{\text{Target Dry Density}}\right)$

The overall SF for the bottom ash is 0.92. We recommend using a non-weighted average of 0.9.

SUITABILITY OF SOIL FOR VEGETATIVE COVER

The outside of the east end of the southern embankment of the BAP is to be excavated to a depth of about 5 feet. The construction plans show that the southern embankment was raised in 1989-1990 by placing a mixture of bottom ash and fly ash on the exterior (southern) face of the embankment as well as the top, with a 1-foot soil cap. Therefore, most of the excavated material from the southern embankment of the BAP will be CCR and will have to be disposed of in the BAP; it will not be suitable for the vegetative cap. In addition, 2 feet of the CCR fill will have to be removed to construct the closure cap on the exposed CCR in the outside face of the embankment.

Approximately 15 feet of the outside portion of the existing perimeter embankment of the FAP is to be excavated. The fill used to construct the perimeter embankment of the FAP was excavated from the top few feet of the soil in the interior of the FAP. It appears that this will be suitable material for the vegetative cap. The fill is probably heterogeneous and was placed in thin lifts. Some of the fill material may be unsuitable for the vegetative cover, for example sand or non-plastic silt which is highly erodible. Up to one-half of the excavated fill material may not be suitable for the clay cap for the BAP. The unsuitable excavated soil may need to be segregated, or mixed with the clayey soil to make a suitable mix for the vegetative cover.

CONSTRUCTABILITY

Most of the major difficulties in closing of CCR ponds is the constructability of the CCR, in particular drying of the CCR so that it may be placed and compacted, and trafficability. The bottom ash is similar to a fine sand in that it dries fairly quickly. The fly ash does not tend to lose moisture unless it is disced and spread out. A pile of fly ash does not lose moisture content by gravity.

Charah was able to build roads across the BAP for the exploration borings and CPT sounding using 2 to 3 feet of dried bottom ash from the stockpile after the ground water level in the BAP had been lowered 3 feet or more below the working surface. It should not be necessary to use a woven geotextile or geo-grid to reinforce the base of temporary roads within the BAP if the ground water level is lowered and construction equipment with low ground pressure is used. The contractor will be responsible for planning of haul roads, selection of equipment, and means and methods.

RECOMMENDATIONS FOR EARTHWORK

Clearing and Grubbing

The majority of the BAP is overgrown with various grasses, small shrubs and some large trees. The grasses and fine vegetation may be plowed into the CCR. The woody vegetation and trees are a problem because surface settlement may occur where the woody vegetation is concentrated and as it rots. Also, it would be difficult to get compaction of the CCR around the fallen trees. The thick woody vegetation and trees should be removed.

Compaction of CCR

The compaction of the CCR fill is needed to control settlement due to consolidation within the fill. If the CCR fill is compacted sufficiently for trafficability then it should be adequate for compaction of the clay cap and vegetative cover. As stated above, the target DD for the bottom ash is 94 PCF, and 83 PCF for the fly ash. The contractor should cooperate with the CQA Engineer to establish a compaction procedure at the start of the fill. The contractor should propose the compaction equipment and procedures, such as a minimum of two uniform complete coverages with a tracked bulldozer or loader with a minimum applied ground pressure of 1350 PSF. The contractor should construct a test pad of sufficient size to test the operation of the proposed compaction equipment. The CQA Engineer will test the density obtained and make recommendations of equipment, moisture content conditioning, or procedures necessary to achieve the minimum desired dry unit weight. Field density testing of the CCR should not be required. The CQA

Engineer may perform periodic field density tests to monitor whether the target DD are being achieved or if the CCR fill is being over-compacted, resulting in greater "Shrinkage."

Compaction of Clay Cap

The clay should be placed in 6- to 8-inch lifts, and compacted using a pad-foot or similar kneading type of compactor – not by a vibratory compactor. The minimum compaction should be 95% of the maximum dry unit weight as determined by the Standard Proctor Moisture-Density Test (ASTM D698). We recommend a minimum of one field density test for every 1 acre if the placement and compaction is under full-time observation by an experienced and qualified soils technician.

We recommend a full set of laboratory tests on the clay cap material a minimum of every 25,000 C.Y. or when there is a change in the borrow source or the material classification. A full set of laboratory tests should include a standard Proctor moisture-density test, percent passing U.S. #200 sieve, a hydraulic conductivity test and Atterberg liquid and plastic limits tests.

Compaction of Vegetative Cover

Compaction of the vegetative cover should be accomplished by a minimum of two uniform complete coverages with a tracked bulldozer or loaded with a minimum applied ground pressure of 1000 PSF. The CQA Engineer or his representative should observe to verify the compaction effort.

Excavations

Construction of the perimeter storm water pipes will require excavations up to about 20 feet deep, unless the pipes are installed by directional boring. If installed by excavation, the contractor will have to use temporary slopes or shoring, or a combination. Temporary slopes through the CCR mix used to raise the southern embankment of the BAP will have to be cut to 3(H)-to-1(V) or flatter if there is seepage out of the cut slope. Temporary slopes in the soil fill may be cut to 2(H)-to-1(V) or flatter. The excavations will have to be designed by a registered Professional Engineer in accordance with OSHA Section 1926, Subpart P – Excavations.

