

REPORT

2021 Annual Groundwater Monitoring and Corrective Action Report

LCL1 - Utility Waste Landfill Cell 1, Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri

Golder Associates Inc.

1901 Chouteau Avenue, St. Louis, Missouri 63103

Submitted by:

701 Emerson Road, Suite 250, Creve Coeur, Missouri, USA 63141 +1 314 984-8800 153140603 January 31, 2022

1.0 EXECUTIVE SUMMARY AND STATUS OF THE LCL1 GROUNDWATER MONITORING PROGRAM

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§§ 257.90(e)). Ameren Missouri (Ameren) has determined that the Utility Waste Landfill (UWL) at the Labadie Energy Center (LEC) is subject to the requirements of the CCR Rule. The UWL currently only operates LCL1 (Cell 1) which is an on-site landfill cell and manages Coal Combustion Residuals (CCR) from the facility. This Annual Report for the LCL1 describes CCR Rule groundwater monitoring activities from January 1, 2021, through December 31, 2021, including verification results related to late 2020 sampling.

Throughout 2021, the LCL1 CCR unit has been operating under the Detection Monitoring Program (§257.94) which began October 17, 2017. As a part of Detection Monitoring, statistical evaluations are completed after each sampling event to determine if there are any values that represent a Statistically Significant Increase (SSI) over background concentrations. In 2021, SSIs have been determined during each sampling event and a summary of the SSIs for the past year is provided in **Table 1**.

Table 1 – Summary of 2021 LCL1 Sampling Events, Previous Year Verification, and Statistical Evaluations

Event Name	Type of Event and Sampling Dates	Laboratory Analytical Data Receipt Date	Appendix III, Major Cations and Anions Detected Appendix III Parameters (See Note 1) Appendix III, Major Cations and Anions Detected Appendix III Parameters (See Note 1) Appendix III Parameters (See Note 1)	Verified SSI	SSI Determination Date	ASD Completion Date
er 2020 g Event	Detection Monitoring, November 2-3, 2020	December 11, 2020	Major Cations	<u>Calcium:</u> TMW-2 Chloride: TMW-2	March 44, 0004	h 0. 0004
November 2 Sampling E	Verification Sampling, January 5-6, 2021	January 14, 2021	Appendix III Parameters (See	Sulfate: TMW-2 TDS: TMW-2	March 11, 2021	June 9, 2021
February/April 2021 Sampling Event	Detection Monitoring, February 18 & April 16-19, 2021	March 11 and June 2, 2021	Major Cations	<u>Chloride:</u> MW-26	August 31,	November 29,
February// Samplin	Verification Sampling, June 7, 2021	June 21, 2021	Appendix III Parameters (See	CHIONGE. MWV-20	2021	2021
November 2021 Sampling Event	Detection Monitoring, November 1-4, 2021	December 28, 2021			ed after statistical a	

Notes:

- 1) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- Background monitoring wells BMW-1S and BMW-2S were sampled in February 2021 for statistical analysis purposes. The remaining LCL1 monitoring wells were sampled during April 2021.
- 3) SSI Statistically Significant Increase.
- 4) ASD Alternative Source Demonstration.
- 5) TDS Total Dissolved Solids.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Alternative Source Demonstrations were prepared for each of these sampling events and are discussed further in this Annual Report.

There were no changes made to the monitoring system in 2021 with no new wells being installed or decommissioned.

Table of Contents

1.0		CUTIVE SUMMARY AND STATUS OF THE LCL1 GROUNDWATER MONITORING GRAM	ES-1
2.0	INST	ALLATION OR DECOMMISSIONING OF MONITORING WELLS	1
3.0	GRO	UNDWATER SAMPLING RESULTS AND DISCUSSION	1
	3.1	Detection Monitoring Program	2
	3.2	Groundwater Elevation, Flow Rate and Direction	2
	3.3	Sampling Issues	3
4.0	ACTI	VITIES PLANNED FOR 2022	3

TABLES

- Table 1 Summary of 2021 LCL1 Sampling Events, Previous Year Verification, and Statistical Evaluations
- Table 2 Summary of Groundwater Sampling Dates
- Table 3 November 2020 Detection Monitoring Results
- Table 4 February-April 2021 Detection Monitoring Results
- Table 5 November 2021 Detection Monitoring Results

FIGURES

Figure 1 - Site Location Aerial Map and Monitoring Well Locations

APPENDICES

APPENDIX A

Laboratory Analytical Data

APPENDIX B

Alternative Source Demonstration - November 2020 Sampling Event

APPENDIX C

Alternative Source Demonstration - February - April 2021 Sampling Event

APPENDIX D

2021 Potentiometric Surface Maps

i

2.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the LCL1. The groundwater monitoring system consists of six (6) groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1**. No new monitoring wells were installed or decommissioned in 2021 as a part of the CCR Rule monitoring program for the LCL1. For more information on the groundwater monitoring network, details are provided in the previous Annual Groundwater Monitoring Reports for the LCL1.

3.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections discuss the sampling events completed for the LCL1 CCR Unit in 2021. **Table 2** below provides a summary of the groundwater samples collected in 2021 including the number of samples, the date of sample collection, and the monitoring program.

Table 2 - Summary of Groundwater Sampling Dates

		Grou	ındwater M	lonitoring \	Vells		
Sampling Event	BMW-1S	BMW-2S	MW-26	MW-26 TMW-1		TMW-3	Monitoring Program
		D	ate of Samp	ole Collectio	on		
January 2021 Verification Sampling	-	-	-	1/6/2021	1/5/2021	1/6/2021	Detection
February-April 2021 Detection Monitoring	2/18/2021	2/18/2021	4/16/2021	4/19/2021	4/19/2021	4/19/2021	Detection
June 2021 Verification Sampling	-	-	6/7/2021	6/7/2021	6/7/2021	6/7/2021	Detection
November 2021 Detection Monitoring	11/1/2021	11/1/2021	11/4/2021	11/2/2021	11/2/2021	11/2/2021	Detection
Total Number of Samples Collected	2	2	3	4	4	4	NA

Notes:

- 1.) Detection Monitoring Events tested for Appendix III Parameters.
- 2.) Verification Sampling Events tested for Appendix III Parameters above the prediction limit for that analyte/well.
- 3.) "-" No sample collected.
- 4.) NA Not applicable.
- 5.) Background monitoring wells were sampled in February 2021 for statistical analysis.

3.1 Detection Monitoring Program

A Detection Monitoring sampling event was completed November 2-3, 2020. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2020 event were not completed until 2021 and are therefore included in this report. Detections of Appendix III analytes triggered a verification sampling event, which was completed on January 5-6, 2021, and verified SSIs. **Table 3** summarizes the results of the statistical analysis of the November 2020 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD was completed for these SSIs and is provided in **Appendix B**. This ASD demonstrates that SSIs at the monitoring wells around LCL1 are not caused by the LCL1 CCR Unit and the LCL1 CCR Unit remains in Detection Monitoring.

Detection Monitoring samples were collected at background monitoring wells BMW-1S and BMW-2S on February 18, 2021, and at monitoring wells MW-26, and TMW-1, TMW-2, and TMW-3 from April 16-19, 2021. Testing was completed for all Appendix III analytes, as well as major cations and anions. Detections of Appendix III analytes triggered Verification Sampling, which was completed June 7, 2021, and the testing results verified one SSI. **Table 4** summarizes the results of the statistical analysis of the February - April 2021 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**. As with the November 2020 sampling event, the SSI reported for the monitoring data was not caused by the LCL1 CCR Unit and an ASD for this is provided in **Appendix C**.

As outlined in the Statistical Analysis Plan for this site, updates to the statistical limits are completed once four (4) to eight (8) new sample results are available. After statistical analysis of the February-April 2021 sampling event, the statistical limits used to determine an SSI were updated according to the Statistical Analysis Plan. These updated limits will be used for November 2021 and subsequent statistical analyses.

A Detection Monitoring sampling event was completed November 1-4, 2021, and testing was performed for all Appendix III analytes as well as major cations and anions. Statistical analyses to evaluate for SSIs in the November 2021 data were not completed in 2021 and the results will be provided in the 2022 Annual Report. **Table 5** summarizes the results of the November 2021 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

3.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps included in **Appendix D**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on the potentiometric surface maps, a general flow direction from the south/southwest (bluffs area) to the north/northeast (Missouri River) is observed under normal river conditions. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and

temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

Groundwater flow direction and hydraulic gradient were estimated for the alluvial aquifer wells at the LEC using commercially available software. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow in the alluvial aquifer at the LEC is from the bluffs toward the river. Horizontal gradients calculated by the program range from 0.0001 to 0.0008 feet/foot with an estimated net annual groundwater movement of approximately 18 feet in the prevailing downgradient direction.

3.3 Sampling Issues

No notable sampling issues were encountered at the LCL1 in 2021.

4.0 ACTIVITIES PLANNED FOR 2022

Detection Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2022. Statistical analysis of the November 2021 Detection Monitoring data will be completed in 2022 and included in the 2022 Annual Report.

Tables

Table 3 November 2020 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND			GROL	INDWATER M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			N	ovember 2020	Detection M	Ionitoring Eve	nt	•		•	
DATE	NA	11/2/2020	11/2/2020	NA	11/2/2020	NA	11/3/2020	NA	11/3/2020	NA	11/3/2020
рН	SU	6.87	7.23	6.02-7.44	7.00	6.623-7.19	6.95	6.42-7.17	6.89	5.83-7.07	6.84
BORON, TOTAL	μg/L	99.0 J	45.2 J	DQR	63.6 J	139.7	103	136.3	132	139.7	128
CALCIUM, TOTAL	μg/L	216,000	142,000	182,000	119,000	177,907	142,000 J	195,768	197,000	208,416	172,000
CHLORIDE, TOTAL	mg/L	6.4	3.4	5.922	5.9	4.246	1.8	7.116	8.2	8.166	5.3
FLUORIDE, TOTAL	mg/L	0.17 J	0.22	0.2237	0.22	0.2916	0.33	0.2707	0.25	DQR	0.27
SULFATE, TOTAL	mg/L	66.5	73.4	33.4	29.8	122.2	30.9	109.9	116.0	109.6	56.1
TOTAL DISSOLVED SOLIDS	mg/L	780	524	520.2	420	733.7	579	767.8	801	756.6	651
				January 2021	Verification S	ampling Event					
DATE	NA						1/6/2021		1/5/2021		1/6/2021
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L								207,000		
CHLORIDE, TOTAL	mg/L								11.8		
FLUORIDE, TOTAL	mg/L						0.21				0.17 J
SULFATE, TOTAL	mg/L								150		
TOTAL DISSOLVED SOLIDS	mg/L								837		

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Table 4 February-April 2021 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

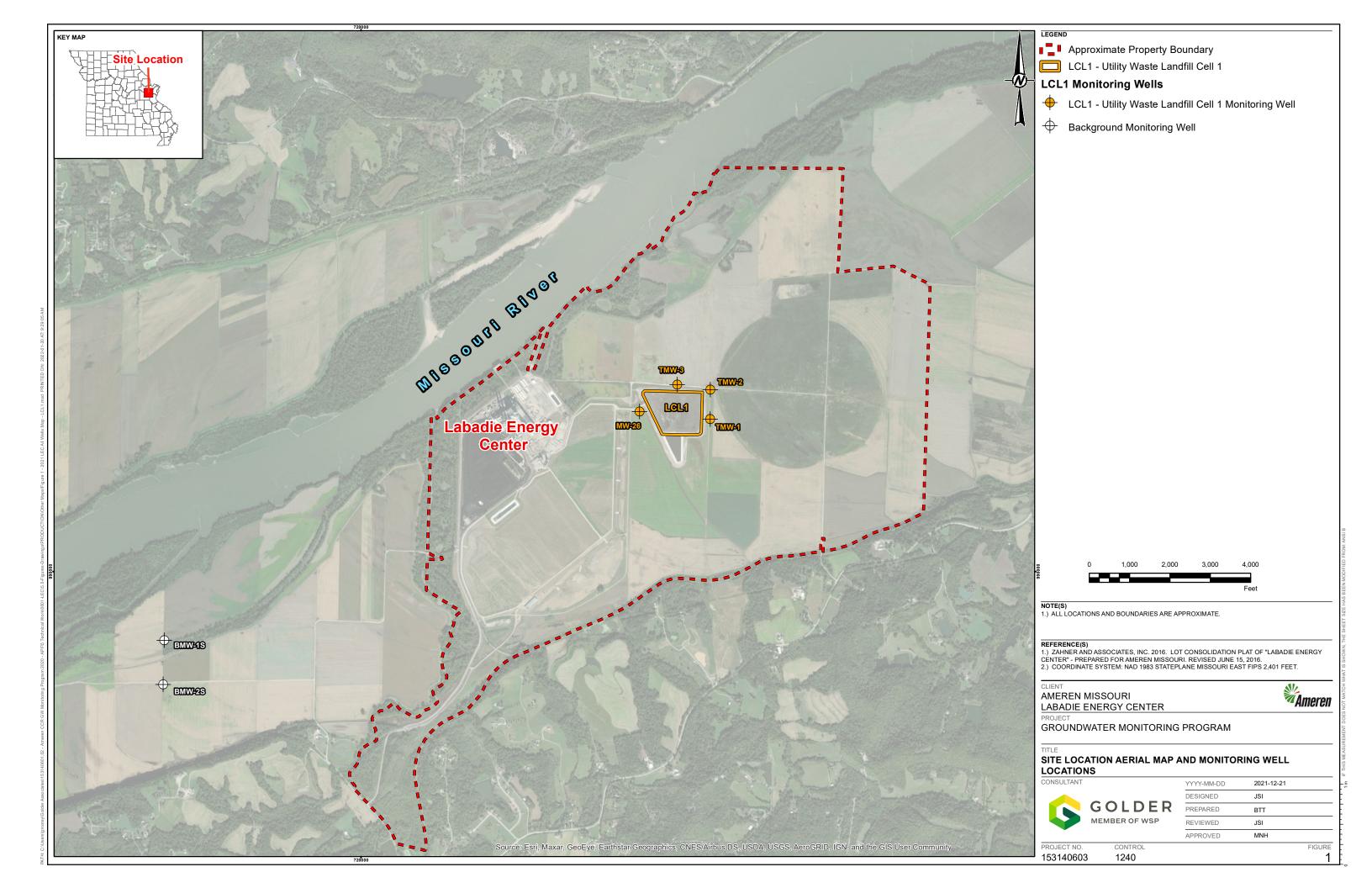
		BACKG	ROUND			GROL	INDWATER M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			Febr	uary - April 20	021 Detection	Monitoring E	vent				
DATE	NA	2/18/2021	2/18/2021	NA	4/16/2021	NA	4/19/2021	NA	4/19/2021	NA	4/19/2021
рН	SU	6.73	7.16	6.02-7.44	7.03	6.623-7.19	7.07	6.42-7.17	6.96	5.83-7.07	6.90
BORON, TOTAL	μg/L	97.3 J	42.0 J	DQR	164	139.7	108	136.3	98.3 J	139.7	120
CALCIUM, TOTAL	μg/L	212,000	133,000	182,000	138,000	177,907	176,000	195,768	198,000	208,416	177,000
CHLORIDE, TOTAL	mg/L	5.1	4.0	5.922	7.7	4.246	3.9 J	7.116	6.3	8.166	5.5
FLUORIDE, TOTAL	mg/L	ND	0.14 J	0.2237	0.29	0.2916	0.29	0.2707	ND	DQR	ND
SULFATE, TOTAL	mg/L	70.4	60.6	33.4	24.1	122.2	78.7	109.9	103	109.6	52.2
TOTAL DISSOLVED SOLIDS	mg/L	792	483	520.2	512	733.7	735	767.8	750	756.6	829
				June 2021 V	erification Sar	mpling Event					
DATE	NA				6/7/2021		6/7/2021		6/7/2021		6/7/2021
рН	SU										
BORON, TOTAL	μg/L				82.5 J						
CALCIUM, TOTAL	μg/L								185,000		
CHLORIDE, TOTAL	mg/L				6.3 J	_				_	
FLUORIDE, TOTAL	mg/L				0.15 J						
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L						630				596

NOTES

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 7. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 8. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 9. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

Table 5 November 2021 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND	GROU	JNDWATER M	IONITORING V	VELLS			
ANALYTE	UNITS	BMW-1S	BMW-2S	MW-26	TMW-1	TMW-2	TMW-3			
	N	ovember 202	l 1 Detection M	l Ionitoring Eve	onitoring Event					
DATE	NA	11/1/2021	11/1/2021	11/4/2021	11/2/2021	11/2/2021	11/2/2021			
рН	SU	6.68	6.97	6.81	6.89	6.87	6.73			
BORON, TOTAL	μg/L	77.0 J	40.7 J	68.7 J	113	119	116			
CALCIUM, TOTAL	μg/L	260,000	140,000	146,000	161,000	240,000	161,000			
CHLORIDE, TOTAL	mg/L	13.7	1.7 J	6.2 J	2.6 J	19.7	3.8 J			
FLUORIDE, TOTAL	mg/L	ND	0.14 J	0.24	0.27	0.25	0.20			
SULFATE, TOTAL	mg/L	146	46.2	29.3	61.4	259	40.3			
TOTAL DISSOLVED SOLIDS	mg/L	953 J	475 J	490	617	960	595			


NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Prepared By: GTM Checked By: BTT Reviewed By: MNH

Figures

APPENDIX A

Laboratory Analytical Data

January 14, 2021

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LCL1
Pace Project No.: 60358559

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on January 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LCL1
Pace Project No.: 60358559

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water

Illinois Certification #: 200030 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LCL1
Pace Project No.: 60358559

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60358559001	L-TMW-1	Water	01/06/21 11:00	01/07/21 04:40
60358559002	L-TMW-2	Water	01/05/21 15:40	01/07/21 04:40
60358559003	L-TMW-3	Water	01/06/21 12:13	01/07/21 04:40
60358559004	L-UWL-DUP-1	Water	01/05/21 08:00	01/07/21 04:40
60358559005	L-UWL-FB-1	Water	01/06/21 11:25	01/07/21 04:40

SAMPLE ANALYTE COUNT

Project: AMEREN LCL1
Pace Project No.: 60358559

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60358559001	L-TMW-1	EPA 200.7	MRV	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60358559002	L-TMW-2	EPA 200.7	MRV	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60358559003	L-TMW-3	EPA 300.0	CRN2	1	PASI-K
60358559004	L-UWL-DUP-1	EPA 200.7	MRV	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60358559005	L-UWL-FB-1	EPA 200.7	MRV	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60358559

Date: 01/14/2021 04:25 PM

Sample: L-TMW-1	Lab ID:	60358559001	Collected	: 01/06/21	11:00	Received: 01/	07/21 04:40 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA	200.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	s - Kansas Ci	ty					
Calcium	175000	ug/L	200	32.4	1	01/08/21 12:35	01/11/21 14:30	7440-70-2	M1
2540C Total Dissolved Solids	Analytical	Method: SM 2	2540C						
	Pace Anal	ytical Services	s - Kansas Ci	ty					
Total Dissolved Solids	707	mg/L	10.0	10.0	1		01/13/21 09:58		
300.0 IC Anions 28 Days	Analytical	Method: EPA	300.0						
•	Pace Anal	ytical Services	s - Kansas Ci	ty					
Chloride	2.1	mg/L	1.0	0.36	1		01/11/21 18:23	16887-00-6	
Fluoride	0.21	mg/L	0.20	0.085	1		01/11/21 18:23	16984-48-8	
Sulfate	83.1	mg/L	10.0	4.2	10		01/11/21 19:10	14808-79-8	

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60358559

Date: 01/14/2021 04:25 PM

Sample: L-TMW-2	Lab ID:	60358559002	Collected	l: 01/05/21	15:40	Received: 01/	07/21 04:40 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Calcium	207000	ug/L	200	32.4	1	01/08/21 12:35	01/11/21 14:38	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	837	mg/L	10.0	10.0	1		01/11/21 10:28		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	11.8	mg/L	1.0	0.36	1		01/11/21 19:57	16887-00-6	
Fluoride	0.15J	mg/L	0.20	0.085	1		01/11/21 19:57	16984-48-8	M1
Sulfate	150	mg/L	10.0	4.2	10		01/11/21 20:28	14808-79-8	

Date: 01/14/2021 04:25 PM

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60358559

Sample: L-TMW-3 Lab ID: 60358559003 Collected: 01/06/21 12:13 Received: 01/07/21 04:40 Matrix: Water

Parameters Results Units PQL MDL DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 300.0 IC Anions 28 Days Pace Analytical Services - Kansas City Fluoride 0.17J mg/L 0.20 0.085 01/11/21 21:31 16984-48-8

Date: 01/14/2021 04:25 PM

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60358559

Sample: L-UWL-DUP-1	Lab ID:	60358559004	Collected	: 01/05/21	1 08:00	Received: 01/	07/21 04:40 M	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	ty					
Calcium	210000	ug/L	200	32.4	1	01/08/21 12:35	01/11/21 14:41	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas Cit	ty					
Total Dissolved Solids	842	mg/L	10.0	10.0	1		01/11/21 10:28		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas Cit	ty					
Chloride	11.4	mg/L	1.0	0.36	1		01/11/21 22:02	16887-00-6	
Fluoride	0.16J	mg/L	0.20	0.085	1		01/11/21 22:02	16984-48-8	
Sulfate	164	mg/L	10.0	4.2	10		01/11/21 22:18	14808-79-8	

ANALYTICAL RESULTS

Project: AMEREN LCL1
Pace Project No.: 60358559

Date: 01/14/2021 04:25 PM

Sample: L-UWL-FB-1	Lab ID:	60358559005	Collected	: 01/06/21	11:25	Received: 01/	07/21 04:40 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	-	Method: EPA 2 ytical Services			od: EP	A 200.7			
Calcium	51.2J	ug/L	200	32.4	1	01/08/21 12:35	01/11/21 14:44	7440-70-2	
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services		y					
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		01/13/21 09:59		
300.0 IC Anions 28 Days	•	Method: EPA 3 ytical Services		y					
Chloride Fluoride Sulfate	<0.36 <0.085 <0.42	mg/L mg/L mg/L	1.0 0.20 1.0	0.36 0.085 0.42	1 1 1		01/11/21 22:34 01/11/21 22:34 01/11/21 22:34		

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60358559

QC Batch: 698560 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60358559001, 60358559002, 60358559004, 60358559005

METHOD BLANK: 2818202 Matrix: Water

Associated Lab Samples: 60358559001, 60358559002, 60358559004, 60358559005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Calcium ug/L <32.4 200 32.4 01/11/21 13:58

LABORATORY CONTROL SAMPLE: 2818203

Date: 01/14/2021 04:25 PM

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Calcium ug/L 10000 10100 101 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2818204 2818205

MS MSD 60358559001 Spike Spike

MS MSD MS MSD % Rec Max Parameter Units % Rec **RPD** RPD Result Conc. Conc. Result Result % Rec Limits Qual 20 M1 Calcium ug/L 175000 10000 10000 175000 176000 0 70-130 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2818209 2818210

MS MSD 60358561003 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Calcium 19 192000 10000 10000 194000 201000 95 70-130 20 M1 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60358559

QC Batch: 698684 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60358559002, 60358559004

METHOD BLANK: 2818810 Matrix: Water

Associated Lab Samples: 60358559002, 60358559004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 01/11/21 10:26

LABORATORY CONTROL SAMPLE: 2818811

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 2818812

60358228001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 3290 **Total Dissolved Solids** mg/L 6 3090 10

SAMPLE DUPLICATE: 2818813

Date: 01/14/2021 04:25 PM

60358561003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 974 2 10 mg/L 997

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60358559

QC Batch: 698750 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60358559001, 60358559005

METHOD BLANK: 2819086 Matrix: Water

Associated Lab Samples: 60358559001, 60358559005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 01/13/21 09:58

LABORATORY CONTROL SAMPLE: 2819087

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1010 101 80-120

SAMPLE DUPLICATE: 2819090

60358558002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 983 **Total Dissolved Solids** mg/L 1030 5 10

SAMPLE DUPLICATE: 2819091

Date: 01/14/2021 04:25 PM

60358559001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 707 719 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

Date: 01/14/2021 04:25 PM

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60358559

QC Batch: 698603 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60358559001, 60358559002, 60358559003, 60358559004, 60358559005

METHOD BLANK: 2818358 Matrix: Water

Associated Lab Samples: 60358559001, 60358559002, 60358559003, 60358559004, 60358559005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.36	1.0	0.36	01/11/21 15:17	
Fluoride	mg/L	<0.085	0.20	0.085	01/11/21 15:17	
Sulfate	mg/L	< 0.42	1.0	0.42	01/11/21 15:17	

METHOD BLANK: 2820471 Matrix: Water

Associated Lab Samples: 60358559001, 60358559002, 60358559003, 60358559004, 60358559005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.36	1.0	0.36	01/12/21 09:08	
Fluoride	mg/L	< 0.085	0.20	0.085	01/12/21 09:08	
Sulfate	mg/L	< 0.42	1.0	0.42	01/12/21 09:08	

LABORATORY CONTROL SAMPLE:	2818359					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.2	104	90-110	
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

LABORATORY CONTROL SAMPLE:	2820472					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	5.2	104	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	5	4.8	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2818	360		2818361							
		60358559001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.1	5	5	6.2	6.3	82	84	80-120	1	15	
Fluoride	mg/L	0.21	2.5	2.5	2.2	2.3	81	83	80-120	2	15	
Sulfate	mg/L	83.1	50	50	135	134	105	102	80-120	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60358559

Date: 01/14/2021 04:25 PM

MATRIX SPIKE SAMPLE:	2818362						
		60358559002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	 mg/L	11.8		16.5	93	80-120	
Fluoride	mg/L	0.15J	2.5	2.1	79	80-120 N	Л1
Sulfate	mg/L	150	50	199	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LCL1
Pace Project No.: 60358559

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 01/14/2021 04:25 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LCL1
Pace Project No.: 60358559

Date: 01/14/2021 04:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	QC Batch Analytical Method		
60358559001	L-TMW-1	EPA 200.7	698560	EPA 200.7	698593	
60358559002	L-TMW-2	EPA 200.7	698560	EPA 200.7	698593	
60358559004	L-UWL-DUP-1	EPA 200.7	698560	EPA 200.7	698593	
60358559005	L-UWL-FB-1	EPA 200.7	698560	EPA 200.7	698593	
60358559001	L-TMW-1	SM 2540C	698750			
60358559002	L-TMW-2	SM 2540C	698684			
60358559004	L-UWL-DUP-1	SM 2540C	698684			
60358559005	L-UWL-FB-1	SM 2540C	698750			
60358559001	L-TMW-1	EPA 300.0	698603			
60358559002	L-TMW-2	EPA 300.0	698603			
60358559003	L-TMW-3	EPA 300.0	698603			
60358559004	L-UWL-DUP-1	EPA 300.0	698603			
60358559005	L-UWL-FB-1	EPA 300.0	698603			

Sample Condition Upon Receipt

Client Name: Golder ASSOCIA	tes	
Courier: FedEx □ UPS □ VIA □ Clay □ I	PEX 🗆 ECI 🗆	Pace ☐ Xroads Client ☐ Other ☐
Tracking #: Pac	e Shipping Label Use	ed? Yes □ No □
Custody Seal on Cooler/Box Present: Yes ☑ No □	Seals intact: Yes	No 🗆
Packing Material: Bubble Wrap □ Bubble Bags □	□ Foam □	None □ Other 🕏 TPLC
Thermometer Used: Table Type of	flce: Wet Blue No	
Cooler Temperature (°C): As-read 15,1.7 Corr. Fact	or <u>- O</u> Correc	Date and initials of person examining contents: 0) 0721 ML14
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	Yes ONo ON/A	
Samples arrived within holding time:	Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes Mo □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes □No □N/A	Cimited volume - 1 BP2U
Correct containers used:	Yes Ono On/A	For TDS + anions
Pace containers used:	ØYes □No □N/A	
Containers intact:	Yes Ono On/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 🍇N/A	
Filtered volume received for dissolved tests?	□Yes □No ĎN/A	
Sample labels match COC: Date / time / ID / analyses	MYes □No □N/A	
Samples contain multiple phases? Matrix:	□Yes ⊠No □N/A	
Containers requiring pH preservation in compliance?	Mes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# (//	78179	date/time added.
Cyanide water sample checks:	10.21.1)	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No ĐNA	
Headspace in VOA vials (>6mm):	□Yes □No ŎN/A	
Samples from USDA Regulated Area: State:	□Yes □No ÒN/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No ĎN/A	
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/Til	me:	
Comments/ Resolution:		
By jehurch at 3:53 pm, 1/7/21		
Project Manager Review:	Date	2.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Analytical"

Section A Required C	ient Information;	Section B Required Project Information:		Section C	otion.			Page:		ď	
Company:	Golder Associates	Report To: Jeffrey Ingram		Attention:				_			
Address:	13515 Barrett Parkway Drive, Ste 260	Copy To: Ryan Feldmann/Eric Sc	Schneider	Company Name:	ie:		REGULATORY AGENCY	AGENCY			
	Ballwin, MO 63021			Address:			NPDES	-BROUND WATER	ATER	DRINKING WATER	WATER
Email To:	jeffrey ingram@golder.com	Purchase Order No.:		Pace Quote			T	RCRA	\	OTHER	Ì
Phone:	636-724-9191 Fax: 636-724-9323	Project Name: Ameren LCL	<u>_</u>	Pace Project	Jamie Church		Site Location				
Reques	Requested Due Date/TAT: Standard Pr	Project Number. 1531 4 0 6 02		Pace Profile #:	9285		STATE:	QW			
						Requeste	Requested Analysis Filtered (Y/N)	(N/A) P			
		(MP) (O) (C) (A)	COLLECTED		Preservatives	Z Z Z	z				
	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL	WYT COMPOSITE SOMEOSITE START OLO OLO OLO OLO OLO OLO OLO O	COMPOSITE ENDIGRAB								C
# M∃TI	SAMPLE ID W (A-Z, O-9/-,) Sample IDs MUST BE UNIQUE TS	addo MdIVII	awr.	SAMPLE TEMP AT C # OF CONTAINER JNDFESETVED SOO ₄	Methanol HCI HO3 HU3 HU03 HU03	Other Analysis Test On.7 Boron On.7 Calcium On.7 Calcium	luoride Surg Surge Surge Surge Surge Surge Surge Surge Surge Surge Surge Surg Surge Surge Surge Surge Surg Surge Surg Surg Surg Surg Surg S Surg Surg Su		Sesidual Chlorine	N8500	
-	1-JUM-1	⊢	1/9/21	=					-	Toler I	Lab I.D.
2	L-1MM-2	-		2 1							
e	L-TMM-3	-		<u>-</u>							
4	L-UWL-DUR-I	WT G	_	7	-		\ \ \ \				
ιn	1-UML-F8-1	WT G	1/6121 1125	1 7	-	1/2	///				
9	1-1001-MS-1	WT G		1 2		1/1/4	11		MSIMSD	+ahe	1-32
-	L- JWL-MSD-1	WT G	1/6/21 1100	1 2	_		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			4	
60 0		S Tw									
10		_									
11		_									
12		WT G									
	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFIL	FILIÂTION DATE	TIME	ACCEPT	ACCEPTED BY / AFFILIATION	DATE	TIME	SAME	SAMPLE CONDITIONS	s
		Maren / 60 de	17/9/1	1.2%	MUX	le Macac	V67/21/6	210012	%\\ >\	>>	
		SAM	AMPLER NAME AND SIGNATURE	rure			3	0.		19(0	tast
			PRINT Name of SAMPLER:		toic Son and	ř		, uj d	bəvi (N/Y)	stody d Coc	es Ini
			SIGNATURE of SAMPLER:	1	my line	DATE Signed	10/10/10	Tem	999 CG	ealec	nlqme Y)
]		,)	(MM/DD/YY)	17/20/10		4	s	ŝŝ

DMEMORANDUM

DATE January 19, 2021 **Project No.** 153140602

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60358559

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

	ny Name: Golder Associates Inc.		Proje	ect Manag	er: _J. Ingram				
	Name: Ameren - LEC - LCP1	_	Project Number: 153140602						
Review	er: A. Muehlfarth	_	Validation Date: 01/19/2021						
Laborat	ory: Pace Analytical Services, LLC		SDC	3 #: 603585	59				
Analytic	al Method (type and no.): EPA 200.7 (Total Metals); SI	 M2540С							
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste	П	,,,		,				
	Names L-TMW-1, L-TMW-2, L-TMW-3, L-UWL-DUP-1, L-I		-1						
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).				
	formation	YES	NO	NA	COMMENTS				
a)	Sampling dates noted?	х	П		01/05/2021 - 01/6/2021				
b)	Sampling team indicated?	×			ВТТ				
c)	Sample location noted?	×							
d)	Sample depth indicated (Soils)?			X					
,	Sample type indicated (grab/composite)?				Grab				
e)	, ,	×			See Notes				
f)	Field QC noted?	X			pH, Sp.Cond, ORP, Temp, DO, Turb				
g)	Field parameters collected (note types)?	X			pri, sp.cona, ore, remp, bo, ruib				
h)	Field Calibration within control limits?	X	Ш	Ш					
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field	I notes?				
			X						
j)	Does the laboratory narrative indicate deficiencies?			X					
	Note Deficiencies:								
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS				
,	W 4 000								
a)	Was the COC properly completed?	Х	Ш	Ш					
b)	Was the COC signed by both field and laboratory personnel?	х	П	П					
c)	Were samples received in good condition?	X							
0)	vvere samples received in good condition:		Ш	Ш					
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS				
Ochicia	(telefolio and for method)		140	NA.	OOMMENTO.				
a)	Were hold times met for sample pretreatment?	х							
b)	Were hold times met for sample analysis?	Х							
c)	Were the correct preservatives used?	х							
d)	Was the correct method used?	х							
e)	Were appropriate reporting limits achieved?	X							
f)	Were any sample dilutions noted?	×	П		See Notes				
a)	Were any matrix problems noted?	\square			See Notes				

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS				
a)	Were analytes detected in the method blank(s)?		х						
b)	Were analytes detected in the field blank(s)?	X			See Notes				
c)	Were analytes detected in the equipment blank(s)?			Х					
d)	Were analytes detected in the trip blank(s)?			Х					
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS				
a)	Was a LCS analyzed once per SDG?	Х							
b)	Were the proper analytes included in the LCS?	Х							
c)	Was the LCS accuracy criteria met?	Х							
Duplica	ates	YES	NO	NA	COMMENTS				
a)	Were field duplicates collected (note original and du	ıplicate	sample n	names)?					
		х			L-UWL-DUP-1 @ L-TMW-2				
b)	Were field dup. precision criteria met (note RPD)?	Х			Max RPD: 8.9% (<20%)				
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?	?					
		х							
d)	Were lab dup. precision criteria met (note RPD)?	Х			Max RPD: 6% (<10%)				
Blind S	tandards	YES	NO	NA	COMMENTS				
a)	Was a blind standard used (indicate name,		х						
	analytes included and concentrations)?								
b)	Was the %D within control limits?			Х					
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS				
a)	Was MS accuracy criteria met?	П	X	П					
,	Recovery could not be calculated since sample	_	_	_					
	contained high concentration of analyte?			Х					
b)	Was MSD accuracy criteria met?		Х						
	Recovery could not be calculated since sample contained high concentration of analyte?			х					
c)	Were MS/MSD precision criteria met?	X							
	Comments/Notes: The Sample Condition Upon Receipt Form states that they ran tests with limited volume (1 bottle for TDS and anions).								
		- J 1411			(Delice in the data distribution)				
Sulfat	e analyzed at a dilution in L-TMW-1, L-TMW-2, L-U	JWL-D	UP-1, no	qualifica	tion necessary.				
	Blank:								
L-UW	L-UWL-FB-1 @ L-TMW-1: Calcium (51.2 J). Sample result > RL, no qualification necessary.								

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes: MS/MSD: 2818204/2818205: MS/MSD % recovery low (<30%) for Calcium. Associated with sample 60358559001 2818209/2818210: MS % recovery low (<30%) for Calcium. MS/MSD performed on unrelated sample, no qualification necessary. 2818362: MS % recovery low for Fluoride. Associated with sample 60358559002.

