

#### REPORT

# 2022 Annual Groundwater Monitoring and Corrective Action Report

LCL1 - Utility Waste Landfill Cell 1, Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri

1901 Chouteau Avenue, St. Louis, Missouri 63103

Submitted by:

#### WSP USA Inc.

701 Emerson Road, Suite 250, Creve Coeur, Missouri, 63141

+1 314 984 8800

GL153140604

January 31, 2023

# EXECUTIVE SUMMARY AND STATUS OF THE LCL1 GROUNDWATER MONITORING PROGRAM

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§§ 257.90(e)). Ameren Missouri (Ameren) has determined that the Utility Waste Landfill (UWL) at the Labadie Energy Center (LEC) is subject to the requirements of the CCR Rule. The UWL currently only operates LCL1 (Cell 1), which is an on-site landfill cell and manages Coal Combustion Residuals (CCR) from the facility. This Annual Report for the LCL1 describes CCR Rule groundwater monitoring activities from January 1, 2022 through December 31, 2022 including verification results related to late 2021 sampling.

Throughout 2022, the LCL1 CCR unit has been operating under the Detection Monitoring Program (§257.94), which began October 17, 2017. As a part of Detection Monitoring, statistical evaluations are completed after each sampling event to determine if there are any values that represent a Statistically Significant Increase (SSI) over background concentrations. In 2022, SSIs have been determined during each sampling event and a summary of the SSIs for the past year is provided in **Table 1**.

| Event<br>Name                  | Type of Event and<br>Sampling Dates                                                                                           | Laboratory<br>Analytical<br>Data Receipt<br>Date | Parameters<br>Collected                                                      | Verified SSI                                                                                    | SSI<br>Determination<br>Date | ASD<br>Completion<br>Date |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|---------------------------|--|--|
| er 2021<br>g Event             | Detection Monitoring,<br>November 1-4, 2021                                                                                   | December 28,<br>2021                             | Appendix III,<br>Major Cations<br>and Anions                                 | <u>Calcium:</u> TMW-2<br><u>Chloride:</u> TMW-2                                                 | March 28, 2022               | lune 24, 2022             |  |  |
| November<br>Sampling E         | Verification Sampling,<br>February 10, 2022<br>February 28,<br>2022<br>Detected<br>Appendix III<br>Parameters (See<br>Note 1) | <u>Sulfate:</u> TMW-2<br><u>TDS:</u> TMW-2       | March 28, 2022                                                               | June 24, 2022                                                                                   |                              |                           |  |  |
| 2022<br>g Event                | Detection Monitoring,<br>April 6-11, 2022                                                                                     | June 5, 2022                                     | Appendix III,<br>Major Cations<br>and Anions                                 | <u>Calcium:</u> TMW-2<br>Chloride: TMW-2                                                        | September 2,                 | November 18,<br>2022      |  |  |
| April 2022<br>Sampling Event   | Verification Sampling,<br>June 22, 2022                                                                                       | July 8, 2022                                     | Detected<br>Appendix III<br>Parameters <sup>(See</sup><br><sub>Note 1)</sub> | Sulfate: TMW-2<br>TDS: TMW-2                                                                    | 2022                         |                           |  |  |
| October 2022<br>Sampling Event | Detection Monitoring,<br>October 24-27, 2022                                                                                  | November, 22<br>2022                             | Appendix III,<br>Major Cations<br>and Anions                                 | To be determined after statistical analyses and<br>Verification Sampling are completed in 2023. |                              |                           |  |  |

Notes:

1) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

2) SSI – Statistically Significant Increase.

3) ASD – Alternative Source Demonstration.

4) TDS – Total Dissolved Solids.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Alternative Source Demonstrations (ASDs) were prepared for each of these sampling events and are discussed further in this Annual Report.

There were no changes made to the monitoring system in 2022 with no new wells being installed or decommissioned.

### **Table of Contents**

| 1.0 | INST  | ALLATION OR DECOMMISSIONING OF MONITORING WELLS | 1 |
|-----|-------|-------------------------------------------------|---|
| 2.0 | GROI  | JNDWATER SAMPLING RESULTS AND DISCUSSION        | 1 |
|     | 2.1   | Detection Monitoring Program                    | 1 |
|     | 2.2   | Groundwater Elevation, Flow Rate and Direction  | 2 |
|     | 2.3   | Sampling Issues                                 | 3 |
| 3.0 | ACTIV | /ITIES PLANNED FOR 2023                         | 3 |

#### TABLES

 Table 1 - Summary of 2022 LCL1 Sampling Events, Previous Year Verification, and Statistical Evaluations (in text)

Table 2 - Summary of Groundwater Sampling Dates (in text)

Table 3 - November 2021 Detection Monitoring Results

 Table 4 - April 2022 Detection Monitoring Results

 Table 5 - October 2022 Detection Monitoring Results

#### FIGURES

Figure 1 - Site Location Aerial Map and Monitoring Well Locations

#### APPENDICES

APPENDIX A Laboratory Analytical Data

#### **APPENDIX B**

Alternative Source Demonstration - November 2021 Sampling Event

#### APPENDIX C

Alternative Source Demonstration - April 2022 Sampling Event

#### APPENDIX D

2022 Potentiometric Surface Maps

#### **1.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS**

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the LCL1. The groundwater monitoring system consists of six (6) groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1**. No new monitoring wells were installed or decommissioned in 2022 as a part of the CCR Rule monitoring program for the LCL1. For more information on the groundwater monitoring network, details are provided in the previous Annual Groundwater Monitoring Reports for the LCL1.

#### 2.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections discuss the sampling events completed for the LCL1 CCR Unit in 2022. **Table 2** below provides a summary of the groundwater samples collected in 2022 including the number of samples, the date of sample collection, and the monitoring program.

|                                        | Groundwater Monitoring Wells |            |            |            |            |            |                       |  |  |
|----------------------------------------|------------------------------|------------|------------|------------|------------|------------|-----------------------|--|--|
| Sampling Event                         | BMW-1S                       | BMW-2S     | MW-26      | TMW-1      | TMW-2      | TMW-3      | Monitoring<br>Program |  |  |
|                                        | Date of Sample Collection    |            |            |            |            |            |                       |  |  |
| February 2022<br>Verification Sampling | -                            | -          | 2/10/2022  | -          | 2/10/2022  | -          | Detection             |  |  |
| April 2022 Sampling<br>Event           | 4/6/2022                     | 4/6/2022   | 4/7/2022   | 4/11/2022  | 4/11/2022  | 4/11/2022  | Detection             |  |  |
| June 2022 Verification<br>Sampling     | -                            | -          | -          | -          | 6/22/2022  | -          | Detection             |  |  |
| October 2022<br>Sampling Event         | 10/27/2022                   | 10/27/2022 | 10/24/2022 | 10/26/2022 | 10/25/2022 | 10/26/2022 | Detection             |  |  |
| Total Number of<br>Samples Collected   | 2                            | 2          | 3          | 2          | 4          | 2          | NA                    |  |  |

Notes:

2.) Verification Sampling events tested for Appendix III parameters above the prediction limit for that analyte/well.

3.) "-" No sample collected.

4.) NA - Not applicable.

#### 2.1 Detection Monitoring Program

A Detection Monitoring sampling event was completed November 1-4, 2021. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2021 event were not completed until 2022 and are therefore included in this report. Detection of Appendix III analytes triggered a verification sampling event, which was completed on February 10, 2022 and verified SSIs. **Table 3** summarizes the results of the statistical analysis of the November 2021 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or

<sup>1.)</sup> Detection Monitoring events tested for Appendix III parameters.

resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An Alternative Source Demonstration (ASD) was completed for these SSIs and is provided in **Appendix B**. This ASD demonstrates that SSIs at the monitoring wells around LCL1 are not caused by the LCL1 CCR unit and the LCL1 CCR unit remains in Detection Monitoring.

As outlined in the Statistical Analysis Plan for this site, updates to the statistical limits are completed once four (4) to eight (8) new sample results are available. After the statistical analysis of the February-April 2021 sampling event, the statistical limits used to determine an SSI were updated according to the Statistical Analysis Plan. These updated limits were used for the November 2021 analysis and will be used in subsequent statistical analyses.

Detection monitoring samples were collected April 6-11, 2022 and testing was completed for all Appendix III analytes, as well as major cations and anions. Detection of Appendix III analytes triggered Verification sampling, which was completed June 22, 2022 and the testing results verified SSIs. **Table 4** summarizes the results of the statistical analysis of the April 2022 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**. As with the November 2021 sampling event, the SSIs reported for the monitoring data were not caused by the LCL1 CCR Unit and an ASD for the April 2022 sampling event is provided in **Appendix C**.

A Detection Monitoring sampling event was completed October 24-27, 2022 and testing was performed for all Appendix III analytes, as well as major cations and anions. Statistical analyses to evaluate for SSIs in the October 2022 data were not completed in 2022 and the results will be provided in the 2023 Annual Report. **Table 5** summarizes the results of the October 2022 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

#### 2.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps included in **Appendix D**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on the potentiometric surface maps, a general flow direction from the south/southwest (bluffs area) to the north/northeast (Missouri River) is observed under normal river conditions. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

Groundwater flow direction and hydraulic gradient were estimated for the alluvial aquifer wells at the Labadie Energy Center (LEC) using commercially available software to evaluate data since 2016. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow in the alluvial aquifer at the LEC is from the bluffs toward the river. Horizontal gradients calculated by the program range from 0.0001 to 0.0008 feet/foot with an estimated net annual groundwater movement of approximately 18 feet per year in the prevailing downgradient direction.

#### 2.3 Sampling Issues

No notable sampling issues were encountered at the LCL1 in 2022.

#### 3.0 ACTIVITIES PLANNED FOR 2023

Detection Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2023. Statistical analysis of the October 2022 Detection Monitoring data will be completed in 2023 and included in the 2023 Annual Report.

## Tables

# Table 3November 2021 Detection Monitoring ResultsLCL1 - Utility Waste Landfill Cell 1Labadie Energy Center, Franklin County, MO

|                        |       | BACKG     | ROUND     |                           |               | GROU                      | INDWATER M | IONITORING V              | VELLS     |                           |           |
|------------------------|-------|-----------|-----------|---------------------------|---------------|---------------------------|------------|---------------------------|-----------|---------------------------|-----------|
| ANALYTE                | UNITS | BMW-1S    | BMW-2S    | Prediction<br>Limit MW-26 | MW-26         | Prediction<br>Limit TMW-1 | TMW-1      | Prediction<br>Limit TMW-2 | TMW-2     | Prediction<br>Limit TMW-3 | TMW-3     |
|                        |       |           | N         | ovember 202               | 1 Detection N | /Ionitoring Eve           | ent        |                           |           |                           |           |
| DATE                   | NA    | 11/1/2021 | 11/1/2021 | NA                        | 11/4/2021     | NA                        | 11/2/2021  | NA                        | 11/2/2021 | NA                        | 11/2/2021 |
| рН                     | SU    | 6.68      | 6.97      | 6.658-7.339               | 6.81          | 6.683-7.105               | 6.89       | 6.42-7.17                 | 6.87      | 6.585-7.07                | 6.73      |
| BORON, TOTAL           | μg/L  | 77.0 J    | 40.7 J    | 102.8                     | 68.7 J        | 121.6                     | 113        | 134.3                     | 119       | 136.9                     | 116       |
| CALCIUM, TOTAL         | μg/L  | 260,000   | 140,000   | 155,150                   | 146,000       | 183,389                   | 161,000    | 205,487                   | 240,000   | 202,001                   | 161,000   |
| CHLORIDE, TOTAL        | mg/L  | 13.7      | 1.7 J     | 6.76                      | 6.2 J         | 5.718                     | 2.6 J      | 7.142                     | 19.7      | 8.621                     | 3.8 J     |
| FLUORIDE, TOTAL        | mg/L  | ND        | 0.14 J    | 0.2118                    | 0.24          | 0.2975                    | 0.27       | 0.2972                    | 0.25      | 0.2626                    | 0.20      |
| SULFATE, TOTAL         | mg/L  | 146       | 46.2      | 38.24                     | 29.3          | 128                       | 61.4       | 115.5                     | 259       | 104                       | 40.3      |
| TOTAL DISSOLVED SOLIDS | mg/L  | 953 J     | 475 J     | 543.7                     | 490           | 733.7                     | 617        | 815.4                     | 960       | 815.4                     | 595       |
|                        |       | -         | F         | February 2022             | Verification  | Sampling Eve              | nt         |                           |           |                           | -         |
| DATE                   | NA    |           |           |                           | 2/10/2022     |                           |            |                           | 2/10/2022 |                           |           |
| рН                     | SU    |           |           |                           |               |                           |            |                           |           |                           |           |
| BORON, TOTAL           | μg/L  |           |           |                           |               |                           |            |                           |           |                           |           |
| CALCIUM, TOTAL         | μg/L  |           |           |                           |               |                           |            |                           | 278,000   |                           |           |
| CHLORIDE, TOTAL        | mg/L  |           |           |                           |               |                           |            |                           | 43.1      |                           |           |
| FLUORIDE, TOTAL        | mg/L  |           |           |                           | ND            |                           |            |                           |           |                           |           |
| SULFATE, TOTAL         | mg/L  |           |           |                           |               |                           |            |                           | 359       |                           |           |
| TOTAL DISSOLVED SOLIDS | mg/L  |           |           |                           |               |                           |            |                           | 1,360 J   |                           |           |

NOTES:

1. Unit Abbreviations:  $\mu g/L$  - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. Prediction Limits calculated using Sanitas Software.

5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).

7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

8. ND - Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Prepared By: EMS Checked By: LMS Reviewed By: MNH

#### Table 4 April 2022 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

|                        |       | BACKG    | ROUND    |                           |                | GROU                      | INDWATER M | IONITORING V              | WELLS     |                           |           |
|------------------------|-------|----------|----------|---------------------------|----------------|---------------------------|------------|---------------------------|-----------|---------------------------|-----------|
| ANALYTE                | UNITS | BMW-1S   | BMW-2S   | Prediction<br>Limit MW-26 | MW-26          | Prediction<br>Limit TMW-1 | TMW-1      | Prediction<br>Limit TMW-2 | TMW-2     | Prediction<br>Limit TMW-3 | TMW-3     |
|                        |       |          |          | April 2022 D              | etection Mor   | nitoring Event            |            |                           | -         |                           |           |
| DATE                   | NA    | 4/6/2022 | 4/6/2022 | NA                        | 4/7/2022       | NA                        | 4/11/2022  | NA                        | 4/11/2022 | NA                        | 4/11/2022 |
| рН                     | SU    | 7.10     | 7.06     | 6.658-7.339               | 6.94           | 6.683-7.105               | 6.95       | 6.42-7.17                 | 6.93      | 6.585-7.07                | 6.82      |
| BORON, TOTAL           | μg/L  | 109      | 55.2 J   | 103                       | 96.8 J         | 121.6                     | 114        | 134.3                     | 110       | 136.9                     | 116       |
| CALCIUM, TOTAL         | μg/L  | 221,000  | 138,000  | 155,150                   | 140,000        | 183,389                   | 165,000    | 205,487                   | 220,000   | 202,001                   | 141,000   |
| CHLORIDE, TOTAL        | mg/L  | 2.5 J    | 2.5 J    | 6.76                      | 5.9 J          | 5.718                     | 2.9 J      | 7.142                     | 11.9      | 8.621                     | 2.5 J     |
| FLUORIDE, TOTAL        | mg/L  | 0.20 J   | 0.19 J   | 0.2118                    | ND             | 0.2975                    | 0.21       | 0.2972                    | ND        | 0.2626                    | 0.20 J    |
| SULFATE, TOTAL         | mg/L  | 38.6     | 45.7     | 38.24                     | 29.0           | 128                       | 91.9       | 115.5                     | 197       | 104                       | 27.8      |
| TOTAL DISSOLVED SOLIDS | mg/L  | 828 J    | 513 J    | 543.7                     | 498            | 733.7                     | 653        | 815.4                     | 975       | 815.4                     | 684       |
|                        |       |          | -        | June 2022 V               | erification Sa | mpling Event              | -          |                           | -         | -                         |           |
| DATE                   | NA    |          |          |                           |                |                           |            |                           | 6/22/2022 |                           |           |
| рН                     | SU    |          |          |                           |                |                           |            |                           |           |                           |           |
| BORON, TOTAL           | μg/L  |          |          |                           |                |                           |            |                           |           |                           |           |
| CALCIUM, TOTAL         | μg/L  |          |          |                           |                |                           |            |                           | 215,000   |                           |           |
| CHLORIDE, TOTAL        | mg/L  |          |          |                           |                |                           |            |                           | 10.0      |                           |           |
| FLUORIDE, TOTAL        | mg/L  |          |          |                           |                |                           |            |                           |           |                           |           |
| SULFATE, TOTAL         | mg/L  |          |          |                           |                |                           |            |                           | 175       |                           |           |
| TOTAL DISSOLVED SOLIDS | mg/L  |          |          |                           |                |                           |            |                           | 940       |                           |           |

NOTES:

1. Unit Abbreviations:  $\mu g/L$  - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. ND - Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

5. Prediction Limits calculated using Sanitas Software.

6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

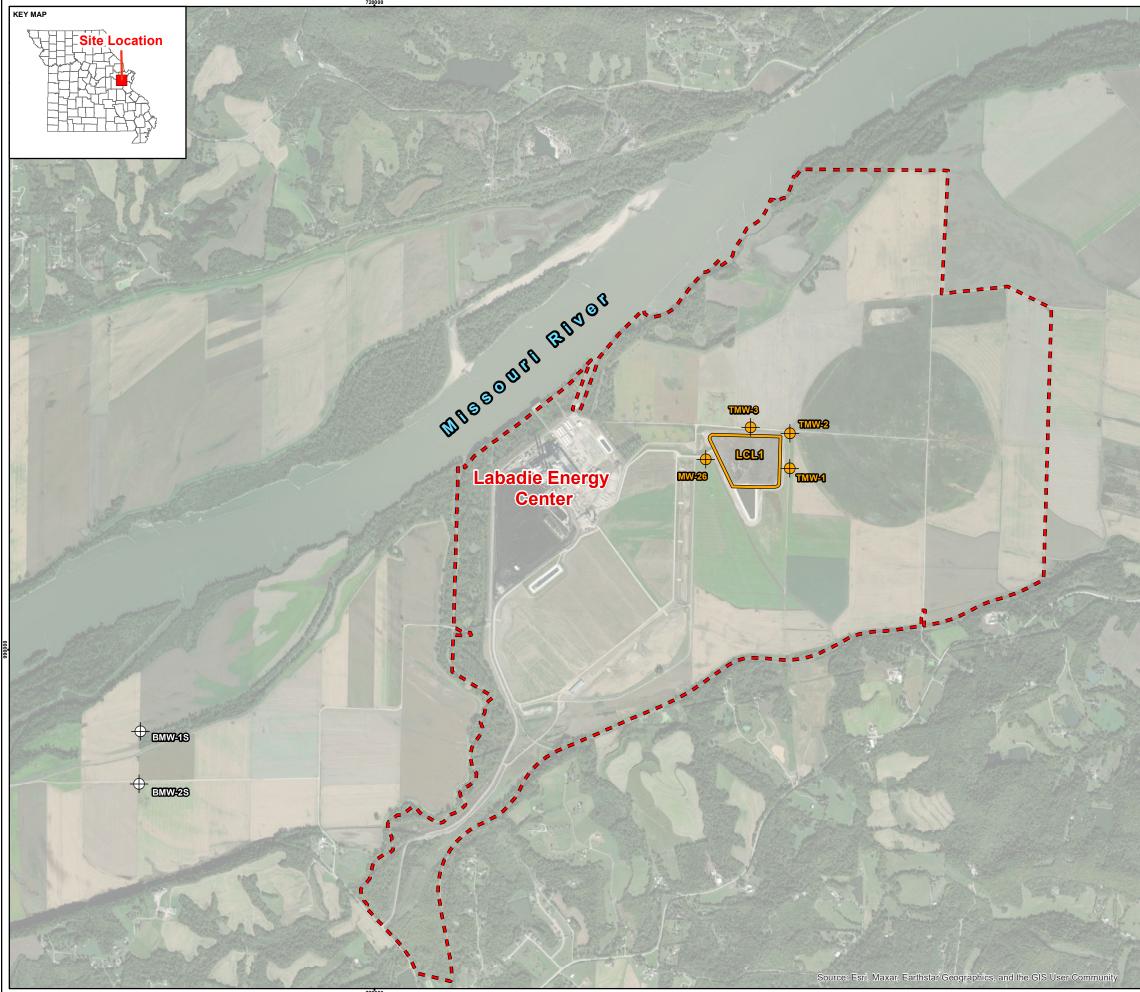
7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

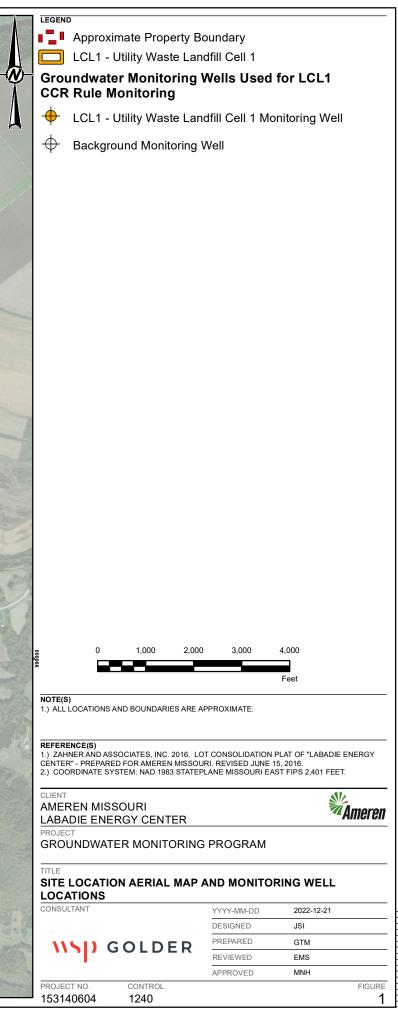
Prepared By: BTT Checked By: GTM Reviewed By: MNH

#### Table 5 October 2022 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

|                                         |       | BACKG        | Round       | GROUNDWATER MONITORING WELLS |            |            |            |  |  |  |  |
|-----------------------------------------|-------|--------------|-------------|------------------------------|------------|------------|------------|--|--|--|--|
| ANALYTE                                 | UNITS | BMW-1S       | BMW-2S      | MW-26                        | TMW-1      | TMW-2      | TMW-3      |  |  |  |  |
|                                         |       | Ostobor 2022 | Detection M | mitoring Fuor                | *          |            |            |  |  |  |  |
| October 2022 Detection Monitoring Event |       |              |             |                              |            |            |            |  |  |  |  |
| DATE                                    | NA    | 10/27/2022   | 10/27/2022  | 10/24/2022                   | 10/26/2022 | 10/25/2022 | 10/26/2022 |  |  |  |  |
| рН                                      | SU    | 6.68         | 6.95        | 6.80                         | 6.80       | 6.67       | 6.79       |  |  |  |  |
| BORON, TOTAL                            | μg/L  | 91.2 J       | 45.3 J      | 68.3 J                       | 115        | 115        | 98.3 J     |  |  |  |  |
| CALCIUM, TOTAL                          | μg/L  | 185,000      | 146,000     | 128,000                      | 159,000    | 246,000 J  | 134,000    |  |  |  |  |
| CHLORIDE, TOTAL                         | mg/L  | 5.9          | 1.4         | 10.3 J                       | 3.2 J      | 18.2       | 3.1        |  |  |  |  |
| FLUORIDE, TOTAL                         | mg/L  | ND           | ND          | ND                           | ND         | ND         | ND         |  |  |  |  |
| SULFATE, TOTAL                          | mg/L  | 66.5         | 34.4        | 31.3                         | 70.8       | 247 J      | 39.5       |  |  |  |  |
| TOTAL DISSOLVED SOLIDS                  | mg/L  | 710          | 496         | 493                          | 664        | 1,070      | 496        |  |  |  |  |

NOTES:


1. Unit Abbreviations: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.


2. J - Result is an estimated value.

3. NA - Not applicable.

4. ND - Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

# Figures





1 In IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFI

APPENDIX A

# Laboratory Analytical Data



February 28, 2022

Jeffrey Ingram Golder Associates 701 Emerson Road, Suite 250 Saint Louis, MO 63141

RE: Project: AMEREN VS LCL1 Pace Project No.: 60392702

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on February 12, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates





#### CERTIFICATIONS

Project: AMEREN VS LCL1

Pace Project No.: 60392702

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



#### SAMPLE SUMMARY

Project: AMEREN VS LCL1

Pace Project No.: 60392702

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60392702001 | L-TMW-2      | Water  | 02/10/22 09:55 | 02/12/22 04:50 |
| 60392702002 | L-MW-26      | Water  | 02/10/22 12:20 | 02/12/22 04:50 |
| 60392702003 | L-LCL1-FB-1  | Water  | 02/10/22 12:30 | 02/12/22 04:50 |
| 60392702004 | L-LCL1-DUP-1 | Water  | 02/10/22 00:00 | 02/12/22 04:50 |



#### SAMPLE ANALYTE COUNT

Project: AMEREN VS LCL1 Pace Project No.: 60392702

| Lab ID      | Sample ID    | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|-----------|----------|----------------------|------------|
| 60392702001 | L-TMW-2      | EPA 200.7 | JLH      | 1                    | PASI-K     |
|             |              | SM 2540C  | BLA      | 1                    | PASI-K     |
|             |              | EPA 300.0 | CRN2, SK | 3                    | PASI-K     |
| 60392702002 | L-MW-26      | EPA 200.7 | JLH      | 1                    | PASI-K     |
|             |              | SM 2540C  | BLA      | 1                    | PASI-K     |
|             |              | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60392702003 | L-LCL1-FB-1  | EPA 200.7 | JLH      | 1                    | PASI-K     |
|             |              | SM 2540C  | BLA      | 1                    | PASI-K     |
|             |              | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60392702004 | L-LCL1-DUP-1 | EPA 200.7 | JLH      | 1                    | PASI-K     |
|             |              | SM 2540C  | BLA      | 1                    | PASI-K     |
|             |              | EPA 300.0 | SK       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



Project: AMEREN VS LCL1

Pace Project No.: 60392702

| Sample: L-TMW-2              | Lab ID: 60392702001 |                 | Collected   | Collected: 02/10/22 09:55 |        | Received: 02/  | Received: 02/12/22 04:50 M |            | atrix: Water |  |
|------------------------------|---------------------|-----------------|-------------|---------------------------|--------|----------------|----------------------------|------------|--------------|--|
| Parameters                   | Results             | Units           | PQL         | MDL                       | DF     | Prepared       | Analyzed                   | CAS No.    | Qual         |  |
| 200.7 Metals, Total          | Analytical          | Method: EPA 2   | 00.7 Prepa  | ration Meth               | od: EP | A 200.7        |                            |            |              |  |
|                              | Pace Anal           | vtical Services | - Kansas Ci | ty                        |        |                |                            |            |              |  |
| Calcium                      | 278000              | ug/L            | 600         | 226                       | 3      | 02/15/22 14:27 | 02/28/22 13:44             | 7440-70-2  |              |  |
| 2540C Total Dissolved Solids | Analytical          | Method: SM 25   | 540C        |                           |        |                |                            |            |              |  |
|                              | Pace Anal           | vtical Services | - Kansas Ci | ty                        |        |                |                            |            |              |  |
| Total Dissolved Solids       | 1360                | mg/L            | 13.3        | 13.3                      | 1      |                | 02/16/22 15:27             |            |              |  |
| 300.0 IC Anions 28 Days      | Analytical          | Method: EPA 3   | 00.0        |                           |        |                |                            |            |              |  |
| -                            | Pace Anal           | vtical Services | - Kansas Ci | ty                        |        |                |                            |            |              |  |
| Chloride                     | 43.1                | mg/L            | 10.0        | 5.3                       | 10     |                | 02/18/22 14:58             | 16887-00-6 |              |  |
| Fluoride                     | 0.16J               | mg/L            | 0.20        | 0.12                      | 1      |                | 02/18/22 14:17             | 16984-48-8 |              |  |
| Sulfate                      | 359                 | mg/L            | 50.0        | 27.5                      | 50     |                | 02/23/22 13:54             | 14808-79-8 |              |  |



Project: AMEREN VS LCL1

Pace Project No.: 60392702

| Sample: L-MW-26              | Lab ID: 60392702002 |                 | Collected: 02/10/22 12:20 |      | Received: 02/12/22 04:50 M |                | atrix: Water   |            |      |
|------------------------------|---------------------|-----------------|---------------------------|------|----------------------------|----------------|----------------|------------|------|
| Parameters                   | Results             | Units           | PQL                       | MDL  | DF                         | Prepared       | Analyzed       | CAS No.    | Qual |
| 200.7 Metals, Total          |                     | Method: EPA 2   | •                         |      | od: EP                     | A 200.7        |                |            |      |
|                              | Pace Analy          | tical Services/ | - Kansas C                | ity  |                            |                |                |            |      |
| Calcium                      | 140000              | ug/L            | 400                       | 151  | 2                          | 02/15/22 14:27 | 02/28/22 13:51 | 7440-70-2  |      |
| 2540C Total Dissolved Solids | Analytical I        | Method: SM 25   | 40C                       |      |                            |                |                |            |      |
|                              | Pace Analy          | tical Services  | - Kansas C                | ity  |                            |                |                |            |      |
| Total Dissolved Solids       | 498                 | mg/L            | 10.0                      | 10.0 | 1                          |                | 02/16/22 15:27 |            |      |
| 300.0 IC Anions 28 Days      | Analytical I        | Method: EPA 3   | 00.0                      |      |                            |                |                |            |      |
| -                            | Pace Analy          | tical Services  | - Kansas Ci               | ity  |                            |                |                |            |      |
| Chloride                     | 5.7                 | mg/L            | 1.0                       | 0.53 | 1                          |                | 02/18/22 15:40 | 16887-00-6 |      |
| Fluoride                     | <0.12               | mg/L            | 0.20                      | 0.12 | 1                          |                | 02/18/22 15:40 | 16984-48-8 |      |
| Sulfate                      | 31.5                | mg/L            | 5.0                       | 2.8  | 5                          |                | 02/18/22 15:54 | 14808-79-8 |      |



#### Project: AMEREN VS LCL1

Pace Project No.: 60392702

| Sample: L-LCL1-FB-1          | Lab ID:    | 60392702003     | Collected   | l: 02/10/22 | 2 12:30 | Received: 02/  | (12/22 04:50 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|-------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 200.7 Prepa | ration Meth | od: EP  | A 200.7        |                 |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Calcium                      | 91.1J      | ug/L            | 200         | 75.4        | 1       | 02/15/22 14:27 | 02/28/22 13:53  | 7440-70-2    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2    | 540C        |             |         |                |                 |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Total Dissolved Solids       | <5.0       | mg/L            | 5.0         | 5.0         | 1       |                | 02/16/22 15:27  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 300.0       |             |         |                |                 |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Chloride                     | <0.53      | mg/L            | 1.0         | 0.53        | 1       |                | 02/18/22 16:08  | 16887-00-6   |      |
| Fluoride                     | <0.12      | mg/L            | 0.20        | 0.12        | 1       |                | 02/18/22 16:08  | 16984-48-8   |      |
| Sulfate                      | <0.55      | mg/L            | 1.0         | 0.55        | 1       |                | 02/18/22 16:08  | 14808-79-8   |      |



Project: AMEREN VS LCL1

Pace Project No.: 60392702

| Sample: L-LCL1-DUP-1         | Lab ID:    | 60392702004     | Collected                      | : 02/10/22  | 2 00:00 | Received: 02/  | 12/22 04:50 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|--------------------------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL                            | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 00.7 Prepa                     | ration Meth | od: EP  | A 200.7        |                |              |      |
|                              | Pace Anal  | ytical Services | <ul> <li>Kansas Cit</li> </ul> | ty          |         |                |                |              |      |
| Calcium                      | 292000     | ug/L            | 1000                           | 377         | 5       | 02/15/22 14:27 | 02/28/22 13:55 | 7440-70-2    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 540C                           |             |         |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Cit                   | iy .        |         |                |                |              |      |
| Total Dissolved Solids       | 1060       | mg/L            | 13.3                           | 13.3        | 1       |                | 02/17/22 09:33 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0                           |             |         |                |                |              |      |
| -                            | Pace Anal  | ytical Services | - Kansas Cit                   | y           |         |                |                |              |      |
| Chloride                     | 41.3       | mg/L            | 10.0                           | 5.3         | 10      |                | 02/25/22 16:55 | 16887-00-6   |      |
| Fluoride                     | <0.12      | mg/L            | 0.20                           | 0.12        | 1       |                | 02/25/22 15:49 | 16984-48-8   |      |
| Sulfate                      | 352        | mg/L            | 50.0                           | 27.5        | 50      |                | 02/28/22 10:57 | 14808-79-8   |      |



| Project:                                                          | AMEREN VS LCL         | 1                                                                |                                              |                                          |                                     |                                        |            |                                        |                               |           |     |      |
|-------------------------------------------------------------------|-----------------------|------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------|------------|----------------------------------------|-------------------------------|-----------|-----|------|
| Pace Project No.:                                                 | 60392702              |                                                                  |                                              |                                          |                                     |                                        |            |                                        |                               |           |     |      |
| QC Batch:                                                         | 771128                |                                                                  | Analy                                        | sis Metho                                | d: l                                | EPA 200.7                              |            |                                        |                               |           |     |      |
| QC Batch Method:                                                  | EPA 200.7             |                                                                  | Analysis Description:                        |                                          |                                     | 200.7 Metal                            | s, Total   |                                        |                               |           |     |      |
|                                                                   |                       |                                                                  | Labo                                         | Laboratory:                              |                                     | Pace Analytical Services - Kansas City |            |                                        |                               |           |     |      |
| Associated Lab Sam                                                | ples: 60392702        | 001, 6039270200                                                  | 02, 6039270                                  | 2003, 603                                | 92702004                            |                                        |            |                                        |                               |           |     |      |
| METHOD BLANK:                                                     | 3079100               |                                                                  |                                              | Matrix: W                                | ater                                |                                        |            |                                        |                               |           |     |      |
| Associated Lab Sam                                                | ples: 60392702        | 001, 6039270200                                                  | 2, 6039270                                   | 2003, 603                                | 92702004                            |                                        |            |                                        |                               |           |     |      |
|                                                                   |                       |                                                                  | Blar                                         | nk l                                     | Reporting                           |                                        |            |                                        |                               |           |     |      |
|                                                                   |                       | Units                                                            | Res                                          | ult                                      | Limit                               | MDI                                    | _          | Analyzed                               | d Qı                          | ualifiers |     |      |
| Param                                                             | leter                 | Onito                                                            |                                              |                                          |                                     |                                        |            |                                        |                               |           |     |      |
| Param                                                             |                       | ug/L                                                             |                                              | <75.4                                    | 20                                  | 0                                      | 75.4       | 02/28/22 13                            | 3:38                          |           |     |      |
|                                                                   | ITROL SAMPLE:         |                                                                  | Spike<br>Conc.                               |                                          | S                                   | LCS<br>% Rec                           | %          | 02/28/22 13<br>Rec<br>imits            | Qualifiers                    |           |     |      |
| Calcium<br>LABORATORY CON                                         | ITROL SAMPLE:         | ug/L<br>3079101                                                  | Spike                                        | <75.4<br>LC<br>Res                       | S                                   | LCS                                    | %<br>Li    | Rec                                    |                               |           |     |      |
| Calcium<br>LABORATORY CON<br>Param                                | ITROL SAMPLE:         | ug/L<br>3079101<br>Units<br>ug/L                                 | Spike<br>Conc.<br>1000                       | <75.4<br>LC<br>Res                       | S<br>Sult                           | LCS<br>% Rec<br>10 <sup>7</sup>        | %<br>Li    | Rec                                    |                               |           |     |      |
| Calcium<br>LABORATORY CON<br>Param<br>Calcium                     | ITROL SAMPLE:         | ug/L<br>3079101<br>Units<br>ug/L<br>PLICATE: 3079                | Spike<br>                                    | <75.4<br>LC<br>Res<br>10<br>MSD          | S<br>sult<br>10100<br>3079103       | LCS<br>% Rec<br>10 <sup>7</sup>        | %<br><br>I | Rec<br>imits<br>85-115                 | Qualifiers                    |           |     |      |
| Calcium<br>LABORATORY CON<br>Param<br>Calcium<br>MATRIX SPIKE & M | ITROL SAMPLE:<br>eter | ug/L<br>3079101<br>Units<br>ug/L<br>PLICATE: 3079<br>60392702001 | Spike<br>Conc.<br>1000<br>102<br>MS<br>Spike | <75.4<br>LC<br>Res<br>00<br>MSD<br>Spike | S<br>Sult<br>10100<br>3079103<br>MS | LCS<br>% Rec<br>10 <sup>7</sup><br>MSD | Li<br>MS   | Rec<br>imits<br>85-115<br>MSD          | Qualifiers<br>% Rec           | -         | Max | 0.0  |
| Calcium<br>LABORATORY CON<br>Param<br>Calcium                     | ITROL SAMPLE:         | ug/L<br>3079101<br>Units<br>ug/L<br>PLICATE: 3079<br>60392702001 | Spike<br>                                    | <75.4<br>LC<br>Res<br>10<br>MSD          | S<br>sult<br>10100<br>3079103       | LCS<br>% Rec<br>10 <sup>7</sup>        | %<br><br>I | Rec<br>imits<br>85-115<br>MSD<br>% Rec | Qualifiers<br>% Rec<br>Limits |           | RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:             | AMERE   | N VS LCL  | 1              |                 |             |          |           |              |        |            |
|----------------------|---------|-----------|----------------|-----------------|-------------|----------|-----------|--------------|--------|------------|
| Pace Project No.:    | 6039270 | 02        |                |                 |             |          |           |              |        |            |
| QC Batch:            | 77142   | 7         |                | Analysis Me     | ethod:      | SM 25400 | ;         |              |        |            |
| QC Batch Method:     | SM 25   | 40C       |                | Analysis De     | escription: | 2540C To | tal Disso | Ived Solids  |        |            |
|                      |         |           |                | Laboratory:     |             |          |           | ervices - Ka | nsas C | ity        |
| Associated Lab Sar   | nples:  | 603927020 | 001, 603927020 | 02, 60392702003 |             |          |           |              |        |            |
| METHOD BLANK:        | 3080232 | 2         |                | Matrix          | : Water     |          |           |              |        |            |
| Associated Lab Sar   | nples:  | 603927020 | 001, 603927020 | 02, 60392702003 |             |          |           |              |        |            |
|                      |         |           |                | Blank           | Reporting   | J        |           |              |        |            |
| Paran                | neter   |           | Units          | Result          | Limit       | Μ        | DL        | Analyz       | zed    | Qualifiers |
| Total Dissolved Soli | ds      |           | mg/L           |                 |             | 5.0      | 5.0       | 02/16/22     | 15:24  |            |
|                      |         |           |                |                 |             |          |           |              |        |            |
| LABORATORY CO        | NTROL S | AMPLE:    | 3080233        |                 |             |          |           |              |        |            |
|                      |         |           |                | Spike           | LCS         | LCS      |           | % Rec        |        |            |
| Paran                | neter   |           | Units          | Conc.           | Result      | % Rec    |           | Limits       | Qua    | alifiers   |
| Total Dissolved Soli | ds      |           | mg/L           | 1000            | 1010        | 1        | 01        | 80-120       |        |            |
|                      |         |           |                |                 |             |          |           |              |        |            |
| SAMPLE DUPLICA       | TE: 308 | 80234     |                |                 |             |          |           |              |        |            |
| _                    |         |           |                | 60392429003     | Dup         | -        |           | Max          |        | 0 11       |
| Parar                | neter   |           | Units          | Result          | Result      | R        | PD        | RPD          |        | Qualifiers |
| Total Dissolved Soli | ds      |           | mg/L           | 883             |             | 903      | 2         |              | 10     |            |
|                      |         |           |                |                 |             |          |           |              |        |            |
| SAMPLE DUPLICA       | TE: 308 | 80235     |                |                 |             |          |           |              |        |            |
|                      |         |           |                | 60392702001     | Dup         |          |           | Max          |        |            |
| Parar                | neter   |           | Units          | Result          | Result      | RI       | PD        | RPD          |        | Qualifiers |
| Total Dissolved Soli | ds      |           | mg/L           | 1360            | 1:          | 300      | 5         |              | 10     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

| Project: AMEREN VS LCL                         | 1       |             |             |              |         |              |        |            |
|------------------------------------------------|---------|-------------|-------------|--------------|---------|--------------|--------|------------|
| Pace Project No.: 60392702<br>QC Batch: 771592 |         | Apolycia    | Actord:     | SM 2540C     |         |              |        |            |
|                                                |         | Analysis N  |             |              | D'      |              |        |            |
| QC Batch Method: SM 2540C                      |         |             | escription: | 2540C Total  |         |              |        |            |
| Associated Lab Samples: 60392702               | 004     | Laboratory  | /:          | Pace Analyti | cal Sel | rvices - Kar | isas C | ity        |
| METHOD BLANK: 3080734                          |         | Matri       | ix: Water   |              |         |              |        |            |
| Associated Lab Samples: 60392702               | 004     |             |             |              |         |              |        |            |
|                                                |         | Blank       | Reportin    | g            |         |              |        |            |
| Parameter                                      | Units   | Result      | Limit       | MDL          | -       | Analyz       | zed    | Qualifiers |
| Total Dissolved Solids                         | mg/L    | <5.         | 0           | 5.0          | 5.0     | 02/17/22     | 09:32  |            |
| LABORATORY CONTROL SAMPLE:                     | 3080735 | Spike       | LCS         | LCS          | 9       | 6 Rec        |        |            |
| Parameter                                      | Units   | Conc.       | Result      | % Rec        | L       | _imits       | Qua    | alifiers   |
| Total Dissolved Solids                         | mg/L    | 1000        | 991         | 99           | )       | 80-120       |        |            |
| SAMPLE DUPLICATE: 3080736                      |         |             |             |              |         |              |        |            |
|                                                |         | 60392705006 |             |              |         | Max          |        |            |
| Parameter                                      | Units   | Result      | Result      | RPD          |         | RPD          |        | Qualifiers |
| Total Dissolved Solids                         | mg/L    | 56          | 4           | 551          | 2       |              | 10     |            |
| SAMPLE DUPLICATE: 3080737                      |         |             |             |              |         |              |        |            |
|                                                |         | 60392712001 |             |              |         | Max          |        |            |
| Parameter                                      | Units   | Result      | Result      | RPD          |         | RPD          |        | Qualifiers |
| Total Dissolved Solids                         | mg/L    | 67          | 4           | 671          | 0       |              | 10     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch: 771                                                                                                                                                                              | 702       |                                                                                                                                        | Analy                                                                   | sis Meth                                                                                          | od:                                                                                                          | EPA 300.0                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|-----------|-----|
|                                                                                                                                                                                            | 300.0     |                                                                                                                                        | -                                                                       | sis Desc                                                                                          |                                                                                                              | 300.0 IC Ani                                                                                      | ons            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
|                                                                                                                                                                                            |           |                                                                                                                                        |                                                                         | ratory:                                                                                           | •                                                                                                            | Pace Analyti                                                                                      |                | vices - Kans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as Citv                                              |            |           |     |
| Associated Lab Samples:                                                                                                                                                                    | 603927020 | 01, 6039270200                                                                                                                         |                                                                         | •                                                                                                 |                                                                                                              | i acc / illaly i                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| METHOD BLANK: 30812                                                                                                                                                                        | 280       |                                                                                                                                        |                                                                         | Matrix:                                                                                           | Water                                                                                                        |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| Associated Lab Samples:                                                                                                                                                                    | 603927020 | 01, 6039270200                                                                                                                         |                                                                         |                                                                                                   |                                                                                                              |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| -                                                                                                                                                                                          |           |                                                                                                                                        | Blan                                                                    |                                                                                                   | Reporting                                                                                                    |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| Parameter                                                                                                                                                                                  |           | Units                                                                                                                                  | Resu                                                                    | ult                                                                                               | Limit                                                                                                        | MDL                                                                                               |                | Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d G                                                  | ualifiers  |           |     |
| Chloride                                                                                                                                                                                   |           | mg/L                                                                                                                                   |                                                                         | <0.53                                                                                             | 1.                                                                                                           |                                                                                                   | 0.53           | 02/18/22 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |            |           |     |
| Fluoride                                                                                                                                                                                   |           | mg/L                                                                                                                                   |                                                                         | <0.12                                                                                             | 0.2                                                                                                          |                                                                                                   | 0.12           | 02/18/22 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |            |           |     |
| Sulfate                                                                                                                                                                                    |           | mg/L                                                                                                                                   |                                                                         | <0.55                                                                                             | 1.                                                                                                           | 0                                                                                                 | 0.55           | 02/18/22 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7:28                                                 |            |           |     |
| METHOD BLANK: 3084                                                                                                                                                                         | 126       |                                                                                                                                        |                                                                         | Matrix:                                                                                           | Water                                                                                                        |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| Associated Lab Samples:                                                                                                                                                                    | 603927020 | 01, 6039270200                                                                                                                         |                                                                         |                                                                                                   |                                                                                                              |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
|                                                                                                                                                                                            | 000021020 | .,                                                                                                                                     | Blan                                                                    |                                                                                                   | Reporting                                                                                                    |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
| Parameter                                                                                                                                                                                  |           | Units                                                                                                                                  | Resu                                                                    |                                                                                                   | Limit                                                                                                        | MDL                                                                                               |                | Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d C                                                  | ualifiers  |           |     |
| Chloride                                                                                                                                                                                   |           | mg/L                                                                                                                                   |                                                                         | <0.53                                                                                             | 1.                                                                                                           | 0                                                                                                 | 0.53           | 02/23/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>⊇·22                                             |            |           |     |
| Fluoride                                                                                                                                                                                   |           | mg/L                                                                                                                                   |                                                                         | <0.12                                                                                             | 0.2                                                                                                          |                                                                                                   | 0.12           | 02/23/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |            |           |     |
| Sulfate                                                                                                                                                                                    |           | -                                                                                                                                      |                                                                         |                                                                                                   |                                                                                                              |                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |            |           |     |
|                                                                                                                                                                                            |           | mg/L                                                                                                                                   |                                                                         | <0.55                                                                                             | 1.                                                                                                           | 0                                                                                                 | 0.55           | 02/23/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9:22                                                 |            |           |     |
| LABORATORY CONTROL                                                                                                                                                                         | SAMPLE:   | 3081281                                                                                                                                | Spike                                                                   | L                                                                                                 | .CS                                                                                                          | LCS                                                                                               | %              | Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |            |           |     |
| LABORATORY CONTROL<br>Parameter                                                                                                                                                            | SAMPLE:   | 3081281<br>Units                                                                                                                       | Conc.                                                                   | L<br>R                                                                                            | .CS<br>esult                                                                                                 | LCS<br>% Rec                                                                                      | %<br>L         | Rec<br>imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualifiers                                           |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride                                                                                                                                                | SAMPLE:   | 3081281<br>Units<br>mg/L                                                                                                               | Conc.                                                                   | L<br>R<br>5                                                                                       | .CS<br>esult<br>4.5                                                                                          | LCS<br>% Rec<br>91                                                                                | %<br>L         | o Rec<br>imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                                                                                                                    | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L                                                                                                       | Conc.<br>2.                                                             | L<br>R<br>5<br>5<br>5                                                                             | CS<br>esult<br>4.5<br>2.6                                                                                    | LCS<br>% Rec<br>91<br>103                                                                         | %<br>L         | 90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |            |           |     |
| ABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                                                                                                                     | SAMPLE:   | 3081281<br>Units<br>mg/L                                                                                                               | Conc.<br>2.                                                             | L<br>R<br>5                                                                                       | .CS<br>esult<br>4.5                                                                                          | LCS<br>% Rec<br>91                                                                                | %<br>L         | o Rec<br>imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                                         |           | 3081281<br>Units<br>mg/L<br>mg/L                                                                                                       | Conc.<br>2.                                                             | L<br>R<br>5<br>5<br>5<br>5                                                                        | CS<br>esult<br>4.5<br>2.6<br>4.8                                                                             | LCS<br>% Rec<br>91<br>103<br>96                                                                   | %<br>          | 90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | _          |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL                                                                                                   |           | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127                                                                                    | Conc.<br>2.<br>Spike                                                    | L<br>R<br>5<br>5<br>5<br>5                                                                        | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS                                                                       | LCS<br>% Rec<br>91<br>103<br>96<br>LCS                                                            | %<br>          | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qualifiers                                           |            |           |     |
| ABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                                          |           | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L                                                                                               | Conc.<br>2.                                                             | L<br>R<br>5<br>5<br>5<br>5                                                                        | CS<br>esult<br>4.5<br>2.6<br>4.8                                                                             | LCS<br>% Rec<br>91<br>103<br>96                                                                   | %<br>          | 90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride                                                                          |           | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L                                                                   | Conc.                                                                   | L<br>5<br>5<br>5<br>5<br>5<br>5                                                                   | .CS<br>esult<br>4.5<br>2.6<br>4.8<br>.CS<br>esult<br>4.9                                                     | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99                                             | %<br><br>%<br> | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qualifiers                                           |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                                              |           | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L                                                           | Spike<br>Conc.                                                          | L<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                         | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5                                                | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102                                      | %<br><br>%<br> | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifiers                                           |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                                              |           | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L                                                                   | Spike<br>Conc.                                                          | L<br>5<br>5<br>5<br>5<br>5<br>5                                                                   | .CS<br>esult<br>4.5<br>2.6<br>4.8<br>.CS<br>esult<br>4.9                                                     | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99                                             | %<br><br>%<br> | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qualifiers                                           |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                               | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L                                                   |                                                                         | L<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                          | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5                                                | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102                               | %<br><br>%<br> | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifiers                                           |            |           |     |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                               | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                   | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>282<br>MS                        | L<br>R<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                           | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5<br>5.1<br>3081283                              | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102                               | %<br><br><br>  | 6 Rec<br>90-110<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifiers                                           |            |           |     |
| ABORATORY CONTROL<br>Parameter<br>Chloride<br>Sulfate<br>ABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                 | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 30812<br>60392271002                   | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>282<br>MS<br>Spike               | L<br>R<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5  | .CS<br>esult<br>4.5<br>2.6<br>4.8<br>.CS<br>esult<br>4.9<br>2.5<br>5.1<br>3081283<br>MS                      | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102<br>102                        | %<br>%<br>     | 6 Rec<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifiers Qualifiers % Rec                          | _          | Max       |     |
| ABORATORY CONTROL Parameter Chloride Fluoride Sulfate ABORATORY CONTROL Parameter Chloride Fluoride Sulfate                                                                                | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                                   | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>282<br>MS                        | L<br>R<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                           | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5<br>5.1<br>3081283                              | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102                               | %<br><br><br>  | 6 Rec<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifiers                                           |            | RPD       | Qu  |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX<br>Parameter<br>Chloride | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 30812<br>60392271002<br>Result<br>10.6 | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>282<br>MS<br>Spike<br>Conc.<br>5 | L<br>Ri<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5<br>5.1<br>3081283<br>MS<br>Result<br>5<br>16.0 | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102<br>3<br>MSD<br>Result<br>16.0 | %<br>          | 6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90 | Qualifiers Qualifiers % Rec Limits 8 80-120          | 0 0        | RPD<br>15 | Qu  |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX                                      | SAMPLE:   | 3081281<br>Units<br>mg/L<br>mg/L<br>mg/L<br>3084127<br>Units<br>mg/L<br>mg/L<br>mg/L<br>LICATE: 30813<br>60392271002<br>Result         | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>282<br>MS<br>Spike<br>Conc.      | L<br>Ri<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | CS<br>esult<br>4.5<br>2.6<br>4.8<br>CS<br>esult<br>4.9<br>2.5<br>5.1<br>3081283<br>MS<br>Result<br>5<br>16.0 | LCS<br>% Rec<br>91<br>103<br>96<br>LCS<br>% Rec<br>99<br>102<br>102<br>3<br>MSD<br>Result         | %<br>          | 6 Rec<br>90-110<br>90-110<br>90-110<br>90-110<br>6 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-8<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10                 | Qualifiers Qualifiers % Rec Limits 8 80-120 7 80-120 | 0 0<br>0 1 | RPD       | Qua |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: AMEREN VS LCL1 Pace Project No.: 60392702

| MATRIX SPIKE & MATRIX S | PIKE DUPLIC | CATE: 3081 | 284         |              | 3081285 |        |       |       |        |     |     |      |
|-------------------------|-------------|------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                         | 6           | 0392702001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter               | Units       | Result     | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                | mg/L        | 43.1       | 50          | 50           | 92.3    | 93.0   | 99    | 100   | 80-120 | 1   | 15  |      |
| Fluoride                | mg/L        | 0.16J      | 2.5         | 2.5          | 3.0     | 3.0    | 113   | 115   | 80-120 | 1   | 15  |      |
| Sulfate                 | mg/L        | 359        | 250         | 250          | 604     | 618    | 98    | 103   | 80-120 | 2   | 15  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| QC Batch: 772728                                                                                                                                         |                                                                                   | Analysis Me                                                          | ethod:                                    | EPA 300.0                                                                                               |                                                |                                                                                    |                                   |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|------------|
| QC Batch Method: EPA 300.0                                                                                                                               |                                                                                   | Analysis De                                                          |                                           | 300.0 IC A                                                                                              | nions                                          |                                                                                    |                                   |            |
|                                                                                                                                                          |                                                                                   | Laboratory:                                                          |                                           | Pace Analy                                                                                              | tical Se                                       | rvices - Kar                                                                       | isas City                         | /          |
| Associated Lab Samples: 6039270                                                                                                                          | 2004                                                                              |                                                                      |                                           |                                                                                                         |                                                |                                                                                    |                                   |            |
| METHOD BLANK: 3085023                                                                                                                                    |                                                                                   | Matrix                                                               | c: Water                                  |                                                                                                         |                                                |                                                                                    |                                   |            |
| Associated Lab Samples: 6039270                                                                                                                          | 2004                                                                              |                                                                      |                                           |                                                                                                         |                                                |                                                                                    |                                   |            |
| _                                                                                                                                                        |                                                                                   | Blank                                                                | Reporting                                 |                                                                                                         |                                                |                                                                                    |                                   |            |
| Parameter                                                                                                                                                | Units                                                                             | Result                                                               | Limit                                     | M                                                                                                       | DL                                             | Analyz                                                                             | ed                                | Qualifiers |
| Chloride                                                                                                                                                 | mg/L                                                                              | <0.53                                                                |                                           | 1.0                                                                                                     | 0.53                                           | 02/25/22                                                                           |                                   |            |
| Fluoride                                                                                                                                                 | mg/L                                                                              | <0.12                                                                |                                           | .20                                                                                                     | 0.12                                           | 02/25/22                                                                           |                                   |            |
| Sulfate                                                                                                                                                  | mg/L                                                                              | <0.55                                                                | 5                                         | 1.0                                                                                                     | 0.55                                           | 02/25/22                                                                           | 15:22                             |            |
| METHOD BLANK: 3086228                                                                                                                                    |                                                                                   | Matrix                                                               | c Water                                   |                                                                                                         |                                                |                                                                                    |                                   |            |
| Associated Lab Samples: 6039270                                                                                                                          | 2004                                                                              |                                                                      |                                           |                                                                                                         |                                                |                                                                                    |                                   |            |
|                                                                                                                                                          |                                                                                   | Blank                                                                | Reporting                                 | 3                                                                                                       |                                                |                                                                                    |                                   |            |
| Parameter                                                                                                                                                | Units                                                                             | Result                                                               | Limit                                     | M                                                                                                       | DL                                             | Analyz                                                                             | ed                                | Qualifiers |
| Chloride                                                                                                                                                 | mg/L                                                                              | <0.53                                                                | 3                                         | 1.0                                                                                                     | 0.53                                           | 02/28/22                                                                           | 10:29                             |            |
| Fluoride                                                                                                                                                 | mg/L                                                                              | <0.12                                                                |                                           | .20                                                                                                     | 0.12                                           | 02/28/22                                                                           |                                   |            |
| Sulfate                                                                                                                                                  | mg/L                                                                              | <0.55                                                                | 5                                         | 1.0                                                                                                     | 0.55                                           | 02/28/22                                                                           | 10:29                             |            |
| METHOD BLANK: 3086244                                                                                                                                    |                                                                                   | Matrix                                                               | c Water                                   |                                                                                                         |                                                |                                                                                    |                                   |            |
|                                                                                                                                                          | 2004                                                                              |                                                                      |                                           |                                                                                                         |                                                |                                                                                    |                                   |            |
| Associated Lab Samples: 6039270                                                                                                                          |                                                                                   |                                                                      |                                           |                                                                                                         |                                                |                                                                                    |                                   |            |
| Associated Lab Samples: 6039270                                                                                                                          | 2004                                                                              | Blank                                                                | Reporting                                 | a la                                                                |                                                |                                                                                    |                                   |            |
| Associated Lab Samples: 6039270<br>Parameter                                                                                                             | Units                                                                             | Blank<br>Result                                                      | Reporting<br>Limit                        | )<br>M                                                                                                  | DL                                             | Analyz                                                                             | ed                                | Qualifiers |
| Parameter                                                                                                                                                | Units                                                                             | Result                                                               | Limit                                     | M                                                                                                       |                                                |                                                                                    |                                   | Qualifiers |
|                                                                                                                                                          | Units<br>mg/L                                                                     |                                                                      | Limit                                     | -                                                                                                       | DL<br>0.53<br>0.12                             | Analyz<br>02/28/22<br>02/28/22                                                     | 12:27                             | Qualifiers |
| Parameter                                                                                                                                                | Units                                                                             | Result<br><0.53                                                      | Limit<br>2 0                              | 1.0 ME                                                                                                  | 0.53                                           | 02/28/22                                                                           | 12:27<br>12:27                    | Qualifiers |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                             | Units<br>mg/L<br>mg/L<br>mg/L                                                     | Result<br><0.53<br><0.12                                             | Limit<br>2 0                              | 1.0<br>0.20                                                                                             | 0.53<br>0.12                                   | 02/28/22<br>02/28/22                                                               | 12:27<br>12:27                    | Qualifiers |
| Parameter<br>Chloride<br>Fluoride                                                                                                                        | Units<br>mg/L<br>mg/L                                                             | Result<br><0.53<br><0.12<br><0.55                                    | Limit<br>2 0                              | MI<br>1.0<br>1.20<br>1.0                                                                                | 0.53<br>0.12<br>0.55                           | 02/28/22<br>02/28/22<br>02/28/22                                                   | 12:27<br>12:27                    | Qualifiers |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:                                                                               | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024                                          | Result<br><0.53<br><0.12<br><0.55<br><0.55                           | Limit<br>Limit                            | <u>MI</u><br>1.0<br>1.20<br>1.0<br>LCS                                                                  | 0.53<br>0.12<br>0.55                           | 02/28/22<br>02/28/22<br>02/28/22                                                   | 12:27<br>12:27<br>12:27           |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter                                                                  | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units                                 | Result<br><0.53<br><0.12<br><0.55<br><0.55                           | LCS<br>Result                             | LCS<br>% Rec                                                                                            | 0.53<br>0.12<br>0.55                           | 02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>_imits                                | 12:27<br>12:27                    |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride                                                      | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L                         | Result<br><0.53<br><0.12<br><0.55<br><0.55<br><0.55<br><0.55         | LCS<br>Result<br>4.6                      | LCS<br>% Rec                                                                                            | 0.53<br>0.12<br>0.55                           | 02/28/22<br>02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>.imits<br>90-110          | 12:27<br>12:27<br>12:27           |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride<br>Fluoride                                          | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L<br>mg/L                 | Result<br><0.53<br><0.12<br><0.55<br><0.55<br><0.55<br><0.55         | LCS<br>Result<br>4.6<br>2.5               | LCS<br>% Rec                                                                                            | 0.53<br>0.12<br>0.55<br>9<br>                  | 02/28/22<br>02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>imits<br>90-110<br>90-110 | 12:27<br>12:27<br>12:27           |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride                                                      | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L                         | Result<br><0.53<br><0.12<br><0.55<br><0.55<br><0.55<br><0.55         | LCS<br>Result<br>4.6                      | LCS<br>% Rec                                                                                            | 0.53<br>0.12<br>0.55                           | 02/28/22<br>02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>.imits<br>90-110          | 12:27<br>12:27<br>12:27           |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride<br>Fluoride                                          | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L<br>mg/L                 | Result<br><0.53<br><0.12<br><0.55<br>Spike<br>Conc.<br>5<br>2.5<br>5 | LCS<br>Result<br>4.6<br>2.5<br>4.8        | MI<br>1.0<br>1.0<br>LCS<br>% Rec<br>10                                                                  | 0.53<br>0.12<br>0.55<br>9<br>                  | 02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>Limits<br>90-110<br>90-110<br>90-110  | 12:27<br>12:27<br>12:27           |            |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE: | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L | Result<br>                                                           | LCS<br>Result<br>LCS<br>4.6<br>2.5<br>4.8 | MI<br>1.0<br>LCS<br>% Rec<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 0.53<br>0.12<br>0.55<br>0.55<br>00<br>00<br>07 | 02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>Limits<br>90-110<br>90-110<br>90-110  | 12:27<br>12:27<br>12:27<br>Qualit | fiers      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                               | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L<br>mg/L<br>mg/L         | Result<br><0.53<br><0.12<br><0.55<br>Spike<br>Conc.<br>5<br>2.5<br>5 | LCS<br>Result<br>4.6<br>2.5<br>4.8        | MI<br>1.0<br>1.0<br>LCS<br>% Rec<br>10                                                                  | 0.53<br>0.12<br>0.55<br>0.55<br>00<br>00<br>07 | 02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>Limits<br>90-110<br>90-110<br>90-110  | 12:27<br>12:27<br>12:27           | fiers      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE:<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL SAMPLE: | Units<br>mg/L<br>mg/L<br>mg/L<br>3085024<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L | Result<br>                                                           | LCS<br>Result<br>LCS<br>4.6<br>2.5<br>4.8 | LCS<br>% Rec                                                                                            | 0.53<br>0.12<br>0.55<br>0.55<br>00<br>00<br>07 | 02/28/22<br>02/28/22<br>02/28/22<br>6 Rec<br>Limits<br>90-110<br>90-110<br>90-110  | 12:27<br>12:27<br>12:27<br>Qualit | fiers      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### Project: AMEREN VS LCL1

Pace Project No.: 60392702

| LABORATORY CONTROL SAMPLE: | 3086245 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 5     | 4.5    | 90    | 90-110 |            |
| Fluoride                   | mg/L    | 2.5   | 2.5    | 98    | 90-110 |            |
| Sulfate                    | mg/L    | 5     | 4.7    | 93    | 90-110 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPLI | CATE: 3085  | 025   |       | 3085026 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | e         | 60392702004 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L      | 41.3        | 50    | 50    | 94.9    | 95.1   | 107   | 108   | 80-120 | 0   | 15  |      |
| Fluoride                 | mg/L      | <0.12       | 2.5   | 2.5   | 2.6     | 2.6    | 103   | 102   | 80-120 | 1   | 15  |      |
| Sulfate                  | mg/L      | 352         | 250   | 250   | 601     | 606    | 99    | 101   | 80-120 | 1   | 15  |      |

| MATRIX SPIKE SAMPLE: | 3085027 |             |       |        |       |          |            |
|----------------------|---------|-------------|-------|--------|-------|----------|------------|
|                      |         | 60392967005 | Spike | MS     | MS    | % Rec    |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits   | Qualifiers |
| Chloride             | mg/L    | 118         | 100   | 244    | 126   | 80-120   | M1         |
| Fluoride             | mg/L    | ND          | 2.5   | 3.1    | 116   | 80-120   |            |
| Sulfate              | mg/L    | 223         | 100   | 354    | 131   | 80-120 I | V1         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: AMEREN VS LCL1

Pace Project No.: 60392702

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | AMEREN VS LCL1 |
|--------------------|----------------|
| Pace Project No .: | 60392702       |

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60392702001 | L-TMW-2      | EPA 200.7       | 771128   | EPA 200.7         | 771338              |
| 60392702002 | L-MW-26      | EPA 200.7       | 771128   | EPA 200.7         | 771338              |
| 60392702003 | L-LCL1-FB-1  | EPA 200.7       | 771128   | EPA 200.7         | 771338              |
| 60392702004 | L-LCL1-DUP-1 | EPA 200.7       | 771128   | EPA 200.7         | 771338              |
| 60392702001 | L-TMW-2      | SM 2540C        | 771427   |                   |                     |
| 60392702002 | L-MW-26      | SM 2540C        | 771427   |                   |                     |
| 60392702003 | L-LCL1-FB-1  | SM 2540C        | 771427   |                   |                     |
| 60392702004 | L-LCL1-DUP-1 | SM 2540C        | 771592   |                   |                     |
| 60392702001 | L-TMW-2      | EPA 300.0       | 771702   |                   |                     |
| 60392702002 | L-MW-26      | EPA 300.0       | 771702   |                   |                     |
| 60392702003 | L-LCL1-FB-1  | EPA 300.0       | 771702   |                   |                     |
| 60392702004 | L-LCL1-DUP-1 | EPA 300.0       | 772728   |                   |                     |

|                                                                                                    |                             | W0#:60392702                                                        |
|----------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|
| Pace DC#_Title: ENV-F                                                                              | RM-LENE-0009_Samp           |                                                                     |
| INAUTICAL SERVICES Revision: 2                                                                     | Effective Date: 01/12/20    | 60392702                                                            |
| Client Name: Golder                                                                                |                             |                                                                     |
| Courier: FedEx UPS VIA Clay                                                                        |                             | Pace 🗆 Xroads 🗹 Client 🗆 Other 🗖                                    |
| Tracking #:                                                                                        | Pace Shipping Label Used    | l? Yes □ No □                                                       |
| Custody Seal on Cooler/Box Present: Yes Z No                                                       | □ Seals intact: Yes-₽       | No 🗆                                                                |
| Packing Material: Bubble Wrap  Bubble B                                                            | Bags 🗆 💦 🔗 Foam 🗆           | None Z Other 🗆                                                      |
|                                                                                                    | ype of Ice: (Wet) Blue Nor  | Date and initials of parson                                         |
| Cooler Temperature (°C): As-read <u>I</u> Gorr                                                     | . Factor <u>0.2</u> Correct | ed (, 2 Date and initials of person examining contents: () 2-() 2-2 |
| Temperature should be above freezing to 6°C O 7                                                    |                             | 0.5                                                                 |
| Chain of Custody present:                                                                          | ∐Yes □No □N/A               |                                                                     |
| Chain of Custody relinquished:                                                                     | Yes INO N/A                 |                                                                     |
| Samples arrived within holding time:                                                               | Yes 🗆 No 🗆 N/A              |                                                                     |
| Short Hold Time analyses (<72hr):                                                                  | □Yes ØNo □N/A               |                                                                     |
| Rush Turn Around Time requested:                                                                   | □Yes ZNo □N/A               |                                                                     |
| Sufficient volume:                                                                                 | Yes DNO DN/A                |                                                                     |
| Correct containers used:                                                                           |                             |                                                                     |
|                                                                                                    | '                           |                                                                     |
| Pace containers used:                                                                              | Yes No N/A                  |                                                                     |
| Containers intact:                                                                                 |                             |                                                                     |
| Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs                                              | ? 🛛 Yes 🗆 No 🖉 N/A          |                                                                     |
| Filtered volume received for dissolved tests?                                                      | □Yes □No □N/A               |                                                                     |
| Sample labels match COC: Date / time / ID / analyses                                               | Yes DNo DN/A                |                                                                     |
| Samples contain multiple phases? Matrix: G                                                         |                             |                                                                     |
| Containers requiring pH preservation in compliance?                                                | Yes DNo DN/A                | List sample IDs, volumes, lot #'s of preservative and the           |
| (I INO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , I ICI<2; NaOI-I>9 Sulfide, NaOH>10 Cyanide) | 5AIDS 1                     | date/time added.                                                    |
| Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)                                                       | LOT#: JSITA                 |                                                                     |
| Lead acetate strip turns dark? (Record only)                                                       | □Yes □No                    |                                                                     |
| Potassium iodide test strip turns blue/purple? (Preserve)                                          | □Yes □No                    |                                                                     |
| Trip Blank present:                                                                                | □Yes □No ØN/A               |                                                                     |
| Headspace in VOA vials ( >6mm):                                                                    | □Yes □No 🖓 N/A              |                                                                     |
| Samples from USDA Regulated Area: State:                                                           | □Yes □No 🔽N/A               |                                                                     |
| Additional labels attached to 5035A / TX1005 vials in the                                          |                             |                                                                     |
|                                                                                                    | COC to Client? Y / N        | Field Data Required? Y / N                                          |
|                                                                                                    | Date/Time:                  |                                                                     |
| Comments/ Resolution:                                                                              |                             |                                                                     |

Project Manager Review:

ang!