Ameren Labadie Ash Pond Closures TABLE 1 - RESULTS OF FIELD DENSITY TESTS ON CCP

			Nucle	ear Density (Gauge	Laboratory	Results	Corrected	Corrected	l Field Dry	Ratio	Ratio of O	ven MC to	Oven MC	Ratio High	
			Moist	Dry	Moisture	Tube	Moisture	Nuclear Field	Den	isity	Oven MC	Nuk	e MC	at Lower	Oven MC	
	Test No.	Depth	Density	Density	Content	Dry Density	Content	Dry Density	Average	S.D.	to Nuke			Temp.	to Low	
		feet	pcf	pcf	%	pcf	%	pcf	pcf	pcf	MC	Average	Stand. Dev.	%	Oven MC	
	BA-1	0	114.0	110.7	3.0		7.1	106.4			2.37					
ern	BA-2	0	101.5	98.6	2.9	-	5.6	96.1	99.9	4.6	1.94					
B SC	BA-3	0	103.9	100.2	3.7	-	6.8	97.3			1.84					
		0	105.3	103.3	1.9	-	4.5	100.8			2.36					
	-	1	109.8	107.3	2.3	-	6.7	102.9			2.91					
	BA-5 Test	2	101.1	98.6	2.5		7.1	94.4			2.82					
pile	Pit	3	98.1	94.3	4.0	No Tube	13.6	86.3			3.41					
ock	·	4	100.7	97.7	3.1	Densities -	10.3	91.3			3.34					
Sto		0	99.4	96.7	2.8	Bottom Ash	6.1	93.7			2.17	2.22	0.75			
Ash	-	1	101.2	97.7	3.6	Sample not	9.7	92.3	94.1	5.0	2.68					
Ê	BA-6 Test	2	105.0	99.1	6.0	retained in	14.4	91.8			2.41					
otto	Pit	3	100.2	95.7	47	tubes.	12.1	89.4			2.57				-	
Bc	-	4	96.8	92.5	4.6		9.0	88.8			1.96					
	ΒΔ-7	0	104.9	102.3	2.5		5.0	99.8			2.04					
	BA-8	0	102.2	99.7	2.5	-	4.5	97.8			1.82				0.46	9.87
q ,	BA-9	0	87.4	72.7	20.2	-	10.8	78.9			0.53			5.6	1.93	
BA on	BA-10	0	92.6	81.1	14.2		93	84.7	81.8	2.9	0.65			4.1	2.27	
	57710	Ű	52.10	0111	1.112		515	0.117								
<u>e</u>		0	92.2	76.6	20.3	78.6	24.4	74.1			1.20			32,35	0.75	
kpi	-	1	112.7	97.6	15.5	78.6	30.0	86.7			1.94			38.63	0.78	
stoc	FA-1 Test Pit	2	102.1	91.6	11.5		13.2	90.2			1.15			16.14	0.82	
ers		3	101.8	92.9	9.6	86.2	15.8	87.9			1.65			14.86	1.06	
plo	-	4	98.1	82.8	18.4	71.7	32.2	74.2			1.75			41.95	0.77	
le (0	89.7	76.3	17.5	75.7	23.3	72.7	83.1	6.7				33.31	0.70	
ikpi	-	1	103.9	85.7	21.2	, 517	17.0	88.8			0.80	-		23.27	0.73	
too	FA-2 Test Pit	2	112.7	99.8	12.9		23.6	91.2			1.83			27.14	0.87	
erS		3	99.2	86.3	14.9	84.9	19.4	83.1			1.30			25.44	0.76	
PIC	·	4	104.0	89.3	16.4	81.5	27.4	81.6			1.67			29.56	0.93	
		0	106.4	103.5	2.8	92.4	6.0	100.4			2.14			14.8	0.41	
г e	r	1	96.0	82.2	16.8	67.2	33.0	72.2			1.96	1.60	-0.41	39.95	0.83	
k ve Sk pi	FA-3 Test Pit	2	95.5	79.1	20.7	77.4	27.7	74.8			1.34			28.2	0.98	
Stoc		3	89.0	73.1	21.7	69.0	29.0	69.0			1.34			32.03	0.91	
0,	·	4	84.5	59.8	41.2	53.0	67.6	50.4			1.64			74.32	0.91	
		0	103.8	93.6	10.9		20.1	86.4	72.3	14.5	1.84			16.8	1.20	
r je	-	1	104.1	86.6	20.2	70.2	31.9	78.9			1.58			32.2	0.99	
s we	FA-4 Test Pit	2	100.7	85.2	18.3		26.9	79.4			1.47			28.46	0.95	
Ne		3	91.5	67.2	36.2	58.4	66.4	55.0			1.83			62.21	1.07	
0,	·	4	95.7	70.0	36.8	56.2	67.9	57.0			1.85			63.65	1.07	
	FA-5	0	118.2	116.8	1.2		3.2	114.5			2.67					
	FA-6	0	97.6	91.0	7.2		6.8	91.4	103.0	11.6	0.94					
	FA-7	Trench	D	rive Tube Or	nly	69.4	49.5	•						47.6	1.04	
	FA-8	Trench	D	rive Tube Or	, nlv	71.5	40.8		70.5	1.0				55.5	0.74	
					,						1					
														Max.	1.20	
								All Flv Ash	82.2	5.1				Min.	0.41	
								,						Average	0.87	
														5	-	

Ameren Labadie Ash Pond Closures TABLE 2 - SHRINKAGE AND SHRINKAGE FACTORS

		Average	Standard	Ratio		
		In-Situ	Deviation	Target DD	Standard	Standard
		Dry Density	In-Situ DD	(In-Situ DD -	Shrinkage	Shrinkage
		PCF	PCF	Stand. Dev.)	%	Factor
c	Stockpiled	94.1	5.0	1.05	5.2	0.95
m Asł	South Berm	99.9	4.6	0.99	-1.4	1.01
Bottor	Non-Stockpiled	81.8	2.9	1.19	16.1	0.84
	All Bottom Ash Tests	93.7	6.8	1.08	7.5	0.92
	Older Stockpiled	83.1	6.7	1.09	8.0	0.92
Fly Ash	Recent Stockpiled	72.3	14.5	1.44	30.3	0.70
	All Stockpiled	77.7	12.5	1.27	21.5	0.79
	Trenches	70.5	1.0	1.20	16.3	0.84
	All Fly Ash Tests	82.2	5.1	1.08	7.1	0.93

Notes: Target Dry Density (DD) for bottom ash is 94.0 PCF. Target DD for fly ash is 83.0 PCF. Standard Shrinkage = [1 - (Avg. DD - Stand. Dev. DD)/Target DD] x 100% Shrinkage Factor = 1 - (Stand. Shrinkage)/100