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-1	Calcium	175000	J-	MS/MSD % recovery <30%
L-TMW-2	Fluoride	0.15	J-	"
		$\overline{}$		
		$\overline{}$		
		$\overline{}$		
	-1 $M III H$		<u> </u>	0.4.4.0.10.00.4
Signature:	ann Muhlforth	1		Date: 01/19/2021
J				

Revised May 2004 Page 4 of 4

March 11, 2021

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE LCL1
Pace Project No.: 60363499A

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on February 19, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Kansas City

L-BMW-1S and L-BMW-2S moved from SDG 60361519 to 60363499A

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Jami Church

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 200030

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935

Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12

Utah Certification #: KS000212019-9

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60361519003	L-BMW-1S	Water	02/18/21 11:25	02/19/21 03:53
60361519004	L-BMW-2S	Water	02/18/21 13:05	02/19/21 03:53

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60361519003	L-BMW-1S	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	MAP	1	PASI-K
		SM 4500-S-2 D	MAP	1	PASI-K
		EPA 300.0	LDB	3	PASI-K
60361519004	L-BMW-2S	EPA 200.7	HKC	13	PASI-K
		EPA 200.8	JGP	6	PASI-K
		EPA 7470	JDE	1	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		SM 3500-Fe B#4	LDB	1	PASI-K
		SM 3500-Fe B#4	MAP	1	PASI-K
		SM 4500-S-2 D	MAP	1	PASI-K
		EPA 300.0	LDB	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

Sample: L-BMW-1S	Lab ID: 60361519003	Collecte	d: 02/18/2	11:25	Received: 02/	/19/21 03:53 Ma	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Method: EPA	200.7 Prepa	aration Meth	od: EP	A 200.7			
,	Pace Analytical Services	•						
Barium	347 ug/L	5.0	1.8	1	02/19/21 13:31	02/22/21 13:26	7440-39-3	
Beryllium	<0.39 ug/L	1.0	0.39	1	02/19/21 13:31			
Boron	97.3J ug/L	100	8.6	1	02/19/21 13:31			
Calcium	212000 ug/L	200	75.4	1	02/19/21 13:31			
Cobalt	1.9J ug/L	5.0	0.95	1	02/19/21 13:31			
Iron	26200 ug/L	50.0	21.4	1	02/19/21 13:31			
Lead	<3.8 ug/L	10.0	3.8	1	02/19/21 13:31			
Lithium	18.0 ug/L	10.0	7.7	1		02/22/21 13:26		
Magnesium	43200 ug/L	50.0	31.4	1	02/19/21 13:31			
Manganese	2570 ug/L	5.0	0.74	1	02/19/21 13:31			
Molybdenum	<2.2 ug/L	20.0	2.2	1	02/19/21 13:31			
Potassium	5560 ug/L	500	146	1	02/19/21 13:31			
Sodium	15000 ug/L	500	254	1		02/22/21 13:26		
200.8 MET ICPMS	Analytical Method: EPA	200.8 Prepa	aration Meth	od: EP	A 200.8			
	Pace Analytical Services							
Antimony	<0.10 ug/L	1.0	0.10	1	02/19/21 13:31	02/22/21 14:36	7440-36-0	
Arsenic	25.5 ug/L	1.0	0.11	1	02/19/21 13:31	02/22/21 14:36	7440-38-2	
Cadmium	<0.062 ug/L	0.50	0.062	1	02/19/21 13:31	02/22/21 14:36	7440-43-9	
Chromium	<0.23 ug/L	1.0	0.23	1	02/19/21 13:31	02/22/21 14:36	7440-47-3	
Selenium	<0.18 ug/L	1.0	0.18	1	02/19/21 13:31	02/22/21 14:36	7782-49-2	
Thallium	<0.094 ug/L	1.0	0.094	1	02/19/21 13:31	02/22/21 14:36	7440-28-0	
7470 Mercury	Analytical Method: EPA	7470 Prepa	ration Meth	od: EPA	A 7470			
	Pace Analytical Services	- Kansas C	ity					
Mercury	<0.096 ug/L	0.20	0.096	1	02/23/21 08:45	02/23/21 12:39	7439-97-6	
2320B Alkalinity	Analytical Method: SM 2	320B						
•	Pace Analytical Services		ity					
Alkalinity, Total as CaCO3	682 mg/L	20.0	7.5	1		02/23/21 15:48		
2540C Total Dissolved Solids	Analytical Method: SM 2	540C						
20400 Total Dissolved Collas	Pace Analytical Services		ity					
Total Dissolved Solids	792 mg/L	10.0	10.0	1		02/23/21 09:12		
Iron, Ferric (Calculation)	Analytical Method: SM 3	500-Fe B#4						
, (Pace Analytical Services							
Iron, Ferric	25.9 mg/L	0.050		1		02/24/21 12:58	7439-89-6	
Iron, Ferrous	Analytical Method: SM 3	500-Fe B#4						
	Pace Analytical Services							
_	·		•	,		00/00/51 00 ==		1.16
Iron, Ferrous	0.23 mg/L	0.20	0.048	1		02/22/21 09:05		H6

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

Sample: L-BMW-1S	Lab ID: 6	0361519003	Collecte	d: 02/18/21	11:25	Received: 02	/19/21 03:53 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500S2D Sulfide, Total	•	Method: SM 45 tical Services		ity					
Sulfide, Total	0.034J	mg/L	0.050	0.026	1		02/20/21 09:14	18496-25-8	
300.0 IC Anions 28 Days	,	Method: EPA 3 tical Services		ity					
Chloride Fluoride Sulfate	5.1 <0.086 70.4	mg/L mg/L mg/L	1.0 0.20 5.0	0.39 0.086 2.1	1 1 5		02/22/21 19:16 02/22/21 19:16 02/22/21 19:31		

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

Sample: L-BMW-2S	Lab ID: 60361519	0004 Collecte	ed: 02/18/2	1 13:05	Received: 02	/19/21 03:53 M	atrix: Water	
Parameters	Results Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qua
200.7 Metals, Total	Analytical Method: E	PA 200.7 Prep	aration Meth	nod: EP	A 200.7			
,	Pace Analytical Serv	rices - Kansas (City					
Barium	237 ug/L	5.0	1.8	1	02/19/21 13:31	02/22/21 13:29	7440-39-3	
Beryllium	<0.39 ug/L	1.0	0.39	1	02/19/21 13:31			
Boron	42.0J ug/L	100	8.6	1	02/19/21 13:31		-	
Calcium	133000 ug/L	200	75.4	1		02/22/21 13:29		
Cobalt	<0.95 ug/L	5.0	0.95	1	02/19/21 13:31			
Iron	30.9J ug/L	50.0	21.4	1		02/23/21 11:37		
Lead	<3.8 ug/L	10.0	3.8	1	02/19/21 13:31			
Lithium	13.0 ug/L	10.0	7.7	1	02/19/21 13:31			
Magnesium	20200 ug/L	50.0	31.4	1	02/19/21 13:31			
Manganese	1.1 J ug/L	5.0	0.74	1	02/19/21 13:31			
Molybdenum	<2.2 ug/L	20.0	2.2	1		02/22/21 13:29		
Potassium	5560 ug/L	500	146	1	02/19/21 13:31			
Sodium	4060 ug/L	500	254	1	02/19/21 13:31			
200.8 MET ICPMS	Analytical Method: E	PA 200.8 Prec	aration Meth	nod: EP	A 200.8			
	Pace Analytical Serv							
Antimony	0.24J ug/L	1.0	0.10	1	02/19/21 13:31	02/22/21 14:38	7440-36-0	
Arsenic	0.54J ug/L	1.0	0.11	1	02/19/21 13:31	02/22/21 14:38	7440-38-2	
Cadmium	<0.062 ug/L	0.50	0.062	1	02/19/21 13:31	02/22/21 14:38	7440-43-9	
Chromium	<0.23 ug/L	1.0	0.23	1	02/19/21 13:31	02/22/21 14:38	7440-47-3	
Selenium	2.4 ug/L	1.0	0.18	1	02/19/21 13:31	02/22/21 14:38	7782-49-2	
Thallium	<0.094 ug/L	1.0	0.094	1	02/19/21 13:31	02/22/21 14:38	7440-28-0	
7470 Mercury	Analytical Method: E Pace Analytical Serv			od: EPA	A 7470			
Mercury	<0.096 ug/L	0.20	0.096	1	02/23/21 08:45	02/23/21 12:46	7439-97-6	
2320B Alkalinity	Analytical Method: S	SM 2320B						
	Pace Analytical Serv		City					
Alkalinity, Total as CaCO3	365 mg/L	20.0	7.5	1		02/23/21 15:54		
2540C Total Dissolved Solids	Analytical Method: S	SM 2540C						
	Pace Analytical Serv		City					
Total Dissolved Solids	483 mg/L	10.0	10.0	1		02/23/21 09:12		
Iron, Ferric (Calculation)	Analytical Method: S Pace Analytical Serv							
Iron, Ferric	0.017J mg/L	0.050		1		02/24/21 12:58	7439-89-6	
Iron, Ferrous	Analytical Method: S Pace Analytical Serv							
Iron, Ferrous	<0.048 mg/L	0.20	0.048	1		02/22/21 09:08		H6
non, i dilous	111g/L	0.20	0.040	'		JZ1ZZ1Z1 UJ.UO		110

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

Sample: L-BMW-2S	Lab ID: 60	361519004	Collecte	d: 02/18/21	13:05	Received: 02	/19/21 03:53 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500S2D Sulfide, Total	Analytical Me Pace Analytic			ity					
Sulfide, Total	0.028J	mg/L	0.050	0.026	1		02/20/21 09:14	18496-25-8	
300.0 IC Anions 28 Days	Analytical Me Pace Analytic			ity					
Chloride Fluoride Sulfate	0.14J	mg/L mg/L mg/L	1.0 0.20 5.0	0.39 0.086 2.1	1 1 5		02/22/21 19:45 02/22/21 19:45 02/22/21 20:00	16984-48-8	

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

QC Batch: 705266 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2840422 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L <0.096 0.20 0.096 02/23/21 12:21

LABORATORY CONTROL SAMPLE: 2840423

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 4.8 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2840424 2840425

MS MSD

60361519003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits < 0.096 5 20 Mercury ug/L 5 4.8 4.9 96 97 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 705001

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2839697

Date: 03/11/2021 06:45 PM

Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Barium	ug/L	<1.8	5.0	1.8	02/22/21 13:11	
Beryllium	ug/L	< 0.39	1.0	0.39	02/22/21 13:11	
Boron	ug/L	<8.6	100	8.6	02/22/21 13:11	
Calcium	ug/L	<75.4	200	75.4	02/22/21 13:11	
Cobalt	ug/L	< 0.95	5.0	0.95	02/22/21 13:11	
ron	ug/L	<21.4	50.0	21.4	02/22/21 13:11	
₋ead	ug/L	<3.8	10.0	3.8	02/22/21 13:11	
_ithium	ug/L	<7.7	10.0	7.7	02/22/21 13:11	
Magnesium	ug/L	<31.4	50.0	31.4	02/22/21 13:11	
Manganese	ug/L	< 0.74	5.0	0.74	02/22/21 13:11	
Molybdenum	ug/L	<2.2	20.0	2.2	02/22/21 13:11	
Potassium	ug/L	<146	500	146	02/22/21 13:11	
Sodium	ug/L	<254	500	254	02/22/21 13:11	

LABORATORY CONTROL SAMPLE:	2839698					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	ug/L	1000	974	97	85-115	_
Beryllium	ug/L	1000	980	98	85-115	
Boron	ug/L	1000	976	98	85-115	
Calcium	ug/L	10000	9950	100	85-115	
Cobalt	ug/L	1000	1010	101	85-115	
Iron	ug/L	10000	9930	99	85-115	
Lead	ug/L	1000	1010	101	85-115	
Lithium	ug/L	1000	984	98	85-115	
Magnesium	ug/L	10000	9950	100	85-115	
Manganese	ug/L	1000	964	96	85-115	
Molybdenum	ug/L	1000	1010	101	85-115	
Potassium	ug/L	10000	9880	99	85-115	
Sodium	ug/L	10000	9810	98	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2839	699		2839700							
		60361519001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
		00301313001	Opino	Opino	IVIO	IVIOD	IVIO	IVIOD	/0 IXCC		IVIAA	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Barium	ug/L	1080	1000	1000	2080	2100	100	102	70-130	1	20	
Beryllium	ug/L	< 0.39	1000	1000	997	1020	100	102	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 2839	699		2839700							
Parameter	6 Units	0361519001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	78.1J	1000	1000	1080	1090	101	101	70-130	0	20	
Calcium	ug/L	133000	10000	10000	145000	146000	122	125	70-130	0	20	
Cobalt	ug/L	< 0.95	1000	1000	1000	1010	100	101	70-130	1	20	
Iron	ug/L	10900	10000	10000	20700	20600	98	98	70-130	0	20	
Lead	ug/L	<3.8	1000	1000	988	999	99	100	70-130	1	20	
Lithium	ug/L	27.8	1000	1000	1030	1030	100	100	70-130	0	20	
Magnesium	ug/L	30000	10000	10000	40300	40000	104	100	70-130	1	20	
Manganese	ug/L	623	1000	1000	1600	1590	97	96	70-130	1	20	
Molybdenum	ug/L	<2.2	1000	1000	1040	1040	103	104	70-130	1	20	
Potassium	ug/L	4480	10000	10000	14800	15100	103	106	70-130	2	20	
Sodium	ug/L	10100	10000	10000	20000	20000	99	99	70-130	0	20	

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

QC Batch: 705002 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2839701 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Antimony	ug/L	<0.10	1.0	0.10	02/22/21 14:29	
Arsenic	ug/L	<0.11	1.0	0.11	02/22/21 14:29	
Cadmium	ug/L	< 0.062	0.50	0.062	02/22/21 14:29	
Chromium	ug/L	< 0.23	1.0	0.23	02/22/21 14:29	
Selenium	ug/L	<0.18	1.0	0.18	02/22/21 14:29	
Thallium	ug/L	< 0.094	1.0	0.094	02/22/21 14:29	

LABORATORY CONTROL SAMPLE:	2839702					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	40	39.5	99	85-115	
Arsenic	ug/L	40	41.1	103	85-115	
Cadmium	ug/L	40	40.3	101	85-115	
Chromium	ug/L	40	42.6	106	85-115	
Selenium	ug/L	40	40.8	102	85-115	
Thallium	ug/L	40	39.0	98	85-115	

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 2839	703 MS	MSD	2839704							
		60361519002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.10	40	40	38.8	38.7	97	97	70-130	0	20	
Arsenic	ug/L	35.7	40	40	77.2	77.1	104	104	70-130	0	20	
Cadmium	ug/L	< 0.062	40	40	39.1	38.9	98	97	70-130	1	20	
Chromium	ug/L	0.34J	40	40	40.8	40.6	101	101	70-130	1	20	
Selenium	ug/L	<0.18	40	40	39.3	38.8	98	97	70-130	1	20	
Thallium	ug/L	< 0.094	40	40	40.6	39.8	101	99	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 705268 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2840426 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <7.5 20.0 7.5 02/23/21 15:15

LABORATORY CONTROL SAMPLE: 2840427

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 524 105 90-110

SAMPLE DUPLICATE: 2840428

Date: 03/11/2021 06:45 PM

60361519001 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 440 Alkalinity, Total as CaCO3 mg/L 430 2 10

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 705155 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Blank

60361519003, 60361519004 Associated Lab Samples:

METHOD BLANK: 2840218 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

> Reporting MDL Qualifiers Parameter Units Result Limit Analyzed

Total Dissolved Solids <5.0 5.0 5.0 02/23/21 09:10 mg/L

LABORATORY CONTROL SAMPLE: 2840219

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units

Total Dissolved Solids mg/L 1000 1080 108 80-120

SAMPLE DUPLICATE: 2840220

Date: 03/11/2021 06:45 PM

60361519001 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 501 **Total Dissolved Solids** mg/L 524 10

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 705068
QC Batch Method: SM 3500-Fe B#4

Analysis Method: SM 3500-Fe B#4
Analysis Description: Iron, Ferrous

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2839984 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Iron, Ferrous mg/L <0.048 0.20 0.048 02/22/21 09:02 H6

LABORATORY CONTROL SAMPLE: 2839985

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Ferrous mg/L 2.1 103 90-110 H6

SAMPLE DUPLICATE: 2839986

Date: 03/11/2021 06:45 PM

 Parameter
 Units
 60361508014 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 Iron, Ferrous
 mg/L
 <0.20</td>
 0.18J
 20 H6

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 705038

QC Batch Method: SM 4500-S-2 D Analysis Method:

SM 4500-S-2 D

Analysis Description:

4500S2D Sulfide, Total

MDL

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK:

Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

Blank

Reporting

Parameter Units Result Limit

Analyzed

Qualifiers

Sulfide, Total

mg/L

Units mg/L

Units

mg/L

< 0.026

0.050

0.026 02/20/21 09:07

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

2839848

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

Sulfide, Total

Sulfide, Total

Sulfide, Total

Sulfide, Total

2839849

60361426001 Result

0.5

Spike Conc.

0.50

MS Result

0.91

101

MS % Rec

97

20

20

80-120

% Rec Limits

75-125

Qualifiers

SAMPLE DUPLICATE: 2839850

Parameter Units mg/L

60361519002 Result 0.040J

Dup Result 0.041J

0.5

RPD

Max RPD

Qualifiers

<0.050

0.43

SAMPLE DUPLICATE: 2839851

Date: 03/11/2021 06:45 PM

Units mg/L

60361508016 Result

Dup Result

0.031J

RPD

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

QC Batch: 704993 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60361519003, 60361519004

METHOD BLANK: 2839665 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	02/22/21 12:03	
Fluoride	mg/L	<0.086	0.20	0.086	02/22/21 12:03	
Sulfate	mg/L	< 0.42	1.0	0.42	02/22/21 12:03	

METHOD BLANK: 2840545 Matrix: Water

Associated Lab Samples: 60361519003, 60361519004

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	02/23/21 09:13	
Fluoride	mg/L	<0.086	0.20	0.086	02/23/21 09:13	
Sulfate	mg/L	< 0.42	1.0	0.42	02/23/21 09:13	

LABORATORY CONTROL SAMPLE: 2839666

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		5.2	104	90-110	
Fluoride	mg/L	2.5	2.6	104	90-110	
Sulfate	mg/L	5	5.2	104	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2839	667		2839668							
			MS	MSD								
		60361288001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	197	100	100	299	301	102	103	80-120	1	15	
Fluoride	mg/L	0.82	2.5	2.5	2.8	2.9	78	81	80-120	3	15	M1
Sulfate	mg/L	782	500	500	1260	1260	96	96	80-120	0	15	

SAMPLE DUPLICATE: 2839669

Date: 03/11/2021 06:45 PM

Parameter	Units	60361288001 Result	Dup Result	RPD	Max RPD	Qualifiers
Chloride	mg/L	197	196	1	15	
Fluoride	mg/L	0.82	0.84	2	15	
Sulfate	mg/L	782	755	4	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/11/2021 06:45 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE LCL1

Pace Project No.: 60363499A

Date: 03/11/2021 06:45 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60361519003	L-BMW-1S	EPA 200.7	705001	EPA 200.7	705058
60361519004	L-BMW-2S	EPA 200.7	705001	EPA 200.7	705058
60361519003	L-BMW-1S	EPA 200.8	705002	EPA 200.8	705059
60361519004	L-BMW-2S	EPA 200.8	705002	EPA 200.8	705059
60361519003	L-BMW-1S	EPA 7470	705266	EPA 7470	705327
60361519004	L-BMW-2S	EPA 7470	705266	EPA 7470	705327
60361519003	L-BMW-1S	SM 2320B	705268		
60361519004	L-BMW-2S	SM 2320B	705268		
60361519003	L-BMW-1S	SM 2540C	705155		
60361519004	L-BMW-2S	SM 2540C	705155		
60361519003	L-BMW-1S	SM 3500-Fe B#4	705571		
60361519004	L-BMW-2S	SM 3500-Fe B#4	705571		
60361519003	L-BMW-1S	SM 3500-Fe B#4	705068		
60361519004	L-BMW-2S	SM 3500-Fe B#4	705068		
60361519003	L-BMW-1S	SM 4500-S-2 D	705038		
60361519004	L-BMW-2S	SM 4500-S-2 D	705038		
60361519003	L-BMW-1S	EPA 300.0	704993		
60361519004	L-BMW-2S	EPA 300.0	704993		

Sample Condition Upon Receipt

Client Name: Golder Hssociates	5	
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗀	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Used	d? Yes□ No D
Custody Seal on Cooler/Box Present: Yes ☒ No □	Seals intact: Yes 🕽	
Packing Material: Bubble Wrap □ Bubble Bags I	CCOLA # 11	None □ Other 1 Zplc
Thermometer Used: 1295 Type o	fice Web Blue No	ne Cooler# ?
Cooler Temperature (°C): As-read O.9 Corr. Fact	tor <u>40.2</u> Correct	
Temperature should be above freezing to 6°C 8.9	10.2	9.1
Chain of Custody present:	Yes ONO ON/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	□Yes □No □N/A	
Short Hold Time analyses (<72hr):	[®] Yes □No □N/A	Fe+2
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes No N/A	
Correct containers used:	NYes □No □N/A	
Pace containers used:	Yes □No □N/A	
Containers intact:	Yes □No □N/A	11
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ÛN/A	
Filtered volume received for dissolved tests?	□Yes □No \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Sample labels match COC: Date / time / ID / analyses	Yes □No □N/A	
Samples contain multiple phases? Matrix: 14th	□Yes No □N/A	
Containers requiring pH preservation in compliance?	Yes No NA	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# \	4123173 Leas 22	
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
Trip Blank present:	□Yes □No N/A	
Headspace in VOA vials (>6mm):	□Yes □No ÛN/A	
Samples from USDA Regulated Area: State:	□Yes □No □N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ☑N/A	
Client Notification/ Resolution: Copy COC to	o Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/1	ſime:	
Comments/ Resolution		
REVIEWED	**	
Project Manager Re	Date	e:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Pace Analytical

Pace Project No./ Lab I.D. DRINKING WATER P1212502 SAMPLE CONDITIONS N OTHER οŧ 7 7 GROUND WATER Page: Residual Chlorine (Y/N) REGULATORY AGENCY 9 RCRA ESS. Requested Analysis Filtered (Y/N) 0253 TIME Z SM4500-S2D Sulfide z errous/Ferric Iron 822 muibe? Site Location STATE: ZIRICA NPDES DATE 2/18 Z 322 muibes UST Z Mercury z ** alstaM VI xibnaqq/ SQ ACCEPTED BY / AFFILIATION z Alkalinity Back App III and Cat/An Metals lungele inc Chloride/Fluoride/Sulfate 2 N/A LAnalysis Test Golder Associates Schrödle Shirale Other 4 Methanol Jamie Church Preservatives Na₂S₂O₃ 9285, line HOBN HCI Invoice Information: Attention: €ОИН 2 Company Name: ⁷OS⁷H 1450 nas! Section C TIME Unpreserved 7 Address # OF CONTAINERS و SAMPLE TEMP AT COLLECTION STATES OF 211812 DATE 21/18 1226 TIME 2-18-21 1048 Ameren Labadie Energy Center LCPA COMPOSITE END/GRAB DATE COLLECTED 4 Eric Schnieder, Ryan Feldman RELINQUISHED BY / AFFILIATION TIME 153140602.0001A COMPOSITE urchase Order No.: COC #1 DATE me chow Report To: Jeffrey Ingram Required Project Information: SAMPLE TYPE O O C 0 O O O O U O () (G=GRAB C=COMP) 5 5 5 Š 5 5 5 5 Š 5 5 5 Project Number; (see aslid codes to left) MATRIX CODE Project Name: Section B Copy To: Valid Matrix Codes DW WT WWW WWP OLL OLL WP AR AR AR DRINKING WATER WATER WASTE WATER 13515 Barrett Parkway Dr., Ste 260 PRODUCT SOIL/SOLID Fax: 636-724-9323 MATRIX L-UMW-DUP-L-UMW-9D L-BMW-2D jeffrey ingram@golder.com L-UMW-1D L-UMW-2D L-UMW-3D L-UMW-4D L-UMW-5D L-UMW-6D L-UMW-7D L-UMW-8D L-BMW-1D ADDITIONAL COMMENTS - App IV Metals - EPA 200.7 - 9a, 9e, Co, Pb, Li, Mo 00.8 Metals - Sb, As, Cd, Cr, Se, Tl (A-Z, 0-9 / , -) Sample IDs MUST BE UNIQUE SAMPLE ID Ballwin, MO 63021 Golder Associates Required Client Information Section A Required Client Information: Phone: 636-724-9191 Requested Due Date/TAT: Section D mpany: ddress: 7 en LEW # 4 2 9 œ 6 9 7 12

F-ALL-Q-020rev.08, 12-Oct-2007

 $\{NY\}$

Samples Infact

Cooler (Y/N)

(CB (Y/N) Received on

J. ul dmai

DATE Signed OZ / 18/2

5

5355

2/19/21

350

SAMPLER NAME AND SIGNATURE

SIGNATURE of SAMPLER: PRINT Name of SAMPLER:

Page 21 of 22

Custody Soald

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Face Analytical

Pace Project No./ Lab I.D. (N/A) DRINKING WATER Samples Intact SAMPLE CONDITIONS N OTHER Cooler (Y/N) of 7 ustody Sealor 7 (N/Y) sol 7 Received on 2 GROUND WATER Page: Residual Chlorine (Y/N) J. ul dmoT ΘM REGULATORY AGENCY RCRA BOS 0353 Requested Analysis Filtered (Y/N) TIME Z SM4500-S2D Sulfide Z. -errous/Ferric Iron STATE: Z 3adium 226 Site Location 2/19/21 NPDES DATE 7 18 Z 322 muibes UST z Mercury ** alstaM VI xibnaqqA Z DATE Signed (MM/DD/YY): LDS 4 ACCEPTED BY / AFFILIATION /kalinity App III and CattAn Metals ASS OF Schools Ale Chloride/Fluoride/Sulfate Golder Associates Inc ₽N/A Analysis Test Other Methanol amarele Jamie Church Preservatives $Na_2S_2O_3$ line 1 HOBN or 5chm 9285 IOH nvoice Information ниО3 3 Company Name: DS2H 450 Section C ace Project Unpreserved TIME Address 0 # OF CONTAINERS SAMPLER NAME AND SIGNATURE 2/18/21 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: 12/8/12 Ameren Labadie Energy Center LCPA-(4 SAMPLE TEMP AT COLLECTION DATE 1305 TIME 2-18-21 1125 DATE COLLECTED Copy To: Eric Schnieder, Ryan Feldman RELINQUISHED BY / AFFILIATION TIME 153140602,0001A COMPOSITE Purchase Order No.: COC #1 DATE Report To: Jeffrey Ingram DUCIBL M Required Project Information: Ü O () O O 0 O O O O (C=CKAB C=COMP) SAMPLE TYPE Ş Z Ş M M N 5 5 5 5 5 \$ Project Number: MATRIX CODE Project Name: Section B Valid Matrix Codes WWW WWW WWW AR ARR DRINKING WATER WATER WASTE WASTE WATER WESDUCT FOOLICE 13515 Barrett Parkway Dr., Ste 260 Metals* - EPA 200.7; Fe, Mg, Mn, K, Na, Ca, B Fax: 636-724-9323 L-BMW-10 15 -- UMW-DUP-1 L-BMW-L-UMW-6D L-UMW-9D jeffrey ingram@golder.com L-UMW-1D L-UMW-2D L-UMW-3D L-UMW-4D L-UMW-5D L-UMW-7D L-UMW-8D ADDITIONAL COMMENTS - App IV Metals - EPA 200, 7 - 3a, Be, Co, Pb, Li, Mo 10,8 Metals - Sb, As, Cd, Cr, Se, Tl (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Standard SAMPLE ID Ballwin, MO 63021 Golder Associates quired Client Information Section A Required Client Information: 636-724-9191 Requested Due Date/TAT: Page 22 of 22 hone: ddress 4 7 8 6 9 Ξ 12 ILEM #

F-ALL-Q-020rev.08, 12-Oct-2007

MEMORANDUM

DATE March 16, 2021 **Project No.** 153140603

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – BACKGROUND SAMPLES - DATA PACKAGE 60363499A

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was analyzed outside of hold time the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Golder Associates			Project Manager: J. Ingram				
Project	Name: Ameren - LEC - LCL1	_			er: 153140603		
Review	er: A. Muehlfarth				9: 03/16/2021		
Lahorat	cory: Pace Analytical Services, LLC		SDG	5 #: 603634	99A		
Analytic	cal Method (type and no.): EPA 200.7/200.8 (Total Metals); EPA 7470 (Me	ercury); SM232	OB (Alkalinity); S	6M2540C (TDS); SN	1 3500-FE B#4 (Ferric/Ferrous Iron); SM 4500-S-2-D (Total Sulfide); EPA 300.0 (Anions)		
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste						
Sample	Names L-BMW-1S, L-BMW-2S						
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).		
Field In	ıformation	YES	NO	NA	COMMENTS		
a)	Sampling dates noted?	X			2/18/2021		
b)	Sampling team indicated?	х			EMS		
c)	Sample location noted?	x					
d)	Sample depth indicated (Soils)?		П	x			
e)	Sample type indicated (grab/composite)?	×	П	П	Grab		
f)	Field QC noted?	\Box	×				
g)	Field parameters collected (note types)?	X			pH, Sp.Cond, ORP, Temp, DO, Turb		
h)	Field Calibration within control limits?	×					
	Notations of unacceptable field conditions/performa		_		I notos?		
i)	Notations of unacceptable field conditions/performa			_	i flotes :		
:\	Door the leberatory perretive indicate deficiencies?		×				
j)	Does the laboratory narrative indicate deficiencies?	Ш		х			
	Note Deficiencies:						
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS		
	• , ,						
a)	Was the COC properly completed?	х					
b)	Was the COC signed by both field	х	П				
- \	and laboratory personnel?		_				
c)	Were samples received in good condition?	х					
Genera	ll (reference QAPP or Method)	YES	NO	NA	COMMENTS		
	(coordinate day in the internation)						
a)	Were hold times met for sample pretreatment?	x					
b)	Were hold times met for sample analysis?		х		See Notes		
c)	Were the correct preservatives used?	х					
d)	Was the correct method used?	×					
e)	Were appropriate reporting limits achieved?	х					
f)	Were any sample dilutions noted?	х			See Notes		
a)	Were any matrix problems noted?	х	П	П	See Notes		

Revised May 2004 Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks a) b) c) d) Labora a) b)	Were analytes detected in the method blank(s)? Were analytes detected in the field blank(s)? Were analytes detected in the equipment blank(s)? Were analytes detected in the trip blank(s)? tory Control Sample (LCS) Was a LCS analyzed once per SDG? Were the proper analytes included in the LCS?	YES THE STATE OF	NO	NA	COMMENTS
c)	Was the LCS accuracy criteria met?	х			
Duplica a)	ates Were field duplicates collected (note original and du	YES µplicate s	NO sample na ⊠	NA mes)? □	COMMENTS
b) c)	Were field dup. precision criteria met (note RPD)? Were lab duplicates analyzed (note original and dup	□ plicate sa	amples)?	x	
d)	Were lab dup. precision criteria met (note RPD)?	x			Max RPD: 4% (<10%)
Blind S	tandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name, analytes included and concentrations)?		х		
b)	Was the %D within control limits?			X	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
	Was MSD accuracy criteria met? Recovery could not be calculated since sample contained high concentration of analyte?	×	П	∐ X	
c)	Were MS/MSD precision criteria met?	×			
Comme	ents/Notes:				
Ferro	us Iron analyzed outside of hold time in all samples	S.			
Dilutio	ons: Sulfate was diluted in all samples, no qualifica	ation nec	essary.		
MS/M 28396	SD: 667/2839668: MS % recovery low for Fluoride. MS	S/MSD p	erformed	on an unre	elated sample, no qualification necessary.

Revised May 2004 Page 2 of 3

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-BMW-1S	Ferrous Iron	0.23	J	Analyzed outside of hold time
L-BMW-2S	"	0.048	UJ	Analyzed outside of hold time, non-detect
\longrightarrow				
		1		
		1		
	ann Muhlfait	<u> </u>		03/16/2021

Signature: _____ Date: U3/16/2021

Revised May 2004 Page 3 of 3

June 02, 2021

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LEC LCL1
Pace Project No.: 60367255

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between April 17, 2021 and April 21, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates

CERTIFICATIONS

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water

Illinois Certification #: 200030 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60367255001	L-TMW-1	Water	04/19/21 13:05	04/21/21 03:49
60367255002	L-TMW-2	Water	04/19/21 11:55	04/21/21 03:49
60367255003	L-TMW-3	Water	04/19/21 14:55	04/21/21 03:49
60367255004	L-UWL-DUP-1	Water	04/19/21 00:00	04/21/21 03:49
60367255005	L-UWL-FB-1	Water	04/19/21 15:19	04/21/21 03:49
60366962013	L-MW-26	Water	04/16/21 11:16	04/17/21 03:35

SAMPLE ANALYTE COUNT

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60367255001	L-TMW-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	LDB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60367255002	L-TMW-2	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	LDB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60367255003	L-TMW-3	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	LDB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60367255004	L-UWL-DUP-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	LDB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60367255005	L-UWL-FB-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	LDB	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K
60366962013	L-MW-26	EPA 200.7	JLH	7	PASI-K
		SM 2320B	MAP	1	PASI-K
		SM 2540C	VRP	1	PASI-K
		EPA 300.0	CRN2	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Sample: L-TMW-1	Lab ID:	60367255001	Collected	d: 04/19/2	13:05	Received: 04/	/21/21 03:49 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
	Pace Analy	tical Services	- Kansas C	ity					
Boron	108	ug/L	100	8.6	1	04/27/21 14:38	05/06/21 21:46	7440-42-8	
Calcium	176000	ug/L	200	75.4	1	04/27/21 14:38	05/06/21 21:46	7440-70-2	M1
Iron	3680	ug/L	50.0	21.4	1	04/27/21 14:38	05/06/21 21:46	7439-89-6	
Magnesium	45700	ug/L	50.0	31.4	1	04/27/21 14:38	05/06/21 21:46	7439-95-4	
Manganese	8230	ug/L	5.0	0.74	1	04/27/21 14:38	05/06/21 21:46	7439-96-5	M1
Potassium	5550	ug/L	500	146	1	04/27/21 14:38	05/06/21 21:46	7440-09-7	
Sodium	11500	ug/L	500	254	1	04/27/21 14:38	05/06/21 21:46	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	581	mg/L	20.0	7.5	1		04/30/21 18:23		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	tical Services	- Kansas C	ity					
Total Dissolved Solids	735	mg/L	10.0	10.0	1		04/26/21 11:01		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	tical Services	- Kansas C	ity					
Chloride	3.9	mg/L	1.0	0.39	1		04/27/21 19:22	16887-00-6	В
Fluoride	0.29	mg/L	0.20	0.086	1		04/27/21 19:22	16984-48-8	
Sulfate	78.7	mg/L	10.0	4.2	10		04/27/21 20:26	14808-79-8	

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Lab ID:	60367255002	Collected	d: 04/19/21	11:55	Received: 04/	/21/21 03:49 Ma	atrix: Water	
Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Pace Anal	ytical Services	- Kansas Ci	ty					
98.3J	ug/L	100	8.6	1	04/27/21 14:38	05/06/21 21:53	7440-42-8	
198000	ug/L	200	75.4	1	04/27/21 14:38	05/06/21 21:53	7440-70-2	
982	ug/L	50.0	21.4	1	04/27/21 14:38	05/06/21 21:53	7439-89-6	
46200	ug/L	50.0	31.4	1	04/27/21 14:38	05/06/21 21:53	7439-95-4	
2890	ug/L	5.0	0.74	1	04/27/21 14:38	05/06/21 21:53	7439-96-5	
6780	ug/L	500	146	1	04/27/21 14:38	05/06/21 21:53	7440-09-7	
10600	ug/L	500	254	1	04/27/21 14:38	05/06/21 21:53	7440-23-5	
Analytical	Method: SM 23	320B						
Pace Anal	ytical Services	- Kansas Ci	ty					
567	mg/L	20.0	7.5	1		04/30/21 18:49		
Analytical	Method: SM 25	40C						
Pace Anal	ytical Services	- Kansas Ci	ty					
750	mg/L	10.0	10.0	1		04/26/21 11:02		
Analytical	Method: EPA 3	0.00						
Pace Anal	ytical Services	- Kansas Ci	ty					
6.3	mg/L	1.0	0.39	1		04/27/21 02:02	16887-00-6	
<0.086	mg/L	0.20	0.086	1		04/27/21 02:02	16984-48-8	
103	mg/L	10.0	4.2	10		04/27/21 02:16	14808-79-8	
	Analytical Pace Analy 98.3J 198000 982 46200 2890 6780 10600 Analytical Pace Analy 567 Analytical Pace Analy 750 Analytical Pace Analy 6.3 <0.086	Analytical Method: EPA 2 Pace Analytical Services 98.3J ug/L 198000 ug/L 982 ug/L 46200 ug/L 2890 ug/L 10600 ug/L Analytical Method: SM 23 Pace Analytical Services 567 mg/L Analytical Method: SM 25 Pace Analytical Services 750 mg/L Analytical Method: EPA 3 Pace Analytical Services 6.3 mg/L <0.086 mg/L	Results	Results Units PQL MDL Analytical Method: EPA 200.7 Preparation Method Pace Analytical Services - Kansas City 98.3J ug/L 100 8.6 198000 ug/L 200 75.4 982 ug/L 50.0 21.4 46200 ug/L 50.0 31.4 2890 ug/L 500 146 10600 ug/L 500 254 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 567 mg/L 20.0 7.5 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 750 mg/L 10.0 10.0 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 6.3 mg/L 1.0 0.39 <0.086	Results	Results Units PQL MDL DF Prepared Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 98.3J ug/L 100 8.6 1 04/27/21 14:38 198000 ug/L 200 75.4 1 04/27/21 14:38 982 ug/L 50.0 21.4 1 04/27/21 14:38 46200 ug/L 50.0 31.4 1 04/27/21 14:38 2890 ug/L 5.0 0.74 1 04/27/21 14:38 6780 ug/L 500 146 1 04/27/21 14:38 10600 ug/L 500 254 1 04/27/21 14:38 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 567 mg/L 20.0 7.5 1 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 750 mg/L 10.0 10.0 1 Analytical Method: EPA 300.0 1 1 1 1<	Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 98.3J ug/L 100 8.6 1 04/27/21 14:38 05/06/21 21:53 198000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 21:53 982 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 21:53 46200 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 21:53 2890 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 21:53 6780 ug/L 500 146 1 04/27/21 14:38 05/06/21 21:53 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 567 mg/L 20.0 7.5 1 04/30/21 18:49 Analytical Method: SPA 300.0 Pace Analytical Services - Kansas City 750 mg/L 10.0 10.0 1 04/26/21 11:02 Analytical Method	Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 98.3J ug/L 100 8.6 1 04/27/21 14:38 05/06/21 21:53 7440-42-8 198000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 21:53 7440-70-2 982 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 21:53 7440-70-2 989 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 21:53 7439-89-6 46200 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 21:53 7439-89-6 4890 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 21:53 7439-96-5 6780 ug/L 500 146 1 04/27/21 14:38 05/06/21 21:53 7440-09-7 10600 ug/L 20.0 7.5 1 04/30/21 18:49 Analytical

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Lab ID:	60367255003	Collected	d: 04/19/21	14:55	Received: 04/	21/21 03:49 Ma	atrix: Water	
Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Pace Anal	ytical Services	- Kansas C	ity					
120	ug/L	100	8.6	1	04/27/21 14:38	05/06/21 22:03	7440-42-8	
177000	ug/L	200	75.4	1	04/27/21 14:38	05/06/21 22:03	7440-70-2	
7240	ug/L	50.0	21.4	1	04/27/21 14:38	05/06/21 22:03	7439-89-6	
37000	ug/L	50.0	31.4	1	04/27/21 14:38	05/06/21 22:03	7439-95-4	
979	ug/L	5.0	0.74	1	04/27/21 14:38	05/06/21 22:03	7439-96-5	
6690	ug/L	500	146	1	04/27/21 14:38	05/06/21 22:03	7440-09-7	
11000	ug/L	500	254	1	04/27/21 14:38	05/06/21 22:03	7440-23-5	
Analytical	Method: SM 23	320B						
Pace Anal	ytical Services	- Kansas C	ity					
602	mg/L	20.0	7.5	1		04/30/21 18:55		
Analytical	Method: SM 25	540C						
Pace Anal	ytical Services	- Kansas C	ity					
829	mg/L	10.0	10.0	1		04/26/21 11:02		
Analytical	Method: EPA 3	0.00						
Pace Anal	ytical Services	- Kansas C	ity					
5.5	mg/L	1.0	0.39	1		04/27/21 02:31	16887-00-6	
<0.086	mg/L	0.20	0.086	1		04/27/21 02:31	16984-48-8	
52.2	mg/L	5.0	2.1	5		04/27/21 02:45	14808-79-8	
	Analytical Pace Analytical 120 177000 7240 37000 979 6690 11000 Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical	Analytical Method: EPA 2 Pace Analytical Services 120 ug/L 177000 ug/L 7240 ug/L 37000 ug/L 979 ug/L 6690 ug/L 11000 ug/L Analytical Method: SM 23 Pace Analytical Services 602 mg/L Analytical Method: SM 25 Pace Analytical Services 829 mg/L Analytical Method: EPA 3 Pace Analytical Services 829 mg/L Analytical Method: EPA 3 Pace Analytical Services	Results	Results Units PQL MDL Analytical Method: EPA 200.7 Preparation Method Pace Analytical Services - Kansas City 120 ug/L 100 8.6 177000 ug/L 200 75.4 7240 ug/L 50.0 21.4 37000 ug/L 50.0 31.4 979 ug/L 500 146 11000 ug/L 500 254 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 602 mg/L 20.0 7.5 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 829 mg/L 10.0 10.0 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 5.5 mg/L 1.0 0.39 <0.086	Results	Results Units PQL MDL DF Prepared Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 120 ug/L 100 8.6 1 04/27/21 14:38 177000 ug/L 200 75.4 1 04/27/21 14:38 7240 ug/L 50.0 21.4 1 04/27/21 14:38 37000 ug/L 50.0 31.4 1 04/27/21 14:38 979 ug/L 5.0 0.74 1 04/27/21 14:38 6690 ug/L 500 146 1 04/27/21 14:38 11000 ug/L 500 254 1 04/27/21 14:38 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 602 mg/L 20.0 7.5 1 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 829 mg/L 10.0 10.0 1 Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 1 5.5 </td <td>Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 120 ug/L 100 8.6 1 04/27/21 14:38 05/06/21 22:03 177000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 22:03 7240 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 22:03 37000 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 22:03 979 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 22:03 6690 ug/L 500 146 1 04/27/21 14:38 05/06/21 22:03 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 602 mg/L 20.0 7.5 1 04/30/21 18:55 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 829 mg/L 10.0 10.0 1 04/26/21 11:02 Analytical Method: E</td> <td>Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 120 ug/L 100 8.6 1 04/27/21 14:38 05/06/21 22:03 7440-42-8 177000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 22:03 7440-70-2 7240 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 22:03 7439-89-6 37000 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 22:03 7439-95-4 979 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 22:03 7439-96-5 6690 ug/L 500 146 1 04/27/21 14:38 05/06/21 22:03 7440-09-7 11000 ug/L 500 254 1 04/27/21 14:38 05/06/21 22:03 7440-23-5 Analytical Method: SM 2320B Pace Analytical Method: EPA 300.0</td>	Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 120 ug/L 100 8.6 1 04/27/21 14:38 05/06/21 22:03 177000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 22:03 7240 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 22:03 37000 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 22:03 979 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 22:03 6690 ug/L 500 146 1 04/27/21 14:38 05/06/21 22:03 Analytical Method: SM 2320B Pace Analytical Services - Kansas City 602 mg/L 20.0 7.5 1 04/30/21 18:55 Analytical Method: SM 2540C Pace Analytical Services - Kansas City 829 mg/L 10.0 10.0 1 04/26/21 11:02 Analytical Method: E	Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 200.7 Preparation Method: EPA 200.7 Pace Analytical Services - Kansas City 120 ug/L 100 8.6 1 04/27/21 14:38 05/06/21 22:03 7440-42-8 177000 ug/L 200 75.4 1 04/27/21 14:38 05/06/21 22:03 7440-70-2 7240 ug/L 50.0 21.4 1 04/27/21 14:38 05/06/21 22:03 7439-89-6 37000 ug/L 50.0 31.4 1 04/27/21 14:38 05/06/21 22:03 7439-95-4 979 ug/L 5.0 0.74 1 04/27/21 14:38 05/06/21 22:03 7439-96-5 6690 ug/L 500 146 1 04/27/21 14:38 05/06/21 22:03 7440-09-7 11000 ug/L 500 254 1 04/27/21 14:38 05/06/21 22:03 7440-23-5 Analytical Method: SM 2320B Pace Analytical Method: EPA 300.0