Date:

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| 6<br>Secti<br>Requi | Section A<br>Required Client Information:                                           | Section B<br>Required Project Information: | ject Inf        | lformatior | ÷                              |           |                                     |                            | v) 1             | Section C                      | I C                                                | C             |                                                                   |                           |                                       |          |               |         |                                     |                                   |                      | Page:             | -                      | o       | ~                                   |            |
|---------------------|-------------------------------------------------------------------------------------|--------------------------------------------|-----------------|------------|--------------------------------|-----------|-------------------------------------|----------------------------|------------------|--------------------------------|----------------------------------------------------|---------------|-------------------------------------------------------------------|---------------------------|---------------------------------------|----------|---------------|---------|-------------------------------------|-----------------------------------|----------------------|-------------------|------------------------|---------|-------------------------------------|------------|
| Company:            | any: Golder Associates                                                              | Report To: Jeffrey Ingram                  | stfrey          | , Ingran   | 6                              |           |                                     | 1                          | È                | Attention:                     |                                                    | - 0-          |                                                                   |                           |                                       |          |               | -       |                                     |                                   |                      |                   |                        |         | -                                   |            |
| Address:            | ss: 13515 Barrett Parkway Dr., Ste 260                                              | Copy To: Eri                               | ic Sc           | chniede    | ir, Ryan                       | Feldm     | Eric Schnieder, Ryan Feldman, Brend | dan Talbert                |                  | Company Name:                  | / Name:                                            |               | Golder Associates Inc                                             | ociate                    | sinc                                  |          |               |         |                                     |                                   | NONTO & MOUTA III MO |                   |                        |         |                                     |            |
|                     | Baltwin, MO 63021                                                                   |                                            |                 |            |                                |           |                                     |                            |                  | Address:                       |                                                    |               |                                                                   |                           |                                       |          |               | 1       |                                     |                                   |                      |                   | L                      |         |                                     |            |
| Email To:           | To: jeffrey ingram@golder.com                                                       | Purchase Order No.:                        | er No.          | -1         |                                |           |                                     |                            |                  | Pace Quote                     | e .                                                |               |                                                                   |                           |                                       |          |               | L.      | UST                                 |                                   | RCRA                 |                   | - lo<br>-              |         |                                     | Ľ          |
| Phone:              | © 636-724-9191 Fax 636-724-9323                                                     | Project Name:                              |                 | meren -    | Ameren - Verification Sampling | ation Se  | ampling                             | -1211                      |                  | Pace Project                   |                                                    | amie C        | Jamie Church                                                      |                           |                                       |          |               | Sit     | Site Location                       | По                                |                      | Γ                 |                        |         |                                     |            |
| Seque               | Requested Due Date/TAT: Standard                                                    | Project Number: 153140603                  | er: 15          | 531406     | 03                             |           |                                     |                            |                  | Pace Profile #:                | 44                                                 | 9285, line 1  | ne 1                                                              |                           |                                       |          |               |         | STATE                               | щ                                 | MO                   |                   |                        |         |                                     |            |
|                     |                                                                                     |                                            |                 |            |                                |           |                                     |                            | 11               |                                |                                                    |               | ľ                                                                 | F                         |                                       | Requ     | ested         | Analy   | /sis Fi                             | Requested Analysis Filtered (Y/N) | (N/A                 |                   |                        |         |                                     |            |
|                     | Section D Valid Matrix Codes<br>Required Clent Information <u>MATRIX</u> <u>COI</u> | odes<br>CODE                               |                 | (-1)//     |                                | COLLECTED | CTED                                |                            |                  |                                | Pr                                                 | Preservatives | atives                                                            |                           | Z<br>↑N/A                             | z        | z<br>z        | z       | z<br>z                              | z<br>z                            | z                    |                   |                        |         |                                     |            |
|                     | WATER WATER PRODUCT SOLSOLD                                                         | WT WY<br>OL SC                             | See valid codes |            | COMPOSITE START                | ART       | COMPOSITE<br>END/GRAB               | SITE<br>LAB                | OLLECTION        | S                              |                                                    |               |                                                                   |                           |                                       |          |               |         |                                     |                                   |                      | (N/X)             |                        |         |                                     |            |
| # WƏLI              | Sample IDs MUST BE UNIQUE                                                           |                                            |                 |            | DATE                           | TIME      | DATE                                | TIME                       | SAMPLE TEMP AT C | # OF CONTAINER:<br>Unpreserved | HNO <sup>3</sup><br>H <sup>5</sup> 20 <sup>4</sup> | HCI           | NaOH<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Ionatham | -<br>Other                | <pre>test sisterst<br/>Phloride</pre> | -Iuoride | LDS           | muiolsC | goron                               |                                   |                      | Residual Chlorine | Par 6                  |         | Long Contect No. 1 and Contect Cool |            |
| ٢                   | 2-mm2-7                                                                             | WT                                         | <u> </u>        | U          |                                | -         | 2-10-22                             | 09,55                      |                  | - 2                            | -                                                  |               |                                                                   |                           | _                                     | 1        | _             |         | -                                   |                                   |                      |                   |                        |         |                                     |            |
| 7                   | L-MW-20                                                                             | WT                                         | -               | U          |                                | F         | -                                   | 1220                       |                  |                                |                                                    |               |                                                                   | F                         | -                                     | -        | H             | -       | -                                   | -                                 | -                    |                   |                        |         |                                     |            |
| e                   | 1-1611- FB-1                                                                        | M                                          | 0<br>M          | 0          |                                |           |                                     | 1230                       |                  |                                |                                                    |               |                                                                   |                           | +                                     | -        |               | -       |                                     |                                   |                      |                   |                        |         |                                     |            |
| 4                   | 1-000-1727-7                                                                        | M                                          | WT G            | U          |                                |           | _                                   | 1                          |                  | -                              |                                                    |               |                                                                   |                           | -                                     |          | -             | -       |                                     |                                   | -                    |                   |                        |         |                                     |            |
| ŝ                   | L-LCLI - MS-I                                                                       | N                                          | 0<br>F          | U          |                                |           |                                     | 0955                       |                  |                                |                                                    |               |                                                                   |                           | -                                     |          |               | -       |                                     |                                   |                      |                   |                        |         |                                     |            |
| ø                   | 1-101-1 MSD-1                                                                       | ×                                          | 0<br>L          | U          |                                |           | -                                   | 0955                       |                  | TT                             |                                                    |               |                                                                   |                           | -                                     |          | 1             | 7       |                                     |                                   |                      |                   |                        |         |                                     |            |
| 7                   |                                                                                     | ΨT                                         | _               | U          |                                |           |                                     |                            |                  |                                |                                                    |               |                                                                   |                           | 1924                                  |          |               |         | -                                   |                                   |                      |                   |                        |         |                                     |            |
| 80                  |                                                                                     | M                                          | ۲<br>کل         | U          |                                |           |                                     |                            |                  |                                |                                                    | 5             |                                                                   |                           | 1                                     |          |               |         |                                     |                                   |                      |                   |                        |         |                                     | -          |
| n                   |                                                                                     | ŢŴ                                         |                 | U          | _                              |           |                                     |                            |                  |                                |                                                    |               |                                                                   |                           |                                       |          |               |         |                                     |                                   |                      |                   |                        |         |                                     |            |
| 10                  |                                                                                     | M                                          | 5<br>TV         | U          | _                              |           |                                     |                            |                  |                                |                                                    |               |                                                                   |                           | RN                                    |          |               |         |                                     | _                                 |                      |                   |                        |         |                                     |            |
| 7                   |                                                                                     | N                                          | M<br>M          | (1)        | -                              |           |                                     |                            |                  |                                |                                                    |               |                                                                   |                           | 100                                   |          |               |         |                                     |                                   |                      |                   |                        |         |                                     |            |
| 12                  |                                                                                     | W                                          | WT G            | (7)        |                                |           |                                     |                            |                  | _                              |                                                    |               |                                                                   |                           | 2.50                                  |          |               |         |                                     |                                   |                      |                   |                        |         |                                     |            |
|                     | ADDITIONAL COMMENTS                                                                 | R£                                         | ELINQ           | JUISHED    | RELINQUISHED BY / AFFILIATION  |           | z                                   | DATE                       |                  | TIME                           | UI                                                 |               | ACCE                                                              | ACCEPTED BY / AFFILIATION | BYIA                                  | FFILIAT  | NO            |         | DATE                                | -                                 | TIME                 |                   | SAN                    | APLE CO | SAMPLE CONDITIONS                   |            |
|                     |                                                                                     | Brenda                                     | 5               | Caller!    | Brendan Tulbert/ Goider        | der       |                                     | 2-11-22                    |                  | 1515                           |                                                    | OWN           | MUDELC                                                            | a                         | MC                                    | NOMON    | 3             |         | 2-1                                 |                                   | 1530                 |                   |                        | _       |                                     |            |
|                     |                                                                                     | S                                          | 3               | hngele     | MOW                            | 2         |                                     | ヨーフ                        | -                | 630                            |                                                    | 2             | لح ز                                                              | 120                       | 1                                     | r        |               |         | 17                                  | 070                               | 021704C.PI-C         | 1.2               | $\overline{\zeta}_{i}$ | 5       | 5                                   |            |
| Pa                  |                                                                                     |                                            |                 |            |                                |           |                                     |                            |                  |                                |                                                    |               |                                                                   | 52<br>                    |                                       |          |               |         |                                     |                                   | 6<br>):              | 0,5               | 3                      | 7       | 4                                   |            |
| nge 1               |                                                                                     |                                            |                 |            | SA                             | WPLER     | NAME A                              | SAMPLER NAME AND SIGNATURE | TURE             |                                |                                                    |               |                                                                   |                           | 2                                     | 10       |               | 12      | 10                                  |                                   |                      | р.                | eo) u                  | bele    |                                     | 1981       |
| 19 o                |                                                                                     |                                            |                 |            | _                              | ٩         | RINT Nam                            | PRINT Name of SAMPLER:     | LER:             | Bie                            | Brendan                                            | Ľ             | Tallyer                                                           | 4                         |                                       |          |               |         |                                     |                                   |                      | , uj di           | (N/X                   | es (t   | ar (Y)                              | (N/)       |
| f 19                |                                                                                     |                                            |                 |            | -                              | N<br>     | IGNATUR                             | SIGNATURE of SAMPLER:      | LER:             | Rh                             | )                                                  | -⊰            | The                                                               |                           |                                       | MM/DD    | gned<br>(YY): | 1/20    | DATE Signed<br>(MM/DD/YY): 02/11/22 |                                   |                      | пэТ               | vieceN<br>()           | poleuO  |                                     | ()<br>dweS |
|                     |                                                                                     |                                            |                 |            |                                |           |                                     |                            |                  |                                | l                                                  |               |                                                                   |                           | 1                                     |          |               |         |                                     |                                   |                      |                   | 1                      |         |                                     | l          |

F-ALL-Q-020rev.08, 12-Oct-2007

"important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

# **\\**SI) GOLDER

#### **MEMORANDUM**

Project No. 153140604.0001

DATE March 2, 2022

TO Project File Golder Associates

- CC Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

EMAIL AMuehlfarth@golder.com

# DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60392702

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).

#### **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Company Name: Golder Associates USA Inc / WSP                                                                          | Project Manager: <u>J. Ingram</u>                  |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Project Name: Ameren- Labadie - LCL1                                                                                   | Project Number: 153140604                          |  |
| Reviewer: A. Muehlfarth                                                                                                | Validation Date: 3/2/2022                          |  |
| Laboratory: Pace Analytical Services - Kansas City<br>Analytical Method (type and no.): EPA 200.7 (Total Metals), SM 2 | SDG #: 60392702<br>2540C (TDS), EPA 300.0 (Anions) |  |
| Matrix: Air Soil/Sed. Water Waste Sample Names L-TMW-2, L-MW-26, L-LCL1-FB-1, L-LCL1-DUP-1                             | ]                                                  |  |
|                                                                                                                        |                                                    |  |

#### NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

| Field I | nformation                                               | YES     | NO          | NA           | COMMENTS                         |
|---------|----------------------------------------------------------|---------|-------------|--------------|----------------------------------|
| a)      | Sampling dates noted?                                    | х       |             |              | 2/10/2022                        |
| b)      | Sampling team indicated?                                 | х       |             |              | BTT                              |
| c)      | Sample location noted?                                   | х       |             |              |                                  |
| d)      | Sample depth indicated (Soils)?                          |         |             | х            |                                  |
| e)      | Sample type indicated (grab/composite)?                  | ×       |             |              | Grab                             |
| f)      | Field QC noted?                                          | ×       |             |              | See Notes                        |
| g)      | Field parameters collected (note types)?                 | X       |             |              | pH, Sp.Cond, ORP, Temp, DO, Turb |
| h)      | Field Calibration within control limits?                 | ×       |             |              |                                  |
| i)      | Notations of unacceptable field conditions/performations | nces fr | om field lo | ogs or field | notes?                           |
|         |                                                          |         | ×           |              |                                  |
| j)      | Does the laboratory narrative indicate deficiencies?     |         |             | X            |                                  |
|         | Note Deficiencies:                                       |         |             |              |                                  |
|         |                                                          |         |             |              |                                  |
|         |                                                          |         |             |              |                                  |
|         |                                                          |         |             |              |                                  |
| Chain-  | of-Custody (COC)                                         | YES     | NO          | NA           | COMMENTS                         |
| a)      | Was the COC properly completed?                          | X       |             |              |                                  |
| b)      | Was the COC signed by both field                         |         |             |              |                                  |
| 6)      | and laboratory personnel?                                | х       |             |              |                                  |
| c)      | Were samples received in good condition?                 | х       |             |              |                                  |
|         |                                                          |         |             |              |                                  |
| Gener   | al (reference QAPP or Method)                            | YES     | NO          | NA           | COMMENTS                         |
| a)      | Were hold times met for sample pretreatment?             | x       |             |              |                                  |
| ,       | Were hold times met for sample analysis?                 | ×       |             |              |                                  |
| b)      |                                                          |         |             | _            |                                  |
| c)      | Were the correct preservatives used?                     | X       |             |              |                                  |
| d)      | Was the correct method used?                             | ×       |             |              |                                  |
| e)      | Were appropriate reporting limits achieved?              | ×       |             |              | Cae Natae                        |
| f)      | Were any sample dilutions noted?                         | ×       |             |              | See Notes                        |
| g)      | Were any matrix problems noted?                          | x       |             |              | See Notes                        |

#### **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Blanks  |                                                                                           | YES       | NO        | NA     | COMMENTS               |
|---------|-------------------------------------------------------------------------------------------|-----------|-----------|--------|------------------------|
| a)      | Were analytes detected in the method blank(s)?                                            |           | x         |        |                        |
| b)      | Were analytes detected in the field blank(s)?                                             | х         |           |        | See Notes              |
| c)      | Were analytes detected in the equipment blank(s)?                                         |           |           | x      |                        |
| d)      | Were analytes detected in the trip blank(s)?                                              |           |           | x      |                        |
| Labora  | tory Control Sample (LCS)                                                                 | YES       | NO        | NA     | COMMENTS               |
| a)      | Was a LCS analyzed once per SDG?                                                          | x         |           |        |                        |
| b)      | Were the proper analytes included in the LCS?                                             | x         |           |        |                        |
| c)      | Was the LCS accuracy criteria met?                                                        | X         |           |        |                        |
| Duplica | ates                                                                                      | YES       | NO        | NA     | COMMENTS               |
| a)      | Were field duplicates collected (note original and du                                     | plicate   | sample n  | ames)? |                        |
|         |                                                                                           | х         |           |        | L-LCL1-DUP-1 @ L-TMW-2 |
| b)      | Were field dup. precision criteria met (note RPD)?                                        |           | x         |        | See Notes              |
| c)      | Were lab duplicates analyzed (note original and dup                                       | olicate s | samples)? |        |                        |
|         |                                                                                           | х         |           |        |                        |
| d)      | Were lab dup. precision criteria met (note RPD)?                                          | X         |           |        | Max RPD: 5% [<10%]     |
| Blind S | tandards                                                                                  | YES       | NO        | NA     | COMMENTS               |
| a)      | Was a blind standard used (indicate name,                                                 |           |           | ×      |                        |
|         | analytes included and concentrations)?                                                    |           |           |        |                        |
| b)      | Was the %D within control limits?                                                         |           |           | х      |                        |
| Matrix  | Spike/Matrix Spike Duplicate (MS/MSD)                                                     | YES       | NO        | NA     | COMMENTS               |
| a)      | Was MS accuracy criteria met?                                                             |           | ×         |        |                        |
|         | Recovery could not be calculated since sample<br>contained high concentration of analyte? |           |           | х      |                        |
| b)      | Was MSD accuracy criteria met?                                                            |           | x         |        |                        |
|         | Recovery could not be calculated since sample contained high concentration of analyte?    |           |           | X      |                        |
| c)      | Were MS/MSD precision criteria met?                                                       | X         |           |        |                        |

#### Comments/Notes:

Calcium, chloride, and sulfate analyzed at a dilution in multiple samples, no qualification necessary.

#### Blanks:

L-LCL1-FB-1 @ L-MW-26: Calcium (91.1J), associated sample result >RL and >10x blank, no qualification necessary.

#### Duplicates:

L-LCL1-DUP-1 @ L-TMW-2: RPD for TDS (24.8%) exceeds limit (20%). Fluoride detected in sample, ND in duplicate.

## **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

### Comments/Notes:

MS/MSD:

3079102/3079103: MS/MSD % recovery high for calcium. Associated with sample 60392702001, sample result >4x spike concentration, no qualification necessary.

| 3085027: MS % recovery high for chloride, sulfate. MS performed on unrelated sample, no qualification necessary. |
|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| <u>\</u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| <u>/</u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| <u>\</u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| 1                                                                                                                |
|                                                                                                                  |
| <u>\</u>                                                                                                         |
|                                                                                                                  |
| <u> </u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| <u> </u>                                                                                                         |
|                                                                                                                  |
| 7                                                                                                                |
|                                                                                                                  |
|                                                                                                                  |
| <u> </u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| <u> </u>                                                                                                         |
|                                                                                                                  |
| <u> </u>                                                                                                         |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| \                                                                                                                |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |

# **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

### Data Qualification:

|              | 1                                                                                            |                                       |           |                               |
|--------------|----------------------------------------------------------------------------------------------|---------------------------------------|-----------|-------------------------------|
| Sample Name  | Constituent(s)                                                                               | Result                                | Qualifier | Reason                        |
| L-TMW-2      | TDS                                                                                          | 1360                                  | J         | Dup RPD exceeds limits        |
| 11           | Fluoride                                                                                     | 0.16                                  | J         | Detected in sample, ND in dup |
| L-LCL1-DUP-1 | TDS                                                                                          | 1060                                  | J         | Dup RPD exceeds limits        |
| "            | Fluoride                                                                                     | 0.12                                  | UJ        | Detected in sample, ND in dup |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              | $\overline{}$                         |           |                               |
|              |                                                                                              | $\overline{}$                         |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              |                                                                                              |                                       |           |                               |
|              | $1 \qquad M \qquad $ | H-                                    |           |                               |
| Signature:   | Ann Muchto                                                                                   | TANI                                  |           | Date: 3/2/2022                |
|              |                                                                                              | · · · · · · · · · · · · · · · · · · · |           | Daic.                         |



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

June 05, 2022

Jeffrey Ingram Golder Associates 701 Emerson Road, Suite 250 Saint Louis, MO 63141

RE: Project: AMEREN LEC LCL1 Pace Project No.: 60397403

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between April 08, 2022 and April 12, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

fami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates





### CERTIFICATIONS

Project: AMEREN LEC LCL1

Pace Project No.: 60397403

### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 20-020-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



### SAMPLE SUMMARY

Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 60397403001 | L-TMW-1     | Water  | 04/11/22 12:56 | 04/12/22 04:53 |
| 60397403002 | L-TMW-2     | Water  | 04/11/22 11:07 | 04/12/22 04:53 |
| 60397403003 | L-TMW-3     | Water  | 04/11/22 14:38 | 04/12/22 04:53 |
| 60397403004 | L-UWL-DUP-1 | Water  | 04/11/22 08:00 | 04/12/22 04:53 |
| 60397403005 | L-UWL-FB-1  | Water  | 04/11/22 14:53 | 04/12/22 04:53 |
| 60397347006 | L-MW-26     | Water  | 04/07/22 13:41 | 04/08/22 05:28 |
| 60397347013 | L-BMW-1S    | Water  | 04/06/22 11:18 | 04/08/22 05:28 |
| 60397347014 | L-BMW-2S    | Water  | 04/06/22 13:27 | 04/08/22 05:28 |



### SAMPLE ANALYTE COUNT

Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Lab ID      | Sample ID   | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|-----------|----------|----------------------|------------|
| 60397403001 | L-TMW-1     | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | SB2      | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397403002 | L-TMW-2     | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | SB2      | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397403003 | L-TMW-3     | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | SB2      | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397403004 | L-UWL-DUP-1 | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | SB2      | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397403005 | L-UWL-FB-1  | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | SB2      | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397347006 | L-MW-26     | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | KB       | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | KB       | 3                    | PASI-K     |
| 60397347013 | L-BMW-1S    | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | KB       | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |
| 60397347014 | L-BMW-2S    | EPA 200.7 | JLH      | 7                    | PASI-K     |
|             |             | SM 2320B  | KB       | 1                    | PASI-K     |
|             |             | SM 2540C  | TNB      | 1                    | PASI-K     |
|             |             | EPA 300.0 | CRN2     | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-TMW-1              | Lab ID:                                | 60397403001     | Collecte   | d: 04/11/22  | 2 12:56 | Received: 04/  | /12/22 04:53 Ma | atrix: Water |      |  |
|------------------------------|----------------------------------------|-----------------|------------|--------------|---------|----------------|-----------------|--------------|------|--|
| Parameters                   | Results                                | Units           | PQL        | MDL          | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 200.7 Metals, Total          | Analytical                             | Method: EPA 2   | 00.7 Prepa | aration Meth | nod: EP | A 200.7        |                 |              |      |  |
|                              | Pace Analytical Services - Kansas City |                 |            |              |         |                |                 |              |      |  |
| Boron                        | 114                                    | ug/L            | 100        | 7.1          | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7440-42-8    |      |  |
| Calcium                      | 165000                                 | ug/L            | 200        | 38.2         | 1       | 04/21/22 15:13 | 04/25/22 16:40  | 7440-70-2    |      |  |
| Iron                         | 38.5J                                  | ug/L            | 50.0       | 21.1         | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7439-89-6    |      |  |
| Magnesium                    | 40800                                  | ug/L            | 50.0       | 11.7         | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7439-95-4    |      |  |
| Manganese                    | 1510                                   | ug/L            | 5.0        | 1.1          | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7439-96-5    |      |  |
| Potassium                    | 5000                                   | ug/L            | 500        | 224          | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7440-09-7    |      |  |
| Sodium                       | 10100                                  | ug/L            | 500        | 166          | 1       | 04/21/22 15:13 | 04/22/22 17:54  | 7440-23-5    |      |  |
| 2320B Alkalinity             | Analytical                             | Method: SM 23   | 320B       |              |         |                |                 |              |      |  |
|                              | Pace Anal                              | ytical Services | - Kansas C | ity          |         |                |                 |              |      |  |
| Alkalinity, Total as CaCO3   | 524                                    | mg/L            | 20.0       | 4.6          | 1       |                | 04/20/22 11:22  |              |      |  |
| 2540C Total Dissolved Solids | Analytical                             | Method: SM 25   | 540C       |              |         |                |                 |              |      |  |
|                              | Pace Anal                              | ytical Services | - Kansas C | ity          |         |                |                 |              |      |  |
| Total Dissolved Solids       | 653                                    | mg/L            | 10.0       | 10.0         | 1       |                | 04/15/22 16:10  |              |      |  |
| 300.0 IC Anions 28 Days      | Analytical                             | Method: EPA 3   | 00.0       |              |         |                |                 |              |      |  |
|                              | Pace Anal                              | ytical Services | - Kansas C | ity          |         |                |                 |              |      |  |
| Chloride                     | 2.9                                    | mg/L            | 1.0        | 0.53         | 1       |                | 04/27/22 22:10  | 16887-00-6   | В    |  |
| Fluoride                     | 0.21                                   | mg/L            | 0.20       | 0.12         | 1       |                | 04/27/22 22:10  | 16984-48-8   |      |  |
| Sulfate                      | 91.9                                   | mg/L            | 10.0       | 5.5          | 10      |                | 04/27/22 22:24  | 14808-79-8   |      |  |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-TMW-2                                                 | Lab ID:                                       | 60397403002                                  | Collected                                | 1: 04/11/22                               | 2 11:07               | Received: 04/                                                                                            | 12/22 04:53 Ma                                     | atrix: Water                                                  |      |
|-----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                       | Units                                        | PQL                                      | MDL                                       | DF                    | Prepared                                                                                                 | Analyzed                                           | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                               | Method: EPA 2<br>vtical Services             | •                                        |                                           | iod: EP               | A 200.7                                                                                                  |                                                    |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 110<br>220000<br>466<br>56300<br>3200<br>7050 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 7.1<br>38.2<br>21.1<br>43.0<br>1.1<br>224 | 1<br>1<br>1<br>1<br>1 | 04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13 | 04/25/22 16:43<br>04/22/22 17:56<br>04/22/22 17:56 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 | M1   |
| Sodium 2320B Alkalinity                                         |                                               | ug/L<br>Method: SM 23<br>ytical Services     |                                          | 166<br>ty                                 | 1                     | 04/21/22 15:13                                                                                           | 04/22/22 17:56                                     | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         | ,                                             | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>ty                                 | 1                     |                                                                                                          | 04/20/22 11:30                                     |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  | ,                                             | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 13.3<br>ty                                | 1                     |                                                                                                          | 04/15/22 16:10                                     |                                                               |      |
| Chloride<br>Fluoride<br>Sulfate                                 | 11.9<br><0.12<br>197                          | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>20.0                      | 0.53<br>0.12<br>11.0                      | 1<br>1<br>20          |                                                                                                          | 04/27/22 22:37<br>04/27/22 22:37<br>04/28/22 00:01 | 16984-48-8                                                    |      |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-TMW-3              | Lab ID:    | 60397403003     | Collected   | d: 04/11/22 | 2 14:38 | Received: 04/  | 12/22 04:53 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|-------------|-------------|---------|----------------|----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 00.7 Prepa  | ration Meth | nod: EP | A 200.7        |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C  | ity         |         |                |                |              |      |
| Boron                        | 116        | ug/L            | 100         | 7.1         | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7440-42-8    |      |
| Calcium                      | 141000     | ug/L            | 200         | 38.2        | 1       | 04/21/22 15:13 | 04/25/22 17:00 | 7440-70-2    |      |
| Iron                         | 735        | ug/L            | 50.0        | 21.1        | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7439-89-6    |      |
| Magnesium                    | 27700      | ug/L            | 50.0        | 11.7        | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7439-95-4    |      |
| Manganese                    | 241        | ug/L            | 5.0         | 1.1         | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7439-96-5    |      |
| Potassium                    | 6160       | ug/L            | 500         | 224         | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7440-09-7    |      |
| Sodium                       | 9550       | ug/L            | 500         | 166         | 1       | 04/21/22 15:13 | 04/22/22 18:03 | 7440-23-5    |      |
| 2320B Alkalinity             | Analytical | Method: SM 23   | 20B         |             |         |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C  | ity         |         |                |                |              |      |
| Alkalinity, Total as CaCO3   | 469        | mg/L            | 20.0        | 4.6         | 1       |                | 04/20/22 11:46 |              |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 40C         |             |         |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ity         |         |                |                |              |      |
| Total Dissolved Solids       | 684        | mg/L            | 10.0        | 10.0        | 1       |                | 04/15/22 16:11 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0        |             |         |                |                |              |      |
| -                            | Pace Anal  | ytical Services | - Kansas Ci | ity         |         |                |                |              |      |
| Chloride                     | 2.5        | mg/L            | 1.0         | 0.53        | 1       |                | 04/28/22 00:56 | 16887-00-6   | В    |
| Fluoride                     | 0.20J      | mg/L            | 0.20        | 0.12        | 1       |                | 04/28/22 00:56 | 16984-48-8   |      |
| Sulfate                      | 27.8       | mg/L            | 10.0        | 5.5         | 10      |                | 04/28/22 01:10 | 14808-79-8   |      |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-UWL-DUP-1          | Lab ID:                                | 60397403004     | Collected   | d: 04/11/22 | 2 08:00 | Received: 04/  | 12/22 04:53 Ma | atrix: Water |      |  |
|------------------------------|----------------------------------------|-----------------|-------------|-------------|---------|----------------|----------------|--------------|------|--|
| Parameters                   | Results                                | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 200.7 Metals, Total          | Analytical                             | Method: EPA 2   | 00.7 Prepa  | ration Meth | nod: EP | A 200.7        |                |              |      |  |
|                              | Pace Analytical Services - Kansas City |                 |             |             |         |                |                |              |      |  |
| Boron                        | 113                                    | ug/L            | 100         | 7.1         | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7440-42-8    |      |  |
| Calcium                      | 169000                                 | ug/L            | 200         | 38.2        | 1       | 04/21/22 15:13 | 04/25/22 17:03 | 7440-70-2    |      |  |
| Iron                         | 211                                    | ug/L            | 50.0        | 21.1        | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7439-89-6    |      |  |
| Magnesium                    | 40800                                  | ug/L            | 50.0        | 11.7        | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7439-95-4    |      |  |
| Manganese                    | 2290                                   | ug/L            | 5.0         | 1.1         | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7439-96-5    |      |  |
| Potassium                    | 4990                                   | ug/L            | 500         | 224         | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7440-09-7    |      |  |
| Sodium                       | 10200                                  | ug/L            | 500         | 166         | 1       | 04/21/22 15:13 | 04/22/22 18:05 | 7440-23-5    |      |  |
| 2320B Alkalinity             | Analytical                             | Method: SM 23   | 320B        |             |         |                |                |              |      |  |
|                              | Pace Anal                              | ytical Services | - Kansas C  | ity         |         |                |                |              |      |  |
| Alkalinity, Total as CaCO3   | 527                                    | mg/L            | 20.0        | 4.6         | 1       |                | 04/20/22 11:53 |              |      |  |
| 2540C Total Dissolved Solids | Analytical                             | Method: SM 25   | 540C        |             |         |                |                |              |      |  |
|                              | Pace Anal                              | ytical Services | - Kansas Ci | ity         |         |                |                |              |      |  |
| Total Dissolved Solids       | 603                                    | mg/L            | 10.0        | 10.0        | 1       |                | 04/15/22 16:11 |              |      |  |
| 300.0 IC Anions 28 Days      | Analytical                             | Method: EPA 3   | 00.0        |             |         |                |                |              |      |  |
| •                            | Pace Anal                              | ytical Services | - Kansas Ci | ity         |         |                |                |              |      |  |
| Chloride                     | 2.9                                    | mg/L            | 1.0         | 0.53        | 1       |                | 04/28/22 01:24 | 16887-00-6   | В    |  |
| Fluoride                     | 0.23                                   | mg/L            | 0.20        | 0.12        | 1       |                | 04/28/22 01:24 | 16984-48-8   |      |  |
| Sulfate                      | 90.4                                   | mg/L            | 10.0        | 5.5         | 10      |                | 04/28/22 01:38 | 14808-79-8   |      |  |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-UWL-FB-1                                              | Lab ID:                                         | 60397403005                                  | Collected                                | d: 04/11/22                               | 2 14:53               | Received: 04/                                                                                            | 12/22 04:53 Ma                                     | atrix: Water                                                  |      |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                         | Units                                        | PQL                                      | MDL                                       | DF                    | Prepared                                                                                                 | Analyzed                                           | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                                 | Method: EPA 2<br>ytical Services             | •                                        |                                           | iod: EP/              | A 200.7                                                                                                  |                                                    |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | <7.1<br><71.3<br><21.1<br><11.7<br><1.1<br><224 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 7.1<br>71.3<br>21.1<br>11.7<br>1.1<br>224 | 1<br>1<br>1<br>1<br>1 | 04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13<br>04/21/22 15:13 | 04/22/22 18:07<br>04/22/22 18:07<br>04/22/22 18:07 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |
| Sodium 2320B Alkalinity                                         | Pace Anal                                       | ug/L<br>Method: SM 23<br>ytical Services     | - Kansas C                               | ,                                         | 1                     | 04/21/22 15:13                                                                                           | 04/22/22 18:07                                     | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3<br>2540C Total Dissolved Solids      |                                                 | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>ity                                | 1                     |                                                                                                          | 04/20/22 12:12                                     |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  | ,                                               | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 5.0<br>ity                                | 1                     |                                                                                                          | 04/15/22 16:11                                     |                                                               |      |
| Chloride<br>Fluoride<br>Sulfate                                 | 0.62J<br><0.12<br><0.55                         | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>1.0                       | 0.53<br>0.12<br>0.55                      | 1<br>1<br>1           |                                                                                                          | 04/28/22 01:51<br>04/28/22 01:51<br>04/28/22 01:51 | 16887-00-6<br>16984-48-8<br>14808-79-8                        | В    |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-MW-26                                                 | Lab ID:                                          | 60397347006                                  | Collected                                | d: 04/07/22                                | 2 13:41               | Received: 04/                                                                                            | /08/22 05:28 Ma                                                                        | atrix: Water                                                  |      |
|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                          | Units                                        | PQL                                      | MDL                                        | DF                    | Prepared                                                                                                 | Analyzed                                                                               | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                                  | Method: EPA 2<br>ytical Services             | •                                        |                                            | nod: EP/              | A 200.7                                                                                                  |                                                                                        |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 96.8J<br>140000<br><23.9<br>26300<br>115<br>4040 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 13.5<br>38.2<br>23.9<br>43.0<br>3.8<br>167 | 1<br>1<br>1<br>1<br>1 | 04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10 | 04/21/22 19:06<br>04/21/22 19:06<br>04/21/22 19:06<br>04/21/22 19:06<br>04/21/22 19:06 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |
| Sodium 2320B Alkalinity                                         |                                                  | ug/L<br>Method: SM 23<br>ytical Services     |                                          | 64.8<br>ity                                | 1                     | 04/19/22 13:10                                                                                           | 04/21/22 19:06                                                                         | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         | ,                                                | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>ity                                 | 1                     |                                                                                                          | 04/16/22 08:41                                                                         |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  |                                                  | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 10.0<br>ity                                | 1                     |                                                                                                          | 04/14/22 16:03                                                                         |                                                               |      |
| Chloride<br>Fluoride<br>Sulfate                                 | 5.9<br><0.12<br>29.0                             | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>2.0                       | 0.53<br>0.12<br>1.1                        | 1<br>1<br>2           |                                                                                                          | 04/20/22 19:02<br>04/20/22 19:02<br>04/20/22 19:16                                     | 16984-48-8                                                    |      |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-BMW-1S             | Lab ID:    | 60397347013     | Collecte   | d: 04/06/22 | 2 11:18  | Received: 04/  | 08/22 05:28 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|------------|-------------|----------|----------------|----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL        | MDL         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 Metals, Total          |            | Method: EPA 2   | •          |             | nod: EP/ | A 200.7        |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C | ity         |          |                |                |              |      |
| Boron                        | 109        | ug/L            | 100        | 13.5        | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7440-42-8    |      |
| Calcium                      | 221000     | ug/L            | 200        | 38.2        | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7440-70-2    |      |
| Iron                         | 24800      | ug/L            | 50.0       | 23.9        | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7439-89-6    |      |
| Magnesium                    | 53100      | ug/L            | 50.0       | 43.0        | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7439-95-4    |      |
| Manganese                    | 2740       | ug/L            | 5.0        | 3.8         | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7439-96-5    |      |
| Potassium                    | 5920       | ug/L            | 500        | 167         | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7440-09-7    |      |
| Sodium                       | 20700      | ug/L            | 500        | 64.8        | 1        | 04/19/22 13:10 | 04/21/22 19:39 | 7440-23-5    |      |
| 2320B Alkalinity             | Analytical | Method: SM 23   | 20B        |             |          |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C | ity         |          |                |                |              |      |
| Alkalinity, Total as CaCO3   | <4.6       | mg/L            | 20.0       | 4.6         | 1        |                | 04/16/22 07:31 |              |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 40C        |             |          |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C | ity         |          |                |                |              |      |
| Total Dissolved Solids       | 828        | mg/L            | 10.0       | 10.0        | 1        |                | 04/14/22 16:02 |              | H1   |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0       |             |          |                |                |              |      |
|                              | Pace Anal  | ytical Services | - Kansas C | ity         |          |                |                |              |      |
| Chloride                     | 2.5        | mg/L            | 1.0        | 0.53        | 1        |                | 04/26/22 22:09 | 16887-00-6   | В    |
| Fluoride                     | 0.20J      | mg/L            | 0.20       | 0.12        | 1        |                | 04/26/22 22:09 | 16984-48-8   |      |
| Sulfate                      | 38.6       | mg/L            | 10.0       | 5.5         | 10       |                | 04/26/22 22:23 | 14808-79-8   |      |



### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| Sample: L-BMW-2S                                                | Lab ID:                                                  | 60397347014                                  | Collected                                | : 04/06/22                                 | 2 13:27               | Received: 04/                                                                                            | 08/22 05:28 Ma                                     | atrix: Water                                                  |      |
|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                                  | Units                                        | PQL                                      | MDL                                        | DF                    | Prepared                                                                                                 | Analyzed                                           | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                                          | Method: EPA 2<br>ytical Services             | •                                        |                                            | nod: EP/              | A 200.7                                                                                                  |                                                    |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 55.2J<br>138000<br><23.9<br>20900<br>6.4<br>5790<br>4240 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 13.5<br>38.2<br>23.9<br>43.0<br>3.8<br>167 | 1<br>1<br>1<br>1<br>1 | 04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10<br>04/19/22 13:10 | 04/21/22 19:41<br>04/21/22 19:41<br>04/21/22 19:41 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |
| Sodium 2320B Alkalinity                                         |                                                          | ug/L<br>Method: SM 23<br>ytical Services     | - Kansas Cit                             | ,                                          | 1                     | 04/19/22 13:10                                                                                           | 04/21/22 19:41                                     | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         |                                                          | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>y                                   | 1                     |                                                                                                          | 04/16/22 07:35                                     |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  |                                                          | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 10.0<br>y                                  | 1                     |                                                                                                          | 04/14/22 16:02                                     |                                                               | H1   |
| Chloride<br>Fluoride<br>Sulfate                                 | 2.5<br>0.19J<br>45.7                                     | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>5.0                       | 0.53<br>0.12<br>2.8                        | 1<br>1<br>5           |                                                                                                          | 04/26/22 22:37<br>04/26/22 22:37<br>04/27/22 10:05 |                                                               | В    |



Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| QC Batch:          | 782070                            | Analysis Method:      | EPA 200.7                              |
|--------------------|-----------------------------------|-----------------------|----------------------------------------|
| QC Batch Method:   | EPA 200.7                         | Analysis Description: | 200.7 Metals, Total                    |
|                    |                                   | Laboratory:           | Pace Analytical Services - Kansas City |
| Associated Lab Sam | ples: 60397347006, 60397347013, 6 | 0397347014            |                                        |

| METHOD BLANK: 31191     | 06                        | Matrix:     | Water     |      |                |            |
|-------------------------|---------------------------|-------------|-----------|------|----------------|------------|
| Associated Lab Samples: | 60397347006, 60397347013, | 60397347014 |           |      |                |            |
|                         |                           | Blank       | Reporting |      |                |            |
| Parameter               | Units                     | Result      | Limit     | MDL  | Analyzed       | Qualifiers |
| Boron                   | ug/L                      | <13.5       | 100       | 13.5 | 04/21/22 18:32 |            |
| Calcium                 | ug/L                      | <38.2       | 200       | 38.2 | 04/21/22 18:32 |            |
| Iron                    | ug/L                      | <23.9       | 50.0      | 23.9 | 04/21/22 18:32 |            |
| Magnesium               | ug/L                      | <43.0       | 50.0      | 43.0 | 04/21/22 18:32 |            |
| Manganese               | ug/L                      | <3.8        | 5.0       | 3.8  | 04/21/22 18:32 |            |
| Potassium               | ug/L                      | <167        | 500       | 167  | 04/21/22 18:32 |            |
| Sodium                  | ug/L                      | <64.8       | 500       | 64.8 | 04/22/22 11:39 |            |

### LABORATORY CONTROL SAMPLE: 3119107

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Boron     | ug/L  | 1000           | 1020          | 102          | 85-115          |            |
| Calcium   | ug/L  | 10000          | 10400         | 104          | 85-115          |            |
| Iron      | ug/L  | 10000          | 9940          | 99           | 85-115          |            |
| Magnesium | ug/L  | 10000          | 10400         | 104          | 85-115          |            |
| Manganese | ug/L  | 1000           | 1060          | 106          | 85-115          |            |
| Potassium | ug/L  | 10000          | 10100         | 101          | 85-115          |            |
| Sodium    | ug/L  | 10000          | 9980          | 100          | 85-115          |            |

| MATRIX SPIKE & MATRIX SP |       | LICATE: 3119          | 108<br>MS      | MSD            | 3119109      |               |             |              |                 |      |            |       |
|--------------------------|-------|-----------------------|----------------|----------------|--------------|---------------|-------------|--------------|-----------------|------|------------|-------|
| Parameter                | Units | 60397347001<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD  | Max<br>RPD | Qua   |
| Boron                    | ug/L  | 3330                  | 1000           | 1000           | 4050         | 4310          | 71          | 97           | 70-130          | 6    | 20         |       |
| Calcium                  | ug/L  | 69700                 | 10000          | 10000          | 74400        | 78800         | 47          | 91           | 70-130          | 6    | 20         | M1    |
| Iron                     | ug/L  | <23.9                 | 10000          | 10000          | 9200         | 9670          | 92          | 97           | 70-130          | 5    | 20         |       |
| Magnesium                | ug/L  | 89.9                  | 10000          | 10000          | 9540         | 10000         | 94          | 100          | 70-130          | 5    | 20         |       |
| Manganese                | ug/L  | <3.8                  | 1000           | 1000           | 970          | 1020          | 97          | 102          | 70-130          | 5    | 20         |       |
| Potassium                | ug/L  | 9260                  | 10000          | 10000          | 17900        | 18900         | 86          | 96           | 70-130          | 5    | 20         |       |
| Sodium                   | ug/L  | 64000                 | 10000          | 10000          | 68200        | 72400         | 42          | 84           | 70-130          | 6    | 20         | M1    |
| MATRIX SPIKE SAMPLE:     |       | 3119110               |                |                |              |               |             |              |                 |      |            |       |
|                          |       |                       | 60397          | 7347011        | Spike        | MS            |             | MS           | % Rec           |      |            |       |
| Parameter                |       | Units                 | Re             | esult          | Conc.        | Result        | %           | 6 Rec        | Limits          |      | Quali      | fiers |
| Boron                    |       | ug/L                  |                | <13.5          | 1000         | 1             | 030         | 102          | 70              | -130 |            |       |
| Calcium                  |       | ug/L                  |                | <38.2          | 10000        | 10            | 300         | 103          | 70              | -130 |            |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| MATRIX SPIKE SAMPLE: | 3119110 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60397347011 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Iron                 | ug/L    | <23.9       | 10000 | 9670   | 97    | 70-130 |            |
| Magnesium            | ug/L    | <43.0       | 10000 | 10300  | 103   | 70-130 |            |
| Manganese            | ug/L    | <3.8        | 1000  | 1050   | 105   | 70-130 |            |
| Potassium            | ug/L    | <167        | 10000 | 9960   | 100   | 70-130 |            |
| Sodium               | ug/L    | <64.8       | 10000 | 9780   | 97    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: | AMEREN LEC LCL1 |
|----------|-----------------|
| 1 10/000 |                 |

Pace Project No.: 60397403

| QC Batch:          | 782602            |                | Analysis Me       | thod: E        | PA 200.7          |                     |            |
|--------------------|-------------------|----------------|-------------------|----------------|-------------------|---------------------|------------|
| QC Batch Method:   | EPA 200.7         |                | Analysis De       | scription: 2   | 00.7 Metals, Tota | l                   |            |
|                    |                   |                | Laboratory:       | F              | ace Analytical Se | rvices - Kansas Cit | y          |
| Associated Lab San | nples: 6039740300 | 1, 60397403002 | 2, 60397403003, ( | 60397403004, 6 | 60397403005       |                     |            |
| METHOD BLANK:      | 3120948           |                | Matrix            | : Water        |                   |                     |            |
| Associated Lab San | nples: 6039740300 | 1,6039740300   | 2, 60397403003, ( | 60397403004, 6 | 60397403005       |                     |            |
|                    |                   |                | Blank             | Reporting      |                   |                     |            |
| Daran              | otor              | l Inite        | Pocult            | Limit          | MDI               | Analyzed            | Qualifiers |

| Parameter | Units | Result | Limit | MDL  | Analyzed       | Qualifiers |
|-----------|-------|--------|-------|------|----------------|------------|
| Boron     | ug/L  | <7.1   | 100   | 7.1  | 04/22/22 17:27 |            |
| Calcium   | ug/L  | <38.2  | 200   | 38.2 | 04/22/22 17:27 |            |
| Iron      | ug/L  | <21.1  | 50.0  | 21.1 | 04/22/22 17:27 |            |
| Magnesium | ug/L  | <11.7  | 50.0  | 11.7 | 04/22/22 17:27 |            |
| Manganese | ug/L  | <1.1   | 5.0   | 1.1  | 04/22/22 17:27 |            |
| Potassium | ug/L  | <224   | 500   | 224  | 04/22/22 17:27 |            |
| Sodium    | ug/L  | <166   | 500   | 166  | 04/22/22 17:27 |            |