		G-2
1		G-1
		₽-10 €
X	5 M	
	X (x ⁰	
G-4		
	FAP 6	Solo Martin
FLY		G-3 P-7
X.Ox		
J X E()		8
-2	$\sum_{j=1}^{n}$	
$\langle \rangle$		/ SCALE FEET
47		
1	<u>KEY TO LA</u> B-	GREDELL 2015 Boring
/	TH- C-	Reitz & Jens 2015 Boring Reitz & Jens 2015 CPT Sounding
	B-1(2010)	Reitz & Jens 2010 Boring
	РZ- Р-	Reitz & Jens 2010 Boring Reitz & Jens 2010 CPT Sounding
	D- G-	Reitz & Jens 1988 Boring Geotechnology 1992 Boring
	5	Sectomology 1772 Doring

Ameren Missouri Labadie Bottom Ash and Fly Ash Ponds Closure APPROXIMATE LOCATIONS OF BORINGS, CPT SOUNDINGS, PROFILES AND SECTION

989000 989500 990000 990500 991000 991500 992000	Bor	Borehole 20 Borehole 20 Boreho	Borehole 29 Borehole 29 Borehole 29 Borehole 29 Die 32 T 6 7 2 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 5 4 3 5 5 4 5 5 5 5	Borehole 20 Borehole 20 Borehole 20 Borehole 20 Borehole 20 CP CP CP CP CP CP CP CP CP CP CP CP CP	Borehole 3Borehole 34 PT 12 Borehole Sb Borehole Sb	rehole 9 ple 16 Borehole 3 9 Borehole 3 9 Borehole 39 e 14 rehole 7	North			Loadin max (s max (s	ng Stress (tor - 0.19 - 0.38 - 0.57 - 0.76 - 1.14 - 1.33 - 1.52 - 1.71 1.90 stage): 1.9 to	ms/ft2 ms/ft2 ms/ft2	
- <mark>-</mark>	722500	723000	723500	724000	724500	725000	725500	726000) 726500	727000	727500	728000	
				PIOJECT			Gredell: L	abadie	Bottom Ash Pond				
				Analysis Description				Plan of S	urface Loads for Ne	w Grading Plar	1		
		sier	1CE	Drawn By		LAS			Company	Reitz &	Jens, Inc.		
SETTLE3	3D 3.020			Date		8/2/2017			File Name Settler	nent Estimate	Shelf New Gradi	ng 3.s3z	

000000 00000 00000 00000 00000 00000 0000	Borehole 30 Borehole 30 Borehole 34 Borehole 34 Boreho	North a 36 APT 21 hale 15 a0 hole 38			otal Settlement 0.0 - 2.1 - 4.2 - 6.3 - 8.4 - 10.5 - 12.6 - 14.7 - 16.8 - 18.9 21.0 ax (stage): 15. ax (all): 20.	02 in 83 in
722500 723000 723500	724000 724500 725000	725500 72600	00 726500	727000	727500	728000
		Gredell: Labadie	Bottom Ash Pond			
	Analysis Description S	Settlement Due to Nev	w CCR Fill in New Gra	ding Plan		
Tissience	Analysis Description S	Settlement Due to Nev	w CCR Fill in New Gra	ding Plan Reitz & J	ens, Inc.	

000000 000000 000000 000000 000000 00000	Borehole 2 Bolehole 9 Borehole 28 Borehole 35 Borehole 32 Borehole 37 Borehole 37 Borehole 37 Borehole 37 Borehole 37 Borehole 37 Borehole 37 Borehole 38 Borehole 38	Total Settlement (in) 0.0 2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0 max (stage): 20.83 in max (all): 20.83 in
722500 723000 723500	724000 724500 725000 725500 72 Project	26000 726500 727000 727500 728000
	Gredell: Laba	die Bottom Ash Pond
	Analysis Description Total Settlemen	t Due to CCR Fills and Dewatering
	Drawn By	
		Keitz & Jens, Inc.
SETTLE3D 3.020	8/2/2017	Settlement Estimate Shelf New Grading 3.s3z

Ameren Missouri Labadie Bottom Ash Pond Closure INITIAL AND TOTAL SETTLEMENT ALONG PROFILE BAP2

Ameren Missouri Labadie Bottom Ash Pond Closure DESIGN & NET FINAL GRADE ALONG PROFILE BAP2

---- Design Grade ---- Net Grade

Ameren Missouri Labadie Bottom Ash Pond Closure INITIAL AND TOTAL SETTLEMENT ALONG PROFILE BAP4

Ameren Missouri Labadie Bottom Ash Pond Closure DESIGN & NET FINAL GRADE ALONG PROFILE BAP4

---- Design Grade ---- Net Grade

Ameren Missouri Labadie Bottom Ash Pond Closure INITIAL AND TOTAL SETTLEMENT ALONG PROFILE BAP6

Ameren Missouri Labadie Bottom Ash Pond Closure DESIGN & NET FINAL GRADE ALONG PROFILE BAP6

---- Design Grade ----- Net Grade

Ameren Missouri Labadie Bottom Ash Pond Closure INITIAL AND TOTAL SETTLEMENT ALONG PROFILE BAP8

Ameren Missouri Labadie Bottom Ash Pond Closure DESIGN & NET FINAL GRADE ALONG PROFILE BAP8

---- Design Grade ----- Net Grade

FINAL REPORT 2015120905

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER FLY ASH POND CLOSURE

and

GREDELL Engineering Resources, Inc.

ENVIRONMENTAL ENGINEERING

LAND-AIR-WATER

Prepared by

September 27, 2017

The Professional whose signature and personal seal appear hereon assumes responsibility only for what appears in the attached report and disclaims (pursuant to Section 327.411 RSMo) any responsibility for all other plans, estimates, specifications, reports, or other documents or instruments not sealed by the undersigned Professional relating to or intended to be used for any part or parts of the project to which this report refers.