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Sample: L-UWL-DUP-1	Lab ID:	60367255004	Collected	d: 04/19/21	00:00	Received: 04/	21/21 03:49 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Analy	ytical Services	- Kansas Ci	ty					
Boron	101	ug/L	100	8.6	1	04/27/21 14:38	05/06/21 22:06	7440-42-8	
Calcium	204000	ug/L	200	75.4	1	04/27/21 14:38	05/06/21 22:06	7440-70-2	
Iron	1080	ug/L	50.0	21.4	1	04/27/21 14:38	05/06/21 22:06	7439-89-6	
Magnesium	46900	ug/L	50.0	31.4	1	04/27/21 14:38	05/06/21 22:06	7439-95-4	
Manganese	2950	ug/L	5.0	0.74	1	04/27/21 14:38	05/06/21 22:06	7439-96-5	
Potassium	7020	ug/L	500	146	1	04/27/21 14:38	05/06/21 22:06	7440-09-7	
Sodium	10800	ug/L	500	254	1	04/27/21 14:38	05/06/21 22:06	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	589	mg/L	20.0	7.5	1		04/30/21 19:02		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	810	mg/L	10.0	10.0	1		04/26/21 11:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas Ci	ty					
Chloride	6.3	mg/L	1.0	0.39	1		04/27/21 02:59	16887-00-6	
Fluoride	<0.086	mg/L	0.20	0.086	1		04/27/21 02:59	16984-48-8	
Sulfate	103	mg/L	10.0	4.2	10		04/27/21 03:14	14808-79-8	

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Sample: L-UWL-FB-1	Lab ID:	60367255005	Collecte	d: 04/19/2°	15:19	Received: 04/	21/21 03:49 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Analy	ytical Services	- Kansas C	ity					
Boron	<8.6	ug/L	100	8.6	1	04/27/21 14:38	05/06/21 22:08	7440-42-8	
Calcium	<75.4	ug/L	200	75.4	1	04/27/21 14:38	05/06/21 22:08	7440-70-2	
Iron	<21.4	ug/L	50.0	21.4	1	04/27/21 14:38	05/06/21 22:08	7439-89-6	
Magnesium	<31.4	ug/L	50.0	31.4	1	04/27/21 14:38	05/06/21 22:08	7439-95-4	
Manganese	< 0.74	ug/L	5.0	0.74	1	04/27/21 14:38	05/06/21 22:08	7439-96-5	
Potassium	<146	ug/L	500	146	1	04/27/21 14:38	05/06/21 22:08	7440-09-7	
Sodium	<254	ug/L	500	254	1	04/27/21 14:38	05/06/21 22:08	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	<7.5	mg/L	20.0	7.5	1		04/30/21 19:07		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas C	ity					
Total Dissolved Solids	22.0	mg/L	5.0	5.0	1		04/26/21 11:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Analy	ytical Services	- Kansas C	ity					
Chloride	<0.39	mg/L	1.0	0.39	1		04/27/21 03:57	16887-00-6	
Fluoride	<0.086	mg/L	0.20	0.086	1		04/27/21 03:57	16984-48-8	
Sulfate	<0.42	mg/L	1.0	0.42	1		04/27/21 03:57	14808-79-8	

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Sample: L-MW-26	Lab ID:	60366962013	Collected	d: 04/16/21	11:16	Received: 04/	17/21 03:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Analy	ytical Services	- Kansas C	ity					
Boron	164	ug/L	100	8.6	1	04/28/21 14:32	05/10/21 18:51	7440-42-8	
Calcium	138000	ug/L	200	75.4	1	04/28/21 14:32	05/10/21 18:51	7440-70-2	
Iron	<21.4	ug/L	50.0	21.4	1	04/28/21 14:32	05/10/21 18:51	7439-89-6	
Magnesium	28000	ug/L	50.0	31.4	1	04/28/21 14:32	05/10/21 18:51	7439-95-4	
Manganese	1120	ug/L	5.0	0.74	1	04/28/21 14:32	05/10/21 18:51	7439-96-5	
Potassium	4440	ug/L	500	146	1	04/28/21 14:32	05/10/21 18:51	7440-09-7	
Sodium	7550	ug/L	500	254	1	04/28/21 14:32	05/10/21 18:51	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	440	mg/L	20.0	7.5	1		04/27/21 20:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas C	ity					
Total Dissolved Solids	512	mg/L	10.0	10.0	1		04/23/21 15:59		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Analy	ytical Services	- Kansas C	ity					
Chloride	7.7	mg/L	1.0	0.39	1		04/27/21 16:54	16887-00-6	
Fluoride	0.29	mg/L	0.20	0.086	1		04/27/21 16:54	16984-48-8	
Sulfate	24.1	mg/L	2.0	0.84	2		04/27/21 17:08	14808-79-8	

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

QC Batch: 717031 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

METHOD BLANK: 2884481 Matrix: Water

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<8.6	100	8.6	05/06/21 21:24	
Calcium	ug/L	<75.4	200	75.4	05/06/21 21:24	
Iron	ug/L	<21.4	50.0	21.4	05/06/21 21:24	
Magnesium	ug/L	<31.4	50.0	31.4	05/06/21 21:24	
Manganese	ug/L	< 0.74	5.0	0.74	05/06/21 21:24	
Potassium	ug/L	<146	500	146	05/06/21 21:24	
Sodium	ug/L	<254	500	254	05/06/21 21:24	

Boron ug/L 1000 1020 102 85-115 Calcium ug/L 10000 10200 102 85-115 Iron ug/L 10000 10200 102 85-115 Magnesium ug/L 10000 10400 104 85-115 Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115	LABORATORY CONTROL SAMPLE:	2884482					
Boron ug/L 1000 1020 102 85-115 Calcium ug/L 10000 10200 102 85-115 Iron ug/L 10000 10200 102 85-115 Magnesium ug/L 10000 10400 104 85-115 Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115			Spike	LCS	LCS	% Rec	
Calcium ug/L 10000 10200 102 85-115 Iron ug/L 10000 10200 102 85-115 Magnesium ug/L 10000 10400 104 85-115 Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Iron ug/L 10000 10200 102 85-115 Magnesium ug/L 10000 10400 104 85-115 Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115	Boron	ug/L	1000	1020	102	85-115	
Magnesium ug/L 10000 10400 104 85-115 Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115	Calcium	ug/L	10000	10200	102	85-115	
Manganese ug/L 1000 1030 103 85-115 Potassium ug/L 10000 10300 103 85-115	Iron	ug/L	10000	10200	102	85-115	
Potassium ug/L 10000 10300 103 85-115	Magnesium	ug/L	10000	10400	104	85-115	
.,	Manganese	ug/L	1000	1030	103	85-115	
	Potassium	ug/L	10000	10300	103	85-115	
Sodium ug/L 10000 10400 104 85-115	Sodium	ug/L	10000	10400	104	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2884		1400	2884484							
Parameter	Units	60367255001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	108	1000	1000	1150	1130	104	102	70-130	2	20	
Calcium	ug/L	176000	10000	10000	191000	186000	151	100	70-130	3	20	M1
Iron	ug/L	3680	10000	10000	14000	13800	103	101	70-130	2	20	
Magnesium	ug/L	45700	10000	10000	58100	56600	124	109	70-130	3	20	
Manganese	ug/L	8230	1000	1000	9590	9320	136	108	70-130	3	20	M1
Potassium	ug/L	5550	10000	10000	16300	15900	107	103	70-130	3	20	
Sodium	ug/L	11500	10000	10000	22200	21600	107	102	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 717296

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60366962013

METHOD BLANK: 2885311

Date: 06/02/2021 10:13 PM

Matrix: Water

Associated Lab Samples: 60366962013

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<8.6	100	8.6	05/10/21 13:50	
Calcium	ug/L	<75.4	200	75.4	05/10/21 13:50	
Iron	ug/L	<21.4	50.0	21.4	05/10/21 13:50	
Magnesium	ug/L	<31.4	50.0	31.4	05/10/21 13:50	
Manganese	ug/L	< 0.74	5.0	0.74	05/10/21 13:50	
Potassium	ug/L	<146	500	146	05/10/21 13:50	
Sodium	ug/L	<254	500	254	05/10/21 13:50	

LABORATORY CONTROL SAMPLE:	2885312					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	1050	105	85-115	
Calcium	ug/L	10000	10500	105	85-115	
Iron	ug/L	10000	10700	107	85-115	
Magnesium	ug/L	10000	10900	109	85-115	
Manganese	ug/L	1000	1060	106	85-115	
Potassium	ug/L	10000	10700	107	85-115	
Sodium	ug/L	10000	10900	109	85-115	

MATRIX SPIKE SAMPLE:	2885313						
Parameter	Units	60366962003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	12000	1000	12300	29	70-130	M1
Calcium	ug/L	98000	10000	105000	72	70-130	
Iron	ug/L	5400	10000	15400	100	70-130	
Magnesium	ug/L	24100	10000	32700	86	70-130	
Manganese	ug/L	247	1000	1230	98	70-130	
Potassium	ug/L	7410	10000	17800	104	70-130	
Sodium	ug/L	85200	10000	93800	87	70-130	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2885		2885315								
			MS	MSD								
		60367051001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	5170	1000	1000	5770	6060	60	90	70-130	5	20	M1
Calcium	ua/L	192000	10000	10000	200000	198000	87	64	70-130	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 2885	MSD	2885315								
	6	0367051001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug/L	9520	10000	10000	20300	19500	108	100	70-130	4	20	
Magnesium	ug/L	25400	10000	10000	33500	34900	82	96	70-130	4	20	
Manganese	ug/L	1720	1000	1000	2740	2700	102	99	70-130	1	20	
Potassium	ug/L	6480	10000	10000	16900	16900	104	105	70-130	0	20	
Sodium	ug/L	56000	10000	10000	66800	66600	108	106	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 717133 QC Batch Method: SM 2320B Analysis Method: SM 2320B Analysis Description: 2320B Alka

2320B Alkalinity

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60366962013

METHOD BLANK: 2884780 Matrix: Water

Associated Lab Samples: 60366962013

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <7.5 20.0 7.5 04/27/21 18:12

LABORATORY CONTROL SAMPLE: 2884781

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 518 104 90-110

SAMPLE DUPLICATE: 2884782

60367468001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1110 Alkalinity, Total as CaCO3 mg/L 1050 5 10

SAMPLE DUPLICATE: 2884783

Date: 06/02/2021 10:13 PM

60366962007 Dup Max RPD RPD Parameter Units Result Result Qualifiers 123 125 2 10 Alkalinity, Total as CaCO3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 717897 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

METHOD BLANK: 2887339 Matrix: Water

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

Blank Reporting

 Parameter
 Units
 Result
 Limit
 MDL
 Analyzed
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 <7.5</td>
 20.0
 7.5
 04/30/21 16:27

LABORATORY CONTROL SAMPLE: 2887340

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Alkalinity, Total as CaCO3 500 505 101 90-110 mg/L

SAMPLE DUPLICATE: 2887341

60366962021 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 528 Alkalinity, Total as CaCO3 mg/L 539 2 10

SAMPLE DUPLICATE: 2887342

Date: 06/02/2021 10:13 PM

60367255001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 581 Alkalinity, Total as CaCO3 mg/L 604 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 716543 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60366962013

METHOD BLANK: 2882556 Matrix: Water

Associated Lab Samples: 60366962013

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/23/21 15:58

LABORATORY CONTROL SAMPLE: 2882557

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1040 104 80-120

SAMPLE DUPLICATE: 2882558

Date: 06/02/2021 10:13 PM

Parameter Units 60366969001 Dup Max Result RPD Qualifiers

Total Dissolved Solids mg/L 607 613 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Total Dissolved Solids

QC Batch: 716657 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

5.0

04/26/21 11:00

5.0

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

METHOD BLANK: 2883304 Matrix: Water

Associated Lab Samples: 60367255001, 60367255002, 60367255003, 60367255004, 60367255005

mg/L

2883305

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

<5.0

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1060 106 80-120

SAMPLE DUPLICATE: 2883306

LABORATORY CONTROL SAMPLE:

Parameter Units 60366962021 Dup Max Result RPD RPD Qualifiers

Total Dissolved Solids mg/L 569 565 1 10

SAMPLE DUPLICATE: 2883307

Date: 06/02/2021 10:13 PM

60367255001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 735 mg/L 709 4 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

QC Batch: 716505 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60367255002, 60367255003, 60367255004, 60367255005

METHOD BLANK: 2882469 Matrix: Water

Associated Lab Samples: 60367255002, 60367255003, 60367255004, 60367255005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/26/21 10:15	
Fluoride	mg/L	<0.086	0.20	0.086	04/26/21 10:15	
Sulfate	mg/L	< 0.42	1.0	0.42	04/26/21 10:15	

METHOD BLANK: 2886127 Matrix: Water

Associated Lab Samples: 60367255002, 60367255003, 60367255004, 60367255005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/27/21 07:33	
Fluoride	mg/L	<0.086	0.20	0.086	04/27/21 07:33	
Sulfate	mg/L	< 0.42	1.0	0.42	04/27/21 07:33	

LABORATORY CONTROL SAMPLE:	2882470	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.6	93	90-110	
Fluoride	mg/L	2.5	2.3	93	90-110	
Sulfate	mg/L	5	4.6	92	90-110	

LABORATORY CONTROL SAMPLE:	2886128					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	_
Fluoride	mg/L	2.5	2.4	97	90-110	
Sulfate	mg/L	5	4.9	98	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2882472						2882473						
Parameter	Units	60366282001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
	Office						70 IXEC	/0 IXEC	Lillito			
Chloride	mg/L	ND	5	5	5.0	5.1	100	102	80-120	2	15	
Fluoride	mg/L	ND	2.5	2.5	2.5	2.5	99	100	80-120	1	15	
Sulfate	mg/L	ND	5	5	5.0	5.2	100	103	80-120	3	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

MATRIX SPIKE SAMPLE:	2882474						
Parameter	Units	60367226001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	 mg/L	692	500	1200	102	80-120	
Fluoride	mg/L	ND	250	255	102	80-120	
Sulfate	mg/L	546	500	1030	98	80-120	

SAMPLE DUPLICATE: 2882471						
		60366282001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	ND	<0.39		15	
Fluoride	mg/L	ND	< 0.086		15	;
Sulfate	mg/L	ND	< 0.42		15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 716874 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60367255001

METHOD BLANK: 2883996 Matrix: Water

Associated Lab Samples: 60367255001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	 mg/L	0.49J	1.0	0.39	04/27/21 17:15	
Fluoride	mg/L	< 0.086	0.20	0.086	04/27/21 17:15	
Sulfate	mg/L	< 0.42	1.0	0.42	04/27/21 17:15	

METHOD BLANK: 2886138 Matrix: Water

Associated Lab Samples: 60367255001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/28/21 09:17	
Fluoride	mg/L	<0.086	0.20	0.086	04/28/21 09:17	
Sulfate	mg/L	< 0.42	1.0	0.42	04/28/21 09:17	

METHOD BLANK: 2887077 Matrix: Water

Associated Lab Samples: 60367255001

Date: 06/02/2021 10:13 PM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/29/21 08:44	
Fluoride	mg/L	<0.086	0.20	0.086	04/29/21 08:44	
Sulfate	mg/L	< 0.42	1.0	0.42	04/29/21 08:44	

LABORATORY CONTROL SAMPLE:	2883997					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.0	99	90-110	
Fluoride	mg/L	2.5	2.5	101	90-110	
Sulfate	mg/L	5	4.9	99	90-110	

LABORATORY CONTROL SAMPLE: 2886139 LCS LCS Spike % Rec Parameter Qualifiers Units Conc. Result % Rec Limits Chloride mg/L 5 5.1 101 90-110 Fluoride mg/L 2.5 2.5 99 90-110 Sulfate mg/L 4.8 97 90-110 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Fluoride

Sulfate

Date: 06/02/2021 10:13 PM

	MPLE: 28	387078										
			Spike	LC		LCS	% R					
Parameter		Units	Conc.	Res	ult	% Rec	Limi	its 	Qualifiers	_		
Chloride		mg/L		5	5.1	10:	2	90-110				
Fluoride		mg/L	2.	.5	2.4	9	6	90-110				
Sulfate		mg/L		5	4.9	9.	7	90-110				
MATRIX SPIKE SAMPLE:	28											
			60367	157006	Spike	MS		MS	% Rec	;		
Parameter		Units	Re	sult	Conc.	Result	%	% Rec	Limits		Quali	fiers
Chloride		mg/L		137	50		188	103	80	-120		
Fluoride		mg/L		ND	25	2	25.5	98	80	-120		
Sulfate		mg/L		89.4	50		138	97	80	-120		
MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2883	999		2884000							
MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2883	999 MS	MSD	2884000							
MATRIX SPIKE & MATRIX SF		CATE: 2883		MSD Spike	2884000 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX SF Parameter			MS	_			MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter	6	0367255001	MS Spike	Spike	MS	MSD	_	_	Limits	RPD 2	RPD	Qua
Parameter Chloride	6 Units	0367255001 Result	MS Spike Conc.	Spike Conc.	MS Result	MSD Result	% Rec	% Rec	Limits 80-120		RPD 15	Qua
Parameter Chloride Fluoride Sulfate	Units mg/L	0367255001 Result 3.9	MS Spike Conc.	Spike Conc.	MS Result	MSD Result	% Rec 96	% Rec	Limits 3 80-120 0 80-120	2	RPD 15 15	Qua
Parameter Chloride Fluoride	Units mg/L mg/L mg/L	3.9 0.29	MS Spike Conc. 5 2.5	Spike Conc. 5 2.5	MS Result 8.7 2.9	MSD Result 8.5 2.8	% Rec 96 104	% Rec 93 100	Limits 80-120 80-120	2 4	RPD 15 15	Qua
Parameter Chloride Fluoride Sulfate	Units mg/L mg/L mg/L	3.9 0.29	MS Spike Conc. 5 2.5	Spike Conc. 5 2.5 50	MS Result 8.7 2.9	MSD Result 8.5 2.8	% Rec 96 104	% Rec 93 100	Limits 80-120 80-120	2 4	RPD 15 15	Qua
Parameter Chloride Fluoride Sulfate	Units mg/L mg/L mg/L	3.9 0.29	MS Spike Conc. 5 2.5 50	Spike Conc. 5 2.5 50	MS Result 8.7 2.9 130	MSD Result 8.5 2.8	% Rec 96 104 103	% Rec 93 100 100	Limits 80-120 80-120	2 4 1	RPD 15 15	Qua
Parameter Chloride Fluoride Sulfate SAMPLE DUPLICATE: 2884	Units mg/L mg/L mg/L	3.9 0.29 78.7	MS Spike Conc. 5 2.5 50	Spike Conc. 5 2.5 50	MS Result 8.7 2.9 130	MSD Result 8.5 2.8 132	% Rec 96 104 103	% Rec 93 100 107 Max RPD	Limits 3 80-120 0 80-120 7 80-120	2 4 1	RPD 15 15	Qua

0.29

78.7

0.28

81.5

1

3

15

15

mg/L

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

QC Batch: 716877 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60366962013

METHOD BLANK: 2884030 Matrix: Water

Associated Lab Samples: 60366962013

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/27/21 08:08	
Fluoride	mg/L	< 0.086	0.20	0.086	04/27/21 08:08	
Sulfate	mg/L	< 0.42	1.0	0.42	04/27/21 08:08	

METHOD BLANK: 2886241 Matrix: Water

Associated Lab Samples: 60366962013

Date: 06/02/2021 10:13 PM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	04/28/21 09:21	
Fluoride	mg/L	<0.086	0.20	0.086	04/28/21 09:21	
Sulfate	mg/L	< 0.42	1.0	0.42	04/28/21 09:21	

LABORATORY CONTROL SAMPLE:	2884031					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		5.3	106	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	4.9	97	90-110	

LABORATORY CONTROL SAMPLE:	2886242					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	5.0	99	90-110	
Fluoride	mg/L	2.5	2.5	98	90-110	
Sulfate	mg/L	5	5.0	99	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2884	033		2884034							
		60366138006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	120	100	100	227	231	107	111	80-120	2	15	
Fluoride	mg/L	< 0.086	2.5	2.5	2.2	2.4	86	97	80-120	11	15	
Sulfate	mg/L	258	100	100	367	368	109	110	80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

MATRIX SPIKE SAMPLE:	2884035	0000000044	0-1-	140	140	0/ D	
Parameter	Units	60366962014 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	1.9	5	7.6	113	80-120	
Fluoride	mg/L	0.32	2.5	2.9	104	80-120	
Sulfate	mg/L	53.7	50	94.7	82	80-120	

SAMPLE DUPLICATE: 2884032						
		60366138006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	120	119	0	15	
Fluoride	mg/L	<0.086	<0.086		15	
Sulfate	mg/L	258	258	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/02/2021 10:13 PM

B Analyte was detected in the associated method blank.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LEC LCL1

Pace Project No.: 60367255

Date: 06/02/2021 10:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60366962013	L-MW-26	EPA 200.7	717296	EPA 200.7	717436
60367255001	L-TMW-1	EPA 200.7	717031	EPA 200.7	717130
60367255002	L-TMW-2	EPA 200.7	717031	EPA 200.7	717130
60367255003	L-TMW-3	EPA 200.7	717031	EPA 200.7	717130
60367255004	L-UWL-DUP-1	EPA 200.7	717031	EPA 200.7	717130
60367255005	L-UWL-FB-1	EPA 200.7	717031	EPA 200.7	717130
60366962013	L-MW-26	SM 2320B	717133		
60367255001	L-TMW-1	SM 2320B	717897		
60367255002	L-TMW-2	SM 2320B	717897		
60367255003	L-TMW-3	SM 2320B	717897		
60367255004	L-UWL-DUP-1	SM 2320B	717897		
60367255005	L-UWL-FB-1	SM 2320B	717897		
60366962013	L-MW-26	SM 2540C	716543		
60367255001	L-TMW-1	SM 2540C	716657		
60367255002	L-TMW-2	SM 2540C	716657		
60367255003	L-TMW-3	SM 2540C	716657		
60367255004	L-UWL-DUP-1	SM 2540C	716657		
60367255005	L-UWL-FB-1	SM 2540C	716657		
60366962013	L-MW-26	EPA 300.0	716877		
60367255001	L-TMW-1	EPA 300.0	716874		
60367255002	L-TMW-2	EPA 300.0	716505		
60367255003	L-TMW-3	EPA 300.0	716505		
60367255004	L-UWL-DUP-1	EPA 300.0	716505		
60367255005	L-UWL-FB-1	EPA 300.0	716505		

Sample Condition Upon Receipt

Client Name: 40100 ASSOCIUTE	7	
Courier: FedEx UPS VIA Clay	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pa	ace Shipping Label Use	ed? Yes 🗆 No
Custody Seal on Cooler/Box Present: Yes No	Seals intact: Yes	No □
Packing Material: Bubble Wrap ☐ Bubble Bags		None Other 2501C
Thermometer Used: T298	of Ice: We Blue No	one 4.2
Cooler Temperature (°C): As-read <u>O.7 o.8</u> Corr. Fac	tor O · O Correc	cted 0.2.0.8 Date and initials of person mL examining contents:
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes ONO ON/A	
Chain of Custody relinquished:	Yes □No □N/A	
Samples arrived within holding time:	√Yes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes □No □N/A	
Correct containers used:	Yes Ono On/A	
Pace containers used:	Ves □No □N/A	
Containers intact:	Yes ONO ON/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ØN/A	N.
Filtered volume received for dissolved tests?	□Yes □No ∠N/A	
Sample labels match COC: Date / time / ID / analyses	Ves □No □N/A	
Samples contain multiple phases? Matrix: WT	□Yes □No □N/A	
Containers requiring pH preservation in compliance?	Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	603173	date/time added.
Cyanide water sample checks:	000115	1
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
Trip Blank present:	☐Yes ☐No ☐N/A	
Headspace in VOA vials (>6mm):	□Yes □No ☑N/A	
Samples from USDA Regulated Area: State:	☐Yes ☐No N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No N/A	
Client Notification/ Resolution: Copy COC to	o Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/1	Time:	
Comments/ Resolution		The state of the s
REVIEWED		
Project Manager Revie : By jchurch at 4:20 pm, 4/21/21	Date	9)
	-	· (

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

ğ

DRINKING WATER OTHER NPDES GROUND WATER Page: 8 REGULATORY AGENCY RCRA Site Location STATE: UST . Golder Associates Inc Jamie Church 9285, line 3 Invoice Information: Attention: Сотралу Nате: Reference:
Pace Project
Manager:
Pace Profile #: Section C Pace Quote Address: Project Name: Ameren Labadie Energy Center LCL1 Copy To: Eric Schnieder, Ryan Feldman rolect Number: 153140602,0001C urchase Order No.: COC #4 Report To: Jeffrey Ingram Section B Required Project Information: 13515 Barrett Parkway Dr., Ste 260 Fax: 636-724-9323 jeffrey ingram@golder.com Standard Pace Analytical Ballwin, MO 63021 Golder Associates Section A Required Client Information: hone: 636-724-9191 Requested Due Date/TAT: Company: Email To: ddress.

								4												111111			1111
														Requ	Requested Analysis Filtered (Y/N)	alysis	Filterec	(N/N)	111				
	0	삥	_		COLLE	COLLECTED				Prese	Preservatives	S	Î N /A	z	z				11111				
	DRINKIUS WATER DW WATER WT WASTE WATER WW PRODUCT P SOULSOLID SL OIL	see valid codes	-GRAB C=C	COMPOSITE	SITE (T	COMPOSITE END/GRAB													(N/A)	/AJ/J.V.			
# MƏTİ	SAMPLE ID WP AT 0.9/) Sample IDs MUST BE UNIQUE			DATE	I I M	DATE	TA GAMPLE TEMP AT	# OF CONTAINER	Nnpreserved Unpreserved	HCI HNO ³	HObN Nacs ₂ S ₂ S	Methanol Other	te9T sisylsnA↓	Chloride/Fluoride App III and CatV	Alkalinity TDS				Residual Chlorine)3(C)	COSC > SCO	
-	L-MW-26	WT	ڻ ا-										-							L) }		Τ
2	L-TMW-1	TW	O			4-19-21	1305	7	,	_				-	///								
m	L-TMW-2	TW	D L				3311	13-	_	_				//	1.1								
4	L-TMW-3	TW	<u>ი</u>			-+	1455	1	1	4			_		//								
ທ	L-BMW-1S	TW	O																				
ø	L-BMW-2S	WT	g																				
7	L-UWL-DUP-1	W	9			H-15-H	ı	12		_			_	-	1/								Ī
60	L-UWL-FB-1	TW	O			_	1549	_	1	_				11	11								
Ø	L-UWL-MS-1	Ϋ́	O				1305							1	///								
9	L-UWL-MSD-1	W	0			1	1305	1	1	→				//									
Ξ		Ϋ́	O																				
12		₩	o o																				Γ
	ADDITIONAL COMMENTS	REL	LINQUIS	RELINQUISHED BY / AFFILIATION	AFFILIATIC	N	DATE	F	TIME		Á	ACCEPTED BY / AFFILIATION	DBYIA	VEFILIA	TION	DATE	<u></u>	TIME		SA	SAMPLE CONDITIONS	TIONS	
*App III	'App III and Cat/An Metals" - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B	Brende Talbut/Golder	17	al but/	rolder		17/02/1	4/4	the state of	2	26	and	1	PA	PACE.	12.40	0 123	03490.2	0.7	2	2	2	Ī
F	True For L- UWL-EB-1 is 1519							7	30			•	•			120			0.8	2	2	12	
																					>)	
-ag€					SAMPLE	R NAME AN	SAMPLER NAME AND SIGNATURE	ire											Э.			lact	Ī
27					_	RINT Name	PRINT Name of SAMPLER:		Brender	,	1016	*							uı du	bevie N\Y) €	dy Se	N/A)	,
of 29					3,	SIGNATURE	SIGNATURE of SAMPLER:	B	3	4	2			DATE Signec (MM/DD/YY):	DATE Signed (MM/DD/YY):				nəT		olsu loo	 дтв2)	
ð											>							3					1

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev 08, 12-Oct-2007

Sample Condition Upon Receipt

WO#:60366962

Client Name: Column Associates		9
Courier: FedEx UPS VIA Clay	PEX 🗆 ECI 🗆	Pace ☐ Xroads, ☐ Client ☐ Other ☐
Tracking #: Pa	ice Shipping Label Use	d? Yes □ No-
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals intact: Yes	No 🗆
Packing Material: Bubble Wrap □ Bubble Bags	□ _ Foam □	None □ Other 2 2PLC
Thermometer Used: 1-298 17.2 Type of	of Ice: Web Blue No	
Cooler Temperature (°C): As-read 18.5 Corr. Fac	tor O.O Correc	ted
Temperature should be above freezing to 6°C 1-7		1.7 4-17-21/0
Chain of Custody present:	Pres ONO ON/A	
Chain of Custody relinquished:	ØYes □No □N/A	
Samples arrived within holding time:	Yes ONO ON/A	
Short Hold Time analyses (<72hr):	Dres Ono Onia	Fe+2
Rush Turn Around Time requested:	□Yes □N/A	Received containers not on coc.
Sufficient volume:	√Yes □No □N/A	IBPIU, 2 BPINS, 1 BP3U, 1 BP3N, 1 BP4Z
Correct containers used:	√Ves □No □N/A	for the following:
Pace containers used:	DYes □No □N/A	L-UMW-7D 4-15-21 10:18
Containers intact:	Yes □No □N/A	L-UMW-MS-1 4-15-21 10:18
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ☑N/A	L-UMW-MSD-1 4-15-21 10:18
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	Yes ONO ON/A	
Samples contain multiple phases? Matrix:	□Yes ZNo □N/A	
Containers requiring pH preservation in compliance?		List sample IDs, volumes, lot #'s of preservative and the
(HNO ₃ , H ₂ SO ₄ , HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#		date/time added. L-LMW-IS BP42 pH 9.5
cyanide water sample checks:	V 311 - 300 3224	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No ÆN/A	
Samples from USDA Regulated Area: State:	☐Yes ☐No █N/A	
additional labels attached to 5035A / TX1005 vials in the field?	Yes No N/A	×
lient Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
erson Contacted: Date/T	ime:	
REVIEWED		
roject Manager Revie	Date:	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Section / Required	Sect ion A Required Client Information:	Section B Required Project Information:	oject Ir	Informa	nation:					Sec	Section C	nation:										Page:	-	Jo	-	
Сотрапу:	Golder Associates	Report To: Jeffrey Ingram	Jeffre	ey Ing	gram					Attention	ıtion:							_]]
Address:	13515 Barrett Parkway Dr., Ste 260	Copy To:	Eric S	Schn	Eric Schnieder, Ryan Feldman	₹yan Fe	eldman			Coll	Company Name:	l	Solder	Golder Associates Inc	iates	Inc		RE	GULAT	REGULATORY AGENCY	ENCY					
	Ballwin, MO 63021									Address:	ess:							- Laborer	NPDES	M	GROUND WATER	WATER	L	DRINKIN	DRINKING WATER	Г
Email To:	jeffrey ingram@golder.com	Purchase Order No.:	der No		COC #	4				Pace	Quote ence:							-	UST	r L	RCRA		L	OTHER		
Phone: 6	636-724-9191 Fax: 636-724-9323	Project Name:	l	Ame	ren Lab	adie E	nergy C	Ameren Labadie Energy Center LCL1	-	Pace	Pace Project Manager:	Jam	Jamie Church	rich				š	Site Location	LC.	ا ا					
Requester	Requested Due Date/TAT: Standard	Project Number:		1531	153140602.0001C	0001C				Pace	Pace Profile #:	1	9285, line 3	3					STATE:	ůi	2	1				
			П	П											H	Ä	duest	d Ana	lysis Fil	Requested Analysis Filtered (Y/N)	î					
5, E	Section D Valid Matrix Codes Required Client Information MATRIX COI	code	_	(AM		8	COLLECTED	ED.				Pres	Preservatives	sə/	↑N/A	z	z	z								
	DRINKING WATER WASTE WASTE WASTE PRODUCT SOILSOLID OIL	W W W J J	ee valid codes t	GRAB C=CC	COM	COMPOSITE		COMPOSITE END/GRAB	NOITO I IO						T	e/Sulfate	elsteM n#					(N/Y) e				
# W3.	SAMPLE ID (A-Z, 0-81, -) Sample IDs MUST BE UNIQUE	WP AR OT TS		=Ð) BAYT BLYMA						OF CONTAINER	⁵ SO ⁴ ubteserved	^E ON	9OH CI	s ₂ S ₂ S lonsritel	ther Analysis Test	hloride/Fluorid	op III and Cat/v kalinity	şc				esidual Chlorine				
LI +	L-MW-26		+	s o	DATE	IME	\neg	4-11-71	NIME OF	+		1 ~	V		_	o 🔨	∀ ~	1				4	Face	Project	Pace Project No./ Lab I.D.	T
2	L-TMW-1		Ž	O						_																
က	L-TMW-2		W	Ŋ																						
4	L-TMW-3		Ŋ	O	41																					
S	L-BMW-1S		Ž	O			+			-		\exists	1	\exists												П
9	L-BMW-2S		¥	G			-			-			-		I	1		-				1				
7	L-UWL-DUP-1		¥	O						+												+				
ω c	L-UWL-FB-1		¥ \$	0 (+			-								+	+				
, e	L-UWL-MSD-1		\$	0						-												Ė				П
11			¥	9						-																
12			M	O		_	-			-		1						_								T
	ADDITIONAL COMMENTS		RELIN	NOUR	RELINQUISHED BY / AFFILIATION	Y / AFFIL	IATION		DATE		TIME	(7	ACCEF	TED B	Y / AFF	ACCEPTED BY / AFFILIATION		DATE	-	TIME		SAMF	SAMPLE CONDITIONS	SNOIL	
*App III an	'App II) and Cat/An Metals" - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B	Jan Jan	PT &	3	73	160	Folde	4	71-71		0451 057	3	magi	216	N	MON	MAN	300	4//6	7.	R					
																										T
Page						SAN	APLER N	I SAMPLER NAME AND SIGNATURE	SIGNAT	H.												0,		saled (N)	losti	
29 o							R	PRINT Name of SAMPLER:	SAMPLE	III IZ	Ser.	den	1	3	F							, uj dwe	Devisos N\Y) ep	eS ybot Y) Taloo	nples Ir	()
f 29							SiG	SIGNATURE of SAMPLER:	SAMPLI	ER: 1	7	{	2	F		Š	(MM/DD/YY):	- 1	2/01/10	2		T		og sng	162	
)							1						00	0								E-A11-O-090rev 08 12-Oct-2007	J. O. O. C.	12	7000	

F-ALL-Q-020rev.08, 12-Oct-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

MEMORANDUM

DATE July 6, 2021 **Project No.** 153140603

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60367255

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates		Proi	ect Manag	er: J. Ingram
Project	Name: Ameren - LEC - LCL1	_			er: 13140603
Review	er: A. Muehlfarth			dation Date	
	Page Analytical		000	603672	55
Laporal	tory: Pace Analytical cal Method (type and no.): EPA 200.7 (Total Metals); SI	 M2320B	(Alkalinity	; #: <u>603672</u>); SM25400	C (TDS); EPA 300.0 (Anions)
	☐ Air ☐ Soil/Sed. ☐ Water ☐ Waste			,, 	
	Names L-TMW-1, L-TMW-2, L-TMW-3, L-UWL-DUP-1, L-	UWL-FB	-1, L-MW-2	26	
-					
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the ba	ck please indicate in comment areas).
Field In	ıformation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	x			4/16/2021 - 4/19/2021
b)	Sampling team indicated?	x			AMM
c)	Sample location noted?	×	$\overline{\Box}$		
d)	Sample depth indicated (Soils)?	\Box	П	×	
e)	Sample type indicated (grab/composite)?	×	П		Grab
f)	Field QC noted?	×	П		See Notes
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	×			
i)	Notations of unacceptable field conditions/performa		_		I notes?
')	Notations of unacceptable field conditions/performa		om neid id		Thotes:
:\	Door the laboratory parretive indicate deficiencies?	_		_	Y
j)	Does the laboratory narrative indicate deficiencies?	Ш		х	,
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	x			
b)	Was the COC signed by both field and laboratory personnel?	×	П		
c)	Were samples received in good condition?	×			v
c)	were samples received in good condition?	Ĥ	Ш	Ш	-
Genera	II (reference QAPP or Method)	YES	NO	NA	COMMENTS
00.10.0	(reserves as a resemble)				
a)	Were hold times met for sample pretreatment?	x			
b)	Were hold times met for sample analysis?	х			
c)	Were the correct preservatives used?	х			-
d)	Was the correct method used?	х			ž
e)	Were appropriate reporting limits achieved?	х			
f)	Were any sample dilutions noted?	х			See Notes
a)	Were any matrix problems noted?	x		П	See Notes

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	х			See Notes
b)	Were analytes detected in the field blank(s)?	х			See Notes
c)	Were analytes detected in the equipment blank(s)?			x	
d)	Were analytes detected in the trip blank(s)?			x	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	x			
b)	Were the proper analytes included in the LCS?	x			
c)	Was the LCS accuracy criteria met?	x			
D!:-	-4	VEO	NO	N. A	COMMENTO
Duplic		YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	•	<u> </u>		L-UWL-DUP-1 @ TMW-2
	. W = 6 H - -	×			<u></u>
p)	Were field dup. precision criteria met (note RPD)?	×		, <u> </u>	
C)	Were lab duplicates analyzed (note original and du			_	
-11	Many lab due consision mitaria material DDD	×			
d)	Were lab dup. precision criteria met (note RPD)?	x			
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			×	
,	analytes included and concentrations)?		_	_	
b)	Was the %D within control limits?			x	
·					
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		x		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
b)	Was MSD accuracy criteria met?		x		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	· ·
c)	Were MS/MSD precision criteria met?	х			
	ents/Notes:				
Dilution	ons: Sulfate was diluted in several samples, no qua	alification	on necess	sary.	
Metho	od Blanks:				
2883	996: Chloride (0.49J), associated with sample -001	I. 10x I	blank > re	sult > RL	, sample result qualified as estimated.
-	·				
Field	Blanks:				
I -UM	/L-FB-1 @ L-TMW-3: TDS (22.0), Associated sami	ole res	ult>RI ar	nd 10x bl	ank, no qualification necessary.