### LABORATORY CONTROL SAMPLE: 3120949

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Boron     | ug/L  |                | 1830          | 92           | 85-115          |            |
| Calcium   | ug/L  | 20000          | 18900         | 94           | 85-115          |            |
| Iron      | ug/L  | 20000          | 18900         | 95           | 85-115          |            |
| Magnesium | ug/L  | 20000          | 19000         | 95           | 85-115          |            |
| Manganese | ug/L  | 2000           | 1910          | 96           | 85-115          |            |
| Potassium | ug/L  | 20000          | 19100         | 95           | 85-115          |            |
| Sodium    | ug/L  | 20000          | 19100         | 96           | 85-115          |            |

|           |       |            | MS    | MSD   |        |        |       |       |        |     |     |     |
|-----------|-------|------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|-----|
|           | 6     | 0397479003 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter | Units | Result     | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Boron     | ug/L  | 2350       | 1000  | 1000  | 3370   | 3360   | 102   | 101   | 70-130 | 0   | 20  |     |
| Calcium   | ug/L  | 105000     | 10000 | 10000 | 116000 | 116000 | 106   | 110   | 70-130 | 0   | 20  |     |
| Iron      | ug/L  | 11200      | 10000 | 10000 | 21300  | 20900  | 101   | 97    | 70-130 | 2   | 20  |     |
| Magnesium | ug/L  | 20200      | 10000 | 10000 | 29400  | 29000  | 92    | 88    | 70-130 | 1   | 20  |     |
| Manganese | ug/L  | 1310       | 1000  | 1000  | 2340   | 2300   | 103   | 100   | 70-130 | 1   | 20  |     |
| Potassium | ug/L  | 5200       | 10000 | 10000 | 15500  | 15400  | 103   | 102   | 70-130 | 1   | 20  |     |
| Sodium    | ug/L  | 17100      | 10000 | 10000 | 27700  | 27500  | 106   | 104   | 70-130 | 1   | 20  |     |

| MATRIX SPIKE & MATRIX SF | IKE DUPLI | CATE: 3120  | 952   |       | 3120953 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | 6         | 60397403002 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                    | ug/L      | 110         | 1000  | 1000  | 1080    | 1080   | 97    | 97    | 70-130 | 0   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| MATRIX SPIKE & MATRIX | SPIKE DUPLIC | CATE: 3120           | 952                  |                       | 3120953      |               |             |              |                 |     |            |      |
|-----------------------|--------------|----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter             | 6<br>Units   | 0397403002<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Calcium               | ug/L         | 220000               | 10000                | 10000                 | 228000       | 226000        | 77          | 59           | 70-130          | 1   | 20         | M1   |
| Iron                  | ug/L         | 466                  | 10000                | 10000                 | 10000        | 10100         | 96          | 96           | 70-130          | 0   | 20         |      |
| Magnesium             | ug/L         | 56300                | 10000                | 10000                 | 65000        | 65000         | 87          | 87           | 70-130          | 0   | 20         |      |
| Manganese             | ug/L         | 3200                 | 1000                 | 1000                  | 4100         | 4150          | 90          | 95           | 70-130          | 1   | 20         |      |
| Potassium             | ug/L         | 7050                 | 10000                | 10000                 | 17500        | 17400         | 105         | 104          | 70-130          | 0   | 20         |      |
| Sodium                | ug/L         | 12500                | 10000                | 10000                 | 22800        | 22900         | 103         | 104          | 70-130          | 0   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: A               | MEREN LEC LO | CL1              |                       |               |               |             |             |            |
|--------------------------|--------------|------------------|-----------------------|---------------|---------------|-------------|-------------|------------|
| Pace Project No.: 6      | 0397403      |                  |                       |               |               |             |             |            |
| QC Batch:                | 781580       |                  | Analysis Me           | thod:         | SM 2320B      |             |             |            |
| QC Batch Method:         | SM 2320B     |                  | Analysis De           | scription:    | 2320B Alkalin | ity         |             |            |
|                          |              |                  | Laboratory:           |               | Pace Analytic | al Services | - Kansas C  | lity       |
| Associated Lab Samp      | les: 6039734 | 7006, 6039734701 | 3, 60397347014        |               |               |             |             |            |
| METHOD BLANK: 3          | 117114       |                  | Matrix                | Water         |               |             |             |            |
| Associated Lab Samp      | les: 6039734 | 7006, 6039734701 | 3, 60397347014        |               |               |             |             |            |
|                          |              |                  | Blank                 | Reporting     |               |             |             |            |
| Parame                   | ter          | Units            | Result                | Limit         | MDL           | A           | nalyzed     | Qualifiers |
| Alkalinity, Total as Ca  | 03           | mg/L             | <4.6                  | 20            | .0            | 4.6 04/1    | 5/22 16:07  |            |
|                          |              |                  |                       |               |               |             |             |            |
| LABORATORY CONT          | ROL SAMPLE:  | 3117115          |                       |               |               |             |             |            |
|                          |              |                  | Spike                 | LCS           | LCS           | % Rec       |             |            |
| Parame                   | ter          | Units            | Conc                  | Result        | % Rec         | Limits      | Qu          | alifiers   |
| Alkalinity, Total as Ca0 | 03           | mg/L             | 500                   | 496           | 99            | 90-         | 110         |            |
|                          |              |                  |                       |               |               |             |             |            |
| SAMPLE DUPLICATE         | : 3117116    |                  |                       | _             |               |             |             |            |
| Damas                    | 1            | 11-20-           | 60397346006           | Dup           | 000           |             | /lax        | Qualifiant |
| Parame                   |              | Units            | Result                | Result        | RPD           |             | RPD         | Qualifiers |
| Alkalinity, Total as Ca  | 03           | mg/L             | 408                   | 40            | 06            | 0           | 10          |            |
|                          |              |                  |                       |               |               |             |             |            |
| SAMPLE DUPLICATE         | : 3117118    |                  |                       | _             |               | -           |             |            |
| Parame                   | tor          | Units            | 60397347001<br>Result | Dup<br>Result | RPD           |             | /lax<br>RPD | Qualifiers |
|                          |              |                  |                       |               |               |             |             | Quaimers   |
| Alkalinity, Total as CaC | 203          | mg/L             | 34.3                  | 35            | .0            | 2           | 10          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:               | AMEREN LEC    | LCL1               |                 |              |               |                  |         |            |
|------------------------|---------------|--------------------|-----------------|--------------|---------------|------------------|---------|------------|
| Pace Project No.:      | 60397403      |                    |                 |              |               |                  |         |            |
| QC Batch:              | 782260        |                    | Analysis M      | ethod:       | SM 2320B      |                  |         |            |
| QC Batch Method:       | SM 2320B      |                    | Analysis De     | escription:  | 2320B Alkalin | ity              |         |            |
|                        |               |                    | Laboratory      | :            | Pace Analytic | al Services - Ka | ansas C | ity        |
| Associated Lab Sam     | nples: 603974 | 03001, 60397403002 | 2, 60397403003, | 60397403004, | 60397403005   | 5                |         |            |
| METHOD BLANK:          | 3119662       |                    | Matri           | x: Water     |               |                  |         |            |
| Associated Lab Sam     | nples: 603974 | 03001, 60397403002 | 2, 60397403003, | 60397403004, | 60397403005   | 5                |         |            |
|                        |               |                    | Blank           | Reporting    |               |                  |         |            |
| Param                  | neter         | Units              | Result          | Limit        | MDL           | Analy            | /zed    | Qualifiers |
| Alkalinity, Total as C | aCO3          | mg/L               | <4.6            | -<br>5 20    | .0            | 4.6 04/20/22     | 2 10:52 |            |
|                        |               |                    |                 |              |               |                  |         |            |
| LABORATORY CON         | ITROL SAMPLE  | : 3119663          |                 |              |               |                  |         |            |
|                        |               |                    | Spike           | LCS          | LCS           | % Rec            |         |            |
| Param                  | neter         | Units              | Conc.           | Result       | % Rec         | Limits           | Qua     | alifiers   |
| Alkalinity, Total as C | aCO3          | mg/L               | 500             | 475          | 95            | 90-110           |         |            |
|                        |               |                    |                 |              |               |                  |         |            |
| SAMPLE DUPLICAT        | TE: 3119664   |                    |                 |              |               |                  |         |            |
|                        |               |                    | 60397403002     | - 1          |               | Max              |         |            |
| Param                  | neter         | Units              | Result          | Result       | RPD           | RPD              |         | Qualifiers |
| Alkalinity, Total as C | aCO3          | mg/L               | 620             | ) 62         | 22            | 0                | 10      |            |
|                        |               |                    |                 |              |               |                  |         |            |
| SAMPLE DUPLICAT        | TE: 3119665   |                    |                 |              |               |                  |         |            |
|                        |               |                    | 60397347017     | •            |               | Max              |         |            |
| Param                  | neter         | Units              | Result          | Result       | RPD           | RPD              |         | Qualifiers |
| Alkalinity, Total as C | aCO3          | mg/L               | 139             | 9 13         | 37            | 1                | 10      |            |
|                        |               |                    |                 |              |               |                  |         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| - <b>,</b>             | VEREN LEC LO | CL1              |                |            |               |          |            |         |            |
|------------------------|--------------|------------------|----------------|------------|---------------|----------|------------|---------|------------|
| Pace Project No.: 60   | 397403       |                  |                |            |               |          |            |         |            |
| QC Batch: 7            | '81487       |                  | Analysis Me    | ethod:     | SM 2540C      |          |            |         |            |
| QC Batch Method: S     | SM 2540C     |                  | Analysis De    | scription: | 2540C Total [ | Dissolve | ed Solids  |         |            |
|                        |              |                  | Laboratory:    |            | Pace Analytic | al Serv  | ices - Kar | sas Cit | у          |
| Associated Lab Sample  | es: 60397347 | 7006, 6039734701 | 3, 60397347014 |            |               |          |            |         |            |
| METHOD BLANK: 31       | 16838        |                  | Matrix         | : Water    |               |          |            |         |            |
| Associated Lab Sample  | es: 60397347 | 7006, 6039734701 | 3, 60397347014 |            |               |          |            |         |            |
|                        |              |                  | Blank          | Reporting  |               |          |            |         |            |
| Paramete               | er           | Units            | Result         | Limit      | MDL           |          | Analyz     | ed      | Qualifiers |
| Total Dissolved Solids |              | mg/L             |                | 5.         | .0            | 5.0      | 04/14/22   | 16:01   |            |
|                        |              |                  |                |            |               |          |            |         |            |
| LABORATORY CONTR       | ROL SAMPLE:  | 3116839          |                |            |               |          |            |         |            |
|                        |              |                  | Spike          | LCS        | LCS           | %        | Rec        |         |            |
| Paramete               | er           | Units            | Conc.          | Result     | % Rec         | Lii      | mits       | Qual    | ifiers     |
| Total Dissolved Solids |              | mg/L             | 1000           | 891        | 89            |          | 80-120     |         |            |
|                        |              |                  |                |            |               |          |            |         |            |
| SAMPLE DUPLICATE:      | 3116840      |                  | 60397347029    | Dup        |               |          | Max        |         |            |
| Paramete               | er           | Units            | Result         | Result     | RPD           |          | RPD        |         | Qualifiers |
| Total Dissolved Solids |              | mg/L             |                |            |               |          |            |         |            |
| Iotal Dissolved Solids |              | mg/∟             | 14.0           | 11.        | .0            | 24       |            |         | ,          |
| SAMPLE DUPLICATE:      | 3116841      |                  |                |            |               |          |            |         |            |
|                        |              |                  | 60397347030    | Dup        |               |          | Max        |         |            |
| Paramete               | er           | Units            | Result         | Result     | RPD           |          | RPD        |         | Qualifiers |
| Total Dissolved Solids |              | mg/L             | 795            | 78         | 34            | 1        |            | 10      |            |
|                        |              |                  |                |            |               |          |            |         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:             | AMERI  | EN LEC LC | L1              |                |               |               |         |             |        |            |
|----------------------|--------|-----------|-----------------|----------------|---------------|---------------|---------|-------------|--------|------------|
| Pace Project No.:    | 603974 | 103       |                 |                |               |               |         |             |        |            |
| QC Batch:            | 78172  | 21        |                 | Analysis M     | lethod:       | SM 2540C      |         |             |        |            |
| QC Batch Method:     | SM 2   | 540C      |                 | Analysis D     | escription:   | 2540C Total   | Dissolv | ed Solids   |        |            |
|                      |        |           |                 | Laboratory     | /:            | Pace Analytic | cal Ser | vices - Kai | nsas C | ity        |
| Associated Lab Sar   | nples: | 60397403  | 001, 6039740300 | 2, 60397403003 | , 60397403004 | , 6039740300  | 5       |             |        |            |
| METHOD BLANK:        | 311770 | 5         |                 | Matri          | ix: Water     |               |         |             |        |            |
| Associated Lab Sar   | nples: | 60397403  | 001, 6039740300 | 2, 60397403003 | , 60397403004 | , 6039740300  | 5       |             |        |            |
|                      |        |           |                 | Blank          | Reporting     |               |         |             |        |            |
| Parar                | neter  |           | Units           | Result         | Limit         | MDL           |         | Analyz      | zed    | Qualifiers |
| Total Dissolved Soli | ds     |           | mg/L            |                | 0             | 5.0           | 5.0     | 04/15/22    | 16:10  |            |
|                      |        |           | ů.              |                |               |               |         |             |        |            |
| LABORATORY CO        | NTROLS | SAMPLE:   | 3117706         |                |               |               |         |             |        |            |
|                      |        |           |                 | Spike          | LCS           | LCS           | %       | 6 Rec       |        |            |
| Parar                | neter  |           | Units           | Conc.          | Result        | % Rec         | L       | imits       | Qua    | alifiers   |
| Total Dissolved Soli | ds     |           | mg/L            | 1000           | 873           | 87            |         | 80-120      |        |            |
|                      |        |           |                 |                |               |               |         |             |        |            |
| SAMPLE DUPLICA       | TE: 31 | 17707     |                 |                |               |               |         |             |        |            |
| _                    |        |           |                 | 60397403002    |               |               |         | Max         |        |            |
| Parar                | neter  |           | Units           | Result         | Result        | RPD           |         | RPD         |        | Qualifiers |
| Total Dissolved Soli | ds     |           | mg/L            | 97             | 5 9           | 39            | 4       |             | 10     |            |
|                      |        |           |                 |                |               |               |         |             |        |            |
| SAMPLE DUPLICA       | TE: 31 | 17708     |                 |                |               |               |         |             |        |            |
|                      |        |           |                 | 60397683001    | - 1           |               |         | Max         |        |            |
| Parar                | neter  |           | Units           | Result         | Result        | RPD           |         | RPD         |        | Qualifiers |
| Total Dissolved Soli | ds     |           | mg/L            | 374            | 4 3           | 63            | 3       |             | 10     |            |
|                      |        |           |                 |                |               |               |         |             |        |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch: 782                                                                                                                               | 267       |                                                                                                            | Analy                                                     | sis Meth                                                                                         | nod:                                                                         | EPA 300.0                                                                                |                                                                                                   |                                                                                                         |                                              |           |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|-----------|--|
|                                                                                                                                             | 300.0     |                                                                                                            | -                                                         |                                                                                                  | cription:                                                                    | 300.0 IC Ani                                                                             | ons                                                                                               |                                                                                                         |                                              |           |           |  |
|                                                                                                                                             |           |                                                                                                            | -                                                         | atory:                                                                                           |                                                                              | Pace Analyt                                                                              |                                                                                                   | vices - Kans                                                                                            | sas City                                     |           |           |  |
| Associated Lab Samples:                                                                                                                     | 603973470 | 06                                                                                                         |                                                           | ,                                                                                                |                                                                              | ,                                                                                        |                                                                                                   |                                                                                                         | ,                                            |           |           |  |
| METHOD BLANK: 31197                                                                                                                         | '18       |                                                                                                            |                                                           | Matrix:                                                                                          | Water                                                                        |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| Associated Lab Samples:                                                                                                                     | 603973470 | 06                                                                                                         |                                                           |                                                                                                  |                                                                              |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| Parameter                                                                                                                                   |           | Units                                                                                                      | Blan<br>Resu                                              |                                                                                                  | Reporting<br>Limit                                                           | MDL                                                                                      | -                                                                                                 | Analyze                                                                                                 | ed Qi                                        | ualifiers | ;         |  |
| Chloride                                                                                                                                    |           | mg/L                                                                                                       |                                                           | <0.53                                                                                            | 1                                                                            | .0                                                                                       | 0.53                                                                                              | 04/20/22 0                                                                                              | 8:07                                         |           |           |  |
| Fluoride                                                                                                                                    |           | mg/L                                                                                                       |                                                           | <0.12                                                                                            | 0.2                                                                          | 20                                                                                       | 0.12                                                                                              | 04/20/22 0                                                                                              | 8:07                                         |           |           |  |
| Sulfate                                                                                                                                     |           | mg/L                                                                                                       |                                                           | <0.55                                                                                            | 1                                                                            | .0                                                                                       | 0.55                                                                                              | 04/20/22 0                                                                                              | 8:07                                         |           |           |  |
| METHOD BLANK: 31210                                                                                                                         | )96       |                                                                                                            |                                                           | Matrix:                                                                                          | Water                                                                        |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| Associated Lab Samples:                                                                                                                     | 603973470 | 06                                                                                                         |                                                           |                                                                                                  |                                                                              |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
|                                                                                                                                             |           |                                                                                                            | Blan                                                      | k                                                                                                | Reporting                                                                    |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| Parameter                                                                                                                                   |           | Units                                                                                                      | Resu                                                      | ılt                                                                                              | Limit                                                                        | MDL                                                                                      | -                                                                                                 | Analyze                                                                                                 | ed Qi                                        | ualifiers | 5         |  |
| Chloride                                                                                                                                    |           | mg/L                                                                                                       |                                                           | <0.53                                                                                            | 1                                                                            | .0                                                                                       | 0.53                                                                                              | 04/21/22 0                                                                                              | 9:52                                         |           |           |  |
| Fluoride                                                                                                                                    |           | mg/L                                                                                                       |                                                           | <0.12                                                                                            | 0.2                                                                          | 20                                                                                       | 0.12                                                                                              | 04/21/22 0                                                                                              | 9:52                                         |           |           |  |
| Sulfate                                                                                                                                     |           | mg/L                                                                                                       |                                                           | <0.55                                                                                            | 1                                                                            | .0                                                                                       | 0.55                                                                                              | 04/21/22 0                                                                                              | 9:52                                         |           |           |  |
|                                                                                                                                             |           | -                                                                                                          |                                                           |                                                                                                  |                                                                              |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| LABORATORY CONTROL                                                                                                                          | . SAMPLE: | 3119719                                                                                                    |                                                           |                                                                                                  |                                                                              |                                                                                          |                                                                                                   |                                                                                                         |                                              |           |           |  |
| LABORATORY CONTROL                                                                                                                          | . SAMPLE: | 3119719<br>Units                                                                                           | Spike<br>Conc.                                            |                                                                                                  | LCS                                                                          | LCS<br>% Rec                                                                             |                                                                                                   | Rec<br>imits                                                                                            | Qualifiers                                   |           |           |  |
| Parameter                                                                                                                                   | SAMPLE:   | Units                                                                                                      | Conc.                                                     | R                                                                                                | esult                                                                        | % Rec                                                                                    | Li                                                                                                | imits                                                                                                   | Qualifiers                                   |           |           |  |
| Parameter                                                                                                                                   | SAMPLE:   | Units<br>mg/L                                                                                              | Conc.                                                     | <br>5                                                                                            |                                                                              | % Rec<br>94                                                                              | Li<br>•                                                                                           |                                                                                                         | Qualifiers                                   |           |           |  |
| LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                          | SAMPLE:   | Units                                                                                                      | Conc.<br>2.                                               | <br>5                                                                                            | 4.7                                                                          | % Rec                                                                                    | <br>+<br>3                                                                                        | imits<br>90-110                                                                                         | Qualifiers                                   |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                |           | Units<br>mg/L<br>mg/L<br>mg/L                                                                              | Conc.<br>2.                                               | <br>5<br>5                                                                                       | 4.7<br>2.6                                                                   | % Rec<br>94<br>103                                                                       | <br>+<br>3                                                                                        | imits<br>90-110<br>90-110                                                                               | Qualifiers                                   | _         |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                |           | Units<br>mg/L<br>mg/L                                                                                      | Conc.<br>2.                                               | R<br>5<br>5<br>5                                                                                 | 4.7<br>2.6                                                                   | % Rec<br>94<br>103                                                                       | Li                                                                                                | imits<br>90-110<br>90-110                                                                               | Qualifiers                                   | _         |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                |           | Units<br>mg/L<br>mg/L<br>mg/L                                                                              | Conc.                                                     | 5<br>5<br>5                                                                                      | 4.7<br>2.6<br>4.9                                                            | % Rec<br>94<br>103<br>99                                                                 | Li<br>3<br>9                                                                                      | imits<br>90-110<br>90-110<br>90-110                                                                     | Qualifiers                                   |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter                                                             |           | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097                                                                   | Conc.                                                     | 5<br>5<br>5                                                                                      | 4.7<br>2.6<br>4.9                                                            | % Rec<br>94<br>103<br>99<br>LCS                                                          | Li                                                                                                | imits<br>90-110<br>90-110<br>90-110                                                                     |                                              |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride                                                 |           | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097<br>Units                                                          | Conc.                                                     | R<br>5                                                                                           | LCS                                                                          | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec                                                 | LL<br>3<br>9<br>- LL<br>- LL                                                                      | imits<br>90-110<br>90-110<br>90-110<br>90-110                                                           |                                              | _         |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL                                                                          |           | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L                                                  | Spike<br>Conc.                                            | R<br>5                                                                                           | LCS<br>4.5<br>4.7<br>2.6<br>4.9                                              | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91                                           | Li<br>3<br>)<br>                                                                                  | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                 |                                              |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                     | SAMPLE:   | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L<br>mg/L<br>mg/L                                  | Spike<br>Conc                                             | R<br>5<br>5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                          | LCS<br>4.5<br>2.6<br>4.9<br>LCS<br>2.5                                       | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91<br>100<br>95                              | Li<br>3<br>)<br>                                                                                  | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                       |                                              |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                          | SAMPLE:   | Units<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                  | Conc.<br>2.5<br>Spike<br>Conc.<br>2.5<br>720<br>MS        | R<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                | 4.7<br>2.6<br>4.9<br>LCS<br>tesult<br>4.5<br>2.5<br>4.7<br>311972            | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91<br>100<br>95                              | Li                                                                                                | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                       | Qualifiers                                   |           |           |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX | SAMPLE:   | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                  | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>720<br>MS<br>Spike | S<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | LCS<br>4.5<br>2.5<br>4.7<br>311972<br>MS                                     | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91<br>100<br>95<br>1<br>MSD                  | Li<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                   | Qualifiers<br>% Rec                          | _         | Max       |  |
| Parameter Chloride Fluoride Sulfate LABORATORY CONTROL Parameter Chloride Fluoride Sulfate MATRIX SPIKE & MATRIX Parameter                  | SAMPLE:   | Units<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L<br>mg/L<br>mg/L<br>clCATE: 3119<br>60394153001<br>Result | Conc.<br>2.5<br>Spike<br>Conc.<br>2.5<br>720<br>MS        | R<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                | 4.7<br>2.6<br>4.9<br>LCS<br>tesult<br>4.5<br>2.5<br>4.7<br>311972            | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91<br>100<br>95                              | K                                                                                                 | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110 | Qualifiers<br>% Rec<br>Limits                | RPD       | RPD       |  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX | SAMPLE:   | Units<br>mg/L<br>mg/L<br>mg/L<br>3121097<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                  | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>720<br>MS<br>Spike | S<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | LCS<br>LCS<br>Lesult<br>4.5<br>2.5<br>4.7<br>311972<br>MS<br>Result<br>0 246 | % Rec<br>94<br>103<br>99<br>LCS<br>% Rec<br>91<br>100<br>95<br>1<br>MSD<br>Result<br>245 | <br><br><br><br><br>                                                                              | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110 | Qualifiers Qualifiers % Rec Limits 35 80-120 | 1         | RPD<br>15 |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| 7825<br>d: EPA<br>Samples:<br>K: 31206<br>Samples:<br>rameter<br>K: 31249<br>Samples:<br>rameter | 300.0<br>6039734701<br>30<br>6039734701<br> | 13, 60397347014<br>13, 60397347014<br>Units<br>mg/L<br>mg/L<br>mg/L<br>13, 60397347014<br>Units | Analy                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rription:<br>Water<br>Reporting<br>Limit<br>1<br>0.2<br>1                                                                                                                                                       | MD<br>0<br>20                                                                                                                                                                                                                                                                                                                   | ical Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyze<br>04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Qu<br>2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Samples:<br>K: 31206<br>Samples:<br>rrameter<br>K: 31249<br>Samples:                             | 6039734701<br>30<br>6039734701<br>          | I3, 60397347014<br>Units<br>mg/L<br>mg/L<br>mg/L<br>13, 60397347014                             | Blar<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                | ratory:<br>Matrix: <sup>-</sup><br>k<br>ult<br>-0.63J<br>-0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water<br>Reporting<br>Limit<br>1.<br>0.2<br>1                                                                                                                                                                   | Pace Analyt                                                                                                                                                                                                                                                                                                                     | 0.53<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyze<br>04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Qu<br>2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| K: 31206<br>Samples:<br>rameter<br>K: 31249<br>Samples:                                          | 30<br>6039734701<br>                        | I3, 60397347014<br>Units<br>mg/L<br>mg/L<br>mg/L<br>13, 60397347014                             | Blar<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix:<br>hk<br>ult<br>0.63J<br><0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water<br>Reporting<br>Limit<br>1.<br>0.2<br>1                                                                                                                                                                   | MD<br>0<br>20                                                                                                                                                                                                                                                                                                                   | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyze<br>04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Qu<br>2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samples:<br>rameter<br>K: 31249<br>Samples:                                                      | 6039734701<br>                              | Units<br>mg/L<br>mg/L<br>mg/L<br>13, 60397347014                                                | Res                                                                                                                                                                                                                                                                                                                                                                                                                        | nk<br>ult<br>0.63J<br><0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reporting<br>Limit<br>0.2<br>1                                                                                                                                                                                  | .0<br>20                                                                                                                                                                                                                                                                                                                        | 0.53<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rameter<br>K: 31249<br>Samples:                                                                  | 94                                          | Units<br>mg/L<br>mg/L<br>mg/L<br>13, 60397347014                                                | Res                                                                                                                                                                                                                                                                                                                                                                                                                        | ult<br>0.63J<br><0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit<br>1.<br>0.2<br>1.                                                                                                                                                                                        | .0<br>20                                                                                                                                                                                                                                                                                                                        | 0.53<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| K: 31249<br>Samples:                                                                             | -                                           | mg/L<br>mg/L<br>mg/L<br>13, 60397347014                                                         | Res                                                                                                                                                                                                                                                                                                                                                                                                                        | ult<br>0.63J<br><0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit<br>1.<br>0.2<br>1.                                                                                                                                                                                        | .0<br>20                                                                                                                                                                                                                                                                                                                        | 0.53<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/26/22 12<br>04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2:57<br>2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samples:                                                                                         | -                                           | mg/L<br>mg/L<br>13, 60397347014                                                                 | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.12<br><0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2<br>1                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samples:                                                                                         | -                                           | mg/L<br>mg/L<br>13, 60397347014                                                                 | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samples:                                                                                         | -                                           | 13, 60397347014                                                                                 | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                                                                                              | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04/26/22 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Samples:                                                                                         | -                                           | ·                                                                                               | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       | Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  | 6039734701                                  | ·                                                                                               | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | ·                                                                                               | Blar                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rameter                                                                                          |                                             | Units                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                            | nk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reporting                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             |                                                                                                 | Res                                                                                                                                                                                                                                                                                                                                                                                                                        | ult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit                                                                                                                                                                                                           | MD                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | mg/L                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                               | .0                                                                                                                                                                                                                                                                                                                              | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04/27/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | mg/L                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04/27/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | mg/L                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                               | .0                                                                                                                                                                                                                                                                                                                              | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04/27/22 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL                                                                                          | SAMPLE: 3                                   | 3120631                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rameter                                                                                          |                                             | l Inits                                                                                         | Spike<br>Conc                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lance                                                                                            |                                             |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quaimers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | -                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | mg/L                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.8                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  | SAMDLE: 2                                   | 2124005                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JONTROL                                                                                          | SAMFLE. 3                                   | 124995                                                                                          | Spike                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS                                                                                                                                                                                                              | LCS                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rameter                                                                                          |                                             | Units                                                                                           | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 | % Rec                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | ma/l                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                               | <br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             | mg/L                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.9                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| & MATRIX                                                                                         | SPIKE DUPLI                                 | ICATE: 31206                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3120633                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  |                                             |                                                                                                 | MS                                                                                                                                                                                                                                                                                                                                                                                                                         | MSD<br>Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 | MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MGD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eter                                                                                             | Units                                       |                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                  | mg/L                                        | 17.4                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 25.3                                                                                                                                                                                                          | 22.7                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E,M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                  | mg/L                                        | 0.16J                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1,R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                  | CONTROL<br>arameter<br>& MATRIX<br>eter     | Arameter                                                                                        | CONTROL SAMPLE: 3120631          arameter       Units         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         control SAMPLE:       3124995         arameter       Units         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         mg/L       mg/L         mg/L       117.4         mg/L       0.16J | CONTROL SAMPLE: 3120631<br>arameter Units Conc.<br>mg/L<br>mg/L 2.<br>mg/L 3.<br>mg/L | CONTROL SAMPLE: 3120631arameterUnitsConc.mg/L5mg/L2.5mg/L5mg/L5CONTROL SAMPLE:3124995CONTROL SAMPLE:3124995arameterUnitsMg/L5mg/L5mg/L5mg/L5mg/L5mg/L5mg/L5mg/L5mg/L5mg/L5mg/L5eterUnitsmg/L17.4mg/L0.16J2.52.5 | CONTROL SAMPLE: 3120631arameterUnitsSpike<br>Conc.LCS<br>Resultmg/L54.7<br>mg/Lmg/L54.7<br>2.5mg/L54.8CONTROL SAMPLE:3124995arameterUnitsSpike<br>Conc.LCS<br>Resultmg/L54.8mg/L54.8mg/L54.8mg/L54.8mg/L54.9& MATRIX SPIKE DUPLICATE:31206323120632eterUnitsResult<br>Conc.Conc.Result<br>Conc.mg/L17.45525.3mg/L0.16J2.52.54.0 | CONTROL SAMPLE:         3120631         Spike         LCS         LCS           arameter         Units         Conc.         Result         % Rec           mg/L         5         4.7         94           mg/L         2.5         2.5         94           mg/L         5         4.7         94           mg/L         2.5         2.5         94           mg/L         5         4.8         91           CONTROL SAMPLE:         3124995         LCS         LCS           arameter         Units         Conc.         Result         % Rec           mg/L         2.5         2.5         100           mg/L         5         4.8         94           mg/L         2.5         2.5         100           mg/L         5         4.9         94           MS         MSD         Spike         MS           & MATRIX SPIKE DUPLICATE:         3120632         3120633           MS         MSD         Spike         Spike           60397347001         Spike         Spike         MS           mg/L         17.4         5         5         25.3         22.7 | CONTROL SAMPLE:         3120631           trameter         Units         Conc.         Result         % Rec         L           mg/L         5         4.7         94         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90 | CONTROL SAMPLE:         3120631         Spike         LCS         LCS         % Rec           trameter         Units         Mg/L         5         4.7         94         90-110           mg/L         2.5         2.5         99         90-110           mg/L         5         4.7         94         90-110           mg/L         5         4.8         97         90-110           CONTROL SAMPLE:         3124995         Spike         LCS         LCS         % Rec           crameter         Units         Conc.         Result         % Rec         Limits           mg/L         5         4.8         97         90-110           Spike         Conc.         Result         % Rec         Limits           mg/L         5         4.8         96         90-110           mg/L         2.5         2.5         100         90-110           mg/L         5         4.9         98         90-110           MS         MSD         MSD         MSD         MSD           eter         Units         Result         Conc.         Conc.         Result         % Rec         % Rec           mg/L | CONTROL SAMPLE:         3120631         Spike         LCS         LCS         LCS         Limits         Qualifiers           mameter         Units         5         4.7         94         90-110         Qualifiers           mg/L         2.5         2.5         99         90-110         Qualifiers           mg/L         5         4.8         97         90-110         Qualifiers           CONTROL SAMPLE:         3124995         Spike         LCS         LCS         % Rec         Limits         Qualifiers           crameter         Units         Spike         LCS         2.5         96         90-110         Qualifiers           mg/L         5         4.8         96         90-110         Qualifiers           mg/L         5         4.8         96         90-110         Qualifiers           mg/L         5         4.9         98         90-110         Qualifiers           mg/L         5         4.9         98         90-110         Qualifiers           wareter         60397347001         Spike         MSD         MSD         MSD         MSD           eter         Units         Result         Conc.         Conc. | CONTROL SAMPLE:         3120631         Spike<br>mameter         LCS<br>Conc.         LCS<br>Result         % Rec<br>% Rec         Limits<br>Limits         Qualifiers           mg/L         5         4.7         94         90-110         Qualifiers         Qualifiers           mg/L         2.5         2.5         99         90-110         Qualifiers         Qualifiers           CONTROL SAMPLE:         3124995         Spike         LCS         LCS         % Rec         Limits         Qualifiers           mg/L         5         4.8         96         90-110         Qualifiers         Qualifiers           mg/L         5         4.8         96         90-110         Qualifiers         Qualifiers           mg/L         5         4.8         96         90-110         Qualifiers         Qualifiers           mg/L         5         4.9         98         90-110         Qualifiers         Qualifiers           & MATRIX SPIKE DUPLICATE:         3120632         3120633         MSD         MSD         MSD         MSD         % Rec         Limits         RPD           mg/L         17.4         5         5         25.3         22.7         157         105         80-120         11 | CONTROL SAMPLE:         3120631         Spike<br>Conc.         LCS<br>Result         LCS<br>% Rec         LCS<br>Limits         Qualifiers           mg/L         5         4.7         94         90-110         Qualifiers         Qualifiers           mg/L         2.5         2.5         99         90-110         Qualifiers         Qualifiers           mg/L         5         4.8         97         90-110         Provide <ttr>         CONTROL SAMPLE:         3124995         Spike         LCS         LCS         % Rec         Limits         Qualifiers           mg/L         5         4.8         96         90-110         Provide<ttr>         mg/L         5         4.8         96         90-110           mg/L         2.5         2.5         100         90-110           mg/L         2.5         2.5         100         90-110           start         MSD         MSD         MSD         MSD           mg/L         5         4.9         98         90-110           &amp; MATRIX SPIKE DUPLICATE:         3120632         3120633           eter         Units         Conc.         Result         Result         % Rec         Limits         RPD         Max</ttr></ttr> |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| SAMPLE DUPLICATE: 3120634 |       |             |        |     |     |            |
|---------------------------|-------|-------------|--------|-----|-----|------------|
|                           |       | 60397347001 | Dup    |     | Max |            |
| Parameter                 | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride                  | mg/L  | 17.4        | 17.5   | 0   | 15  |            |
| Fluoride                  | mg/L  | 0.16J       | <0.12  |     | 15  |            |
| Sulfate                   | mg/L  | 263         | 266    | 1   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| QC Batch: 783                                                                                                                               | 373                      |                                                                                                                  | Analy                                                                    | sis Metho                                                                                          | d. E                                                                                                                                       | EPA 300.0                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|------------|------|
|                                                                                                                                             | 300.0                    |                                                                                                                  | -                                                                        | sis Descri                                                                                         |                                                                                                                                            | 300.0 IC Ani                                                                  | 000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
|                                                                                                                                             | 300.0                    |                                                                                                                  | -                                                                        | atory:                                                                                             | •                                                                                                                                          |                                                                               |                            | vices - Kans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oo City                       |           |            |      |
| Associated Lab Samples:                                                                                                                     | 6039740300               | 1, 6039740300                                                                                                    |                                                                          |                                                                                                    |                                                                                                                                            | -                                                                             |                            | VICES - Maris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | as City                       |           |            |      |
|                                                                                                                                             |                          | ,                                                                                                                |                                                                          |                                                                                                    |                                                                                                                                            |                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| METHOD BLANK: 3123                                                                                                                          |                          |                                                                                                                  |                                                                          | Matrix: W                                                                                          |                                                                                                                                            |                                                                               | _                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| Associated Lab Samples:                                                                                                                     | 6039740300               | 1, 6039740300                                                                                                    |                                                                          |                                                                                                    |                                                                                                                                            | 6039740300                                                                    | 15                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| Parameter                                                                                                                                   |                          | Units                                                                                                            | Blan<br>Resu                                                             |                                                                                                    | Reporting<br>Limit                                                                                                                         | MDL                                                                           |                            | Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Qi                          | ualifiers |            |      |
| Chloride                                                                                                                                    |                          | mg/L                                                                                                             |                                                                          | 0.61J                                                                                              | 1.0                                                                                                                                        |                                                                               | 0.53                       | 04/27/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |           |            |      |
| Fluoride                                                                                                                                    |                          | mg/L                                                                                                             |                                                                          | <0.12                                                                                              | 0.20                                                                                                                                       |                                                                               | 0.00                       | 04/27/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |           |            |      |
| Sulfate                                                                                                                                     |                          | mg/L                                                                                                             |                                                                          | <0.55                                                                                              | 1.0                                                                                                                                        |                                                                               | 0.55                       | 04/27/22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |           |            |      |
| METHOD BLANK: 31270                                                                                                                         | 155                      |                                                                                                                  |                                                                          | Matrix: W                                                                                          | /ater                                                                                                                                      |                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| Associated Lab Samples:                                                                                                                     |                          | 1, 6039740300                                                                                                    |                                                                          |                                                                                                    |                                                                                                                                            | 5039740300                                                                    | 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| Lab Gampios.                                                                                                                                | 0000140000               | 1,0000140000                                                                                                     | 2, 0039740.<br>Blan                                                      |                                                                                                    | Reporting                                                                                                                                  |                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| Parameter                                                                                                                                   |                          | Units                                                                                                            | Resu                                                                     |                                                                                                    | Limit                                                                                                                                      | MDL                                                                           |                            | Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed Qu                         | ualifiers |            |      |
| Chloride                                                                                                                                    |                          | mg/L                                                                                                             |                                                                          | 0.60J                                                                                              | 1.(                                                                                                                                        | <br>)                                                                         | 0.53                       | 04/28/22 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9:00                          |           |            |      |
| Fluoride                                                                                                                                    |                          | mg/L                                                                                                             |                                                                          | <0.12                                                                                              | 0.20                                                                                                                                       | )                                                                             | 0.12                       | 04/28/22 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9:00                          |           |            |      |
| Sulfate                                                                                                                                     |                          | mg/L                                                                                                             |                                                                          | <0.55                                                                                              | 1.0                                                                                                                                        | )                                                                             | 0.55                       | 04/28/22 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9:00                          |           |            |      |
|                                                                                                                                             |                          |                                                                                                                  |                                                                          |                                                                                                    |                                                                                                                                            |                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
| LABORATORY CONTROL                                                                                                                          | SAMPLE: 3                | 123954                                                                                                           |                                                                          |                                                                                                    |                                                                                                                                            |                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |           |            |      |
|                                                                                                                                             | SAMPLE: 3 <sup>.</sup>   |                                                                                                                  | Spike                                                                    | LC                                                                                                 |                                                                                                                                            | LCS                                                                           |                            | Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifiera                    |           |            |      |
| LABORATORY CONTROL<br>Parameter                                                                                                             | SAMPLE: 3                | Units                                                                                                            | Conc.                                                                    | Re                                                                                                 | sult                                                                                                                                       | % Rec                                                                         | L                          | imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifiers                    |           |            |      |
| Parameter                                                                                                                                   | . SAMPLE: 3'             | Units<br>mg/L                                                                                                    | Conc.                                                                    | Re:<br>5                                                                                           | sult                                                                                                                                       | % Rec<br>100                                                                  | L                          | imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifiers                    |           |            |      |
| Parameter<br>Chloride<br>Fluoride                                                                                                           | SAMPLE: 3                | Units<br>mg/L<br>mg/L                                                                                            | 2.4                                                                      | Re:<br>5<br>5                                                                                      | 5.0<br>2.5                                                                                                                                 | % Rec<br>100<br>101                                                           | L                          | imits<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Qualifiers                    |           |            |      |
| Parameter<br>Chloride<br>Fluoride                                                                                                           | _ SAMPLE: 3 <sup>,</sup> | Units<br>mg/L                                                                                                    | 2.4                                                                      | Re:<br>5                                                                                           | sult                                                                                                                                       | % Rec<br>100                                                                  | L                          | imits<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifiers                    |           |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                                                                |                          | Units<br>mg/L<br>mg/L                                                                                            | Conc.                                                                    | Re:<br>5<br>5<br>5                                                                                 | 5.0<br>2.5<br>4.9                                                                                                                          | % Rec<br>100<br>101<br>99                                                     | L                          | imits<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qualifiers                    |           |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL                                                                          |                          | Units<br>mg/L<br>mg/L<br>mg/L<br>127056                                                                          | Conc.                                                                    | Re:<br>5<br>5<br>5<br>                                                                             | sult<br>5.0<br>2.5<br>4.9                                                                                                                  | % Rec<br>100<br>101<br>99<br>LCS                                              | L                          | imits<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _         |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter                                                             |                          | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units                                                                 | Conc.                                                                    | Re:<br>5<br>5<br>5<br>5<br>Re:<br>                                                                 | 5.0<br>2.5<br>4.9                                                                                                                          | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec                                     | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifiers                    | _         |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride                                                 |                          | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L                                                         | Conc.                                                                    |                                                                                                    | sult         5.0           2.5         4.9           CS         sult           4.8                                                         | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95                               | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | _         |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                     |                          | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L                                                 | Spike<br>Conc.                                                           |                                                                                                    | sult 5.0<br>2.5<br>4.9<br>CS<br>sult 4.8<br>2.5                                                                                            | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100                        | L                          | imits<br>90-110<br>90-110<br>90-110<br>• Rec<br>imits<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |           |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                     |                          | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L                                                         | Spike<br>Conc.                                                           |                                                                                                    | sult         5.0           2.5         4.9           CS         sult           4.8                                                         | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95                               | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |           |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride                                                 | 3                        | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L<br>mg/L                                         | Spike<br>Conc.                                                           |                                                                                                    | sult 5.0<br>2.5<br>4.9<br>CS<br>sult 4.8<br>2.5                                                                                            | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100<br>97                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |           |            |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                          | 3                        | Units<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                         | Spike<br>Conc.<br>Conc.<br>2.5<br>2.5<br>8<br>2.5<br>8<br>8<br>955<br>MS |                                                                                                    | sult       5.0       2.5       4.9       Ssult       4.8       2.5       4.8       3123956                                                 | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100<br>97                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifiers                    |           | Max        |      |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                          | 3                        | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L<br>mg/L                                         | Spike<br>Conc.                                                           |                                                                                                    | sult     5.0       2.5     4.9       2.5     4.9       2.5     4.9       2.5     4.8       2.5     4.8       4.8     4.8       4.8     4.8 | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100<br>97                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifiers<br>% Rec           |           | Max<br>RPD | Qual |
| Parameter<br>Chloride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX             | SAMPLE: 3                | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L<br>mg/L<br>CATE: 31239<br>60397403002<br>Result | Conc.<br>2.<br>Spike<br>Conc.<br>2.<br>255<br>MS<br>Spike                | Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Sult<br>5.0<br>2.5<br>4.9<br>SS<br>Sult<br>4.8<br>2.5<br>4.8<br>3123956<br>MS<br>Result                                                    | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100<br>97<br>MSD<br>Result | L<br>%<br>L<br>MS<br>% Rec | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qualifiers<br>% Rec           |           | RPD        | Qua  |
| Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX | . SAMPLE: 3              | Units<br>mg/L<br>mg/L<br>mg/L<br>127056<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                         | Conc.<br>2.5<br>Spike<br>Conc.<br>2.5<br>MS<br>Spike<br>Conc.            | Res<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5      | sult<br>5.0<br>2.5<br>4.9<br>2.5<br>4.9<br>2.5<br>4.8<br>3123956<br>MS                                                                     | % Rec<br>100<br>101<br>99<br>LCS<br>% Rec<br>95<br>100<br>97<br>MSD           | MS<br>% Rec<br>10          | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90-10<br>90 | Qualifiers<br>% Rec<br>Limits | 1         | RPD<br>15  | Qua  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60397403

| SAMPLE DUPLICATE: 3123957 |       |             |        |     |     |            |
|---------------------------|-------|-------------|--------|-----|-----|------------|
|                           |       | 60397403002 | Dup    |     | Max |            |
| Parameter                 | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride                  | mg/L  | 11.9        | 11.9   | 0   | 15  |            |
| Fluoride                  | mg/L  | <0.12       | 0.28   |     | 15  |            |
| Sulfate                   | mg/L  | 197         | 193    | 2   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### QUALIFIERS

### Project: AMEREN LEC LCL1

Pace Project No.: 60397403

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H1 Analysis conducted outside the EPA method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LEC LCL1 Pace Project No.: 60397403

| Lab ID      | Sample ID   | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|----------|-------------------|---------------------|
| 60397347006 | L-MW-26     | EPA 200.7       | 782070   | EPA 200.7         | 782144              |
| 60397347013 | L-BMW-1S    | EPA 200.7       | 782070   | EPA 200.7         | 782144              |
| 60397347014 | L-BMW-2S    | EPA 200.7       | 782070   | EPA 200.7         | 782144              |
| 60397403001 | L-TMW-1     | EPA 200.7       | 782602   | EPA 200.7         | 782675              |
| 60397403002 | L-TMW-2     | EPA 200.7       | 782602   | EPA 200.7         | 782675              |
| 60397403003 | L-TMW-3     | EPA 200.7       | 782602   | EPA 200.7         | 782675              |
| 60397403004 | L-UWL-DUP-1 | EPA 200.7       | 782602   | EPA 200.7         | 782675              |
| 60397403005 | L-UWL-FB-1  | EPA 200.7       | 782602   | EPA 200.7         | 782675              |
| 60397347006 | L-MW-26     | SM 2320B        | 781580   |                   |                     |
| 60397347013 | L-BMW-1S    | SM 2320B        | 781580   |                   |                     |
| 60397347014 | L-BMW-2S    | SM 2320B        | 781580   |                   |                     |
| 60397403001 | L-TMW-1     | SM 2320B        | 782260   |                   |                     |
| 60397403002 | L-TMW-2     | SM 2320B        | 782260   |                   |                     |
| 60397403003 | L-TMW-3     | SM 2320B        | 782260   |                   |                     |
| 60397403004 | L-UWL-DUP-1 | SM 2320B        | 782260   |                   |                     |
| 60397403005 | L-UWL-FB-1  | SM 2320B        | 782260   |                   |                     |
| 60397347006 | L-MW-26     | SM 2540C        | 781487   |                   |                     |
| 60397347013 | L-BMW-1S    | SM 2540C        | 781487   |                   |                     |
| 60397347014 | L-BMW-2S    | SM 2540C        | 781487   |                   |                     |
| 60397403001 | L-TMW-1     | SM 2540C        | 781721   |                   |                     |
| 60397403002 | L-TMW-2     | SM 2540C        | 781721   |                   |                     |
| 60397403003 | L-TMW-3     | SM 2540C        | 781721   |                   |                     |
| 60397403004 | L-UWL-DUP-1 | SM 2540C        | 781721   |                   |                     |
| 60397403005 | L-UWL-FB-1  | SM 2540C        | 781721   |                   |                     |
| 60397347006 | L-MW-26     | EPA 300.0       | 782267   |                   |                     |
| 60397347013 | L-BMW-1S    | EPA 300.0       | 782513   |                   |                     |
| 60397347014 | L-BMW-2S    | EPA 300.0       | 782513   |                   |                     |
| 60397403001 | L-TMW-1     | EPA 300.0       | 783373   |                   |                     |
| 60397403002 | L-TMW-2     | EPA 300.0       | 783373   |                   |                     |
| 60397403003 | L-TMW-3     | EPA 300.0       | 783373   |                   |                     |
| 60397403004 | L-UWL-DUP-1 | EPA 300.0       | 783373   |                   |                     |
| 60397403005 | L-UWL-FB-1  | EPA 300.0       | 783373   |                   |                     |

|                                                                |                              |                            | WO#:60397403                                            |
|----------------------------------------------------------------|------------------------------|----------------------------|---------------------------------------------------------|
| Pace                                                           | DC#_Title: ENV               | -FRM-LENE-0009_Samp        | ple Co 50397403                                         |
| XMANYTERS SHOULES                                              | Revision: 2                  | Effective Date: 01/12/20   | 022 Issued By: Lenexa                                   |
| Client Name:()                                                 | ofder                        |                            |                                                         |
| Courier: FedEx 🗆 UPS                                           | U VIA D Clay                 |                            | Pace 🗆 Xroads 💭 Client 🗆 Other 🗆                        |
| racking #:                                                     |                              | Pace Shipping Label Use    | d? Yes □ No □                                           |
| Custody Seal on Cooler/Box                                     | Present: Yes                 | No 🗆 🤅 Seals intact: Yes 🖉 | No                                                      |
| •                                                              |                              | e Bags 🗆 👘 Foam 🗆          | None 🗆 Other 🗆                                          |
| Thermometer Used: 1.3                                          | 201                          | Type of Ice: Wet Blue No   |                                                         |
| Cooler Temperature (°C):                                       | As-read 2 <u>·4/1· 7-</u> Co | orr. Factor - Correc       |                                                         |
| emperature should be above free                                | zing to 6°C                  | -1.0                       | pv 4/12/22                                              |
| Chain of Custody present:                                      |                              |                            |                                                         |
| Chain of Custody relinquished:                                 |                              |                            |                                                         |
| Samples arrived within holding                                 | time:                        |                            |                                                         |
| hort Hold Time analyses (<7                                    | /2hr):                       |                            |                                                         |
| Rush Turn Around Time requ                                     | ested:                       |                            |                                                         |
| ufficient volume:                                              |                              |                            |                                                         |
|                                                                |                              |                            |                                                         |
| correct containers used:                                       |                              | 11                         |                                                         |
| ace containers used:                                           |                              |                            |                                                         |
| containers intact:                                             |                              |                            |                                                         |
| npreserved 5035A / TX1005/1                                    | 006 soils frozen in 48       | hrs? IYes No N/A           |                                                         |
| iltered volume received for dis                                | solved tests?                |                            |                                                         |
| ample labels match COC: Dat                                    | e / time / ID / analyses     |                            |                                                         |
| amples contain multiple phase                                  | es? Matrix:                  |                            |                                                         |
| containers requiring pH preserv                                |                              |                            | List sample IDs, volumes, lot #'s of preservative and t |
| HNO₃, H₂SO₄, HCl<2; NaOH>9 Su                                  |                              |                            | date/time added.                                        |
| Exceptions: VOA, Micro, O&G, KS<br>yanide water sample checks: | FIPH, OK-DRO)                | LOT#: 55/92                |                                                         |
| ead acetate strip turns dark? (                                | • ·                          | □Yes □No                   |                                                         |
| otassium iodide test strip turns                               | s blue/purple? (Preserv      | ve) 🛛 Yes 🖾 No             |                                                         |
| rip Blank present:                                             |                              | □Yes □No ØN/A              |                                                         |
| eadspace in VOA vials ( >6mr                                   | n):                          | □Yes □No □N/A              |                                                         |
| amples from USDA Regulated                                     | Area: State:                 | □Yes □No □N/A              |                                                         |
| dditional labels attached to 50                                |                              | the field? □Yes □No ØN/A   |                                                         |
| lient Notification/ Resolution                                 |                              | by COC to Client? Y / N    | I Field Data Required? Y / N                            |
| erson Contacted:                                               |                              | Date/Time:                 |                                                         |
| omments/ Resolution:                                           |                              |                            |                                                         |
|                                                                |                              |                            |                                                         |
| roject Manager Review:                                         |                              | <br>D_+t                   |                                                         |
|                                                                |                              | Date                       |                                                         |

Qualtrax Document ID: 30468

Face Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

| Section A<br>Required C | Section A<br>Required Client information:                             | Section B<br>Required Project Information: |                                               | Section C                                                |                                                                 |                                                         |                                   | Pa           | Page: 1 of 1                                                                                            |
|-------------------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------|---------------------------------------------------------------------------------------------------------|
| Company:                | Golder Associates                                                     | Report To: Jeffrey Ingram                  |                                               | Attention:                                               | 1                                                               |                                                         |                                   |              |                                                                                                         |
| Address;                | 701 Emerson Road, Suite 250                                           | Copy To: Eric Schnieder, Rvan F            | Eric Schnieder, Rvan Feldman. Brendan Talbert | Company Name:                                            | Golder Associates 11SA Inc.                                     |                                                         |                                   |              |                                                                                                         |
|                         | Creve Coerr Missouri 63111                                            | . 1                                        |                                               | -                                                        |                                                                 |                                                         | REGULATORY AGENCY                 | AGENCY       |                                                                                                         |
| ł                       |                                                                       |                                            |                                               | Address:                                                 |                                                                 |                                                         | L NPDES                           | GROUND WATER | ATER P DRINKING WATER                                                                                   |
| 8                       | gram(                                                                 | Purchase Order No.: COC #4                 |                                               | Pace Quote<br>Reference                                  |                                                                 |                                                         | TSU -                             | RCRA         | T OTHER                                                                                                 |
| Phone:                  |                                                                       | Project Name: Ameren Labadie E             | Ameren Labadie Energy Center LCL1             | Pace Project J<br>Manager                                | Jamie Church                                                    |                                                         | Site Location                     |              |                                                                                                         |
| Requeste                | Requested Due Date/TAT: Standard                                      | Project Number: 153140604, 0001            |                                               | 4.1                                                      | 9285, line 3                                                    |                                                         | STATE:                            | MO           |                                                                                                         |
|                         |                                                                       |                                            |                                               |                                                          |                                                                 | Requested A                                             | Requested Analysis Filtered (Y/N) | (N/A) P      |                                                                                                         |
|                         | Section D Valid Matrix Codes<br>Required Clent Information MATRIX Con | بل<br>(۱۹۵)<br>(۹۸)                        |                                               |                                                          |                                                                 | 1<br>1<br>1<br>N /                                      |                                   |              |                                                                                                         |
|                         |                                                                       |                                            | POSITE<br>POSITE                              |                                                          |                                                                 | ≤ 9tet                                                  |                                   |              |                                                                                                         |
|                         |                                                                       | 992=GRA                                    |                                               |                                                          |                                                                 | ns/əp                                                   |                                   |              | Л/Ү) э                                                                                                  |
|                         | (A-Z_0-9 / -)<br>Sample IDs MUST BE UNIQUE                            | ODE                                        | TA 9M                                         | IJNIAT                                                   |                                                                 | pinoul <sup>-</sup>                                     |                                   |              | hlorin                                                                                                  |
| # MƏTI                  |                                                                       | о хіятам<br>Алмаге ту<br>Ал<br>Ал          | ME<br>DAMPLE TE<br>ME<br>ME                   | H <sup>s</sup> SO <sup>4</sup><br>Nubreser/<br># OF CON. | HNO <sub>3</sub><br>HCI<br>MaCH<br>MaCH<br>Methanol<br>Methanol | name<br>J. Analysi<br>Moride/F<br>Analinity<br>DS<br>DS |                                   |              | Congrues                                                                                                |
| 1                       | L-MW-26                                                               | -                                          |                                               |                                                          |                                                                 | 7<br>7<br>0                                             |                                   |              | - race rroject No./ Lap I.D                                                                             |
| 2                       | L-TMW-1                                                               | MT G                                       | 4-11-22-1256                                  |                                                          |                                                                 | 111                                                     | 2011 2                            | 2011         |                                                                                                         |
| n                       | L-TMW-2                                                               | MT G                                       | 4-11-22 1107                                  | 5                                                        |                                                                 |                                                         |                                   | 2            | 70 PR.N 3 RP 11                                                                                         |
| 4                       | L-TMW-3                                                               | WT G                                       |                                               | 51                                                       |                                                                 |                                                         |                                   |              | ha 143 - 10 - 10                                                                                        |
| чЛ                      | L-BMW-1S                                                              | WT G                                       | 1438                                          |                                                          |                                                                 |                                                         | >                                 |              |                                                                                                         |
| 9                       | L-BMW-2S                                                              | WT G                                       |                                               |                                                          |                                                                 |                                                         |                                   |              |                                                                                                         |
| 2                       | L-UWL-DUP-1                                                           | WT G                                       | 152-11-H                                      | 5                                                        |                                                                 | 111                                                     | -                                 |              |                                                                                                         |
| ø                       | L-UWL-FB-1                                                            | WT G                                       | E2416241-H                                    | -<br>B                                                   |                                                                 | 111                                                     |                                   |              |                                                                                                         |
| თ                       | L-UWL-MS-1                                                            | WT G                                       | H-11-22 1107                                  |                                                          |                                                                 | 111                                                     | 2                                 |              | rollorka Q. IMU-2                                                                                       |
| 10                      | L-UWL-MSD-1                                                           | WT G                                       | 1 Hali 22 1107                                | 4                                                        |                                                                 | 1111                                                    |                                   |              | C-Inviloreda -TMLI-2                                                                                    |
| 11                      |                                                                       | WT G                                       |                                               |                                                          |                                                                 |                                                         |                                   |              |                                                                                                         |
| 12                      |                                                                       | WT G                                       | -                                             |                                                          |                                                                 |                                                         |                                   |              |                                                                                                         |
|                         | ADDITIONAL COMMENTS                                                   | RELINQUISHED BY / AFFILIATION              | ATION DATE                                    | TIME                                                     | ACCEPTE                                                         | ACCEPTED BY / AFFILIATION                               | DATE                              | TIME         | SAMPLE CONDITIONS                                                                                       |
| Apa III and             | App iil and CaUAn Metals* - EPA 2007: Fe, Mg, Mn, K, Na, Ce, B        | ON Nown                                    | 11/12 W                                       | 1/40                                                     | (Jugeta                                                         | MIMUW                                                   | 4/11                              | (1940)       |                                                                                                         |
|                         |                                                                       | Church with                                | د<br>14                                       | 0491                                                     | m                                                               | 1 Mar                                                   | 0/12 0                            | W2 2420      | V V V                                                                                                   |
|                         |                                                                       |                                            | •                                             |                                                          | 1                                                               | out                                                     | 2.11                              | i i i        | × × × ×                                                                                                 |
| F                       |                                                                       |                                            |                                               |                                                          |                                                                 |                                                         |                                   |              |                                                                                                         |
| Page                    |                                                                       | SAM                                        | SAMPLER NAME AND SIGNATURE                    | RE                                                       |                                                                 |                                                         |                                   | .c           | N)                                                                                                      |
| 29 o                    |                                                                       |                                            |                                               | En.c.                                                    | anna~                                                           |                                                         |                                   | , uj du:     | ουίοοα<br>(Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν)<br>ο (Υ/Ν) |
| of 30                   |                                                                       |                                            | SIGNATURE of SAMPLER:                         | 2                                                        |                                                                 | DATE Signed<br>(MM/DD/YY):                              | 22/11/140                         |              | ol<br>pisuO<br>poO<br>poO                                                                               |
|                         |                                                                       |                                            |                                               |                                                          |                                                                 |                                                         |                                   |              |                                                                                                         |

\* Strong Note 39 s 27 representation and access of the second representation of the second second second representation of the secon

F-ALL-Q-020rev 08, 12-Oct-2007

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| -                                          |                           |                                               | DRINKING WATER               | i<br>)<br>0               | The state of the state of the | and the second second            |                                   |                                          |                                                                                   | OSGF347<br>Dese Project Not Lab LD                    |                   |                  |               |        |        |        |              |             |          |                  |             |              | NDITIONS                     |                                     |   | _                          | λ\Λ)<br>Ies Iu  | Iqmeð       |      |
|--------------------------------------------|---------------------------|-----------------------------------------------|------------------------------|---------------------------|-------------------------------|----------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|------------------|---------------|--------|--------|--------|--------------|-------------|----------|------------------|-------------|--------------|------------------------------|-------------------------------------|---|----------------------------|-----------------|-------------|------|
| ď                                          |                           |                                               | INIAC _                      | OTHER                     |                               | Haller<br>Haller                 | ATT TOTAL                         |                                          |                                                                                   | 609973<br>6099-                                       |                   |                  |               |        |        |        |              |             |          |                  |             |              | SAMPLE CONDITIONS            |                                     |   | pele                       | eS (b           | poten;      |      |
| -                                          |                           |                                               | TFR                          | . L                       | States                        |                                  | 1111111                           |                                          |                                                                                   | Ý Ý                                                   | L                 |                  |               |        |        |        |              |             |          |                  |             |              | <sup>ts</sup>                |                                     |   |                            | bevie<br>N/Y) ( |             |      |
| Page:                                      |                           |                                               | GROUND WATER                 |                           |                               | 0                                | 100                               | (and a d                                 |                                                                                   | esidual Ch <u>l</u> orine                             |                   | E                |               |        |        |        |              |             |          | _                |             |              |                              |                                     |   | С                          | , պ dւ          | me⊺<br>L    |      |
|                                            |                           | AGENC                                         | GROI                         |                           |                               | MO                               | (N/X) P                           |                                          |                                                                                   |                                                       |                   |                  |               |        |        |        |              |             |          |                  |             |              | TIME                         |                                     |   |                            |                 |             |      |
|                                            |                           | REGULATORY AGENCY                             | NPDES                        |                           | Site Location                 | STATE.                           | Requested Analysis Filtered (Y/N) |                                          |                                                                                   |                                                       |                   |                  |               | _      |        |        |              |             |          |                  |             |              | DATE                         |                                     |   |                            |                 | 11110 HO    |      |
|                                            | F                         | REG                                           | L                            | L.<br>T                   | , tr                          | 5                                | d Analy                           |                                          |                                                                                   | Alkalinity                                            |                   |                  |               |        |        |        |              |             |          |                  |             |              | ╞                            |                                     |   |                            |                 |             |      |
|                                            |                           | J                                             |                              |                           |                               |                                  | Juester                           | Z                                        | l.                                                                                | SQ.                                                   |                   |                  | -1            |        |        |        |              |             | Ħ        |                  |             |              | IATION                       |                                     |   |                            |                 | DATE Signed |      |
|                                            |                           | Golder Associates USA, Inc.                   |                              |                           | Church                        |                                  | l a                               | z                                        |                                                                                   | Ayp III and Cat/A<br>Chloride/Fluoride                |                   | -                | -1            |        |        |        |              |             |          |                  |             | -            | AFFIL                        |                                     |   |                            |                 | DAT         |      |
|                                            |                           | ites U                                        |                              |                           |                               |                                  |                                   | <b>1</b> N /A                            | 1                                                                                 | titesT sisγlsnA                                       |                   |                  | 1             | _      |        |        |              | _           | _        | _                | _           | 1            | ACCEPTED BY / AFFILIATION    |                                     |   |                            |                 |             |      |
|                                            |                           | ssocia                                        |                              |                           |                               | Jamie Church                     |                                   |                                          |                                                                                   | -                                                     | Methanol<br>Other |                  |               |        |        |        |              |             |          |                  |             |              |                              | CEPTI                               |   |                            |                 | 5           |      |
|                                            |                           | der A                                         |                              |                           |                               |                                  | Church                            |                                          |                                                                                   | atives                                                |                   | HObN<br>82S26J   |               |        |        |        | _            |             |          | _                | _           | -            | _                            |                                     | ¥ | AC                         |                 |             | alla |
| Ë                                          |                           | Gol                                           |                              |                           | amie (                        | 9285                             |                                   | Preservatives                            |                                                                                   | HCI                                                   |                   |                  |               |        |        |        |              |             |          |                  |             |              |                              |                                     |   |                            | F               | 1.1         |      |
| matio                                      |                           | ame:                                          |                              |                           | Reference:<br>Pace Project J2 |                                  |                                   |                                          |                                                                                   | <sup>€</sup> ONH<br>Ps20¢                             | ~                 | -                | -1_           | _      |        | -      |              |             |          |                  | -           | -            |                              |                                     |   | -                          | 5               | 9           |      |
| Section C<br>Invoice Information;          | Attention:                | Company Name:                                 | ress:                        | duote                     |                               | Manager:<br>Pace Profile #:      |                                   |                                          |                                                                                   | Unpreserved                                           |                   | -                | -             |        | _      |        |              |             |          |                  |             |              | TIME                         | (72C)                               |   |                            | YEN             | 1           |      |
| Sec                                        | Atte                      |                                               | Address                      | Pace                      | 1                             |                                  | -                                 | L-                                       |                                                                                   | * OF CONTAINER                                        | -                 | _                | 4             | -      | _      |        |              | _           |          | $\left  \right $ | ++-         |              | -                            | 1-1-1-                              | _ | URE                        | 100             | 14          |      |
|                                            |                           | Eric Schneider, Ryan Feldman, Brendan Talbert |                              |                           | He ICL                        |                                  |                                   |                                          |                                                                                   | E<br>E<br>TA GMPLE TEMP AT C                          | 1341              | 1118             | 1327          |        |        |        |              |             |          |                  |             |              | DATE                         | 4-7-22                              |   | SAMPLER NAME AND SIGNATURE | of SAMPLER:     | of SAMPLER: |      |
|                                            |                           |                                               |                              |                           | Center Se                     | 100                              | •                                 | COLLECTED                                | COMPOSITE<br>END/GRAB                                                             | DATE                                                  |                   | 4-6-22           | +             |        |        |        |              |             |          |                  |             |              | NO                           | 2                                   |   | R NAME AI                  | PRINT Name      | SIGNATURE   |      |
|                                            |                           | an Feldr                                      |                              | 7                         | Energy                        | 30<br>10                         |                                   |                                          | COLLE<br>COLLE<br>START<br>START                                                  | TIME                                                  |                   |                  |               |        |        |        |              |             |          |                  |             |              | FFILIATI                     | -1 Gold                             |   | SAMPLE                     |                 |             |      |
| ation:                                     | gram                      | eider, Rya                                    |                              | COC # 0 1                 | Ameren Sioux Energy Center Se | 153140604. 0000 - 2000           |                                   |                                          |                                                                                   | DATE                                                  |                   |                  |               |        |        |        |              |             |          |                  |             |              | RELINQUISHED BY / AFFILATION | Tallart Coid                        |   |                            |                 |             |      |
| t Inform                                   | frey In                   | Schn                                          |                              |                           | Ame                           |                                  |                                   | (AMP)                                    |                                                                                   | а) аоор хиятам ₹                                      | U                 | 9                | Ċ             | U      | U      | U      | U            | U           | U        |                  | ပ<br>L      | INQUI.       |                              |                                     |   |                            |                 |             |      |
| Section B<br>Required Project Information: | Report To: Jeffrey Ingram | Copy To: Eric                                 |                              | Purchase Order No.        | Project Name:                 | Project Number:                  |                                   |                                          | t sebot bilev ees                                                                 |                                                       |                   |                  |               | Ţ      | μ      | ŢŴ     | Ţ            | Ţ           | Ţ        | Υ                | M           | Ŵ            | REL                          | Brenden                             |   |                            |                 |             |      |
| Seci                                       | Repo                      |                                               | uri, 63141                   |                           | Fax 636-724-9323 Proje        |                                  |                                   | Valid Matrix Codes<br>MATRIX CODE        | DRINKING WATER DW<br>WATER WT<br>WASTER WT<br>PRODUCT P<br>SOLUSOLID SL<br>OLL OL |                                                       | 92-MM-7-41-01-5-  | SI-Unit-1-Smu-15 | SDGT L-BMW-25 | S-DG-2 | S-DG-3 | S-DG-4 | S-SCPC-DUP-1 | S-SCPC-FB-1 | S-BMW-1S | S-BMW-3S         | S-SCPC-MS-1 | S-SCPC-MSD-1 | MENTS                        |                                     |   |                            |                 |             |      |
| Section A<br>Required Client Information:  | Golder Associates         | 701 Emerson Road, Suite 250                   | Creve Coeur, Missouri, 63141 | jeffrey ingram@golder.com | 636-724-9191 Fax 6            | Requested Due Date/TAT: Standard |                                   | Section D<br>Required Client Information |                                                                                   | SAMPLE ID<br>(A-Z, 0-9/)<br>Sample IDS MUST BE UNIQUE | J                 | TS.              | T-S           | I-S    | S-I    | S-I    | S-SCP        | S-SCI       | S-BI     | S-BA             | S-SCF       | S-SCP        | ADDITIONAL COMMENTS          | EPA 200.7: B, Ca, Fe, Mn, Mg, K, Na |   |                            |                 |             |      |
| Section A<br>Required C                    | Company:                  | Address:                                      |                              | Email To:                 | Phone: 6                      | equestec                         |                                   | S R                                      |                                                                                   | 11EM #                                                | ÷                 | 2                |               | 4      | 2      | 9      | ~            | 80          | ი        | 9                | 11          | 12           |                              | PA 200                              |   | Pag                        | e 30            | of          |      |

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

# **\\**SI) GOLDER

# MEMORANDUM

Project No. 153140604.0001

### **DATE** June 7, 2022

TO Project File Golder Associates

- CC Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

### EMAIL ann.muehlfarth@wsp.com

# DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60397403

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).
- When a compound was analyzed outside of hold time, associated sample results were qualified as estimates (J for detects, UJ for non-detects).