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER FLY ASH POND CLOSURE

TABLE OF CONTENTS

Page

LIST OF TABLES

	Table
Results of Field Density Tests on CCR	1
Shrinkage and Shrinkage Factors	2

LIST OF FIGURES

Fig	gure
Approximate Locations of Borings, CPT Soundings, Profiles and Sections	1
Proposed Grading Plan	2
Estimated Settlement Due to Grading Plan	3
Estimated Settlement Along Profile FAP2	4
Design and Net Final Grade Along Profile FAP2	5
Estimated Settlement Along Profile FAP4	6
Design and Net Final Grade Along Profile FAP4	7
Estimated Settlement Along Profile FAP6	8
Design and Net Final Grade Along Profile FAP6	9
Estimated Settlement Along Profile FAP8	10
Design and Net Final Grade Along Profile FAP8	11
Results of Slope Stability Analyses, Section 1 – Static	12
Results of Slope Stability Analyses, Section 1 - Seismic, Drained Strength Properties	13
Results of Slope Stability Analyses, Section 1 - Seismic, Undrained Strength Properties	14
Results of Slope Stability Analyses, Section 1 - Liquefaction (Post Earthquake)	15
Results of Slope Stability Analyses, Section 2 – Static	16
Results of Slope Stability Analyses, Section 2 - Seismic, Drained Strength Properties	17
Results of Slope Stability Analyses, Section 2 - Seismic, Undrained Strength Properties	18
Results of Slope Stability Analyses, Section 2 - Liquefaction (Post Earthquake)	19

GEOTECHNICAL ANALYSES FOR AMEREN MISSOURI LABADIE ENERGY CENTER FLY ASH POND CLOSURE

INTRODUCTION

The geotechnical analyses and recommendations presented in this report are for the design of the permanent closure of the Fly Ash Pond (FAP) at the Ameren Missouri Labadie Energy Center (LEC). This work was done for GREDELL Engineering Resources (GER), the designer of the closure. Reitz & Jens, Inc. (R&J) was a subconsultant to GER.

The findings from the geotechnical investigation for the permanent closure are presented in the Data Report for the Bottom Ash and Fly Ash Ponds Closure, dated August 15, 2017. A summary of the history of the site is included in the Data Report.

MISSOURI RIVER FLOOD LEVELS

According to panel 29071C0190D of the Flood Insurance Rate Map (FIRM) for Franklin County, effective October 18, 2011, the existing ponds are within Zone AE of the 100-year floodplain with a Base (100-year) Flood Elevation (BFE) of 484 NGVD. The FIRM also shows the areas outside of the perimeter berms to be within the Zone AE and the regulatory floodway with a BFE of 483 NGVD. However, the BFEs in this area are created entirely by backwater flooding from the Missouri River. As a result, proposed improvements will not decrease the conveyance of the Missouri River or create a rise in the BFE. GER used this information to establish the top of the perimeter berm.

CDG Engineers completed a detailed Missouri River Floodplain Analysis for the Labadie Energy Center in June 2012. According to this analysis, the BFE along the perimeter berms (River Mile Sections 57.52 to 58.15) increases from 484.34 to 485.52 NGVD.

SETTLEMENT

Settlement analyses were completed using the computer program SETTLE3D 3.013. The program calculates the effective vertical stress at depths for a uniform surface load on an assumed elastic half-space using the Boussinesq stress distribution. Settlement of the BAP was estimated for loading due to added CCR fill, in accordance with the preliminary grading plan developed by GER, dated July 6, 2017. The proposed cut and fill thicknesses in feet are reproduced in Figure 2. We assumed a moist unit weight of 127 PCF, to be conservative. The majority of the FAP will be unloaded, that is the fly ash will be excavated and used to close the BAP. The rebound of the fly ash due to unloading will not be significant.

The basin at the south end of the FAP will be dewatered and filled with fly ash. The dewatering of the basin will increase the effective stress on the fly ash, which would also cause some consolidation and settlement. However, the fly ash does not drain readily. Therefore, only the fly ash in the vicinity of the basin will probably be affected by the dewatering for the short period of time until the basin is filled with fly ash. Since the FAP is lined, the existing water level in the FAP probably will not change very much over time. Therefore, the potential settlement due to lowering of the ground water level in the FAP was not included in our analysis.

No borings or CPT soundings have been made in the FAP since it was constructed. The geotechnical borings shown in Figure 1 - G-1 through G-7 – were made by Geotechnology, Inc. for the design of the

FAP in 1992. These borings were only 20 feet deep. All of the CCR in the FAP is fly ash. The consolidation properties of the fly ash used in our analysis were based upon a consolidation test performed on a compacted sample of the Labadie EC fly ash (see Data Report). The consolidation properties of the underlying natural soils were estimated based upon the borings by Geotechnology. The consolidation properties of the clays were based upon consolidation tests on the natural clays performed for the Detailed Site Investigation for the Labadie EC Utility Waste Landfill (UWL). The compressibility (elastic modulus) of the natural sand strata were estimated based upon the N-values from the Standard Penetration Tests in the same borings.

The plan of the resulting settlement due to the fly ash fills is shown in Figure 3. These results are plotted along the profiles of the proposed drainage channels, FAP2, FAP4, FAP6 and FAP8, in Figures 4 through 11. Most of this settlement should occur over a long time, due to the fine-grain nature of the fly ash and the fact that the FAP is lined. There is significant settlement in the area of the filled basin because Boring G-6 revealed 20 feet of silts and clays, and this area has only been loaded by the ponded water in the basin. The other areas of maximum settlement (up to 21 inches) is where the new fly ash fills are the thickest. We estimated the volume of the settlement using the end-area method. The calculated volume was about 43,000 cubic yards.

Significant amounts of estimation and judgement were required to build the model in SETTLE3D for these settlement analyses, as described briefly in the foregoing paragraphs. Even in the best conditions with homogeneous soils, and extensive field investigation and laboratory testing, research has shown that these methods of settlement analysis are usually conservative, overestimating settlement by up to 40%. We have tried to be conservative in our analyses; however, it must be recognized that our estimates of settlement are approximate.