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes: Duplicates: The laboratory analyzed sample duplicates for Alkalinity, TDS, and Anions. MS/MSD: 2884483/2884484: MS % recovery high for Calcium, Manganese. Associated with sample -001. Only one QC indicator out of control limits, no qualification necessary. 2885313: MS % recovery low for Boron. MS performed on unrelated sample, no qualification necessary. 2885314/2885315: MS % recovery low for Boron; MSD % recovery low for Calcium. MS/MSD performed on unrelated sample, no qualification necessary.

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-1	Chloride	3.9	J	Detected in MB, 10x blank > result > RL
$\overline{}$				
	\			
	$\overline{}$			
		+		
			+	
		-		
	- ann Mu	111 1		

Revised May 2004 Page 4 of 4

June 21, 2021

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on June 09, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com

314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates

CERTIFICATIONS

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water Arkansas Certification #: 20-020-0

Arkansas Drinking Water Illinois Certification #: 200030

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

Illinois Certification #: 004592

SAMPLE SUMMARY

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60371616001	L-TMW-1	Water	06/07/21 09:52	06/09/21 04:00
60371616002	L-TMW-2	Water	06/07/21 11:28	06/09/21 04:00
60371616003	L-TMW-3	Water	06/07/21 12:04	06/09/21 04:00
60371616004	L-MW-26	Water	06/07/21 12:46	06/09/21 04:00
60371616005	L-LCL1-FB-1	Water	06/07/21 10:40	06/09/21 04:00
60371616006	L-LCL1-DUP-1	Water	06/07/21 08:00	06/09/21 04:00

SAMPLE ANALYTE COUNT

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60371616001	L-TMW-1	EPA 200.7	JLH	2	PASI-K
		SM 2540C	ALH	1	PASI-K
		EPA 300.0	CRN2	2	PASI-K
60371616002	L-TMW-2	EPA 200.7	JLH	2	PASI-K
		SM 2540C	ALH	1	PASI-K
		EPA 300.0	CRN2	2	PASI-K
60371616003	L-TMW-3	SM 2540C	ALH	1	PASI-K
60371616004	L-MW-26	EPA 200.7	JLH	2	PASI-K
		SM 2540C	ALH	1	PASI-K
		EPA 300.0	CRN2	2	PASI-K
60371616005	L-LCL1-FB-1	EPA 200.7	JLH	2	PASI-K
		SM 2540C	ALH	1	PASI-K
		EPA 300.0	CRN2	2	PASI-K
60371616006	L-LCL1-DUP-1	EPA 200.7	JLH	2	PASI-K
		SM 2540C	ALH	1	PASI-K
		EPA 300.0	CRN2	2	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-TMW-1	Lab ID:	Collected	l: 06/07/21	09:52	Received: 06/	/09/21 04:00 Ma	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	98.8J	ug/L	100	8.6	1	06/15/21 09:14	06/15/21 20:09	7440-42-8	
Calcium	155000	ug/L	200	75.4	1	06/15/21 09:14	06/15/21 20:09	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	630	mg/L	10.0	10.0	1		06/11/21 10:51		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas Cit	ty					
Chloride	3.8	mg/L	1.0	0.39	1		06/17/21 11:36	16887-00-6	В
Fluoride	0.23	mg/L	0.20	0.086	1		06/17/21 11:36	16984-48-8	

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-TMW-2	Lab ID:	60371616002	Collected	d: 06/07/21	11:28	Received: 06	/09/21 04:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	-	Method: EPA 2 ytical Services			od: EP	PA 200.7			
Boron	94.4J	ug/L	100	8.6	1	06/15/21 09:14	06/15/21 20:12	7440-42-8	
Calcium	185000	ug/L	200	75.4	1	06/15/21 09:14	06/15/21 20:12	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	725	mg/L	10.0	10.0	1		06/11/21 10:51		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	6.3	mg/L	1.0	0.39	1		06/17/21 11:49	16887-00-6	В
Fluoride	<0.086	mg/L	0.20	0.086	1		06/17/21 11:49	16984-48-8	

(913)599-5665

ANALYTICAL RESULTS

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-TMW-3 Lab ID: 60371616003 Collected: 06/07/21 12:04 Received: 06/09/21 04:00 Matrix: Water

Parameters Results Units PQL MDL DF Prepared CAS No. Analyzed Qual

Analytical Method: SM 2540C 2540C Total Dissolved Solids

Pace Analytical Services - Kansas City

Total Dissolved Solids 596 mg/L 10.0 10.0 06/11/21 10:51

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-MW-26	Lab ID:	60371616004	Collected	d: 06/07/21	12:46	Received: 06/	09/21 04:00 Ma	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
200.7 Metals, Total	-	Method: EPA 2 ytical Services			od: EP	PA 200.7				
Boron Calcium	82.5J 123000	ug/L ug/L	100 200	8.6 75.4	1 1	06/15/21 09:14 06/15/21 09:14	06/15/21 20:15 06/15/21 20:15			
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services		ity						
Total Dissolved Solids	462	mg/L	10.0	10.0	1		06/11/21 10:51			
300.0 IC Anions 28 Days	•	Method: EPA 3 ytical Services		ity						
Chloride Fluoride	6.3 0.15J	mg/L mg/L	1.0 0.20	0.39 0.086	1 1		06/18/21 21:32 06/18/21 21:32		В	

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-LCL1-FB-1	Lab ID:	60371616005	Collected	d: 06/07/21	10:40	Received: 06	/09/21 04:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	-	Method: EPA 2 ytical Services			od: EP	PA 200.7			
Boron Calcium	<8.6 <75.4	ug/L ug/L	100 200	8.6 75.4	1 1	06/15/21 09:14 06/15/21 09:14	06/15/21 20:22 06/15/21 20:22		
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services		ity					
Total Dissolved Solids	17.0	mg/L	5.0	5.0	1		06/11/21 10:52		В
300.0 IC Anions 28 Days	•	Method: EPA 3 ytical Services		ity					
Chloride Fluoride	0.61J <0.086	mg/L mg/L	1.0 0.20	0.39 0.086	1 1		06/17/21 12:01 06/17/21 12:01	16887-00-6 16984-48-8	В

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Sample: L-LCL1-DUP-1	Lab ID:	Collected	l: 06/07/21	08:00	Received: 06	/09/21 04:00 Ma	Matrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	96.5J	ug/L	100	8.6	1	06/15/21 09:14	06/15/21 20:24	7440-42-8	
Calcium	188000	ug/L	200	75.4	1	06/15/21 09:14	06/15/21 20:24	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	739	mg/L	10.0	10.0	1		06/11/21 10:52		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	ty					
Chloride	6.3	mg/L	1.0	0.39	1		06/17/21 12:14	16887-00-6	В
Fluoride	0.25	mg/L	0.20	0.086	1		06/17/21 12:14	16984-48-8	

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

QC Batch: 726287

Date: 06/21/2021 02:49 PM

Boron Calcium

Analysis Method: EPA 200.7 QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

> Laboratory: Pace Analytical Services - Kansas City

 $60371616001,\,60371616002,\,60371616004,\,60371616005,\,60371616006$ Associated Lab Samples:

METHOD BLANK: 2918194 Matrix: Water

Associated Lab Samples: $60371616001,\,60371616002,\,60371616004,\,60371616005,\,60371616006$

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
	ug/L	<8.6	100	8.6	06/15/21 19:27	
	ug/L	<75.4	200	75.4	06/15/21 19:27	

LABORATORY CONTROL SAMPLE:	2918195					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	873	87	85-115	
Calcium	ug/L	10000	9600	96	85-115	

MATRIX SPIKE & MATRIX SP	IKE DUPL	JCATE: 2918	196		2918197							
			MS	MSD								
		60371615002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	6900	1000	1000	8020	7820	112	92	70-130	3	20	
Calcium	ug/L	194000	10000	10000	208000	205000	138	105	70-130	2	20	M1

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 2918	198		2918199							
	6	60371616004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
				- 1	_	_	_	_				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	82.5J	1000	1000	981	981	90	90	70-130	0	20	
Calcium	ug/L	123000	10000	10000	132000	136000	90	128	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

QC Batch: 725740 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60371616001, 60371616002, 60371616003, 60371616004, 60371616005, 60371616006

METHOD BLANK: 2916343 Matrix: Water

Associated Lab Samples: 60371616001, 60371616002, 60371616003, 60371616004, 60371616005, 60371616006

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L 7.5 5.0 5.0 06/11/21 10:50

LABORATORY CONTROL SAMPLE: 2916344

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 1000 976 98 80-120 mg/L

SAMPLE DUPLICATE: 2916345

60371616004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 462 **Total Dissolved Solids** 478 3 mg/L 10

SAMPLE DUPLICATE: 2916346

Date: 06/21/2021 02:49 PM

60371615002 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1110 mg/L 1100 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Chloride

Fluoride

QC Batch: 726792 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Kansas City

60371616001, 60371616002, 60371616005, 60371616006Associated Lab Samples:

METHOD BLANK: 2920019 Matrix: Water Associated Lab Samples: 60371616001, 60371616002, 60371616005, 60371616006

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride < 0.39 1.0 0.39 06/17/21 11:11 mg/L Fluoride <0.086 0.20 0.086 06/17/21 11:11 mg/L

METHOD BLANK: 2923074 Matrix: Water

Associated Lab Samples: 60371616001, 60371616002, 60371616005, 60371616006

> Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers mg/L < 0.39 1.0 0.39 06/18/21 09:15 mg/L <0.086 0.20 0.086 06/18/21 09:15

METHOD BLANK: 2923399 Matrix: Water

Associated Lab Samples: 60371616001, 60371616002, 60371616005, 60371616006

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.67J	1.0	0.39	06/21/21 08:38	
Fluoride	mg/L	<0.086	0.20	0.086	06/21/21 08:38	

LABORATORY CONTROL SAMPLE: 2920020

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	

LABORATORY CONTROL SAMPLE:

Date: 06/21/2021 02:49 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	5.2	104	90-110	
Fluoride	mg/L	2.5	2.7	109	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

LABORATORY CONTROL SAM	PLE: 2	2923400										
			Spike	LC	S	LCS	% R	ec				
Parameter		Units	Conc.	Res	ult	% Rec	Limi	ts (Qualifiers	_		
Chloride		mg/L		5	4.6	92	2 9	90-110		_		
Fluoride		mg/L	2	.5	2.3	9.	1 9	90-110				
MATRIX SPIKE SAMPLE:	2	2920021										
			60371	684013	Spike	MS		MS	% Rec			
Parameter		Units	Re	sult	Conc.	Result	%	Rec	Limits		Qualif	iers
Chloride		mg/L		650	1000	1	 540	89	80	-120		
Fluoride		mg/L		ND	500		486	97	80	-120		
MATRIX SPIKE & MATRIX SPIK	Œ DUPLI	ICATE: 2920	022 MS	MSD	2920023							
MATRIX SPIKE & MATRIX SPIK		ICATE: 2920 60371937001	-	MSD Spike	2920023 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & MATRIX SPIK Parameter			MS	_		MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter		60371937001	MS Spike	Spike	MS				Limits	RPD 1	RPD	Qua
MATRIX SPIKE & MATRIX SPIK Parameter Chloride Fluoride	Units	60371937001 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits 80-120		$\frac{\text{RPD}}{\text{15}}$	Qua
Parameter Chloride Fluoride	Units mg/L mg/L	60371937001 Result 1.8	MS Spike Conc.	Spike Conc.	MS Result	Result 6.4	% Rec	% Rec 92	Limits 80-120	1	RPD 15	Qua
Parameter Chloride Fluoride	Units mg/L mg/L	60371937001 Result 1.8	MS Spike Conc.	Spike Conc. 5 2.5	MS Result	6.4 6.8	% Rec 93 108	% Rec 92 110 Max	80-120 80-120	1	RPD 15	Qua
Parameter Chloride Fluoride	Units mg/L mg/L	60371937001 Result 1.8	MS Spike Conc. 5 2.5	Spike Conc. 5 2.5	MS Result 6.4 6.8	Result 6.4	% Rec 93 108	% Rec 92 110	Limits 80-120	1	RPD 15	Qua
Parameter Chloride Fluoride SAMPLE DUPLICATE: 292002	Units mg/L mg/L	60371937001 Result 1.8 4.1	MS Spike Conc. 5 2.5	Spike Conc. 5 2.5	MS Result 6.4 6.8	6.4 6.8	% Rec 93 108	% Rec 92 110 Max	Limits 80-120 80-120 Qualif	1	RPD 15	Qua

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

QC Batch: 727236 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60371616004

METHOD BLANK: 2921782 Matrix: Water

Associated Lab Samples: 60371616004

Blank Reporting Limit MDL Qualifiers Parameter Units Result Analyzed Chloride mg/L 0.67J 1.0 0.39 06/18/21 15:42 Fluoride mg/L <0.086 0.20 0.086 06/18/21 15:42

METHOD BLANK: 2923401 Matrix: Water

Associated Lab Samples: 60371616004

Reporting Blank Parameter Units Result Limit MDL Analyzed Qualifiers Chloride 0.59J 1.0 06/21/21 08:40 mg/L 0.39 <0.086 0.20 0.086 06/21/21 08:40 Fluoride mg/L

LABORATORY CONTROL SAMPLE: 2921783

Spike LCS LCS % Rec % Rec Parameter Conc. Result Limits Qualifiers Units Chloride 5 4.7 94 90-110 mg/L Fluoride 2.5 2.5 100 90-110 mg/L

LABORATORY CONTROL SAMPLE: 2923402

Date: 06/21/2021 02:49 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.7 94 90-110 mg/L Fluoride 2.5 2.3 91 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2921784 2921785

Parameter	Units	60371614001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride Fluoride	mg/L mg/L	21.3 <0.086	10 2.5	10	31.3	31.5 2.8	100 104	102 108	80-120 80-120	 1 4	15 15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

MATRIX SPIKE & N	MATRIX SPIKE DUPI	LICATE: 2921	787		2921788							
Paramete	r Units	60371615002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Chloride	mg/L	16.2	5	5	21.6	21.8	108	112	80-120	1	15	E
Fluoride	mg/L	<0.086	2.5	2.5	2.9	3.0	115	118	80-120	3	15	
MATRIX SPIKE & N	MATRIX SPIKE DUPI	LICATE: 2921	790		2921791							
			MS	MSD								
Paramete	r Units	60371616004 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	6.3	5	5	11.3	11.3	99	100	80-120		15	
Fluoride	mg/L		2.5	2.5	2.7	2.8	102	104	80-120	2	15	
SAMPLE DUPLICA	TE: 2921786											
Para	meter	Units	603716 Res		Dup Result	RPI)	Max RPD	Qualif	iers		
Chloride	-	mg/L		21.3	21.3	3	0	15	5			
Fluoride		mg/L		<0.086	0.097	J		15	5			
SAMPLE DUPLICA	TE: 2921789											
			603716	15002	Dup			Max				
Parai	meter	Units	Res	sult	Result	RPI)	RPD	Qualif	iers		
Chloride		mg/L		16.2	16.2		0	15	5			
Fluoride		mg/L		<0.086	0.29	9		15	5			
SAMPLE DUPLICA	TE: 2921792											
D		l leite	603716		Dup	D.D.		Max	O !!!	:		
	meter	Units	Res		Result	RPI		RPD	Qualif	iers		
Chloride		mg/L		6.3	6.3		0	15				
Fluoride		mg/L		0.15J	0.14	J		15)			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/21/2021 02:49 PM

- B Analyte was detected in the associated method blank.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN-Verification - LCL1

Pace Project No.: 60371616

Date: 06/21/2021 02:49 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60371616001	L-TMW-1	EPA 200.7	726287	EPA 200.7	726362
60371616002	L-TMW-2	EPA 200.7	726287	EPA 200.7	726362
60371616004	L-MW-26	EPA 200.7	726287	EPA 200.7	726362
60371616005	L-LCL1-FB-1	EPA 200.7	726287	EPA 200.7	726362
60371616006	L-LCL1-DUP-1	EPA 200.7	726287	EPA 200.7	726362
60371616001	L-TMW-1	SM 2540C	725740		
60371616002	L-TMW-2	SM 2540C	725740		
60371616003	L-TMW-3	SM 2540C	725740		
60371616004	L-MW-26	SM 2540C	725740		
60371616005	L-LCL1-FB-1	SM 2540C	725740		
60371616006	L-LCL1-DUP-1	SM 2540C	725740		
60371616001	L-TMW-1	EPA 300.0	726792		
60371616002	L-TMW-2	EPA 300.0	726792		
60371616004	L-MW-26	EPA 300.0	727236		
60371616005	L-LCL1-FB-1	EPA 300.0	726792		
60371616006	L-LCL1-DUP-1	EPA 300.0	726792		

Sample Condition Upon Receipt

Client Name: Golder Hssociate	5	
Courier: FedEx □ UPS □ VIA □ Clay □	PEX 🗆 ECI 🗀	Pace ☐ Xroads 🐧 Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Use	d? Yes □ No 🐧
Custody Seal on Cooler/Box Present: Yes ▼ No □	Seals intact: Yes	Į No □
Packing Material: Bubble Wrap □ Bubble Bags	□ Foam □	None Other Zpic
Thermometer Used: 7298 Type o	fice Ne Blue No	no •
Cooler Temperature (°C): As-read 1, C Corr. Fac	tor 🖎 🔼 Correct	
Temperature should be above freezing to 6°C 1.3	4	1.3
Chain of Custody present:	Nes □No □N/A	2.0
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes No □N/A	
Rush Turn Around Time requested:	☐Yes No ☐N/A	
Sufficient volume:	Yes □No □N/A	
Correct containers used:	Yes No N/A	
Pace containers used:	Yes ONO ON/A	
Containers intact:	Yes No N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No N/A	
Filtered volume received for dissolved tests?	□Yes □No ÑN/A	
Sample labels match COC: Date / time / ID / analyses	Yes ONO ON/A	
Samples contain multiple phases? Matrix: W+	□Yes No □N/A	
Containers requiring pH preservation in compliance?	X Yes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# \	463173	date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
Trip Blank present:	□Yes □No N/A	
Headspace in VOA vials (>6mm):	□Yes □No N/A	
Samples from USDA Regulated Area: State:	□Yes □No N/A	
Additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No □N7A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution:		
REVIEWED		
Project Manager Review By jchurch at 9:43 pm, 6/9/21	Date	<u> </u>

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

DRINKING WATER OTHER ₹ GROUND WATER Page: Θ REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) Site Location STATE NPDES UST Golder Associates Inc Jamie Church ace Profile #: 9285, line 1 Invoice Information: Company Name: Pace Project Manager: Section C Address: Copy To: Eric Schnieder, Ryan Feldman, Brendan Talbert Project Name: Ameren - Verification Sampling -- LCL 1 Project Number: 153140603, DOCIC Purchase Order No.: COC #1 Section B Required Project Information: Report To: Jeffrey Ingram 13515 Barrett Parkway Dr., Ste 260 Fax: 636-724-9323 jeffrey ingram@golder.com Standard Ballwin, MO 63021 Golder Associates Section A Required Client Information: hone: 636-724-9191 Requested Due Date/TAT: :отрапу: Email To: Address:

SAMPLE ID COLLECTED CONTROL COLLECTED COLLECTE			Ì												1	requested Allanysis I litered (1714)		id join		1 00	,	7				
SAMPLE ID OUT OF THE PRINT THE WARREND SONNTINE SAMPLE ID OUT OF THE SEPTIMENT WARREND SONNTINE SAMPLE IN INTERIOR STATES THE ST			0		(حالمالح)	J	COLLEC	TED				Preserva	atives	↑ N/A	z		_		_	z	z					
SAMPLE ID SAMP		DRINKING WATER WASTE WATER WASTE WATER PRODUCT SOILSOLID OIL	WW WW OL			MPOSITE ST.	4RT	COMPOSITE						1								(N/A)				
12-Thus-1		SAMPLE ID (A-Z, D-9.1) Sample IDS MUST BE UNIQUE	7					DATE	77			HCI HNO ³	Na ₂ S ₂ O ₃	Other	Shloride		LDS					eninoldO laubiseR	10,	X of	919/-	op 10
11.06 1 1 1 1 1 1 1 1 1	-			_	(3)		ی		25%	7	-	~				-	\leq	-	-	S.	770	7	8.0			
12-46 1 1 1 1 1 1 1 1 1	2	L-TMW-2		_	(7)			1	178	7	-					Ę			-	8	Z)	£=	20%	7		
1246 21 1 1 1 1 1 1 1 1	n	- JMW1-		_	(9)			1	HO7	=	=						\		_	60	4					
L-LCLI-DUP- WT 6	4	1-mm-26			(h			51	141	7	_			- N	_		`\	//	o =	B	3	1	203	2		
L-LCLI-MyC-1	ĸ	1707-		_	(n			1	240	7		_		1	Ź		//	1/	-	¢0	2	7	3	7		
1246 2	φ	L-LCLI-DUP-1			(ŋ			-	1	7		-		2	_	Ĺ	//	\		3	2	4	200	-		
	7	-4611		_	(7)			1.	246	2						L		/		_						
WIT G WI	8			_	()			- -	246	7		<u></u>		(UB	1		///	\		>		7	,			
ADDITIONAL COMMENTS RELINQUISHEED BY AFFILLATION BYT G ADDITIONAL COMMENTS RELINQUISHEED BY AFFILLATION BYT G BY Y Y Y BY Y	6			_	(n	_				_				00.												
ADDITIONAL COMMENTS RELINQUISHED BY AFFILLATION BYTHOR GRAPHER THE ACCEPTED BY AFFILLATION BYTHOR TANKET Coldes L-8-71 135C SQ MATCHED BY AFFILLATION DATE THINE SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE OF SAMPLER: Brenden Talbert Coldinal of the	2			_	(J)																					
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION Belindus Talvart Coldes Lo-8-21 1350 St. manalia Reliation Date Time Sample Conditions Sampler Name of Sampler: B readan Talvart Coldes Sampler: B readan Talvar	1			_	ŋ	\dashv				_											H					
ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION Brenda Talburt Golder L-8-11 175C Sylvary and Recepted By I affellation Date Talburt Golder L-8-11 175C Sylvary and Recepted By I and Rece	12			_	_O					=																
SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: Read an Talbert SIGNATURE of SAMPLER: Read an Talbert SIGNATURE of SAMPLER: Read an Talbert (MMDDYN): 06/08/21 SIGNATURE of SAMPLER: Read an Talbert (MMDDNN): 06/08/21	li V	ADDITIONAL COMMENTS		RELING	ZUISHED	BY / AFF	ILIATION		DATE		TIME		ACCE	PTED B)	(/ AFF	LIATIO	z	2	ATE	F	IME		/S	AMPLE CC	SNDITIONS	
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Brendan Talbert SIGNATURE SIGNATURE SIGNATURE of SAMPLER: Brendan Talbert (MMMDD/YY): Ob/OB/2/			Bren	dan	Talle	artilo	older	و۔	-8-21	17	50	0	ST.	2	8	}		3	1213		3	_ _	_	*	7	
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Brendar Talbert SIGNATURE of SAMPLER: Received on Ice Custody Sealed Custody Sealed (MM/DD/Y): Ob/OB/2/																						3	*	ナ		,
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Brendan Talbert PRINT Name of SAMPLER: Brendan Talbert SIGNATURE of SAMPLER: R. Talbert (MM/DD/Y): Ob/OB/2/																							7			7
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Grean day Tallyert SIGNATURE of SAMPLER: Read of Tallyert IMM/DD/YY): Ob/OB/2/	Pag	Dog								-								_					Э	P		1
SIGNATURE of SAMPLER: 12 12 12 12 12 12 12 12 12 12 12 12 12	je 20	20				ń	MPLEKI	NT Name of	SIGNATU	# S	70.00	1	1 ther	4		4	T.). U			(V/V)	ss Intac (V/
	ot 20	of 20				<u></u>	SIC	NATURE	of SAMPLE.	я СУ	イン		1		[AM)	TE Sign		60/9	121			Temp			elooO	ыдтв2 Ү)

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev,08, 12-Oct-2007

MEMORANDUM

DATE August 31, 2021 **Project No.** 153140603

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60371616

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

	ny Name: Golder Associates		Proje	ect Manag	er: J. Ingram
	Name: Ameren - LEC - LCL1	_	Proje	ect Numbe	r: 153140603
Review	er: A. Muehlfarth		Valid	dation Date	e: <u>8/31/2021</u>
I ahorat	cory: Pace Analytical - Kansas City		SDG	; #: 603716	16
	cal Method (type and no.): EPA 200.7 (Total Metals); SI	 И2540С			
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste				
Sample	Names L-TMW-1, L-TMW-2, L-TMW-3, L-MW-26, L-LCL1-	-FB-1, L-	LCL1-DUF	P-1	
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	х			6/7/2021
b)	Sampling team indicated?	х			SSS/BTT
c)	Sample location noted?	X			
d)	Sample depth indicated (Soils)?	П		X	
e)	Sample type indicated (grab/composite)?	×			Grab
f)	Field QC noted?	×			See Notes
g)	Field parameters collected (note types)?	×			pH, Sp.Conductivity, ORP, Temp, DO, Turbidity
h)	Field Calibration within control limits?	×			
i)	Notations of unacceptable field conditions/performa		om field l	nas or field	I notes?
')	Notations of unacceptable field conditions/performa		×	_	THOICS:
:\	Door the laboratory parretive indicate deficiencies?			x	
j)	Does the laboratory narrative indicate deficiencies?		_	Ĺ	
	Note Deficiencies:				
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	х			
b)	Was the COC signed by both field				
,	and laboratory personnel?	×			
c)	Were samples received in good condition?	Х	Ш	Ш	
Genera	II (reference QAPP or Method)	YES	NO	NA	COMMENTS
0011010	in (reserves do la reserves)				
a)	Were hold times met for sample pretreatment?	X			
b)	Were hold times met for sample analysis?	Х			
c)	Were the correct preservatives used?	Х			
d)	Was the correct method used?	Х			
e)	Were appropriate reporting limits achieved?	Х			
f)	Were any sample dilutions noted?		Х		
a)	Were any matrix problems noted?	×			See Notes

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	х			See Notes
b)	Were analytes detected in the field blank(s)?	Х			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			Х	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	Х			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	ıplicate	sample n	names)?	
		Х			L-LCL1-DUP-1 @ L-TMW-2
b)	Were field dup. precision criteria met (note RPD)?		х		See Notes
c)	Were lab duplicates analyzed (note original and du	olicate	samples)?	?	
		Х			
d)	Were lab dup. precision criteria met (note RPD)?	Х			Max RPD: 9% [<15%]
Blind 9	standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			×	COMMENTS
a)	analytes included and concentrations)?	Ш		ث	
b)	Was the %D within control limits?	П		х	
D)	was the 70D within control limits:				
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?	X			
D)	Recovery could not be calculated since sample contained high concentration of analyte?			X	
c)	Were MS/MSD precision criteria met?	×			
0)	voic Me, Mez producti uncha met.			Ш	
Comm	ents/Notes:				
Metho	od Blank:				
29163	343: TDS (7.5), associated with samples -001 thro	ugh -00	06. Samp	le results	>RL and 10x the blank were not qualified.
Samp	le results <10x the blank were qualified as estimat	es.			
	0.00				
	899: Chloride (0.67J), associated with samples -001			I -006. Sa	mple results <rl as="" non-detect,<="" qualified="" td="" were=""></rl>
samp	le results >RL but <10x blank were qualified as est	ımates	i.		

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes: 2921782/2923401: Chloride (0.67J/0.59J), associated with sample -004. Sample result >RL but <10x the highest blank detection, qualified as estimate. Field Blanks: L-LCL1-FB-1 @ L-TMW-1: TDS (17.0), Chloride (0.61J). Sample results >RL and 10x the blank were not qualified, Sample results <10x the blank were qualified as estimates. Duplicates: L-LCL1-DUP-1 @ L-TMW-2: Fluoride non-detect in the sample, detected in the DUP. MS/MSD: 2918196/2918197: MS % recovery high for Calcium. MS/MSD performed on unrelated sample, no qualification necessary.

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-LCL1-FB-1	Chloride	1.0	U	Detected in MB, sample result < RL
"	TDS	17.0	J	Detected in MB, 10x blank > result > RL
L-TMW-2	Chloride	6.3	J	"
L-LCL1-DUP-1	11	6.3	J	"
L-MW-26	11	6.3	J	"
L-TMW-1	"	3.8	J	Detected in MB and FB, 10x blank > result > R
L-TMW-2	Fluoride	0.086	UJ	Detected in the DUP, ND in sample
L-LCL1-DUP-1	11	0.25	J	"
	Ann Mull	11 4		8/31/2021

Revised May 2004 Page 4 of 4

December 28, 2021

Jeffrey Ingram Golder Associates 701 Emerson Road, Suite 250 Saint Louis, MO 63141

RE: Project: AMEREN LCL1

Pace Project No.: 60385393

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between November 03, 2021 and November 06, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Indianapolis
- Pace Analytical Services Kansas City
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com

314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder

Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates

CERTIFICATIONS

Project: AMEREN LCL1
Pace Project No.: 60385393

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Missouri Certification #: 235

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050
Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Soil Permit #: P330-19-00257

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 20-020-0

Arkansas Drinking Water

Illinois Certification #: 2000302021-3

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587

Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LCL1
Pace Project No.: 60385393

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60385393001	L-TMW-1	Water	11/02/21 09:30	11/03/21 03:48
60385393002	L-TMW-2	Water	11/02/21 10:50	11/03/21 03:48
60385393003	L-TMW-3	Water	11/02/21 12:20	11/03/21 03:48
60385393006	L-UWL-DUP-1	Water	11/02/21 00:00	11/03/21 03:48
60385393007	L-UWL-FB-1	Water	11/02/21 12:45	11/03/21 03:48
60385386002	L-BMW-1S	Water	11/01/21 12:10	11/03/21 03:48
60385386003	L-BMW-2S	Water	11/01/21 13:40	11/03/21 03:48
60385386016	L-MW-26	Water	11/04/21 12:55	11/06/21 05:30

SAMPLE ANALYTE COUNT

Project: AMEREN LCL1
Pace Project No.: 60385393

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60385393001	L-TMW-1	EPA 200.7		7	PASI-K
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
60385393002	L-TMW-2	EPA 200.7	JLH	7	PASI-K
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
60385393003	L-TMW-3	EPA 200.7	JLH	7	PASI-K
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
60385393006	L-UWL-DUP-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
0385393007	L-UWL-FB-1	EPA 200.7	JLH	7	PASI-K
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	ALH	3	PASI-K
0385386002	L-BMW-1S	EPA 200.7	MA1	7	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MAW	3	PASI-K
0385386003	L-BMW-2S	EPA 200.7	MA1	7	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MAW	3	PASI-K
0385386016	L-MW-26	EPA 200.7	MA1	7	PASI-K
		EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
		SM 2320B	SWJ	1	PASI-I
		SM 2540C	BLA	1	PASI-K

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN LCL1
Pace Project No.: 60385393

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0	ALH	3	PASI-K

PASI-I = Pace Analytical Services - Indianapolis PASI-K = Pace Analytical Services - Kansas City PASI-PA = Pace Analytical Services - Greensburg

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-TMW-1	Lab ID:	60385393001	Collected	: 11/02/21	09:30	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	у					
Boron	113	ug/L	100	8.6	1	11/09/21 10:13	11/10/21 13:19	7440-42-8	
Calcium	161000	ug/L	200	75.4	1	11/09/21 10:13	11/10/21 13:19	7440-70-2	
Iron	405	ug/L	50.0	21.4	1	11/09/21 10:13	11/10/21 13:19	7439-89-6	
Magnesium	44700	ug/L	50.0	31.4	1	11/09/21 10:13	11/10/21 13:19	7439-95-4	
Manganese	3740	ug/L	5.0	0.74	1	11/09/21 10:13	11/10/21 13:19	7439-96-5	
Potassium	5760	ug/L	500	146	1	11/09/21 10:13	11/10/21 13:19	7440-09-7	
Sodium	11700	ug/L	500	254	1	11/09/21 10:13	11/10/21 13:19	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Indianapoli	S					
Alkalinity, Total as CaCO3	504	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Cit	у					
Total Dissolved Solids	617	mg/L	10.0	10.0	1		11/09/21 09:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	у					
Chloride	2.6	mg/L	1.0	0.39	1		11/09/21 10:25	16887-00-6	В
Fluoride	0.27	mg/L	0.20	0.086	1		11/09/21 10:25	16984-48-8	
Sulfate	61.4	mg/L	10.0	4.2	10		11/09/21 11:04	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-TMW-2	Lab ID:	60385393002	Collected	11/02/21	10:50	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	119	ug/L	100	8.6	1	11/09/21 10:13	11/10/21 13:22	7440-42-8	
Calcium	240000	ug/L	200	75.4	1	11/09/21 10:13	11/10/21 13:22	7440-70-2	
Iron	844	ug/L	50.0	21.4	1	11/09/21 10:13	11/10/21 13:22	7439-89-6	
Magnesium	65700	ug/L	50.0	31.4	1	11/09/21 10:13	11/10/21 13:22	7439-95-4	
Manganese	2380	ug/L	5.0	0.74	1	11/09/21 10:13	11/10/21 13:22	7439-96-5	
Potassium	7720	ug/L	500	146	1	11/09/21 10:13	11/10/21 13:22	7440-09-7	
Sodium	25900	ug/L	500	254	1	11/09/21 10:13	11/10/21 13:22	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Indianapoli	S					
Alkalinity, Total as CaCO3	593	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	960	mg/L	13.3	13.3	1		11/09/21 09:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	19.7	mg/L	1.0	0.39	1		11/09/21 11:44	16887-00-6	
Fluoride	0.25	mg/L	0.20	0.086	1		11/09/21 11:44	16984-48-8	
Sulfate	259	mg/L	20.0	8.4	20		11/10/21 18:16	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-TMW-3	Lab ID:	60385393003	Collected	: 11/02/21	12:20	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	116	ug/L	100	8.6	1	11/09/21 10:13	11/10/21 13:24	7440-42-8	
Calcium	161000	ug/L	200	75.4	1	11/09/21 10:13	11/10/21 13:24	7440-70-2	
Iron	6960	ug/L	50.0	21.4	1	11/09/21 10:13	11/10/21 13:24	7439-89-6	
Magnesium	36900	ug/L	50.0	31.4	1	11/09/21 10:13	11/10/21 13:24	7439-95-4	
Manganese	817	ug/L	5.0	0.74	1	11/09/21 10:13	11/10/21 13:24	7439-96-5	
Potassium	6360	ug/L	500	146	1	11/09/21 10:13	11/10/21 13:24	7440-09-7	
Sodium	8100	ug/L	500	254	1	11/09/21 10:13	11/10/21 13:24	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Indianapol	is					
Alkalinity, Total as CaCO3	502	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	595	mg/L	10.0	10.0	1		11/09/21 09:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	3.8	mg/L	1.0	0.39	1		11/09/21 12:38	16887-00-6	В
Fluoride	0.20	mg/L	0.20	0.086	1		11/09/21 12:38	16984-48-8	
Sulfate	40.3	mg/L	10.0	4.2	10		11/09/21 12:51	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-UWL-DUP-1	Lab ID:	60385393006	Collected	l: 11/02/21	00:00	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	112	ug/L	100	8.6	1	11/09/21 10:13	11/10/21 13:27	7440-42-8	
Calcium	243000	ug/L	200	75.4	1	11/09/21 10:13	11/10/21 13:27	7440-70-2	
Iron	826	ug/L	50.0	21.4	1	11/09/21 10:13	11/10/21 13:27	7439-89-6	
Magnesium	65500	ug/L	50.0	31.4	1	11/09/21 10:13	11/10/21 13:27	7439-95-4	
Manganese	2400	ug/L	5.0	0.74	1	11/09/21 10:13	11/10/21 13:27	7439-96-5	
Potassium	7810	ug/L	500	146	1	11/09/21 10:13	11/10/21 13:27	7440-09-7	
Sodium	26000	ug/L	500	254	1	11/09/21 10:13	11/10/21 13:27	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Indianapol	is					
Alkalinity, Total as CaCO3	614	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	999	mg/L	13.3	13.3	1		11/09/21 09:47		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	19.9	mg/L	1.0	0.39	1		11/09/21 13:05	16887-00-6	
Fluoride	0.22	mg/L	0.20	0.086	1		11/09/21 13:05	16984-48-8	
Sulfate	249	mg/L	20.0	8.4	20		11/10/21 18:28	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-UWL-FB-1	Lab ID:	60385393007	Collected	l: 11/02/21	12:45	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
	Pace Analy	ytical Services	- Kansas Ci	ty					
Boron	<8.6	ug/L	100	8.6	1	11/09/21 10:13	11/10/21 13:30	7440-42-8	
Calcium	<75.4	ug/L	200	75.4	1	11/09/21 10:13	11/10/21 13:30	7440-70-2	
Iron	<21.4	ug/L	50.0	21.4	1	11/09/21 10:13	11/10/21 13:30	7439-89-6	
Magnesium	<31.4	ug/L	50.0	31.4	1	11/09/21 10:13	11/10/21 13:30	7439-95-4	
Manganese	<0.74	ug/L	5.0	0.74	1	11/09/21 10:13	11/10/21 13:30	7439-96-5	
Potassium	<146	ug/L	500	146	1	11/09/21 10:13	11/10/21 13:30	7440-09-7	
Sodium	488J	ug/L	500	254	1	11/09/21 10:13	11/10/21 13:30	7440-23-5	В
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Indianapol	is					
Alkalinity, Total as CaCO3	2.8	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		11/09/21 09:48		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	ytical Services	- Kansas Ci	ty					
Chloride	0.44J	mg/L	1.0	0.39	1		11/09/21 13:31	16887-00-6	В
Fluoride	<0.086	mg/L	0.20	0.086	1		11/09/21 13:31	16984-48-8	
Sulfate	<0.42	mg/L	1.0	0.42	1		11/09/21 13:31	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-BMW-1S	Lab ID:	60385386002	Collected	: 11/01/21	12:10	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	77.0J	ug/L	100	8.6	1	11/22/21 16:33	11/30/21 16:50	7440-42-8	
Calcium	260000	ug/L	2000	754	10	11/22/21 16:33	12/01/21 13:51	7440-70-2	
Iron	29800	ug/L	50.0	21.4	1	11/22/21 16:33	11/30/21 16:50	7439-89-6	
Magnesium	57800	ug/L	500	314	10	11/22/21 16:33	12/01/21 13:51	7439-95-4	
Manganese	2940	ug/L	5.0	0.74	1	11/22/21 16:33	11/30/21 16:50	7439-96-5	
Potassium	5850	ug/L	500	146	1	11/22/21 16:33	11/30/21 16:50	7440-09-7	
Sodium	24900	ug/L	500	254	1	11/22/21 16:33	11/30/21 16:50	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Indianapoli	s					
Alkalinity, Total as CaCO3	696	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Cit	у					
Total Dissolved Solids	953	mg/L	13.3	13.3	1		11/09/21 09:45		H1
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	у					
Chloride	13.7	mg/L	1.0	0.39	1		11/19/21 17:41	16887-00-6	
Fluoride	<0.086	mg/L	0.20	0.086	1		11/19/21 17:41	16984-48-8	
Sulfate	146	mg/L	20.0	8.4	20		11/22/21 21:56	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-BMW-2S	Lab ID:	60385386003	Collected:	11/01/21	13:40	Received: 11/	03/21 03:48 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	 Kansas City 	у					
Boron	40.7J	ug/L	100	8.6	1	11/22/21 16:33	11/30/21 16:52	7440-42-8	
Calcium	140000	ug/L	2000	754	10	11/22/21 16:33	12/01/21 13:57	7440-70-2	
Iron	<21.4	ug/L	50.0	21.4	1	11/22/21 16:33	11/30/21 16:52	7439-89-6	
Magnesium	20400	ug/L	50.0	31.4	1	11/22/21 16:33	11/30/21 16:52	7439-95-4	
Manganese	4.3J	ug/L	5.0	0.74	1	11/22/21 16:33	11/30/21 16:52	7439-96-5	
Potassium	5460	ug/L	500	146	1	11/22/21 16:33	11/30/21 16:52	7440-09-7	
Sodium	3990	ug/L	500	254	1	11/22/21 16:33	11/30/21 16:52	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Indianapoli	s					
Alkalinity, Total as CaCO3	357	mg/L	2.0	2.0	1		11/10/21 10:58		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	475	mg/L	10.0	10.0	1		11/09/21 09:46		H1
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	1.7	mg/L	1.0	0.39	1		11/19/21 18:07	16887-00-6	В
Fluoride	0.14J	mg/L	0.20	0.086	1		11/19/21 18:07	16984-48-8	
Sulfate	46.2	mg/L	5.0	2.1	5		11/19/21 18:21	14808-79-8	