# **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Company Name: Golder Associates USA Inc | _ Project Manager: _ <sup>J. Ingram</sup>                    |
|-----------------------------------------|--------------------------------------------------------------|
| Project Name: Ameren - LEC - LCL1       | _ Project Number: _GL153140604.0001                          |
| Reviewer: <u>A. Muehlfarth</u>          | Validation Date: 6/7/2022                                    |
| Laboratory: Pace Analytical             | SDG #:_60397403<br>SDG #:_6039740C (TDS); EPA 300.0 (Anions) |
|                                         |                                                              |

### NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

| Field Ir                                         | nformation                                                                                                                                                                                                                                                                                                                                        | YES                | NO                     | NA              | COMMENTS                         |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-----------------|----------------------------------|
| a)                                               | Sampling dates noted?                                                                                                                                                                                                                                                                                                                             | х                  |                        |                 | 4/6/2022 - 4/11/2022             |
| b)                                               | Sampling team indicated?                                                                                                                                                                                                                                                                                                                          | х                  |                        |                 | EMS/GTM/BTT                      |
| c)                                               | Sample location noted?                                                                                                                                                                                                                                                                                                                            | x                  |                        |                 |                                  |
| d)                                               | Sample depth indicated (Soils)?                                                                                                                                                                                                                                                                                                                   |                    |                        | x               |                                  |
| e)                                               | Sample type indicated (grab/composite)?                                                                                                                                                                                                                                                                                                           | х                  |                        |                 | Grab                             |
| f)                                               | Field QC noted?                                                                                                                                                                                                                                                                                                                                   | х                  |                        |                 | See Notes                        |
| g)                                               | Field parameters collected (note types)?                                                                                                                                                                                                                                                                                                          | ×                  |                        |                 | pH, Sp.Cond, ORP, Temp, DO, Turb |
| h)                                               | Field Calibration within control limits?                                                                                                                                                                                                                                                                                                          | х                  |                        |                 |                                  |
| i)                                               | Notations of unacceptable field conditions/performa                                                                                                                                                                                                                                                                                               | nces fro           | om field lo            | ogs or field no | ites?                            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    | ×                      |                 |                                  |
| j)                                               | Does the laboratory narrative indicate deficiencies?                                                                                                                                                                                                                                                                                              |                    |                        | x               |                                  |
|                                                  | Note Deficiencies:                                                                                                                                                                                                                                                                                                                                |                    |                        |                 |                                  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    |                        |                 |                                  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    |                        |                 |                                  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    |                        |                 |                                  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    |                        |                 |                                  |
| Chain-                                           | of-Custody (COC)                                                                                                                                                                                                                                                                                                                                  | YES                | NO                     | NA              | COMMENTS                         |
| Chain-<br>a)                                     | of-Custody (COC)<br>Was the COC properly completed?                                                                                                                                                                                                                                                                                               | YES                | NO                     | NA              | COMMENTS                         |
|                                                  |                                                                                                                                                                                                                                                                                                                                                   |                    | _                      |                 | COMMENTS                         |
| a)                                               | Was the COC properly completed?                                                                                                                                                                                                                                                                                                                   |                    | _                      |                 | COMMENTS                         |
| a)                                               | Was the COC properly completed?<br>Was the COC signed by both field                                                                                                                                                                                                                                                                               | x                  |                        |                 | COMMENTS                         |
| a)<br>b)<br>c)                                   | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?                                                                                                                                                                                                      | X<br>X<br>X        |                        |                 |                                  |
| a)<br>b)<br>c)                                   | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?                                                                                                                                                                                                                                                  | ×                  |                        |                 | COMMENTS                         |
| a)<br>b)<br>c)                                   | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?                                                                                                                                                                                                      | X<br>X<br>X        |                        |                 |                                  |
| a)<br>b)<br>c)<br>Genera                         | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?                                                                                                                                                                                                      | ×<br>×<br>×<br>YES |                        |                 | COMMENTS                         |
| a)<br>b)<br>c)<br>Genera<br>a)                   | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Al (reference QAPP or Method)<br>Were hold times met for sample pretreatment?                                                                                                                     | ×<br>×<br>×<br>YES | □<br>□<br>NO           |                 | COMMENTS See Notes               |
| a)<br>b)<br>c)<br>Genera<br>a)<br>b)             | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Al (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?                                                                         | ×<br>×<br>YES      | □<br>□<br>NO<br>×      |                 | COMMENTS See Notes               |
| a)<br>b)<br>c)<br>Genera<br>a)<br>b)<br>c)       | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Al (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?<br>Were the correct preservatives used?                                 | ×<br>×<br>YES      | □<br>□<br>NO<br>×      |                 | COMMENTS See Notes               |
| a)<br>b)<br>c)<br>Genera<br>a)<br>b)<br>c)<br>d) | Was the COC properly completed?<br>Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Al (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?<br>Were the correct preservatives used?<br>Was the correct method used? | ×<br>×<br>YES      | □<br>□<br>NO<br>×<br>□ |                 | COMMENTS See Notes               |

### **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Blanks    |                                                                                           | YES | NO | NA | COMMENTS                          |
|-----------|-------------------------------------------------------------------------------------------|-----|----|----|-----------------------------------|
| a)        | Were analytes detected in the method blank(s)?                                            | х   |    |    | See Notes                         |
| b)        | Were analytes detected in the field blank(s)?                                             | х   |    |    | See Notes                         |
| c)        | Were analytes detected in the equipment blank(s)?                                         |     |    | x  |                                   |
| d)        | Were analytes detected in the trip blank(s)?                                              |     |    | x  |                                   |
|           |                                                                                           |     |    |    |                                   |
| Labora    | tory Control Sample (LCS)                                                                 | YES | NO | NA | COMMENTS                          |
| a)        | Was a LCS analyzed once per SDG?                                                          | x   |    |    |                                   |
| b)        | Were the proper analytes included in the LCS?                                             | x   |    |    |                                   |
| c)        | Was the LCS accuracy criteria met?                                                        | x   |    |    |                                   |
|           |                                                                                           | VEO | No |    |                                   |
| Duplica   |                                                                                           | YES | NO | NA | COMMENTS<br>L-UWL-DUP-1 @ L-TMW-1 |
| a)        | Were field duplicates collected (note original and du                                     | •   |    | ,  |                                   |
|           |                                                                                           | ×   |    |    | See Notes                         |
| b)        | Were field dup. precision criteria met (note RPD)?                                        |     | x  |    |                                   |
| c)        | Were lab duplicates analyzed (note original and dup                                       |     |    | _  |                                   |
|           |                                                                                           | х   |    |    | See Notes                         |
| d)        | Were lab dup. precision criteria met (note RPD)?                                          |     | х  |    | See Notes                         |
| Blind S   | tandards                                                                                  | YES | NO | NA | COMMENTS                          |
| a)        | Was a blind standard used (indicate name,                                                 |     |    | х  |                                   |
| ,         | analytes included and concentrations)?                                                    | _   | _  | —  |                                   |
| b)        | Was the %D within control limits?                                                         |     |    | х  |                                   |
|           |                                                                                           |     |    |    |                                   |
| Matrix \$ | Spike/Matrix Spike Duplicate (MS/MSD)                                                     | YES | NO | NA | COMMENTS                          |
| a)        | Was MS accuracy criteria met?                                                             |     | х  |    | See Notes                         |
|           | Recovery could not be calculated since sample<br>contained high concentration of analyte? |     |    | x  |                                   |
| b)        | Was MSD accuracy criteria met?                                                            |     | ×  |    | See Notes                         |
|           | Recovery could not be calculated since sample<br>contained high concentration of analyte? |     |    | ×  |                                   |
| c)        | Were MS/MSD precision criteria met?                                                       |     | x  |    | See Notes                         |

### Comments/Notes:

TDS analyzed outside of hold time in samples -013 and -014. Results qualified as estimates.

Sulfate analyzed at a dilution in multiple samples, no qualification necessary.

### Blanks:

MB 3120630: Chloride (0.63J), associated with samples -013 and -014. Sample results >RL but <10x blank, qualified as estimates. MB 3124994: Chloride (0.61J), associated with samples -013 and -014. Sample results >RL but <10x blank, qualified as estimates.

### **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

### Comments/Notes:

MB 3123953: Chloride (0.61J), associated with samples -001 through -005. Results >RL but <10x blank were qualified as estimates. Results >10x blank and RL not qualified. Results >RL were reported at RL and qualified as estimates. MB 3127055: Chloride (0.60J), associated with samples -001 through -005. See notes above.

L-UWL-FB-1 @ L-TMW-3: TDS (5.0), chloride (0.62J). TDS result >10x blank and RL, no qualification necessary. Chloride result >RL but <10x blank, qualified as an estimate.

**Duplicates:** 

L-UWL-DUP-1 @ L-TMW-1: RPD exceeds limit (20%) for iron (138.3%) and manganese (41.1%).

Sample Duplicate 3116840: RPD exceeds limit (10%) fro TDS (24%). Performed on unrelated sample, no qualification necessary.

### MS/MSD:

3119108/3119109: MS % recovery low for calcium and sodium, MS/MSD performed on unrelated sample, no qualification necessary.

3120952/3120953: MSD % recovery low for calcium, associated with sample -002. Only 1 QC indicator outside of control limits, no qualification necessary.

3120632/3120633: MS % recovery high for chloride. MS % recovery and RPD high for fluoride. MS/MSD performed on unrelated sample, no qualification necessary.

| <u>_</u> |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |

# **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

# Data Qualification:

| Sample Name | Constituent(s) | Result | Qualifier | Reason                                     |
|-------------|----------------|--------|-----------|--------------------------------------------|
| L-BMW-1S    | TDS            | 828    | J         | Analyzed outside of hold time              |
| L-BMW-2S    | "              | 513    | J         | n                                          |
| L-BMW-1S    | Chloride       | 2.5    | J         | Detected in MB, 10x blank > result > RL    |
| L-BMW-2S    | "              | 2.5    | J         | "                                          |
| L-TMW-1     | "              | 2.9    | J         | "                                          |
| L-UWL-DUP-1 | "              | 2.9    | J         | "                                          |
| L-TMW-3     | "              | 2.5    | J         | Detected in MB/FB, 10x blank > result > RI |
| L-UWL-FB-1  | "              | 1.0    | UJ        | Detected in MB, RL>result>MDL              |
| L-TMW-1     | Iron           | 38.5   | J         | Dup RPD exceeds limit                      |
| "           | Manganese      | 1510   | J         | "                                          |
| L-UWL-DUP-1 | Iron           | 211    | J         | п                                          |
| "           | Manganese      | 2290   | J         | n                                          |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             | $\overline{}$  |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                | $\sim$ |           |                                            |
|             |                | +      |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           |                                            |
|             |                |        |           | <u>_</u>                                   |
|             | - 1 MII        | 14-    |           |                                            |
| Signature:  | _ Ann Much     | Linh   |           | 6/7/2022                                   |



Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 08, 2022

Jeffrey Ingram Golder Associates 701 Emerson Road, Suite 250 Saint Louis, MO 63141

RE: Project: AMEREN VERIFICATION LCL1 Pace Project No.: 60403844

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on June 23, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates Brendan Talbert, Golder Associates





#### CERTIFICATIONS

Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 22-031-0 Arkansas Drinking Water Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212019-9 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



## SAMPLE SUMMARY

#### Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60403844001 | HOLD         | Water  | 06/22/22 00:00 | 06/23/22 03:57 |
| 60403836010 | L-TMW-2      | Water  | 06/22/22 09:21 | 06/23/22 03:57 |
| 60403836011 | L-LCL1-DUP-1 | Water  | 06/22/22 08:00 | 06/23/22 03:57 |
| 60403836012 | L-LCL1-FB-1  | Water  | 06/22/22 09:36 | 06/23/22 03:57 |



### SAMPLE ANALYTE COUNT

Project:AMEREN VERIFICATION LCL1Pace Project No.:60403844

| Lab ID      | Sample ID    | Method    | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|-----------|----------|----------------------|------------|
| 60403836010 | L-TMW-2      | EPA 200.7 | MA1      | 1                    | PASI-K     |
|             |              | SM 2540C  | SK       | 1                    | PASI-K     |
|             |              | EPA 300.0 | KB       | 2                    | PASI-K     |
| 60403836011 | L-LCL1-DUP-1 | EPA 200.7 | MA1      | 1                    | PASI-K     |
|             |              | SM 2540C  | SK       | 1                    | PASI-K     |
|             |              | EPA 300.0 | KB       | 2                    | PASI-K     |
| 60403836012 | L-LCL1-FB-1  | EPA 200.7 | MA1      | 1                    | PASI-K     |
|             |              | SM 2540C  | SK       | 1                    | PASI-K     |
|             |              | EPA 300.0 | KB       | 2                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



#### Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| Sample: L-TMW-2              | Lab ID:    | 60403836010     | Collected    | : 06/22/22 | 2 09:21 | Received: 06/  | 23/22 03:57 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|--------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL          | MDL        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 00.7 Prepar  | ation Meth | od: EP  | A 200.7        |                |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Cit | y          |         |                |                |              |      |
| Calcium                      | 215000     | ug/L            | 200          | 33.7       | 1       | 06/28/22 02:41 | 07/07/22 16:31 | 7440-70-2    | M1   |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 40C          |            |         |                |                |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Cit | y          |         |                |                |              |      |
| Total Dissolved Solids       | 940        | mg/L            | 13.3         | 13.3       | 1       |                | 06/29/22 11:26 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0         |            |         |                |                |              |      |
| -                            | Pace Anal  | vtical Services | - Kansas Cit | y          |         |                |                |              |      |
| Chloride                     | 10         | mg/L            | 1.0          | 0.53       | 1       |                | 07/01/22 15:24 | 16887-00-6   |      |
| Sulfate                      | 175        | mg/L            | 10.0         | 5.5        | 10      |                | 07/01/22 16:19 | 14808-79-8   |      |



#### Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| Sample: L-LCL1-DUP-1         | Lab ID:    | 60403836011     | Collected                      | : 06/22/22  | 2 08:00 | Received: 06/  | /23/22 03:57 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|--------------------------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL                            | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 00.7 Prepar                    | ration Meth | od: EP  | A 200.7        |                 |              |      |
|                              | Pace Anal  | ytical Services | <ul> <li>Kansas Cit</li> </ul> | ty          |         |                |                 |              |      |
| Calcium                      | 224000     | ug/L            | 200                            | 33.7        | 1       | 06/28/22 02:41 | 07/07/22 16:37  | 7440-70-2    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 40C                            |             |         |                |                 |              |      |
|                              | Pace Anal  | ytical Services | <ul> <li>Kansas Cit</li> </ul> | ty .        |         |                |                 |              |      |
| Total Dissolved Solids       | 920        | mg/L            | 13.3                           | 13.3        | 1       |                | 06/29/22 11:27  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0                           |             |         |                |                 |              |      |
|                              | Pace Anal  | ytical Services | <ul> <li>Kansas Cit</li> </ul> | iy          |         |                |                 |              |      |
| Chloride                     | 9.0        | mg/L            | 1.0                            | 0.53        | 1       |                | 07/06/22 10:23  | 16887-00-6   |      |
| Sulfate                      | 166        | mg/L            | 50.0                           | 27.5        | 50      |                | 07/01/22 17:57  | 14808-79-8   |      |



#### Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| Sample: L-LCL1-FB-1          | Lab ID:    | 60403836012     | Collected   | 1: 06/22/22 | 2 09:36 | Received: 06/  | /23/22 03:57 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|-------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.7 Metals, Total          | Analytical | Method: EPA 2   | 00.7 Prepa  | ration Meth | od: EP  | A 200.7        |                 |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Calcium                      | <33.7      | ug/L            | 200         | 33.7        | 1       | 06/28/22 02:41 | 07/07/22 16:39  | 7440-70-2    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 540C        |             |         |                |                 |              |      |
|                              | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Total Dissolved Solids       | 10.0       | mg/L            | 5.0         | 5.0         | 1       |                | 06/29/22 11:27  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0        |             |         |                |                 |              |      |
| -                            | Pace Anal  | ytical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Chloride                     | 0.63J      | mg/L            | 1.0         | 0.53        | 1       |                | 07/01/22 18:10  | 16887-00-6   | В    |
| Sulfate                      | <0.55      | mg/L            | 1.0         | 0.55        | 1       |                | 07/01/22 18:10  | 14808-79-8   |      |



| Project:<br>Pace Project No.: | AMEREN VERIFIC<br>60403844 | ATION LCL1                    |                              |             |           |              |          |               |            |           |            |      |
|-------------------------------|----------------------------|-------------------------------|------------------------------|-------------|-----------|--------------|----------|---------------|------------|-----------|------------|------|
| QC Batch:                     | 794742                     |                               | Analy                        | /sis Method | d: I      | EPA 200.7    |          |               |            |           |            |      |
| QC Batch Method:              | EPA 200.7                  |                               |                              | /sis Descri |           | 200.7 Metal  | s, Total |               |            |           |            |      |
|                               |                            |                               | Labo                         | ratory:     |           |              |          | /ices - Kansa | as City    |           |            |      |
| Associated Lab Sar            | mples: 604038360           | 010, 6040383601               | 1, 6040383                   | 6012        |           |              |          |               |            |           |            |      |
| METHOD BLANK:                 | 3166167                    |                               |                              | Matrix: W   | ater      |              |          |               |            |           |            |      |
| Associated Lab Sar            | mples: 604038360           | 010, 6040383601               | 1, 6040383                   | 6012        |           |              |          |               |            |           |            |      |
|                               |                            |                               | Blar                         | nk l        | Reporting |              |          |               |            |           |            |      |
| Parar                         | neter                      | Units                         | Res                          | ult         | Limit     | MD           | -        | Analyzed      | d Qu       | ualifiers |            |      |
| Calcium                       |                            | ug/L                          |                              | <33.7       | 20        | 0            | 33.7     | 07/07/22 16   | 6:27       |           |            |      |
|                               |                            |                               |                              |             |           |              |          |               |            |           |            |      |
|                               |                            |                               |                              |             |           |              |          |               |            |           |            |      |
| LABORATORY CO                 | NTROL SAMPLE:              | 3166168                       |                              |             |           |              |          |               |            |           |            |      |
| LABORATORY CO                 | NTROL SAMPLE:              | 3166168                       | Spike                        | LC          | S         | LCS          | %        | Rec           |            |           |            |      |
| LABORATORY COI<br>Parar       |                            | 3166168<br>Units              | Spike<br>Conc.               | LC<br>Res   | -         | LCS<br>% Rec |          | Rec<br>mits   | Qualifiers |           |            |      |
| Parar                         |                            |                               | •                            | Res         | -         |              | Li       |               | Qualifiers |           |            |      |
| Parar<br>Calcium              |                            | Units<br>ug/L                 | Conc1000                     | Res         | sult      | % Rec<br>98  | Li       | mits          | Qualifiers |           |            |      |
| Parar<br>Calcium              | neter                      | Units<br>ug/L                 | Conc1000                     | Res         | 9810      | % Rec<br>98  | Li       | mits          | Qualifiers |           |            |      |
| Parar<br>Calcium              | neter                      | Units<br>ug/L                 | - Conc.<br>1000              | Res         | 9810      | % Rec<br>98  | Li       | mits          | Qualifiers |           | Max        |      |
| Calcium                       | neter<br>MATRIX SPIKE DUP  | Units<br>ug/L<br>LICATE: 3166 | - Conc.<br>1000<br>169<br>MS | MSD         | 3166170   | % Rec<br>9   | Li       | MSD           |            | RPD       | Max<br>RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Pace Project No.: 60403844        | CATION LCL1     |                       |               |                |                   |          |            |
|-----------------------------------|-----------------|-----------------------|---------------|----------------|-------------------|----------|------------|
| QC Batch: 794977                  |                 | Analysis Me           | thod:         | SM 2540C       |                   |          |            |
| QC Batch Method: SM 2540C         |                 | Analysis De           | scription:    | 2540C Total D  | issolved Solids   |          |            |
|                                   |                 | Laboratory:           |               | Pace Analytica | al Services - Kar | sas City | у          |
| Associated Lab Samples: 604038360 | 010, 6040383601 | 1, 60403836012        |               |                |                   |          |            |
| METHOD BLANK: 3167039             |                 | Matrix                | : Water       |                |                   |          |            |
| Associated Lab Samples: 604038360 | 010, 6040383601 | 1, 60403836012        |               |                |                   |          |            |
|                                   |                 | Blank                 | Reporting     |                |                   |          |            |
| Parameter                         | Units           | Result                | Limit         | MDL            | Analyz            | ed       | Qualifiers |
| Total Dissolved Solids            | mg/L            | <5.0                  | 5             | .0             | 5.0 06/29/22      | 11:26    |            |
| LABORATORY CONTROL SAMPLE:        | 3167040         |                       |               |                |                   |          |            |
| _                                 |                 | Spike                 | LCS           | LCS            | % Rec             |          |            |
| Parameter                         | Units           | Conc.                 | Result        | % Rec          | Limits            | Quali    | ifiers     |
| Total Dissolved Solids            | mg/L            | 1000                  | 1040          | 104            | 80-120            |          |            |
| SAMPLE DUPLICATE: 3167041         |                 |                       |               |                |                   |          |            |
|                                   |                 | 60403836007           | Dup           |                | Max               |          |            |
| Parameter                         | Units           | Result                | Result        | RPD            | RPD               |          | Qualifiers |
| Total Dissolved Solids            | mg/L            | 485                   | 46            | 64             | 4                 | 10       |            |
| SAMPLE DUPLICATE: 3167042         |                 |                       |               |                |                   |          |            |
| Parameter                         | Units           | 60403836010<br>Result | Dup<br>Result | RPD            | Max<br>RPD        |          | Qualifiers |
| Total Dissolved Solids            | mg/L            | 940                   | 90            | 00             | 4                 | 10       |            |
| SAMPLE DUPLICATE: 3167043         |                 |                       |               |                |                   |          |            |
|                                   |                 | 60403987001           | Dup           |                | Max               |          |            |
| Parameter                         | Units           | Result                | Result        | RPD            | RPD               |          | Qualifiers |
| Total Dissolved Solids            | mg/L            | 173                   | 17            | <u> </u>       | 2                 | 10       |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:<br>Pace Project No.: | AMERE<br>6040384 | -         | ATION LCL1            |                |                |              |      |              |            |                |                 |           |            |     |
|-------------------------------|------------------|-----------|-----------------------|----------------|----------------|--------------|------|--------------|------------|----------------|-----------------|-----------|------------|-----|
| QC Batch:                     | 79522            | 7         |                       | Analy          | sis Metho      | od:          | EPA  | 300.0        |            |                |                 |           |            |     |
| QC Batch Method:              | EPA 30           | 0.0       |                       | Analy          | /sis Descr     | iption:      | 300. | 0 IC Ani     | ons        |                |                 |           |            |     |
|                               |                  |           |                       | Labo           | ratory:        |              | Pace | e Analyti    | cal Sei    | rvices - Kansa | as City         |           |            |     |
| Associated Lab Sam            | nples:           | 604038360 | 010, 6040383601       | 1, 6040383     | 6012           |              |      |              |            |                |                 |           |            |     |
| METHOD BLANK:                 | 3167864          | Ļ         |                       |                | Matrix: W      | Vater        |      |              |            |                |                 |           |            |     |
| Associated Lab Sam            | nples:           | 604038360 | 010, 6040383601       | 1, 6040383     | 6012           |              |      |              |            |                |                 |           |            |     |
|                               |                  |           |                       | Blar           | nk             | Reporting    | I    |              |            |                |                 |           |            |     |
| Param                         | neter            |           | Units                 | Res            | ult            | Limit        |      | MDL          |            | Analyzed       | y 0             | ualifiers |            |     |
| Chloride                      |                  |           | mg/L                  |                | 0.62J          |              | 1.0  |              | 0.53       | 07/01/22 12    | 2:22            |           |            |     |
| Sulfate                       |                  |           | mg/L                  |                | <0.55          |              | 1.0  |              | 0.55       | 07/01/22 12    | 2:22            |           |            |     |
| METHOD BLANK:                 | 3172952          | 2         |                       |                | Matrix: W      | Vater        |      |              |            |                |                 |           |            |     |
| Associated Lab Sam            | nples:           | 604038360 | 010, 6040383601       | 1, 6040383     | 6012           |              |      |              |            |                |                 |           |            |     |
|                               |                  |           |                       | Blar           |                | Reporting    | 1    |              |            |                |                 |           |            |     |
| Param                         | neter            |           | Units                 | Res            | ult            | Limit        |      | MDL          | -          | Analyzed       | y Q             | ualifiers |            |     |
| Chloride                      |                  |           | mg/L                  |                | <0.53          |              | 1.0  |              | 0.53       | 07/06/22 09    | ):29            |           |            |     |
| Sulfate                       |                  |           | mg/L                  |                | <0.55          |              | 1.0  |              | 0.55       | 07/06/22 09    | ):29            |           |            |     |
| LABORATORY CON                | ITROL S          | AMPLE:    | 3167865               |                |                |              |      |              |            |                |                 |           |            |     |
|                               |                  |           |                       | Spike          | LC             | CS           |      | CS           | %          | 6 Rec          |                 |           |            |     |
| Param                         | neter            |           | Units                 | Conc.          | Re             | sult         | %    | Rec          | L          | _imits         | Qualifiers      |           |            |     |
| Chloride                      |                  |           | mg/L                  |                | 5              | 4.8          |      | 96           |            | 90-110         |                 |           |            |     |
| Sulfate                       |                  |           | mg/L                  |                | 5              | 4.9          |      | 98           | 3          | 90-110         |                 |           |            |     |
| LABORATORY CON                | NTROL S          | AMPLE:    | 3172953               |                |                |              |      |              |            |                |                 |           |            |     |
| _                             |                  |           |                       | Spike          |                | CS           |      | CS           |            | 6 Rec          |                 |           |            |     |
| Param                         | neter            |           | Units                 | Conc.          |                | sult         | %    | Rec          |            | _imits         | Qualifiers      |           |            |     |
| Chloride                      |                  |           | mg/L                  |                | 5              | 4.6          |      | 91           |            | 90-110         |                 |           |            |     |
| Sulfate                       |                  |           | mg/L                  |                | 5              | 4.8          |      | 95           | 5          | 90-110         |                 |           |            |     |
| MATRIX SPIKE & M              | ATRIX S          | PIKE DUP  | LICATE: 3167          | 868            |                | 31678        | 69   |              |            |                |                 |           |            |     |
|                               |                  |           |                       | MS             | MSD            | • • •        |      |              | •          |                | o. –            |           |            |     |
| Parameter                     |                  | Units     | 60403836010<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result |      | ISD<br>esult | MS<br>% Re | MSD<br>c % Rec | % Rec<br>Limits | RPD       | Max<br>RPD | Qua |
| Chloride                      |                  | mg/L      | 10                    | 5              | 5              | 14.9         | 9    | 15.0         | 1          | 00 10          | 1 80-120        | 1         | 15         |     |
| Sulfate                       |                  | mg/L      | 175                   | 50             | 50             |              |      | 227          | 1          | 06 104         |                 |           |            | E   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| SAMPLE DUPLICATE: 3167870 |       |                       | _             |     |            |            |
|---------------------------|-------|-----------------------|---------------|-----|------------|------------|
| Parameter                 | Units | 60403836010<br>Result | Dup<br>Result | RPD | Max<br>RPD | Qualifiers |
|                           |       |                       |               |     |            | Quanners   |
| Chloride                  | mg/L  | 10                    | 10.2          | 2   | 15         |            |
| Sulfate                   | mg/L  | 175                   | 177           | 1   | 15         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### QUALIFIERS

Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN VERIFICATION LCL1

Pace Project No.: 60403844

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60403836010 | L-TMW-2      | EPA 200.7       | 794742   | EPA 200.7         | 794756              |
| 60403836011 | L-LCL1-DUP-1 | EPA 200.7       | 794742   | EPA 200.7         | 794756              |
| 60403836012 | L-LCL1-FB-1  | EPA 200.7       | 794742   | EPA 200.7         | 794756              |
| 60403836010 | L-TMW-2      | SM 2540C        | 794977   |                   |                     |
| 60403836011 | L-LCL1-DUP-1 | SM 2540C        | 794977   |                   |                     |
| 60403836012 | L-LCL1-FB-1  | SM 2540C        | 794977   |                   |                     |
| 60403836010 | L-TMW-2      | EPA 300.0       | 795227   |                   |                     |
| 60403836011 | L-LCL1-DUP-1 | EPA 300.0       | 795227   |                   |                     |
| 60403836012 | L-LCL1-FB-1  | EPA 300.0       | 795227   |                   |                     |

|                                                                                                              |                      |                              | WO#:60403836                                                               |
|--------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|----------------------------------------------------------------------------|
| Pace                                                                                                         |                      | RM-LENE-0009_Sam             | 60403836                                                                   |
|                                                                                                              | Revision: 2          | Effective Date: 01/12/2      |                                                                            |
| Client Name: 66                                                                                              | ler                  |                              |                                                                            |
| Courier: FedEx  UPS                                                                                          | ] VIA 🗆 Clay [       |                              | Pace 🗆 Xroads 🗹 Client 🗆 Other 🗅                                           |
| Tracking #:                                                                                                  |                      | Pace Shipping Label Use      | ad? Yes □ No 🗹                                                             |
| Custody Seal on Cooler/Box P                                                                                 | resent: Yes 🗹 No     | □ Seals intact: Yes          |                                                                            |
| Ť .                                                                                                          | Wrap 🗆 🛛 Bubble I    | -                            | None D Other D tplc                                                        |
| Thermometer Used: T-J                                                                                        |                      | ype of Ice: Wet Blue No      | Date and initials of person (                                              |
| Cooler Temperature (°C): As                                                                                  | s-read 3.4, 3.0 Cori | r. Factor <u>-1.0</u> Correc | examining contents: 625/22                                                 |
| Temperature should be above freezi                                                                           | ng to 6°C            |                              | 1                                                                          |
| Chain of Custody present:                                                                                    |                      | Tes No N/A                   |                                                                            |
| Chain of Custody relinquished:                                                                               |                      | Yes No N/A                   |                                                                            |
| Samples arrived within holding ti                                                                            | me:                  | Tes No N/A                   |                                                                            |
| Short Hold Time analyses (<72                                                                                | ?hr):                | □Yes 🗖 No □N/A               |                                                                            |
| Rush Turn Around Time reque                                                                                  |                      | □Yes 🗖 N/A                   |                                                                            |
| Sufficient volume:                                                                                           |                      | Yes No N/A                   |                                                                            |
| Correct containers used:                                                                                     |                      | Yes No N/A                   |                                                                            |
| Pace containers used:                                                                                        |                      |                              |                                                                            |
|                                                                                                              |                      |                              |                                                                            |
| Containers intact:                                                                                           |                      |                              |                                                                            |
| Unpreserved 5035A / TX1005/10                                                                                |                      |                              |                                                                            |
| Filtered volume received for diss                                                                            |                      |                              |                                                                            |
| Sample labels match COC: Date                                                                                |                      | Yes No N/A                   |                                                                            |
| Samples contain multiple phases                                                                              |                      |                              |                                                                            |
| Containers requiring pH preserva<br>(HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH>9 Sulfi |                      | Yes No N/A                   | List sample IDs, volumes, lot #'s of preservative and the date/time added. |
| (Exceptions: VOA, Micro, O&G, KS                                                                             |                      | LOT#: 55192                  |                                                                            |
| Cyanide water sample checks:                                                                                 |                      | Yes No                       |                                                                            |
| Lead acetate strip turns dark? (R<br>Potassium iodide test strip turns                                       | .,                   |                              |                                                                            |
|                                                                                                              |                      | ,                            |                                                                            |
| Trip Blank present:                                                                                          |                      |                              |                                                                            |
| Headspace in VOA vials ( >6mm                                                                                |                      | Yes No A                     |                                                                            |
| Samples from USDA Regulated A                                                                                |                      | Yes No ATA                   |                                                                            |
| Additional labels attached to 503                                                                            |                      |                              |                                                                            |
| Client Notification/ Resolution:                                                                             |                      | COC to Client? Y / N         | Field Data Required? Y / N                                                 |
| Person Contacted:<br>Comments/ Resolution:                                                                   |                      | Date/Time:                   |                                                                            |
|                                                                                                              |                      |                              |                                                                            |
|                                                                                                              |                      |                              |                                                                            |
| Project Manager Review:                                                                                      |                      | Date                         | e:                                                                         |

| List Pace Workorder Number or                                                   | 20                                                                  | LAB USE ONLY                          | Lab Project Manager:                | 4) sodium hydroxide, (5) zinc acetate,                                                                                                                                                                                                     | corbic acid, (b) ammonium sulfate,                       | LaD Profile/Line:<br>Lab Sample Receipt Checklist: | ody Seals Present/Intact Y N NA | Signatures Present Y N<br>r Signature Present Y N | N X N X                                   | Samples Received on Ice Y N NA<br>VOA - Headspace Acceptable Y N NA<br>USDA Regulated Soils Y N NA | ime Y<br>esent Y                           | table Y N           | Sulfide Present Y N NA<br>Lead Acetate Strips:                                                                                                                                                                         | LAB USE ONLY:<br>Lab Sample # / Comments:             |   |                    |      |                |              |  |  |                                                           | Temp Blank Received: ON NA<br>Therm ID#: T-219<br>Cooler 1 Temp Upon Receip24 3 AC | Cooler 1 Therm Corr. Factor-1.0 oC<br>Cooler 1 Corrected Temp: 2.4 2.0 oC | Comments:                                       |                      | Trip Blank Received: Y N NA<br>HCL MeOH TSP Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non Conformance(s): Page:              |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---|--------------------|------|----------------|--------------|--|--|-----------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or | M I'IL LOG-IN NUMBER HERE                                           | ALL SHADED AREAS are for LAB USE ONLY | Container Preservative Type **      | Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate,<br>methanol (7) sodium kinifer (0) sodi | י Sodium miosuitate, (ש) nexan<br>Unpreserved, (O) Other | Analyses Lab Proi                                  | Custody                         | Custody<br>Collect                                | Control                                   | Samp<br>VOA -<br>USDA                                                                              | Samples<br>Residual<br>C1 Stri             | 1                   | ~~~~                                                                                                                                                                                                                   | کم اد :                                               |   |                    |      |                | 4            |  |  | SHORT HOLDS PRESENT (<72 hours): Y N N/A                  | Lab Tracking #: 2568344                                                            | Samples received via:<br>FEDEX UPS Client Courier Pace Courier            | Date/Time: MTJL LAB USE ONLY                    | - 6-25 1510 Table #: | 0357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date/Time: PM: PB:                     |
| CHAIN-OF-CUSTODY Analytical Request Document                                    | Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields | Billing Information:                  | 47                                  | Email To:<br>(4)                                                                                                                                                                                                                           | Site Collection Info/Address: (C)                        | ·                                                  |                                 | Compliance Monitoring?                            | DW PWS ID #:<br>DW Location Code:         | d: Immediately Packed on Ice:                                                                      | Y [i ] Yes                                 | [ ] 5 Day Analysis: |                                                                                                                                                                                                                        | Collected (or Composite End Res # of Composite Start) |   | 1 6-27-22 0921 2 1 | 0136 | 1260           | T 7 1260 T 1 |  |  | Type of Ice Used: Wet Blue Dry None                       | Packing Material Used:                                                             | Radchem sample(s) screened (<500 cpm): Y N NA                             | Par la                                          | lisio                | 1570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time: Received by/Company: (Signature) |
|                                                                                 | ace Analytical                                                      | حماملے                                | · Rd, SKe 250, Geve Cours the 63(4) |                                                                                                                                                                                                                                            | Talland, E. Schneider                                    | nber:                                              | HOMOHISCI                       | ŗ                                                 | Collected By (print): T Purchase Order #: | Collected By (signature): Turnaround Date Required:                                                | oosal: Rush: Rush: [] Same Day [] Same Day | I   Archive:        | * Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW),<br>Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) | Customer Sample ID Matrix * Grab                      | - | 31                 |      | r -1001 - ms-1 | T-TCTI-m20-1 |  |  | Customer Remarks / Special Conditions / Possible Hazards: | - 1                                                                                |                                                                           | Relinquished by/Company: (Signature) Date/Time: | ()                   | Participanti e a provintante alguarare participante a provintante a prov | Nerriquisried by/ company: (signature) |

| H6                 |                              |                      |                                              |              |                                                        |              |                                       |
|--------------------|------------------------------|----------------------|----------------------------------------------|--------------|--------------------------------------------------------|--------------|---------------------------------------|
| H6                 | Site:                        |                      |                                              |              | Notes                                                  |              |                                       |
|                    | DG9M<br>DG90<br>AG90<br>DG90 | 8690<br>Urð8<br>HrðA | Urða<br>Usða<br>Seða<br>Usða<br>Uðða<br>Uððu | MGDN<br>MGKN | <b>3</b> ВЬЗИ<br>ВЬЧИ<br>ВЬЧЛ<br><b>3</b> ВЬЗЛ<br>ВЬЗЛ | Bb32<br>Bb32 | Olher<br>ZPLC<br>WPDU<br>BP3Z<br>BP3C |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              | >                                                      |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              |                      |                                              |              |                                                        |              |                                       |
|                    |                              | Glass                |                                              |              | Plastic                                                | -            | Misc                                  |
| 10280 40ml         | 4UmL bisultate clear vial    | WGKU                 | 8oz clear soil jar                           | BP1C         | 11L NAOH plastic                                       |              | Wine/Swah                             |
|                    | 40mL HCI amber voa vial      | WGFU                 | 4oz clear soll jar                           | BP1N         | 1L HNO3 plastic                                        | SP5T         | 120mL Coliform Na Thiosulfate         |
|                    | 40mL MEUN CIER VIAL          | WGZU                 | 202 clear soil jar                           | BP1S         | 1L H2SO4 plastic                                       | ZPLC         | Ziploc Bag                            |
|                    | 40ml H2SOA ambar vial        |                      | 402 unpreserved amber wide                   | BP1U         | 1L unpreserved plastic                                 | AF           | Air Filter                            |
|                    | 40ml Na Thio amber vial      | AGU                  | 11 UCML UNORES AMDER GLASS                   | BP1Z         | 1L NaOH, Zn Acetate                                    | <u>ں</u>     | Air Cassettes                         |
|                    | 40mL amber Innreserved       | VC104                | 1L HOI amber glass                           | BP2C         | 500mL NAOH plastic                                     | 2            | Terracore Kit                         |
|                    | 40mL HCI clear vial          | AG1T                 | 11 Na Thiosulfate clearfamhar alaco          | DPZN         |                                                        | 5            | Summa Can                             |
|                    | 40mL Na Thio. clear vial     | AG1U                 | 11 liter unbres amber class                  | BP2U         | 500ml Hzb04 plastic                                    | 1            |                                       |
|                    | 40mL unpreserved clear vial  | AG2N                 | 500mL HNO3 amber glass                       | BP27         | 500ml NaOH Zn Acetate                                  |              |                                       |
|                    | 1liter H2SO4 clear glass     | AG2S                 | 500mL H2SO4 amber glass                      | BP3C         | 250mL NaOH plastic                                     | T            | Matrix                                |
|                    | 1liter unpres glass          | AG3S                 |                                              | BP3F         | 250mL HNO3 plastic - field filtered                    | WT           | IWater                                |
|                    | 250mL HCL Clear glass        | AG2U                 |                                              | BP3N         | 250mL HNO3 plastic                                     | SL           | Solid                                 |
|                    | 250mL Unpres Clear glass     | AG3U                 | 250mL unpres amber glass                     | BP3U         | 250mL unpreserved plastic                              | NAL          | Non-aqueous Liquid                    |
| <u>1602</u>        | 1602 clear soil jar          | AG4U                 | 125mL unpres amber glass                     | BP3S         | 250mL H2SO4 plastic                                    | OL           |                                       |
|                    |                              | AG5U                 | 100mL unpres amber glass                     | BP3Z         | 250mL NaOH, Zn Acetate                                 | WP           | Wipe                                  |
|                    |                              |                      |                                              | BP4U         | 125mL unpreserved plastic                              | DW           | Drinking Water                        |
|                    |                              |                      |                                              | BP4N         | 125mL HNO3 plastic                                     | 1            |                                       |
|                    |                              |                      |                                              | WPD(1        | 1607 JUDDASSACTOR DISTIC                               | Т            |                                       |
| Wark Order Number: |                              |                      |                                              |              |                                                        | 1            | 23                                    |

Page 16 of 16

Qualtrax Document ID: 30422

Page 1 of 1

# **\\**SI) GOLDER

# MEMORANDUM

Project No. 153140604.0001

DATE June 25, 2022

TO Project File Golder Associates

- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Annie Muehlfarth

EMAIL ann.muehlfarth@wsp.com

# DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60403844

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

# **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Company Name: Golder Associates USA Inc/WSP               | Project Manager: <sup>J. Ingram</sup> |
|-----------------------------------------------------------|---------------------------------------|
| Project Name: Ameren - LEC - LCL1                         | Project Number:                       |
| Reviewer: A. Muehlfarth                                   | Validation Date: 7/25/2022            |
| Laboratory: Pace Analytical                               | SDG #: 60403844                       |
| Analytical Method (type and no.): EPA 200.7 (Total Metals | ;); SM2540C (TDS); EPA 300.0 (Anions) |
| Matrix: Air Soil/Sed. Water Wast                          |                                       |
| Sample Names L-TMW-2, L-LCL1-DUP-1, L-LCL1-FB-1           |                                       |
|                                                           |                                       |
|                                                           |                                       |

# NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

| a) Sampling dates noted?       Image: Constraint of the second seco                                                   |                                            | formation                                                                                                                                                                                                                                                                                                      | YES                          | NO                  | NA             | COMMENTS                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------|----------------------------------|
| b) Outsping location noted?       Image: Construction in the constructing and the construction in the construction in the cons                                                   | b)                                         | Sampling dates noted?                                                                                                                                                                                                                                                                                          | х                            |                     |                | 6/22/2022                        |
| d) Sample depth indicated (Soils)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>D</b> )                                 | Sampling team indicated?                                                                                                                                                                                                                                                                                       | х                            |                     |                | BTT/GTM                          |
| e) Sample type indicated (grab/composite)?  i) Field QC noted?  i) Field QC noted?  i) Field Calibration within control limits?  i) Notations of unacceptable field conditions/performances from field logs or field notes?  i) Does the laboratory narrative indicate deficiencies?  i) Does the laboratory narrative indicate deficiencies?  Chain-of-Custody (COC)  YES NO NA  COMMENTS  a) Was the COC properly completed?  b) Was the COC signed by both field and laboratory personnel?  c) Were samples received in good condition?  YES NO NA  COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c)                                         | Sample location noted?                                                                                                                                                                                                                                                                                         | х                            |                     |                |                                  |
| c)       Outline type introduct (glashoomposite):       Image: See Notes         f)       Field QC noted?       Image: See Notes         g)       Field QC noted?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         h)       Field Calibration within control limits?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         h)       Field Calibration within control limits?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         i)       Notations of unacceptable field conditions/performances from field logs or field notes?         ii)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         j)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         iii)       Note Deficiencies:       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         iii)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         iv)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         iii)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         iv)       Does the laboratory narrative indicate deficiencies?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         a)       Was the COC properly completed?       Image: PH. Sp.Cond, ORP, Temp, DO, Turb         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d)                                         | Sample depth indicated (Soils)?                                                                                                                                                                                                                                                                                |                              |                     | ×              |                                  |
| i) Field Quinteer       iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e)                                         | Sample type indicated (grab/composite)?                                                                                                                                                                                                                                                                        | х                            |                     |                | Grab                             |
| a) Was the COC properly completed?   b) Was the COC properly completed?   b) Was the COC properly completed?   c) Were samples received in good condition?   c) Were samples received in good condition?   c) Were Samples received in good condition?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f)                                         | Field QC noted?                                                                                                                                                                                                                                                                                                | х                            |                     |                | See Notes                        |
| <ul> <li>i) Notations of unacceptable field conditions/performances from field logs or field notes?</li> <li>i) Does the laboratory narrative indicate deficiencies?</li> <li>j) Does the laboratory narrative indicate deficiencies?</li> <li>iii Note Deficiencies:</li> <li>iiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiii Note Deficiencies:</li> <li>iiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiiii Note Deficiencies:</li> <li>iiii Note Deficiencies:</li> <li>iii Note Deficiencies:</li> <li></li></ul> | g)                                         | Field parameters collected (note types)?                                                                                                                                                                                                                                                                       | х                            |                     |                | pH, Sp.Cond, ORP, Temp, DO, Turb |
| j) Does the laboratory narrative indicate deficiencies?       Image: Comparison of the comparison                                                    | h)                                         | Field Calibration within control limits?                                                                                                                                                                                                                                                                       | х                            |                     |                |                                  |
| j) Does the laboratory narrative indicate deficiencies?       Image: Chain-of-Custody (COC)       Image: Chain-of-Custody (COC)         Chain-of-Custody (COC)       YES       NO       NA       COMMENTS         a) Was the COC properly completed?       Image: Chain-of-Custody properly completed?       Image: Custody properly complete                                                                                                                                                                                                                                                                                                                                                                                                                                           | i)                                         | Notations of unacceptable field conditions/performa                                                                                                                                                                                                                                                            | nces fro                     | om field lo         | ogs or field r | notes?                           |
| Note Deficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                |                              | X                   |                |                                  |
| Chain-of-Custody (COC)       YES       NO       NA       COMMENTS         a) Was the COC properly completed?       Image: Comparison of the completed of the co                                                                                                                 | j)                                         | Does the laboratory narrative indicate deficiencies?                                                                                                                                                                                                                                                           |                              |                     | ×              |                                  |
| a) Was the COC properly completed?       ∑       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | Note Deficiencies:                                                                                                                                                                                                                                                                                             |                              |                     |                |                                  |
| a) Was the COC properly completed?       ∑       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                |                              |                     |                |                                  |
| a) Was the COC properly completed?       ∑       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                |                              |                     |                |                                  |
| a) Was the COC properly completed?       ∑       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                                                                                                                                                                                                                                                                |                              |                     |                |                                  |
| b) Was the COC signed by both field<br>and laboratory personnel?   c) Were samples received in good condition?   X   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chain-                                     | of-Custody (COC)                                                                                                                                                                                                                                                                                               | YES                          | NO                  | NA             | COMMENTS                         |
| b) Was the COC signed by both field<br>and laboratory personnel?   c) Were samples received in good condition?   X   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                |                              |                     |                |                                  |
| and laboratory personnel?  Image: Constraint of the samples received in good condition?    c) Were samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition?    Image: Constraint of the samples received in good condition? <t< td=""><td>a)</td><td>Was the COC properly completed?</td><td>×</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                           | a)                                         | Was the COC properly completed?                                                                                                                                                                                                                                                                                | ×                            |                     |                |                                  |
| General (reference QAPP or Method) YES NO NA COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                          |                                                                                                                                                                                                                                                                                                                | x                            |                     |                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                          | Was the COC signed by both field                                                                                                                                                                                                                                                                               |                              |                     | _              |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)                                         | Was the COC signed by both field and laboratory personnel?                                                                                                                                                                                                                                                     | ×                            |                     |                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)                                         | Was the COC signed by both field and laboratory personnel?                                                                                                                                                                                                                                                     | ×                            |                     |                |                                  |
| a) Were hold times met for sample pretreatment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)                                   | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?                                                                                                                                                                                                      | ×                            |                     |                | COMMENTS                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)<br>Genera                         | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?                                                                                                                                                                                                      | ≍<br>≍<br>YES                |                     |                | COMMENTS                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)<br>Genera<br>a)                   | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Il (reference QAPP or Method)<br>Were hold times met for sample pretreatment?                                                                                                                     | ≍<br>≍<br>YES                | П<br>П<br>NO        |                | COMMENTS                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)<br>Genera<br>a)<br>b)             | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Il (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?                                                                         | ×<br>×<br>YES<br>×           | □<br>□<br>□         |                | COMMENTS                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)<br>Genera<br>a)<br>b)<br>c)       | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Il (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?<br>Were the correct preservatives used?                                 | ×<br>¥<br>YES                | □<br>■<br>■<br>□    |                | COMMENTS                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b)<br>c)<br>Genera<br>a)<br>b)<br>c)<br>d) | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Il (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?<br>Were the correct preservatives used?<br>Was the correct method used? | ×<br>×<br>YES<br>×<br>×<br>× | □<br><b>NO</b><br>□ |                | COMMENTS                         |
| g) Were any matrix problems noted?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b)<br>c)<br>Genera<br>a)<br>b)<br>c)       | Was the COC signed by both field<br>and laboratory personnel?<br>Were samples received in good condition?<br>Il (reference QAPP or Method)<br>Were hold times met for sample pretreatment?<br>Were hold times met for sample analysis?<br>Were the correct preservatives used?                                 | ×<br>¥<br>YES                | □<br><b>NO</b> □    |                |                                  |

# **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Blanks<br>a)<br>b)<br>c)<br>d) | Were analytes detected in the method blank(s)?<br>Were analytes detected in the field blank(s)?<br>Were analytes detected in the equipment blank(s)?<br>Were analytes detected in the trip blank(s)? | YES<br>⊠<br>□ | NO        | NA     | COMMENTS<br>See Notes<br>L-LCL1-FB-1 @ L-TMW-2 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|--------|------------------------------------------------|
| Labora                         | tory Control Sample (LCS)                                                                                                                                                                            | YES           | NO        | NA     | COMMENTS                                       |
| a)                             | Was a LCS analyzed once per SDG?                                                                                                                                                                     | x             |           |        |                                                |
| b)                             | Were the proper analytes included in the LCS?                                                                                                                                                        | х             |           |        |                                                |
| c)                             | Was the LCS accuracy criteria met?                                                                                                                                                                   | x             |           |        |                                                |
| Duplica                        | ites                                                                                                                                                                                                 | YES           | NO        | NA     | COMMENTS                                       |
| a)                             | Were field duplicates collected (note original and du                                                                                                                                                | uplicate      | sample na | ames)? |                                                |
|                                |                                                                                                                                                                                                      | х             |           |        | L-LCL1-DUP-1 @ L-TMW-2                         |
| b)                             | Were field dup. precision criteria met (note RPD)?                                                                                                                                                   | х             |           |        | Max RPD: 10.5% [<20%]                          |
| c)                             | Were lab duplicates analyzed (note original and dup                                                                                                                                                  | olicate s     | amples)?  |        |                                                |
|                                |                                                                                                                                                                                                      | x             |           |        |                                                |
| d)                             | Were lab dup. precision criteria met (note RPD)?                                                                                                                                                     | x             |           |        | Max RPD: 4% [<10%]                             |
| Blind S                        | tandards                                                                                                                                                                                             | YES           | NO        | NA     | COMMENTS                                       |
| a)                             | Was a blind standard used (indicate name,                                                                                                                                                            |               |           | х      |                                                |
|                                | analytes included and concentrations)?                                                                                                                                                               |               |           |        |                                                |
| b)                             | Was the %D within control limits?                                                                                                                                                                    |               |           | ×      |                                                |
| Matrix :                       | Spike/Matrix Spike Duplicate (MS/MSD)                                                                                                                                                                | YES           | NO        | NA     | COMMENTS                                       |
| a)                             | Was MS accuracy criteria met?                                                                                                                                                                        | x             |           |        |                                                |
|                                | Recovery could not be calculated since sample<br>contained high concentration of analyte?                                                                                                            |               |           | x      |                                                |
| b)                             | Was MSD accuracy criteria met?                                                                                                                                                                       |               | ×         |        | See Notes                                      |
|                                | Recovery could not be calculated since sample<br>contained high concentration of analyte?                                                                                                            |               |           | x      |                                                |
| c)                             | Were MS/MSD precision criteria met?                                                                                                                                                                  | ×             |           |        |                                                |

#### Comments/Notes:

Sulfate analyzed at a dilution in several samples, no qualification necessary.

#### Blanks:

3167864: Chloride (0.62J). Associated with samples -6010, -6011, -6012. Results >RL and 10x blank were not qualified. Sample -6012 was <RL, analyte reported as ND.

L-LCL1-FB-1 @ L-TMW-2: Chloride (0.63J). Associated result >RL and 10x blank, no qualification necessary.

# **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

#### Comments/Notes:

MS/MSD:

3166169/3166170: MSD % recovery high for calcium. Associated with sample -6010. Only 1 QC indicator outside of control

limits, no qualification necessary.

# **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

# Data Qualification:

| Sample Name | Constituent(s) | Result | Qualifier | Reason                                   |
|-------------|----------------|--------|-----------|------------------------------------------|
| L-LCL1-FB-1 | Chloride       | 1.0    | UJ        | Detected in MB, result <rl< th=""></rl<> |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             |                |        |           |                                          |
|             | 1 44           |        |           |                                          |
|             | Ann Much       | 11 16  |           | 7/25/2022                                |
| Signature:  | _ WN/ I MM     | 1000 - |           | Date:                                    |



November 22, 2022

Jeffrey Ingram WSP Golder 701 Emerson Road Suite 250 Saint Louis, MO 63141

RE: Project: AMEREN LEC LCL1 Pace Project No.: 60413961

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between October 26, 2022 and October 28, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Mark Haddock, Golder Associates Lisa Meyer, Ameren Grant Morey, WSP Golder Ann Muehlfarth, WSP Golder Eric Schneider, WSP Golder





#### CERTIFICATIONS

Project: AMEREN LEC LCL1

Pace Project No.: 60413961

#### **Pace Analytical Services Kansas**

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 22-031-0 Illinois Certification #: 2000302021-3 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-21-15 Utah Certification #: KS000212022-12 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070



#### SAMPLE SUMMARY

Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 60413961001 | L-TMW-2      | Water  | 10/25/22 10:38 | 10/26/22 03:51 |
| 60413961002 | L-TMW-1      | Water  | 10/26/22 16:17 | 10/28/22 03:43 |
| 60413961003 | L-TMW-3      | Water  | 10/26/22 13:38 | 10/28/22 03:43 |
| 60413961004 | L-LCL1-DUP-1 | Water  | 10/26/22 08:00 | 10/28/22 03:43 |
| 60413961005 | L-LCL1-FB-1  | Water  | 10/26/22 16:27 | 10/28/22 03:43 |
| 60413956008 | L-MW-26      | Water  | 10/24/22 09:28 | 10/26/22 03:51 |
| 60413956024 | L-BMW-1S     | Water  | 10/27/22 10:36 | 10/28/22 03:43 |
| 60413956025 | L-BMW-2S     | Water  | 10/27/22 11:35 | 10/28/22 03:43 |



#### SAMPLE ANALYTE COUNT

Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Lab ID      | Sample ID    | Method    | Analysts  | Analytes<br>Reported | Laboratory |
|-------------|--------------|-----------|-----------|----------------------|------------|
| 60413961001 | L-TMW-2      | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | TML       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 60413961002 | L-TMW-1      | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | KJD       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 60413961003 | L-TMW-3      | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | KJD       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 0413961004  | L-LCL1-DUP-1 | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | KJD       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 60413961005 | L-LCL1-FB-1  | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | KJD       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 60413956008 | L-MW-26      | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | TML       | 1                    | PASI-K     |
|             |              | EPA 300.0 | CRN2, RKA | 3                    | PASI-K     |
| 60413956024 | L-BMW-1S     | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | TML       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |
| 0413956025  | L-BMW-2S     | EPA 200.7 | JDS       | 7                    | PASI-K     |
|             |              | SM 2320B  | SZ        | 1                    | PASI-K     |
|             |              | SM 2540C  | TML       | 1                    | PASI-K     |
|             |              | EPA 300.0 | RKA       | 3                    | PASI-K     |