The net final grades along the proposed drainage channels are plotted in Figures 5, 7, 9 and 11. There is very little estimated settlement along Profile FAP2 since this is mostly across areas of cut. There is some estimated settlement near the southeast embankment, where the fill in the basin extends to Profile FAP2. The estimated settlement below the thickest areas of fill along Profiles FAP4 (Figure 7) and FAP6 (Figure 9) would result in ponding along these drainage swales. If the FAP is to have a GCL cover, then it may be problematic to correct the grades in the future. So, an additional 18 inches of fill may be placed along Profile FAP4 to compensate for the estimated settlement. The problem is less extensive along FAP6. An additional 8 inches of fill may be placed at the west end of FAP6 to compensate for future settlement. There is also potential for ponding at the west end of FAP8 (Figure 11) if the intention is for drainage to be toward the east along the entire length of FAP8.

Settlement Due to Liquefaction

We reviewed published papers on recent research of the liquefaction potential of ponded fly ash. Some research indicates that ponded fly ash is less likely to liquefy than natural soils of the same consistency and grain-size distribution due to diagenesis of ponded fly ash (i.e. changes in chemistry, density and cementation), and because fly ash tends to be more dilatant under shear stress than natural soil. Other research indicates that ponded fly ash may liquefy at lower cyclic stress ratios than natural soils because fly ash has a lower specific gravity. Although, we measured the specific gravity of fly ash and bottom ash samples from LEC and found that the specific gravities are similar to natural soils (see Data Report). It is possible that some irregular, differential settlements may occur due to liquefaction after a large earthquake, which may require repairing and re-grading the cap.

SLOPE STABILITY

Page 3

Reitz & Jens completed a geotechnical investigation of the BAP and the FAP at the Labadie EC in 2010. The purpose of this investigation was to evaluate the stability of the ash pond perimeter embankments. Slope stability analyses were conducted for the load cases required by the Missouri Department of Natural Resources (MDNR) Dam Safety Program (DSP). These findings were submitted in a report to Ameren Missouri, dated November 16, 2010. The investigation included four borings and 8 CPT soundings, the approximate locations of which are shown in Figure 1. These borings and CPT soundings were made through the perimeter embankments and at the exterior toe of the embankments of the BAP and the FAP. The logs of the 2010 borings and CPT soundings are included in the Data Report, as well as the results of the laboratory testing of samples obtained from the borings.

Reitz & Jens evaluated the periodic safety factor assessments for the Labadie ash ponds in accordance with the 2015 EPA CCR Rule - 40 CFR §257.73(e). The findings were submitted to Ameren Missouri in June 2016. The model of the geometry of the FAP perimeter berm and the properties of the berm and foundation soil strata were developed for slope stability analyses of two critical sections. The basis for the models is presented in the 2016 report. Sections 1 and 2 in the 2016 report were re-analyzed for this study because these sections would be modified by the proposed grading plan for the FAP closure. The locations of Sections 1 and 2 are shown in Figure 1.

Seismicity

The critical cross-section was analyzed using a pseudo-static acceleration as a horizontal body force on the soil mass to calculate the minimum factor of safety for a seismic event. The seismic acceleration was based upon the USGS 2014 seismic hazard maps for a Peak Horizontal Ground Acceleration (PHGA) for seismic loading event with a 2% probability of exceedance in 50 years. The PHGA was factored for the seismic site class in accordance with ASCE 7 *Minimum Design Loads for Buildings and Other Structures, International Building Code*. A seismic coefficient of 0.5 was applied to the PHGA, which is consistent with MSHA's 2009 *Engineering and Design Manual for Coal Refuse Disposal Facilities*, in particular Chapter 7, "Seismic Design: Stability and Deformation Analyses." The manual cites research by Hynes-Griffen and Franklin (1984) which found that for seismic coefficient of 0.5 would result in deformations of less than 3 feet for a safety factor of 1.0.

The probabilistic PHGA for the design earthquake at the Labadie site is 0.180g (that is, 18.0% of standard gravity acceleration of 32.2 feet/sec^2). This value takes into account attenuation of bedrock shaking with distance from the probable sources and general soil interactions such as damping for a hypothetical soil profile. This value is meant to be a conservative estimate. Based upon the data, the most probable earthquake magnitudes (M_w) for these accelerations are between 7.0 and 8.0. We applied a multiplier of 1.440 to the base PHGA to account for the soil profile at the LEC to obtain a site specific PHGA of 0.259g. Therefore, the pseudo-static seismic load was 0.130g, which was used in the slope stability analyses presented herein.

Liquefaction

The liquefaction slope stability analysis is a post-earthquake, static analysis which includes the effects of potential liquefaction or softening of the soils. Liquefaction occurs when ground shaking is sufficient to produce cyclic particle movements that cause excess pore water pressures to build to the point that most

of the shear strength of the soil is lost. Liquefaction occurs in loose sandy soils with less than about 35% fines (soils which are finer than standard U.S. #200 or 0.075mm). Liquefaction can occur in very loose soils with up to 50 percent fines, and soils up to the size of fine gravel. Liquefaction only occurs below the ground water table (phreatic surface). The presence of soil susceptible to liquefaction in the top 50 feet of the soil profile at the LEC typically included the foundation silts and sands. Conservative estimates of post-earthquake or residual shear strengths in the liquefied strata were assumed using a correlation between the normalized residual shear strength ratio for liquefied soils and overburdencorrection CPT penetration resistance recommended by Idriss and Boulanger (2008).