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

Sample: L-MW-26	Lab ID:	60385386016	Collected	: 11/04/21	12:55	Received: 11/	06/21 05:30 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Analy	tical Services	- Kansas Cit	у					
Boron	68.7J	ug/L	100	8.6	1	11/22/21 16:33	11/30/21 17:24	7440-42-8	
Calcium	146000	ug/L	2000	754	10	11/22/21 16:33	12/01/21 14:24	7440-70-2	
Iron	43.7J	ug/L	50.0	21.4	1	11/22/21 16:33	11/30/21 17:24	7439-89-6	
Magnesium	26300	ug/L	50.0	31.4	1	11/22/21 16:33	11/30/21 17:24	7439-95-4	
Manganese	464	ug/L	5.0	0.74	1	11/22/21 16:33	11/30/21 17:24	7439-96-5	
Potassium	4310	ug/L	500	146	1	11/22/21 16:33	11/30/21 17:24	7440-09-7	
Sodium	6070	ug/L	500	254	1	11/22/21 16:33	11/30/21 17:24	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	tical Services	- Indianapoli	s					
Alkalinity, Total as CaCO3	390	mg/L	2.0	2.0	1		11/12/21 11:19		
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
	Pace Analy	tical Services	- Kansas Cit	у					
Total Dissolved Solids	490	mg/L	10.0	10.0	1		11/11/21 08:04		
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	0.00						
•	Pace Analy	tical Services	- Kansas Cit	у					
Chloride	6.2	mg/L	1.0	0.39	1		11/18/21 14:06	16887-00-6	В
Fluoride	0.24	mg/L	0.20	0.086	1		11/18/21 14:06	16984-48-8	
Sulfate	29.3	mg/L	5.0	2.1	5		11/18/21 15:02		

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 755005 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

METHOD BLANK: 3021597 Matrix: Water

Associated Lab Samples: 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<8.6	100	8.6	11/10/21 12:51	
Calcium	ug/L	<75.4	200	75.4	11/10/21 12:51	
Iron	ug/L	<21.4	50.0	21.4	11/10/21 16:17	
Magnesium	ug/L	<31.4	50.0	31.4	11/10/21 16:17	
Manganese	ug/L	< 0.74	5.0	0.74	11/10/21 12:51	
Potassium	ug/L	<146	500	146	11/10/21 16:17	
Sodium	ug/L	566	500	254	11/10/21 16:17	P8

LABORATORY CONTROL SAMPLE: 3021598

Date: 12/28/2021 02:41 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	886	89	85-115	
Calcium	ug/L	10000	9670	97	85-115	
Iron	ug/L	10000	9820	98	85-115	
Magnesium	ug/L	10000	10300	103	85-115	
Manganese	ug/L	1000	924	92	85-115	
Potassium	ug/L	10000	9540	95	85-115	
Sodium	ug/L	10000	10800	108	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3021			3021600							
Parameter	Units	60385390001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L		1000	1000	989	971	94	92	70-130	2		
Calcium	ug/L	137000	10000	10000	144000	138000	70	14	70-130	4	20	
Iron	ug/L	49.3J	10000	10000	10300	10100	103	100	70-130	2	20	
Magnesium	ug/L	13000	10000	10000	22900	23300	100	103	70-130	1	20	
Manganese	ug/L	6.1	1000	1000	972	953	97	95	70-130	2	20	
Potassium	ug/L	3630	10000	10000	13500	13200	99	96	70-130	2	20	
Sodium	ug/L	15400	10000	10000	25200	25000	98	96	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 757956 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385386002, 60385386003, 60385386016

METHOD BLANK: 3033339 Matrix: Water

Associated Lab Samples: 60385386002, 60385386003, 60385386016

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<8.6	100	8.6	11/30/21 16:44	
Calcium	ug/L	<75.4	200	75.4	11/30/21 16:44	
Iron	ug/L	<21.4	50.0	21.4	11/30/21 16:44	
Magnesium	ug/L	<31.4	50.0	31.4	11/30/21 16:44	
Manganese	ug/L	< 0.74	5.0	0.74	11/30/21 16:44	
Potassium	ug/L	<146	500	146	11/30/21 16:44	
Sodium	ug/L	<254	500	254	11/30/21 16:44	

LABORATORY CONTROL SAMPLE: 30333	SAMPLE: 3033340	CONTROL	LABORATORY
----------------------------------	-----------------	---------	------------

Date: 12/28/2021 02:41 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	957	96	85-115	
Calcium	ug/L	10000	9800	98	85-115	
Iron	ug/L	10000	9780	98	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	979	98	85-115	
Potassium	ug/L	10000	9720	97	85-115	
Sodium	ug/L	10000	9980	100	85-115	

60385386004 Result	MS Spike	MSD Spike	MC							
	Spike	Snike	MC							
Result		Opino	MS	MSD	MS	MSD	% Rec		Max	
result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
7500	1000	1000	8410	8280	91	77	70-130	2	20	
120000	10000	10000	128000	127000	87	74	70-130	1	20	
5620	10000	10000	15700	15400	100	98	70-130	2	20	
15500	10000	10000	25200	24800	96	93	70-130	1	20	
305	1000	1000	1300	1290	99	98	70-130	1	20	
8650	10000	10000	18800	18300	102	96	70-130	3	20	
121000	10000	10000	129000	127000	86	61	70-130	2	20	M1
	7500 120000 5620 15500 305 8650	7500 1000 120000 10000 5620 10000 15500 10000 305 1000 8650 10000	7500 1000 1000 120000 10000 10000 5620 10000 10000 15500 10000 10000 305 1000 10000 8650 10000 10000	7500 1000 1000 8410 120000 10000 10000 128000 5620 10000 10000 15700 15500 10000 10000 25200 305 1000 1000 1300 8650 10000 10000 18800	7500 1000 1000 8410 8280 120000 10000 10000 128000 127000 5620 10000 10000 15700 15400 15500 10000 10000 25200 24800 305 1000 1000 1300 1290 8650 10000 10000 18800 18300	7500 1000 1000 8410 8280 91 120000 10000 10000 128000 127000 87 5620 10000 10000 15700 15400 100 15500 10000 10000 25200 24800 96 305 1000 10000 1300 1290 99 8650 10000 10000 18800 18300 102	7500 1000 1000 8410 8280 91 77 120000 10000 10000 128000 127000 87 74 5620 10000 10000 15700 15400 100 98 15500 10000 10000 25200 24800 96 93 305 1000 1000 1300 1290 99 98 8650 10000 10000 18800 18300 102 96	7500 1000 1000 8410 8280 91 77 70-130 120000 10000 10000 128000 127000 87 74 70-130 5620 10000 10000 15700 15400 100 98 70-130 15500 10000 10000 25200 24800 96 93 70-130 305 1000 10000 1300 1290 99 98 70-130 8650 10000 10000 18800 18300 102 96 70-130	7500 1000 1000 8410 8280 91 77 70-130 2 120000 10000 10000 128000 127000 87 74 70-130 1 5620 10000 10000 15700 15400 100 98 70-130 2 15500 10000 10000 25200 24800 96 93 70-130 1 305 1000 1000 1300 1290 99 98 70-130 1 8650 10000 10000 18800 18300 102 96 70-130 3	7500 1000 1000 8410 8280 91 77 70-130 2 20 120000 10000 10000 128000 127000 87 74 70-130 1 20 5620 10000 10000 15700 15400 100 98 70-130 2 20 15500 10000 10000 25200 24800 96 93 70-130 1 20 305 1000 1000 1300 1290 99 98 70-130 1 20 8650 10000 10000 18800 18300 102 96 70-130 3 20

MATRIX SPIKE & MATRIX SF	IKE DUPLIC	CATE: 3033	343		3033344							
			MS	MSD								
	6	0385386016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	68.7J	1000	1000	1060	1060	99	99	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

MATRIX SPIKE & MATRIX			MS	MSD	3033344				_			
	6	30385386016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Calcium	ug/L	146000	10000	10000	158000	155000	123	95	70-130	2	20	
Iron	ug/L	43.7J	10000	10000	10200	10200	101	101	70-130	0	20	
Magnesium	ug/L	26300	10000	10000	36000	35900	97	96	70-130	0	20	
Manganese	ug/L	464	1000	1000	1490	1490	102	103	70-130	0	20	
Potassium	ug/L	4310	10000	10000	14500	14500	102	101	70-130	0	20	
Sodium	ug/L	6070	10000	10000	16400	16400	103	104	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 649386 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 60385386002, 60385386003, 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

METHOD BLANK: 2992253 Matrix: Water

Associated Lab Samples: 60385386002, 60385386003, 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

Blank Reporting
Parameter Units Result Limit MDL Analyzed

Alkalinity, Total as CaCO3 mg/L <2.0 2.0 11/10/21 10:58

LABORATORY CONTROL SAMPLE: 2992254

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 49.1 98 90-110 mg/L

SAMPLE DUPLICATE: 2992255

 Parameter
 Units
 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 152
 154
 1
 20

SAMPLE DUPLICATE: 2992256

Date: 12/28/2021 02:41 PM

50301936001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 687 0 Alkalinity, Total as CaCO3 mg/L 690 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

QUALITY CONTROL DATA

SM 2320B

Pace Project No.: 60385393 QC Batch: 650018 Analysis Method:

AMEREN LCL1

QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 60385386016

METHOD BLANK: 2995900 Matrix: Water

Associated Lab Samples: 60385386016

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed <2.0 2.0 2.0 11/12/21 11:19

Alkalinity, Total as CaCO3 mg/L

LABORATORY CONTROL SAMPLE: 2995901

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 48.5 97 90-110

SAMPLE DUPLICATE: 2995902

60385386016 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 390 Alkalinity, Total as CaCO3 mg/L 400 2 20

SAMPLE DUPLICATE: 2995903

Date: 12/28/2021 02:41 PM

60385386023 Dup Max RPD RPD Parameter Units Result Result Qualifiers 188 190 20 Alkalinity, Total as CaCO3 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: AMEREN LCL1 Pace Project No.: 60385393

Parameter

QC Batch: 755000 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Kansas City

60385386002, 60385386003, 60385393001, 60385393002, 60385393003, 60385393006, 60385393007 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60385386002, 60385386003, 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

> Blank Reporting Units Result Limit MDL

Analyzed Total Dissolved Solids <5.0 5.0 5.0 11/09/21 09:43 mg/L

LABORATORY CONTROL SAMPLE: 3021559

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 1000 960 96 80-120 mg/L

SAMPLE DUPLICATE: 3021560

60385384001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 617 **Total Dissolved Solids** mg/L 609 10

SAMPLE DUPLICATE: 3021561

60385386004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 790 mg/L 838 6 10

SAMPLE DUPLICATE: 3021562

Date: 12/28/2021 02:41 PM

60385390001 Dup Max RPD RPD Qualifiers Parameter Units Result Result 423 431 2 10 Total Dissolved Solids mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

QUALITY CONTROL DATA

Pace Project No.: 60385393

QC Batch: 755548 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385386016

METHOD BLANK: 3023486 Matrix: Water

3023487

Associated Lab Samples: 60385386016

LABORATORY CONTROL SAMPLE:

Date: 12/28/2021 02:41 PM

AMEREN LCL1

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.011/11/21 08:03

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 973 97 80-120

SAMPLE DUPLICATE: 3023488 60385385001 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L48704660410

SAMPLE DUPLICATE: 3023489 60385386016 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L490497110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 754912 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

METHOD BLANK: 3021296 Matrix: Water

Associated Lab Samples: 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.53J	1.0	0.39	11/09/21 08:03	
Fluoride	mg/L	< 0.086	0.20	0.086	11/09/21 08:03	
Sulfate	mg/L	< 0.42	1.0	0.42	11/09/21 08:03	

METHOD BLANK: 3024066 Matrix: Water

Associated Lab Samples: 60385393001, 60385393002, 60385393003, 60385393006, 60385393007

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	11/10/21 10:55	
Fluoride	mg/L	<0.086	0.20	0.086	11/10/21 10:55	
Sulfate	mg/L	< 0.42	1.0	0.42	11/10/21 10:55	

LABORATORY CONTROL SAMPLE: 3021297

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.5	90	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	5	4.8	96	90-110	

LABORATORY CONTROL SAMPLE: 3024067

Date: 12/28/2021 02:41 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.9	98	90-110	
Fluoride	mg/L	2.5	2.5	99	90-110	
Sulfate	mg/L	5	5.3	105	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3021298 3021299

Parameter	Units	60385393001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	2.6	5	5	7.0	7.0	87	88	80-120	1	15	
Fluoride	mg/L	0.27	2.5	2.5	2.5	2.5	89	90	80-120	1	15	
Sulfate	mg/L	61.4	50	50	110	109	98	95	80-120	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

MATRIX SPIKE SAMPLE:	3021300					_	
Parameter	Units	60385308002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	13.4		18.6	104	80-120	
Fluoride	mg/L	<0.086	2.5	2.5	101	80-120	
Sulfate	mg/L	2.5	5	7.5	101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 757095 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0
Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385386016

METHOD BLANK: 3029711 Matrix: Water

Associated Lab Samples: 60385386016

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.39 1.0 0.39 11/18/21 06:44 <0.086 Fluoride 0.20 0.086 11/18/21 06:44 mg/L Sulfate mg/L < 0.42 1.0 0.42 11/18/21 06:44

METHOD BLANK: 3030649 Matrix: Water

Associated Lab Samples: 60385386016

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Chloride < 0.39 1.0 11/18/21 09:37 mg/L 0.39 Fluoride mg/L <0.086 0.20 0.086 11/18/21 09:37 Sulfate mg/L < 0.42 1.0 0.42 11/18/21 09:37

METHOD BLANK: 3032082 Matrix: Water

Associated Lab Samples: 60385386016

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.39 1.0 0.39 11/19/21 06:45 Fluoride <0.086 0.20 0.086 11/19/21 06:45 mg/L Sulfate < 0.42 1.0 11/19/21 06:45 mg/L 0.42

METHOD BLANK: 3032286 Matrix: Water

Associated Lab Samples: 60385386016

Blank Reporting MDL Parameter Units Result Limit Qualifiers Analyzed Chloride mg/L 0.79J 1.0 0.39 11/20/21 13:49 Fluoride < 0.086 0.20 0.086 11/20/21 13:49 mg/L Sulfate < 0.42 1.0 11/20/21 13:49 mg/L 0.42

LABORATORY CONTROL SAMPLE: 3029712

Date: 12/28/2021 02:41 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		4.8	96	90-110	
Fluoride	mg/L	2.5	2.5	100	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Parameter

Date: 12/28/2021 02:41 PM

Chloride

Fluoride

Sulfate

AMEREN LCL1

Project:

QUALITY CONTROL DATA

Pace Project No.: 60385393 LABORATORY CONTROL SAMPLE: 3029712 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5 5.4 108 90-110 LABORATORY CONTROL SAMPLE: 3030650 LCS LCS Spike % Rec Conc. % Rec Qualifiers Parameter Units Result Limits Chloride mg/L 5 5.0 100 90-110 2.5 Fluoride mg/L 2.5 102 90-110 Sulfate mg/L 5 5.5 109 90-110 LABORATORY CONTROL SAMPLE: 3032083 LCS Spike LCS % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Chloride 5 4.9 98 90-110 ma/L Fluoride mg/L 2.5 2.6 104 90-110 Sulfate mg/L 5 5.2 104 90-110 LABORATORY CONTROL SAMPLE: 3032287 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 5.3 107 90-110 Fluoride 2.5 2.7 106 90-110 mg/L Sulfate 90-110 mg/L 5 5.4 108 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3029713 3029714 MS MSD

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3029	715		3029716							
Parameter	6 Units	0385386023 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
								70 TCC		1(1)		Quai
Chloride	mg/L	18.9	10	10	29.5	30.0	105	110	80-120	2	15	
Fluoride	mg/L	0.36	5	5	5.5	5.8	103	108	80-120	4	15	
Sulfate	mg/L	246	100	100	354	344	107	98	80-120	3	15	

5

2.5

25

60385386016

Result

6.2

0.24

29.3

Units

mg/L

mg/L

mg/L

Spike

Conc.

5

2.5

25

Spike

Conc.

MS

Result

11.1

2.8

53.9

MSD

Result

11.2

2.9

53.8

MS

% Rec

96

103

98

MSD

% Rec

106

98

% Rec

Limits

80-120

80-120

80-120

Max

RPD

15

Qual

RPD

3 15

0 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

QC Batch: 757277 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60385386002, 60385386003

METHOD BLANK: 3030419 Matrix: Water

Associated Lab Samples: 60385386002, 60385386003

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.39 1.0 0.39 11/19/21 06:45 Fluoride mg/L <0.086 0.20 0.086 11/19/21 06:45 Sulfate mg/L < 0.42 1.0 0.42 11/19/21 06:45

METHOD BLANK: 3032423 Matrix: Water

Associated Lab Samples: 60385386002, 60385386003

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.39	1.0	0.39	11/21/21 17:33	
Fluoride	mg/L	<0.086	0.20	0.086	11/21/21 17:33	
Sulfate	mg/L	< 0.42	1.0	0.42	11/21/21 17:33	

METHOD BLANK: 3034763 Matrix: Water

Associated Lab Samples: 60385386002, 60385386003

LABORATORY CONTROL CAMPLE.

Date: 12/28/2021 02:41 PM

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.45J	1.0	0.39	11/22/21 21:29	
Fluoride	mg/L	<0.086	0.20	0.086	11/22/21 21:29	
Sulfate	mg/L	< 0.42	1.0	0.42	11/22/21 21:29	

LABORATORY CONTROL SAMPLE: 3030420 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 5 4.9 98 90-110 Fluoride mg/L 2.5 2.6 104 90-110

Sulfate mg/L 5 5.2 104 90-110

LABORATORY CONTROL SAMPLE:	3032424	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.8	96	90-110	
Fluoride	mg/L	2.5	2.7	110	90-110	
Sulfate	mg/L	5	4.9	97	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: AMEREN LCL1
Pace Project No.: 60385393

Date: 12/28/2021 02:41 PM

LABORATORY CONTROL	SAMPLE:	3034764										
			Spike	LC		LCS	% Re					
Parameter		Units	Conc.	Res	sult	% Rec	Limit	ts (Qualifiers	_		
Chloride		mg/L		5	4.7	95	5 9	90-110				
Fluoride		mg/L	2	.5	2.5	99		90-110				
Sulfate		mg/L		5	5.0	100) 9	90-110				
MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3030	421		3030422							
			MS	MSD								
		60385384001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	11.1	5	5	15.9	16.2	96	101	80-120	2	15	
Fluoride	mg/L	0.21	2.5	2.5	2.5	2.6	92	97	80-120	5	15	
Sulfate	mg/L	39.2	25	25	62.9	63.1	95	96	80-120	0	15	
	mg/L			25	62.9 3030423		95	96	80-120	0	15	
Sulfate	mg/L			25 MSD			95	96	80-120	0	15	
Sulfate	mg/L		424				95 MS	96 MSD	80-120 % Rec	0	15 Max	
Sulfate	mg/L	ICATE: 3030	424 MS	MSD	3030423					0 RPD		Qual
Sulfate MATRIX SPIKE & MATRIX	mg/L SPIKE DUPL	ICATE: 3030 60385386004	424 MS Spike	MSD Spike	3030423 MS	MSD	MS	MSD	% Rec		Max RPD	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter	mg/L SPIKE DUPL Units	LICATE: 3030 60385386004 Result	424 MS Spike Conc.	MSD Spike Conc.	3030423 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride	SPIKE DUPL Units mg/L	LICATE: 3030 60385386004 Result 44.8	424 MS Spike Conc.	MSD Spike Conc.	3030423 MS Result 71.5	MSD Result 71.6	MS % Rec 107	MSD % Rec	% Rec Limits 80-120	RPD 0	Max RPD 15 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L mg/L	LICATE: 3030 60385386004 Result 44.8 0.32 377	424 MS Spike Conc. 25 2.5 250	MSD Spike Conc. 25 2.5	3030423 MS Result 71.5 2.6	MSD Result 71.6 2.7 636	MS % Rec 107 93	MSD % Rec 107 94	% Rec Limits 80-120 80-120	RPD 0 1	Max RPD 15 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride	SPIKE DUPL Units mg/L mg/L mg/L mg/L	LICATE: 3030 60385386004 Result 44.8 0.32 377	424 MS Spike Conc. 25 2.5 250	MSD Spike Conc. 25 2.5	3030423 MS Result 71.5 2.6 640	MSD Result 71.6 2.7 636	MS % Rec 107 93	MSD % Rec 107 94	% Rec Limits 80-120 80-120	RPD 0 1	Max RPD 15 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L mg/L	LICATE: 3030 60385386004 Result 44.8 0.32 377	424 MS Spike Conc. 25 2.5 250	MSD Spike Conc. 25 2.5 250	3030423 MS Result 71.5 2.6 640	MSD Result 71.6 2.7 636	MS % Rec 107 93	MSD % Rec 107 94	% Rec Limits 80-120 80-120	RPD 0 1	Max RPD 15 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate	SPIKE DUPL Units mg/L mg/L mg/L mg/L	August 10 10 10 10 10 10 10 10 10 10 10 10 10	424 MS Spike Conc. 25 2.5 250	MSD Spike Conc. 25 2.5 250	3030423 MS Result 71.5 2.6 640	MSD Result 71.6 2.7 636	MS % Rec 107 93 105	MSD % Rec 107 94 104	% Rec Limits 80-120 80-120 80-120	RPD 0 1	Max RPD 15 15 15	Qual
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX Parameter	SPIKE DUPL Units mg/L mg/L mg/L SPIKE DUPL	Additional Control of	424 MS Spike Conc. 25 2.5 250	MSD Spike Conc. 25 2.5 250 MSD Spike	3030423 MS Result 71.5 2.6 640 3030426 MS	MSD Result 71.6 2.7 636	MS % Rec 107 93 105	MSD % Rec 107 94 104	% Rec Limits 80-120 80-120 % Rec	8PD 0 1 1	Max RPD 15 15 15 15	
Sulfate MATRIX SPIKE & MATRIX Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX	SPIKE DUPL Units mg/L mg/L mg/L SPIKE DUPL Units	Additional Result 44.8 0.32 377 LICATE: 3030 60386286007 Result	424 MS Spike Conc. 25 2.5 250 425 MS Spike Conc.	MSD Spike Conc. 25 2.5 250 MSD Spike Conc.	3030423 MS Result 71.5 2.6 640 3030426 MS Result	MSD Result 71.6 2.7 636 MSD Result	MS % Rec 107 93 105 MS % Rec	MSD % Rec 107 94 104 MSD % Rec	% Rec Limits 80-120 80-120 80-120	RPD 0 1 1	Max RPD 15 15 15 15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALIFIERS

Project: AMEREN LCL1
Pace Project No.: 60385393

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/28/2021 02:41 PM

В	Analyte was detected in the associated method blank.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

P8 Analyte was detected in the method blank. All associated samples had concentrations of at least ten times greater than

the blank or were below the reporting limit.

Date: 12/28/2021 02:41 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LCL1
Pace Project No.: 60385393

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60385386002	L-BMW-1S	EPA 200.7	757956	EPA 200.7	758020
60385386003	L-BMW-2S	EPA 200.7	757956	EPA 200.7	758020
60385393001	L-TMW-1	EPA 200.7	755005	EPA 200.7	755084
60385393002	L-TMW-2	EPA 200.7	755005	EPA 200.7	755084
60385393003	L-TMW-3	EPA 200.7	755005	EPA 200.7	755084
60385393006	L-UWL-DUP-1	EPA 200.7	755005	EPA 200.7	755084
60385393007	L-UWL-FB-1	EPA 200.7	755005	EPA 200.7	755084
60385386016	L-MW-26	EPA 200.7	757956	EPA 200.7	758020
60385386002	L-BMW-1S	EPA 903.1	475154		
60385386003	L-BMW-2S	EPA 903.1	475154		
60385386016	L-MW-26	EPA 903.1	475154		
60385386002	L-BMW-1S	EPA 904.0	475155		
60385386003	L-BMW-2S	EPA 904.0	475155		
60385386016	L-MW-26	EPA 904.0	475155		
60385386002	L-BMW-1S	SM 2320B	649386		
60385386003	L-BMW-2S	SM 2320B	649386		
0385393001	L-TMW-1	SM 2320B	649386		
0385393002	L-TMW-2	SM 2320B	649386		
60385393003	L-TMW-3	SM 2320B	649386		
60385393006	L-UWL-DUP-1	SM 2320B	649386		
60385393007	L-UWL-FB-1	SM 2320B	649386		
60385386016	L-MW-26	SM 2320B	650018		
60385386002	L-BMW-1S	SM 2540C	755000		
60385386003	L-BMW-2S	SM 2540C	755000		
60385393001	L-TMW-1	SM 2540C	755000		
60385393002	L-TMW-2	SM 2540C	755000		
60385393003	L-TMW-3	SM 2540C	755000		
60385393006	L-UWL-DUP-1	SM 2540C	755000		
60385393007	L-UWL-FB-1	SM 2540C	755000		
60385386016	L-MW-26	SM 2540C	755548		
60385386002	L-BMW-1S	EPA 300.0	757277		
60385386003	L-BMW-2S	EPA 300.0	757277		
60385393001	L-TMW-1	EPA 300.0	754912		
60385393002	L-TMW-2	EPA 300.0	754912		
0385393003	L-TMW-3	EPA 300.0	754912		
60385393006	L-UWL-DUP-1	EPA 300.0	754912		
60385393007	L-UWL-FB-1	EPA 300.0	754912		
	L-MW-26	EPA 300.0	757095		

Sample Condition Upon Receipt

Client Name: Golder Associates		
	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☐ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Use	ed? Yes 🗆 No 🗋
Custody Seal on Cooler/Box Present: Yes∕☐ No □	Seals intact: Yes	6 No 🗆
Packing Material: Bubble Wrap □ Bubble Bags □	□ Foam □	None ☐ Other □
Thermometer Used: 7-299 Type of	flce: 🍻 Blue No	
Cooler Temperature (°C): As-read 2-5/2-2/1-Corr. Fact	or -0.2 Correc	cted 23/2.0/1.4 Date and initials of person examining contents:
Temperature should be above freezing to 6°C //. y/13.1		11-2/12.9 0 11/8/21
Chain of Custody present:	Yes □No □N/A	
Chain of Custody relinquished:	Nes □No □N/A	
Samples arrived within holding time:	ÁYes □No □N/A	
Short Hold Time analyses (<72hr):	☐Yes No ☐N/A	
Rush Turn Around Time requested:	□Yes No □N/A	
Sufficient volume:	Yes ONO ON/A	
Correct containers used:	Yes Ono On/A	
Pace containers used:	Tyes Ono On/A	
Containers intact:	∕Yes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ☑N/A	
Filtered volume received for dissolved tests?	□Yes □No □N/A	
Sample labels match COC: Date / time / ID / analyses	Yes Ono On/A	4
Samples contain multiple phases? Matrix: &T	□Yes ∕ No □N/A	
Containers requiring pH preservation in compliance?	Yes No NA	List sample IDs, volumes, lot #'s of preservative and the
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	602122	date/time added.
Cyanide water sample checks:	003/73	
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
Trip Blank present:	□Yes □No □N/A	
Headspace in VOA vials (>6mm):	□Yes □No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No ДN/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No ØN/A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Tir	me:	
Comments/ Resolution:		
REVIEWED		
Project Manager Review: By jchurch at 1:52 pm, 11/10/21	Deta).
,	Date	

CHAIN-OF-CUSTODY / Analytical Request Document The Chair-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

of other			DRINKING WATER	OTHER					764,4767	Pace Project No/Labl.D.													SAMPLE CONDITIONS	;	, ,			1910	(X)
		1	LER.	V						9													SAN		7	_	4	₹4	1
Page:		<u>}</u>	SROUND WATER	⋖	9	NO.			(N/A) :	Residual Chlorine	pid		7						1	+		1	-		2-3	2.4	?	.45°	10
		Y AGEN	(GRO	RCRA		2	ed (Y/N)				8												TIME	500	3/11 0348				
		REGULATORY AGENCY	NPDES	UST	Site Location	STATE:	Requested Analysis Filtered (Y/N)				BAN	<u>.</u>	=				_	→					DATE	= 32	11 2/11				
Γ	1	RE			ŝ	Τ	sted Ana	z		LDS Alkalinity	_	X X	メメ		ж	X	×	54					NO	3					
							Reques	z		Chloride/Fluoride App III and Cat/A Alkalinity	9	У У	メメ		X X X	XXX	XXX	XXX	1			1	ACCEPTED BY / AFFILIATION	MCintallo	HST	l			
							-	↑ N/A		Other Lest Rest	Ĺ												μĮ		3	>			l
					Jamie Church	5		Preservatives		Methanol Na ₂ S ₂ O ₃ NaOH HCI													ACCEP	STATE OF THE PROPERTY OF THE P	an	/			
Invoice Information:		Company Name:		luote nce:		Pace Profile #: 9285		Pres		HNO ³ H ⁵ 2O ⁴	-	1	1		1	- -	-	1					TIME	-	SAM				
Invoice Info	i i	Comp	Address:	Pace Quote Reference:	Pace Proj	Pace				# OF CONTAINER	7	7	7		7	7	7	7				-		-	7			URE	١
									AB	E E	0240	1050	172		0121	1340	١	1245					DATE	11/2/12/	1113			SAMPLER NAME AND SIGNATURE	
		ider				OC #4)		COLLECTED	COMPOSITE END/GRAB	DATE	WZIZI	1	+	X	1111124	4	11/2/2/	+	\geq	4			Noi	7	ar			ER NAME A	
		nc Schneider			7-	0001C (C		COLL	COMPOSITE	E E				(3)					6	B		_	AFFILIATION	Sole Sole	VCMar			SAMPL	
ormation:	Ingram	Ryan Feldmann/Eric			Ameren LCL1	Project Number: 153-140603 0001C (COC #4)				DATE	-		- 45		(0		10	(0)		(0)	(0)	9	RELINQUISHED BY /		10/				
Report To: Toffroy Ingram	3 II			Purchase Order No.:		lumber: 15		_	GEAB C=CO		W. C	WT G	WT G	WT G	WT G	W G	. NΥ	WTG	WT	ν. Θ		₩ W	RELING	100	angel	,			
Required P	_	Copy To:		Purchase	Project Name:	Project N		Codes	WM WT	WP AR OT TS												-	-	2,	,				
		13515 Barrett Parkway Drive, Ste 260		er.com	Fax: 636-724-9323	- La		Valid Matrix Codes	DRINKING WATER WATER WASTE WATER PRODUCT SOU/SOLID OIL		L-TMW-1	L-TMW-2	L-TMW-3	L-MW-26	L-BMW-1S	L-BMW-2S	L-UWL-DUP-1	L-UWL-FB-1	L-UWL-MS-1	L-UWL-MSD-1			MENTS						
ocicio	sociates	rett Parkwa	J 63021	am@qoldk	Fax: 6;	Standard		nation		LE ID	L-TA	L-TN	L-TN	L-M	L-BN	L-BN	L-UWL	1-UW	L-UW	L-UWI			ADDITIONAL COMMENTS	Na, Ca, B					
equired Client Information:	Solder Ass	13515 Вап	Ballwin, MO 63021	jeffrey ingram@golder.com	636-724-9191	equested Due Date/TAT:		Section D Required Client Information		SAMPLE ID (A-Z, 0.9 / -) Sample IDs MUST BE UNIQUE													ADDITIO	EPA ZUU_(: Fe, Mig, Min, K, Na, Ca, B					
equired C	iiipaiiy.	ddress:		mail To:	hone: 6	ednestec		o &		# MƏTİ	-	2	n	4	ιo	9	7	8	o	5	=	12	0	PA ZUU					

Sample Condition Upon Receipt

Client Name: COUNTRY PSS	SCIATE	Ž.
Courier: FedEx UPS VIA Clay	PEX 🗆 ECI 🗆	Pace ☐ Xroads ☑ Client ☐ Other ☐
Tracking #: Pac	ce Shipping Label Use	d? Yes □ No 🗹
Custody Seal on Cooler/Box Present: Yes ☑ No □	Seals intact: Yes	No □
Packing Material: Bubble Wrap □ Bubble Bags I		None 🗆 Other 🛮 🧺
- 71	fice Web Blue No	Date and initials of person
Cooler Temperature (°C): As-read 1 8 1 5 Corr. Fact		ted O.T. 615.5 O. examining contents St 1116 21
Temperature should be above freezing to 6°C6-C6, 14.3, 15.3		192,15,0, 7,7
Chain of Custody present:	☑Yes □No □N/A	
Chain of Custody relinquished:	ØYes □No □N/A	
Samples arrived within holding time:	☐Yes ☐No ☐N/A	
Short Hold Time analyses (<72hr):	ØYes □No □N/A	TOS IIIIO
Rush Turn Around Time requested:	□Yes ⊠No □N/A	
Sufficient volume:	ØYes □No □N/A	
Correct containers used:	Des □No □N/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?	□Yes □No ☑N/A	
Sample labels match COC: Date / time / ID / analyses	Yes ONO ON/A	
Samples contain multiple phases? Matrix: WT	□Yes ☑No □N/A	
Containers requiring pH preservation in compliance?	ØYes □No □N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
(HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT#	(003173	date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	☐Yes ☐No	
	□Yes □No	
Trip Blank present:	☐Yes ☐No ☐N/A	
Headspace in VOA vials (>6mm):	☐Yes ☐No ☐M/A	
Samples from USDA Regulated Area: State:	☐Yes ☐No ☑N/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to		Field Data Required? Y / N
Person Contacted: Date/T	iiie.	
DEVIEWED		
By jchurch at 1:53 pm, 11/10/21		
Project Manager Review	Date	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Pace Analytical was paceabs com