PASI-K = Pace Analytical Services - Kansas City



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-TMW-2              | Lab ID:    | 60413961001     | Collected   | l: 10/25/22 | 2 10:38 | Received: 10/  | /26/22 03:51 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|-------------|-------------|---------|----------------|-----------------|--------------|------|
| Parameters                   | Results    | Units           | PQL         | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 200.7 Metals, Total          |            | Method: EPA 2   | •           |             | nod: EP | A 200.7        |                 |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Boron                        | 115        | ug/L            | 100         | 4.2         | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7440-42-8    |      |
| Calcium                      | 246000     | ug/L            | 200         | 33.7        | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7440-70-2    | M1   |
| Iron                         | 164        | ug/L            | 50.0        | 5.6         | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7439-89-6    |      |
| Magnesium                    | 67300      | ug/L            | 50.0        | 27.1        | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7439-95-4    |      |
| Manganese                    | 2700       | ug/L            | 5.0         | 0.24        | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7439-96-5    |      |
| Potassium                    | 7700       | ug/L            | 500         | 87.6        | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7440-09-7    |      |
| Sodium                       | 18000      | ug/L            | 500         | 73.2        | 1       | 11/15/22 14:22 | 11/18/22 19:22  | 7440-23-5    |      |
| 2320B Alkalinity             | Analytical | Method: SM 23   | 20B         |             |         |                |                 |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Alkalinity, Total as CaCO3   | 651        | mg/L            | 20.0        | 4.6         | 1       |                | 11/02/22 14:42  |              |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25   | 40C         |             |         |                |                 |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Total Dissolved Solids       | 1070       | mg/L            | 13.3        | 13.3        | 1       |                | 11/01/22 14:18  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3   | 00.0        |             |         |                |                 |              |      |
|                              | Pace Anal  | vtical Services | - Kansas Ci | ty          |         |                |                 |              |      |
| Chloride                     | 18.2       | mg/L            | 1.0         | 0.53        | 1       |                | 11/11/22 09:42  | 16887-00-6   |      |
| Fluoride                     | <0.12      | mg/L            | 0.20        | 0.12        | 1       |                | 11/11/22 09:42  | 16984-48-8   | M1   |
| Sulfate                      | 247        | mg/L            | 100         | 55.0        | 100     |                | 11/15/22 02:14  | 14808-79-8   | M1   |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-TMW-1                                                 | Lab ID:                                      | 60413961002                                  | Collected                                | : 10/26/22                                 | 2 16:17               | Received: 10/                                                                                                              | 28/22 03:43 M                                                                                            | atrix: Water                                                  |      |
|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                      | Units                                        | PQL                                      | MDL                                        | DF                    | Prepared                                                                                                                   | Analyzed                                                                                                 | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                              | Method: EPA 2<br>ytical Services             | •                                        |                                            | iod: EP/              | A 200.7                                                                                                                    |                                                                                                          |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 115<br>159000<br>161<br>44700<br>451<br>5830 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 4.2<br>33.7<br>5.6<br>27.1<br>0.24<br>87.6 | 1<br>1<br>1<br>1<br>1 | 11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22 | 11/18/22 19:35<br>11/18/22 19:35<br>11/18/22 19:35<br>11/18/22 19:35<br>11/18/22 19:35<br>11/18/22 19:35 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |
| Sodium 2320B Alkalinity                                         |                                              | ug/L<br>Method: SM 23<br>ytical Services     |                                          | 73.2<br>ty                                 | 1                     | 11/15/22 14:22                                                                                                             | 11/18/22 19:35                                                                                           | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         | ,                                            | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>ty                                  | 1                     |                                                                                                                            | 11/03/22 19:46                                                                                           |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  |                                              | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 10.0<br>ty                                 | 1                     |                                                                                                                            | 11/02/22 11:37                                                                                           |                                                               |      |
| Chloride<br>Fluoride<br>Sulfate                                 | 3.2<br><0.12<br>70.8                         | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>10.0                      | 0.53<br>0.12<br>5.5                        | 1<br>1<br>10          |                                                                                                                            | 11/14/22 22:20<br>11/14/22 22:20<br>11/14/22 23:04                                                       | 16984-48-8                                                    |      |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-TMW-3                                                 | Lab ID:                                         | 60413961003                                  | Collected                                | d: 10/26/22                                | 2 13:38               | Received: 10/                                                                                                              | /28/22 03:43 Ma                                                                                                            | atrix: Water                                                  |      |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|
| Parameters                                                      | Results                                         | Units                                        | PQL                                      | MDL                                        | DF                    | Prepared                                                                                                                   | Analyzed                                                                                                                   | CAS No.                                                       | Qual |
| 200.7 Metals, Total                                             |                                                 | Method: EPA 2<br>ytical Services             | •                                        |                                            | nod: EP/              | A 200.7                                                                                                                    |                                                                                                                            |                                                               |      |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 98.3J<br>134000<br>1230<br>29700<br>795<br>5730 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 4.2<br>33.7<br>5.6<br>27.1<br>0.24<br>87.6 | 1<br>1<br>1<br>1<br>1 | 11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22 | 11/18/22 19:37<br>11/18/22 19:37<br>11/18/22 19:37<br>11/18/22 19:37<br>11/18/22 19:37<br>11/18/22 19:37<br>11/18/22 19:37 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |
| Sodium 2320B Alkalinity                                         |                                                 | ug/L<br>Method: SM 23<br>ytical Services     |                                          | 73.2<br>ity                                | 1                     | 11/15/22 14:22                                                                                                             | 11/18/22 19:37                                                                                                             | 7440-23-5                                                     |      |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         |                                                 | mg/L<br>Method: SM 25<br>ytical Services     |                                          | 4.6<br>ity                                 | 1                     |                                                                                                                            | 11/03/22 19:53                                                                                                             |                                                               |      |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  |                                                 | mg/L<br>Method: EPA 3<br>ytical Services     |                                          | 10.0<br>ity                                | 1                     |                                                                                                                            | 11/02/22 11:37                                                                                                             |                                                               |      |
| Chloride<br>Fluoride<br>Sulfate                                 | 3.1<br><0.12<br>39.5                            | mg/L<br>mg/L<br>mg/L                         | 1.0<br>0.20<br>10.0                      | 0.53<br>0.12<br>5.5                        | 1<br>1<br>10          |                                                                                                                            | 11/14/22 23:19<br>11/14/22 23:19<br>11/14/22 23:33                                                                         | 16887-00-6<br>16984-48-8<br>14808-79-8                        |      |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-LCL1-DUP-1         | Lab ID:                     | 60413961004     | Collected   | d: 10/26/22 | 2 08:00  | Received: 10/  | /28/22 03:43 Ma | atrix: Water |      |  |  |
|------------------------------|-----------------------------|-----------------|-------------|-------------|----------|----------------|-----------------|--------------|------|--|--|
| Parameters                   | Results                     | Units           | PQL         | MDL         | DF       | Prepared       | Analyzed        | CAS No.      | Qual |  |  |
| 200.7 Metals, Total          |                             | Method: EPA 2   | •           |             | nod: EP/ | A 200.7        |                 |              |      |  |  |
|                              | Pace Anal                   | ytical Services | - Kansas Ci | ity         |          |                |                 |              |      |  |  |
| Boron                        | 98.7J                       | ug/L            | 100         | 4.2         | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7440-42-8    |      |  |  |
| Calcium                      | 133000                      | ug/L            | 200         | 33.7        | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7440-70-2    |      |  |  |
| Iron                         | 1280                        | ug/L            | 50.0        | 5.6         | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7439-89-6    |      |  |  |
| Magnesium                    | 29300                       | ug/L            | 50.0        | 27.1        | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7439-95-4    |      |  |  |
| Manganese                    | 793                         | ug/L            | 5.0         | 0.24        | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7439-96-5    |      |  |  |
| Potassium                    | 5760                        | ug/L            | 500         | 87.6        | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7440-09-7    |      |  |  |
| Sodium                       | 6490                        | ug/L            | 500         | 73.2        | 1        | 11/15/22 14:22 | 11/18/22 19:39  | 7440-23-5    |      |  |  |
| 2320B Alkalinity             | Analytical                  | Method: SM 23   | 20B         |             |          |                |                 |              |      |  |  |
|                              | Pace Anal                   | ytical Services | - Kansas Ci | ity         |          |                |                 |              |      |  |  |
| Alkalinity, Total as CaCO3   | 427                         | mg/L            | 20.0        | 4.6         | 1        |                | 11/03/22 20:00  |              |      |  |  |
| 2540C Total Dissolved Solids | Analytical Method: SM 2540C |                 |             |             |          |                |                 |              |      |  |  |
|                              | Pace Anal                   | ytical Services | - Kansas Ci | ity         |          |                |                 |              |      |  |  |
| Total Dissolved Solids       | 509                         | mg/L            | 10.0        | 10.0        | 1        |                | 11/02/22 11:37  |              |      |  |  |
| 300.0 IC Anions 28 Days      | Analytical                  | Method: EPA 3   | 00.0        |             |          |                |                 |              |      |  |  |
| -                            | Pace Anal                   | ytical Services | - Kansas Ci | ity         |          |                |                 |              |      |  |  |
| Chloride                     | 3.2                         | mg/L            | 1.0         | 0.53        | 1        |                | 11/14/22 15:51  | 16887-00-6   | В    |  |  |
| Fluoride                     | 0.13J                       | mg/L            | 0.20        | 0.12        | 1        |                | 11/14/22 15:51  | 16984-48-8   |      |  |  |
| Sulfate                      | 38.8                        | mg/L            | 5.0         | 2.8         | 5        |                | 11/14/22 16:06  | 14808-79-8   |      |  |  |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-LCL1-FB-1                                     | Lab ID:                                                               | 60413961005                              | Collected                 | : 10/26/22                   | 2 16:27          | Received: 10/                                                        | 28/22 03:43 M                                                        | atrix: Water           |        |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------|------------------------------|------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|--------|--|--|
| Parameters                                              | Results                                                               | Units                                    | PQL                       | MDL                          | DF               | Prepared                                                             | Analyzed                                                             | CAS No.                | Qual   |  |  |
| 200.7 Metals, Total                                     |                                                                       | Method: EPA 2                            | •                         |                              | od: EP/          | A 200.7                                                              |                                                                      |                        |        |  |  |
| Boron<br>Calcium<br>Iron                                | <4.2<br>52.1J<br><5.6                                                 | ug/L<br>ug/L<br>ug/L                     | 100<br>200<br>50.0        | 4.2<br>33.7<br>5.6           | 1<br>1<br>1      | 11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22                   | 11/18/22 19:41<br>11/18/22 19:41<br>11/18/22 19:41                   | 7440-70-2<br>7439-89-6 |        |  |  |
| Magnesium<br>Manganese<br>Potassium<br>Sodium           | <27.1<br>0.35J<br>139J<br><73.2                                       | ug/L<br>ug/L<br>ug/L<br>ug/L             | 50.0<br>5.0<br>500<br>500 | 27.1<br>0.24<br>87.6<br>73.2 | 1<br>1<br>1<br>1 | 11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22<br>11/15/22 14:22 | 11/18/22 19:41<br>11/18/22 19:41<br>11/18/22 19:41<br>11/18/22 19:41 | 7439-96-5<br>7440-09-7 | B<br>B |  |  |
| 2320B Alkalinity                                        | Analytical Method: SM 2320B<br>Pace Analytical Services - Kansas City |                                          |                           |                              |                  |                                                                      |                                                                      |                        |        |  |  |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids |                                                                       | mg/L<br>Method: SM 25<br>ytical Services |                           | 4.6<br>y                     | 1                |                                                                      | 11/03/22 20:07                                                       |                        |        |  |  |
| Total Dissolved Solids<br>300.0 IC Anions 28 Days       | ,                                                                     | mg/L<br>Method: EPA 3<br>ytical Services |                           | 5.0<br>y                     | 1                |                                                                      | 11/02/22 11:38                                                       |                        |        |  |  |
| Chloride<br>Fluoride<br>Sulfate                         | 0.62J<br><0.12<br><0.55                                               | mg/L<br>mg/L<br>mg/L                     | 1.0<br>0.20<br>1.0        | 0.53<br>0.12<br>0.55         | 1<br>1<br>1      |                                                                      | 11/14/22 16:46<br>11/14/22 16:46<br>11/14/22 16:46                   | 16984-48-8             | В      |  |  |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-MW-26              | Lab ID:                     | 60413956008     | Collecte   | d: 10/24/22 | 2 09:28 | Received: 10   | /26/22 03:51 Ma | atrix: Water |      |  |
|------------------------------|-----------------------------|-----------------|------------|-------------|---------|----------------|-----------------|--------------|------|--|
| Parameters                   | Results                     | Units           | PQL        | MDL         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 200.7 Metals, Total          |                             | Method: EPA 2   | •          |             | od: EP  | A 200.7        |                 |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                 |              |      |  |
| Boron                        | 68.3J                       | ug/L            | 100        | 7.6         | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7440-42-8    |      |  |
| Calcium                      | 128000                      | ug/L            | 200        | 26.5        | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7440-70-2    | M1   |  |
| Iron                         | 7.5J                        | ug/L            | 50.0       | 7.4         | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7439-89-6    |      |  |
| Magnesium                    | 23200                       | ug/L            | 50.0       | 24.1        | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7439-95-4    |      |  |
| Manganese                    | 68.9                        | ug/L            | 5.0        | 0.38        | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7439-96-5    |      |  |
| Potassium                    | 4180                        | ug/L            | 500        | 90.1        | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7440-09-7    |      |  |
| Sodium                       | 5270                        | ug/L            | 500        | 38.8        | 1       | 11/15/22 14:08 | 11/18/22 12:41  | 7440-23-5    |      |  |
| 2320B Alkalinity             | Analytical                  | Method: SM 23   | 20B        |             |         |                |                 |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                 |              |      |  |
| Alkalinity, Total as CaCO3   | 410                         | mg/L            | 20.0       | 4.6         | 1       |                | 11/01/22 18:26  |              |      |  |
| 2540C Total Dissolved Solids | Analytical Method: SM 2540C |                 |            |             |         |                |                 |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                 |              |      |  |
| Total Dissolved Solids       | 493                         | mg/L            | 10.0       | 10.0        | 1       |                | 10/31/22 14:22  |              |      |  |
| 300.0 IC Anions 28 Days      | Analytical                  | Method: EPA 3   | 00.0       |             |         |                |                 |              |      |  |
| -                            | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                 |              |      |  |
| Chloride                     | 10.3                        | mg/L            | 1.0        | 0.53        | 1       |                | 11/11/22 20:50  | 16887-00-6   | M1   |  |
| Fluoride                     | <0.12                       | mg/L            | 0.20       | 0.12        | 1       |                | 11/11/22 20:50  | 16984-48-8   | M1   |  |
| Sulfate                      | 31.3                        | mg/L            | 10.0       | 5.5         | 10      |                | 11/15/22 21:10  | 14808-79-8   |      |  |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-BMW-1S                                                | Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60413956024                                                                                          | Collected                                | d: 10/27/22                                | 2 10:36               | Received: 10/                                                                                                              | 28/22 03:43 Ma                                                                                           | atrix: Water                                                  |      |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|--|--|
| Parameters                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                                                                                                | PQL                                      | MDL                                        | DF                    | Prepared                                                                                                                   | Analyzed                                                                                                 | CAS No.                                                       | Qual |  |  |
| 200.7 Metals, Total                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analytical Method: EPA 200.7 Preparation Method: EPA 200.7<br>Pace Analytical Services - Kansas City |                                          |                                            |                       |                                                                                                                            |                                                                                                          |                                                               |      |  |  |
| Boron<br>Calcium<br>Iron<br>Magnesium<br>Manganese<br>Potassium | 91.2J<br>185000<br>30500<br>37200<br>2320<br>4940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                         | 100<br>200<br>50.0<br>50.0<br>5.0<br>500 | 7.6<br>26.5<br>7.4<br>24.1<br>0.38<br>90.1 | 1<br>1<br>1<br>1<br>1 | 11/15/22 14:08<br>11/15/22 14:08<br>11/15/22 14:08<br>11/15/22 14:08<br>11/15/22 14:08<br>11/15/22 14:08<br>11/15/22 14:08 | 11/18/22 13:27<br>11/18/22 13:27<br>11/21/22 11:17<br>11/18/22 13:27<br>11/18/22 13:27<br>11/18/22 13:27 | 7440-70-2<br>7439-89-6<br>7439-95-4<br>7439-96-5<br>7440-09-7 |      |  |  |
| Sodium 2320B Alkalinity                                         | <b>15500</b> ug/L 500 38.8 1 11/15/22 14:08 11/18/22 13:27 7440-23-5<br>Analytical Method: SM 2320B<br>Pace Analytical Services - Kansas City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                          |                                            |                       |                                                                                                                            |                                                                                                          |                                                               |      |  |  |
| Alkalinity, Total as CaCO3 2540C Total Dissolved Solids         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/L<br>Method: SM 25<br>ytical Services                                                             |                                          | 4.6<br>ity                                 | 1                     |                                                                                                                            | 11/03/22 16:57                                                                                           |                                                               |      |  |  |
| Total Dissolved Solids 300.0 IC Anions 28 Days                  | 710         mg/L         10.0         10.0         1         11/03/22         15:40           Analytical Method: EPA 300.0         Pace Analytical Services - Kansas City         Figure 10.0         Figure |                                                                                                      |                                          |                                            |                       |                                                                                                                            |                                                                                                          |                                                               |      |  |  |
| Chloride<br>Fluoride<br>Sulfate                                 | 5.9<br><0.12<br>66.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>mg/L<br>mg/L                                                                                 | 1.0<br>0.20<br>5.0                       | 0.53<br>0.12<br>2.8                        | 1<br>1<br>5           |                                                                                                                            | 11/14/22 13:44<br>11/14/22 13:44<br>11/14/22 13:59                                                       | 16984-48-8                                                    |      |  |  |



#### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| Sample: L-BMW-2S             | Lab ID:                     | 60413956025     | Collecte   | d: 10/27/22 | 2 11:35 | Received: 10/  | /28/22 03:43 M | atrix: Water |      |  |
|------------------------------|-----------------------------|-----------------|------------|-------------|---------|----------------|----------------|--------------|------|--|
| Parameters                   | Results                     | Units           | PQL        | MDL         | DF      | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 200.7 Metals, Total          |                             | Method: EPA 2   | •          |             | nod: EP | A 200.7        |                |              |      |  |
|                              |                             | ytical Services |            | ,           |         |                |                |              |      |  |
| Boron                        | 45.3J                       | ug/L            | 100        | 7.6         | 1       | 11/15/22 14:08 | 11/18/22 13:47 |              |      |  |
| Calcium                      | 146000                      | ug/L            | 200        | 26.5        | 1       | 11/15/22 14:08 | 11/18/22 13:47 |              |      |  |
| Iron                         | 16.0J                       | ug/L            | 50.0       | 7.4         | 1       | 11/15/22 14:08 | 11/21/22 11:35 |              |      |  |
| Magnesium                    | 21300                       | ug/L            | 50.0       | 24.1        | 1       | 11/15/22 14:08 | 11/18/22 13:47 |              |      |  |
| Manganese                    | 4.9J                        | ug/L            | 5.0        | 0.38        | 1       | 11/15/22 14:08 | 11/18/22 13:47 |              |      |  |
| Potassium                    | 5400                        | ug/L            | 500        | 90.1        | 1       | 11/15/22 14:08 | 11/18/22 13:47 |              |      |  |
| Sodium                       | 4130                        | ug/L            | 500        | 38.8        | 1       | 11/15/22 14:08 | 11/18/22 13:47 | 7440-23-5    |      |  |
| 2320B Alkalinity             | Analytical                  | Method: SM 23   | 320B       |             |         |                |                |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                |              |      |  |
| Alkalinity, Total as CaCO3   | 404                         | mg/L            | 20.0       | 4.6         | 1       |                | 11/03/22 17:04 |              |      |  |
| 2540C Total Dissolved Solids | Analytical Method: SM 2540C |                 |            |             |         |                |                |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                |              |      |  |
| Total Dissolved Solids       | 496                         | mg/L            | 10.0       | 10.0        | 1       |                | 11/03/22 15:40 |              |      |  |
| 300.0 IC Anions 28 Days      | Analytical                  | Method: EPA 3   | 00.0       |             |         |                |                |              |      |  |
|                              | Pace Anal                   | ytical Services | - Kansas C | ity         |         |                |                |              |      |  |
| Chloride                     | 1.4                         | mg/L            | 1.0        | 0.53        | 1       |                | 11/14/22 14:47 | 16887-00-6   |      |  |
| Fluoride                     | <0.12                       | mg/L            | 0.20       | 0.12        | 1       |                | 11/14/22 14:47 | 16984-48-8   |      |  |
| Sulfate                      | 34.4                        | mg/L            | 5.0        | 2.8         | 5       |                | 11/14/22 15:01 | 14808-79-8   |      |  |



Project: AMEREN LEC LCL1

| Pace Project No.: | 60413961 |
|-------------------|----------|
|-------------------|----------|

| QC Batch:          | 818348          |                   | Analysis Met | hod:      | EPA 200.7           |                      |            |  |  |
|--------------------|-----------------|-------------------|--------------|-----------|---------------------|----------------------|------------|--|--|
| QC Batch Method:   | EPA 200.7       |                   | Analysis Des | cription: | 200.7 Metals, Total |                      |            |  |  |
|                    |                 |                   | Laboratory:  |           | Pace Analytical Se  | rvices - Kansas City | /          |  |  |
| Associated Lab Sar | mples: 60413956 | 6008, 60413956024 |              |           |                     |                      |            |  |  |
| METHOD BLANK:      | 3254663         |                   | Matrix:      | Water     |                     |                      |            |  |  |
| Associated Lab Sar | mples: 60413956 | 008, 60413956024  |              |           |                     |                      |            |  |  |
|                    |                 |                   | Blank        | Reporting |                     |                      |            |  |  |
| Parar              | neter           | Units             | Result       | Limit     | MDL                 | Analyzed             | Qualifiers |  |  |
| Boron              |                 | ug/L              | <7.6         | 10        | 7.6                 | 11/18/22 12:19       |            |  |  |
| Calcium            |                 | ug/L              | 57.2J        | 20        | 0 26.5              | 11/18/22 12:19       |            |  |  |
| Iron               |                 | ug/L              | <7.4         | 50        | .0 7.4              | 11/18/22 12:19       |            |  |  |
| Magnesium          |                 | ug/L              | <24.1        | 50        | .0 24.1             | 11/18/22 12:19       |            |  |  |
| Manganese          |                 | ug/L              | 0.71J        | 5         | .0 0.38             | 11/18/22 12:19       |            |  |  |
| Potassium          |                 | ug/L              | <90.1        | 50        | 90.1                | 11/18/22 12:19       |            |  |  |
| Sodium             |                 | ug/L              | <38.8        | 50        | 0 38.8              | 11/21/22 11:09       |            |  |  |

#### LABORATORY CONTROL SAMPLE: 3254664

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Boron     | ug/L  |                | 960           | 96           | 85-115          |            |
| Calcium   | ug/L  | 10000          | 10200         | 102          | 85-115          |            |
| Iron      | ug/L  | 10000          | 10000         | 100          | 85-115          |            |
| Magnesium | ug/L  | 10000          | 10000         | 100          | 85-115          |            |
| Manganese | ug/L  | 1000           | 1000          | 100          | 85-115          |            |
| Potassium | ug/L  | 10000          | 9940          | 99           | 85-115          |            |
| Sodium    | ug/L  | 10000          | 10300         | 103          | 85-115          |            |

| MATRIX SPIKE & MATRIX SP |       | LICATE: 3254          |                      |                       | 3254666      |               |             |              |                 |      |            |       |
|--------------------------|-------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|------|------------|-------|
| Parameter                | Units | 60413956008<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD  | Max<br>RPD | Qua   |
| Boron                    | ug/L  |                       | 1000                 | 1000                  | 1010         | 990           | 94          |              | 70-130          | 2    |            |       |
| Calcium                  | ug/L  | 128000                | 10000                | 10000                 | 141000       | 139000        | 132         | -            | 70-130          | 1    | -          | M1    |
| Iron                     | ug/L  | 7.5J                  | 10000                | 10000                 | 9930         | 9660          | 99          | 97           | 70-130          | 3    | 20         |       |
| Magnesium                | ug/L  | 23200                 | 10000                | 10000                 | 33300        | 33000         | 101         | 98           | 70-130          | 1    | 20         |       |
| Manganese                | ug/L  | 68.9                  | 1000                 | 1000                  | 1040         | 1020          | 97          | 95           | 70-130          | 2    | 20         |       |
| Potassium                | ug/L  | 4180                  | 10000                | 10000                 | 14300        | 13900         | 101         | 97           | 70-130          | 3    | 20         |       |
| Sodium                   | ug/L  | 5270                  | 10000                | 10000                 | 15500        | 15200         | 102         | 99           | 70-130          | 2    | 20         |       |
| MATRIX SPIKE SAMPLE:     |       | 3254667               |                      |                       |              |               |             |              |                 |      |            |       |
|                          |       |                       | 60413                | 956016                | Spike        | MS            |             | MS           | % Rec           |      |            |       |
| Parameter                |       | Units                 | Re                   | sult                  | Conc.        | Result        | 9           | % Rec        | Limits          |      | Quali      | fiers |
| Boron                    |       | ug/L                  |                      | 316                   | 1000         | 12            | 240         | 92           | 70·             | -130 |            |       |
| Calcium                  |       | ug/L                  |                      | 166000                | 10000        | 1780          | 000         | 120          | 70·             | -130 |            |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| MATRIX SPIKE SAMPLE: | 3254667 | 60413956016 | Spike | MS     | MS    | % Rec           |            |
|----------------------|---------|-------------|-------|--------|-------|-----------------|------------|
| Parameter            | Units   | Result      | Conc. | Result | % Rec | % Rec<br>Limits | Qualifiers |
| Iron                 | ug/L    | 14200       | 10000 | 24400  | 102   | 70-130          |            |
| Magnesium            | ug/L    | 33700       | 10000 | 43500  | 98    | 70-130          |            |
| Manganese            | ug/L    | 2780        | 1000  | 3680   | 90    | 70-130          |            |
| Potassium            | ug/L    | 6180        | 10000 | 16000  | 98    | 70-130          |            |
| Sodium               | ug/L    | 50300       | 10000 | 60800  | 105   | 70-130          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| QC Batch: 81           | 8353          | Analysis Method:      | EPA 200.7                              |
|------------------------|---------------|-----------------------|----------------------------------------|
| QC Batch Method: EP    | PA 200.7      | Analysis Description: | 200.7 Metals, Total                    |
|                        |               | Laboratory:           | Pace Analytical Services - Kansas City |
| Associated Lab Samples | : 60413956025 |                       |                                        |
| METHOD BLANK: 3254     | 4702          | Matrix: Water         |                                        |
|                        |               |                       |                                        |

Associated Lab Samples: 60413956025

|           |       | Blank  | Reporting |      |                |            |
|-----------|-------|--------|-----------|------|----------------|------------|
| Parameter | Units | Result | Limit     | MDL  | Analyzed       | Qualifiers |
| Boron     | ug/L  | <7.6   | 100       | 7.6  | 11/18/22 13:30 |            |
| Calcium   | ug/L  | <26.5  | 200       | 26.5 | 11/18/22 13:30 |            |
| Iron      | ug/L  | 19.1J  | 50.0      | 7.4  | 11/21/22 11:19 |            |
| Magnesium | ug/L  | <24.1  | 50.0      | 24.1 | 11/18/22 13:30 |            |
| Manganese | ug/L  | 0.76J  | 5.0       | 0.38 | 11/18/22 13:30 |            |
| Potassium | ug/L  | <90.1  | 500       | 90.1 | 11/18/22 13:30 |            |
| Sodium    | ug/L  | <38.8  | 500       | 38.8 | 11/18/22 13:30 |            |

### LABORATORY CONTROL SAMPLE: 3254703

| Parameter | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|-----------|-------|----------------|---------------|--------------|-----------------|------------|
| Boron     | ug/L  | 1000           | 896           | 90           | 85-115          |            |
| Calcium   | ug/L  | 10000          | 9510          | 95           | 85-115          |            |
| Iron      | ug/L  | 10000          | 9980          | 100          | 85-115          |            |
| Magnesium | ug/L  | 10000          | 9300          | 93           | 85-115          |            |
| Manganese | ug/L  | 1000           | 940           | 94           | 85-115          |            |
| Potassium | ug/L  | 10000          | 9370          | 94           | 85-115          |            |
| Sodium    | ug/L  | 10000          | 9530          | 95           | 85-115          |            |

| MATRIX SPIKE & MATRIX SF |       | _ICATE: 3254 | 704         |              | 3254705 |        |       |       |        |        |        |      |
|--------------------------|-------|--------------|-------------|--------------|---------|--------|-------|-------|--------|--------|--------|------|
|                          |       | 60413956017  | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |        | Max    |      |
| Parameter                | Units | Result       | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD    | RPD    | Qua  |
| Boron                    | ug/L  | 8070         | 1000        | 1000         | 9180    | 9250   | 111   | 117   | 70-130 | 1      | 20     |      |
| Calcium                  | ug/L  | 97400        | 10000       | 10000        | 109000  | 110000 | 117   | 123   | 70-130 | 1      | 20     |      |
| Iron                     | ug/L  | 4830         | 10000       | 10000        | 14900   | 14800  | 101   | 99    | 70-130 | 1      | 20     |      |
| Magnesium                | ug/L  | 11900        | 10000       | 10000        | 21200   | 21300  | 93    | 94    | 70-130 | 0      | 20     |      |
| Manganese                | ug/L  | 248          | 1000        | 1000         | 1170    | 1200   | 92    | 95    | 70-130 | 3      | 20     |      |
| Potassium                | ug/L  | 8950         | 10000       | 10000        | 18900   | 19200  | 100   | 103   | 70-130 | 2      | 20     |      |
| Sodium                   | ug/L  | 104000       | 10000       | 10000        | 115000  | 115000 | 109   | 113   | 70-130 | 0      | 20     |      |
| MATRIX SPIKE SAMPLE:     |       | 3254706      |             |              |         |        |       |       |        |        |        |      |
|                          |       |              | 60413       | 956026       | Spike   | MS     |       | MS    | % Rec  |        |        |      |
| Parameter                |       | Units        | Re          | esult        | Conc.   | Result | %     | Rec   | Limits |        | Qualif | iers |
| Boron                    |       | ug/L         |             | 9220         | 1000    | 77     | 710   | -151  | 70     | -130 N | 11     |      |
| Calcium                  |       | ug/L         |             | 108000       | 10000   | 848    | 300   | -232  | 70     | -130 N | 11     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| MATRIX SPIKE SAMPLE: | 3254706 |             |       |        |       |        |            |
|----------------------|---------|-------------|-------|--------|-------|--------|------------|
|                      |         | 60413956026 | Spike | MS     | MS    | % Rec  |            |
| Parameter            | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| Iron                 | ug/L    | 5240        | 10000 | 10400  | 51    | 70-130 | M1         |
| Magnesium            | ug/L    | 22000       | 10000 | 9740   | -122  | 70-130 | M1         |
| Manganese            | ug/L    | 275         | 1000  | 995    | 72    | 70-130 |            |
| Potassium            | ug/L    | 7390        | 10000 | 22600  | 152   | 70-130 | M1         |
| Sodium               | ug/L    | 99400       | 10000 | 89100  | -103  | 70-130 | M1         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch:                             | 818362            |                              | Analysis Methe                           | od: EPA                          | 200.7                      |                                                                      |            |
|---------------------------------------|-------------------|------------------------------|------------------------------------------|----------------------------------|----------------------------|----------------------------------------------------------------------|------------|
| QC Batch Method                       | I: EPA 200.7      |                              | Analysis Desc                            | ription: 200.                    | 7 Metals, Total            |                                                                      |            |
|                                       |                   |                              | Laboratory:                              | Pace                             | e Analytical Sei           | rvices - Kansas City                                                 | 1          |
| Associated Lab Sa                     | amples: 604139610 | 01, 60413961002              | 2, 60413961003, 60                       | 413961004, 604 <sup>,</sup>      | 13961005                   |                                                                      |            |
| METHOD BLANK                          | : 3254745         |                              | Matrix: V                                | Vater                            |                            |                                                                      |            |
| Associated Lab Sa                     | amples: 604139610 | 01, 60413961002              | 2, 60413961003, 60                       | 413961004, 604 <sup>.</sup>      | 13961005                   |                                                                      |            |
|                                       |                   |                              | Blank                                    | Reporting                        |                            |                                                                      |            |
|                                       |                   |                              | Diam                                     | rtoporting                       |                            |                                                                      |            |
| Para                                  | ameter            | Units                        | Result                                   | Limit                            | MDL                        | Analyzed                                                             | Qualifiers |
| Para                                  | ameter            | Units<br>ug/L                |                                          |                                  | MDL 4.2                    | Analyzed<br>11/18/22 19:18                                           | Qualifiers |
|                                       | ameter            |                              | Result                                   | Limit                            |                            |                                                                      | Qualifiers |
| Boron                                 | ameter            | ug/L                         | Result                                   | Limit                            | 4.2                        | 11/18/22 19:18                                                       | Qualifiers |
| Boron<br>Calcium                      | ameter            | ug/L<br>ug/L                 | Result<br><4.2<br><33.7                  | Limit                            | 4.2<br>33.7                | 11/18/22 19:18<br>11/18/22 19:18                                     | Qualifiers |
| Boron<br>Calcium<br>Iron              | ameter            | ug/L<br>ug/L<br>ug/L         | Result<br><4.2<br><33.7<br><5.6          | Limit 100<br>200<br>50.0         | 4.2<br>33.7<br>5.6         | 11/18/22 19:18<br>11/18/22 19:18<br>11/18/22 19:18                   | Qualifiers |
| Boron<br>Calcium<br>Iron<br>Magnesium | ameter _          | ug/L<br>ug/L<br>ug/L<br>ug/L | Result<br><4.2<br><33.7<br><5.6<br><27.1 | Limit 100<br>200<br>50.0<br>50.0 | 4.2<br>33.7<br>5.6<br>27.1 | 11/18/22 19:18<br>11/18/22 19:18<br>11/18/22 19:18<br>11/18/22 19:18 | Qualifiers |

| _         |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Boron     | ug/L  | 1000  | 875    | 88    | 85-115 |            |
| Calcium   | ug/L  | 10000 | 9730   | 97    | 85-115 |            |
| Iron      | ug/L  | 10000 | 9430   | 94    | 85-115 |            |
| Magnesium | ug/L  | 10000 | 10000  | 100   | 85-115 |            |
| Manganese | ug/L  | 1000  | 931    | 93    | 85-115 |            |
| Potassium | ug/L  | 10000 | 9360   | 94    | 85-115 |            |
| Sodium    | ug/L  | 10000 | 10000  | 100   | 85-115 |            |

| MATRIX SPIKE & MATRIX | SPIKE DUPLIC | CATE: 3254           | 747                  |                       | 3254748      |               |             |              |                 |     |            |      |
|-----------------------|--------------|----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter             | 6<br>Units   | 0413961001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Boron                 | ug/L         | 115                  | 1000                 | 1000                  | 1020         | 1000          | 90          | 89           | 70-130          | 1   | 20         |      |
| Calcium               | ug/L         | 246000               | 10000                | 10000                 | 250000       | 250000        | 39          | 38           | 70-130          | 0   | 20         | M1   |
| Iron                  | ug/L         | 164                  | 10000                | 10000                 | 9710         | 9480          | 95          | 93           | 70-130          | 2   | 20         |      |
| Magnesium             | ug/L         | 67300                | 10000                | 10000                 | 75900        | 75900         | 86          | 86           | 70-130          | 0   | 20         |      |
| Manganese             | ug/L         | 2700                 | 1000                 | 1000                  | 3600         | 3570          | 90          | 87           | 70-130          | 1   | 20         |      |
| Potassium             | ug/L         | 7700                 | 10000                | 10000                 | 17400        | 17300         | 97          | 96           | 70-130          | 0   | 20         |      |
| Sodium                | ug/L         | 18000                | 10000                | 10000                 | 27300        | 27100         | 93          | 91           | 70-130          | 1   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: AMEREN LEC LCI<br>Pace Project No.: 60413961 | L1      |              |           |              |                  |         |            |
|-------------------------------------------------------|---------|--------------|-----------|--------------|------------------|---------|------------|
| QC Batch: 815835                                      |         | Analysis Me  | thod: S   | SM 2320B     |                  |         |            |
| QC Batch Method: SM 2320B                             |         | Analysis Des |           | 320B Alkalin | itv              |         |            |
|                                                       |         | Laboratory:  |           |              | al Services - Ka | insas C | ity        |
| Associated Lab Samples: 604139560                     | 800     | ,            |           | ,            |                  |         |            |
| METHOD BLANK: 3244507                                 |         | Matrix       | Water     |              |                  |         |            |
| Associated Lab Samples: 604139560                     | 800     |              |           |              |                  |         |            |
| _                                                     |         | Blank        | Reporting |              |                  |         |            |
| Parameter                                             | Units   | Result       | Limit     | MDL          | Analy            |         | Qualifiers |
| Alkalinity, Total as CaCO3                            | mg/L    | 4.8J         | 20.0      | )            | 4.6 11/01/22     | 2 16:22 |            |
| LABORATORY CONTROL SAMPLE:                            | 3244508 |              |           |              |                  |         |            |
| -                                                     |         | Spike        | LCS       | LCS          | % Rec            | •       |            |
| Parameter                                             | Units   |              | Result    | % Rec        | Limits           |         | alifiers   |
| Alkalinity, Total as CaCO3                            | mg/L    | 500          | 485       | 97           | 90-110           |         |            |
| SAMPLE DUPLICATE: 3244509                             |         |              |           |              |                  |         |            |
|                                                       |         | 60414091002  | Dup       |              | Max              |         |            |
| Parameter                                             | Units   | Result       | Result    | RPD          | RPD              |         | Qualifiers |
| Alkalinity, Total as CaCO3                            | mg/L    | 639          | 641       | 1            | 0                | 10      |            |
| SAMPLE DUPLICATE: 3244510                             |         |              |           |              |                  |         |            |
|                                                       |         | 60413956004  | Dup       |              | Max              |         |            |
| Parameter                                             | Units   | Result       | Result    | RPD          | RPD              |         | Qualifiers |
| Alkalinity, Total as CaCO3                            | mg/L    | 273          | 274       | 1            | 0                | 10      |            |
| SAMPLE DUPLICATE: 3244511                             |         |              |           |              |                  |         |            |
|                                                       |         | 60413956008  | Dup       |              | Max              |         |            |
|                                                       |         |              |           |              |                  |         |            |
| Parameter                                             | Units   |              | Result    | RPD          | RPD              |         | Qualifiers |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: AMEREN LEC L<br>Pace Project No.: 60413961 | .CL1    |                      |                         |                           |                  |         |            |
|-----------------------------------------------------|---------|----------------------|-------------------------|---------------------------|------------------|---------|------------|
| QC Batch: 816118<br>QC Batch Method: SM 2320B       |         | Analysis             | Method:<br>Description: | SM 2320B<br>2320B Alkalin |                  |         |            |
|                                                     |         | Laborator            |                         |                           | al Services - Ka | ansas ( | Sitv       |
| Associated Lab Samples: 6041396                     | 61001   | Laborator            | y.                      |                           |                  |         | Jity       |
| METHOD BLANK: 3245823                               |         | Mat                  | rix: Water              |                           |                  |         |            |
| Associated Lab Samples: 6041396                     | 51001   |                      |                         |                           |                  |         |            |
| Parameter                                           | Units   | Blank<br>Result      | Reporting<br>Limit      | MDL                       | Analy            | zed     | Qualifiers |
| Alkalinity, Total as CaCO3                          | mg/L    | <4                   | 1.6 2                   | 0.0                       | 4.6 11/02/22     | 2 14:01 |            |
| LABORATORY CONTROL SAMPLE:                          | 3245824 |                      |                         |                           |                  |         |            |
| Parameter                                           | Units   | Spike<br>Conc.       | LCS<br>Result           | LCS<br>% Rec              | % Rec<br>Limits  | Qu      | alifiers   |
| Alkalinity, Total as CaCO3                          | mg/L    | 500                  | 482                     | 96                        | 90-110           |         |            |
| SAMPLE DUPLICATE: 3245825                           |         |                      |                         |                           |                  |         |            |
|                                                     |         | 6041395900           |                         |                           | Max              |         |            |
| Parameter                                           | Units   | Result               |                         | RPD                       |                  |         | Qualifiers |
| Alkalinity, Total as CaCO3                          | mg/L    | 00                   | 5.0 6                   | 3.3                       | 5                | 10      |            |
| SAMPLE DUPLICATE: 3245826                           |         | 6041396000           | )1 Dup                  |                           | Max              |         |            |
| Parameter                                           | Units   | Result               | Result                  | RPD                       | RPD              |         | Qualifiers |
| Alkalinity, Total as CaCO3                          | mg/L    | 3.                   | 26 3                    | 327                       | 0                | 10      |            |
| SAMPLE DUPLICATE: 3245827                           |         |                      |                         |                           |                  |         |            |
| Parameter                                           | Units   | 6041396100<br>Result | )1 Dup<br>Result        | RPD                       | Max<br>RPD       |         | Qualifiers |
| Alkalinity, Total as CaCO3                          | mg/L    | 6                    | 51 6                    |                           | 1                | 10      |            |
| SAMPLE DUPLICATE: 3245828                           |         |                      |                         |                           |                  |         |            |
| Parameter                                           | Units   | 6041410400<br>Result | )2 Dup<br>Result        | RPD                       | Max<br>RPD       |         | Qualifiers |
| Alkalinity, Total as CaCO3                          | mg/L    | 5                    | 08 5                    | 505                       | 1                | 10      |            |
|                                                     |         |                      |                         |                           |                  |         |            |
| SAMPLE DUPLICATE: 3245829                           |         |                      |                         |                           |                  |         |            |
| Parameter                                           | Units   | 6041410400<br>Result | )4 Dup<br>Result        | RPD                       | Max<br>RPD       |         | Qualifiers |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project:               | AMEREN LEC LO  | CL1              |                  |             |               |                   |          |            |
|------------------------|----------------|------------------|------------------|-------------|---------------|-------------------|----------|------------|
| Pace Project No.:      | 60413961       |                  |                  |             |               |                   |          |            |
| QC Batch:              | 816349         |                  | Analysis Me      | ethod:      | SM 2320B      |                   |          |            |
| QC Batch Method:       | SM 2320B       |                  | Analysis De      | escription: | 2320B Alkalin | ity               |          |            |
|                        |                |                  | Laboratory:      | I           | Pace Analytic | al Services - Kar | nsas Cit | y          |
| Associated Lab San     | nples: 6041396 | 1002, 6041396100 | 03, 60413961004, | 60413961005 |               |                   |          |            |
| METHOD BLANK:          | 3246752        |                  | Matrix           | : Water     |               |                   |          |            |
| Associated Lab San     | nples: 6041396 | 1002, 6041396100 | 3, 60413961004,  | 60413961005 |               |                   |          |            |
|                        |                |                  | Blank            | Reporting   |               |                   |          |            |
| Paran                  | neter          | Units            | Result           | Limit       | MDL           | Analyz            | ed       | Qualifiers |
| Alkalinity, Total as C | aCO3           | mg/L             |                  | 20.         | 0             | 4.6 11/03/22      | 17:58    |            |
| LABORATORY CON         | NTROL SAMPLE:  | 3246753          |                  |             |               |                   |          |            |
|                        |                |                  | Spike            | LCS         | LCS           | % Rec             |          |            |
| Paran                  | neter          | Units            | Conc.            | Result      | % Rec         | Limits            | Qual     | lifiers    |
| Alkalinity, Total as C | aCO3           | mg/L             | 500              | 482         | 96            | 90-110            |          |            |
| SAMPLE DUPLICA         | TE: 3246754    |                  |                  |             |               |                   |          |            |
|                        |                |                  | 60413956013      | Dup         |               | Max               |          |            |
| Paran                  | neter          | Units            | Result           | Result      | RPD           | RPD               |          | Qualifiers |
| Alkalinity, Total as C | aCO3           | mg/L             | 6.6J             | <4.         | 6             |                   | 10       |            |
| SAMPLE DUPLICA         | TE: 3246755    |                  |                  |             |               |                   |          |            |
|                        |                |                  | 60413956017      | Dup         |               | Max               |          |            |
| Paran                  | neter          | Units            | Result           | Result      | RPD           | RPD               |          | Qualifiers |
| Alkalinity, Total as C | aCO3           | mg/L             | 147              | 14          | 3             | 3                 | 10       |            |
| SAMPLE DUPLICA         | TE: 3246756    |                  |                  |             |               |                   |          |            |
|                        |                |                  | 60413959012      | Dup         |               | Max               |          |            |
| Paran                  | neter          | Units            | Result           | Result      | RPD           | RPD               |          | Qualifiers |
| Alkalinity, Total as C | aCO3           | mg/L             | <4.6             | <4.         | 6             |                   | 10       |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: AM               | IEREN LEC LCL1 |                |                |               |               |                  |          |            |
|---------------------------|----------------|----------------|----------------|---------------|---------------|------------------|----------|------------|
| Pace Project No.: 604     | 113961         |                |                |               |               |                  |          |            |
| QC Batch: 8               | 16350          |                | Analysis Me    | ethod:        | SM 2320B      |                  |          |            |
| QC Batch Method: S        | M 2320B        |                | Analysis De    | escription:   | 2320B Alkalin | nity             |          |            |
|                           |                |                | Laboratory:    |               | Pace Analytic | al Services - Ka | ansas Ci | ity        |
| Associated Lab Sample     | s: 6041395602  | 4, 60413956025 |                |               |               |                  |          |            |
| METHOD BLANK: 324         | 46761          |                | Matrix         | : Water       |               |                  |          |            |
| Associated Lab Sample     | s: 6041395602  | 4, 60413956025 |                |               |               |                  |          |            |
|                           |                |                | Blank          | Reporting     |               |                  |          |            |
| Paramete                  | r              | Units          | Result         | Limit         | MDL           | Analy            | zed      | Qualifiers |
| Alkalinity, Total as CaCC | )3             | mg/L           | <4.6           | 6 20          | 0.0           | 4.6 11/03/22     | 2 15:09  |            |
|                           |                |                |                |               |               |                  |          |            |
| LABORATORY CONTR          | OL SAMPLE: 3   | 246762         |                |               |               | 04 <b>D</b>      |          |            |
| Paramete                  | -              | Units          | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec  | % Rec<br>Limits  | 0        | alifiers   |
|                           |                |                |                |               |               |                  |          |            |
| Alkalinity, Total as CaCC | 03             | mg/L           | 500            | 482           | 96            | 90-110           |          |            |
| SAMPLE DUPLICATE:         | 3246763        |                |                |               |               |                  |          |            |
|                           |                |                | 60414155002    | Dup           |               | Max              |          |            |
| Paramete                  | r              | Units          | Result         | Result        | RPD           | RPD              |          | Qualifiers |
| Alkalinity, Total as CaCC | )3             | mg/L           | 81.3           | 3 77          | <u>′.4</u>    | 5                | 10       |            |
|                           |                |                |                |               |               |                  |          |            |
| SAMPLE DUPLICATE:         | 3246764        |                |                |               |               |                  |          |            |
|                           |                |                | 60414190001    | Dup           |               | Max              |          | 0 11       |
| Paramete                  |                | Units          | Result         | Result        | RPD           | RPD              |          | Qualifiers |
| Alkalinity, Total as CaCC | 03             | mg/L           | 297            | 2             | 99            | 1                | 10       |            |
| SAMPLE DUPLICATE:         | 3246765        |                |                |               |               |                  |          |            |
|                           |                |                | 60413959007    | Dup           |               | Max              |          |            |
| Paramete                  | r              | Units          | Result         | Result        | RPD           | RPD              |          | Qualifiers |
| Alkalinity, Total as CaCC |                | mg/L           | 158            | 3 1:          | 52            | 4                | 10       |            |
| -                         |                | -              |                |               |               |                  |          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| Project: AMER           | REN LEC LCL1 |        |             |             |        |          |        |             |         |            |
|-------------------------|--------------|--------|-------------|-------------|--------|----------|--------|-------------|---------|------------|
| Pace Project No.: 60413 | 3961         |        |             |             |        |          |        |             |         |            |
| QC Batch: 815           | 561          |        | Analysis M  | lethod:     | SM 254 | 40C      |        |             |         |            |
| QC Batch Method: SM     | 2540C        |        | Analysis D  | escription: | 2540C  | Total D  | issolv | ved Solids  |         |            |
|                         |              |        | Laboratory  | /:          | Pace A | nalytica | al Sei | vices - Kar | isas Ci | ty         |
| Associated Lab Samples: | 60413956008  |        |             |             |        |          |        |             |         |            |
| METHOD BLANK: 32436     | 642          |        | Matri       | ix: Water   |        |          |        |             |         |            |
| Associated Lab Samples: | 60413956008  |        |             |             |        |          |        |             |         |            |
|                         |              |        | Blank       | Reportin    | g      |          |        |             |         |            |
| Parameter               |              | Units  | Result      | Limit       |        | MDL      |        | Analyz      | ed      | Qualifiers |
| Total Dissolved Solids  |              | mg/L   | <5.         | 0           | 5.0    |          | 5.0    | 10/31/22    | 14:20   |            |
|                         |              |        |             |             |        |          |        |             |         |            |
| LABORATORY CONTROL      | SAMPLE: 3243 | 643    |             |             |        |          |        |             |         |            |
| _                       |              |        | Spike       | LCS         | LCS    |          |        | 6 Rec       | _       |            |
| Parameter               |              | Units  | Conc.       | Result      | % Re   | ec       |        | imits       | Qua     | lifiers    |
| Total Dissolved Solids  |              | mg/L   | 1000        | 1020        |        | 102      |        | 80-120      |         |            |
|                         |              |        |             |             |        |          |        |             |         |            |
| SAMPLE DUPLICATE: 3     | 243645       |        |             |             |        |          |        |             |         |            |
|                         |              |        | 60413956008 |             |        |          |        | Max         |         | 0 11       |
| Parameter               |              | Units  | Result      | Result      |        | RPD      |        | RPD         |         | Qualifiers |
| Total Dissolved Solids  |              | mg/L   | 49          | 3           | 489    |          | 1      |             | 10      |            |
|                         |              |        |             |             |        |          |        |             |         |            |
| SAMPLE DUPLICATE: 3     | 244133       |        |             |             |        |          |        |             |         |            |
| Dama                    |              | 11-26- | 60413768001 |             |        |          |        | Max         |         | 0          |
| Parameter               |              | Units  | Result      | Result      |        | RPD      |        | RPD         |         | Qualifiers |
| Total Dissolved Solids  |              | mg/L   | 72          | 0           | 735    |          | 2      |             | 10      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project: AMEREN LEC L           | CL1      |             |             |               |            |               |            |
|---------------------------------|----------|-------------|-------------|---------------|------------|---------------|------------|
| Pace Project No.: 60413961      |          |             |             |               |            |               |            |
| QC Batch: 815775                |          | Analysis M  | ethod:      | SM 2540C      |            |               |            |
| QC Batch Method: SM 2540C       |          | Analysis D  | escription: | 2540C Total E | Dissolved  | Solids        |            |
|                                 |          | Laboratory  | :           | Pace Analytic | al Service | es - Kansas C | Sity       |
| Associated Lab Samples: 6041396 | 51001    |             |             |               |            |               |            |
| METHOD BLANK: 3244259           |          | Matri       | x: Water    |               |            |               |            |
| Associated Lab Samples: 6041396 | 51001    |             |             |               |            |               |            |
|                                 |          | Blank       | Reporting   |               |            |               |            |
| Parameter                       | Units    | Result      | Limit       | MDL           |            | Analyzed      | Qualifiers |
| Total Dissolved Solids          | mg/L     | <5.0        | ) :         | 5.0           | 5.0 11     | /01/22 14:13  |            |
|                                 |          |             |             |               |            |               |            |
| LABORATORY CONTROL SAMPLE:      | 3244260  |             |             |               |            |               |            |
| _                               |          | Spike       | LCS         | LCS           | % Re       |               |            |
| Parameter                       | Units    | Conc.       | Result      | % Rec         | Limit      | s Qu          | alifiers   |
| Total Dissolved Solids          | mg/L     | 1000        | 1010        | 101           | 8          | 0-120         |            |
|                                 |          |             |             |               |            |               |            |
| SAMPLE DUPLICATE: 3244261       |          |             |             |               |            |               |            |
| Devenuelar                      | 11-26-   | 60413960001 |             |               |            | Max           |            |
| Parameter                       | Units    | Result      | Result      | RPD           |            | RPD           | Qualifiers |
| Total Dissolved Solids          | mg/L     | 700         | ) 7         | 07            | 1          | 10            |            |
|                                 |          |             |             |               |            |               |            |
| SAMPLE DUPLICATE: 3244262       |          |             |             |               |            |               |            |
| Devenueter                      | l la ita | 60413961001 | Dup         | 000           |            | Max           | Qualifiana |
| Parameter                       | Units    | Result      | Result      | RPD           |            | RPD           | Qualifiers |
| Total Dissolved Solids          | mg/L     | 1070        | ) 10        | 80            | 1          | 10            |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:               | AMEREN LEC LC  | L1              |                  |             |                |                   |          |            |
|------------------------|----------------|-----------------|------------------|-------------|----------------|-------------------|----------|------------|
| Pace Project No.:      | 60413961       |                 |                  |             |                |                   |          |            |
| QC Batch:              | 815993         |                 | Analysis Me      | ethod:      | SM 2540C       |                   |          |            |
| QC Batch Method:       | SM 2540C       |                 | Analysis De      | escription: | 2540C Total D  | issolved Solids   |          |            |
|                        |                |                 | Laboratory:      |             | Pace Analytica | al Services - Kai | nsas Cit | у          |
| Associated Lab Samp    | oles: 60413961 | 002, 6041396100 | 03, 60413961004, | 60413961005 | -              |                   |          |            |
| METHOD BLANK: 3        | 3245280        |                 | Matrix           | : Water     |                |                   |          |            |
| Associated Lab Samp    | oles: 60413961 | 002, 6041396100 | 03, 60413961004, | 60413961005 |                |                   |          |            |
|                        |                |                 | Blank            | Reporting   |                |                   |          |            |
| Parame                 | eter           | Units           | Result           | Limit       | MDL            | Analyz            | zed      | Qualifiers |
| Total Dissolved Solids | <br>6          | mg/L            |                  | 5           | .0             | 5.0 11/02/22      | 11:26    |            |
|                        |                | -               |                  |             |                |                   |          |            |
| LABORATORY CON         | TROL SAMPLE:   | 3245281         |                  |             |                |                   |          |            |
|                        |                |                 | Spike            | LCS         | LCS            | % Rec             |          |            |
| Parame                 | eter           | Units           | Conc.            | Result      | % Rec          | Limits            | Qual     | ifiers     |
| Total Dissolved Solids | 3              | mg/L            | 1000             | 1010        | 101            | 80-120            |          |            |
|                        |                |                 |                  |             |                |                   |          |            |
| SAMPLE DUPLICATI       | E: 3245282     |                 |                  |             |                |                   |          |            |
|                        |                |                 | 60413956020      | Dup         |                | Max               |          |            |
| Parame                 | eter           | Units           | Result           | Result      | RPD            | RPD               |          | Qualifiers |
| Total Dissolved Solids | 6              | mg/L            | 5.0              | ) <5        | .0             |                   | 10       |            |
|                        |                |                 |                  |             |                |                   |          |            |
| SAMPLE DUPLICATI       | E: 3245283     |                 |                  |             |                |                   |          |            |
|                        |                |                 | 60413960003      | Dup         |                | Max               |          |            |
| Parame                 | eter           | Units           | Result           | Result      | RPD            | RPD               |          | Qualifiers |
| Total Dissolved Solids | 6              | mg/L            | 511              | 56          | 61             | 9                 | 10       |            |
|                        |                |                 |                  |             |                |                   |          |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:             | AMEREN LEC LC   | L1                |             |             |               |         |             |         |            |
|----------------------|-----------------|-------------------|-------------|-------------|---------------|---------|-------------|---------|------------|
| Pace Project No.:    | 60413961        |                   |             |             |               |         |             |         |            |
| QC Batch:            | 816279          |                   | Analysis M  | ethod:      | SM 2540C      |         |             |         |            |
| QC Batch Method:     | SM 2540C        |                   | Analysis De | escription: | 2540C Total [ | Dissolv | ed Solids   |         |            |
|                      |                 |                   | Laboratory  | :           | Pace Analytic | al Ser  | /ices - Kar | nsas Ci | ity        |
| Associated Lab Sar   | mples: 60413956 | 6024, 60413956025 |             |             |               |         |             |         |            |
| METHOD BLANK:        | 3246425         |                   | Matrix      | x: Water    |               |         |             |         |            |
| Associated Lab Sar   | mples: 60413956 | 6024, 60413956025 |             |             |               |         |             |         |            |
|                      |                 |                   | Blank       | Reporting   |               |         |             |         |            |
| Parar                | neter           | Units             | Result      | Limit       | MDL           |         | Analyz      | ed      | Qualifiers |
| Total Dissolved Soli | ds              | mg/L              | <5.0        | )           | 5.0           | 5.0     | 11/03/22    | 15:39   |            |
|                      |                 |                   |             |             |               |         |             |         |            |
| LABORATORY CO        | NTROL SAMPLE:   | 3246426           |             |             |               |         |             |         |            |
|                      |                 |                   | Spike       | LCS         | LCS           |         | Rec         |         |            |
| Parar                | neter           | Units             | Conc.       | Result      | % Rec         | Li      | mits        | Qua     | lifiers    |
| Total Dissolved Soli | ds              | mg/L              | 1000        | 1000        | 100           |         | 80-120      |         |            |
|                      |                 |                   |             |             |               |         |             |         |            |
| SAMPLE DUPLICA       | TE: 3246427     |                   |             |             |               |         |             |         |            |
| _                    |                 |                   | 60414192001 | Dup         |               |         | Max         |         |            |
| Parar                | neter           | Units             | Result      | Result      | RPD           |         | RPD         |         | Qualifiers |
| Total Dissolved Soli | ds              | mg/L              | 3930        | ) 40        | )30           | 3       |             | 10      |            |
|                      |                 |                   |             |             |               |         |             |         |            |
| SAMPLE DUPLICA       | TE: 3246428     |                   |             |             |               |         |             |         |            |
| _                    |                 |                   | 60413959007 |             | _             |         | Max         |         |            |
| Parar                | neter           | Units             | Result      | Result      | RPD           |         | RPD         |         | Qualifiers |
| Total Dissolved Soli | ds              | mg/L              | 762         | 2 7         | 794           | 4       |             | 10      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch: 8177                                                                                                                                          | 71         |                                                                                                            | Analys                                                                         | sis Met                              | hod:                                                                                                                                                    | EPA 300.0                                                  | )                                                      |                                                                                                                     |                                          |                     |                                    |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|------------------------------------|-----------------------|
| QC Batch Method: EPA                                                                                                                                    | 300.0      |                                                                                                            | -                                                                              |                                      | cription:                                                                                                                                               | 300.0 IC A                                                 | Anions                                                 |                                                                                                                     |                                          |                     |                                    |                       |
|                                                                                                                                                         |            |                                                                                                            | Labor                                                                          |                                      | ·                                                                                                                                                       | Pace Ana                                                   | vtical Se                                              | rvices - Kar                                                                                                        | nsas City                                |                     |                                    |                       |
| Associated Lab Samples:                                                                                                                                 | 604139560  | 08                                                                                                         |                                                                                | ,                                    |                                                                                                                                                         |                                                            |                                                        |                                                                                                                     | ,                                        |                     |                                    |                       |
| METHOD BLANK: 32522                                                                                                                                     | 61         |                                                                                                            | I                                                                              | Matrix:                              | Water                                                                                                                                                   |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
| Associated Lab Samples:                                                                                                                                 | 604139560  | 08                                                                                                         |                                                                                |                                      |                                                                                                                                                         |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
| _                                                                                                                                                       |            |                                                                                                            | Blan                                                                           |                                      | Reporting                                                                                                                                               |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
| Parameter                                                                                                                                               |            | Units                                                                                                      | Resu                                                                           | lt                                   | Limit                                                                                                                                                   | M                                                          | DL                                                     | Analyz                                                                                                              | .ed                                      | Qualifie            | rs                                 |                       |
| Chloride                                                                                                                                                |            | mg/L                                                                                                       |                                                                                | 0.59J                                |                                                                                                                                                         | .0                                                         | 0.53                                                   | 11/11/22                                                                                                            |                                          |                     |                                    |                       |
| Fluoride                                                                                                                                                |            | mg/L                                                                                                       |                                                                                | <0.12                                | 0.                                                                                                                                                      |                                                            | 0.12                                                   | 11/11/22                                                                                                            |                                          |                     |                                    |                       |
| Sulfate                                                                                                                                                 |            | mg/L                                                                                                       |                                                                                | <0.55                                | 1                                                                                                                                                       | .0                                                         | 0.55                                                   | 11/11/22                                                                                                            | 17:54                                    |                     |                                    |                       |
| METHOD BLANK: 32557                                                                                                                                     | 49         |                                                                                                            |                                                                                | Matrix:                              | Water                                                                                                                                                   |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
| Associated Lab Samples:                                                                                                                                 | 604139560  | 08                                                                                                         |                                                                                |                                      |                                                                                                                                                         |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
|                                                                                                                                                         |            |                                                                                                            | Blan                                                                           | <b>(</b>                             | Reporting                                                                                                                                               |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
| Parameter                                                                                                                                               |            | Units                                                                                                      | Resu                                                                           | lt                                   | Limit                                                                                                                                                   | M                                                          | DL                                                     | Analyz                                                                                                              | ed                                       | Qualifie            | rs                                 |                       |
| Chloride                                                                                                                                                |            | mg/L                                                                                                       |                                                                                | <0.53                                | 1                                                                                                                                                       | .0                                                         | 0.53                                                   | 11/15/22                                                                                                            | 09:48                                    |                     |                                    |                       |
| Fluoride                                                                                                                                                |            | mg/L                                                                                                       |                                                                                | <0.12                                | 0.                                                                                                                                                      | 20                                                         | 0.12                                                   | 11/15/22                                                                                                            | 09:48                                    |                     |                                    |                       |
| Sulfate                                                                                                                                                 |            | mg/L                                                                                                       |                                                                                | <0.55                                | 1                                                                                                                                                       | .0                                                         | 0.55                                                   | 11/15/22                                                                                                            | 09:48                                    |                     |                                    |                       |
| LABORATORY CONTROL                                                                                                                                      | SAMPLE: 3  | 3252262                                                                                                    |                                                                                |                                      |                                                                                                                                                         |                                                            |                                                        |                                                                                                                     |                                          |                     |                                    |                       |
|                                                                                                                                                         |            |                                                                                                            | Spike                                                                          |                                      | LCS                                                                                                                                                     | LCS                                                        | c                                                      | % Rec                                                                                                               |                                          |                     |                                    |                       |
| Parameter                                                                                                                                               |            | Units                                                                                                      | Conc.                                                                          |                                      | Result                                                                                                                                                  | % Rec                                                      |                                                        | Limits                                                                                                              | Qualifie                                 | ers                 |                                    |                       |
|                                                                                                                                                         |            |                                                                                                            | Conc.                                                                          | F                                    | Result                                                                                                                                                  | % Rec                                                      |                                                        |                                                                                                                     | Qualifie                                 | ers                 |                                    |                       |
| Chloride                                                                                                                                                |            | mg/L                                                                                                       | Conc.                                                                          | F<br>                                | Result<br>4.8                                                                                                                                           | % Rec                                                      | 97                                                     | 90-110                                                                                                              | Qualifie                                 | ers                 |                                    |                       |
|                                                                                                                                                         |            |                                                                                                            | Conc.                                                                          | F<br>                                | Result                                                                                                                                                  | % Rec                                                      |                                                        |                                                                                                                     | Qualifie                                 | ers                 |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate                                                                                                                         | SAMPI F: : | mg/L<br>mg/L<br>mg/L                                                                                       | Conc.                                                                          | F<br>                                | 8esult<br>4.8<br>2.4                                                                                                                                    | % Rec                                                      | 97<br>97<br>97                                         | 90-110<br>90-110                                                                                                    | Qualifie                                 | ers                 |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate                                                                                                                         | SAMPLE: 3  | mg/L<br>mg/L                                                                                               | Conc.                                                                          | F<br>5<br>5                          | 8esult<br>4.8<br>2.4                                                                                                                                    | % Rec                                                      | 97<br>97<br>94                                         | 90-110<br>90-110                                                                                                    | Qualifie                                 | ers                 |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate                                                                                                                         | SAMPLE: 3  | mg/L<br>mg/L<br>mg/L                                                                                       | Conc.                                                                          | F                                    | Result<br>4.8<br>2.4<br>4.7                                                                                                                             | % Rec                                                      | 97<br>97<br>94                                         | 90-110<br>90-110<br>90-110                                                                                          | Qualifie                                 |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter                                                                                      | SAMPLE: 3  | mg/L<br>mg/L<br>mg/L<br>3255750<br>Units                                                                   | Conc.                                                                          | F<br>5<br>5<br>7<br>7<br>7           | Result<br>4.8<br>2.4<br>4.7<br>LCS                                                                                                                      | % Rec<br>LCS<br>% Rec                                      | 97<br>97<br>94                                         | 90-110<br>90-110<br>90-110<br>% Rec                                                                                 |                                          |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride                                                                          | SAMPLE: 3  | mg/L<br>mg/L<br>mg/L<br>3255750                                                                            | Conc.                                                                          | F<br>5<br>5<br>5<br>5                | Aesult<br>4.8<br>2.4<br>4.7<br>LCS<br>Result                                                                                                            | % Rec<br>LCS<br>% Rec                                      | 97<br>97<br>94                                         | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits                                                                       |                                          |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride                                                              | SAMPLE: :  | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L                                                                   | Spike<br>Conc.                                                                 | F                                    | Result         4.8           2.4         4.7           LCS         Result           4.6         4.6                                                     | % Rec<br>LCS<br>% Rec                                      | 97<br>97<br>94<br>94<br>93                             | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110                                                             |                                          |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                   |            | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L                                                   | Conc.                                                                          | F                                    | Result         4.8           2.4         4.7           LCS         4.6           2.6         2.6                                                        | % Rec<br>LCS<br>% Rec                                      | 97<br>97<br>94<br>93<br>93<br>06                       | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110                                                   |                                          |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                   |            | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L                                                   | Conc.                                                                          | F                                    | Result     4.8       2.4     4.7       4.7     4.7                                                                                                      | % Rec<br>LCS<br>% Rec                                      | 97<br>97<br>94<br>93<br>93<br>06                       | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110                                                   |                                          |                     |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX                          | SPIKE DUPL | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L                                                   | Conc.                                                                          | F<br>5<br>5<br>5<br>5<br>5           | Result     4.8       2.4     4.7       4.7     4.7                                                                                                      | % Rec<br>LCS<br>% Rec<br>1<br>4<br>MSD                     | 97<br>97<br>94<br>93<br>06<br>99<br>MS                 | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110<br>90-110<br>90-110                               | Qualifie                                 | ers<br>ec           | Max                                |                       |
| Chloride<br>Fluoride<br>Sulfate<br>ABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate                                                    | SPIKE DUPL | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                           | Conc.<br>2.5<br>5<br>Spike<br>Conc.<br>2.5<br>5<br>263<br>MS                   | F<br>F<br>MSD                        | Result         4.8           2.4         4.7           LCS         4.6           2.6         5.0           325226         325226                        | % Rec<br>LCS<br>% Rec<br>1                                 | 97<br>97<br>94<br>93<br>93<br>06<br>99                 | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110<br>90-110<br>90-110                               | Qualifie                                 | ers<br>ec           |                                    |                       |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX<br>Parameter<br>Chloride | SPIKE DUPL | mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L<br>.ICATE: 32522<br>60413956008                   | Conc.<br>2.5<br>5<br>Spike<br>Conc.<br>263<br>MS<br>Spike<br>Conc.<br>5        | MSD<br>Spike<br>Conc.                | Result         4.8           2.4         4.7           LCS         4.6           2.6         5.0           325226         MS           Result         5 | % Rec<br>LCS<br>% Rec<br>1<br>4<br>MSD<br>Result<br>5 16.3 | 97<br>97<br>94<br>93<br>06<br>99<br>99<br>MS<br>- % Re | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                     | Qualifie<br>0 % Re<br>c Limit<br>21 80-1 | ec<br>is RPD        | $\frac{1}{1} \frac{\text{RPE}}{1}$ | 0 Qua<br>5 M1         |
| Chloride<br>Fluoride<br>Sulfate<br>LABORATORY CONTROL<br>Parameter<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX SPIKE & MATRIX                          | SPIKE DUPL | mg/L<br>mg/L<br>mg/L<br>3255750<br>Units<br>mg/L<br>mg/L<br>mg/L<br>.ICATE: 32522<br>60413956008<br>Result | Conc.<br>Spike<br>Conc.<br>2.5<br>5<br>2.5<br>5<br>263<br>MS<br>Spike<br>Conc. | F<br>F<br>MSD<br>Spike<br>Conc.<br>2 | Result         4.8           2.4         4.7           LCS         4.6           2.6         5.0           325226         MS           Result         1 | % Rec<br>LCS<br>% Rec<br>4<br>MSD<br>Result<br>5<br>16.3   | 97<br>97<br>94<br>93<br>06<br>99<br>99<br>MS<br>- % Re | 90-110<br>90-110<br>90-110<br>% Rec<br>Limits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110 | Qualifie                                 | ec<br>is RPD<br>120 | $\frac{1}{1} \frac{\text{RPE}}{1}$ | 0 Qua<br>5 M1<br>5 M1 |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| MATRIX SPIKE & MATRIX SP |       | CATE: 3252  | 266   |       | 3252267 |        |       |       |        |     |     |      |
|--------------------------|-------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |       |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | 6     | 60413960001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L  | 20.8        | 25    | 25    | 46.5    | 46.1   | 103   | 101   | 80-120 | 1   | 15  |      |
| Fluoride                 | mg/L  | 0.33        | 2.5   | 2.5   | 3.4     | 3.4    | 124   | 125   | 80-120 | 0   | 15  | M1   |
| Sulfate                  | mg/L  | 198         | 100   | 100   | 307     | 305    | 109   | 107   | 80-120 | 1   | 15  |      |