Results of Stability Analyses

The slope stability of Sections 1 and 2 were evaluated for four conditions using the computer program SLIDE 6.0. This program uses the Spencer method, which resolves the static forces on each vertical slice of soil profile along a given circular or irregular assumed failure surface. The program searches for the minimum factor of safety (FS) against slope failure for each center point in the grid by incrementally varying the radius of the failure surface. The plotted results from the program show the minimum FS, the center and radius of the failure surface with the minimum FS. The output of the program also plots contours of equal FS within the grid of possible center points. The input to the slope stability analyses and graphical representations of the results are included in Figures 12 through 19. The resulting minimum FS are summarized in the following table:

Minimum FS from Slope Stability Analyses							
Condition	Section 1	Section 2	Minimum Acceptable				
Static (Long-term)	2.70	2.18	1.5				
Seismic (Drained Strength)	1.58	1.30	1.0				
Seismic (Undrained Strength)	1.86	2.28	1.0				
Liquefaction	1.54	1.56	1.2				

. *.*. . Ctobility Amol

The first condition that was analyzed was the "static" case, using the drained strength properties of the embankment and subsurface soil strata as shown in Figures 12 and 16. The bottom ash was assumed to have no shear strength, which is very conservative but had no effect on the critical failure surfaces through the exterior slope of the embankment. The minimum FS were much greater than the minimum acceptable FS of 1.5.

The seismic load case was analyzed using both undrained shear strength properties for the embankment and subsurface soil strata and using the drained shear strength properties. The minimum FS were much greater than the minimum acceptable FS of 1.0.

The fourth analysis was the post-earthquake condition in which reduced shear strength properties are used in the subsurface soil strata that have been identified as having a high liquefaction potential, as shown in Figures 15 and 19. The identification of the liquefiable strata and the post-liquefaction shear strength properties are discussed in the 2016 CCR periodic safety factor assessment. The minimum FS for this condition were greater than the minimum FS in the CCR Rule (1.2).

Therefore, the re-analyses of the slope stability for the critical Sections 1 and 2 with the proposed modifications demonstrated that the slope stability is acceptable.

SHRINKAGE

R&J excavated test pits at various locations in the BAP and the FAP to measure the *in-situ* densities of the bottom ash and the fly ash. The approximate locations of the test pits are shown in Appendix H in the Data Report. The field densities were measured with a nuclear density gage. Because of the problems associated with measuring the moisture content of CCR with a nuclear density gauge, a bag sample or a drive tube was collected for each field density test. The corrected field dry densities (DD) are listed in the Table 1. Test Pits FA-1 through FA-4 were made in the stockpiled fly ash. These test pits were excavated in 1-foot increments and the dry density was measured at each increment. FA-1 and FA-2 were excavated in the "older" stockpile of fly ash at the northern end of the FAP. FA-3 and FA-4 were excavated in the more recently stockpiled fly ash. FA-5 and FA-6 were excavated in the fly ash that appears to have been in place for some time; the DD were much greater (average 103 PCF) and the moisture contents were much less (3.2% and 6.8%) than any of the other fly ash field tests. Test Pits FA-7 and FA-8 were excavated from two of the sedimentation trenches that were dry at the surface. Drive tube samples were obtained from the bucket of the trackhoe (see photos in Appendix H of the Data Report). The DD of the stockpiled fly ash ranged from 72.3 PCF to 103.0 PCF, and averaged 77.7 PCF. The average DD of all of the fly ash field tests was 82.2 PCF.

The standard calculation for Shrinkage = $\left(1 - \frac{\ln Situ \operatorname{Dry Density}}{\operatorname{Target Dry Density}}\right) x \ 100\%$

For the *in-situ* Dry Density, we recommend using the average *in-situ* Dry Density minus one Standard Deviation. We recommend using a Target Dry Density of 83 PCF for the fly ash. This was the average DD measured for the older stockpiled fly ash, which represents the level of compaction effort for the placement and grading of the fly ash. The computed Shrinkage for the fly ash field density tests are listed in Table 2. The Shrinkage varied from 8% for the older stockpiled fly ash to 30% for the recently stockpiled fly ash. The high values of Shrinkage are due in part to the high Standard Deviations. The overall simple average Shrinkage for the fly ash is about 7% if the Standard Deviation of the field density tests is included.

The standard calculation of Shrinkage Factor (SF) = $1 - \text{Shrinkage}/100\% = (\frac{\text{In Situ Dry Density}}{\text{Target Dry Density}})$

The overall SF for the fly ash is 0.93. However, we recommend using a non-weighted average of 0.85 because of the variability of the field DD.

SUITABILITY OF SOIL FOR VEGETATIVE COVER

Approximately 15 feet of the outside portion of the existing perimeter embankment of the FAP is to be excavated. The fill used to construct the perimeter embankment of the FAP was excavated from the top few feet of the soil in the interior of the FAP. It appears that this will be suitable material for the vegetative cap. The fill is probably heterogeneous and was placed in thin lifts. Some of the fill material may be unsuitable for the vegetative cover, for example sand or non-plastic silt which are highly erodible. Up to one-half of the excavated fill material may not be suitable for the clay cap for the BAP. The
unsuitable excavated soil may need to be segregated, or mixed with the clayey soil to make a suitable mix for the vegetative cover.

CONSTRUCTABILITY

Most of the major difficulties in closing of CCR ponds is the constructability of the CCR, in particular drying of the CCR so that it may be placed and compacted, and trafficability. Charah has been running earth moving equipment across the FAP during normal operations. The top several feet of the fly ash dries to form a shale-like structure (see photos in Appendix H of the Data Report). However, if the top several feet of non-stockpile fly ash is removed, the subgrade fly ash will probably be very wet and not able to support construction traffic. The fly ash does not tend to lose moisture unless it is disced and spread out. A pile of fly ash does not lose moisture content by gravity. The contractor will have to dry some of the fly ash that is to be excavated for the BAP closure. It should not be necessary to use a woven geotextile or geo-grid to reinforce the base of temporary roads within the FAP if construction equipment with low ground pressure is used. The contractor will be responsible for planning of haul roads, selection of equipment, and means and methods.

RECOMMENDATIONS FOR EARTHWORK

Clearing and Grubbing

The grasses and fine vegetation may be plowed into the CCR. The thick woody vegetation and trees should be removed.