13515 Barrett Parkway Drive, Ste 260 CoopyTo. Ryan Feldmann/Eric Schneider Company Name: Address: NPDES CROUND WATE	PE ID	Required Clic	Required Client Information: Company: Golder Associates	Required Project Information:	formation:				Invoice Info	Invoice Information:					<u>-</u>		Page:	Je:	٥	
Parkway Drive, Ste 266 CopyTo: Ryan Feldmann/Eric Schneider Company Name: Company Name: Company Name: CopyTo: Ryan Feldmann/Eric Schneider CopyTo: Ryan Feldmann Feldmann/Eric Schneider CopyTo: Ryan Feldmann	Standard Purplet Number 155-140603 0010 (COC #4) Purplet Number 155-140603 (C	ounbang.	Golder Associates	Aepoil 10.	- 11				Attention											
Puchase Order No. Puchase Order No. Puchase Order No. Puchase Order No. Puchase Order No. Project Name: American	The control of the	Address:	13515 Barrett Parkway Drive, Ste 260	Copy To:	eldmann/E	ric Schneic	ler		Company	/ Nате:					REGULAT	ORY AGE	NCY			
Filt. 636-724-9323 Project Name: Ameren LCL1 Page Duote Page Profile Pa	The color Color		Ballwin, MO 63021						Address:						NPDE	`	NOUND W	ATER	DRIN	ING WAT
Standard Project Name: America Project Name: Ame	Standard Pace 639-724-9323 Project Name: American LCL1 Project Name: Jame Church	Email To:	jeffrey ingram@golder.com	Purchase Order No.					Pace Quot Reference	a					TSU	Ž.	SRA		OTH	~
Standard Project Number: 153-140603,0001C (COC #4) Walted Marrix Codes Walted Marrix Codes Washington Prosection Figure 700 Fig	Standard Project Number: 153-140603 0001 C (COC #4) Project Number: 153-140603 0001 C (COC #4) Project Number: 9285	Phone: 63(meren LCL	_			Pace Proje	1	Church				Site Local	ion				
Section D Natid Marrix Codes Section D Natid Marrix Codes Section D Natid Marrix Codes Section D Natid Marrix Codes Section D Natid Marrix Codes Section D National Code Section D Section D National Code Sectional Code Sectional Code Sectional Code Sectional Code Section D National Code Sectional	Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid Matrix Codes Valid C	Requested D		Project Number: 1;	53-140603	0001C (CC	C #4)		Pace Pron	1					STA	نغ	MO			
Sample IDs WLST BE UNIQUE Section D Water Clear Information Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE Sample IDs WLST BE UNIQUE Section D Water Codes Sample IDs WLST BE UNIQUE SAMPLE IDS WLST BE U	Name											-	Red	uested	Analysis Fi	Itered (Y/I	3			
SAMPLE ID Sample IDS MUST BE UNIQUE SAMPLE TEMP AT COLLECTION WASTEWATER WW WATER WATE	WATER WATER DW WATER DW WATER WA	Sec	,	odes CODE	(100	COLLE	CTED			Preser	vatives	∱ N /A	z	z						
Sample DS MUST BE UNIQUE SAMPLE TEMP AT CODE (6) SAMP AT CODE (6) SAMPLE TEMP AT CODE (6) SAMPLE TEMP AT CODE (6) SAMP AT CODE (6) SAMPLE TEMP AT CODE (6) SAMP	TMW-1			See valid codes		OSITE	COMPOSITE END/GRAB	OLLECTION	<u> </u>			1	e/Sulfate					(N/A)		
	TMW-1		SAMPLE ID (A-Z, 0-9/) Sample IDs MUST BE UNIQUE	MATRIX CODE (9		E E				_ε ŌNH _ε ŌNH	HOBN EO _S O _S eN	Other)hloride/Fluoride	/lkalinity					35.5	MS S
	TMW-3 WT G It-4-2I 255 2 I I I MW-26 WT G It-4-2I 255 2 I I I SMW-2S WT G II-4-ZI 255 2 I I I VL-DDP-1 WT G II-4-ZI 255 2 I I I ML-MS-1 WT G II-4-ZI 255 2 I I I VL-MSD-1 WT G II-4-ZI 255 2 I I I MM-MS-1 WT G II-4-ZI 255 2 I I I MM-MS-1 WT G II-4-ZI 255 2 I I I MM-MS-1 WT G II-4-ZI 255 2 I I I MAMAL G II-4-ZI 255 2 I I I MAMAL G II-4-ZI 255 2 I II MAMAL IMAL IMAL IMAL	2	L-TMW-2		40															
L-TMW-2	MAW-26 WT G N-4-21 255 2 1 1 1 1 1 1 1 1 1	m	L-TMW-3		/n									-						
L-TMW-2 VVT	MW-1S WT G WI-DUP-1 WT G WI-BB-1 WT G MI-MS-1 WT G III-4-21 12.55 2 1 1 1 III-4-21 12.55 Z 1 1 1 WT G WT G WT G III-4-21 12.55 Z 1 1 1 WT G 4	L-MW-26		40		1-4-21 25	W	7	-			1	1							
L-TMW-2 wr G li-4-21/255	ML-MS-1 WI G MI-FB-1 WI G MI-MS-1 WI G MI-MS-1 WI G MI-MS-1 WI G MI-4-N 1255 2 1 1 1 MI G MI-MSD-1 WI G MI-4-N 1255 2 1 1 MI G MI-MSD-1 WI G MI-4-N 1255 2 1 1 MI G MI-MSD-1 WI G MI-4-N 1255 2 1 1 MI G MI-MSD-1 MI G MI-4-N 1255 2 1 1 MI G Ŋ	L-BMW-1S		70																
L-TMW-2 wr G li-4-21 255 L-BMW-1S wr G li-4-21 255	VI-DUP-1	9	L-BMW-2S		40															
L-TMW-2 wT G	WL-FB-1	7	L-UWL-DUP-1		/0															
L-TMW-2 wr c iv-4-21/255 L-MW-26 wr c iv-4-21/255 L-BMW-1S wr c iv-4-21/255 L-BMW-2S wr c iv-4-21/255 L-BMW-2S wr c iv-4-21/255	NAL-MSD-1	60	L-UWL-FB-1		70															
L-TMW-2 wT G hi-4-21/255 L-MW-26 wT G hi-4-21/255 L-BMW-1S wT G hi-4-21/255 L-BMW-2S wT G hi-4-21/255 L-BMW-2S wT G hi-4-21/255 L-UWL-DUP-1 wT G hi-4-21/255	Number N	ø	L-UWL-MS-1		/0		1-4-21 12	55	7				1	//						
L-TMW-2 wT G hi-4-21 255 L-MW-26 wT G hi-4-21 255 L-BMW-1S wT G hi-4-21 255 L-BMW-28 wT G hi-4-21 255 L-UWL-DUP-1 wT G hi-4-21 255 L-UWL-RB-1 wT G hi-4-21 255	MAT G NATION DATE TIME STEWARDS AFFILIATION DATE TIME STEWARDS AFFILIATION DATE TIME TOWN (NATION DATE TIME OWN)	10	L-UWL-MSD-1		(n		1-4-2) 12	55	1 1	_			1	//						
L-TMW-2 wT G L-MW-26 wT G L-BMW-18 wT G L-BMW-28 wT G L-BMW-28 wT G L-WNL-DDP-1 wT G L-UWL-FB-1 wT G L-UWL-MSD-1 wT G L-UWL-MSD-1 wT G L-UWL-MSD-1 wT G L-UWL-MSD-1 wT G	MENTS RELINQUISHED BY LAFFILLATION DATE TIME STEATS Shie HS/CLOCKEN US/21 1520 WM AMM INC. — [15] 1530	11			(1)															
L-TMW-2 wT G L-MW-26 wT G L-BMW-18 wT G L-BMW-18 wT G L-BMW-28 wT G L-UWL-DDP-1 wT G L-UWL-FB-1 wT G L-UWL-MS-1 wT G L-UWL-MSD-1 wT G R-4-2l/L55 R-4-2l/R55 STEVING STEVING IN THE TIME STEVING ST	12			(0																
L-TMW-2	Shevia Shie Hs/Crober US/21 ONUGA WAL		ADDITIONAL COMMENTS	RELINC	UISHED BY	AFFILIATIC	z	DATE	TIME		ACCER	TED BY	/ AFFIL	ATION	DATE	L	_	S	MPLE CON	DITIONS
L-TMW-2	0 CESI 5/11 - NVI WIND 1030	*EPA 200 7:	Fe, Mg, Mn, K, Na, Ca, B	STENTA	7	1	-	5/21	152	8	SAR	i Ca	141			0	320		-	5
TMW-26 WT G MW-26 WT G MW-18 WT C WT C WT C WT C WT C WT-NDP-1 WT C WT-MS-1			DWIL		1	-	5	53	0	h		,		-		9.7	-			
TMW-25 WT G I-4-2) 255 2 i i i I i I i i I i i i i I i i i i i i i i i i i i i i i i i i i				5	-												Ġ	-		
TUMW-25 WY C WY C WY C WY C WY C WY C WY C WY C																	20	-	Ì	+

Samples Intact

Custody Sealed Cooles (Y/N)

Received on

O° n' qmeT

Sierra

SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

MEMORANDUM

DATE January 7, 2022 **Project No.** 153140603

TO Project File

Golder Associates

CC Amanda Derhake, Jeff Ingram

FROM Annie Muehlfarth EMAIL AMuehlfarth@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60385393

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When a compound was analyzed outside of hold time, associated sample results were qualified as estimates (J for detects, UJ for non-detects).
- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compai	ny Name: Golder Associates	_	Project Manager: J. Ingram						
	Name: Ameren - LEC - LCL1		Project Number: 153140603 Validation Date: 1/7/2022						
Review	er: A. Muehlfarth	_							
	ory: Pace Analytical	_		; #: <u>603853</u>					
Analytic	al Method (type and no.): EPA 200.7 (Total Metals); SI	M2320B	(Alkalinity)	; SM2540C	(TDS); EPA 300.0 (Anions)				
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste								
Sample	Names L-TMW-1, L-TMW-2, L-TMW-3, L-UWL-DUP-1, L-	JWL-FB	-1, L-BMW	-1S, L-BMV	V-2S, L-MW-26				
NOTE:	Diagram manida calculation in Commont areas on	4l	haale (if	4b b	.ll i di				
	Please provide calculation in Comment areas or formation	YES	NO	NA	COMMENTS				
					11/1/2021 - 11/4/2021				
a)	Sampling dates noted?	×			ETF/BTT/				
b)	Sampling team indicated?	х	Ц		EIF/BII/				
c)	Sample location noted?	х	Ш						
d)	Sample depth indicated (Soils)?			Х					
e)	Sample type indicated (grab/composite)?	X			Grab				
f)	Field QC noted?	х			See Notes				
g)	Field parameters collected (note types)?	х			pH, Sp.Cond, ORP, Temp, DO, Turb				
h)	Field Calibration within control limits?	х							
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field	I notes?				
,	·		x	_					
j)	Does the laboratory narrative indicate deficiencies?			x					
J/	Note Deficiencies:	_							
	Note Benderides.								
Chain-c	of-Custody (COC)	YES	NO	NA	COMMENTS				
a)	Was the COC properly completed?	х	П						
	Was the COC signed by both field		Ш	ш					
b)	and laboratory personnel?	X							
c)	Were samples received in good condition?	X							
_									
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS				
a)	Were hold times met for sample pretreatment?	x							
b)	Were hold times met for sample analysis?		х		See Notes				
c)	Were the correct preservatives used?	х							
d)	Was the correct method used?	×							
e)	Were appropriate reporting limits achieved?	×							
f)	Were any sample dilutions noted?	×			See Notes				
a)	Were any matrix problems noted?	\square			See Notes				

Revised May 2004 Page 1 of 4

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blank	5	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	X			See Notes
b)	Were analytes detected in the field blank(s)?	X			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			х	
Lahor	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)		×			oomment o
b)		x			-
,	Was the LCS accuracy criteria met?	X			-
c)	was the Loo accuracy offena met?	۵	ш	ш	
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	e sample n	ames)?	
		X			L-UWL-DUP-1 @ L-TMW-2
b)	Were field dup. precision criteria met (note RPD)?	X			
c)	Were lab duplicates analyzed (note original and du	olicate	samples)?	•	
		X			
d)	Were lab dup. precision criteria met (note RPD)?	X			Max RPD: 6% [<10%]
Blind	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			х	
,	analytes included and concentrations)?	_	_	_	
b)				х	
,		_	_	_	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	X			
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?	х			
_	nents/Notes:	A) A / A C	I DAMA	00.5	
פטו	was analyzed outside of hold time in samples L-BN	100-15	, L-BMW-2	25. Resu	iits were qualified as estimates.
Calai					No suplification passage.
Calci	um, magnesium, and sulfate were analyzed at a dil	ution ii	n multiple	samples	. No qualification necessary.
Blan	KS:				
3021	597: Sodium (566). Associated with samples -9300	1 thro	ugh -9300	3, -9300	6, -93007. Sample results >RL and 10x blank
Were	not qualified Results <ri at="" reported="" ri<="" td="" the="" were=""><td>and d</td><td>ualified as</td><td>s non-de</td><td>tect</td></ri>	and d	ualified as	s non-de	tect

Revised May 2004 Page 2 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

3021296: Chloride (0.53J). Associated with samples -93001 through -93003, -93006, -93007. Results >RL but <10x blank were
qualified as estimates. Results >RL and 10x blank were not qualified. Results <rl and="" as="" at="" non-detect.<="" qualified="" reported="" rl="" td="" the="" were=""></rl>
3032286: Chloride (0.79J). Associated with sample -86016. Result >RL but <10x blank, qualified as an estimate.
3034763: Chloride (.45J). Associated with samples -86002, -86003. Results >RL but <10x blank, qualified as an estimate.
Results >RL and 10x blank were not qualified.
L-UWL-FB-1 @ L-TMW-3: Sodium (488J), alkalinity (2.8), chloride (0.44J). Results >RL and 10x blank were not qualified.
3. Results >RL but <10x blank, qualified as an estimate.
Duplicates:
L-UWL-DUP-1 @ L-TMW-2: Max RPD: 12.8% (<20%) for fluoride.
Laboratory analyzed sample duplicates for alkalinity and TDS.
MS/MSD:
3021599/3021600: MSD % recovery low for calcium. MS/MSD performed on unrelated sample, no qualification necessary.
3033341/3033342: MSD % recovery low for sodium. MS/MSD performed on unrelated sample, no qualification necessary.

Revised May 2004 Page 3 of 4

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-BMW-1S	TDS	953	J	Analyzed outside of hold time
L-BMW-2S	II	475	J	n n
L-UWL-FB-1	Sodium	500	U	Detected in MB, RL > result > MDL
"	Chloride	1.0	U	ıı .
L-TMW-1	н	2.6	J	Detected in MB, 10x blank > result > RL
L-MW-26	н	6.2	J	ıı .
L-BMW-2S	н	1.7	J	ıı .
L-TMW-3	п	3.8	J	Detected in MB and FB, 10x blank > result > R
	$\overline{}$			
	ann Muhlto	#-	1	1/7/2022

Revised May 2004 Page 4 of 4

January 31, 2022 153140603

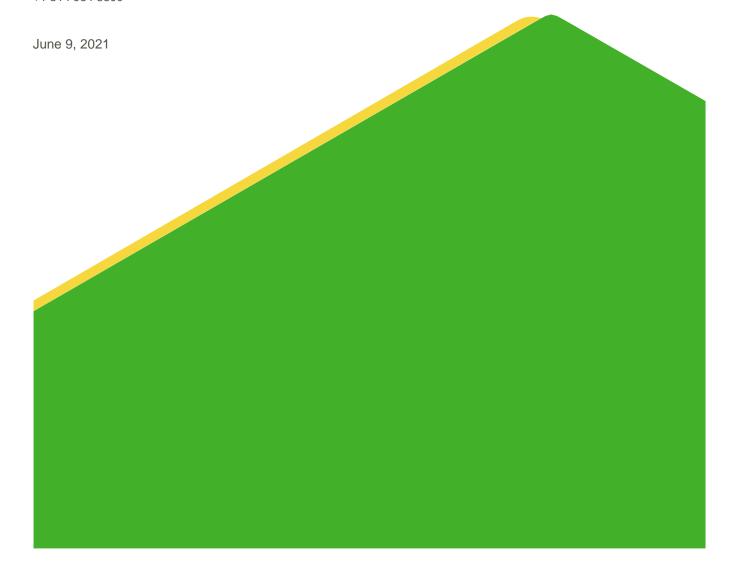
APPENDIX B

Alternative Source Demonstration - November 2020 Sampling Event

LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:


Ameren Missouri

1901 Chouteau Ave, St. Louis, MO 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021, USA +1 314 984 8800

Table of Contents

1.0	CERTI	IFICATION STATEMENT	1
2.0	INTRO	DDUCTION	2
3.0	SITE D	DESCRIPTION AND BACKGROUND	2
	3.1	Geological and Hydrogeological Setting	2
	3.2	Utility Waste Landfill Cell 1 – LCL1	2
	3.3	CCR Rule Groundwater Monitoring	3
4.0	REVIE	W OF THE STATISTICALLY SIGNIFICANT INCREASES	4
5.0	EVIDE	NCE OF SSI FROM ALTERNATIVE SOURCE	5
	5.1	CCR Indicators	5
	5.2	Analysis of Key Indicator Results at TMW-2	6
	5.2.1	Boron Concentrations	6
	5.2.2	Geochemical Analysis	6
	5.2.2.1	Stiff Diagrams	6
	5.2.2.2	Piper Diagram	6
	5.3	Evaluation of SSIs at TMW-2	7
	5.3.1.1	Calcium Concentrations	7
	5.3.1.2		
	5.3.1.3		
	5.3.1.4		
6.0		NSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT	
7.0	REFE	RENCES	11

Tables

- Table 1: November 2020 Detection Monitoring Results
- Table 2: Types of CCR and Typical Indicator Parameters (in text)

Figures

- Figure 1: Site Aerial and Selected Monitoring Well Location Map
- Figure 2: Timeseries Plot of Boron Concentrations at TMW-2
- Figure 3: TMW-2 Stiff Diagrams
- Figure 4: TMW-2 Piper Diagram
- Figure 5: Timeseries Plot of Calcium Concentrations at TMW-2
- Figure 6: Timeseries Plot of Chloride Concentrations at TMW-2
- Figure 7: Timeseries Plot of Chloride and Sodium Concentrations at TMW-2
- Figure 8: Chloride Box and Whiskers Plot
- Figure 9: Timeseries Plot of Sulfate Concentrations at TMW-2
- Figure 10: Sulfate Box and Whiskers Plot
- Figure 11: Timeseries Plot of Total Dissolved Solids (TDS) Concentrations at TMW-2
- Figure 12: Total Dissolved Solids (TDS) Concentrations Box and Whiskers Plot

CERTIFICATION STATEMENT

This LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G. Principal, Practice Leader

1

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

2.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri, just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

2.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

2.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR Unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently, the LCL1 is used for the disposal of dry disposal of fly ash and bottom ash from the LEC.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells surrounding the current and future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the

intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters. In April 2017, four (4) monitoring wells were installed and added to this network along Labadie Bottoms Road (S-1, S-2, S-3, and S-4).

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

2.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, TMW-3, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information regarding the design and installation of the monitoring wells is provided in the LCL1 GMP (Golder, 2017) and the LCL1 2017 Annual Report (Golder, 2018).

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events have been completed twice a year generally once in Q2 and once in Q4. November 2020 was the last Detection Monitoring sampling event. Laboratory testing was performed for the following Appendix III constituents during each Detection Monitoring event:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2018, background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPLs were then compared to the Detection Monitoring results. If results from Detection Monitoring events were higher than the calculated UPL, is the results was considered an initial exceedance, and verification sample was performed in accordance with the LCL1 statistical analysis plan. Per the statistical analysis plan, after the May 2019 sampling event, the UPLs were updated to incorporate results from four (4) of the Detection Monitoring events.

In November 2017, no exceedances were reported. In May 2018, four (4) initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1 as well as fluoride at TMW-2. Verification sampling results confirmed all four (4) SSIs. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report; that ASD concluded that the SSIs observed for the May 2018 sampling event were not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2018, four (4) initial exceedances were identified for boron, chloride and fluoride at TMW-1 and fluoride at TMW-2, three (3) of which were the same at those reported during May 2018. Verification sampling results confirmed only the fluoride at TMW-1 result. An ASD was prepared for the November 2018 results and is available in the 2019 LCL1 Annual Report; that ASD also concluded that the confirmed SSI observed for November 2018 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In May 2019, seven (7) initial exceedances were identified for pH, calcium, chloride, and fluoride at various wells. Verification sampling results confirmed only chloride at TMW-1. An ASD was prepared for the May 2019 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the confirmed SSI observed for May 2019 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2019, four (4) initial exceedances were identified for boron, chloride, and TDS at MW-26 and chloride at TMW-1. Verification sampling results only confirmed the three (3) SSIs at MW-26. An ASD was prepared for the November 2019 results and is available in the 2020 LCL1 Annual Report, which concluded that the SSIs observed in the November 2019 sampling event were not caused by the LCL1. The SSI observed for TDS at MW-26 was primarily caused by relatively low calculated UPLs that did not reflect the full, natural geochemical variability within the alluvial aquifer. The SSIs identified for boron and chloride were primarily caused by the LCL1 being downgradient from the LCPA, which is currently in corrective action. The LCPA, and not the LCL1, was identified as the source for the November 2019 SSIs.

In November 2020, six (6) initial exceedances were identified for calcium, chloride, fluoride, sulfate and TDS at several wells. Verification sampling results only confirmed the four (4) SSIs at TMW-2. Results from these sampling events are provided in **Table 1**.

3.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

The SSIs for calcium, chloride, sulfate and TDS occurred at monitoring well TMW-2 and the values are provided on **Table 1**. TMW-2 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-2 is located to the northeast of the LCL1, as well as east of the generating plant and the two surface impoundments (LCPA and LCPB). Closure activities were initiated for both LCPA and LCPB during 2019 and are to be completed in 2021.

Based on Golder's review of the pre-disposal data discussed in Section 2.2 above, as well as our comparison of the pre-disposal data with the results from the eight (8) CCR-Rule baseline events, the groundwater at the LCL1 contains low-level, pre-existing CCR impacts from units/activities that pre-dated disposal activities in the LCL1. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPLs) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

4.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at TMW-2 are not the result of a release from the LCL1, but are rather from an alternative source. The following detail the different lines of evidence that support this ASD:

- Pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the LCL1 operation.
- Construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Groundwater results from nearby and background monitoring wells.
- Groundwater flow direction within the uppermost alluvial aquifer.
- Prepartion of geochemical models displaying current and historical groundwater chemistries.

4.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Table 2: Types of CCR and Typical Indicator Parameters

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)				
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	BoronMolybdenumLithiumSulfate				
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	BromidePotassiumSodiumFluoride				
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride 				

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

4.2 Analysis of Key Indicator Results at TMW-2

4.2.1 Boron Concentrations

As indicated in **Table 2**, boron is a key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present at relatively high concentrations in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early and key indicator of impacts from a CCR Unit. If groundwater was impacted by the LCL1, current boron concentrations should be statistically elevated with respect to pre-CCR placement. **Figure 2** displays boron concentrations at TMW-2 as well as the two background wells for the LEC for the entire historical monitoring period. At TMW-2, boron concentrations have varied over time with values ranging between 86.8 J and 132 micrograms per liter (μ g/L). The intrawell UPL for boron at TMW-2 is 136.3 μ g/L. Through this same timeframe, boron results in the background wells BMW-1S and BMW-2S, located approximately 2.5-miles to the west of the LCL1, and 1.5-miles west of the LCPA have shown values ranging between non-detect (< 50 μ g/L) to 151 μ g/L. The interwell UPL for boron (based on the LEC background wells) is 147 μ g/L.

As displayed in **Figure 2**, current boron concentrations at TMW-2 are below the UPL for both TMW-2 and the background monitoring wells and are consistent with previous results. The absence of boron exceedances at TMW-2 demonstrates that elevated concentrations for other constituents are likely related to an alternative source, rather than the LCL1. Additionally, results from the April 2021 sampling event for TMW-2 is 98.3 J μ g/L, further displaying the temporal variability within the alluvial aguifer at the LCL1.

4.2.2 Geochemical Analysis

During Detection Monitoring events, major cation and anion concentrations were collected. These data were used to compare major ion chemistry over time to see if the groundwater chemistry is changing, which is expected to be a key indicator if impacts are present from the LCL1.

4.2.2.1 Stiff Diagrams

Stiff diagrams visually display the major cation and anion data. **Figure 3** displays the Stiff diagrams from the November 2020 and previous Detection Monitoring events. Data from the November 2020 Detection Monitoring event and all the previous Detection Monitoring events display nearly identical distribution (i.e., the shape of the Stiff diagram is very consistent over time). If impacts from the LCL1 were causing the apparent SSIs, a shift in groundwater chemistry would be expected. **Figure 3** demonstrates that there has not been a shift in groundwater chemistry over time and thus the recent SSIs are not a result of influence from LCL1.

4.2.2.2 Piper Diagram

A Piper diagram is a graphical technique used to classify different groundwater chemistry. The same data used to generate the Stiff diagram were plotted on a ternary Piper diagram according to major cation and anion concentrations. In addition to showing instantaneous concentrations, Piper diagrams can be used to determine if groundwater chemistry is changing, either spatially or temporally. **Figure 4** displays a Piper diagram for TMW-2 over time. If CCR impacts from the LCL1 were causing the apparent SSIs, then a shift in groundwater chemistry would be expected. **Figure 4** demonstrates that there has not been a shift in groundwater chemistry and thus the recent SSIs are not a result of influence from LCL1.

Additionally, a comparison of this diagram with those in the previous LCPB and LCL1 ASDs, found in the respective LCPB and LCL1 Annual Reports, (Golder, 2019a; Golder, 2019b; Golder, 2020) shows that

groundwater chemistry in TMW-2 plots in the area for background groundwater, further indicating a lack of impacts from LCL1.

4.3 Evaluation of SSIs at TMW-2

4.3.1.1 Calcium Concentrations

Calcium is not listed in **Table 2** as a typical indicator of fly ash or boiler slag/bottom ash (EPRI 2012, EPRI 2017) because it typically has low concentrations in CCR leachate compared to groundwater. However, calcium can be a CCR indicator if concentrations in the source are higher than background levels. As shown in Section 4.1, calcium is typically a key indicator for FGD type wastes, but there are no FGD wastes at the LEC. Instead, fly ash and bottom ash/boiler slag are the typical wastes in the LCPA, LCPB, and LCL1.

Figure 5 displays calcium concentrations over time at TMW-2 as well as background monitoring wells BMW-1S and BMW-2S. As shown in **Figure 5**, calcium concentrations for the November 2020 and the subsequent verification sampling event are 197,000 and 207,000 μg/L, respectively. The calculated UPL for calcium at TMW-2 is 195,768 μg/L. Historically, based on CCR Rule sampling, calcium concentrations at TMW-2 have ranged from 156,000 to 195,000 μg/L. Background monitoring wells (BMW-1S and BMW-2S) have calcium concentrations ranging from 116,000 to 219,000 μg/L with a UPL of 219,000 μg/L. Additionally, during the November 2017 ASD Investigation (Golder, 2019a), total calcium concentrations within the pore-water of the LCPA ranged from 76,500 to 106,000 μg/L.

Figure 5 shows that the higher values reported for calcium in TMW-2 during the November 2020 sampling event, while elevated with respect to historical data at TMW-2, are well within the range of background data for wells located 2.5-miles upgradient of the LCL1. The calcium values are also above those present in the porewater of the CCR Unit in corrective action, the LCPA. Similar to the LCPA, the LCL1 manages CCR materials. This demonstrates that calcium is not a good indicator of CCR impacts for this site, and elevated concentrations in calcium are likely from an alternative source.

This information, along with a lack of elevated boron concentrations and the consistency of groundwater chemistry over time, indicates that the recent SSI for calcium in TMW-2 in November 2020 was not caused by a release from the LCL1, but instead is attributed to one or more potential sources, including (1) seasonality in the alluvial aquifer, (2) a relatively small set of baseline data that do not reflect the full natural temporal and spatial variability within the alluvial aquifer, or (3) testing variability.

4.3.1.2 Chloride Concentrations

Chloride is not listed in **Table 2** as a typical indicator of fly ash or boiler slag/bottom ash (EPRI 2012, EPRI 2017) because it typically has low concentrations in CCR leachate relative to typical background. Like calcium, chloride can be a CCR indicator if concentrations in the source are higher than background levels. Chloride is typically a key indicator for FGD type wastes and is commonly found near salt and brine treated roadways where it can be a good indicator because it, like boron, has high mobility and low reactivity in most aquifer conditions.

Concentrations for the November 2020 sampling event and subsequent verification sampling event are 8.2 and 11.8 milligrams per liter (mg/L), respectively. The calculated UPL for TMW-2 is 7.116 mg/L. Historically, based on CCR Rule sampling, chloride concentrations have ranged from 3.8 to 6.9 mg/L. Background monitoring wells located approximately 2.5-miles upgradient from the LCL1 have had chloride concentrations ranging from 1.3 to 7.4 mg/L with an UPL of 7.654 mg/L and a couple of high outliers at 8.2 and 21.2 mg/L. **Figure 6** displays chloride concentrations over time at TMW-2 as well as background monitoring wells BMW-1S and BMW-2S.

TMW-2 is located approximately 30 feet south of a gravel portion of the Labadie Bottoms Road, approximately 200 feet east of the gravel perimeter road around the LCL1 and approximately 2,000 feet east of the paved portion of Labadie Bottoms Road and the haul road into the LCL1. Road salt (NaCl) used to melt snow and ice on roadways is a common source for chloride, especially in monitoring wells near roadways. Road salt impacts typically result in increased concentrations of chloride and sodium. As displayed in **Figure 7**, there is correlation between the variability in sodium and chloride concentrations, with slight increases in the November 2020 sampling event, indicating that these two constituents are moving together through the aquifer, which would be expected if the increases are result of road salt.

The net groundwater flow direction in the alluvial aquifer around the LCL1 is towards the north/northeast (Golder, 2021). In 2020, an ASD was written for temporary elevated chloride concentrations at MW-26, and this ASD (Golder, 2021) indicated that elevated chloride concentrations were not from the LCL1, but rather an alternative source. TMW-2 is typically on the downgradient side of the LCL1, such that elevated concentrations at upgradient well MW-26 would be expected to move towards TMW-2. **Figure 8** is a box and whiskers plot that displays the chloride concentration from monitoring wells upgradient of the LCL1 to the November 2020 sampling result at TMW-2. As displayed in **Figure 8**, the results from the November 2020 sampling event at TMW-2 are well within the range of chloride results from wells upgradient of the LCL1.

This information, along with an apparent lack of elevated boron concentrations and the consistency of the geochemical signature in TMW-2, indicate that the recent SSI for chloride in TMW-2 in November 2020 was not caused by a release from the LCL1, but instead is attributed to one or more potential sources, including (1) seasonality in the alluvial aquifer, (2) low-level influence from historical road salt applications west of the LCL1 or (3) testing variability. The possibility of testing variability is supported by the result from the April 2021 sampling event for TMW-2, which was 6.3 mg/L, and is within the historical UPL for TMW-2. This further displays the temporal variability within the shallow zone of the alluvial aquifer and that elevated concentrations during the November 2020 sampling event are not from the LCL1.

4.3.1.3 Sulfate Concentrations

Sulfate, much like boron, can be an indicator of CCR impacts, because sulfate is mobile in most hydrogeological environments, except where conditions are strongly reducing. The groundwater around the LCL1 does not demonstrate strongly reducing conditions, which would include negative oxidation reduction potential (ORP) and hydrogen sulfide odors in the groundwater at the LCL1. If the SSIs for calcium, chloride, sulfate, and TDS were caused by impacts from the LCL1, sulfate values would be expected to increase following placement of CCR. Given that boron concentrations and the geochemical signature are not indicative of CCR impacts, it follows that the elevated sulfate values in well TMW-2 are from an alternative source.

Figure 9 displays sulfate concentrations over time at TMW-2 as well as background monitoring wells BMW-1S and BMW-2S. Concentrations for the November 2020 sampling event and subsequent verification sampling event are 116 and 150 mg/L, respectively. The calculated UPL for TMW-2 is 109.9 mg/L. Historically, based on CCR Rule sampling, sulfate concentrations have ranged from 63.9 to 99.8 mg/L at TMW-2. Background monitoring wells located approximately 2.5-miles upgradient from the LCL1 have had sulfate concentrations ranging from 12.3 to 65.3 mg/L with an UPL of 75.37 and a couple of high outliers at 157 and 246 mg/L.

Like in the analysis for chloride, **Figure 10** is a box and whisker plot that compares the sulfate concentrations at TMW-2 with the upgradient monitoring wells. As displayed in **Figure 10**, the results from the November 2020 sampling event at TMW-2 are within the range of sulfate results upgradient of the LCL1 that would be expected to move beneath the unit.

This information, along with an absence of elevated boron and consistent geochemical signature in TMW-2, indicates that the relatively elevated concentration for sulfate in TMW-2 in November 2020 was not caused by a release from the LCL1, but instead is attributed to one or more of potential sources: (1) natural variability and seasonality in the alluvial aquifer during the November 2020 sampling event, (2) existing low-level impacts from the LCPA, or (3) testing variability. The possibility of testing variability is supported by the result from the April 2021 sampling event for TMW-2 which was 103 mg/L and is below the intrawell UPL for TMW-2. Further, the April 2021 result displays the temporal variability within the shallow zone of the alluvial aquifer and that elevated concentrations during the November 2020 sampling event are not from the LCL1.

4.3.1.4 Total Dissolved Solids Concentrations

TDS alone is not known to be a fly ash or boiler slag/bottom ash indicator (EPRI 2017, EPRI 2012). The concentration of TDS is largely based on the concentration of major ions in groundwater (calcium, magnesium, sodium, potassium, carbonates, chloride, sulfate, etc.). Although TDS alone is not a key indicator of CCR impacts, an increase in some of the major ions associated with CCR (calcium, sodium, chloride, and sulfate) can represent CCR impacts.

The TDS concentrations for the November 2020 and subsequent verification sampling event are 801 and 837 mg/L, respectively. The calculated UPL for TDS in TMW-2 is 767.8 mg/L. Historically, based on CCR Rule sampling, TDS concentrations have ranged between 653 and 755 mg/L. As shown on **Figure 11**, background monitoring wells BMW-1S and BMW-2S have had TDS concentrations ranging from 366 to 792 mg/L with a UPL of 792 mg/L and a high outlier at 958 mg/L. As shown in **Figure 11**, the historical results for upgradient well BMW-1S are very similar to those for TMW-2.

Additionally, during the November 2017 ASD Investigation (Golder, 2018a), TDS concentrations within the porewater of the LCPA ranged from 528 to 642 mg/L. Thus, the lowest concentration reported for TMW-2 is above the highest concentration reported for the LCPA porewater. This demonstrates that TDS is not a good indicator of CCR impacts for this site, and elevated concentrations in TDS are likely from an alternative source.

Like in the analyses for chloride and sulfate above, **Figure 12** is a box and whisker plot that compares the TDS concentrations at TMW-2 with the upgradient monitoring wells. As displayed in **Figure 12**, the results from the November 2020 sampling event at TMW-2 are within the range of TDS results upgradient of the LCL1.

This information, along with an apparent lack of increasing boron and stable geochemical conditions, indicates that the higher concentration for TDS in TMW-2 in November 2020 was not caused by a release from the LCL1, but instead is attributed to one or more sources: (1) natural variability and seasonality in the alluvial aquifer during the November 2020 sampling event, (2) a relatively small set of baseline data that do not reflect the full natural temporal and spatial variability within the alluvial aquifer, or (3) testing variability. The possibility of testing variability is supported by the result from the April 2021 sampling event for TMW-2 which was 750 mg/L and is below the historical intrawell UPL for TMW-2. Further, the April 2021 result for TDS displays the temporal variability within the shallow zone of the alluvial aquifer and that elevated concentrations during the November 2020 sampling event are not from the LCL1.

5.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in Section 4.0 above, the SSIs reported for the November 2020 monitoring event at TMW-2 are not a result of impacts from the LCL1. The SSIs appear to be a result of numerous factors, including (1) pre-existing low concentrations of CCR indicators from the upgradient LCPA that pre-date the LCL1, (2) relatively low calculated UPLs, (3) a relatively small set of baseline data that do not reflect the full natural temporal and spatial variability within the alluvial aquifer, (4) salt/brine application on perimeter roadways, and (5)

potential sampling or laboratory testing variability. Only twelve (12) samples have been used thus far to calculate the intrawell UPLs. It can take many years of data gathering to experience a range of variability that is representative of natural conditions for any given aquifer. The results gathered thus far have apparently not captured the full extent of the natural spatial and temporal variability in the alluvial aquifer at the LEC.

Further, the April 2021 sampling results for each of the SSIs reported in November 2020 also provide a strong indication that the SSIs may be the result of laboratory testing or sampling variability. With the exception of calcium, the results reported for April 2021 for each of the November 2020 SSI are below intrawell UPLs. While the calcium concentration exceeds the TMW-2 UPL, calcium is well below the background UPL.

Finally, the construction of the LCL1, with 2-feet of compacted clay overlain by a 60-mil HDPE liner, also limits the potential that the November 2020 SSIs reported for TMW-2 are a result influence from LCL1. SSIs observed in TMW-2 are not caused by impacts from the LCL1.

6.0 REFERENCES

Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.

- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019c, Updated Statistical Limits With Additional Background Data LCL1.
- Golder Associates Inc., 2019d, Updated Statistical Limits With Additional Background Data LCPB.
- Golder Associates Inc., 2020, 2019 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2021, 2020 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.

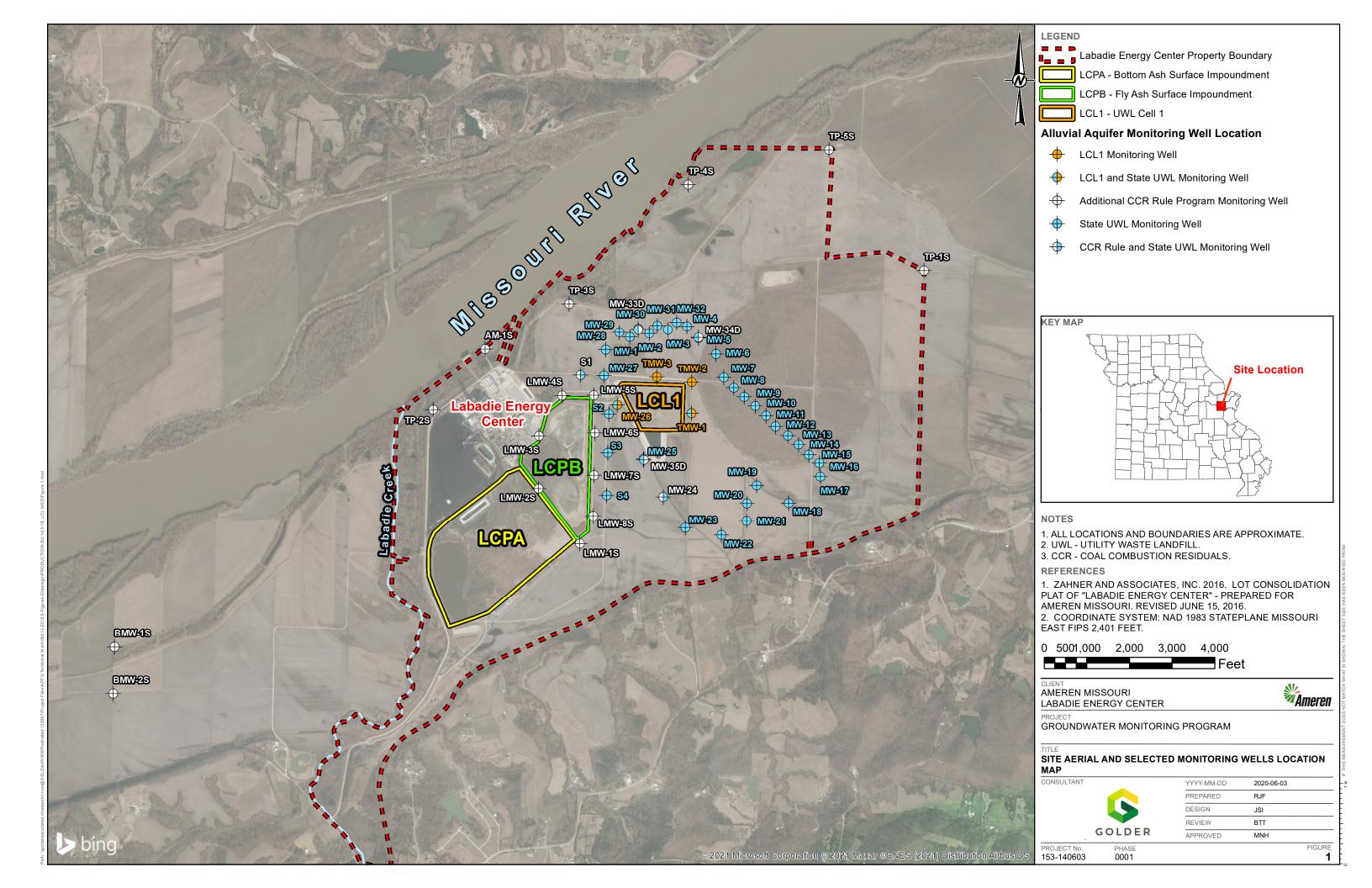
Reitz & Jens, Inc. 2014. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.