### SAMPLE DUPLICATE: 3252265

| Parameter | Units | 60413956008<br>Result | Dup<br>Result | RPD | Max<br>RPD | Qualifiers |
|-----------|-------|-----------------------|---------------|-----|------------|------------|
| Chloride  | mg/L  | 10.3                  | 10.4          | 1   | 15         |            |
| Fluoride  | mg/L  | <0.12                 | <0.12         |     | 15         |            |
| Sulfate   | mg/L  | 31.3                  | 30.3          | 3   | 15         |            |

### SAMPLE DUPLICATE: 3252268

|           |       | 60413960001 | Dup    |     | Max |            |
|-----------|-------|-------------|--------|-----|-----|------------|
| Parameter | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride  | mg/L  | 20.8        | 21.4   | 3   | 15  |            |
| Fluoride  | mg/L  | 0.33        | 0.33   | 0   | 15  |            |
| Sulfate   | mg/L  | 198         | 188    | 5   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| QC Batch: 817772                 |         | Analysis Me     | ethod:             | EPA 300.     | .0          |                 |          |            |
|----------------------------------|---------|-----------------|--------------------|--------------|-------------|-----------------|----------|------------|
| QC Batch Method: EPA 300.0       |         | Analysis De     | escription:        | 300.0 IC     | Anions      |                 |          |            |
|                                  |         | Laboratory:     |                    | Pace Ana     | alytical Se | rvices - Kan    | sas City |            |
| Associated Lab Samples: 60413961 | 001     | ,               |                    |              | ,           |                 |          |            |
| IETHOD BLANK: 3252269            |         | Matrix          | : Water            |              |             |                 |          |            |
| Associated Lab Samples: 60413961 | 001     |                 |                    |              |             |                 |          |            |
|                                  |         | Blank           | Reporting          | 1            |             |                 |          |            |
| Parameter                        | Units   | Result          | Limit              |              | /IDL        | Analyze         | ed       | Qualifiers |
| Chloride                         | mg/L    | <0.53           |                    | 1.0          | 0.53        | 11/11/22 0      |          |            |
| Fluoride                         | mg/L    | <0.12           |                    | .20          | 0.12        | 11/11/22 0      |          |            |
| Sulfate                          | mg/L    | < 0.55          |                    | 1.0          | 0.55        | 11/11/22 0      |          |            |
|                                  | 5       |                 |                    | -            |             |                 |          |            |
| IETHOD BLANK: 3254909            |         | Matrix          | : Water            |              |             |                 |          |            |
| Associated Lab Samples: 60413961 | 001     |                 |                    |              |             |                 |          |            |
|                                  |         | Blank           | Reporting          | 1            |             |                 |          |            |
| Parameter                        | Units   | Result          | Limit              |              | /IDL        | Analyze         | ed       | Qualifiers |
| Chloride                         | mg/L    |                 |                    | 1.0          | 0.53        | 11/14/22 0      | )8:48    |            |
| Fluoride                         | mg/L    | <0.12           |                    | .20          | 0.12        | 11/14/22 0      |          |            |
| Sulfate                          | mg/L    | <0.55           |                    | 1.0          | 0.55        | 11/14/22 0      |          |            |
|                                  |         |                 |                    |              |             |                 |          |            |
| IETHOD BLANK: 3255739            |         | Matrix          | : Water            |              |             |                 |          |            |
| ssociated Lab Samples: 60413961  | 001     |                 |                    |              |             |                 |          |            |
| _                                |         | Blank           | Reporting          |              |             |                 |          |            |
| Parameter                        | Units   | Result          | Limit              | N            | /IDL        | Analyze         | ed       | Qualifiers |
| Chloride                         | mg/L    | 0.57J           | I                  | 1.0          | 0.53        | 11/15/22 0      | )8:24    |            |
| Fluoride                         | mg/L    | <0.12           | 2 0                | .20          | 0.12        | 11/15/22 0      | )8:24    |            |
| Sulfate                          | mg/L    | <0.55           | 5                  | 1.0          | 0.55        | 11/15/22 0      | )8:24    |            |
| IETHOD BLANK: 3256514            |         | Matrix          | : Water            |              |             |                 |          |            |
|                                  | 004     | Math            | . Water            |              |             |                 |          |            |
| Associated Lab Samples: 60413961 | 001     | Disala          | Demention          |              |             |                 |          |            |
| Parameter                        | Units   | Blank<br>Result | Reporting<br>Limit | •            | /IDL        | Analyze         | əd       | Qualifiers |
| Chloride                         | mg/L    | 0.60J           | <br>               | 1.0          | 0.53        | 11/16/22 0      | 08:40    |            |
| luoride                          | mg/L    | <0.12           |                    | .20          | 0.12        | 11/16/22 0      |          |            |
| Sulfate                          | mg/L    | <0.55           |                    | 1.0          | 0.55        | 11/16/22 0      |          |            |
|                                  | Ŭ       |                 |                    |              |             |                 |          |            |
| ABORATORY CONTROL SAMPLE:        | 3252270 | Calles          |                    | 1.00         |             |                 |          |            |
| Parameter                        | Units   | Spike<br>Conc.  | LCS<br>Rosult      | LCS<br>% Rec |             | 6 Rec<br>∟imits | Qualifie |            |
|                                  | -       |                 | Result             | 70 REC       |             |                 | Qualifie |            |
| Chloride                         | mg/L    | 5               | 4.8                |              | 95          | 90-110          |          |            |
| Fluoride                         | mg/L    | 2.5             | 2.6                |              | 104         | 90-110          |          |            |

### **REPORT OF LABORATORY ANALYSIS**



### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| LABORATORY CONTROL SA           | MPLE: 3  | 3252270          |                 |                 |                     |                     |                  |                  |            |             |     |      |
|---------------------------------|----------|------------------|-----------------|-----------------|---------------------|---------------------|------------------|------------------|------------|-------------|-----|------|
| Deveneter                       |          | l la ita         | Spike           | LC              |                     | LCS                 | % Re             |                  | Qualifiers |             |     |      |
| Parameter                       |          | Units            | Conc.           | Res             | ·                   | % Rec               | Limit            |                  | Juaimers   | _           |     |      |
| Sulfate                         |          | mg/L             |                 | 5               | 4.7                 | 9;                  | 3 9              | 90-110           |            |             |     |      |
| LABORATORY CONTROL SA           | MPLE: 3  | 3254910          |                 |                 |                     |                     |                  |                  |            |             |     |      |
| Parameter                       |          | Units            | Spike<br>Conc.  | LC<br>Res       |                     | LCS<br>% Rec        | % Re<br>Limit    |                  | Qualifiers |             |     |      |
| Chloride                        |          | mg/L             |                 | 5               | 4.8                 | 9                   | 5 9              | 90-110           |            | _           |     |      |
| Fluoride                        |          | mg/L             | 2               | .5              | 2.5                 | 100                 | 0 9              | 90-110           |            |             |     |      |
| Sulfate                         |          | mg/L             |                 | 5               | 4.9                 | 9                   | 7 9              | 90-110           |            |             |     |      |
| LABORATORY CONTROL SA           | MPLE: 3  | 3255740          |                 |                 |                     |                     |                  |                  |            |             |     |      |
|                                 |          |                  | Spike           | LC              |                     | LCS                 | % Re             |                  |            |             |     |      |
| Parameter                       |          | Units            | Conc.           | Res             | ult                 | % Rec               | Limit            | ts (             | Qualifiers | _           |     |      |
| Chloride                        |          | mg/L             |                 | 5               | 4.9                 | 98                  | 89               | 90-110           |            |             |     |      |
| Fluoride                        |          | mg/L             | 2               | .5              | 2.6                 | 103                 | 3 9              | 90-110           |            |             |     |      |
| Sulfate                         |          | mg/L             |                 | 5               | 4.9                 | 9                   | 7 9              | 90-110           |            |             |     |      |
| LABORATORY CONTROL SA           | MPLE: 3  | 3256515          |                 |                 |                     |                     |                  |                  |            |             |     |      |
|                                 |          |                  | Spike           | LC              | S                   | LCS                 | % Re             |                  |            |             |     |      |
| Parameter                       |          | Units            | Conc.           | Res             | ult                 | % Rec               | Limi             | ts (             | Qualifiers | _           |     |      |
| Chloride                        |          | mg/L             |                 | 5               | 4.8                 | 96                  | 6 9              | 90-110           |            |             |     |      |
| Fluoride                        |          | mg/L             | 2               | .5              | 2.6                 | 104                 | 4 9              | 90-110           |            |             |     |      |
| Sulfate                         |          | mg/L             |                 | 5               | 4.8                 | 90                  | 6 9              | 90-110           |            |             |     |      |
| MATRIX SPIKE & MATRIX SP        | IKE DUPL | ICATE: 3252      | 272             |                 | 3252273             |                     |                  |                  |            |             |     |      |
|                                 |          |                  | MS              | MSD             |                     |                     |                  |                  |            |             |     |      |
|                                 |          | 60413961001      | Spike           | Spike           | MS                  | MSD                 | MS               | MSD              | % Rec      |             | Max |      |
| Parameter                       | Units    | Result           | Conc.           | Conc.           | Result              | Result              | % Rec            | % Rec            | Limits     | RPD         | RPD | Qual |
| Chloride                        | mg/L     | 18.2             | 5               | 5               | 23.5                | 23.8                | 107              | 113              |            | 1           |     |      |
| Fluoride                        | mg/L     | <0.12            | 2.5             | 2.5             | 1.9                 | 2.0                 | 76               | 80               |            | 6           |     |      |
| Sulfate                         | mg/L     | 247              | 500             | 500             | 1240                | 1240                | 199              | 199              | 80-120     | 0           | 15  | M1   |
| MATRIX SPIKE & MATRIX SP        | IKE DUPL | ICATE: 3252      |                 |                 | 3252275             |                     |                  |                  |            |             |     |      |
|                                 |          |                  | MS              | MSD             |                     |                     |                  |                  |            |             |     |      |
| Parameter                       | Units    | 60415008021      | Spike           | Spike           | MS                  | MSD<br>Decult       | MS<br>% Dee      | MSD              | % Rec      | חחח         | Max | 0!   |
|                                 | 211011   | Result           | Conc.           | Conc.           | Result              | Result              | % Rec            | % Rec            | Limits     | RPD         | RPD | Qual |
|                                 |          |                  |                 |                 |                     |                     |                  |                  |            |             |     |      |
| Chloride                        | mg/L     | 686              | 500             | 500             | 1210                | 1220                | 105              | 106              |            | 0           |     |      |
| Chloride<br>Fluoride<br>Sulfate |          | 686<br>ND<br>109 | 500<br>25<br>50 | 500<br>25<br>50 | 1210<br>24.4<br>179 | 1220<br>23.9<br>171 | 105<br>98<br>138 | 106<br>96<br>124 | 80-120     | 0<br>2<br>4 | 15  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| SAMPLE DUPLICATE: 3252271           |               |                       |               |       |            |            |
|-------------------------------------|---------------|-----------------------|---------------|-------|------------|------------|
|                                     |               | 60413961001           | Dup           |       | Max        |            |
| Parameter                           | Units         | Result                | Result        | RPD   | RPD        | Qualifiers |
| Chloride                            | mg/L          | 18.2                  | 18.2          | 0     | 15         |            |
| Fluoride                            | mg/L          | <0.12                 | <0.12         |       | 15         |            |
| Sulfate                             | mg/L          | 247                   | 244           | 1     | 15         |            |
|                                     |               |                       |               |       |            |            |
| SAMPLE DUPLICATE: 3252276           |               | 60415008021           | Dup           |       | Мах        |            |
| SAMPLE DUPLICATE: 3252276 Parameter | Units         | 60415008021<br>Result | Dup<br>Result | RPD   | Max<br>RPD | Qualifiers |
| Parameter                           | Units<br>mg/L |                       | •             |       |            | Qualifiers |
|                                     |               | Result                | Result        | RPD 1 | RPD        | Qualifiers |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | AMEREN LE               |        | .1              |            |             |           |               |           |               |            |           |     |      |
|--------------------|-------------------------|--------|-----------------|------------|-------------|-----------|---------------|-----------|---------------|------------|-----------|-----|------|
| Pace Project No.:  | 60413961                |        |                 |            |             |           |               |           |               |            |           |     |      |
| QC Batch:          | 817968                  |        |                 | Anal       | ysis Metho  | d: E      | PA 300.0      |           |               |            |           |     |      |
| QC Batch Method:   | EPA 300.0               |        |                 | Anal       | ysis Descri | ption: 3  | 800.0 IC Anio | ons       |               |            |           |     |      |
|                    |                         |        |                 | Labo       | oratory:    | F         | Pace Analytic | cal Servi | ices - Kansas | s City     |           |     |      |
| Associated Lab Sar | mples: 6041             | 139560 | 024, 6041395602 | 25, 604139 | 61002, 604  | 13961003  |               |           |               |            |           |     |      |
| METHOD BLANK:      | 3253027                 |        |                 |            | Matrix: W   | /ater     |               |           |               |            |           |     |      |
| Associated Lab Sar | mples: 6041             | 139560 | 24, 6041395602  | 25, 604139 | 61002, 604  | 13961003  |               |           |               |            |           |     |      |
|                    |                         |        |                 | Bla        | nk          | Reporting |               |           |               |            |           |     |      |
| Para               | meter                   |        | Units           | Res        | sult        | Limit     | MDL           |           | Analyzed      | Qı         | ualifiers | ;   |      |
| Chloride           |                         |        | mg/L            |            | <0.53       | 1.0       | )             | 0.53      | 11/14/22 08:4 | 48         |           |     |      |
| Fluoride           |                         |        | mg/L            |            | <0.12       | 0.20      | )             |           | 11/14/22 08:4 |            |           |     |      |
| Sulfate            |                         |        | mg/L            |            | <0.55       | 1.0       | )             | 0.55      | 11/14/22 08:4 | 48         |           |     |      |
| LABORATORY CO      | NTROL SAMP              | LE:    | 3253028         |            |             |           |               |           |               |            |           |     |      |
|                    |                         |        |                 | Spike      | LC          | S         | LCS           | %         | Rec           |            |           |     |      |
| Para               | meter                   |        | Units           | Conc.      | Res         | sult      | % Rec         | Lir       | nits (        | Qualifiers |           |     |      |
| Chloride           |                         |        | mg/L            |            | 5           | 4.8       | 95            |           | 90-110        |            |           |     |      |
| Fluoride           |                         |        | mg/L            | 2          | 2.5         | 2.5       | 100           | 1         | 90-110        |            |           |     |      |
| Sulfate            |                         |        | mg/L            |            | 5           | 4.9       | 97            |           | 90-110        |            |           |     |      |
| MATRIX SPIKE & N   | MATRIX SPIKE            | E DUPL | _ICATE: 3253    | 029        |             | 3253030   |               |           |               |            |           |     |      |
|                    |                         |        |                 | MS         | MSD         |           |               |           |               |            |           |     |      |
|                    |                         |        | 60413959007     | Spike      | Spike       | MS        | MSD           | MS        | MSD           | % Rec      |           | Max |      |
| Paramete           | er                      | Units  | Result          | Conc.      | Conc.       | Result    | Result        | % Rec     | % Rec         | Limits     | RPD       | RPD | Qual |
| Chloride           |                         | mg/L   | 17.9            | 5          | 5           | 24.0      | 23.8          | 12        | 1 118         | 80-120     | 1         | 15  | E,M1 |
| Fluoride           |                         | mg/L   | <0.12           | 2.5        | 2.5         | 2.6       | 2.5           | 10        | 2 98          | 80-120     | 4         | 15  |      |
| Sulfate            |                         | mg/L   | 413             | 250        | 250         | 685       | 685           | 108       | 8 108         | 80-120     | C         | 15  |      |
| SAMPLE DUPLICA     | TE: 325303 <sup>,</sup> | 1      |                 |            |             |           |               |           |               |            |           |     |      |
|                    |                         |        |                 | 604139     | 59007       | Dup       |               |           | Max           |            |           |     |      |
| Para               | meter                   |        | Units           | Res        | sult        | Result    | RPD           |           | RPD           | Qualif     | iers      |     |      |
| Chloride           |                         |        | mg/L            |            | 17.9        | 18.0      | )             | 0         | 15            | <br>5      |           |     |      |
|                    |                         |        | mg/L            |            | <0.12       | <0.12     | 2             |           | 15            | 5          |           |     |      |
| Fluoride           |                         |        |                 |            |             |           |               |           |               |            |           |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



| QC Batch:                                                                                              | 8179                                  | 974                   |                                                                                                                            | Analy        | sis Metho               | d:                                                                                                   | EPA 300.0                                                                    |                            |                                                                                                 |                                    |           |           |              |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|------------------------------------|-----------|-----------|--------------|
| QC Batch I                                                                                             | Method: EPA                           | 300.0                 |                                                                                                                            | Analys       | sis Descri              | ption:                                                                                               | 300.0 IC Ani                                                                 | ons                        |                                                                                                 |                                    |           |           |              |
|                                                                                                        |                                       |                       |                                                                                                                            | Labor        |                         |                                                                                                      | Pace Analyti                                                                 | cal Ser                    | vices - Kansa                                                                                   | as City                            |           |           |              |
| Associated                                                                                             | d Lab Samples:                        | 6041396100            | 4, 60413961005                                                                                                             |              |                         |                                                                                                      |                                                                              |                            |                                                                                                 |                                    |           |           |              |
| METHOD                                                                                                 | BLANK: 32530                          | )37                   |                                                                                                                            | l            | Matrix: W               | ater                                                                                                 |                                                                              |                            |                                                                                                 |                                    |           |           |              |
| Associated                                                                                             | d Lab Samples:                        | 6041396100            | 4, 60413961005                                                                                                             |              |                         |                                                                                                      |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        | Parameter                             |                       | Units                                                                                                                      | Blan<br>Resu |                         | Reporting<br>Limit                                                                                   | MDL                                                                          |                            | Analyzed                                                                                        | d Qu                               | ualifiers |           |              |
| Chloride                                                                                               |                                       |                       | mg/L                                                                                                                       |              | <0.53                   | 1.                                                                                                   | <br>N                                                                        | 0.53                       | 11/14/22 15                                                                                     |                                    |           |           |              |
| Fluoride                                                                                               |                                       |                       | mg/L                                                                                                                       |              | <0.33<br><0.12          | 0.2                                                                                                  |                                                                              | 0.33                       | 11/14/22 15                                                                                     |                                    |           |           |              |
| Sulfate                                                                                                |                                       |                       | mg/L                                                                                                                       |              | <0.55                   | 1.                                                                                                   |                                                                              | 0.55                       | 11/14/22 15                                                                                     |                                    |           |           |              |
| METHOD                                                                                                 | BLANK: 32557                          | 63                    |                                                                                                                            |              | Matrix: W               | ater                                                                                                 |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        | d Lab Samples:                        |                       | 4, 60413961005                                                                                                             |              |                         |                                                                                                      |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        | •                                     |                       |                                                                                                                            | Blan         | k                       | Reporting                                                                                            |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        | Parameter                             |                       | Units                                                                                                                      | Resu         |                         | Limit                                                                                                | MDL                                                                          |                            | Analyzed                                                                                        | d Qu                               | ualifiers |           |              |
| Chloride                                                                                               |                                       |                       | mg/L                                                                                                                       |              | 0.60J                   | 1.                                                                                                   | 0                                                                            | 0.53                       | 11/15/22 08                                                                                     | 3:48                               |           |           |              |
| Fluoride                                                                                               |                                       |                       | mg/L                                                                                                                       |              | <0.12                   | 0.2                                                                                                  | 0                                                                            | 0.12                       | 11/15/22 08                                                                                     | 8:48                               |           |           |              |
| Sulfate                                                                                                |                                       |                       | mg/L                                                                                                                       |              | <0.55                   | 1.                                                                                                   | 0                                                                            | 0.55                       | 11/15/22 08                                                                                     | 3:48                               |           |           |              |
|                                                                                                        |                                       |                       | -                                                                                                                          |              |                         |                                                                                                      |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        | ORY CONTROL                           | SAMPLE: 3             | 253038                                                                                                                     |              |                         |                                                                                                      |                                                                              |                            |                                                                                                 |                                    |           |           |              |
|                                                                                                        |                                       | SAMPLE: 3             |                                                                                                                            | Spike        | LC                      |                                                                                                      | LCS<br>% Rec                                                                 |                            | Rec                                                                                             |                                    |           |           |              |
| LABORAT                                                                                                | ORY CONTROL<br>Parameter              | SAMPLE: 3             | Units                                                                                                                      | Conc.        | Res                     | sult                                                                                                 | % Rec                                                                        | L                          | imits                                                                                           | Qualifiers                         |           |           |              |
| LABORAT                                                                                                |                                       | SAMPLE: 3             | Units<br>mg/L                                                                                                              | Conc.        |                         | sult<br>4.8                                                                                          | % Rec<br>96                                                                  | L                          | imits<br>90-110                                                                                 |                                    |           |           |              |
| LABORAT<br>Chloride<br>Fluoride                                                                        |                                       | SAMPLE: 3             | Units                                                                                                                      | Conc.        | Re:<br>5<br>5           | sult                                                                                                 | % Rec                                                                        | L                          | imits                                                                                           |                                    | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate                                                            | Parameter                             |                       | Units<br>mg/L<br>mg/L<br>mg/L                                                                                              | Conc.        | Re:<br>5<br>5           | 4.8<br>2.5                                                                                           | % Rec<br>96<br>100                                                           | L                          | imits<br>90-110<br>90-110                                                                       |                                    | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate                                                            |                                       |                       | Units<br>mg/L<br>mg/L                                                                                                      | Conc.        | Re:<br>5<br>5           | 4.8<br>4.8<br>2.5<br>4.7                                                                             | % Rec<br>96<br>100                                                           | L                          | imits<br>90-110<br>90-110                                                                       |                                    | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate                                                            | Parameter                             |                       | Units<br>mg/L<br>mg/L<br>mg/L                                                                                              | Conc.        | Res                     | sult<br>4.8<br>2.5<br>4.7                                                                            | % Rec<br>96<br>100<br>94                                                     | L                          | imits<br>90-110<br>90-110<br>90-110                                                             |                                    | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO                                                | Parameter<br>ORY CONTROL              |                       | Units<br>mg/L<br>mg/L<br>mg/L<br>2255764<br>Units                                                                          | Conc.        | Res<br>5<br>5<br>LC     | sult<br>4.8<br>2.5<br>4.7                                                                            | % Rec<br>96<br>100<br>94<br>LCS                                              | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110                                                   | Qualifiers                         | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO                                                | Parameter<br>ORY CONTROL              |                       | Units<br>mg/L<br>mg/L<br>mg/L<br>2255764<br>Units<br>mg/L                                                                  | Conc.        |                         | sult<br>4.8<br>2.5<br>4.7<br>Ssult<br>4.8                                                            | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec                                     | <br>%<br>                  | imits<br>90-110<br>90-110<br>90-110<br>90-110                                                   | Qualifiers                         |           |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride                        | Parameter<br>ORY CONTROL              |                       | Units<br>mg/L<br>mg/L<br>mg/L<br>2255764<br>Units                                                                          | Conc.        |                         | 4.8<br>2.5<br>4.7<br>Ssult                                                                           | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97                               | L                          | imits<br>90-110<br>90-110<br>90-110<br>0 Rec<br>imits<br>90-110                                 | Qualifiers                         |           |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride<br>Sulfate             | Parameter<br>ORY CONTROL              | SAMPLE: 3             | Units<br>mg/L<br>mg/L<br>mg/L<br>255764<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                           | Conc.        | Res                     | sult<br>4.8<br>2.5<br>4.7<br>SS<br>sult<br>4.8<br>2.6                                                | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97<br>106<br>98                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                               | Qualifiers                         | _         |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride<br>Sulfate             | Parameter<br>ORY CONTROL<br>Parameter | SAMPLE: 3             | Units<br>mg/L<br>mg/L<br>255764<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                                           | Conc.        | Res<br>LC<br>Res<br>MSD | sult     4.8       4.7     4.7       Solut     4.8       4.8     4.8       2.6     4.9       3253040 | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97<br>106<br>98                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110                               | Qualifiers                         |           |           |              |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride<br>Sulfate             | Parameter<br>ORY CONTROL<br>Parameter | SAMPLE: 3             | Units<br>mg/L<br>mg/L<br>mg/L<br>255764<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                           | Conc.        | Res                     | sult<br>4.8<br>2.5<br>4.7<br>S<br>S<br>sult<br>4.8<br>2.6<br>4.9                                     | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97<br>106<br>98                  | L                          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110           | Qualifiers                         |           | Max       | Qual         |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride<br>Sulfate             | Parameter<br>ORY CONTROL<br>Parameter | SAMPLE: 3 SPIKE DUPLI | Units<br>mg/L<br>mg/L<br>mg/L<br>255764<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                           | Conc.        | MSD<br>Spike            | sult<br>4.8<br>2.5<br>4.7<br>3253040<br>MS                                                           | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97<br>106<br>98<br>MSD           | L<br>%<br>L<br>MS<br>% Rec | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110           | Qualifiers Qualifiers % Rec Limits |           | RPD       | Qual<br>E,M1 |
| LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>LABORATO<br>Chloride<br>Fluoride<br>Sulfate<br>MATRIX S | Parameter<br>ORY CONTROL<br>Parameter | SAMPLE: 3             | Units<br>mg/L<br>mg/L<br>mg/L<br>2255764<br>Units<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>CATE: 325303<br>60415066004<br>Result | Conc.        | MSD<br>Spike<br>Conc.   | sult<br>4.8<br>2.5<br>4.7<br>3253040<br>MS<br>Result                                                 | % Rec<br>96<br>100<br>94<br>LCS<br>% Rec<br>97<br>106<br>98<br>MSD<br>Result | MS<br>% Rec<br>1!          | imits<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110<br>90-110 | Qualifiers Qualifiers Qualifiers   |           | RPD<br>15 |              |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: AMEREN LEC LCL1

Pace Project No.: 60413961

| SAMPLE DUPLICATE: 3253041 |       |             |        |     |     |            |
|---------------------------|-------|-------------|--------|-----|-----|------------|
|                           |       | 60415066004 | Dup    |     | Max |            |
| Parameter                 | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloride                  | mg/L  |             | 264    | 1   | 15  |            |
| Fluoride                  | mg/L  | <0.12       | <0.12  |     | 15  |            |
| Sulfate                   | mg/L  | 15.7        | 15.6   | 0   | 15  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### QUALIFIERS

Project: AMEREN LEC LCL1

Pace Project No.: 60413961

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LEC LCL1 Pace Project No.: 60413961

| Lab ID      | Sample ID    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|----------|-------------------|---------------------|
| 60413956008 | L-MW-26      | EPA 200.7       | 818348   | EPA 200.7         | 818468              |
| 60413961001 | L-TMW-2      | EPA 200.7       | 818362   | EPA 200.7         | 818499              |
| 60413956024 | L-BMW-1S     | EPA 200.7       | 818348   | EPA 200.7         | 818468              |
| 60413956025 | L-BMW-2S     | EPA 200.7       | 818353   | EPA 200.7         | 818470              |
| 60413961002 | L-TMW-1      | EPA 200.7       | 818362   | EPA 200.7         | 818499              |
| 60413961003 | L-TMW-3      | EPA 200.7       | 818362   | EPA 200.7         | 818499              |
| 60413961004 | L-LCL1-DUP-1 | EPA 200.7       | 818362   | EPA 200.7         | 818499              |
| 60413961005 | L-LCL1-FB-1  | EPA 200.7       | 818362   | EPA 200.7         | 818499              |
| 60413956008 | L-MW-26      | SM 2320B        | 815835   |                   |                     |
| 60413961001 | L-TMW-2      | SM 2320B        | 816118   |                   |                     |
| 60413956024 | L-BMW-1S     | SM 2320B        | 816350   |                   |                     |
| 60413956025 | L-BMW-2S     | SM 2320B        | 816350   |                   |                     |
| 60413961002 | L-TMW-1      | SM 2320B        | 816349   |                   |                     |
| 60413961003 | L-TMW-3      | SM 2320B        | 816349   |                   |                     |
| 60413961004 | L-LCL1-DUP-1 | SM 2320B        | 816349   |                   |                     |
| 60413961005 | L-LCL1-FB-1  | SM 2320B        | 816349   |                   |                     |
| 60413956008 | L-MW-26      | SM 2540C        | 815561   |                   |                     |
| 60413961001 | L-TMW-2      | SM 2540C        | 815775   |                   |                     |
| 60413956024 | L-BMW-1S     | SM 2540C        | 816279   |                   |                     |
| 60413956025 | L-BMW-2S     | SM 2540C        | 816279   |                   |                     |
| 60413961002 | L-TMW-1      | SM 2540C        | 815993   |                   |                     |
| 60413961003 | L-TMW-3      | SM 2540C        | 815993   |                   |                     |
| 60413961004 | L-LCL1-DUP-1 | SM 2540C        | 815993   |                   |                     |
| 60413961005 | L-LCL1-FB-1  | SM 2540C        | 815993   |                   |                     |
| 60413956008 | L-MW-26      | EPA 300.0       | 817771   |                   |                     |
| 60413961001 | L-TMW-2      | EPA 300.0       | 817772   |                   |                     |
| 60413956024 | L-BMW-1S     | EPA 300.0       | 817968   |                   |                     |
| 60413956025 | L-BMW-2S     | EPA 300.0       | 817968   |                   |                     |
| 60413961002 | L-TMW-1      | EPA 300.0       | 817968   |                   |                     |
| 60413961003 | L-TMW-3      | EPA 300.0       | 817968   |                   |                     |
| 60413961004 | L-LCL1-DUP-1 | EPA 300.0       | 817974   |                   |                     |
| 60413961005 | L-LCL1-FB-1  | EPA 300.0       | 817974   |                   |                     |

|                                                                                                                                                                                                                                                                         | WO# : 1                                                                                                         | 60413961                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Pace                                                                                                                                                                                                                                                                    | DC#_Title: ENV-FRM-LENE-0009_Sample Con                                                                         |                                          |
|                                                                                                                                                                                                                                                                         | Revision: 2 Effective Date: 01/12/2022 Issue by Level                                                           | u di |
| Client Name:                                                                                                                                                                                                                                                            | SP Golden                                                                                                       |                                          |
| Courier: FedEx UPS [                                                                                                                                                                                                                                                    | U VIA Clay PEX ECI Pace Xroads C                                                                                | Client 🗆 Other 🗆                         |
| Tracking #:                                                                                                                                                                                                                                                             | Pace Shipping Label Used? Yes D                                                                                 |                                          |
| Custody Seal on Cooler/Box F                                                                                                                                                                                                                                            | ,                                                                                                               |                                          |
| -                                                                                                                                                                                                                                                                       | Wrap □ Bubble Bags □ Foam □ Nonc □ Other<br>2999 Type of Ice: Wat Blue None /                                   |                                          |
|                                                                                                                                                                                                                                                                         |                                                                                                                 | Date and initials of person              |
| Temperature should be above freez                                                                                                                                                                                                                                       |                                                                                                                 | examining contents:                      |
| Chain of Custody present:                                                                                                                                                                                                                                               |                                                                                                                 |                                          |
| Chain of Custody relinquished:                                                                                                                                                                                                                                          | AYes DNO DN/A                                                                                                   |                                          |
| Samples arrived within holding t                                                                                                                                                                                                                                        | time:                                                                                                           |                                          |
| Short Hold Time analyses (<7)                                                                                                                                                                                                                                           | 2hr):                                                                                                           |                                          |
| Rush Turn Around Time reque                                                                                                                                                                                                                                             |                                                                                                                 |                                          |
| Sufficient volume:                                                                                                                                                                                                                                                      |                                                                                                                 |                                          |
| Correct containers used:                                                                                                                                                                                                                                                | ØYes □No □N/A                                                                                                   |                                          |
| Pace containers used:                                                                                                                                                                                                                                                   |                                                                                                                 |                                          |
| Containers intact:                                                                                                                                                                                                                                                      |                                                                                                                 |                                          |
| Unpreserved 5035A / TX1005/10                                                                                                                                                                                                                                           | 006 soils frozen in 48hrs? □Yes □No                                                                             |                                          |
| Filtered volume received for diss                                                                                                                                                                                                                                       | solved tests?                                                                                                   |                                          |
| Sample labels match COC: Date                                                                                                                                                                                                                                           | e / time / ID / analyses                                                                                        |                                          |
| Samples contain multiple phases                                                                                                                                                                                                                                         | s? Matrix: M TYes The DN/A                                                                                      |                                          |
| Containers requiring pH preserva<br>(HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCI<2; NaOH>9 Sulf<br>(Exceptions: VOA, Micro, O&G, KS <sup>-1</sup><br>Cyanide water sample checks:<br>Lead acetate strip turns dark? (R<br>Potassium iodide test strip turns | TPH, OK-DRO)     LOT#:     55/91     date/time added.       Record only)     □Yes □No                           | lot #'s of preservative and the          |
| Trip Blank present:                                                                                                                                                                                                                                                     |                                                                                                                 |                                          |
| Headspace in VOA vials ( >6mm                                                                                                                                                                                                                                           |                                                                                                                 |                                          |
| Samples from USDA Regulated A                                                                                                                                                                                                                                           |                                                                                                                 |                                          |
| Additional labels attached to 503                                                                                                                                                                                                                                       | 5A / TX1005 vials in the field? □Yes □No ☑N/A                                                                   |                                          |
| Client Notification/ Resolution:                                                                                                                                                                                                                                        | formal second | Y / N                                    |
| Person Contacted:<br>Comments/ Resolution:                                                                                                                                                                                                                              | Date/Time:                                                                                                      |                                          |
| Project Manager Review:                                                                                                                                                                                                                                                 | Date:                                                                                                           |                                          |

Pace Analytical

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

| Section A<br>Required C | lien                                                             |                                                                        | Section B<br>Required Project Information: | roject li         | Informatic     | :uq                           |          |                              |                            | os ⊑           | Section C<br>Invoice Information: | o<br>ormation:                                      |               |                                                                    |               |                         |                   |                                   |           | Pa                                       | Page: 1        | o                  | -                                      |
|-------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|-------------------|----------------|-------------------------------|----------|------------------------------|----------------------------|----------------|-----------------------------------|-----------------------------------------------------|---------------|--------------------------------------------------------------------|---------------|-------------------------|-------------------|-----------------------------------|-----------|------------------------------------------|----------------|--------------------|----------------------------------------|
| Company:                | WSP Golder                                                       |                                                                        | Report To: Jeffrey Ingram                  | Jeffre            | ey Ingra       | am                            |          |                              |                            | At             | Attention:                        |                                                     |               |                                                                    |               |                         | Γ                 |                                   |           | l                                        | -              |                    |                                        |
| Address:                | 701 Emerson Road, Suite 250                                      |                                                                        | Copy To:                                   | Eric (            | Eric Schnieder | der                           |          |                              |                            | ŏ              | Company Name:                     |                                                     | WSP Golder    | older                                                              |               |                         | 1 H               | REGULATORY AGENCY                 | RY AGE    | ΥCY                                      |                | -                  | 1.4.1.1                                |
|                         | Creve Coeur, Missouri, 63141                                     | Aissouri, 63141                                                        |                                            |                   |                |                               |          |                              |                            | Ac             | Address:                          |                                                     |               |                                                                    |               |                         |                   | NPDES                             | D.        | GROUND WATER                             | ATER           | DRIN               | DRINKING WATER                         |
| Email To:               | jeffrey ingram@golder.com                                        | 2golder.com                                                            | Purchase Order No.:                        | Irder No          |                | COC #4                        |          |                              |                            | Pa<br>Re       | Pace Quote<br>Reference           |                                                     |               |                                                                    |               |                         | L                 | - UST                             | Ĺ         | RA                                       |                | OTHER              |                                        |
| Phone: 6;               | 636-724-9191 F                                                   | Fax: 636-724-9323                                                      | Project Name:                              |                   | Amerer         | n Labad                       | ie Ener  | Ameren Labadie Energy Center | LCL1                       | Pa             | Pace Project<br>Manager           |                                                     | Jamie Church  | LCH LCH                                                            |               |                         | S                 | Site Location                     | E         |                                          | all line       |                    | the second                             |
| Requested               | Requested Due Date/TAT: S                                        | Standard                                                               | Project Number.                            |                   | 153140         | 153140604.0001                | 01       |                              |                            | Pa             | Pace Profile #:                   |                                                     | 9285, line 3  | _                                                                  |               |                         | Γ                 | STATE:                            | <br>      | QM                                       |                |                    |                                        |
|                         |                                                                  |                                                                        |                                            |                   |                |                               |          |                              |                            | 1              |                                   |                                                     |               |                                                                    |               | Reque                   | sted An           | Requested Analysis Filtered (Y.N) | ered (Y.N | (                                        | 1000 1000 1000 | 1.6 . 1.0          | 14.114 100 100                         |
| N R                     | Section D<br>Required Client Information                         | Valid Matrix Codes<br>MATRIX COL                                       | odes<br>coDE                               | (J) 9   0;        | (awo           |                               | COLLE    | COLLECTED                    |                            |                |                                   | Pres                                                | Preservatives | Sé                                                                 | <b>1</b> N /A |                         | z                 |                                   |           |                                          |                |                    |                                        |
|                         |                                                                  | DRINKING WATER<br>WATER<br>WASTE WATER<br>PRODUCT<br>SOIL/SOLID<br>OIL | NM 4 Sol                                   | t seboo bilev ees | оскав с=сс     | COMPOSITE<br>START            | 관        | COMPOSITE<br>END/GRAB        | SITE<br>RAB                |                | <u> </u>                          |                                                     |               | -                                                                  |               | alstaM n/               |                   |                                   |           |                                          | (N/A) ;        | Charles and Second |                                        |
| #Wati                   | SAMPLE ID<br>(A-Z, 0-9 /)<br>Sample IDS MUST BE UNIQUE           |                                                                        | AR<br>TO<br>TS                             | MATRIX CODE (3    |                | DATE                          | HMF      | DATE                         |                            | * OF CONTAINER | Unpreserved<br># OF CONTAINER:    | <sup>€</sup> ONH<br><sup>\$</sup> OS <sup>7</sup> H | NgOH<br>HCI   | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Methanol<br>Other | test sisylsnA | App III and Cat/        | LDS<br>Alkalinity |                                   |           |                                          |                | DOUL 396           | 20413961<br>Pace Project No. 1 ap 1.10 |
| -                       |                                                                  | L-MW-26                                                                |                                            | ħ                 | U              |                               | 1        | ac-peg                       | 0                          | Ì              |                                   | -                                                   |               |                                                                    |               | 2                       |                   |                                   |           | F                                        |                |                    |                                        |
| 2                       |                                                                  | L-TMW-1                                                                |                                            | ŢW                | U              |                               |          |                              |                            | -              |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 3                       |                                                                  | L-TMW-2                                                                |                                            | TW.               | U              |                               |          | 10 - 25 m                    | 038                        | 20             | -                                 | -                                                   |               |                                                                    |               | 2                       | 7                 |                                   |           | -                                        | 381            | Pzu                | ZBPW                                   |
| 4                       |                                                                  | L-TMW-3                                                                |                                            | TW                | U              |                               |          |                              |                            |                |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 5                       |                                                                  | L-BMW-1S                                                               |                                            | WT                | U              |                               |          |                              |                            |                |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 9                       |                                                                  | L-BMW-2S                                                               |                                            | M                 | U              | /                             |          |                              |                            |                |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 7                       | Ļ                                                                | L-UWL-DUP-1                                                            |                                            | WT                | U              | /                             |          |                              |                            |                |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 80                      | _                                                                | L-UWL-FB-1                                                             |                                            | ΨT                | υ              |                               |          |                              |                            |                |                                   |                                                     |               |                                                                    |               |                         |                   |                                   |           |                                          | 1              |                    |                                        |
| თ                       | -                                                                | L-UWL-MS-1                                                             |                                            | ŢŴ                | U              |                               |          | いったっこ                        | 63.6                       | 4              | -                                 |                                                     |               | _                                                                  | _             | 5                       | 1                 |                                   |           |                                          | Coll           | 21 1-000           | e-mun-                                 |
| 10                      | Ľ                                                                | L-UWL-MSD-1                                                            |                                            | Ţ                 | 0              |                               |          | 2551-11                      | 1038                       | 2              | -                                 | -                                                   |               |                                                                    |               | 2                       | Ź                 |                                   |           |                                          | 1107           | re He O            | U-TMIJ-2                               |
| 11                      |                                                                  |                                                                        |                                            | Ţ                 | 0              |                               |          |                              |                            |                |                                   |                                                     |               | _                                                                  |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| 12                      |                                                                  |                                                                        |                                            | WT                | G              |                               |          |                              |                            |                |                                   |                                                     |               | 4                                                                  |               |                         |                   |                                   |           |                                          |                |                    |                                        |
|                         | ADDITIONAL COMMENTS                                              | COMMENTS                                                               | 4                                          | RELIN             | HSING          | RELINGUISHED BY / AFFILIATION | FFILIATI | NO                           | DATE                       |                | TIME                              |                                                     | al            | <b>OCEPTE</b>                                                      | ED BY /       | CEPTED BY / AFFILIATION | NO                | DATE                              | TIME      |                                          | 1S             | SAMPLE CONDITIONS  | DITIONS                                |
| *App ill and            | App III and Cat/An Metals* - EPA 200.7: Fe, Mg, Mn, K, Na, Ca, B | 7: Fe, Mg, Mn, K, Na, Ca, B                                            | 25                                         | 200               | 111            | the                           | 120 30   | 2                            | 66.500                     |                | 124                               | m                                                   | Ø.            | 3                                                                  | In            | H52                     |                   | n/a/                              | 15207     | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                | XX                 | XX                                     |
| P                       | 2                                                                |                                                                        |                                            |                   |                |                               |          | 1                            | 2                          | -              |                                   | -                                                   | 5             |                                                                    |               |                         |                   |                                   |           |                                          |                |                    |                                        |
| age 3                   |                                                                  |                                                                        |                                            |                   |                |                               | SAMPLE   | R NAME                       | SAMPLER NAME AND SIGNATURE | ATURE          |                                   |                                                     | 1             |                                                                    |               |                         |                   |                                   |           | р. ч                                     | uo pa          | belse2             | JoeJul                                 |
| 87 of 3                 |                                                                  | 2                                                                      |                                            |                   |                |                               |          | PRINT Nar                    | PRINT Name of SAMPLER:     | E EK:          | 200                               | 12t                                                 | 20            | 10                                                                 | as -          | DATE Si                 | gned 1            | シント                               | 0         | Lemp II                                  | evisce!<br>(Y) | ) ooler (          | səlqmı                                 |
| 39                      |                                                                  |                                                                        |                                            |                   |                |                               |          | SIGNALU                      |                            | Ī              | had                               | 1                                                   | X             |                                                                    |               | (YYYDD/WW)              | :(22)             | COID                              | 120       | -                                        | -              | ng                 |                                        |

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

|                                                                                                                                                                               |                                                |                                    | WO#:60413961                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|
| Pace                                                                                                                                                                          | DC#_Title: ENV-                                | FRM-LENE-0009_Sample C             | 60413961                                                                    |
| ANALYTICAL SERVICES                                                                                                                                                           | Revision: 2                                    | Effective Date: 01/12/2022         | Issued By: Lenexa                                                           |
| Client Name:                                                                                                                                                                  | sf Golder                                      |                                    |                                                                             |
| Courier: FedEx D UPS                                                                                                                                                          | □ VIA □ Clay                                   |                                    | e 🗆 Xroads 🗅 Client 🗆 Other 🗆                                               |
| Fracking #:                                                                                                                                                                   |                                                | Pace Shipping Label Used? Y        | ∕es □ No □                                                                  |
| Custody Seal on Cooler/Box F                                                                                                                                                  |                                                |                                    |                                                                             |
| •                                                                                                                                                                             |                                                | °                                  | None 🗆 Other 🗆                                                              |
|                                                                                                                                                                               | ·/                                             |                                    | 2. JI-U Date and initials of person                                         |
| Cooler Temperature (°C): A                                                                                                                                                    |                                                | r. Factor <u>0 ° 0</u> Corrected _ | examining contents:<br>$\mathcal{D}\mathcal{U}[0]\mathcal{D}\mathcal{B}/22$ |
| Chain of Custody present:                                                                                                                                                     |                                                |                                    | P 10128100                                                                  |
| Chain of Custody relinquished:                                                                                                                                                |                                                |                                    |                                                                             |
|                                                                                                                                                                               |                                                | 11                                 |                                                                             |
| Samples arrived within holding t                                                                                                                                              |                                                |                                    |                                                                             |
| Short Hold Time analyses (<72                                                                                                                                                 |                                                |                                    |                                                                             |
| Rush Turn Around Time reque                                                                                                                                                   | ested:                                         |                                    |                                                                             |
| Sufficient volume:                                                                                                                                                            |                                                |                                    |                                                                             |
| Correct containers used:                                                                                                                                                      |                                                |                                    |                                                                             |
| ace containers used:                                                                                                                                                          |                                                | Ves DNo DN/A                       |                                                                             |
| Containers intact:                                                                                                                                                            |                                                | Yes No N/A                         |                                                                             |
| Inpreserved 5035A / TX1005/10                                                                                                                                                 | 006 soils frozen in 48h                        | S? Yes No N/A                      |                                                                             |
| iltered volume received for diss                                                                                                                                              | solved tests?                                  |                                    |                                                                             |
| ample labels match COC: Date                                                                                                                                                  | e / time / ID / analyses                       |                                    |                                                                             |
| amples contain multiple phases                                                                                                                                                |                                                | T DYes INO DN/A                    |                                                                             |
| Containers requiring pH preserva<br>HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCI<2; NaOH>9 Sulf<br>Exceptions: VOA, Micro, O&G, KS<br>Cyanide water sample checks: | ation in compliance?<br>fide, NaOH>10 Cyanide) | Mes □No □N/A Lists                 | ample IDs, volumes, lot #'s of preservative and the time added.             |
| ead acetate strip turns dark? (R                                                                                                                                              | Record only)                                   | □Yes □No                           |                                                                             |
| otassium iodide test strip turns                                                                                                                                              |                                                | e) □Yes □No                        |                                                                             |
| rip Blank present:                                                                                                                                                            |                                                |                                    |                                                                             |
| eadspace in VOA vials ( >6mm                                                                                                                                                  | ):                                             | UYes UNO ZN/A                      |                                                                             |
| amples from USDA Regulated                                                                                                                                                    | Area: State:                                   | □Yes □No ØN/A                      |                                                                             |
| dditional labels attached to 503                                                                                                                                              |                                                | e field? □Yes □No ØN/A             |                                                                             |
| lient Notification/ Resolution:<br>erson Contacted:                                                                                                                           | : Сору                                         |                                    | Field Data Required? Y / N                                                  |
| omments/ Resolution:                                                                                                                                                          |                                                |                                    |                                                                             |

|   | 1     |
|---|-------|
|   | vrica |
|   | Anal  |
| 0 | ace   |
| 6 | g     |
|   | 1     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

| Company:<br>Address: | Required Client Information:                                                         | Section B<br>Required Project Information: | oject Info | ormation:          |                    |                              |                       |                 | Section C<br>Invoice Infor    | Section C<br>Invoice Information: |                                                              |                          |                                        |                                     |                                   |             | Page:              | <u>.</u>         | of 1                      |                |
|----------------------|--------------------------------------------------------------------------------------|--------------------------------------------|------------|--------------------|--------------------|------------------------------|-----------------------|-----------------|-------------------------------|-----------------------------------|--------------------------------------------------------------|--------------------------|----------------------------------------|-------------------------------------|-----------------------------------|-------------|--------------------|------------------|---------------------------|----------------|
| Address;             | WSP Golder                                                                           | Report To: Jeffrey Ingram                  | leffrey    | Ingram             |                    |                              |                       |                 | Attention:                    |                                   |                                                              |                          |                                        |                                     |                                   |             |                    |                  |                           |                |
|                      | 701 Emerson Road, Suite 250                                                          | Copy To: E                                 | Eric Sch   | Eric Schnieder     |                    |                              |                       |                 | Company Name:                 |                                   | WSP Golder                                                   | lder                     |                                        |                                     | REGULATORY AGENCY                 | ORY AGE     | NCY                |                  |                           | î,             |
|                      | Creve Coeur, Missouri, 63141                                                         |                                            |            |                    |                    |                              |                       |                 | Address:                      |                                   |                                                              |                          |                                        |                                     | T NPDES                           | Þ           | GROUND WATER       | TER L            | DRINKING WATER            | VATER          |
| Email To;            | jeffrey ingram@golder.com                                                            | Purchase Order No.:                        | der No.:   | COC #4             | #4                 |                              |                       |                 | Pace Quote<br>Reference:      | 0                                 |                                                              |                          |                                        |                                     | r UST                             | L<br>RC     | RCRA               | L                | OTHER                     |                |
| Phone: 6             | 636-724-9191 Fax: 636-724-9323                                                       | Project Name:                              | I .        | neren La           | abadie E           | Ameren Labadie Energy Center |                       | CL1             | Pace Project<br>Manager:      |                                   | Jamie Church                                                 | <u>ج</u>                 |                                        |                                     | Site Location                     | ion         |                    |                  |                           | Sum            |
| Requested            | Requested Due Date/TAT: Standard                                                     | Project Number: 153140604, 0001            | er: 15;    | 3140604            | 4, 0001            |                              |                       |                 | Pace Profile #:               |                                   | 9285, line 3                                                 |                          |                                        |                                     | STATE:                            | ļ<br>j      |                    |                  |                           |                |
|                      |                                                                                      |                                            |            |                    |                    |                              |                       |                 |                               |                                   |                                                              |                          |                                        | equested /                          | Requested Analysis Filtered (Y/N) | Itered (Y/I | · · ·              | Suffer in        | a state                   | a subst        |
| S R                  | Section D Valid Matrix Codes<br>Required Client Information COU                      | odes<br>code                               |            |                    | ŏ                  | COLLECTED                    | n.                    |                 |                               | Pres                              | Preservatives                                                |                          | Z<br>↑N/A                              | z<br>z<br>z                         |                                   |             |                    |                  |                           |                |
|                      | DRINKING WATER<br>WATER<br>WASTE WATER<br>WASTE WATER<br>PRODUCT<br>SOILSOLID<br>OIL | D R W                                      | =GRAB C=C( |                    | COMPOSITE<br>START |                              | COMPOSITE<br>END/GRAB |                 | S                             |                                   |                                                              |                          |                                        | alst∋M nA                           |                                   |             |                    | (61/1) 2         |                           |                |
| # MƏT                | SAMPLE ID<br>(A-Z, 0-9 /)<br>Sample IDS MUST BE UNIQUE                               |                                            |            |                    |                    | <u> </u>                     |                       | AMPLE TEMP AT C | Inpreserved<br>• OF CONTAINER | <sup>€</sup> ON⊦<br>†os²ł         | 19 <sup>5</sup> 2 <sup>5</sup> 0 <sup>3</sup><br>190H<br>HCI | )ther<br>Methanol        | <b>Analysis Tes</b> i<br>Analysis Tesi | pp III and Cat/<br>الاهاinity<br>DS |                                   |             | Pind Inihiad       |                  | 00411396                  | (              |
|                      | L-MW-26                                                                              |                                            |            |                    |                    |                              | DAIE                  | 1 IIVIE         | -                             | 4                                 | 1                                                            | )<br>V                   | _                                      | V                                   |                                   | +           |                    |                  | Face Froject No. Lau I.D. |                |
| 5                    | L-TMW-1                                                                              |                                            |            |                    |                    | 10-                          | 01/22-02-01           | 617             | 100                           | 2                                 |                                                              |                          | 12                                     | 22                                  |                                   |             |                    | RBN              | N BPIG                    | 10             |
| 3                    | L-TMW-2                                                                              | _                                          | WT G       | 15                 |                    |                              |                       |                 |                               |                                   |                                                              |                          |                                        | _                                   | -                                 |             |                    |                  |                           |                |
| 4                    | L-TMW-3                                                                              | -                                          | MT         |                    |                    | 3                            | 5-1 02-92-01          | 1338            | 3                             | ~                                 | _                                                            |                          | 2                                      | 27                                  |                                   |             |                    | 2                | ~                         |                |
| 5                    | L-BMW-1S                                                                             | _                                          | WT G       | 10                 |                    | 6-9                          | 0-77-20 10            | 1036            | ース                            | -                                 | _                                                            |                          | 2                                      | 27                                  |                                   |             |                    |                  |                           |                |
| 6                    | L-BMW-2S                                                                             | _                                          | WT G       | (7)                |                    | -1                           |                       | 1135            | <br>(6                        |                                   |                                                              |                          | 7                                      | 7<br>7<br>7                         |                                   |             |                    |                  |                           |                |
| 7                    |                                                                                      | 1-206-1                                    | WT G       | (5                 |                    | 10%                          | - 76-92-0             | 1               | 5                             | -                                 |                                                              |                          | 1                                      | っつ                                  |                                   |             | -                  | _                |                           |                |
| 8                    | 1-101-1-101                                                                          | -FB-1                                      | WT G       | -                  |                    | 10-                          | 2 ( 22-01-01          | 127             | 3                             |                                   |                                                              |                          | 2                                      | 22                                  |                                   |             |                    | -                | -+                        |                |
| σ                    | L-UWL-MS-1                                                                           | _                                          | D<br>TV    | -                  |                    |                              |                       |                 |                               |                                   |                                                              |                          |                                        |                                     |                                   | _           |                    |                  |                           |                |
| 10                   | L-UWL-MSD-1                                                                          | _                                          | MT<br>D    |                    | +                  | _                            |                       | _               |                               |                                   |                                                              |                          |                                        |                                     |                                   |             |                    |                  |                           |                |
| ÷                    |                                                                                      |                                            | _          |                    | -                  |                              |                       |                 |                               |                                   | _                                                            |                          |                                        |                                     |                                   |             |                    |                  |                           |                |
| 12                   | ADDITIONAL COMMENTS                                                                  |                                            | WT G       | WT G R AFFILIATION | 3Y / AFFIL         | IATION                       | +                     | DATE            | TIME                          | 1                                 |                                                              | CCEPTED BY / AFFILIATION | BY / AFE                               |                                     | DATE                              | TIME        |                    | SAME             | SAMPLE CONDITIONS         | ş              |
| App III and          | -App III and Cat/An Metals' - EPA 200,7: Fe, Mg, Mn, K, Na, Ca, B                    | Raybon                                     |            | Sphin              |                    | lusp                         | 2/                    | telfz/01        | 3:42                          |                                   | Q'                                                           | m                        | A.                                     | , u                                 | del                               | 26 0343     | 1.2 2.4<br>1.2 2.4 | *                | XX                        |                |
|                      |                                                                                      |                                            |            |                    |                    |                              |                       |                 |                               |                                   |                                                              |                          |                                        |                                     |                                   |             | -                  |                  |                           |                |
| P                    |                                                                                      |                                            |            |                    |                    |                              | _                     |                 |                               | _                                 |                                                              |                          |                                        |                                     |                                   | _           | _                  |                  | I                         |                |
| age                  |                                                                                      |                                            |            |                    | SAI                | SAMPLER NAME AI              | AME AND               | ND SIGNATURE    |                               | -                                 | 1                                                            | 0                        |                                        |                                     |                                   |             | 0. u               | (N/.<br>uo pe    | Sealec<br>(V/Y)           | i Jntact<br>1) |
| 39 o                 |                                                                                      |                                            |            |                    | _[                 | PRIN                         | PRINT Name of         | of SAMPLER:     | Coran                         | in the                            | 2                                                            | 010                      | ď                                      | DATE Slaned                         | 1/ 1/2                            | 1.1.        | dwə_               | eceive<br>Y) eol |                           | selqm<br>1\Y)  |

F-ALL-Q-020rev.08, 12-Oct-2007

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.



### MEMORANDUM

Project No. 153140604.0001

DATE January 10, 2023

TO Project File WSP USA Inc.

- CC Amanda Derhake, Jeff Ingram
- **FROM** Rahel Pommerenke

EMAIL rahel.pommerenke@wsp.com

# DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING – DATA PACKAGE 60413961

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).
- When matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J, J+ for estimates biased high, and J- for estimates biased low).