Compaction of CCR

The compaction of the CCR fill is needed to control settlement due to consolidation within the fill. If the CCR fill is compacted sufficiently for trafficability then it should be adequate for compaction of the clay cap and vegetative cover. As stated above, the target DD is 83 PCF for the fly ash. The contractor should cooperate with the CQA Engineer to establish a compaction procedure at the start of the fill. The contractor should propose the compaction equipment and procedures, such as a minimum of two uniform complete coverages with a tracked bulldozer with a minimum applied ground pressure of 1350 PSF. The contractor should construct a test pad of sufficient size to test the operation of the proposed compaction equipment. The CQA Engineer will test the density obtained and make recommendations of equipment, moisture content conditioning, or procedures necessary to achieve the minimum desired dry unit weight. Field density testing of the CCR should not be required. The CQA Engineer may perform periodic field density tests to monitor whether the target DD are being achieved or if the CCR fill is being overcompacted, resulting in greater "Shrinkage."

Compaction of Vegetative Cover

Compaction of the vegetative cover should be accomplished by a minimum of two uniform complete coverages with a tracked bulldozer with a minimum applied ground pressure of 1000 PSF. The CQA Engineer or his representative should observe to verify the compaction effort.

Excavations

Construction of the perimeter storm water pipes will require excavations up to about 20 feet deep, unless the pipes are installed by directional boring. If installed by excavation, the contractor will have to use temporary slopes or shoring, or a combination. Temporary slopes through the CCR mix used to raise the southern embankment of the BAP will have to be cut to 3(H)-to-1(V) or flatter if there is seepage out of the cut slope. Temporary slopes in the soil fill may be cut to 2(H)-to-1(V) or flatter. The excavations will have to be designed by a registered Professional Engineer in accordance with OSHA Section 1926, Subpart P – Excavations.

Ameren Labadie Ash Pond Closures TABLE 1 - RESULTS OF FIELD DENSITY TESTS ON CCP

		Nuclear Density Gauge		Laboratory Results		Corrected	Corrected Field Dry		Ratio	Ratio of Oven MC to		Oven MC	Ratio High		
			Moist	Dry	Moisture	Tube	Moisture	Nuclear Field	Den	isity	Oven MC	Nuk	e MC	at Lower	Oven MC
	Test No.	Depth	Density	Density	Content	Dry Density	Content	Dry Density	Average	S.D.	to Nuke			Temp.	to Low
		feet	pcf	pcf	%	pcf	%	pcf	pcf	pcf	MC	Average	Stand. Dev.	%	Oven MC
	BA-1	0	114.0	110.7	3.0		7.1	106.4	99.9	4.6	2.37				
ern	BA-2	0	101.5	98.6	2.9	5.6	5.6	96.1			1.94				
B SC	BA-3	0	103.9	100.2	3.7	-	6.8	97.3			1.84				
		0	105.3	103.3	1.9	-	4.5	100.8			2.36				
pile	BA-5 Test Pit	1	109.8	107.3	2.3	No Tube Densities - Bottom Ash Sample not retained in tubes.	6.7	102.9	94.1	5.0	2.91	2.22	0.75		
		2	101.1	98.6	2.5		7.1	94.4			2.82				
		3	98.1	94.3	4.0		13.6	86.3			3.41				
ock		4	100.7	97.7	3.1		10.3	91.3			3.34				
Sto		0	99.4	96.7	2.8		6.1	93.7			2.17				
Ash	-	1	101.2	97.7	3.6		9.7	92.3			2.68				
Ê	BA-6 Test	2	105.0	99.1	6.0		14.4	91.8			2.41				
otto	Pit	3	100.2	95.7	47		12.1	89.4			2.57				-
Bc	-	4	96.8	92.5	4.6		9.0	88.8			1.96				
	ΒΔ-7	0	104.9	102.3	2.5		5.0	99.8			2.04				
	BA-8	0	102.2	99.7	2.5	-	4.5	97.8			1.82			0.46	9.87
q ,	BA-9	0	87.4	72.7	20.2	-	10.8	78.9			0.53			5.6	1.93
BA on	BA-10	0	92.6	81.1	14.2		93	84.7	81.8	2.9	0.65			4.1	2.27
	57710	Ű	52.0	0111	1.112		515	0.117							
<u>e</u>		0	92.2	76.6	20.3	78.6	24.4	74.1		6.7	1.20	1.60	-0.41	32,35	0.75
kpi	FA-1 Test Pit	1	112.7	97.6	15.5	78.6	30.0	86.7			1.94			38.63	0.78
stoc		2	102.1	91.6	11.5	86.2	13.2	90.2	83.1		1.15			16.14	0.82
ers		3	101.8	92.9	9.6		15.8	87.9			1.65			14.86	1.06
Olde		4	98.1	82.8	18.4	71.7	32.2	74.2			1.75			41.95	0.77
kpile O	FA-2 Test Pit	0	89.7	76.3	17.5	75.7	23.3	72.7			1.33			33.31	0.70
		1	103.9	85.7	21.2		17.0	88.8			0.80			23.27	0.73
too		2	112.7	99.8	12.9		23.6	91.2			1.83			27.14	0.87
erS		3	99.2	86.3	14.9	84.9	19.4	83.1			1.30			25.44	0.76
PIC		4	104.0	89.3	16.4	81.5	27.4	81.6			1.67			29.56	0.93
		0	106.4	103.5	2.8	92.4	6.0	100.4	72.3	14.5	2.14			14.8	0.41
г e	r	1	96.0	82.2	16.8	67.2	33.0	72.2			1.96			39.95	0.83
k ve Sk pi	FA-3 Test Pit	2	95.5	79.1	20.7	77.4	27.7	74.8			1.34			28.2	0.98
Stoc		3	89.0	73.1	21.7	69.0	29.0	69.0			1.34			32.03	0.91
0,		4	84.5	59.8	41.2	53.0	67.6	50.4			1.64			74.32	0.91
		0	103.8	93.6	10.9		20.1	86.4			1.84			16.8	1.20
r je		1	104.1	86.6	20.2	70.2	31.9	78.9			1.58			32.2	0.99
s we	FA-4 Test Pit	2	100.7	85.2	18.3		26.9	79.4			1.47			28.46	0.95
Ne		3	91.5	67.2	36.2	58.4	66.4	55.0			1.83			62.21	1.07
0,		4	95.7	70.0	36.8	56.2	67.9	57.0			1.85			63.65	1.07
<u> </u>	FA-5	0	118.2	116.8	1.2		3.2	114.5			2.67				
	FA-6	0	97.6	91.0	7.2		6.8	91.4	103.0	11.6	0.94				
	FA-7	Trench	D	rive Tube Or	nly	69.4	49.5	•						47.6	1.04
	FA-8	Trench	D	rive Tube Or	, nlv	71.5	40.8		70.5	1.0				55.5	0.74
					,						1				
														Max.	1.20
								All Flv Ash	82.2	5.1				Min.	0.41
								,						Average	0.87
														5	-