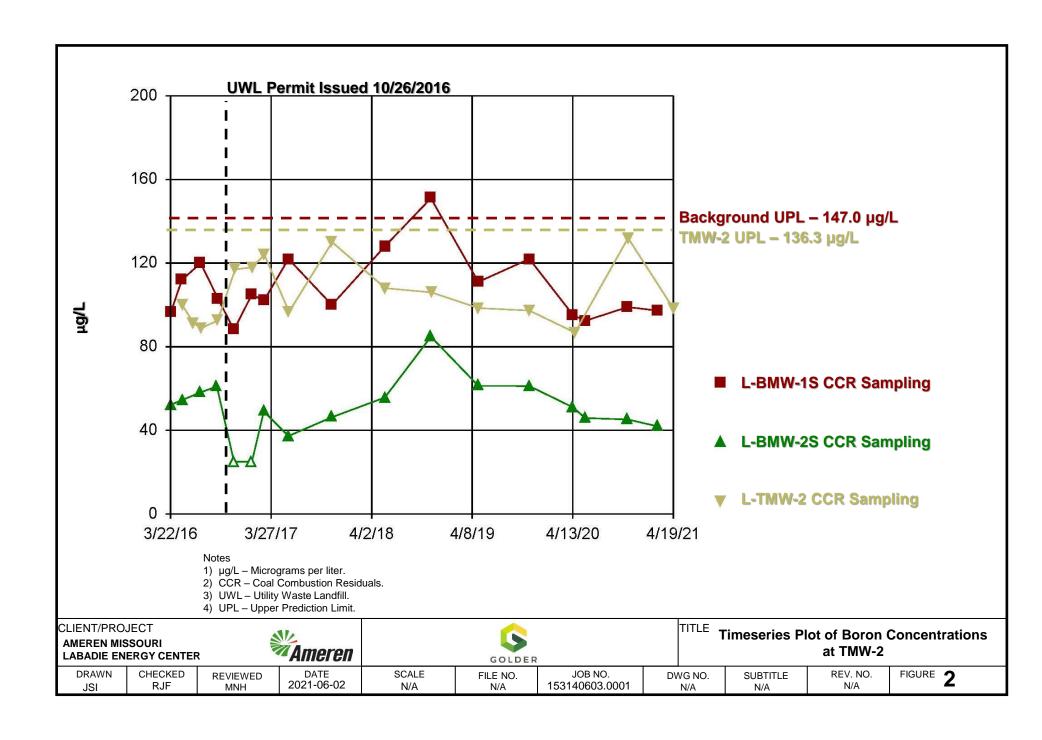
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

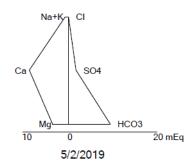
June 2021 153140603

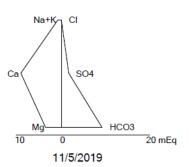
Tables

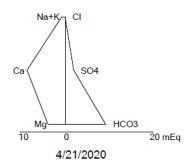
Table 1 November 2020 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

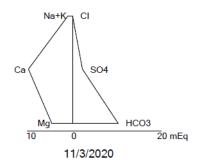

		BACKGROUND GROUNDWATER MONITORING WELLS									
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
November 2020 Detection Monitoring Event											
DATE	NA	11/2/2020	11/2/2020	NA	11/2/2020	NA	11/3/2020	NA	11/3/2020	NA	11/3/2020
рН	SU	6.87	7.23	6.02-7.44	7.00	6.623-7.19	6.95	6.42-7.17	6.89	5.83-7.07	6.84
BORON, TOTAL	μg/L	99.0 J	45.2 J	DQR	63.6 J	139.7	103	136.3	132	139.7	128
CALCIUM, TOTAL	μg/L	216,000	142,000	182,000	119,000	177,907	142,000 J	195,768	197,000	208,416	172,000
CHLORIDE, TOTAL	mg/L	6.4	3.4	5.922	5.9	4.246	1.8	7.116	8.2	8.166	5.3
FLUORIDE, TOTAL	mg/L	0.17 J	0.22	0.2237	0.22	0.2916	0.33	0.2707	0.25	DQR	0.27
SULFATE, TOTAL	mg/L	66.5	73.4	33.4	29.8	122.2	30.9	109.9	116.0	109.6	56.1
TOTAL DISSOLVED SOLIDS	mg/L	780	524	520.2	420	733.7	579	767.8	801	756.6	651
			,	January 2021	Verification S	ampling Event	:				
DATE NA 1/6/2021 1/5/2021 1/								1/6/2021			
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L								207,000		
CHLORIDE, TOTAL	mg/L								11.8		
FLUORIDE, TOTAL	mg/L						0.21				0.17 J
SULFATE, TOTAL	mg/L								150		
TOTAL DISSOLVED SOLIDS	mg/L								837		

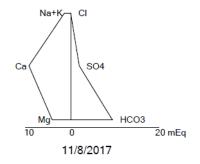

NOTES:

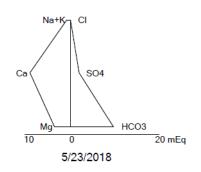

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 8. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

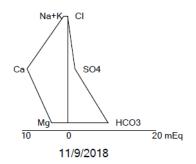

June 2021 153140603

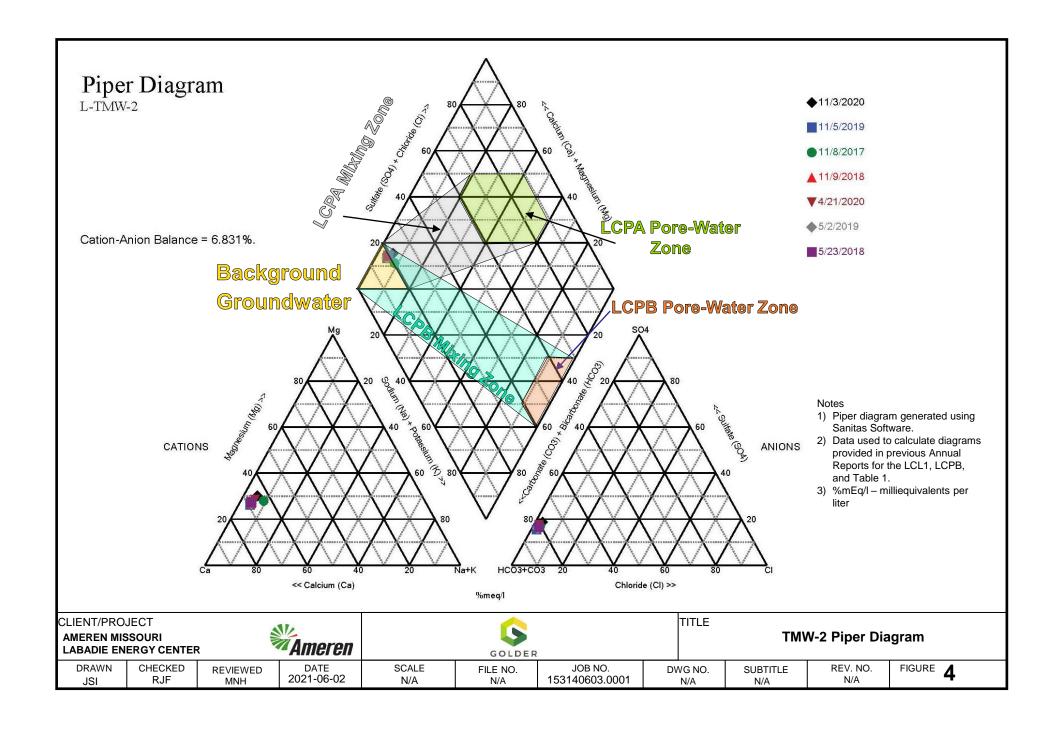

Figures

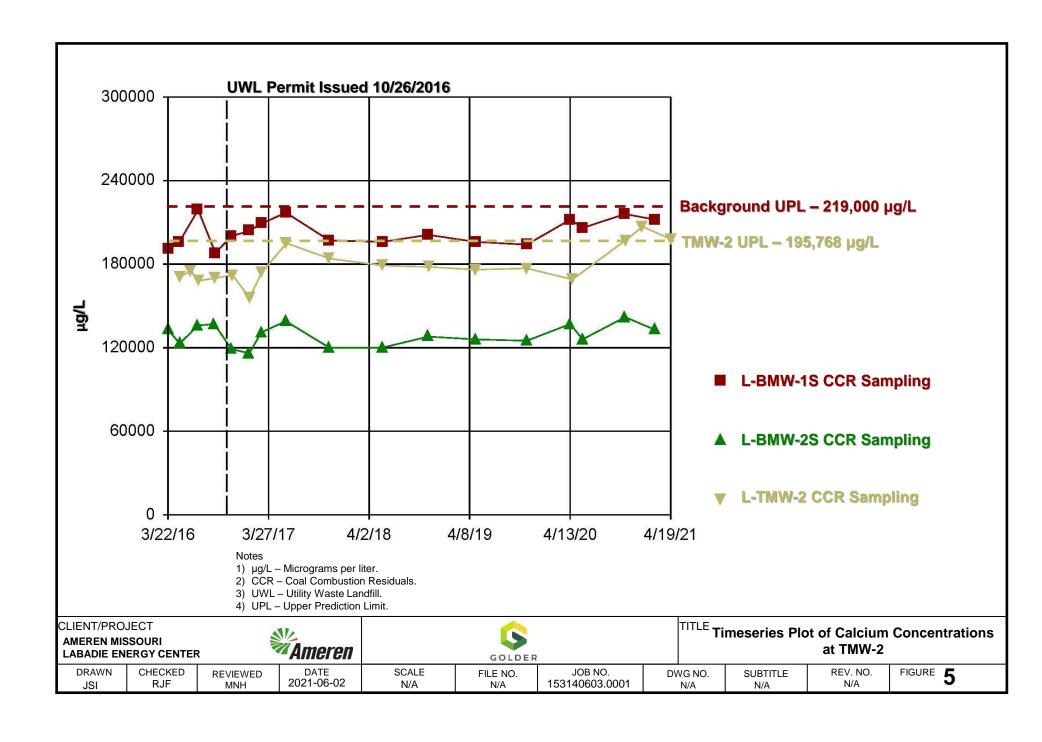


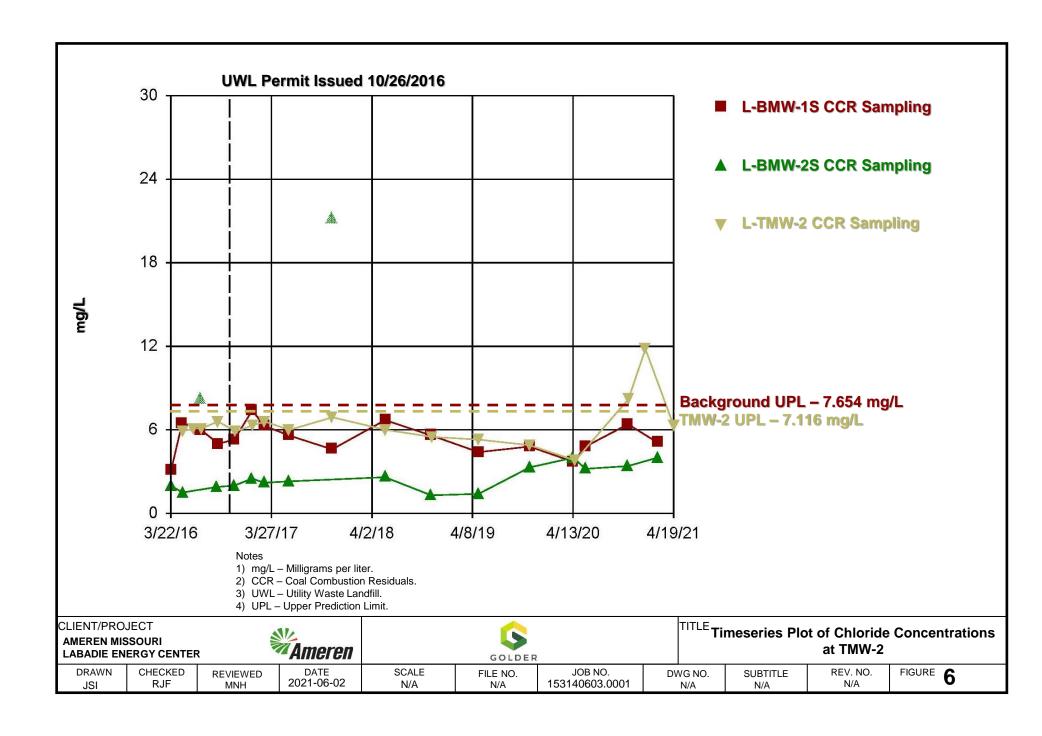


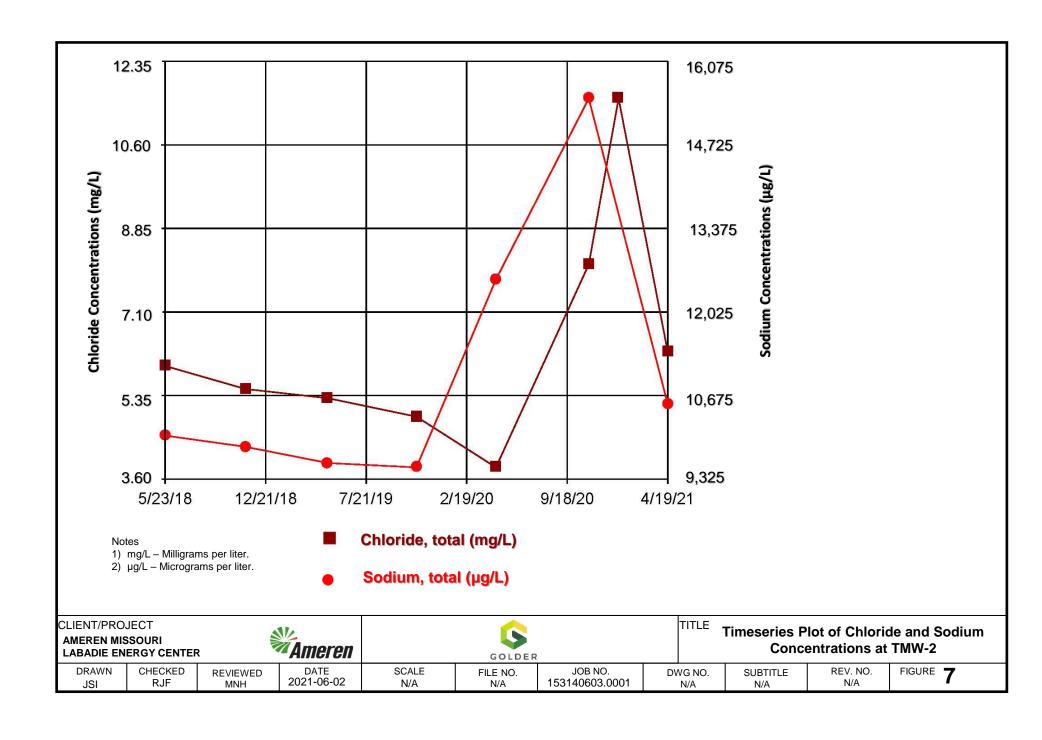


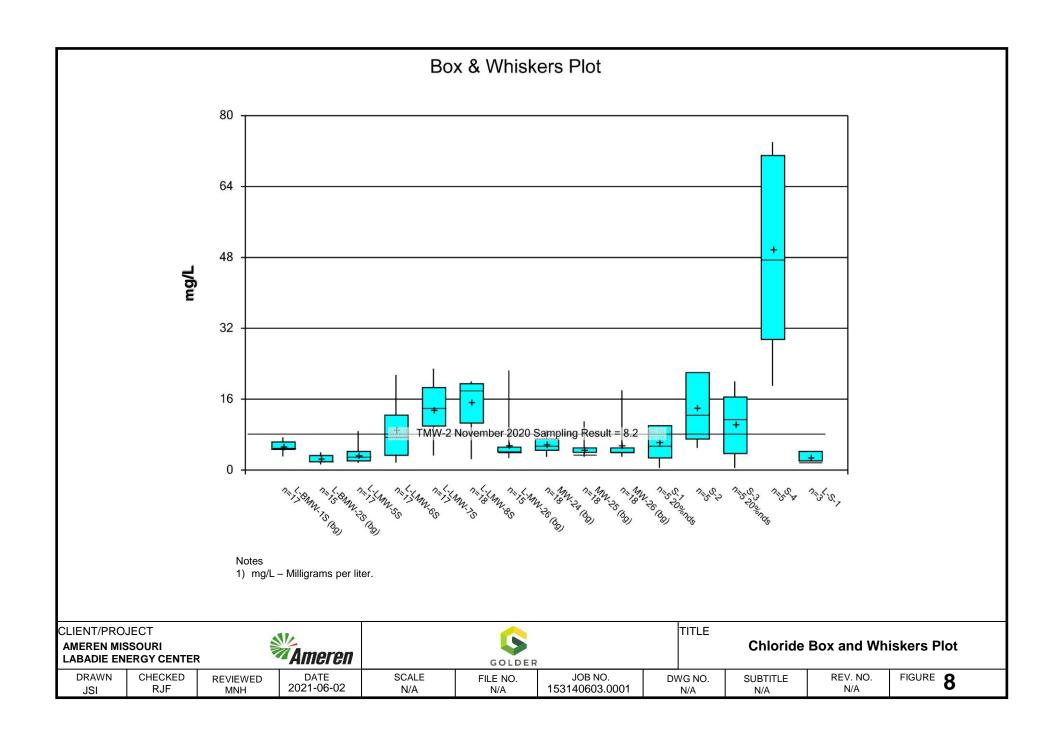


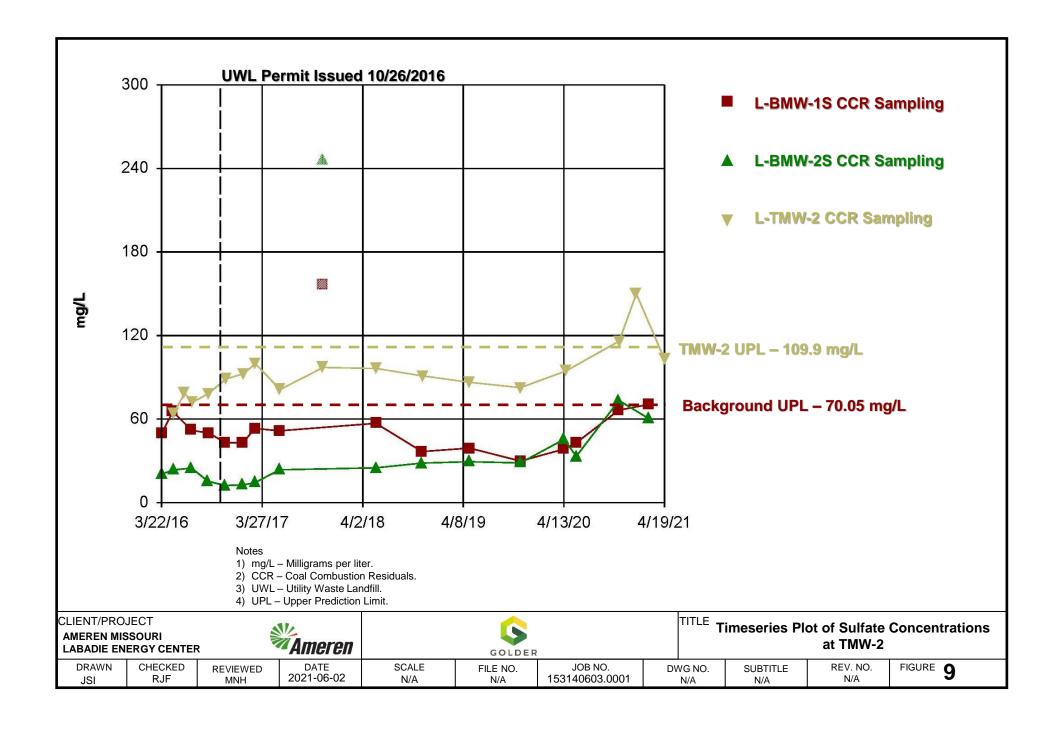


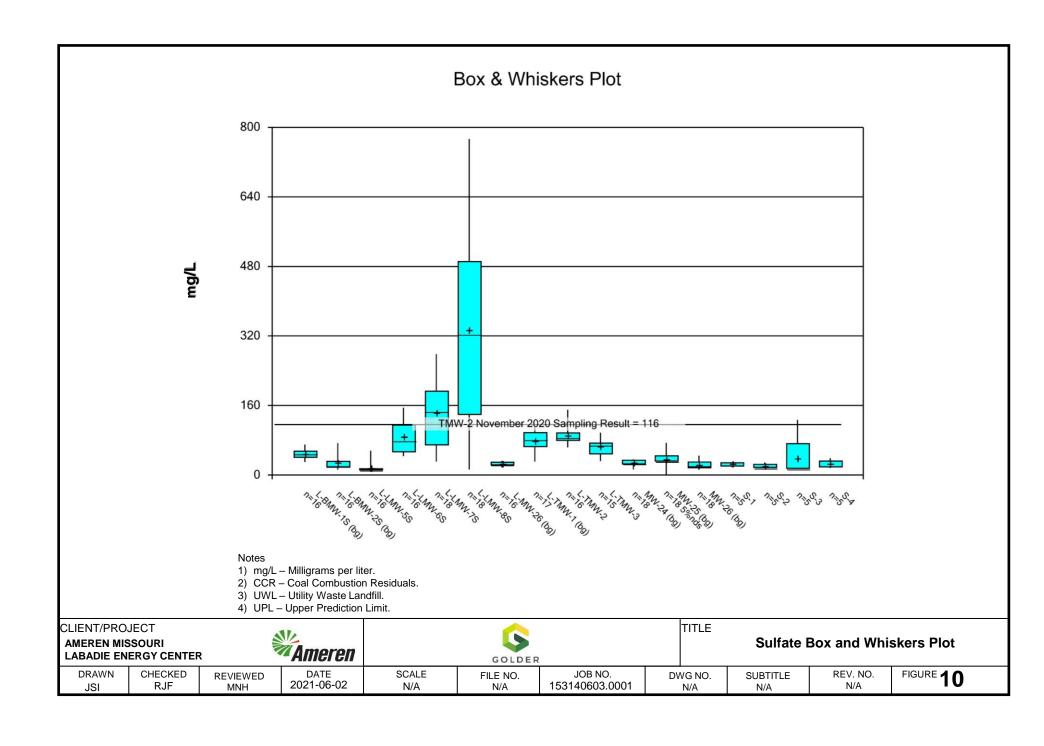


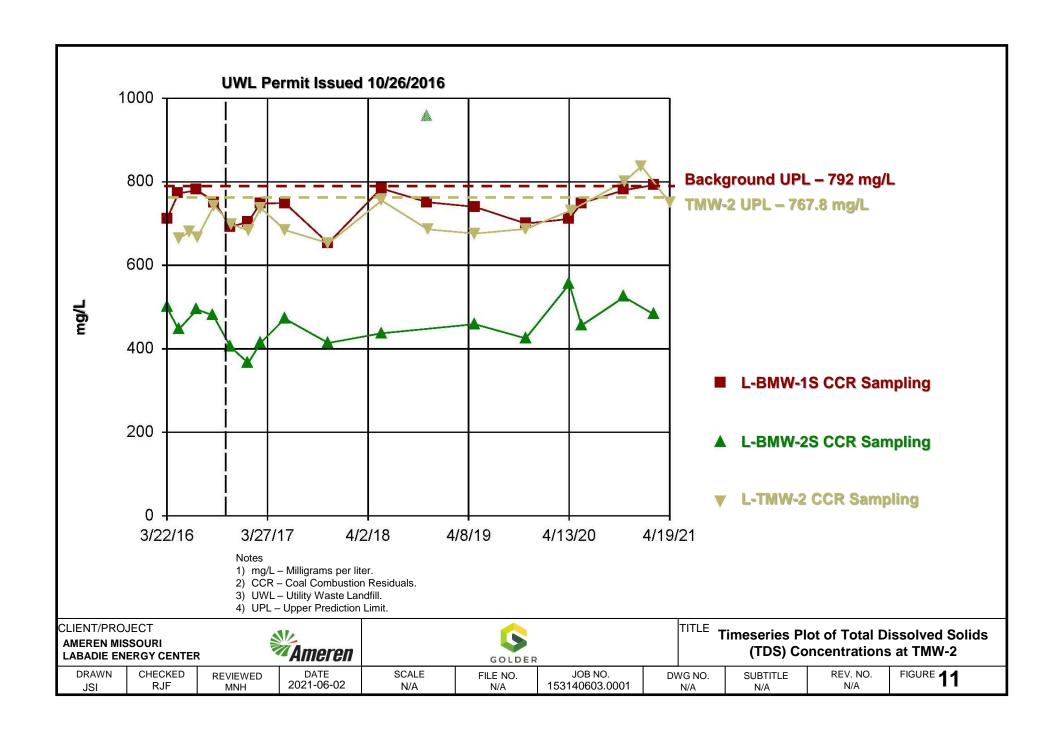

Notes

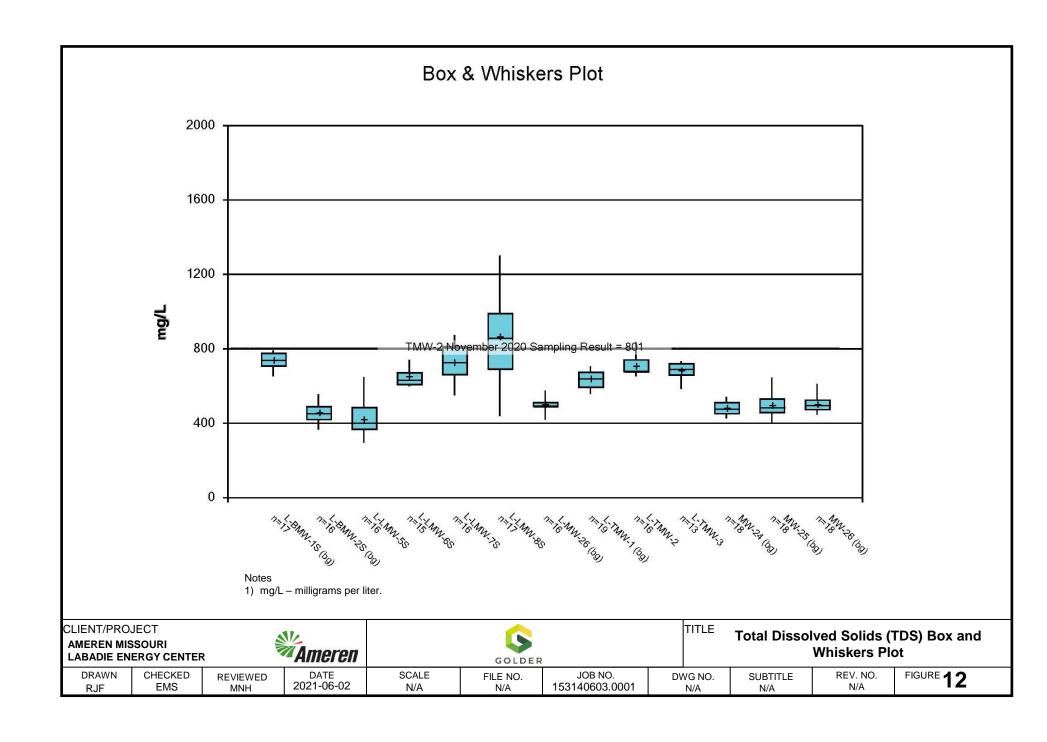

- Stiff diagrams calculated using Sanitas Software.
 Data used to calculate diagrams provided in previous Annual Reports for the LCL1, LCPB, and Table 1.
- 3) Na + K Sodium plus Potassium.
- 4) SO4 Sulfate.
- 5) HCO3 Alkalinity.
- 6) Mg Magnesium.
- 7) Ca Calcium.
- 8) CI Chloride.
- 9) mEq milliequivalents.


ı	CLIENT/PRO	JECT		47.					TITLE			
AMEREN MISSOURI LABADIE ENERGY CENTER		2	Ameren	GOLDER				TMW-2 Stiff Diagrams				
	DRAWN CHECKED REVIEW RJF EMS MNH		REVIEWED MNH	DATE 2021-06-02	SCALE N/A	FILE NO. N/A	JOB NO. 153140603.0001	DV	VG NO. N/A	SUBTITLE N/A	REV. NO. N/A	FIGURE 3









golder.com

January 31, 2022 153140603

APPENDIX C

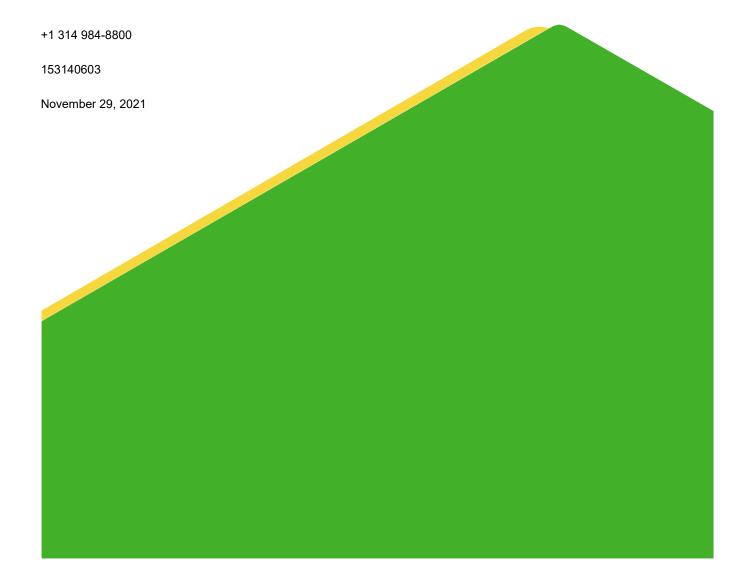
Alternative Source Demonstration -February - April 2021 Sampling Event

REPORT

LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:


Ameren Missouri

1901 Chouteau Avenue, St. Louis, MO 63103

Submitted by:

Golder Associates USA Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021

Table of Contents

CEF	RTIFICA	TION STATEMENT	1
1.0	INTRO	DDUCTION	1
2.0	SITE	DESCRIPTION AND BACKGROUND	1
	2.1	Geological and Hydrogeological Setting	1
	2.2	Utility Waste Landfill Cell 1 – LCL1	1
	2.3	CCR Rule Groundwater Monitoring	2
3.0	REVIE	EW OF THE STATISTICALLY SIGNIFICANT INCREASES	3
4.0	EVIDE	ENCE OF SSI FROM ALTERNATIVE SOURCE	4
	4.1	CCR indicators	4
	4.2	Analysis of key indicator results at MW-26	5
	4.2.1	Boron Concentrations	5
	4.2.2	Sulfate Concentrations	6
	4.2.3	Molybdenum Concentrations	6
	4.2.4	Geochemical Analysis	6
	4.2.4.1	Stiff Diagrams	6
	4.2.4.2	Piper Diagrams	6
	4.3	Evaluation of SSIs at MW-26	7
	4.3.1	Chloride Concentrations	7
5.0	DEMO	DNSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT	7
6 0	DEEE	DENCES	٥

TABLES

Table 1 – February – April 2021 Detection Monitoring Results

Table 2 – Types of CCR and Typical Indicator Parameters (in text)

FIGURES

Figure 1 – Groundwater Monitoring Programs and Monitoring Well Location Map

- Figure 2 Timeseries Plot of Boron Concentrations at MW-26
- Figure 3 Timeseries Plot of Sulfate Concentrations at MW-26
- Figure 4 Timeseries Plot of Molybdenum Concentrations at MW-26
- **Figure 5 –** MW-26 Stiff Diagrams
- Figure 6 MW-26 Piper Diagram
- Figure 7 Timeseries Plot of Chloride Concentrations at MW-26

CERTIFICATION STATEMENT

This LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES USA INC.

Mark Haddock, P.E., R.G. Principal, Practice Leader

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

2.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri, just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

2.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

2.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR Unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently, the LCL1 is used for the disposal of dry disposal of fly ash and bottom ash from the LEC.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells surrounding the current and future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for

groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters. In April 2017, four (4) monitoring wells were installed and added to this network along Labadie Bottoms Road (S-1, S-2, S-3, and S-4).

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells, and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

2.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, TMW-3, BMW-1S, and BMW-2S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information regarding the design and installation of the monitoring wells is provided in the LCL1 GMP (Golder, 2017) and the LCL1 2017 Annual Report (Golder, 2018).

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events have been completed twice a year generally once in Q2 and once in Q4. April 2021 was the last Detection Monitoring sampling event. Laboratory testing was performed for the following Appendix III constituents during each Detection Monitoring event:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

Background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPLs were then compared to the Detection Monitoring results. If result from the current Detection Monitoring event was higher than the calculated UPL, the result was considered an initial exceedance, and verification sample was performed in accordance with the LCL1 statistical analysis plan. Per the statistical

analysis plan, after the May 2019 sampling event, the UPLs were updated to incorporate results from four (4) of the Detection Monitoring events.

In November 2017, no exceedances were reported. In May 2018, four (4) initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1, as well as fluoride at TMW-2. Verification sampling results confirmed all four (4) SSIs. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report; that ASD concluded that the SSIs observed for the May 2018 sampling event were not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2018, four (4) initial exceedances were identified for boron, chloride and fluoride at TMW-1 and fluoride at TMW-2, three (3) of which were the same at those reported during May 2018. Verification sampling results confirmed only the fluoride at TMW-1 result. An ASD was prepared for the November 2018 results and is available in the 2019 LCL1 Annual Report; the ASD also concluded that the confirmed SSI observed for November 2018 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aguifer.

In May 2019, seven (7) initial exceedances were identified for pH, calcium, chloride, and fluoride at various wells. Verification sampling results confirmed only chloride at TMW-1. An ASD was prepared for the May 2019 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the confirmed SSI observed for May 2019 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2019, four (4) initial exceedances were identified for boron, chloride, and TDS at MW-26 and chloride at TMW-1. Verification sampling results only confirmed the three (3) SSIs at MW-26. An ASD was prepared for the November 2019 results and is available in the 2020 LCL1 Annual Report, which concluded that the SSIs observed in the November 2019 sampling event were not caused by the LCL1. The SSI observed for TDS at MW-26 was primarily caused by relatively low calculated UPLs that did not reflect the full, natural geochemical variability within the alluvial aquifer. The SSIs identified for boron and chloride in MW-26 were primarily caused by the LCL1 being downgradient from the LCPA, which is currently in corrective action. The LCPA, and not the LCL1, was identified as the source for the November 2019 SSIs.

In November 2020, six (6) initial exceedances were identified for calcium, chloride, fluoride, sulfate, and TDS at several wells. Verification sampling results only confirmed the four (4) SSIs at TMW-2. The SSI's at TMW-2 for calcium, chloride, sulfate, and TDS were caused by natural geochemical variability, and a lack of baseline data that does not reflect the temporal and spatial geochemical variability within the alluvial aquifer and not by the LCL1.

In April 2021, six (6) initial exceedances were identified for boron, calcium, chloride, fluoride, and TDS at several wells. Verification sampling results only confirmed the one (1) SSI for chloride at MW-26. Results from this sampling event are provided in **Table 1**.

3.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

The SSI for chloride occurred at monitoring well MW-26 and the values are provided on **Table 1**. MW-26 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown on **Figure 1**, MW-26 is located to the west of the LCL1, which is east of the generating plant as well as

surface impoundments LCPA and LCPB. Closure of the LCPA was substantially completed before the April 2021 sampling event, with the completion of the liner cover system on December 30, 2020.

Based on Golder's review of the pre-disposal data discussed in Section 2.2 above, as well as our comparison of the pre-disposal data with the results from the eight (8) CCR-Rule baseline events, the groundwater at the LCL1 contains low-level, pre-existing CCR impacts from units/activities that pre-dated disposal activities in the LCL1. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPLs) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

4.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSI at MW-26 is not the result of a release from the LCL1, but is rather from an alternative source. The following bullets summarize the different lines of evidence that support this ASD:

- Pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the installation and operation of LCL1.
- Construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Groundwater results from nearby and background monitoring wells.
- Prepartion of geochemical models displaying current and historical groundwater chemistries.

4.1 CCR indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Table 2: Types of CCR and Typical Indicator Parameters

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	BoronMolybdenumLithiumSulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	BromidePotassiumSodiumFluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium	SulfateFluorideCalcium

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)			
	sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	BoronBromideChloride			

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the LCL1 has historically received fly ash. No FGD type wastes are managed at the LEC.

4.2 Analysis of key indicator results at MW-26

4.2.1 Boron Concentrations

As indicated in **Table 2**, boron is a key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present at relatively high concentrations in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early and key indicator of impacts from a CCR Unit. If groundwater was impacted by the LCL1, current boron concentrations should be statistically elevated with respect to pre-CCR placement downgradient of the LCL1.

Concentrations of boron at MW-26 as well as background wells BMW-1S and BMW-2S over the entire historical monitoring period are displayed in **Figure 2**. At MW-26, the current upper prediction limit (UPL) is the Double Quantification Rule (DQR)¹, and concentrations have ranged from ND to over 150 and high as 423 micrograms per liter (μ g/L). The observed value of 423 μ g/L in November 2019 has been evaluated in the November 2019 LCL1 ASD. As described in the ASD, the source of the elevated (423 μ g/L) result was due to either sampling/testing error, temporary changes in flow direction due to Missouri River Flooding from May to August 2019, and/or due to preexisting CCR impacts from the upgradient LCPA and the downgradient flow of elevated concentrations to monitoring well MW-26. There are no current boron impacts on the downgradient side of the LCL1 in TMW-1, TMW-2, or TMW-3.

As displayed in **Figure 2**, current sampling results at MW-26 in April and June 2021 were 164 μ g/L and 82.5 J μ g/L, respectively. These values are similar or below those from the background wells BMW-1S and BMW-2S, located approximately 2.5-miles to the west of the LCL1. This suggests that elevated boron concentrations reported historically at MW-26 are likely the result of influence by the LCPA (or possibly sampling/testing error in the case of the 423 μ g/L value) but are not currently observed at MW-26. These results demonstrate the temporal variability within the alluvial aquifer at the LCL1, and that the full variability, both naturally occurring within the aquifer, and from upgradient sources (LCPA) may exceed the current statistical UPL value.

¹ As further discussed in the Statistical Analysis Plan (SAP) for the LCL1, in situations where the entire background dataset is reported as ND or estimated (J-flag), the Double Quantification Rule (DQR) will be used to supplement the prediction limit analyses. Under the DQR, a SSI is triggered if a compliance well observation is higher than the reporting limit (RL)/PQL in either (1) both a detection monitoring sample and its verification resample, or (2) two consecutive sampling events in a program were resampling is not utilized.

5

4.2.2 Sulfate Concentrations

Like boron, sulfate is listed in **Table 2** as a key indicator for Fly Ash, Boiler Slag/Bottom Ash, and FGD type waste, and can be a key indicator of CCR impacts. Sulfate is mobile in most hydrogeological environments, except where conditions are strongly reducing. The groundwater around the LCL1 does not demonstrate strongly reducing conditions, which would include negative oxidation reduction potential (ORP) and hydrogen sulfide odors in the groundwater at the LCL1. If the SSI for chloride were caused by impacts from the LCL1, sulfate values would have been expected to increase following placement of CCR in the unit.

As displayed in **Figure 3**, sulfate concentrations at MW-26 during the April 2021 sampling event (24.1 milligrams per liter (mg/L)) were well below the UPLs for MW-26 (33.4 mg/L), the background wells (75.37 mg/L), and a UPL that was calculated using only historical data prior to the placement of CCR in the LCL1 (49.97 mg/L). As stated above, if the SSI for chloride were caused by impacts from the LCL1, sulfate values would be expected to be elevated relative to background levels and would be expected to increase following the placement of CCR in the LCL1. Because neither of these have been observed, it is likely that the SSI for chloride at MW-26 is from an alternative source and not the LCL1.