### **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Company Name: WSP USA Inc.                                                                                                                                                                                                   | Project Manager: <u>J. Ingram</u>                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Project Name: Ameren LEC - LCL1                                                                                                                                                                                              | Project Number: 153140604                                                                                                      |  |
| Reviewer: R.Pommerenke                                                                                                                                                                                                       | Validation Date: 1/10/2023                                                                                                     |  |
| Laboratory: <u>Pace Analytical Services</u><br>Analytical Method (type and no.): <u>EPA 200.7/200.8 (Total Metals</u><br>Matrix: Air Soil/Sed. Water Waste Sample Names <u>L-TMW-2, L-TMW-1, L-TMW-3, L-LCL1-DUP-1, L-LC</u> | SDG #: <u>60413961</u><br>s); SM2320B (Alkalinity); SM2540C (TDS); EPA 300.0 (Anions)<br>CL1-FB-1, L-MW-26, L-BMW-1S, L-BMW-2S |  |

### NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

| Field In | nformation                                           | YES      | NO          | NA              | COMMENTS                         |
|----------|------------------------------------------------------|----------|-------------|-----------------|----------------------------------|
| a)       | Sampling dates noted?                                | x        |             |                 | 10/25/2022 - 10/27/2022          |
| b)       | Sampling team indicated?                             | x        |             |                 | GTM/PCS/SMA                      |
| c)       | Sample location noted?                               | X        |             |                 |                                  |
| d)       | Sample depth indicated (Soils)?                      |          |             | X               |                                  |
| e)       | Sample type indicated (grab/composite)?              | x        |             |                 | Grab                             |
| f)       | Field QC noted?                                      | x        |             |                 | See notes.                       |
| g)       | Field parameters collected (note types)?             | x        |             |                 | pH, Sp.Cond, ORP, Temp, DO, Turb |
| h)       | Field Calibration within control limits?             |          | x           |                 | See notes.                       |
| i)       | Notations of unacceptable field conditions/performa  | nces fro | om field lo | ogs or field no | ites?                            |
|          |                                                      |          | x           |                 |                                  |
| j)       | Does the laboratory narrative indicate deficiencies? |          |             | X               |                                  |
|          | Note Deficiencies:                                   |          |             |                 |                                  |
|          |                                                      |          |             |                 |                                  |
|          |                                                      |          |             |                 |                                  |
|          |                                                      |          |             |                 |                                  |
| Chain-   | of-Custody (COC)                                     | YES      | NO          | NA              | COMMENTS                         |
| a)       | Was the COC properly completed?                      | X        |             |                 |                                  |
| b)       | Was the COC signed by both field                     |          |             | _               |                                  |
|          | and laboratory personnel?                            | х        |             |                 |                                  |
| c)       | Were samples received in good condition?             | х        |             |                 |                                  |
| -        |                                                      |          |             |                 |                                  |
| Genera   | al (reference QAPP or Method)                        | YES      | NO          | NA              | COMMENTS                         |
| a)       | Were hold times met for sample pretreatment?         | х        |             |                 |                                  |
| b)       | Were hold times met for sample analysis?             | X        |             |                 |                                  |
| c)       | Were the correct preservatives used?                 | х        |             |                 |                                  |
| d)       | Was the correct method used?                         | х        |             |                 |                                  |
| e)       | Were appropriate reporting limits achieved?          | X        |             |                 |                                  |
| f)       |                                                      |          |             |                 |                                  |
| f)       | Were any sample dilutions noted?                     | ×        |             |                 | See notes.                       |

### **QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST**

| Blanks  |                                                                                           | YES       | NO        | NA     | COMMENTS               |
|---------|-------------------------------------------------------------------------------------------|-----------|-----------|--------|------------------------|
| a)      | Were analytes detected in the method blank(s)?                                            | X         |           |        | See notes.             |
| b)      | Were analytes detected in the field blank(s)?                                             | х         |           |        | See notes.             |
| c)      | Were analytes detected in the equipment blank(s)?                                         |           |           | х      |                        |
| d)      | Were analytes detected in the trip blank(s)?                                              |           |           | X      |                        |
| Labora  | tory Control Sample (LCS)                                                                 | YES       | NO        | NA     | COMMENTS               |
| a)      | Was a LCS analyzed once per SDG?                                                          | X         |           |        |                        |
| b)      | Were the proper analytes included in the LCS?                                             | X         |           |        |                        |
| c)      | Was the LCS accuracy criteria met?                                                        | x         |           |        |                        |
| Duplica | ites                                                                                      | YES       | NO        | NA     | COMMENTS               |
| a)      | Were field duplicates collected (note original and du                                     | ıplicate  | sample n  | ames)? |                        |
|         |                                                                                           | X         |           |        | L-LCL1-DUP-1 @ L-TMW-3 |
| b)      | Were field dup. precision criteria met (note RPD)?                                        |           | x         |        | See notes.             |
| c)      | Were lab duplicates analyzed (note original and dup                                       | olicate s | samples)? | )      |                        |
|         |                                                                                           | х         |           |        |                        |
| d)      | Were lab dup. precision criteria met (note RPD)?                                          |           | X         |        | See notes.             |
| Blind S | tandards                                                                                  | YES       | NO        | NA     | COMMENTS               |
| a)      | Was a blind standard used (indicate name,                                                 |           |           | ×      |                        |
|         | analytes included and concentrations)?                                                    |           |           |        |                        |
| b)      | Was the %D within control limits?                                                         |           |           | ×      |                        |
| Matrix  | Spike/Matrix Spike Duplicate (MS/MSD)                                                     | YES       | NO        | NA     | COMMENTS               |
| a)      | Was MS accuracy criteria met?                                                             |           | x         |        | See notes.             |
|         | Recovery could not be calculated since sample<br>contained high concentration of analyte? |           |           | X      |                        |
| b)      | Was MSD accuracy criteria met?                                                            |           | х         |        | See notes.             |
|         | Recovery could not be calculated since sample<br>contained high concentration of analyte? |           |           | X      |                        |
| c)      | Were MS/MSD precision criteria met?                                                       |           |           |        | RPD Max (6%) < 15%     |

### Comments/Notes:

Dilutions:

Sulfate analyzed at a dilution. No qualification necessary.

### Blanks:

MB3254663: Calcium (57.2J), Manganese (0.71J). Associated with samples -008 and -024. Results > 10x blank result and > RL: no qualification necessary.

MB3254702: Iron (19.1J), Manganese (0.76J). Associated with sample -025. Results < RL, reported as ND at RL.

### **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

### Comments/Notes:

| MB3254745: Manganese (0.48J), Potassium (171J). Associated with samples -001 through -005.            |
|-------------------------------------------------------------------------------------------------------|
| Results > 10 x blank result and > RL: no qualification necessary. Results < RL. reported as ND at RL. |

MB3244507: Alkalinity (4.8J). Associated with sample -008. Results > 10 x blank result and > RL: no qualification necessary.

MB3252261: Chloride (0.59J). Associated with samples -008. Results > 10 x blank result and > RL: no qualification necessary.

MB3255739: Chloride (0.57J). Associated with sample -001. Results > 10 x blank result and > RL: no qualification necessary.

MB3256514: Chloride (0.60J). Associated with sample -001. Results > 10 x blank result and > RL: no qualification necessary.

MB3255763: Chloride (0.60J). Associated with samples -004 and -005. Results < 10x blank result and > RL, qualified as estimate. Results < RL, reported as ND at RL.

L-LCL1-FB-1 @ L-TMW-1: Calcium (52.1J), Manganese (0.35J), Potassium (139J), Alkalinity (4.7J), Total Dissolved Solids (7.0), Chloride (0.62J). Results < 10x blank but > RL: qualified as estimate.

### Duplicates:

L-LCL1-DUP-1 @ L-TMW-3: Fluoride detected in DUP sample but not in parent sample.

Sample Duplicate 3246754: Alkalinity detected in parent sample but not in duplicate. Performed on unrelated sample: no qualification necessary.

Sample Duplicate 3245282: Total Dissolved Solids detected in parent sample but not in duplicate. Performed on unrelated sample: no qualification necessary.

### MS/MSD:

3254665/3254666: MS % recovery high for Calcium. Associated with L-MW-26. Only one QC indicator out of control limits: no qualification necessary.

3254706: MS % recovery low (<10%) for Boron, Calcium, Magnesium, and Sodium. MS % recovery low for Iron. MS % recovery high for Potassium. Performed on unrelated sample: no qualification necessary.

3254747/3254748: MS/MSD % recovery low for Calcium. Associated with sample L-TMW-2.

3252263/3252264: MS/MSD % recovery high for Chloride and Fluoride. Associated with sample L-MW-26.

3252266/3252267: MS/MSD % recovery high for Fluoride. Performed on unrelated sample: no qualification necessary.

3252272/3252273: MS % recovery low for Fluoride. Only one QC indicator out of control limits for Fluoride:

no qualification necessary. MS/MSD % recovery high for Sulfate. Associated with sample L-TMW-2.

3252274/3252275: MS/MSD % recovery high for Sulfate. Performed on unrelated sample: no qualification necessary.

3253029/3253030: MS % recovery high for Chloride. Performed on unrelated sample: no qualification necessary.

3253039/3253040: MS/MSD % recovery high for Chloride and Sulfate. Performed on unrelated sample: no qualification necessary.

### **QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST**

### Data Qualification:

| Sample Name  | Constituent(s) | Result        | Qualifier | Reason                                      |
|--------------|----------------|---------------|-----------|---------------------------------------------|
| L-BMW-2S     | Iron           | 50.0          | U         | Detected in MB, Result < RL                 |
| "            | Manganese      | 5.0           | U         | n                                           |
| L-LCL1-DUP-1 | Chloride       | 3.2           | J         | Detected in MB, 10x blank > Result > RL     |
| "            | Fluoride       | 0.13          | J         | Detected in DUP, not in parent sample       |
| L-LCL1-FB-1  | Chloride       | 1.0           | U         | Detected in MB, Result < RL                 |
| "            | Manganese      | 5.0           | U         | n                                           |
| "            | Potassium      | 500           | U         | n                                           |
| L-MW-26      | Chloride       | 10.3          | J+        | MS/MSD % recovery outside of control limits |
| L-TMW-1      | Chloride       | 3.2           | J         | Detected in FB, 10x blank > Result > RL     |
| L-TMW-2      | Calcium        | 246000        | J-        | MS/MSD % recovery outside control limits    |
| "            | Sulfate        | 247           | J+        | n                                           |
| L-TMW-3      | Fluoride       | 0.20          | UJ        | Detected in DUP, not in parent sample       |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                | $\overline{}$ |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               |           |                                             |
|              |                |               | <u> </u>  |                                             |

### APPENDIX B

# Alternative Source Demonstration -November 2021 Sampling Event

# SOLDER

### REPORT

## LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

### Ameren Missouri

1901 Chouteau Avenue, St. Louis, MO 63103

Submitted by:

### Golder Associates USA, Inc.

701 Emerson Road, Suite 250, Creve Coeur, Missouri, USA, 63141

+1 314 984-8800

153140604

June 24, 2022

## **Table of Contents**

| 1.0 | INTRODUCTION                            |                                                      |    |  |  |
|-----|-----------------------------------------|------------------------------------------------------|----|--|--|
| 2.0 | SITE                                    | E DESCRIPTION AND BACKGROUND                         |    |  |  |
|     | 2.1                                     | Geological and Hydrogeological Setting               | .1 |  |  |
|     | 2.2                                     | Utility Waste Landfill Cell 1 – LCL1                 | .1 |  |  |
|     | 2.3                                     | CCR Rule Groundwater Monitoring                      | .2 |  |  |
| 3.0 | REVIE                                   | EW OF THE STATISTICALLY SIGNIFICANT INCREASES        | .4 |  |  |
| 4.0 | EVIDENCE OF SSI FROM ALTERNATIVE SOURCE |                                                      |    |  |  |
|     | 4.1                                     | CCR Indicators                                       | .4 |  |  |
|     | 4.2                                     | Analysis of Key CCR Constituents at TMW-2            | .5 |  |  |
|     | 4.2.1                                   | Boron Concentrations                                 | .5 |  |  |
|     | 4.3                                     | Evaluation of SSIs at TMW-2                          | .5 |  |  |
|     | 4.4                                     | Nearby Carbonate Gravel Roadways as Potential Source | .6 |  |  |
| 5.0 | DEMC                                    | ONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT    | .7 |  |  |
| 6.0 | REFERENCES                              |                                                      |    |  |  |

### TABLES

- Table 1 November 2021 Detection Monitoring Results
- Table 2 Types of CCR and Typical Indicator Parameters (In Text)
- Table 3 Comparison of TMW-2 SSIs and Pore-water Concentrations (In Text)

### FIGURES

- Figure 1 Labadie Energy Center Groundwater Monitoring Programs and Monitoring Well Location Map
- Figure 2 Timeseries Plot of Boron Concentrations at TMW-2 and Background Monitoring Wells
- Figure 3 Timeseries Plot of Calcium Concentrations at TMW-2 and Background Monitoring Wells
- Figure 4 Timeseries Plot of Chloride Concentrations at TMW-2 and Background Monitoring Wells
- Figure 5 Timeseries Plot of Sulfate Concentrations at TMW-2 and Background Monitoring Wells

- Figure 6 Timeseries Plot of TDS Concentrations at TMW-2 and Background Monitoring Wells
- Figure 7 Timeseries Plot of Calcium Concentrations and Water Level at TMW-2
- Figure 8 Timeseries Plot of Alkalinity Concentrations and Water Level at TMW-2
- Figure 9 Timeseries Plot of Chloride Concentrations and Water Level at TMW-2
- Figure 10 Timeseries Plot of Magnesium Concentrations and Water Level at TMW-2
- Figure 11 Timeseries Plot of Sodium Concentrations and Water Level at TMW-2
- Figure 12 Timeseries Plot of Sulfate Concentrations and Water Level at TMW-2
- Figure 13 Timeseries Plot of Total Dissolved Solids Concentrations and Water Level at TMW-2

### **CERTIFICATION STATEMENT**

This *LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *LCL1* – *Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

### GOLDER ASSOCIATES USA INC.



Mark Haddock, P.E., R.G.

### **1.0 INTRODUCTION**

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

### 2.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri, just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

### 2.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

### 2.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently, the LCL1 is used for the dry disposal of fly ash and bottom ash from the LEC.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10<sup>-7</sup> centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells surrounding the current and future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for

groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters. In April 2017, four (4) monitoring wells were installed and added to this network along Labadie Bottoms Road (S-1, S-2, S-3, and S-4).

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells, and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

# 2.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of the CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, TMW-3, BMW-1S, and BMW-2S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information regarding the design and installation of the monitoring wells is provided in the LCL1 GMP (Golder, 2017) and the LCL1 2017 Annual Report (Golder, 2018).

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events have been completed twice a year generally once in Q2 and once in Q4. November 2021 was the last Detection Monitoring sampling event. Laboratory testing was performed for the following Appendix III constituents during each Detection Monitoring event:

- Boron
- Calcium
- Chloride
- ∎ pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

Background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPLs were then compared to the Detection Monitoring results. If the result from the current Detection Monitoring event was higher than the calculated UPL, the result was considered an initial exceedance, and verification sampling was performed in accordance with the LCL1 statistical analysis plan. Per the statistical

analysis plan, after the May 2019 sampling event, the UPLs were updated to incorporate results from four (4) of the Detection Monitoring events. The UPLs were updated again after the February-April 2021 sampling event.

In November 2017, no exceedances were reported. In May 2018, four (4) initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1, as well as fluoride at TMW-2. Verification sampling results confirmed all four (4) SSIs. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report; that ASD concluded that the SSIs observed for the May 2018 sampling event were not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2018, four (4) initial exceedances were identified for boron, chloride and fluoride at TMW-1 and fluoride at TMW-2, three (3) of which were the same at those reported during May 2018. Verification sampling results confirmed only the fluoride at TMW-1 result. An ASD was prepared for the November 2018 results and is available in the 2019 LCL1 Annual Report; the ASD also concluded that the confirmed SSI observed for November 2018 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In May 2019, seven (7) initial exceedances were identified for pH, calcium, chloride, and fluoride at various wells. Verification sampling results confirmed only chloride at TMW-1. An ASD was prepared for the May 2019 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the confirmed SSI observed for May 2019 was not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer.

In November 2019, four (4) initial exceedances were identified for boron, chloride, and TDS at MW-26 and chloride at TMW-1. Verification sampling results only confirmed the three (3) SSIs at MW-26. An ASD was prepared for the November 2019 results and is available in the 2020 LCL1 Annual Report, which concluded that the SSIs observed in the November 2019 sampling event were not caused by the LCL1. The SSI observed for TDS at MW-26 was primarily caused by relatively low calculated UPLs that did not reflect the full, natural geochemical variability within the alluvial aquifer. The SSIs identified for boron and chloride in MW-26 were primarily caused by the LCL1 being downgradient from the LCPA, which is currently in corrective action. The LCPA, and not the LCL1, was identified as the source for the November 2019 SSIs.

In November 2020, six (6) initial exceedances were identified for calcium, chloride, fluoride, sulfate, and TDS at several wells. Verification sampling results only confirmed the four (4) SSIs at TMW-2. The SSIs at TMW-2 for calcium, chloride, sulfate, and TDS were caused by natural geochemical variability, and a relatively small set of baseline data that do not reflect the temporal and spatial geochemical variability within the alluvial aquifer, and not by the LCL1.

In February-April 2021, six (6) initial exceedances were identified for boron, calcium, chloride, fluoride, and TDS at several wells. Verification sampling results only confirmed the one (1) SSI for chloride at MW-26. The SSI at MW-26 for chloride was caused by natural geochemical variability, and a relatively small set of baseline data that do not reflect the temporal and spatial geochemical variability within the alluvial aquifer, and not by the LCL1.

In November 2021, five (5) initial exceedances were identified for calcium, chloride, fluoride, sulfate, and TDS at MW-26 and TMW-2. Verification sampling results confirmed four (4) SSIs for calcium, chloride, sulfate, and TDS at TMW-2. Results from this sampling event are provided in **Table 1**.

# 3.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

The SSIs for calcium, chloride, sulfate, and TDS occurred at monitoring well TMW-2 and the values are presented on **Table 1**. TMW-2 is screened in the upper portion of the alluvial aquifer, just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-2 is located to the northeast of the LCL1, which is east of the generating plant as well as surface impoundments LCPA and LCPB. Closure of the LCPA was substantially completed before the April 2021 sampling event, with the completion of the liner cover system on December 30, 2020.

Based on Golder's review of the pre-disposal data discussed in **Section 2.2** above, as well as our comparison of the pre-disposal data with the results from the eight (8) CCR-Rule baseline events, the groundwater at the LCL1 contains low-level, pre-existing CCR impacts from units/activities that pre-dated disposal activities in the LCL1. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPLs) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

# 4.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at TMW-2 are not the result of a release from the LCL1, but are rather from an alternative source. The following bullets summarize the different lines of evidence that support this ASD:

- Pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the installation and operation of LCL1.
- Construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Location near gravel roads, and the potential geochemical influence from the road construction materials.

# 4.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

| Type of CCR                 | Description of CCR<br>(USEPA 2018)                                                                                                                                 | Key Indicators<br>(EPRI 2011, 2012, 2017)                                        |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Fly Ash                     | Fine grained, powdery material<br>composed mostly of silica made from<br>the burning of finely ground coal in<br>the boiler.                                       | <ul> <li>Boron</li> <li>Molybdenum</li> <li>Lithium</li> <li>Sulfate</li> </ul>  |  |  |
| Boiler Slag /<br>Bottom Ash | Molten bottom ash from the slag tap<br>and cyclone type furnaces that turns<br>into pellets that have a smooth<br>glassy appearance after quenching<br>with water. | <ul> <li>Bromide</li> <li>Potassium</li> <li>Sodium</li> <li>Fluoride</li> </ul> |  |  |

| Type of CCR                                   | Description of CCR<br>(USEPA 2018)                                                                                                                                                                                                                                    | Key Indicators<br>(EPRI 2011, 2012, 2017)                                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Flue Gas<br>Desulfurization<br>Material (FGD) | A material leftover from the process<br>of reducing sulfur dioxide emissions<br>from a coal-fired boiler that can be a<br>wet sludge consisting of calcium<br>sulfite or calcium sulfate or a dry<br>powdered material that is a mixture<br>of sulfites and sulfates. | <ul> <li>Sulfate</li> <li>Fluoride</li> <li>Calcium</li> <li>Boron</li> <li>Bromide</li> <li>Chloride</li> </ul> |

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the LCL1 has historically received fly ash. No FGD type wastes are managed at the LEC.

## 4.2 Analysis of Key CCR Constituents at TMW-2

#### 4.2.1 Boron Concentrations

As indicated in **Table 2**, boron is a key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present at relatively high concentrations in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early and key indicator of impacts from a CCR unit. Boron is also present in the monitoring wells around the LCPA and has been shown to be a key indicator for CCR impacts at this site. Therefore, if groundwater was impacted by the LCL1, current boron concentrations should be statistically elevated with respect to pre-CCR placement downgradient of the LCL1.

**Figure 2** displays boron concentrations at TMW-2 as well as the two shallow background wells for the LEC for the entire historical monitoring period. At TMW-2, boron concentrations have varied over time with values ranging from 86.8 J to 132 micrograms per liter ( $\mu$ g/L). The intrawell UPL for boron at TMW-2 is 134.3  $\mu$ g/L. Through this same timeframe, boron results in the background wells BMW-1S and BMW-2S, located approximately 2.5 miles to the west of the LCL1, and 1.5 miles west of the LCPA have had values ranging between non-detect (< 50  $\mu$ g/L) to 151  $\mu$ g/L. The interwell UPL for boron (based on LEC background wells) is 147  $\mu$ g/L.

As displayed in **Figure 2**, current boron concentrations at TMW-2 (119 mg/L) are below the UPL for both TMW-2 and the background monitoring wells and are consistent with previous results. The absence of boron exceedances at TMW-2 demonstrates that elevated concentrations for other constituents are related to an alternative source, rather than the LCL1.

## 4.3 Evaluation of SSIs at TMW-2

As discussed in **Section 3.0**, there are four (4) verified SSIs from the November 2021 sampling event, all at monitoring well TMW-2 including calcium, chloride, sulfate, and TDS (referred to henceforth as the Constituents of Interest or COIs). To determine the source for the recent exceedances for the COIs, values were compared to background and different source water datasets. **Figures 3-6** are timeseries plots displaying the concentrations of the COIs compared to shallow background concentrations from background wells located 2.5 miles upgradient of the LCL1. As displayed on these figures, there is an increase in each of the COIs in the November and

subsequent February sampling events, followed by a decrease in the April 2022 sampling event. However, as discussed in **Section 4.2**, the absence of boron with the calcium exceedances indicates that it is unlikely that these SSIs are caused by CCR impacts.

**Table 3**, below, displays concentration data for the COIs, alkalinity, and magnesium from the November 2021 and February 2022 sampling events as compared with the CCR pore-water concentrations from the LCPA (contains bottom ash and fly ash) and the LCPB (fly ash).

| Constituent (Units)              | November 2021<br>Result at TMW-2 | February 2022<br>Result at TMW-2 | LCPA Porewater<br>Range | LCPB Porewater<br>Range |
|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|
| Calcium (µg/L)                   | 240,000                          | 278,000                          | 76,500 – 106,000        | 11,400 – 22,600         |
| Chloride (mg/L)                  | 19.7                             | 43.1                             | 15.2 – 25.5             | 15.6 – 18.4             |
| Sulfate (mg/L)                   | 259                              | 359                              | 254 – 306               | 728 – 1,060             |
| Total Dissolved<br>Solids (mg/L) | 960                              | 1,360 J                          | 528 – 642               | 1,860 – 2,850           |
| Magnesium (µg/L)                 | 65,700                           | Not Sampled                      | 184 – 45,500            | 84.4 - 386              |
| Alkalinity (mg/L)                | 593                              | Not Sampled                      | 77.6 – 208              | 861 – 1,340             |

Table 3: Comparison of TMW-2 SSIs and Pore-water Concentrations

Notes:

June 24, 2022

µg/L – Micrograms per liter.

mg/L – Milligrams per liter.

J – Result is an estimated value based on data validation.

As displayed in **Table 3**, samples collected from the LCPA and LCPB CCR units indicate that CCR is not a potential source for increases in calcium, chloride (February 2022), or magnesium at TMW-2, as the concentrations in pore-water are lower than those found in groundwater at TMW-2. This, combined with a lack of the key CCR indicator, boron, indicates that an alternative source is responsible for exceedances present at TMW-2.

# 4.4 Nearby Carbonate Gravel Roadways as Potential Source

In addition to the lines of evidence presented above, the recent placement of a fresh limestone (CaCO<sub>3</sub>)/dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>) gravel near well TMW-2 is a potential source of the elevated COI concentrations reported in the shallow well TMW-2. TMW-2 is located 30 feet south and east of gravel roads. Additionally, the LCL1, is constructed with gravel roads at the top of the unit, gravel beneath the fabric-formed articulated concrete mat (FCM) side slopes of the unit, and a gravel road at the base of the LCL1. The gravel used for the roadways nearby consists mostly of limestone and dolomite, with lesser amounts of calcite sourced from nearby quarries. Precipitation and recharge of surface water through fresh gravel and associated water-soluble salts leaches soluble components into the shallow groundwater and can cause an increase in the COIs.

The potential impact of carbonate rocks and their associated water-soluble salts has been studied since the 1950s, and Lamar and Shorde (1953) determined that soluble salts in dolomite and limestone commonly contain increased amounts of magnesium, bicarbonate (alkalinity), chloride, calcium, and sulfate. Numerous studies and geochemistry textbook citations since that time have confirmed these findings. The LCL1 was constructed in

2015 and 2016 and completed by October 27, 2016. Labadie Bottoms Road was impacted by the construction of the LCL1, and based on aerial imagery from Google Earth, the road was re-graveled between October 2018 and September 2019. As described above, the materials used in the construction of the LCL1 as well as the application of carbonate-based gravel and re-grading of Labadie Bottom Road would contribute to increases in concentrations of COIs.

As displayed on **Figure 7**, calcium concentrations increased simultaneous with the placement of fresh gravel on Labadie Bottom Road in late 2018 to early 2019. Additionally, the increase in calcium since the construction of the adjacent Labadie Bottom Road shows a correlation with the depth to water below ground surface. The correlation between calcium and groundwater levels indicates that some leaching from Labadie Bottom Road gravel is occurring, and when the water table is higher (i.e., more water is present due to higher amounts of precipitation and/or higher river levels), the concentrations become diluted, and concentrations decrease.

In addition to calcium impacts, magnesium, alkalinity, chloride, sulfate, sodium, and TDS display very similar trends to calcium (see **Figures 7-13**), with increasing concentrations since the gravel placement on Labadie Bottom Road and covariation with the water table fluctuation. As indicated above, covariation in the concentrations of these additional COIs is expected due to potential influence of limestone/dolomite gravel on shallow groundwater concentrations.

Increases in these constituents, especially those that are not a result of CCR influence (i.e., calcium, magnesium, chloride, as shown in **Table 3**) coupled with a lack of increasing boron indicates that these impacts are not from CCR influence on the groundwater, but are believed to be related to leaching of fresh carbonate gravel and its associated soluble salt sources.

## 5.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in **Section 4.0** above, the SSIs reported for TMW-2 during the November 2021 monitoring event are not a result of impacts from the LCL1. The SSIs appear to be a result of the new limestone/dolomite gravel placed on Labadie Bottom Road, and/or aggregate materials used in the construction of the LCL1, in the general vicinity of TMW-2. Soluble salts associated with the new gravel roads (calcium, chloride, sulfate, magnesium, alkalinity, and TDS) display an increase in concentration immediately after placement of fresh gravel on Labadie Bottom Road and show covariation with groundwater levels. These trends, coupled with the lack of boron increases, indicate that the changes in concentration are not caused by the LCL1, but rather the adjacent gravel roads.

Finally, the construction of the LCL1, with a base liner constructed of 2-feet of compacted clay overlain by a 60-mil HDPE liner, also limits the potential that the November 2021 SSIs reported for TMW-2 are a result of influence from the LCL1. These lines of evidence indicate that the SSIs observed in TMW-2 are not the result of impacts from the LCL1, but are from recent road gravel placement and leaching from carbonate gravel.

## 6.0 **REFERENCES**

- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.
- Drever, J.I., 1988. The geochemistry of natural waters (Vol. 437). Englewood Cliffs: Prentice hall.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Co-management of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019c, Updated Statistical Limits with Additional Background Data LCL1.
- Golder Associates Inc., 2019d, Updated Statistical Limits with Additional Background Data LCPB.
- Golder Associates Inc., 2020a, 2019 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.
- Golder Associates Inc., 2020b, Corrective Action Groundwater Monitoring Plan, LCPA Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA
- Golder Associates Inc., 2021, Updated Statistical Limits with Additional Background Data LCPB
- Golder Associates Inc., 2021, 2020 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates USA, Inc., 2022a, 2021 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.

Golder Associates USA, Inc., 2022b, Updated Statistical Limits with Additional Background Data - LCL1

- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- Lamar, J.E. and Shorde, R.S., 1953. Water soluble salts in limestone and dolomites. *Economic Geology*, 48(2), pp.97-112.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.

Reitz & Jens, Inc. 2-14. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CRF Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal

# Tables

# June 24, 2022

# Table 1November 2021 Detection Monitoring ResultsLCL1 - Utility Waste Landfill Cell 1Labadie Energy Center, Franklin County, MO

|                        |       | BACKG     | ROUND     | OUND GROUNDWATER MONITORING WELLS |               |                           |           |                           |           |                           |           |
|------------------------|-------|-----------|-----------|-----------------------------------|---------------|---------------------------|-----------|---------------------------|-----------|---------------------------|-----------|
| ANALYTE                | UNITS | BMW-1S    | BMW-2S    | Prediction<br>Limit MW-26         | MW-26         | Prediction<br>Limit TMW-1 | TMW-1     | Prediction<br>Limit TMW-2 | TMW-2     | Prediction<br>Limit TMW-3 | TMW-3     |
|                        |       |           | N         | ovember 202                       | 1 Detection N | Ionitoring Eve            | ent       |                           |           |                           |           |
| DATE                   | NA    | 11/1/2021 | 11/1/2021 | NA                                | 11/4/2021     | NA                        | 11/2/2021 | NA                        | 11/2/2021 | NA                        | 11/2/2021 |
| рН                     | SU    | 6.68      | 6.97      | 6.658-7.339                       | 6.81          | 6.638-7.105               | 6.89      | 6.42-7.17                 | 6.87      | 6.585-7.07                | 6.73      |
| BORON, TOTAL           | μg/L  | 77.0 J    | 40.7 J    | 102.8                             | 68.7 J        | 121.6                     | 113       | 134.3                     | 119       | 136.9                     | 116       |
| CALCIUM, TOTAL         | μg/L  | 260,000   | 140,000   | 155,150                           | 146,000       | 183,389                   | 161,000   | 205,487                   | 240,000   | 202,001                   | 161,000   |
| CHLORIDE, TOTAL        | mg/L  | 13.7      | 1.7 J     | 6.76                              | 6.2 J         | 5.718                     | 2.6 J     | 7.142                     | 19.7      | 8.621                     | 3.8 J     |
| FLUORIDE, TOTAL        | mg/L  | ND        | 0.14 J    | 0.2118                            | 0.24          | 0.2975                    | 0.27      | 0.2972                    | 0.25      | 0.2626                    | 0.20      |
| SULFATE, TOTAL         | mg/L  | 146       | 46.2      | 38.24                             | 29.3          | 128                       | 61.4      | 115.5                     | 259       | 104                       | 40.3      |
| TOTAL DISSOLVED SOLIDS | mg/L  | 953 J     | 475 J     | 543.7                             | 490           | 733.7                     | 617       | 815.4                     | 960       | 815.4                     | 595       |
|                        |       |           |           | February 2022                     | Verification  | Sampling Eve              | nt        |                           |           |                           |           |
| DATE                   | NA    |           |           |                                   | 2/10/2022     |                           |           |                           | 2/10/2022 |                           |           |
| рН                     | SU    |           |           |                                   |               |                           |           |                           |           |                           |           |
| BORON, TOTAL           | μg/L  |           |           |                                   |               |                           |           |                           |           |                           |           |
| CALCIUM, TOTAL         | μg/L  |           |           |                                   |               |                           |           |                           | 278,000   |                           |           |
| CHLORIDE, TOTAL        | mg/L  |           |           |                                   |               |                           |           |                           | 43.1      |                           |           |
| FLUORIDE, TOTAL        | mg/L  |           |           |                                   | ND            |                           |           |                           |           |                           |           |
| SULFATE, TOTAL         | mg/L  |           |           |                                   |               |                           |           |                           | 359       |                           |           |
| TOTAL DISSOLVED SOLIDS | mg/L  |           |           |                                   |               |                           |           |                           | 1,360 J   |                           |           |

NOTES:

1. Unit Abbreviations: µg/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

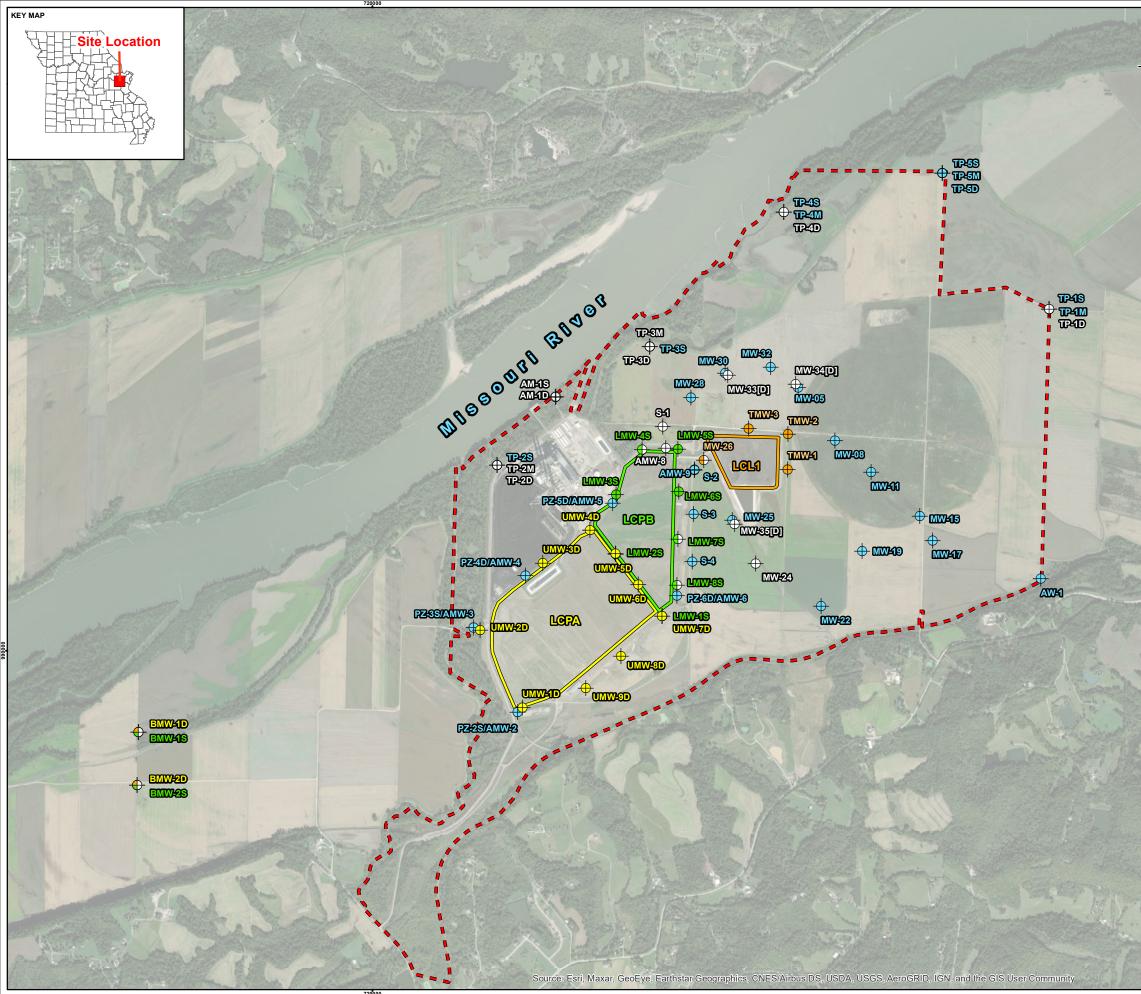
2. J - Result is an estimated value.

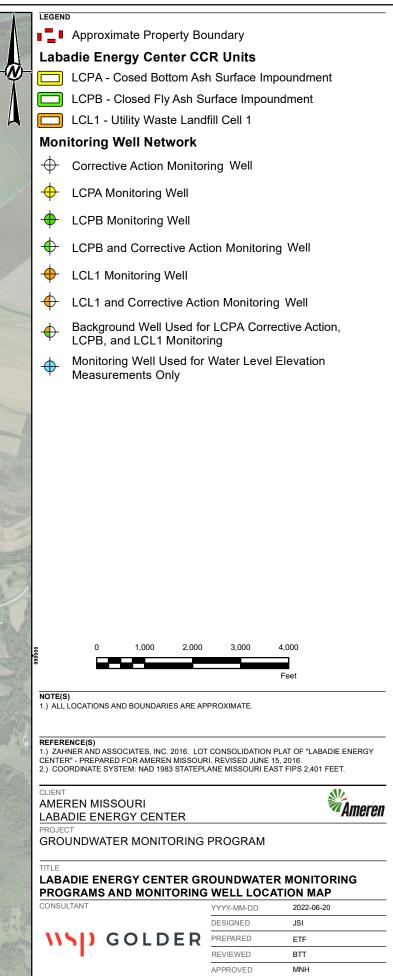
3. NA - Not applicable.

4. Prediction Limits calculated using Sanitas Software.

5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

6. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).


7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.


8. ND - Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

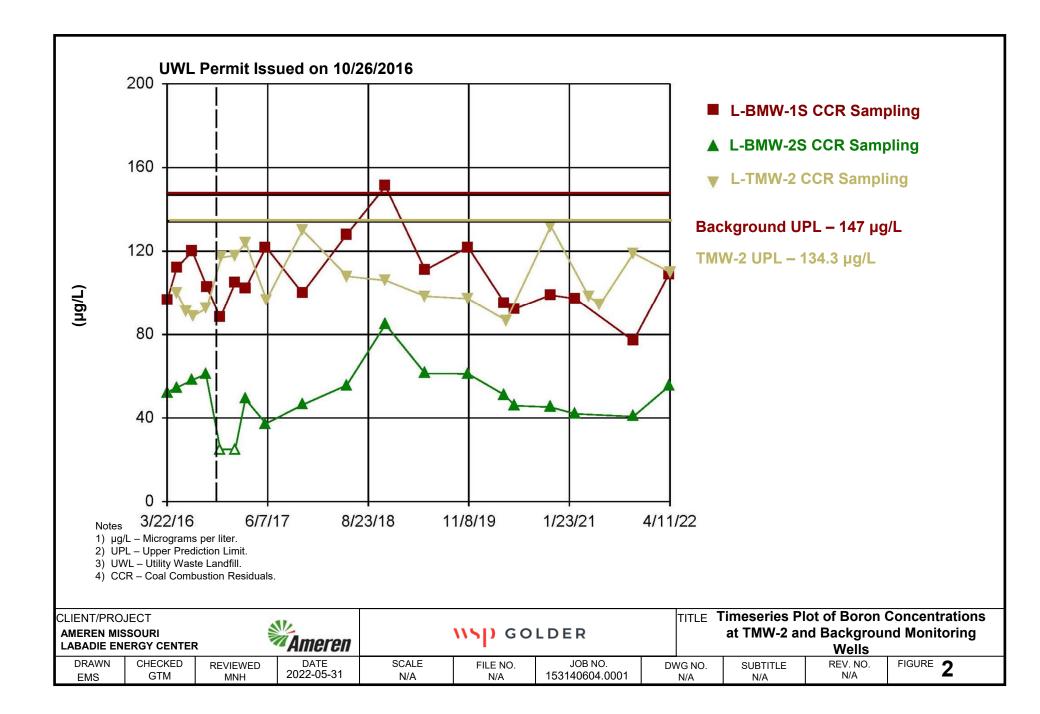
Prepared By: EMS Checked By: LMS Reviewed By: MNH

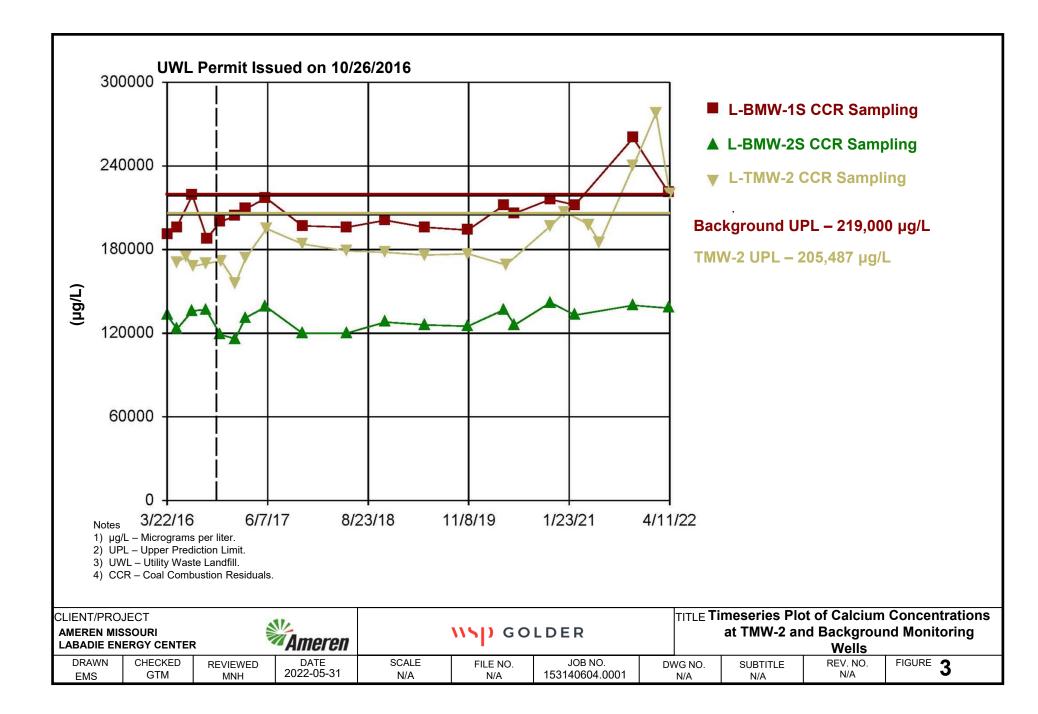
153140604

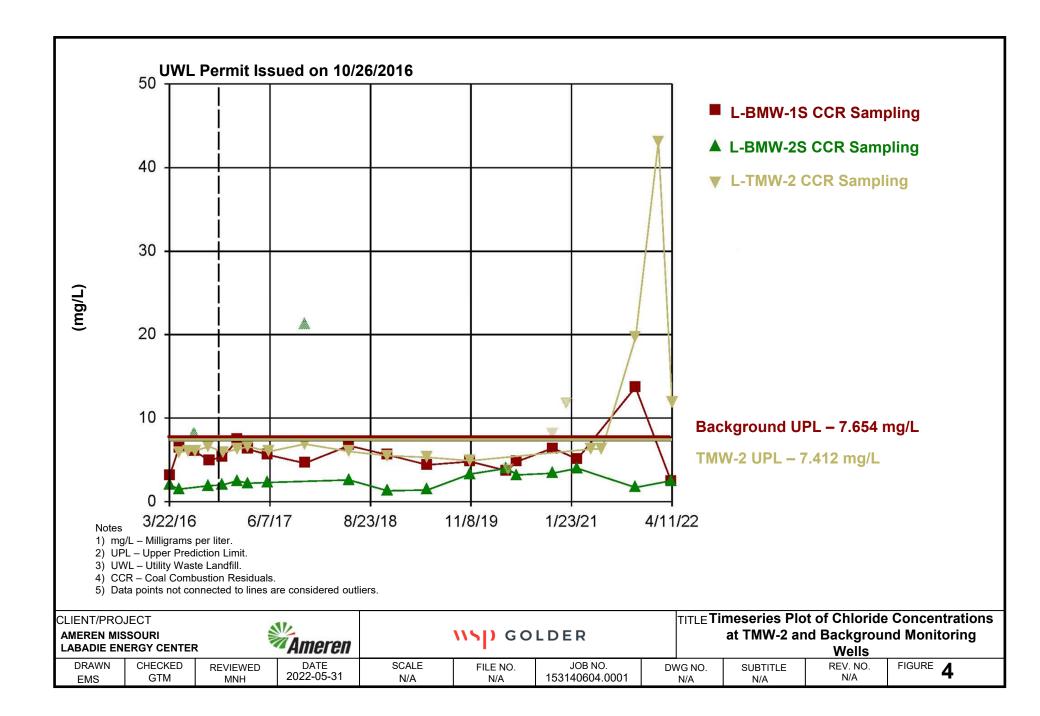
# Figures

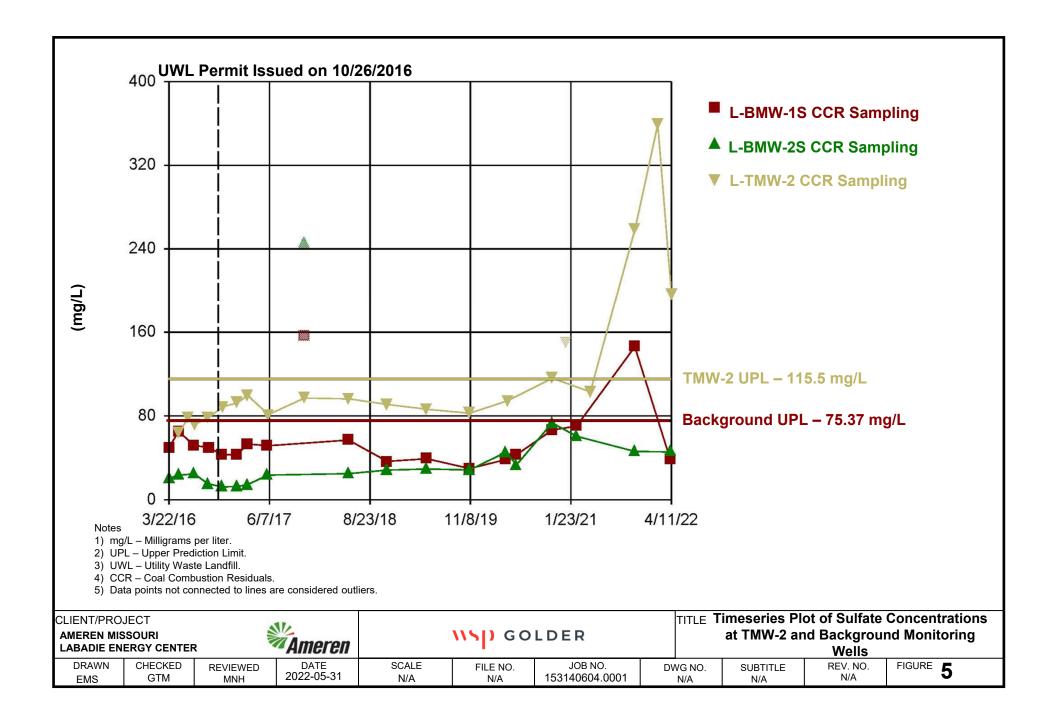


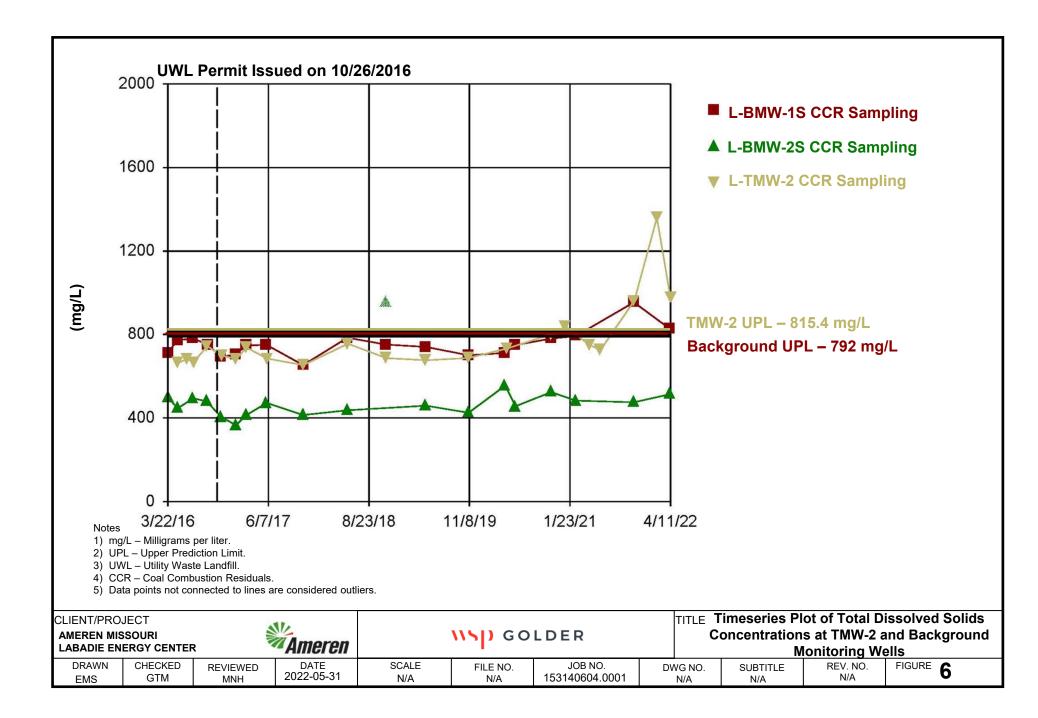


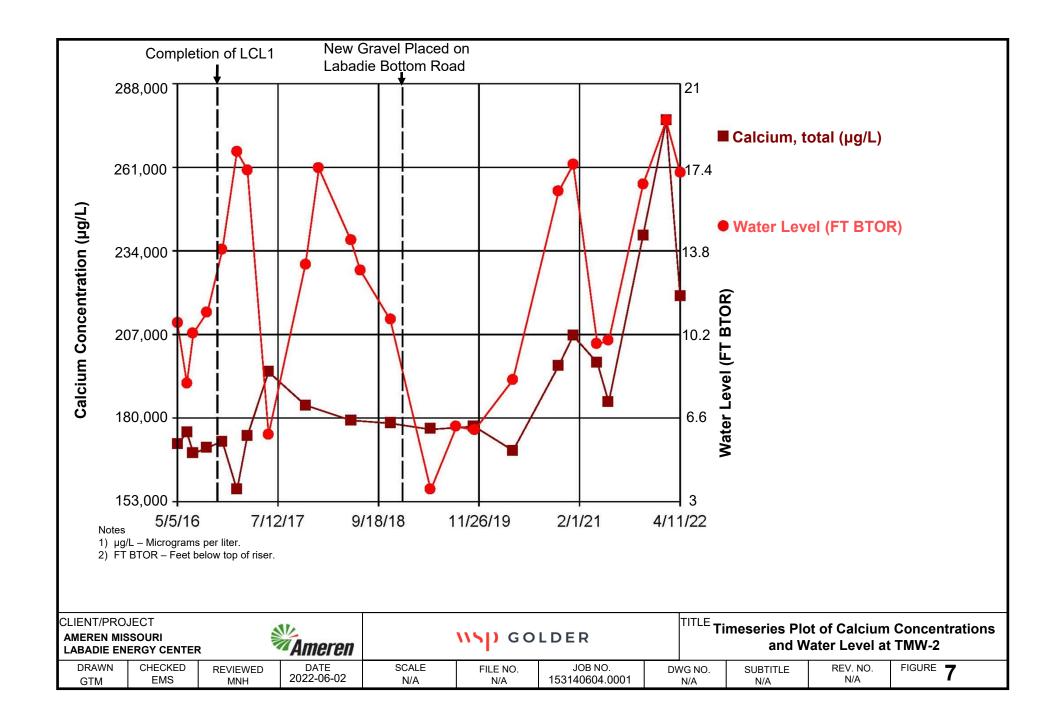

PROJECT NO.

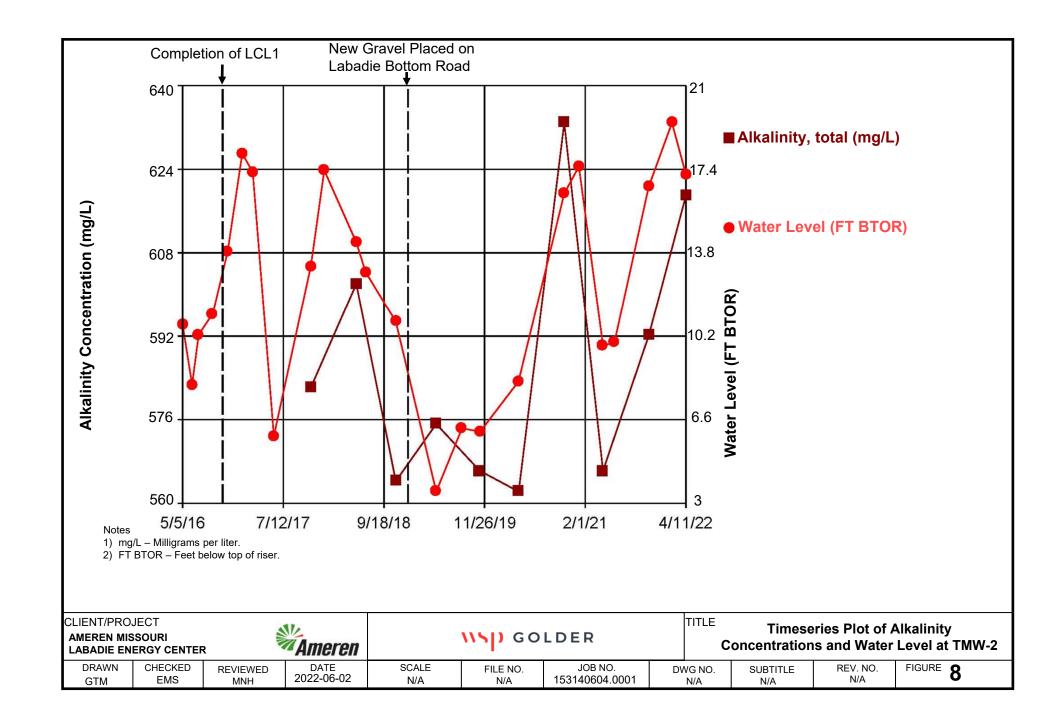

153140604

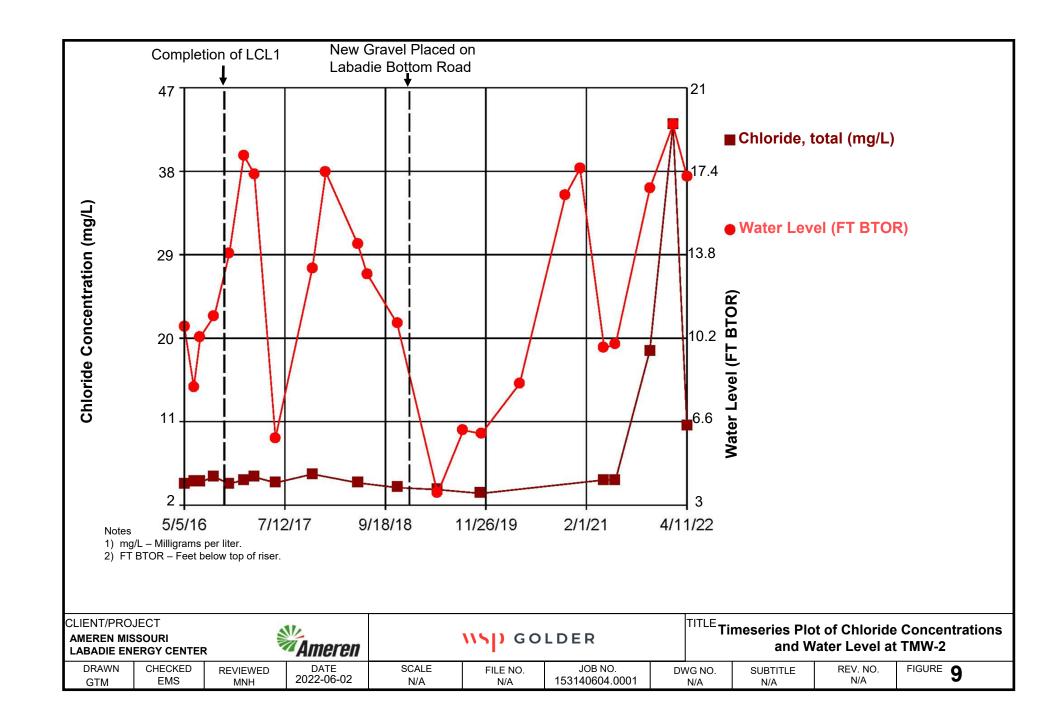

CONTROL

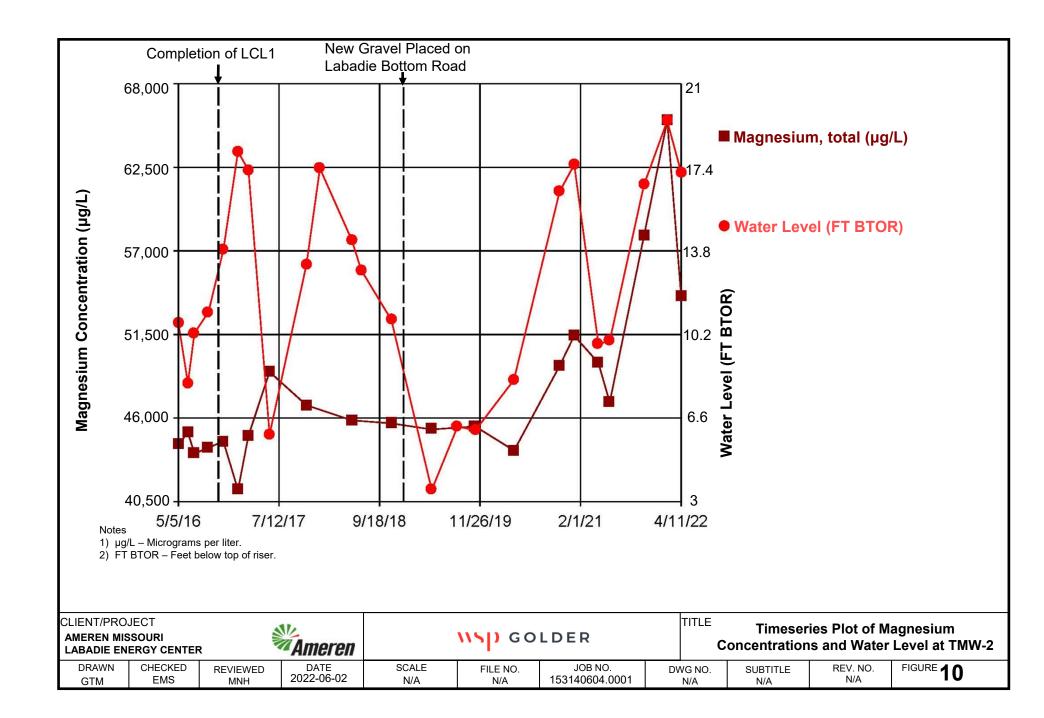

1240

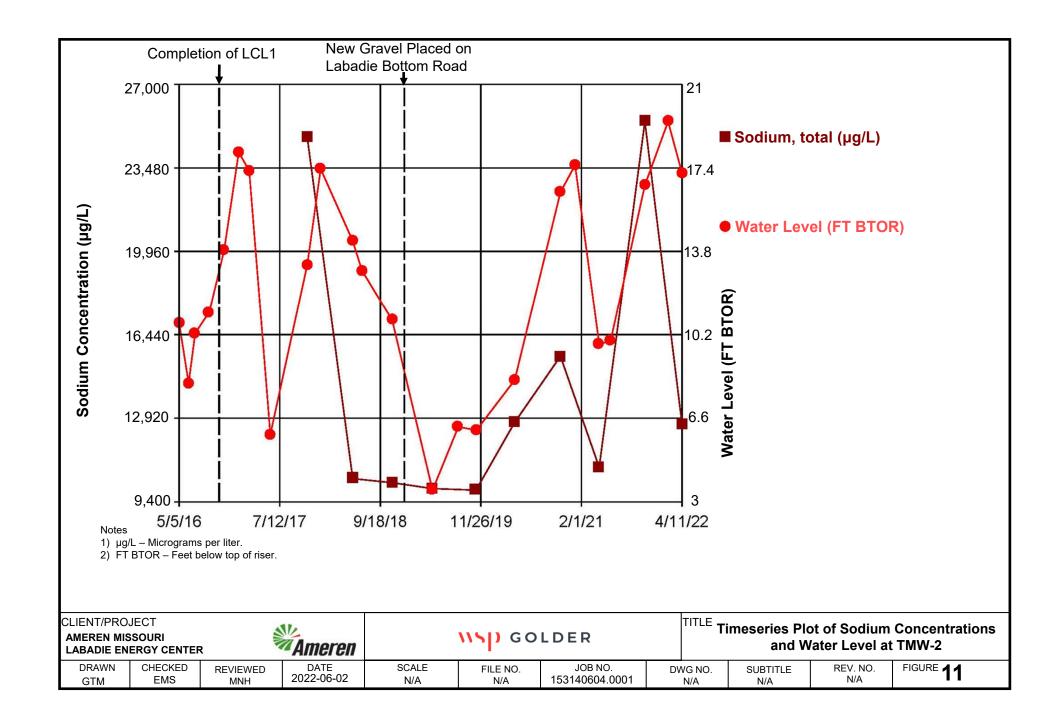

FIGURE

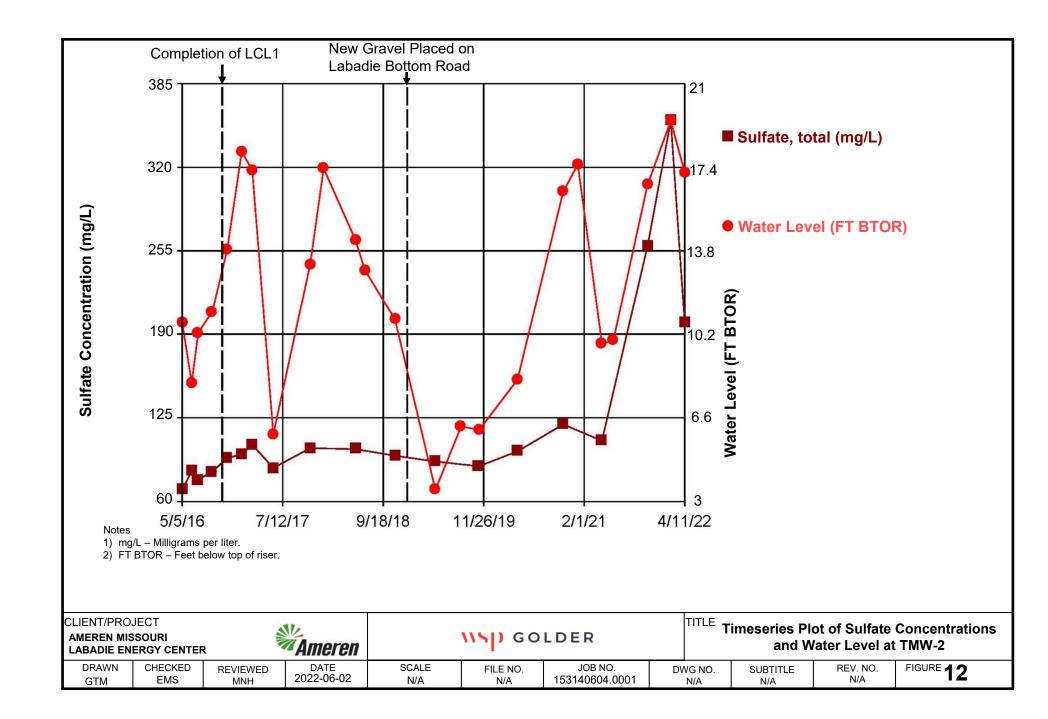


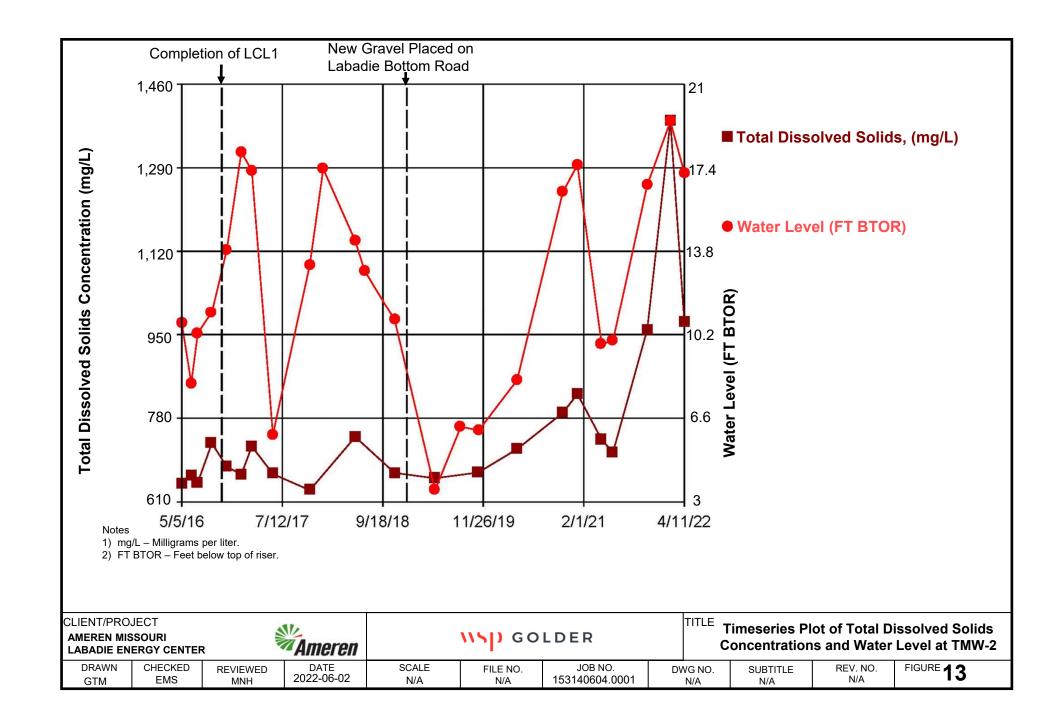














#### APPENDIX C

Alternative Source Demonstration -April 2022 Sampling Event

# **SOLDER**

#### REPORT

# LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

#### Ameren Missouri

1901 Chouteau Avenue, St. Louis, MO 63103

Submitted by:

#### Golder Associates USA, Inc.

701 Emerson Road, Suite 250, Creve Coeur, Missouri, USA, 63141

+1 314 984-8800

153140604

November 18, 2022

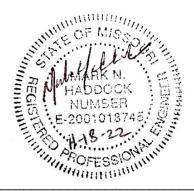
# **Table of Contents**

| 1.0 | INTRO | DDUCTION                                                                                     | 1 |
|-----|-------|----------------------------------------------------------------------------------------------|---|
| 2.0 | SITE  | DESCRIPTION AND BACKGROUND                                                                   | 1 |
|     | 2.1   | Geological and Hydrogeological Setting                                                       | 1 |
|     | 2.2   | Utility Waste Landfill Cell 1 – LCL1                                                         | 1 |
|     | 2.3   | CCR Rule Groundwater Monitoring                                                              | 2 |
| 3.0 | REVIE | W OF THE STATISTICALLY SIGNIFICANT INCREASES                                                 | 3 |
| 4.0 | EVIDE | ENCE OF SSI FROM ALTERNATIVE SOURCE                                                          | 3 |
|     | 4.1   | CCR Indicators                                                                               | 4 |
|     | 4.2   | Analysis of Key CCR Constituents at TMW-2                                                    | 4 |
|     | 4.2.1 | Boron Concentrations                                                                         | 4 |
|     | 4.3   | Evaluation of SSIs at TMW-2                                                                  | 5 |
|     | 4.4   | Nearby Carbonate Gravel Roadways and Concrete Construction as Potential Source               | 6 |
|     | 4.4.1 | Hydraulic Connection Between Potential Fresh Carbonate Gravel and Concrete Sources and TMW-2 | 7 |
| 5.0 | DEMO  | INSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT                                            | 8 |
| 6.0 | REFE  | RENCES                                                                                       | 8 |

#### TABLES

- Table 1 April 2022 Detection Monitoring Results
- Table 2 Types of CCR and Typical Indicator Parameters (In Text)
- Table 3 Comparison of TMW-2 SSI and Pore-water Concentrations (In Text)

#### FIGURES


- Figure 1 Labadie Energy Center Groundwater Monitoring Programs and Monitoring Well Location Map
- Figure 2 Timeseries Plot of Boron Concentrations at TMW-2 and Background Monitoring Wells
- Figure 3 Timeseries Plot of Calcium Concentrations at TMW-2 and Background Monitoring Wells
- Figure 4 Timeseries Plot of Chloride Concentrations at TMW-2 and Background Monitoring Wells
- Figure 5 Timeseries Plot of Sulfate Concentrations at TMW-2 and Background Monitoring Wells
- Figure 6 Timeseries Plot of TDS Concentrations at TMW-2 and Background Monitoring Wells
- Figure 7 Timeseries Plot of Magnesium Concentrations at TMW-2 and Background Monitoring Wells
- Figure 8 Timeseries Plot of Alkalinity Concentrations at TMW-2 and Background Monitoring Wells
- Figure 9 Timeseries Plot of Sodium Concentrations at TMW-2 and Background Monitoring Wells
- Figure 10 Aerial Map of Fresh Gravel Placement Near TMW-2
- Figure 11 North Area of LCL1 Construction (in text)
- Figure 12 Historic Aerial Images near TMW-2 (in text)

## **CERTIFICATION STATEMENT**

This *LCL1* – *Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *LCL1* – *Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

#### GOLDER ASSOCIATES USA INC.



Mark Haddock, P.E., R.G.