Ameren Labadie Ash Pond Closures TABLE 2 - SHRINKAGE AND SHRINKAGE FACTORS

		Average	Standard	Ratio		
		In-Situ	Deviation	Target DD	Standard	Standard
		Dry Density	In-Situ DD	(In-Situ DD -	Shrinkage	Shrinkage
		PCF	PCF	Stand. Dev.)	%	Factor
Bottom Ash	Stockpiled	94.1	5.0	1.05	5.2	0.95
	South Berm	99.9	4.6	0.99	-1.4	1.01
	Non-Stockpiled	81.8	2.9	1.19	16.1	0.84
	All Bottom Ash Tests	93.7	6.8	1.08	7.5	0.92
Fly Ash	Older Stockpiled	83.1	6.7	1.09	8.0	0.92
	Recent Stockpiled	72.3	14.5	1.44	30.3	0.70
	All Stockpiled	77.7	12.5	1.27	21.5	0.79
	Trenches	70.5	1.0	1.20	16.3	0.84
	All Fly Ash Tests	82.2	5.1	1.08	7.1	0.93

Notes: Target Dry Density (DD) for bottom ash is 94.0 PCF. Target DD for fly ash is 83.0 PCF. Standard Shrinkage = [1 - (Avg. DD - Stand. Dev. DD)/Target DD] x 100% Shrinkage Factor = 1 - (Stand. Shrinkage)/100

Figure 1

Ameren Missouri Fly Ash Pond Closure ESTIMATED SETTLEMENT ALONG PROFILE FA2

Ameren Missouri Labadie Fly Ash Pond Closure ESTIMATED SETTLEMENT ALONG PROFILE FA4

— Design Grade —— Net Grade

Ameren Missouri Labadie Fly Ash Pond Closure ESTIMATED SETTLEMENT ALONG PROFILE FAP6

— Design Grade — Net Grade

Figure 9

Ameren Missouri Labadie Fly Ash Pond Closure ESTIMATED SETTLEMENT ALONG PROFILE FAP8

— Design Grade — Net Grade

Ameren Missouri Labadie Energy Center Evaluation of CCR Units October 2021

APPENDIX E

HDYROLOGY AND HYDRAULICS

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS 40 CFR PART 257 FRANKLIN COUNTY, MISSOURI

APPENDIX E: INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN §257.82

TABLE OF CONTENTS

Page

Section

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	REVIEW OF INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN	2
3.0	CONCLUSIONS	2
4.0	REFERENCES	3

LIST OF FIGURES

Figure 1	1	Site Map
\overline{c}		1

AMEREN MISSOURI LABADIE ENERGY CENTER EVALUATION OF CCR UNITS FRANKLIN COUNTY, MISSOURI

APPENDIX E: INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN §257.82

1.0 INTRODUCTION

The Labadie Energy Center (LEC) is located in northeastern Franklin County, Missouri along the Missouri River. The plant is approximately 3 miles north of the Town of Labadie on the south bank of the Missouri River at river mile 57.5. The LEC is located within the floodplain of the Missouri River. The LEC has two active surface impoundments that are designated as LCPA (Bottom Ash Pond) and LCPB (Fly Ash Pond). The single stage industrial embankment dams impound an area of approximately 243-acres. The surface impoundments have been dewatered, no longer receive CCRs and are currently being closed. A map showing the location of the surface impoundments is attached as Figure 1.

1.1 Purpose

40 CFR §257.82 requires the owner or operator of an existing CCR surface impoundment to prepare periodic inflow design flood control system plans for the CCR unit. The plan should document how the inflow design flood control system has been designed, constructed, operated and maintained to meet the requirements of §257.82. The section specifies that the inflow design flood control system must adequately manage flow into the CCR unit during and following the peak discharge of the inflow design flood and must manage flow from the CCR unit to collect and control the peak discharge resulting from the inflow design flood. Because the existing CCR surface impoundments at the Labadie Energy Center are classified as Low Hazard Potential dams, 40 CFR §257.82 requires that the 100-Year flood is used as the design flood in this analysis.

2.0 REVIEW OF INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN

The initial inflow design flood control system plan was completed for the active CCR surface impoundments LCPA and LCPB at the Labadie Energy Center in 2016. These CCR units have been dewatered and are currently being closed. Stormwater falling within the footprint of these impoundments is actively managed by the closure contractor to prevent overtopping of the perimeter embankment. During closure construction the principal and emergency spillways for both impoundments were removed or reused as a stormwater inlet. Rainfall falling within the footprint of the LCPA and LCPB is routed over closed portions of the impoundments to ten stormwater outlets located around the perimeter embankment.

3.0 CONCLUSIONS

LCPA and LCPB have been dewatered and are currently being closed. Closure of LCPA and LCPB was designed so that water is not permanently impounded within the perimeter embankments. The interior of the LCPA and LCPB have been graded and capped to route stormwater to 10 locations around the perimeter embankment. Stormwater is discharged through gravity outlet pipes with stormwater management features to prevent erosion. An inflow design flood control system plan is no longer applicable or necessary for the LCPA and LCPB.

4.0 **REFERENCES**

Environmental Protection Agency. (2015). "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule." 40 CFR Parts 257 and 261., Vol. 80, No. 74.