4.2.3 Molybdenum Concentrations

Table 2 lists molybdenum as a key indicator for fly ash and boiler slag/bottom ash impacts, because it is typically present at relatively high concentrations in the leachate from these types of waste and is not a common anthropogenic contaminant (EPRI 2012). Additionally, the upgradient LCPA is currently in corrective action due the presence of molybdenum at a statistically significant level (SSL), which demonstrates that CCR impacts from the LEC are likely to include increased molybdenum concentrations.

Figure 4 displays molybdenum results for MW-26, as well as BMW-1S and BMW-2S. As displayed, all sampling results for both MW-26 and the background wells are less than the PQL. The absence of molybdenum in MW-26 reveals that elevated concentrations for other constituents, such as chloride are likely related to an alternative source, rather than the LCL1.

4.2.4 Geochemical Analysis

Since November 2017, during Detection Monitoring events, major cation and anion concentrations have been tested. These data are used to compare major ion chemistry over time to see if the groundwater chemistry is changing, which is expected to be a key indicator if impacts are present from the LCL1.

4.2.4.1 Stiff Diagrams

Stiff diagrams visually display the major cation and anion data. **Figure 5** displays the Stiff diagrams from the April 2021 and previous Detection Monitoring events. Data from the April 2021 Detection Monitoring event and all the previous Detection Monitoring events display nearly identical distribution (i.e., the shape of the Stiff diagram is very consistent over time). If impacts from the LCL1 were causing the apparent SSIs, a shift in groundwater chemistry would be expected. **Figure 5** demonstrates that there has not been a shift in groundwater chemistry over time and thus the recent SSIs are not a result of influence from LCL1.

4.2.4.2 Piper Diagrams

A Piper diagram is a graphical technique used to classify and compare different groundwater chemistries. The same data used to generate the Stiff diagram were plotted on a ternary Piper diagram according to major cation and anion concentrations. In addition to showing instantaneous concentrations, Piper diagrams can be used to determine if groundwater chemistry is changing, either spatially or temporally. **Figure 6** displays a Piper diagram

for MW-26 over time. If CCR impacts from the LCL1 were causing the apparent SSIs, a shift in groundwater chemistry over time would be expected. **Figure 6** demonstrates that there has not been a shift in groundwater chemistry and thus the recent SSIs are not a result of influence from LCL1.

Additionally, a comparison of this diagram with those in the previous LCPB and LCL1 ASDs, found in the respective LCPB and LCL1 Annual Reports, (Golder, 2019a; Golder, 2019b; Golder, 2020b, Golder, 2020c) shows that groundwater chemistry in MW-26 plots in the area for background groundwater, further indicating a lack of impact from LCL1.

4.3 Evaluation of SSIs at MW-26

4.3.1 Chloride Concentrations

Chloride is not listed in **Table 2** as a typical indicator of fly ash or boiler slag/bottom ash (EPRI 2012, EPRI 2017) because it typically has low concentrations in CCR leachate relative to typical background. As discussed in the ASD for the November 2020 sampling event (Golder, 2021), chloride can be a CCR indicator if concentrations in the source are higher than background levels, which is the case for the LCPA. Chloride is typically a key indicator for FGD type wastes, and it can be a good indicator because chloride, like boron, has high mobility and low reactivity in most aquifer conditions. No FGD Wastes are managed at the LEC.

Concentrations for the April 2021 sampling event and subsequent June 2021 verification sampling event were 7.7 and 6.3 mg/L, respectively. The calculated UPL for MW-26 is 5.922 mg/L. Historically, based on CCR Rule sampling, chloride concentrations have ranged from 2.7 to 22.5 mg/L. Background monitoring wells located approximately 2.5-miles upgradient from the LCL1 have had chloride concentrations ranging from 1.3 to 7.4 mg/L (with outliers at 8.2 and 21.2 mg/L) and an UPL of 7.654 mg/L. As displayed in **Figure 7**, chloride results from April and June 2021 in MW-26 are within the range of historical background results.

Figure 7 displays chloride concentrations over the entire historical monitoring period at MW-26 as well as background monitoring wells BMW-1S and BMW-2S. Prior to the placement of CCR material in the LCL1, chloride concentrations in MW-26 ranged between 4.0 and 18.0 mg/L. Based on the review of these historical results, it is evident that fluctuations within the alluvial aquifer prior to the placement of CCR at the LCL1 resulted in higher concentrations than those currently observed in MW-26. Thus, the April 2021 SSI for chloride in MW-26 is likely not a result of the LCL1, but rather an alternative source.

This information, along with an apparent lack of elevated boron, sulfate, or molybdenum concentrations and the statistical consistency of the geochemical signature in MW-26, indicate that the recent SSI for chloride in MW-26 in April 2021 was not a result of a release from the LCL1, but instead is attributed to one of three potential sources, including: (1) geochemical variability in the alluvial aquifer, (2) a relatively small set of baseline data that do not reflect the full natural and temporal and spatial variability within the aquifer, and (3) pre-existing impacts from the LCPA. This further displays the temporal variability within the shallow zone of the alluvial aquifer and that elevated concentrations during the April 2021 sampling event are not from the LCL1.

5.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in Section 4.0 above, the SSI reported for the April 2021 monitoring event at MW-26 is not a result of impacts from the LCL1. The SSI appears to be a result of numerous factors, including: (1) geochemical variability within the alluvial aquifer and (2) a relatively small set of baseline data that do not reflect the full natural, temporal, and spatial variability within the aquifer. Only twelve (12) samples have been used thus far to calculate the intrawell UPLs. It can take many years of data gathering to experience a range of variability

that is representative of natural conditions for any given aquifer. The results gathered thus far have apparently not captured the full extent of the natural spatial and temporal variability in the alluvial aquifer at the LEC.

Further, the verification sampling data for June 2021 also provide a strong indication that the SSI was likely a result of geochemical variability within the alluvial aquifer. The result for the June 2021 event is lower than that from April 2021 event, and just slightly elevated in relation to the UPL for chloride in MW-26. However, the chloride results for June 2021 in MW-26 was below the background UPL.

Finally, the construction of the LCL1, with 2-feet of compacted clay overlain by a 60-mil HDPE liner, also limits the potential that the April 2021 SSI reported for MW-26 is a result influence from LCL1. SSIs observed in MW-26 are not the result of impacts from the LCL1.

6.0 REFERENCES

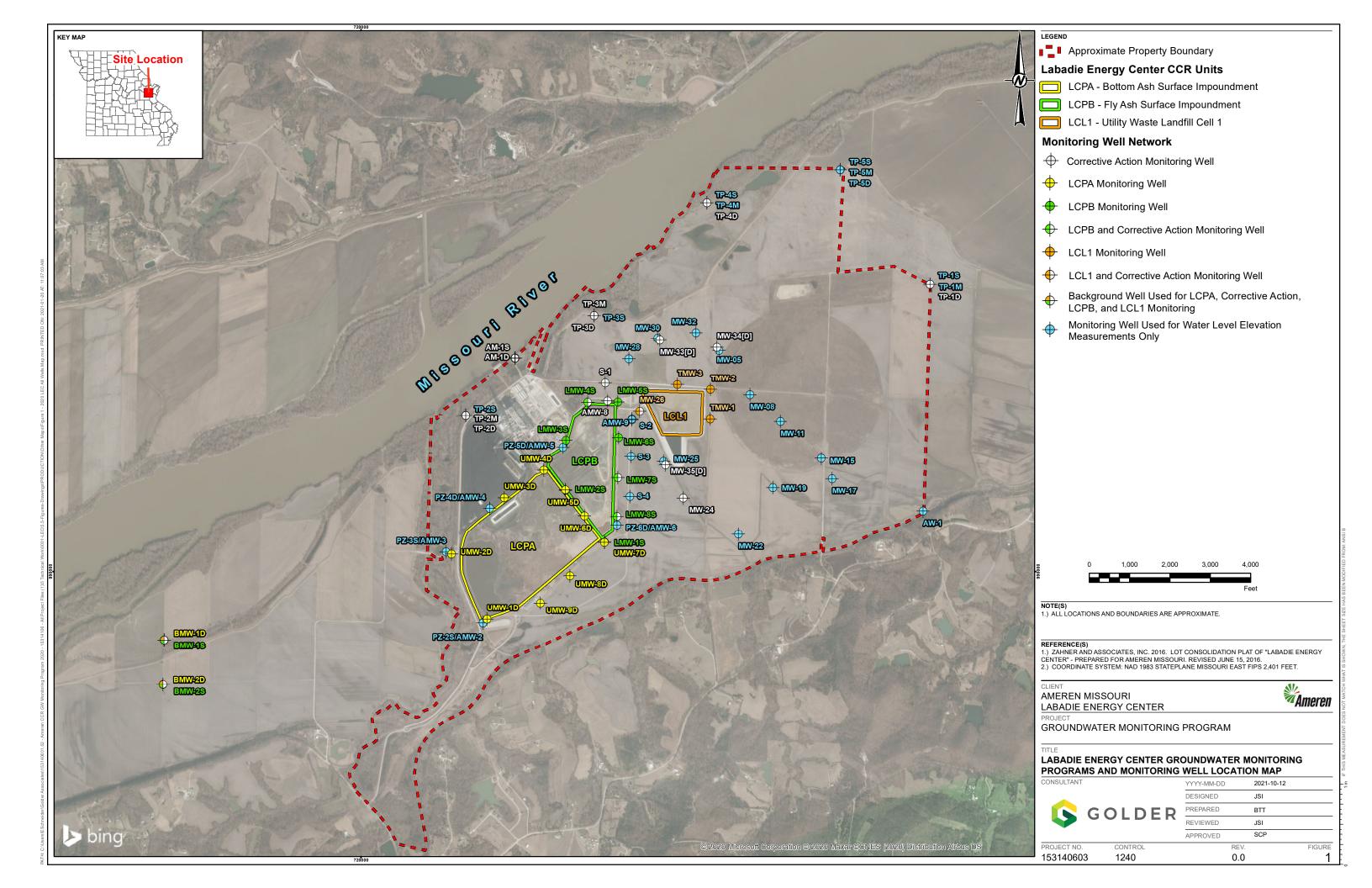
- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Co-management of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019c, Updated Statistical Limits with Additional Background Data LCL1.
- Golder Associates Inc., 2019d, Updated Statistical Limits with Additional Background Data LCPB.
- Golder Associates Inc., 2020, 2019 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2020, Corrective Action Groundwater Monitoring Plan, LCPA Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA

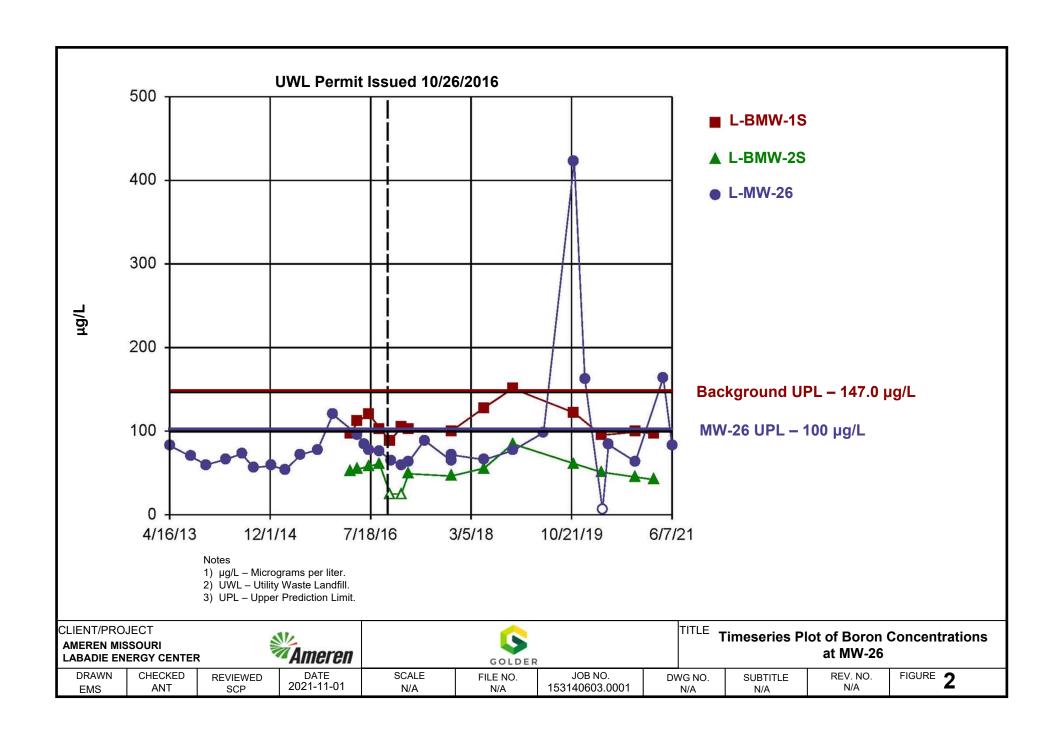
Golder Associates Inc., 2021, 2020 Annual Groundwater Monitoring Report, LCL1 – Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.

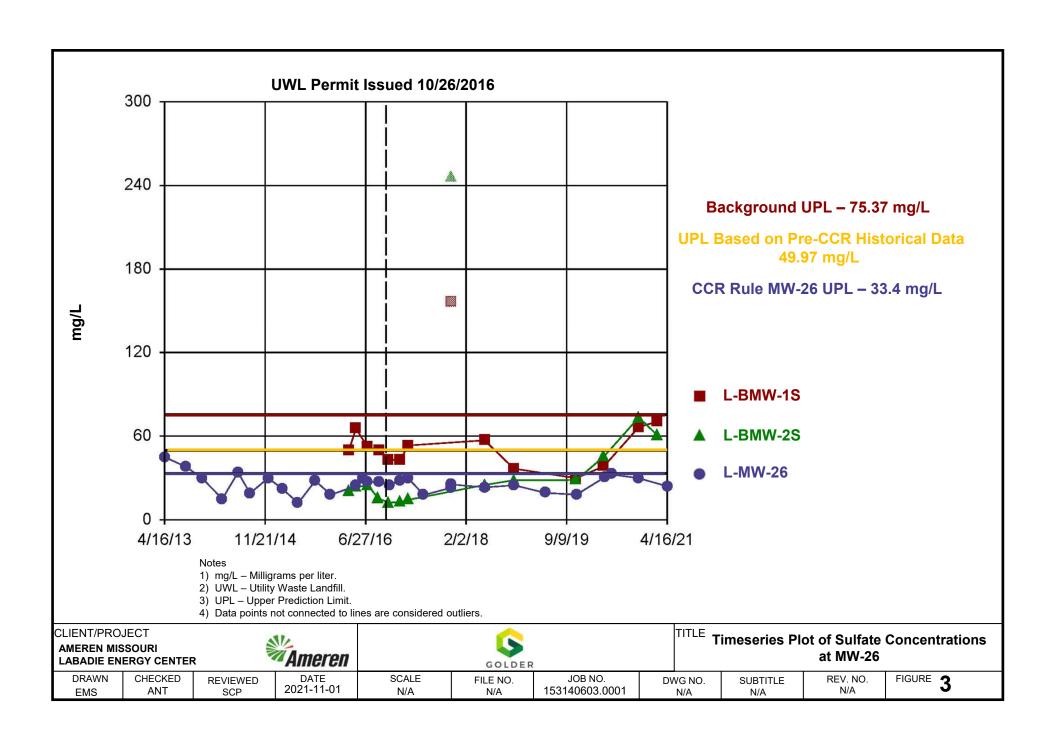
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.
- Reitz & Jens, Inc. 2-14. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CRF Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal

Tables

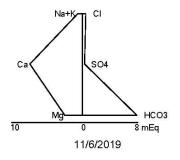
Table 1 February-April 2021 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

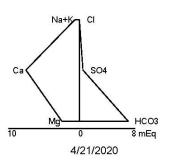

	BACKG	ROUND	GROUNDWATER MONITORING WELLS								
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
		•	Febr	uary - April 20	021 Detection	Monitoring E	vent	•		•	
DATE	NA	2/18/2021	2/18/2021	NA	4/16/2021	NA	4/19/2021	NA	4/19/2021	NA	4/19/2021
рН	SU	6.73	7.16	6.02-7.44	7.03	6.623-7.19	7.07	6.42-7.17	6.96	5.83-7.07	6.90
BORON, TOTAL	μg/L	97.3 J	42.0 J	DQR	164	139.7	108	136.3	98.3 J	139.7	120
CALCIUM, TOTAL	μg/L	212,000	133,000	182,000	138,000	177,907	176,000	195,768	198,000	208,416	177,000
CHLORIDE, TOTAL	mg/L	5.1	4.0	5.922	7.7	4.246	3.9 J	7.116	6.3	8.166	5.5
FLUORIDE, TOTAL	mg/L	ND	0.14 J	0.2237	0.29	0.2916	0.29	0.2707	ND	DQR	ND
SULFATE, TOTAL	mg/L	70.4	60.6	33.4	24.1	122.2	78.7	109.9	103	109.6	52.2
TOTAL DISSOLVED SOLIDS	mg/L	792	483	520.2	512	733.7	735	767.8	750	756.6	829
				June 2021 V	erification Sar	mpling Event					
DATE	NA				6/7/2021		6/7/2021		6/7/2021		6/7/2021
рН	SU										
BORON, TOTAL	μg/L				82.5 J						
CALCIUM, TOTAL	μg/L								185,000		
CHLORIDE, TOTAL	mg/L				6.3 J						
FLUORIDE, TOTAL	mg/L				0.15 J						
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L						630				596

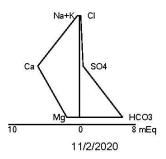

NOTES:

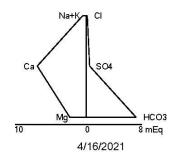

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 5. Prediction Limits calculated using Sanitas Software.
- 6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 7. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).
- 8. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 9. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

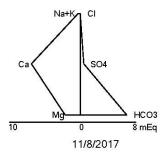
Figures

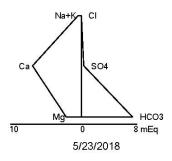


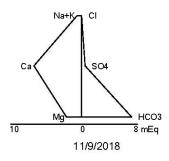


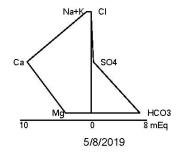


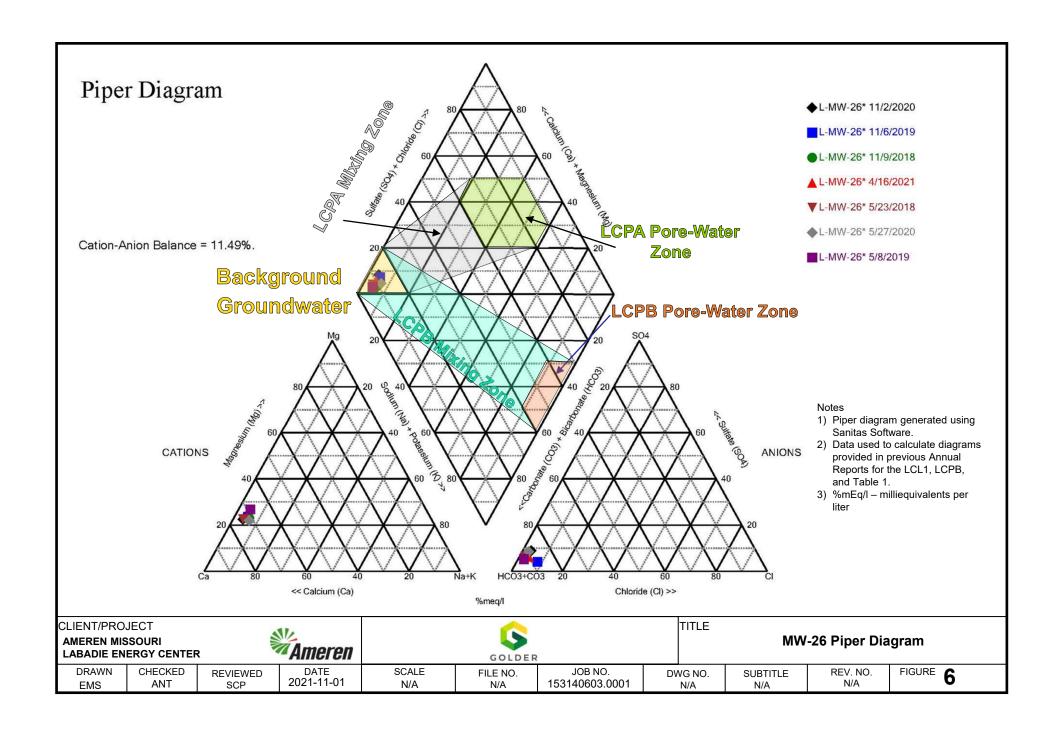


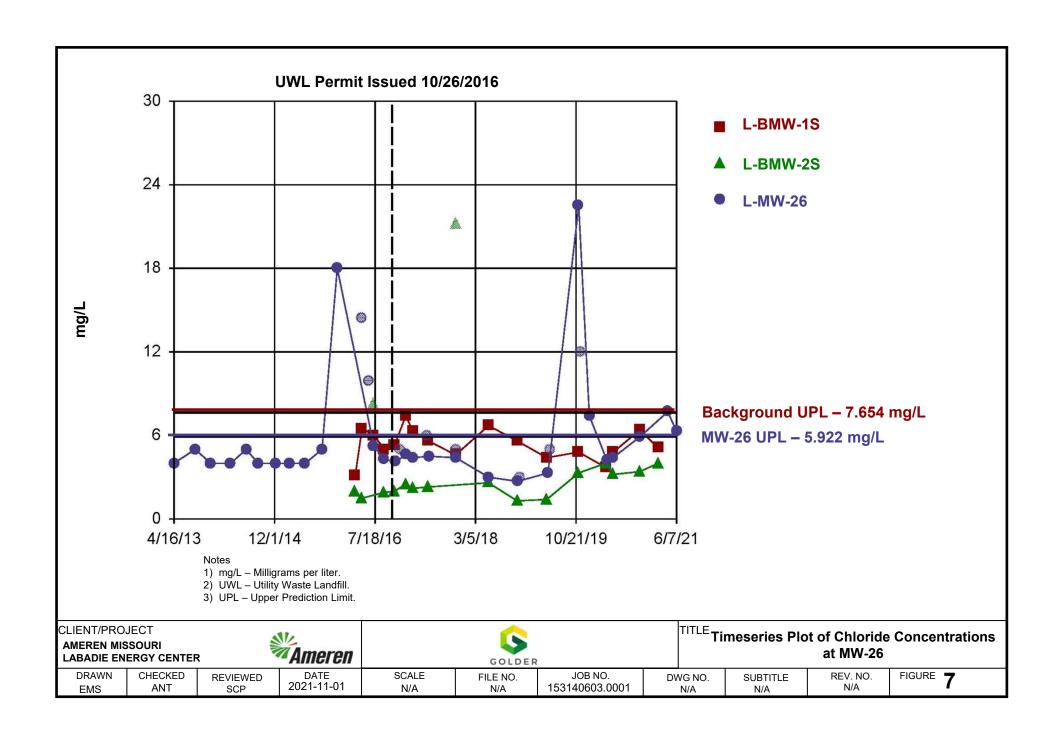








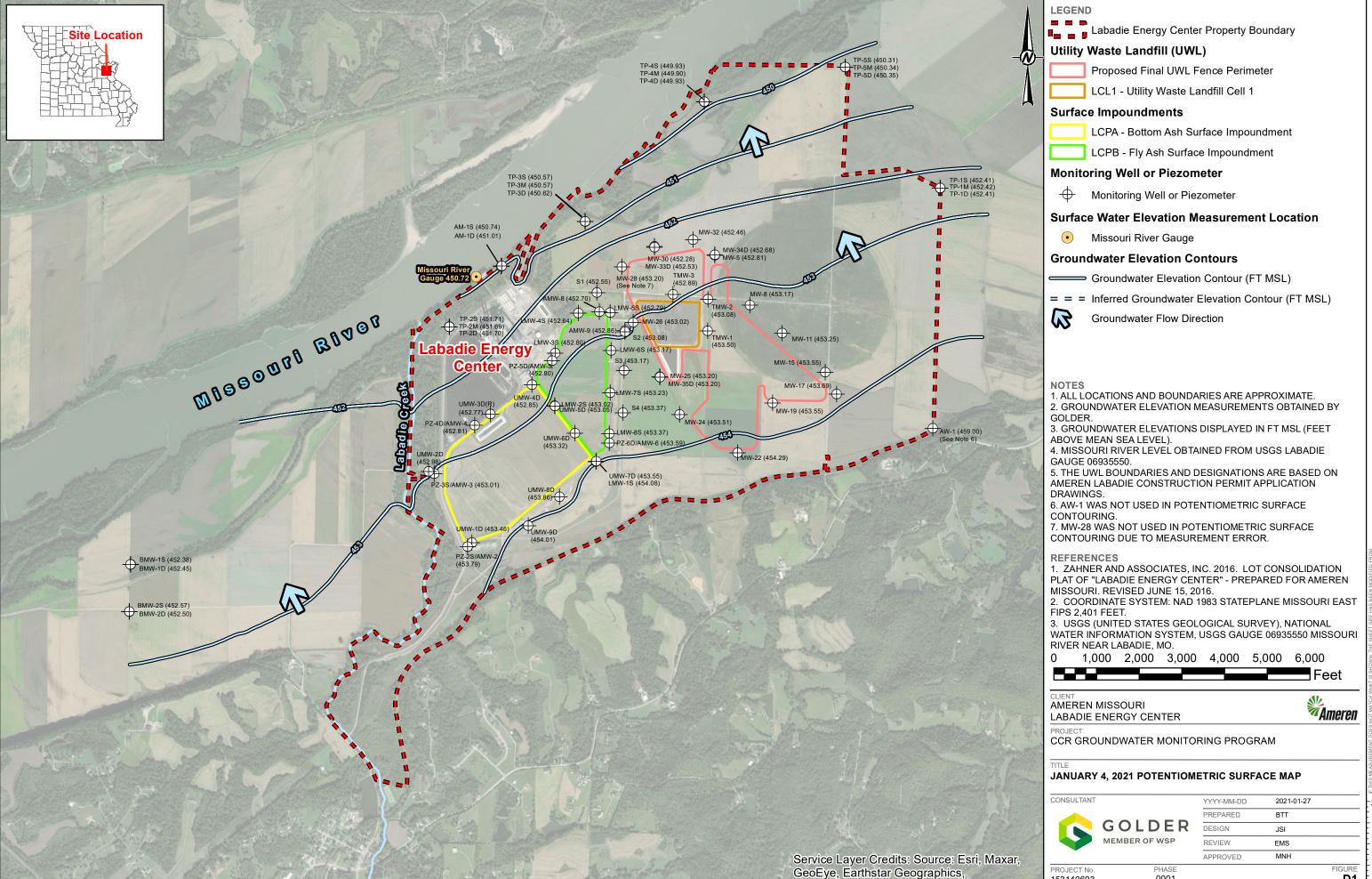




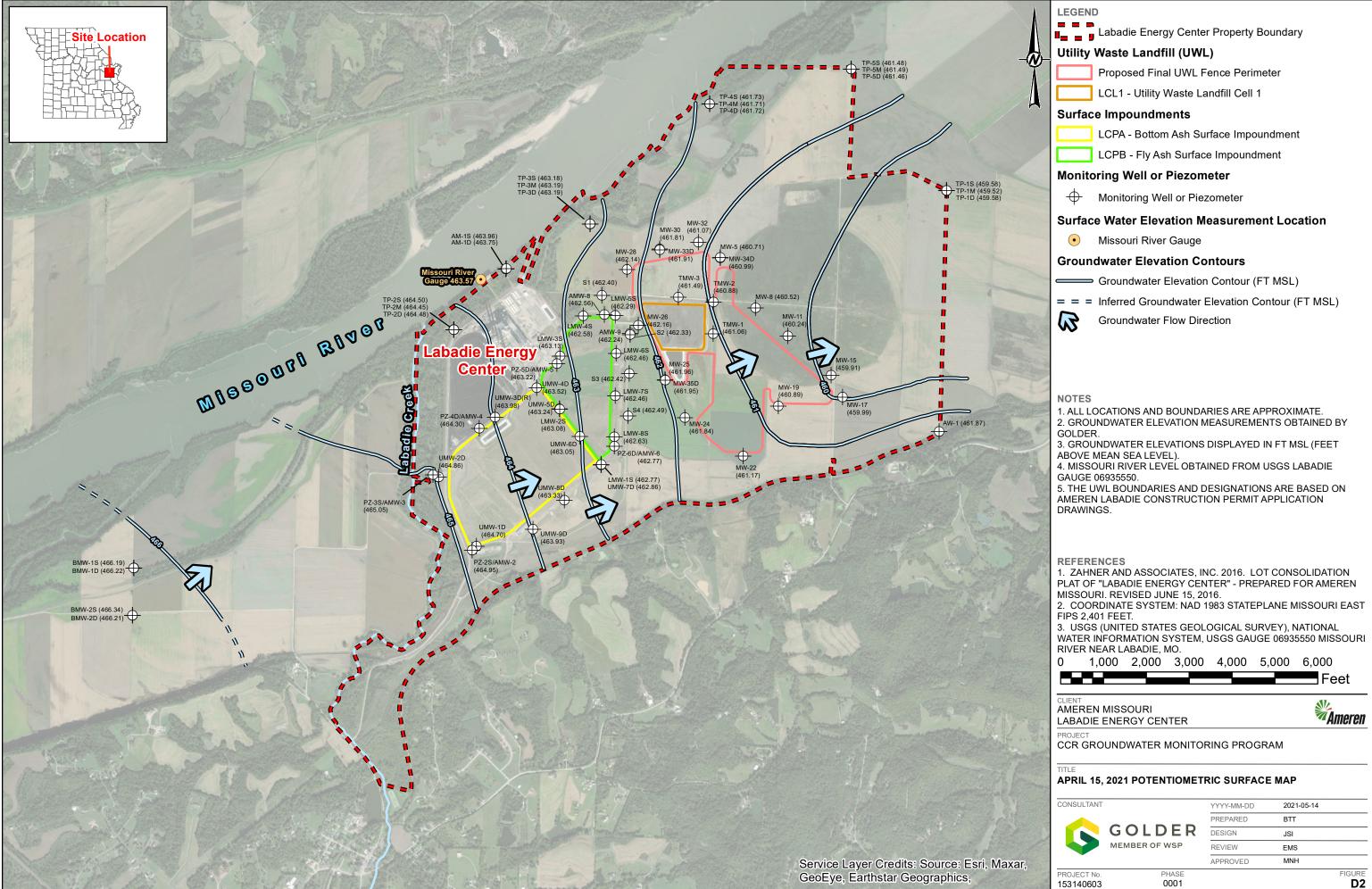
Notes

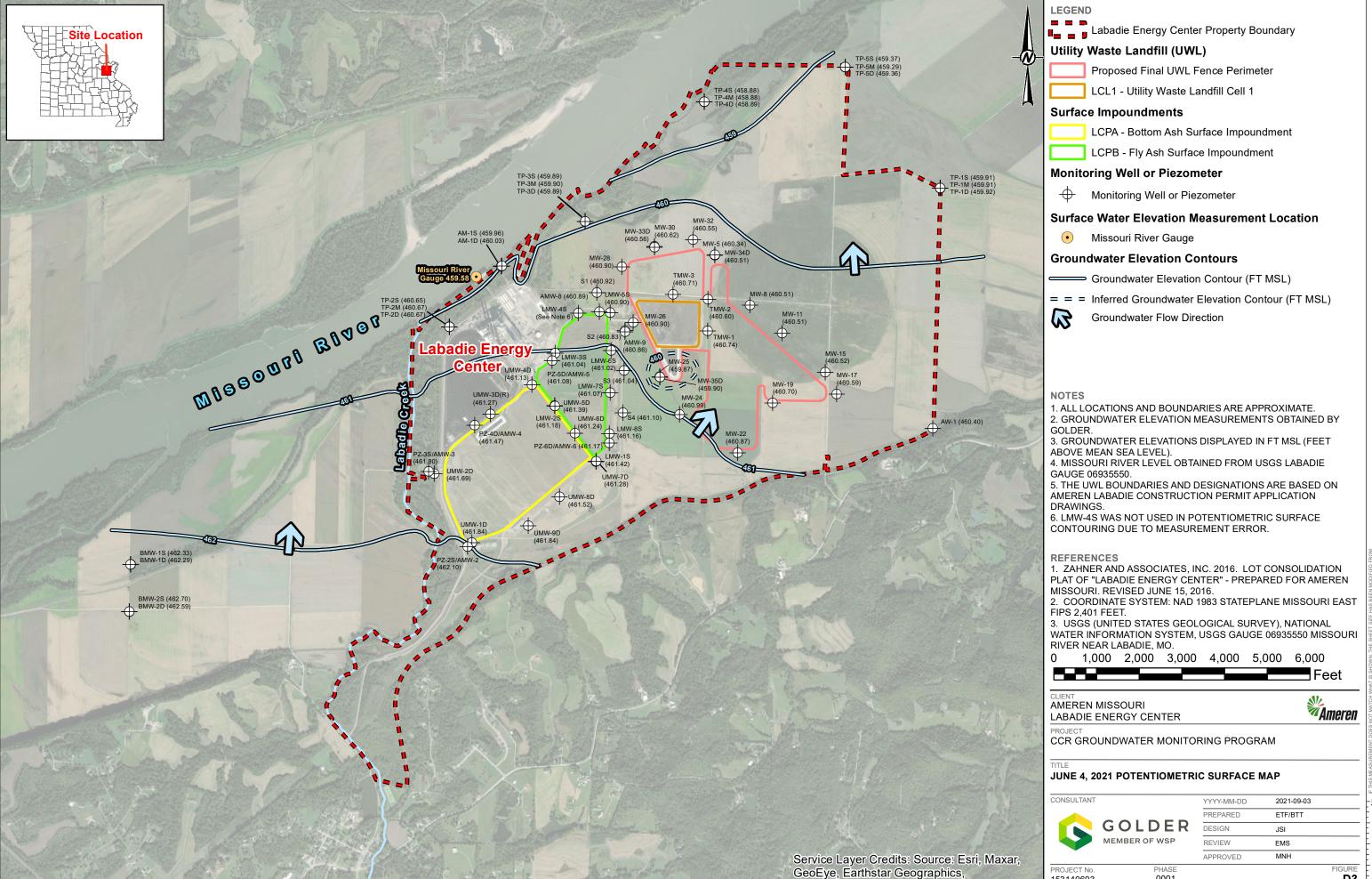
- 1) Stiff diagrams calculated using Sanitas Software.
- 2) Data used to calculate diagrams provided in previous Annual Reports for the LCL1, LCPB, and Table 1.
- 3) Na + K Sodium plus Potassium.
- 4) SO4 Sulfate.
- 5) HCO3 Alkalinity.
- 6) Mg Magnesium.
- 7) Ca Calcium.
- 8) CI Chloride.
- 9) mEq milliequivalents.

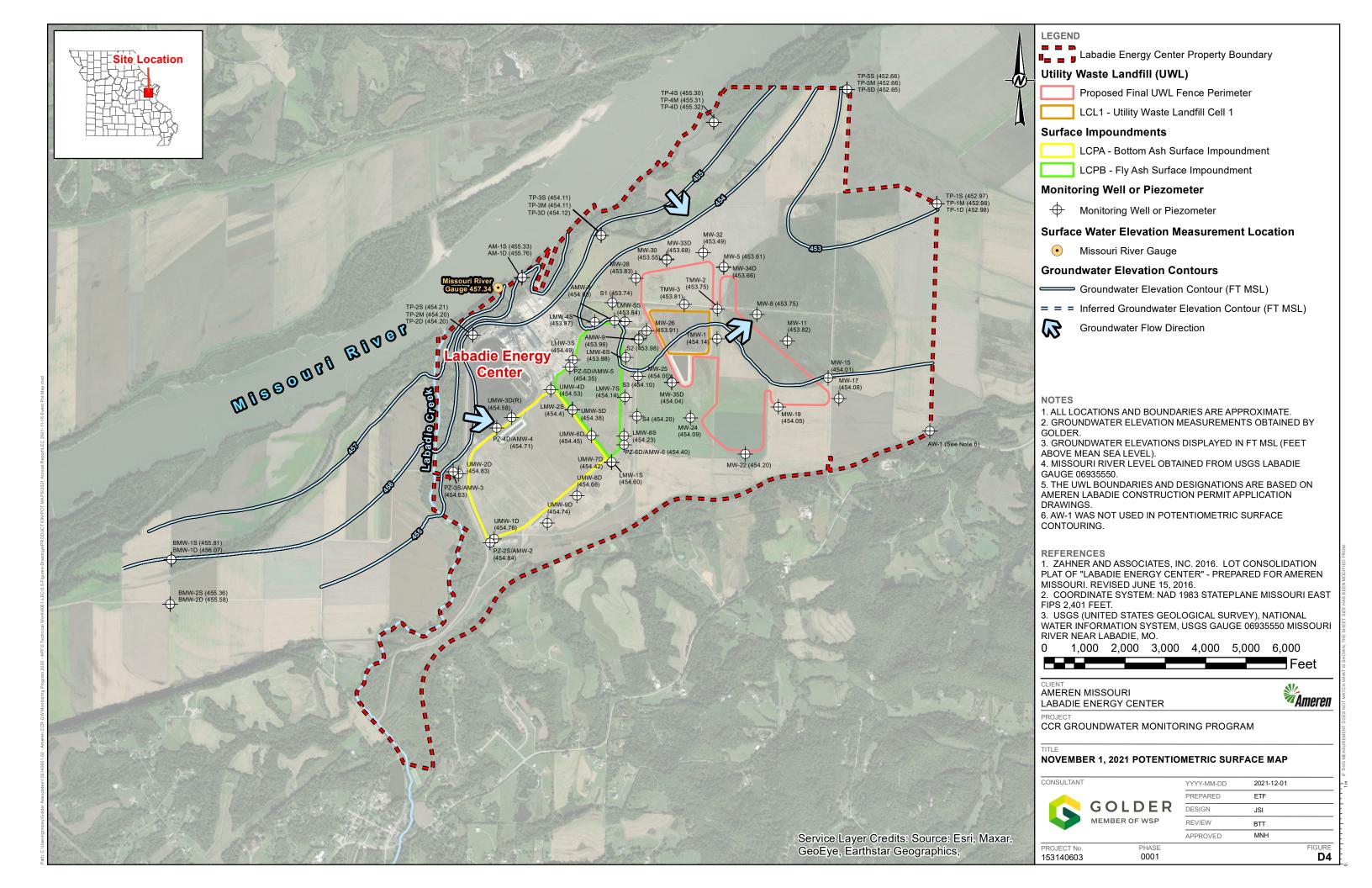
CLIENT/PRO	JECT		47.					TITLE			
AMEREN MISSOURI LABADIE ENERGY CENTER		2	Ameren	GOLDER				MW-26 Stiff Diagrams			
DRAWN EMS	CHECKED ANT	REVIEWED SCP	DATE 2021-11-01	SCALE N/A	FILE NO. N/A	JOB NO. 153140603.0001		VG NO. N/A	SUBTITLE N/A	REV. NO. N/A	FIGURE 5


golder.com

January 31, 2022 153140603


APPENDIX D


2021 Potentiometric Surface Maps



D1

D3

golder.com