# **1.0 INTRODUCTION**

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

# 2.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri, just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

# 2.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

# 2.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently, the LCL1 is used for the dry disposal of fly ash and bottom ash from the LEC.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10<sup>-7</sup> centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells surrounding the current and future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for

groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters. In April 2017, four (4) monitoring wells were installed and added to this network along Labadie Bottoms Road (S-1, S-2, S-3, and S-4).

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016, at most of the state required UWL monitoring wells, and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

# 2.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, TMW-3, BMW-1S, and BMW-2S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information regarding the design and installation of the monitoring wells is provided in the LCL1 GMP (Golder, 2017) and the LCL1 2017 Annual Report (Golder, 2018).

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events have been completed twice a year generally once in Q2 and once in Q4. April 2022 was the last Detection Monitoring sampling event. Laboratory testing was performed for the following Appendix III constituents during each Detection Monitoring event:

- Boron
- Calcium
- Chloride
- ∎ pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

Background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPLs were then compared to the Detection Monitoring results. If the result from the current Detection Monitoring event was higher than the calculated UPL, the result was considered an initial exceedance, and verification sampling was performed in accordance with the LCL1 statistical analysis plan. Per the statistical

analysis plan, after the May 2019 sampling event, the UPLs were updated to incorporate results from four (4) of the Detection Monitoring events. The UPLs were updated again following the February-April 2021 sampling event after an additional four (4) Detection Monitoring events were completed.

Since November 2017, several ASDs have been prepared for MW-26, TMW-1 and TMW-2. These previous ASDs are available in the 2018, 2019, 2020, and 2021 Annual Reports for the LCL1 and are available on Ameren's publicly available CCR Compliance website (https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion/ccr-compliance-reports). These ASDs have demonstrated that previous SSIs at the site were not caused by the LCL1, but rather primarily the result of relatively low calculated UPLs that were not representative of the full, natural geochemical variability within the alluvial aquifer or primarily caused by the LCL1 being downgradient from the LCPA, which is currently in corrective action. Additonally, the potential geochemical influence of construction materials on the shallow alluvial aquifer, such as fresh gravel, during the construction of the LCL1.

In April 2022, four (4) initial exceedances were identified for calcium, chloride, sulfate, and TDS at TMW-2. Verification sampling results confirmed each to be an SSI at TMW-2. Results from this sampling event are provided in **Table 1**.

# 3.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

The SSIs for calcium, chloride, sulfate, and TDS occurred at monitoring well TMW-2 and the values are presented on **Table 1**. TMW-2 is screened in the upper portion of the alluvial aquifer, just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-2 is located to the northeast of the LCL1, which is east of the generating plant as well as surface impoundments LCPA and LCPB. Closure of the LCPA was substantially completed before the April 2021 sampling event, with the completion of the liner cover system on December 30, 2020.

Based on Golder's review of the pre-disposal data discussed in **Section 2.2** above, as well as our comparison of the pre-disposal data with the results from the eight (8) CCR-Rule baseline events, the groundwater at the LCL1 contains low-level, pre-existing CCR impacts from units/activities that pre-dated disposal activities in the LCL1. As a result of these pre-existing impacts, the LCL1 Statistical Analysis Plan (SAP) uses intrawell UPLs to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

# 4.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at TMW-2 are not the result of a release from the LCL1 but are rather from an alternative source. The following bullets summarize the different lines of evidence that

- Pre-existing, low level concentrations of CCR impacts in groundwater that pre-date the installation and operation of the LCL1.
- Construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Location near fresh limestone and dolomitic gravels, and the potential geochemical influence from the LCL1 gravel construction materials on shallow groundwater.

# 4.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

| Type of CCR                                   | Description of CCR<br>(USEPA 2018)                                                                                                                                                                                                                                    | Key Indicators<br>(EPRI 2011, 2012, 2017)                                                                        |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Fly Ash                                       | Fine grained, powdery material<br>composed mostly of silica made from<br>the burning of finely ground coal in<br>the boiler.                                                                                                                                          | <ul> <li>Boron</li> <li>Molybdenum</li> <li>Lithium</li> <li>Sulfate</li> </ul>                                  |  |  |
| Boiler Slag /<br>Bottom Ash                   | Molten bottom ash from the slag tap<br>and cyclone type furnaces that turns<br>into pellets that have a smooth<br>glassy appearance after quenching<br>with water.                                                                                                    | <ul> <li>Bromide</li> <li>Potassium</li> <li>Sodium</li> <li>Fluoride</li> </ul>                                 |  |  |
| Flue Gas<br>Desulfurization<br>Material (FGD) | A material leftover from the process<br>of reducing sulfur dioxide emissions<br>from a coal-fired boiler that can be a<br>wet sludge consisting of calcium<br>sulfite or calcium sulfate or a dry<br>powdered material that is a mixture<br>of sulfites and sulfates. | <ul> <li>Sulfate</li> <li>Fluoride</li> <li>Calcium</li> <li>Boron</li> <li>Bromide</li> <li>Chloride</li> </ul> |  |  |

| Table 2: Types of CCR and | Typical Indicator Parameters |
|---------------------------|------------------------------|
|---------------------------|------------------------------|

Notes:

1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.

- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the LCL1 has historically received fly ash. No FGD type wastes are managed at the LEC.

# 4.2 Analysis of Key CCR Constituents at TMW-2

#### 4.2.1 Boron Concentrations

As indicated in **Table 2**, boron is a key indicator for fly ash and boiler slag/bottom ash impacts because it is typically present at relatively high concentrations in the leachate from these types of waste, is not a common anthropogenic contaminant, and is non-reactive and mobile in most hydrogeological environments (EPRI 2012). This non-reactive and mobile nature makes boron an early and key indicator of impacts from a CCR unit. Boron is also present in the monitoring wells around the LCPA and has been shown to be a key indicator for CCR impacts at this site. Therefore, if groundwater was impacted by the LCL1, current boron concentrations should be statistically elevated with respect to pre-CCR placement downgradient of the LCL1.

**Figure 2** displays boron concentrations at TMW-2 as well as the two shallow background wells for the LEC for the entire historical monitoring period. At TMW-2, boron concentrations have varied over time with values ranging from 86.8 J to 132 micrograms per liter ( $\mu$ g/L). The intrawell UPL for boron at TMW-2 is 134.3  $\mu$ g/L. Throughout this same timeframe, boron concentrations in the background wells BMW-1S and BMW-2S, which have no pre-existing CCR impact and are located approximately 2.5 miles to the west of the LCL1 , have had values ranging

between non-detect (< 50  $\mu$ g/L) to 151  $\mu$ g/L. The interwell UPL for boron (based on LEC background wells) is 147  $\mu$ g/L.

As displayed in Figure 2, the most recent boron concentration at TMW-2 (110  $\mu$ g/L) is below the UPL for both TMW-2 and the background monitoring wells and is consistent with previous results. The absence of boron exceedances at TMW-2 demonstrates that elevated concentrations for other constituents are related to an alternative source, rather than the LCL1.

# 4.3 Evaluation of SSIs at TMW-2

As discussed in **Section 3.0**, there are four (4) verified SSIs from the April 2022 sampling event, all at monitoring well TMW-2, including calcium, chloride, sulfate, and TDS (referred to hereafter as the Constituents of Interest or COIs). To determine the source for the recent exceedances for the COIs, values were compared to background and different source water datasets. **Figures 3-9** are timeseries plots displaying the concentrations of the COIs and other selected constituents compared to shallow background concentrations from background wells located 2.5 miles upgradient of the LCL1. As displayed on these figures, there is an increase in each of the COIs in the November and subsequent February sampling events, followed by decreases in the April 2022 and June 2022 sampling events. However, as discussed in **Section 4.2**, the absence of boron with the other exceedances indicates that it is unlikely that these low-level SSIs are caused by CCR impacts.

**Table 3** below displays concentration data for the COIs, alkalinity, and magnesium from the April 2022 and June 2022 sampling events as compared with the CCR porewater concentrations from the LCPA (contains bottom ash and fly ash) and the LCPB (contains fly ash).

| Constituent<br>(Units)           | April 2022 Result<br>at TMW-2 | June 2022 Result<br>at TMW-2 | LCPA Porewater<br>Range | LCPB Porewater Range |
|----------------------------------|-------------------------------|------------------------------|-------------------------|----------------------|
| Calcium (µg/L)                   | 220,000                       | 215,000                      | 76,500 – 106,000        | 11,400 – 22,600      |
| Chloride (mg/L)                  | 11.9                          | 10.0                         | 15.2 – 25.5             | 15.6 – 18.4          |
| Sulfate (mg/L)                   | 197                           | 175                          | 254 – 306               | 728 – 1,060          |
| Total Dissolved<br>Solids (mg/L) | 975                           | 940                          | 528 – 642               | 1,860 – 2,850        |
| Magnesium (µg/L)                 | 56,300                        | Not Sampled                  | 184 – 45,500            | 84.4 – 386           |
| Alkalinity (mg/L)                | 620                           | Not Sampled                  | 77.6 – 208              | 861 – 1,340          |
| Sodium (µg/L)                    | 12,500                        | Not Sampled                  | 50,500 - 84,000         | 750,000 – 969,000    |

#### Table 3: Comparison of TMW-2 SSI and Porewater Concentrations

Notes:

µg/L – Micrograms per liter.

mg/L – Milligrams per liter.

As displayed in **Table 3**, porewater samples collected from the LCPA and LCPB CCR units indicate that CCR is not a potential source for increases in calcium or magnesium at TMW-2, as the concentrations in pore-water are lower than those found in groundwater at TMW-2. This, combined with a lack of the key CCR indicator, boron, indicates that an alternative source is responsible for exceedances present at TMW-2.

# 4.4 Nearby Carbonate Gravel Roadways and Concrete Construction as Potential Source

In addition to the lines of evidence presented above, the recent placement of fresh, crushed limestone (CaCO<sub>3</sub>)/dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>) gravel and concrete near well TMW-2 is a potential source of the elevated COI concentrations reported in the shallow well TMW-2. As displayed in **Figure 10**, the area around TMW-2 has had a significant amount of construction activity during the past approximately seven (7) years associated with LCL1 construction, and fresh limestone and dolomite gravels, as well as concrete, have been placed near TMW-2 in the following locations:

- 1) After construction of the LCL1, Labadie Bottoms Road was re-graded and fresh, crushed gravel was placed on the road in late 2018 to early 2019. TMW-2 is located approximately 30 feet south and east of the new gravel roads as displayed in **Figure 10**.
- 2) The LCL1 Cell was constructed between 2015 and October 2016 and is constructed with gravel roads at the top of the unit, gravel beneath the fabric-formed articulated concrete mat (FCM) side slopes of the unit, and a gravel road at the base of the LCL1 as displayed in Figure 7. TMW-2<sup>1</sup> is approximately 145 feet from the toe of the berm. Based on aerial imagery and photographs, completion of the FCM and gravel road began in April 2016 and were completed by October 2016.
- 3) During the construction of the LCL1, fresh limestone/dolomite gravel was placed just to the east of the LCL1 and ~50 feet west of TMW-2. This gravel area was used as a parking area for construction and as a staging and laydown area for equipment. Based on onsite photos and aerial imagery, the gravel area was built in April 2016, and was removed after completion of the LCL1, in late 2016. The parking area is approximately 50-125 feet to the west/southwest of TMW-2. An image displaying the north end of the parking area is provided in Figure 11.



The gravel used for the roadways, under the FCM, and parking lots nearby consists mostly of limestone and dolomite and contains some calcite sourced from nearby quarries. Precipitation and infiltration of surface water through fresh gravel and concrete that contain water-soluble salts leaches soluble components into the shallow groundwater and can cause an increase in the COIs observed in TMW-2.

The potential impact of carbonate rocks and their associated water-soluble salts has been studied since the 1950s, and Lamar and Shorde (1953) determined that soluble salts in dolomite and limestone commonly contain

<sup>&</sup>lt;sup>1</sup> The location of TMW-2 is as close as was feasible to the LCL1 in 2016 in order to comply with the timeframes of the CCR Rule. Construction activities associated with the LCL1 and a nearby gas pipeline made it so the closest practicable location for TMW-2 was ~145 feet from the toe of the berm at the LCL1.

increased amounts of magnesium, bicarbonate (alkalinity), chloride, calcium, and sulfate. Numerous studies and geochemistry textbook citations since that time have confirmed these findings. Concrete is also known to contain water-soluble salts (Cheng et al., 2013) similar to those discussed for carbonate gravels with increased levels of calcium, chloride, and sulfate. The leaching of these salts from concrete is called efflorescence, and it can be common in the concrete construction industry. Efflorescence, the migration of salts to the surface, is typically described as a whitish colored powder that coats the surface of the concrete. As with the carbonate gravels, precipitation and runoff of surface water from the concrete FCM and associated water-soluble salts leaches soluble components into the shallow groundwater and can cause an increase in the COIs observed in TMW-2.

# 4.4.1 Hydraulic Connection Between Potential Fresh Carbonate Gravel and Concrete Sources and TMW-2

As discussed in the 2021 LCL1 Annual Report (Golder, 2022), net groundwater flow at the site is estimated to be approximately 18 feet per year toward the northeast. Based on the net groundwater flow, both the former gravel parking and laydown area associated with the construction of the LCL1, and the gravel roads/ and exposed FCM concrete/ berm associated with the finished LCL1 cell are likely sources for COI impacts at TMW-2.

The FCM and the gravel road at the top of the berm around the LCL1 were placed on top of compacted earth fill and were sloped to drain surface water toward the gravel road at the toe of the berm, surrounding the LCL1 (Gredell and Reitz & Jens, 2013). Historical aerial images (See **Figure 12**, in text) display that the surface water runoff from the FCM is occurring as designed with some pooling of surface water below the berm and is causing increased infiltration over the former gravel area. As discussed above, the water that is infiltrating into the groundwater will have leached available water-soluble salts from the FCM concrete and the underlying carbonate gravel/rock base.



#### Figure 12 – Historic Aerial Images near TMW-2

#### Notes:

1) Aerial images from Google Earth ®

As discussed previously, the FCM, gravel roads associated with the UWL, and the gravel area located just west of TMW-2 were built between April and October 2016. These potential upgradient leaching sources are located approximately 50 to 145 feet upgradient of TMW-2. Based on the net groundwater flow rate (~18 feet per year

average), leaching impacts from these carbonates and associated salt sources would be expected to reach well TMW-2 in groundwater between 2019 and 2024.

As displayed in **Figure 3**, calcium concentrations at TMW-2 begin to increase slightly between the April 2020 and November 2020 sampling events, with larger increases occurring during the November 2021 and February 2022 sampling events. This corresponds with the date range that would be expected for impacts caused by the leaching of the water-soluble salts associated with the fresh carbonate gravel/rock placement during the LCL1 construction and adjacent parking area construction. Additionally, as discussed above, CCR placed in the LCL1 is not a potential source for increases in calcium at TMW-2, as the concentrations in CCR pore-water at LEC are lower than those found in groundwater at TMW-2 and in the background wells. Therefore, leaching of the gravel and concrete water-soluble salts provides the most likely explanation for the increase in calcium concentrations at TMW-2, as fresh carbonates have been demonstrated to cause increases to calcium concentrations to groundwater (Lamar and Shorde, 1953) and the potential carbonate source is upgradient and hydrologically connected to TMW-2.

In addition to calcium impacts, magnesium, alkalinity, chloride, sulfate, sodium, and TDS display very similar trends to calcium (see **Figures 4-9**), with increasing concentrations in the same timeframe. Increases in these constituents, especially those that are not a result of CCR influence (i.e., calcium, magnesium, alkalinity, as shown in **Table 3**), coupled with a lack of increasing boron, indicates that these impacts are not from CCR influence on the groundwater, but are most likely related to leaching of fresh carbonate gravel and concrete and their associated soluble salt sources.

Lastly, the documented construction of the LCL1, with a robust, engineered base liner system constructed of two feet of low-permeability compacted clay overlain by a 60-mil HDPE liner, also limits the potential that the April 2022 SSIs reported for TMW-2 are a result of influence from the LCL1. These lines of evidence collectively indicate that the SSIs observed in TMW-2 are not the result of impacts from the LCL1.

### 5.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in **Section 4.0** above, the SSIs reported for TMW-2 during the April 2022 monitoring event are not a result of impacts from the LCL1. The SSIs appear to be a result of the limestone/dolomite gravel and concrete placed upgradient of TMW-2 that has migrated downgradient into shallow groundwater to TMW-2. Soluble salts associated with the gravel and concrete (calcium, chloride, sulfate, magnesium, alkalinity, and TDS) display an increase in concentration that correlates with the time of placement and LCL1 construction activities and the net groundwater movement at the site. These trends, coupled with the lack of boron increases and robust engineered construction of the LCL1, indicate that the changes in concentration are not caused by the LCL1, but rather the upgradient gravel and exposed concrete materials used in LCL1 construction.

#### 6.0 **REFERENCES**

- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.
- Cheng et al., 2013. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures.
- Drever, J.I., 1988. The geochemistry of natural waters (Vol. 437). Englewood Cliffs: Prentice Hall.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Co-management of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019c, Updated Statistical Limits with Additional Background Data LCL1.
- Golder Associates Inc., 2019d, Updated Statistical Limits with Additional Background Data LCPB.
- Golder Associates Inc., 2020a, 2019 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.
- Golder Associates Inc., 2020b, Corrective Action Groundwater Monitoring Plan, LCPA Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA
- Golder Associates Inc., 2021, Updated Statistical Limits with Additional Background Data LCPB
- Golder Associates Inc., 2021, 2020 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.

Golder Associates USA, Inc., 2022a, 2021 Annual Groundwater Monitoring Report, LCL1 – Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.

Golder Associates USA, Inc., 2022b, Updated Statistical Limits with Additional Background Data - LCL1

- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- Lamar, J.E. and Shorde, R.S., 1953. Water soluble salts in limestone and dolomites. *Economic Geology*, 48(2), pp.97-112.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.

Reitz & Jens, Inc. 2-14. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.

USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CRF Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal

## Tables

#### November 18, 2022

### Table 1 April 2022 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

|                        |       | BACKG    | ROUND    |                           |                | GROU                      | INDWATER M | IONITORING V              | WELLS     |                           |           |
|------------------------|-------|----------|----------|---------------------------|----------------|---------------------------|------------|---------------------------|-----------|---------------------------|-----------|
| ANALYTE                | UNITS | BMW-1S   | BMW-2S   | Prediction<br>Limit MW-26 | MW-26          | Prediction<br>Limit TMW-1 | TMW-1      | Prediction<br>Limit TMW-2 | TMW-2     | Prediction<br>Limit TMW-3 | TMW-3     |
|                        |       |          |          | April 2022 D              | etection Mor   | nitoring Event            |            |                           | -         |                           |           |
| DATE                   | NA    | 4/6/2022 | 4/6/2022 | NA                        | 4/7/2022       | NA                        | 4/11/2022  | NA                        | 4/11/2022 | NA                        | 4/11/2022 |
| рН                     | SU    | 7.10     | 7.06     | 6.658-7.339               | 6.94           | 6.683-7.105               | 6.95       | 6.42-7.17                 | 6.93      | 6.585-7.07                | 6.82      |
| BORON, TOTAL           | μg/L  | 109      | 55.2 J   | 103                       | 96.8 J         | 121.6                     | 114        | 134.3                     | 110       | 136.9                     | 116       |
| CALCIUM, TOTAL         | μg/L  | 221,000  | 138,000  | 155,150                   | 140,000        | 183,389                   | 165,000    | 205,487                   | 220,000   | 202,001                   | 141,000   |
| CHLORIDE, TOTAL        | mg/L  | 2.5 J    | 2.5 J    | 6.76                      | 5.9 J          | 5.718                     | 2.9 J      | 7.142                     | 11.9      | 8.621                     | 2.5 J     |
| FLUORIDE, TOTAL        | mg/L  | 0.20 J   | 0.19 J   | 0.2118                    | ND             | 0.2975                    | 0.21       | 0.2972                    | ND        | 0.2626                    | 0.20 J    |
| SULFATE, TOTAL         | mg/L  | 38.6     | 45.7     | 38.24                     | 29.0           | 128                       | 91.9       | 115.5                     | 197       | 104                       | 27.8      |
| TOTAL DISSOLVED SOLIDS | mg/L  | 828 J    | 513 J    | 543.7                     | 498            | 733.7                     | 653        | 815.4                     | 975       | 815.4                     | 684       |
|                        |       |          | -        | June 2022 V               | erification Sa | mpling Event              | -          |                           | -         | -                         |           |
| DATE                   | NA    |          |          |                           |                |                           |            |                           | 6/22/2022 |                           |           |
| рН                     | SU    |          |          |                           |                |                           |            |                           |           |                           |           |
| BORON, TOTAL           | μg/L  |          |          |                           |                |                           |            |                           |           |                           |           |
| CALCIUM, TOTAL         | μg/L  |          |          |                           |                |                           |            |                           | 215,000   |                           |           |
| CHLORIDE, TOTAL        | mg/L  |          |          |                           |                |                           |            |                           | 10.0      |                           |           |
| FLUORIDE, TOTAL        | mg/L  |          |          |                           |                |                           |            |                           |           |                           |           |
| SULFATE, TOTAL         | mg/L  |          |          |                           |                |                           |            |                           | 175       |                           |           |
| TOTAL DISSOLVED SOLIDS | mg/L  |          |          |                           |                |                           |            |                           | 940       |                           |           |

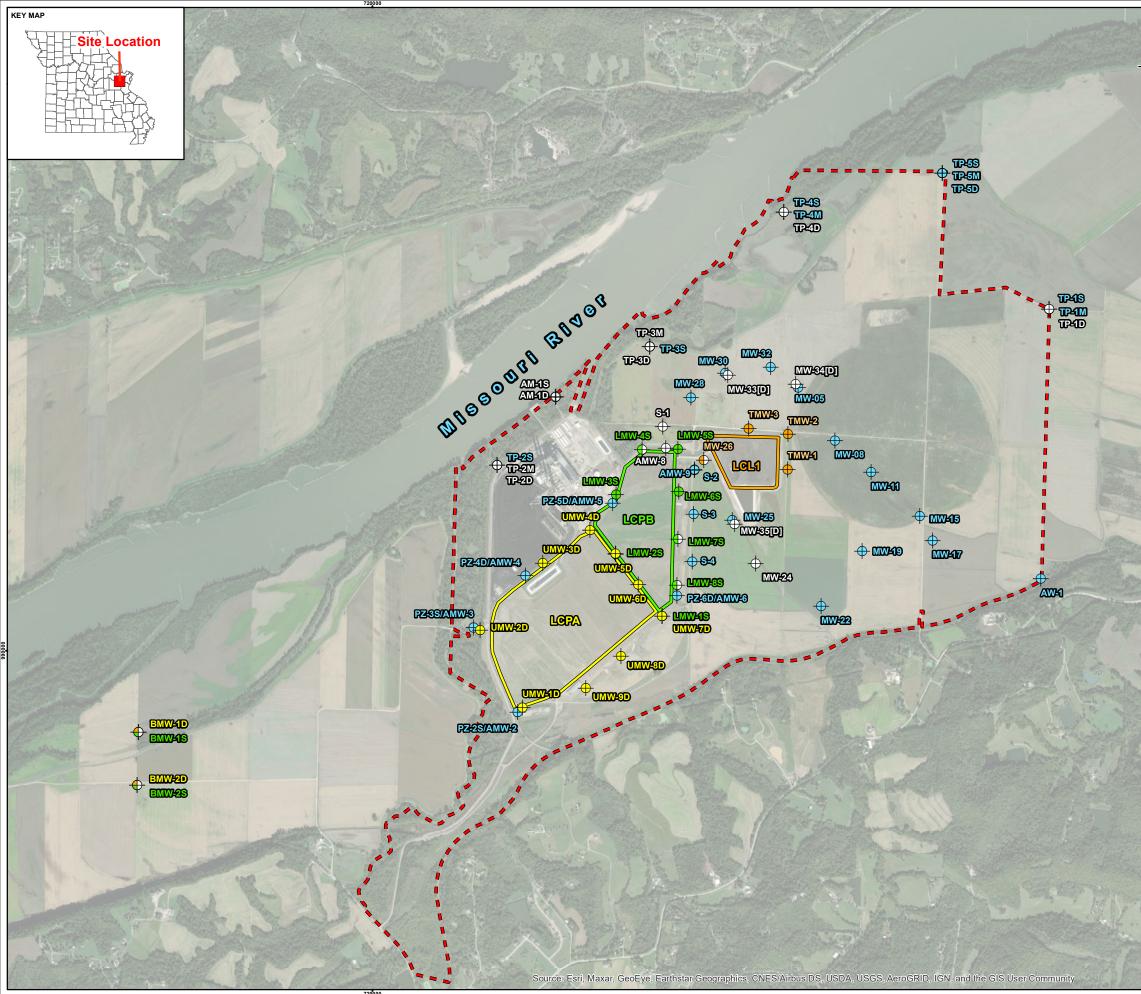
NOTES:

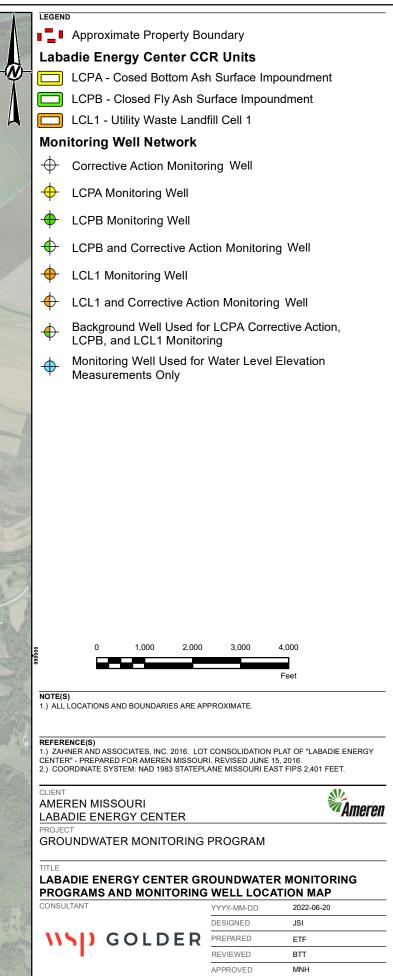
1. Unit Abbreviations:  $\mu g/L$  - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. NA - Not applicable.

4. ND - Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.


5. Prediction Limits calculated using Sanitas Software.


6. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

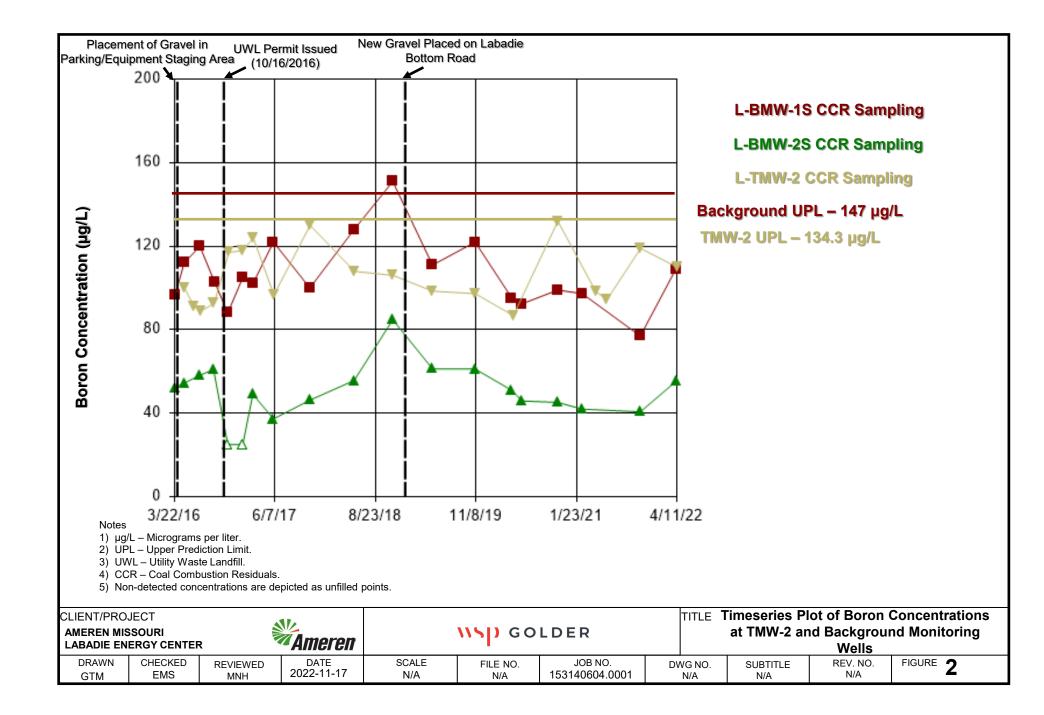
7. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

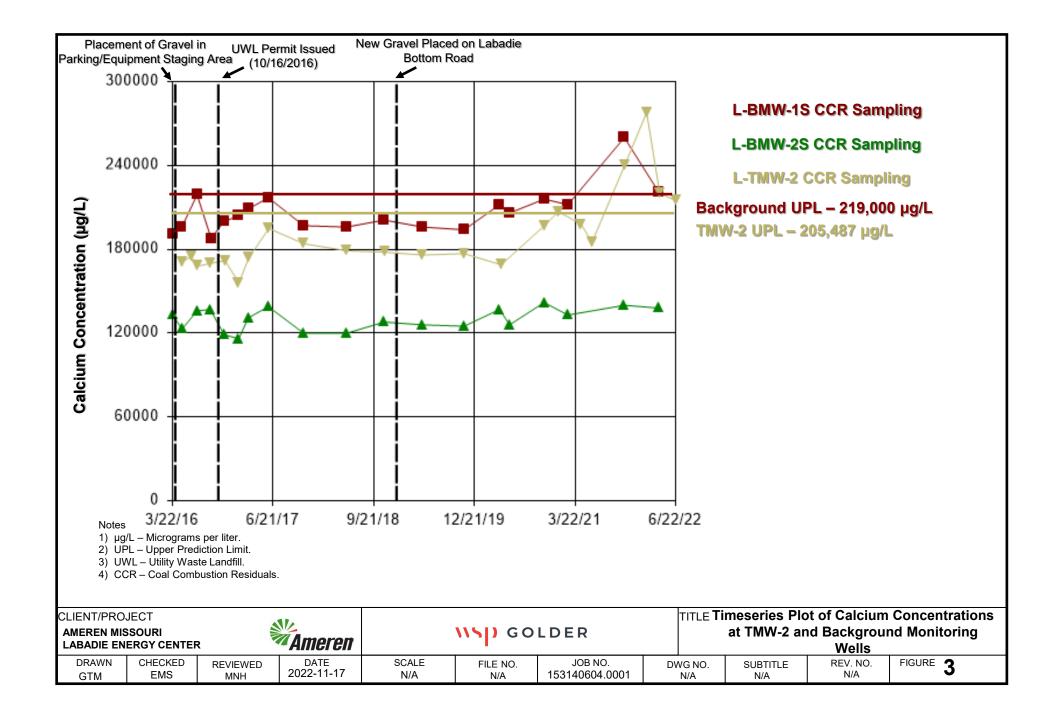
Prepared By: BTT Checked By: GTM Reviewed By: MNH November 18, 2022

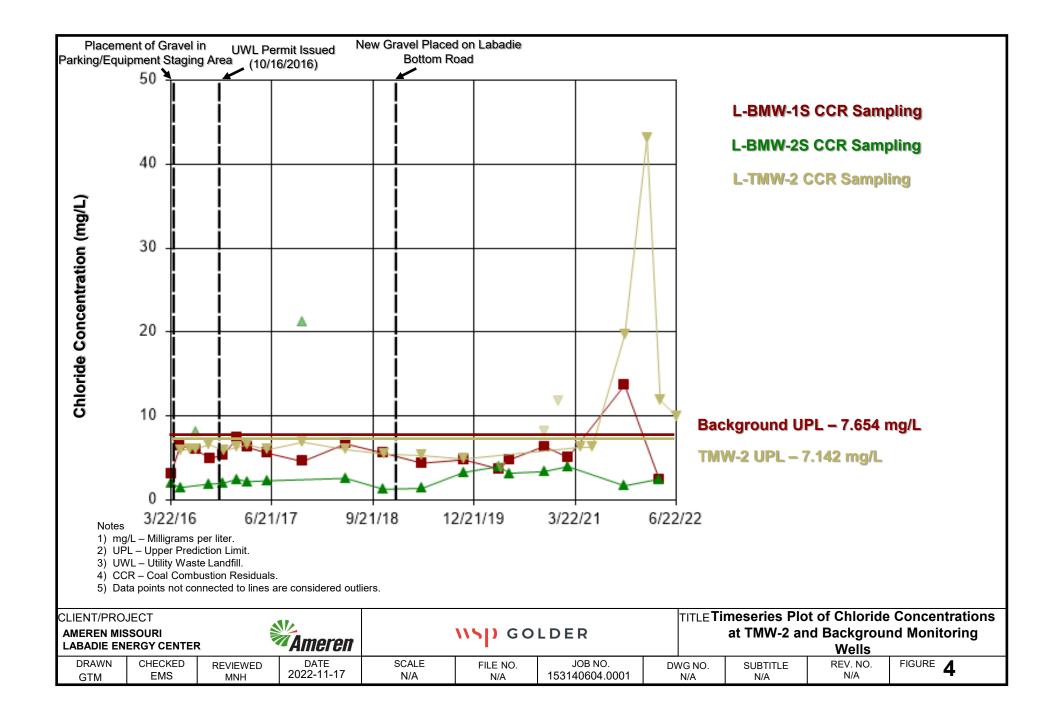
# Figures

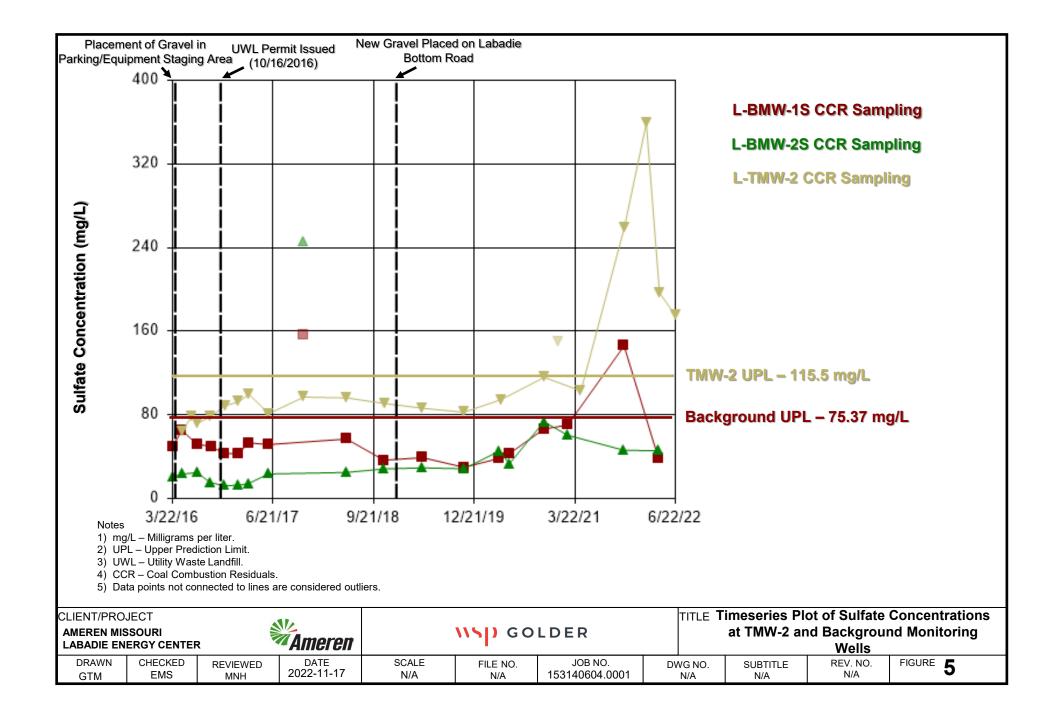


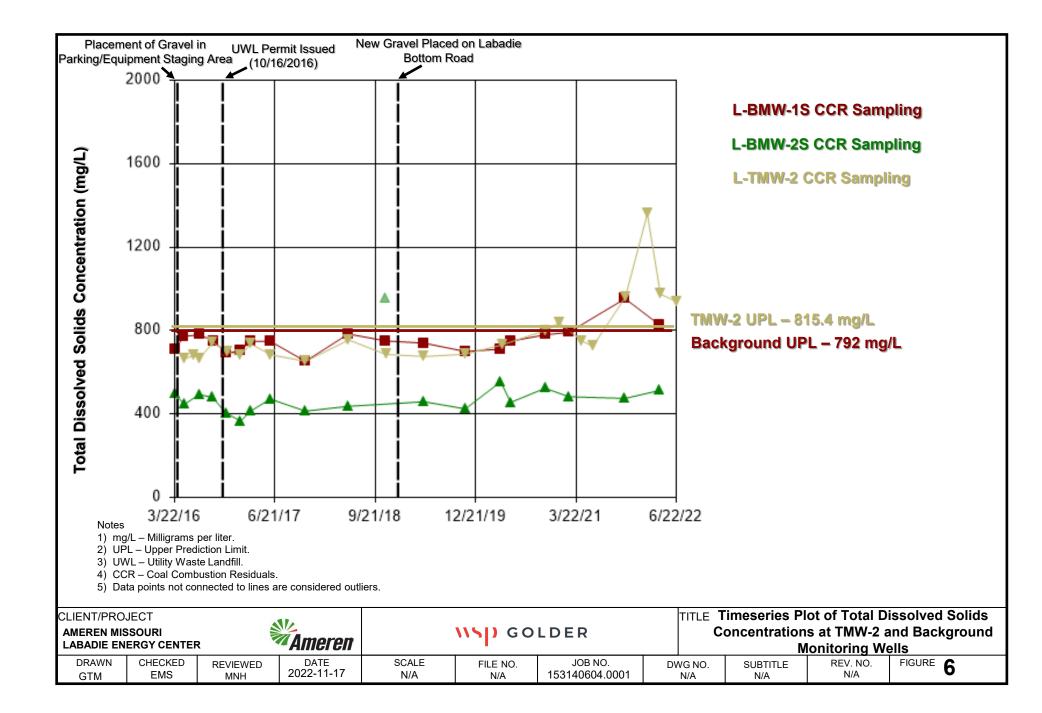


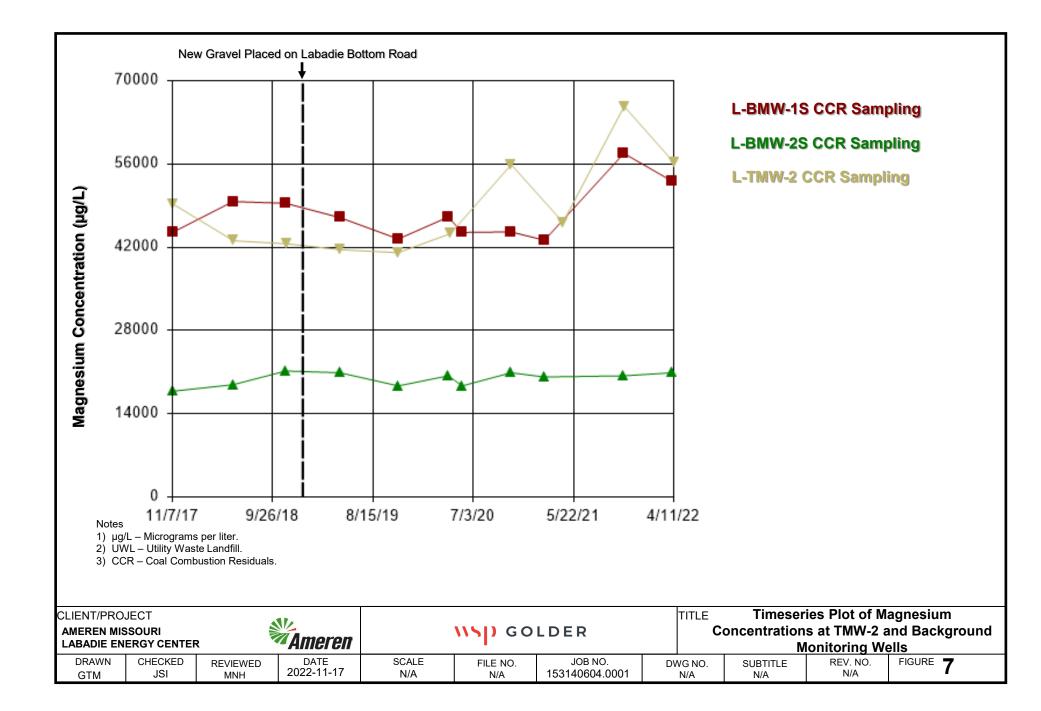

PROJECT NO.

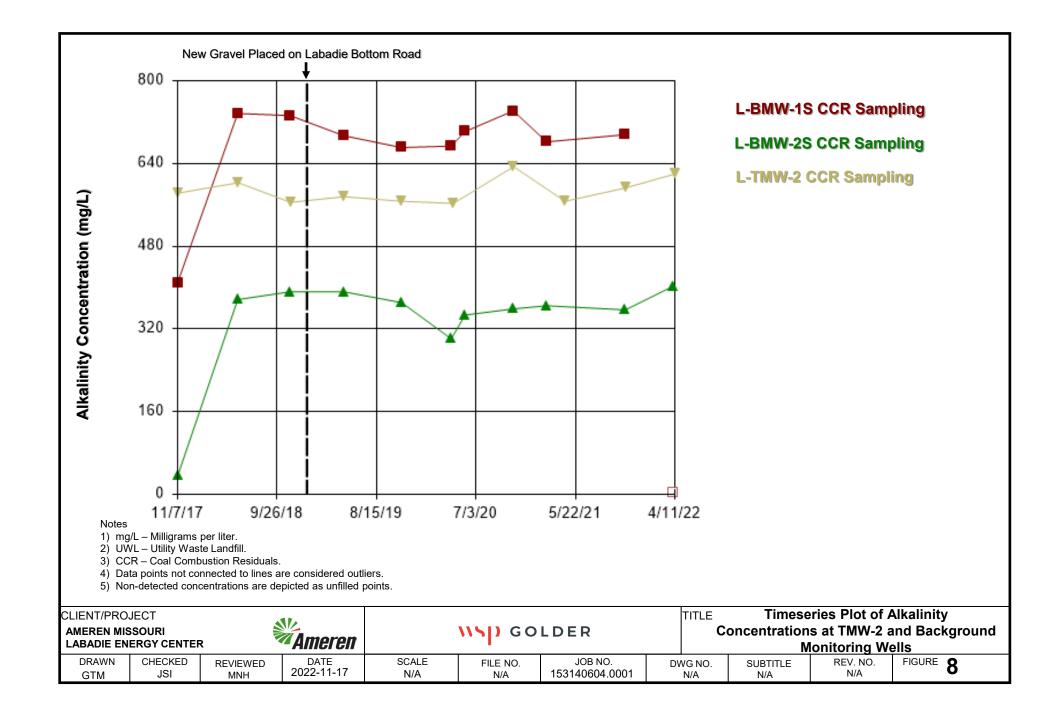

153140604

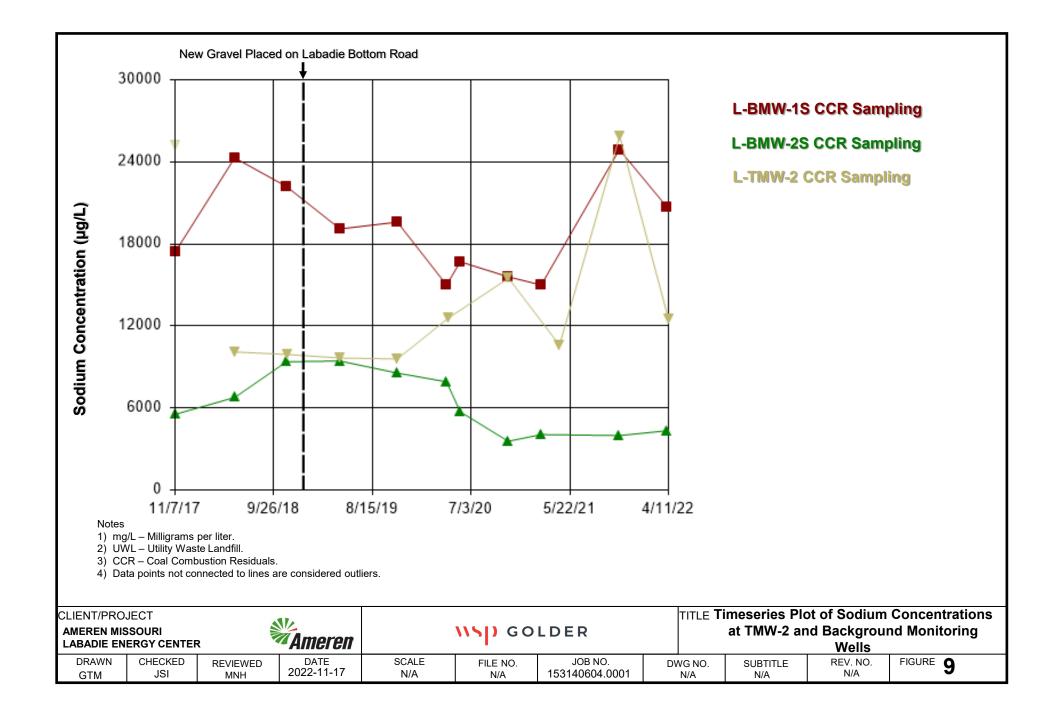

CONTROL

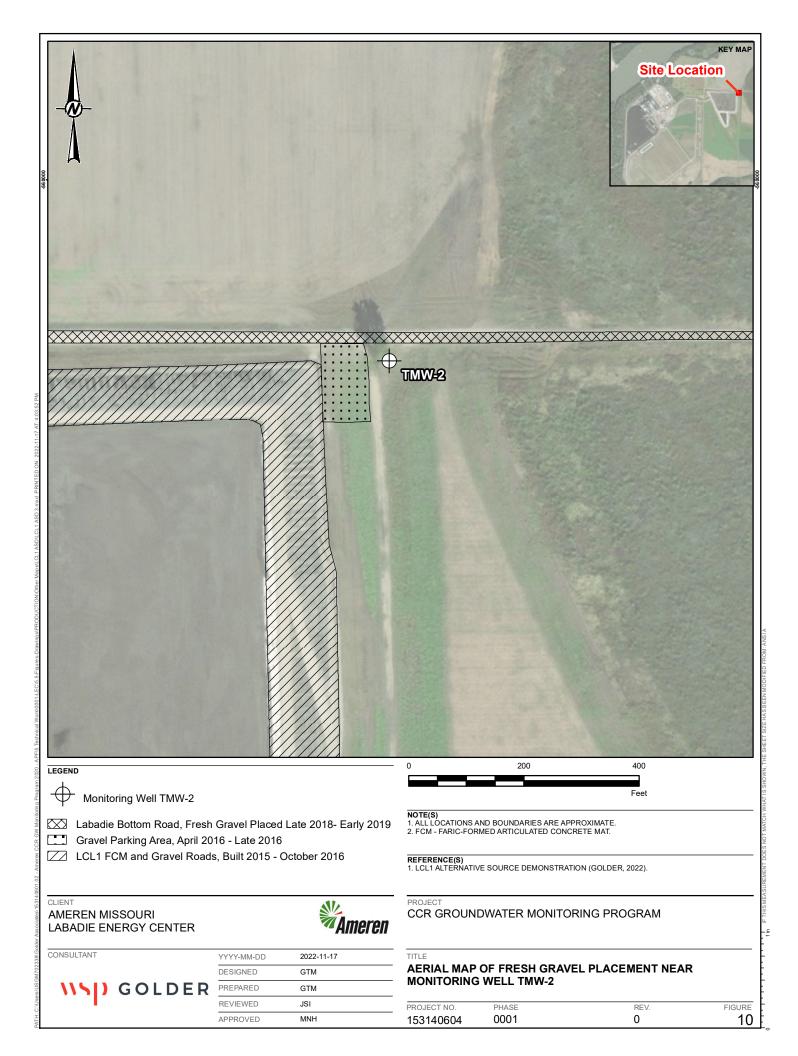

1240


FIGURE



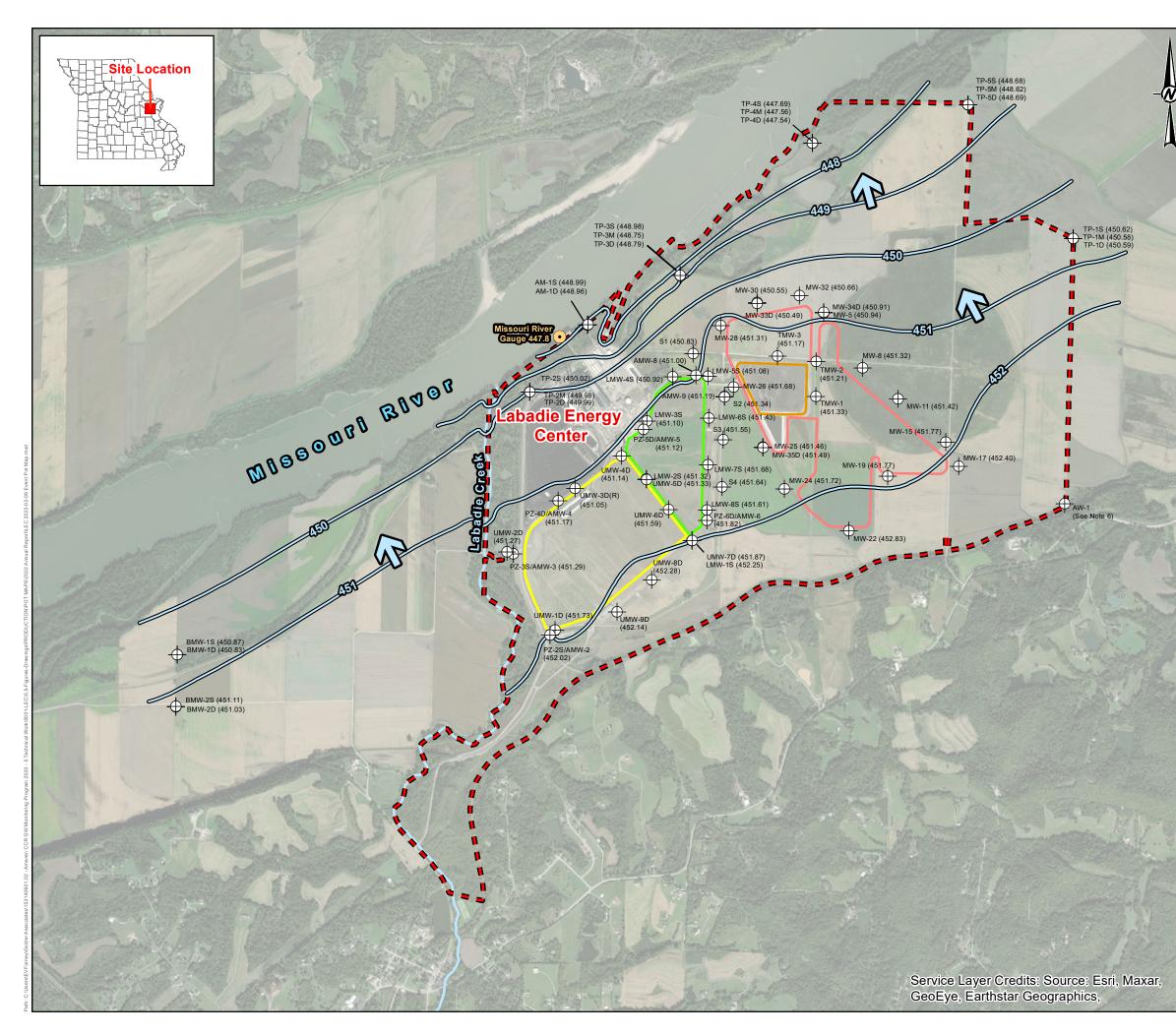



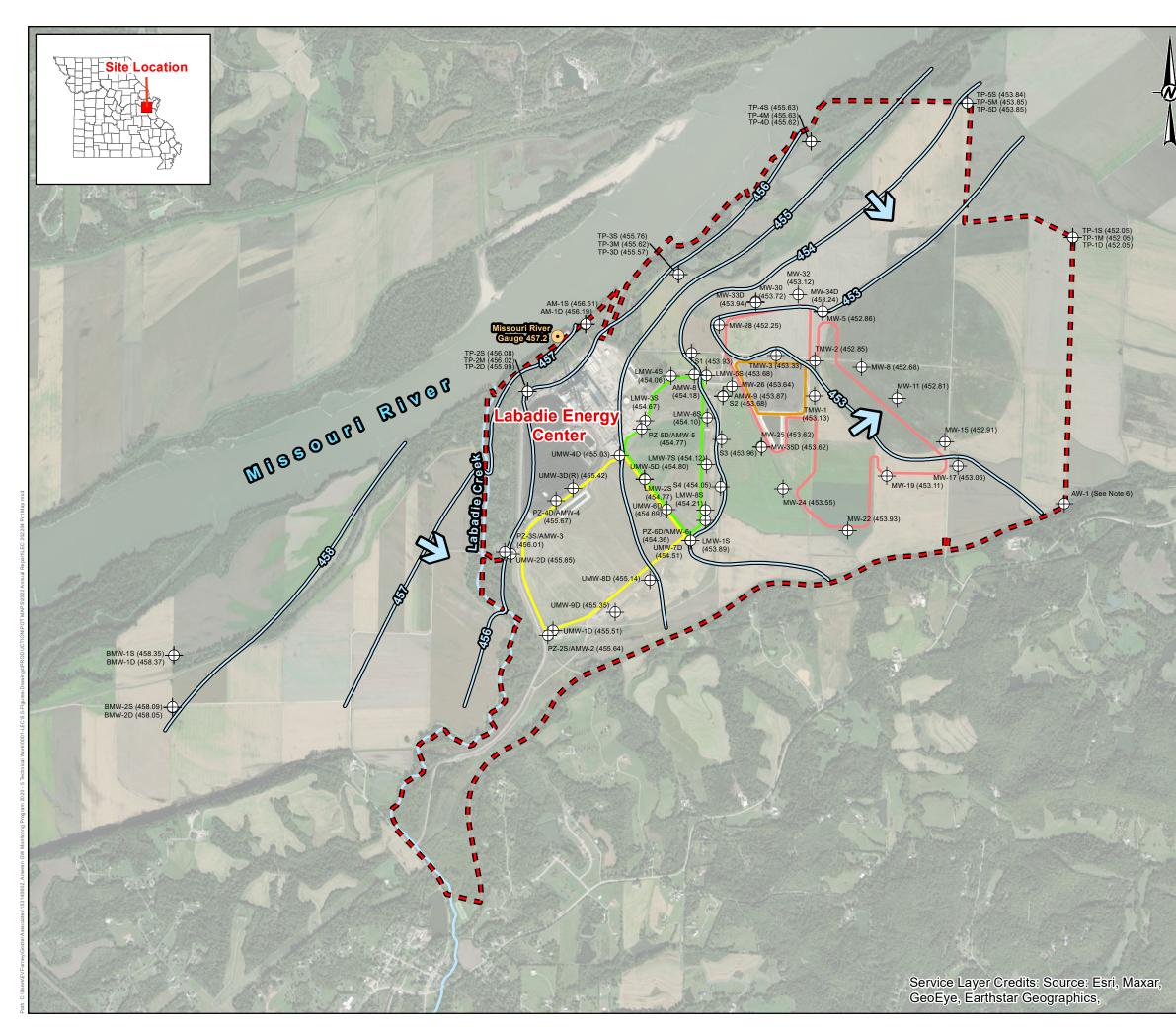



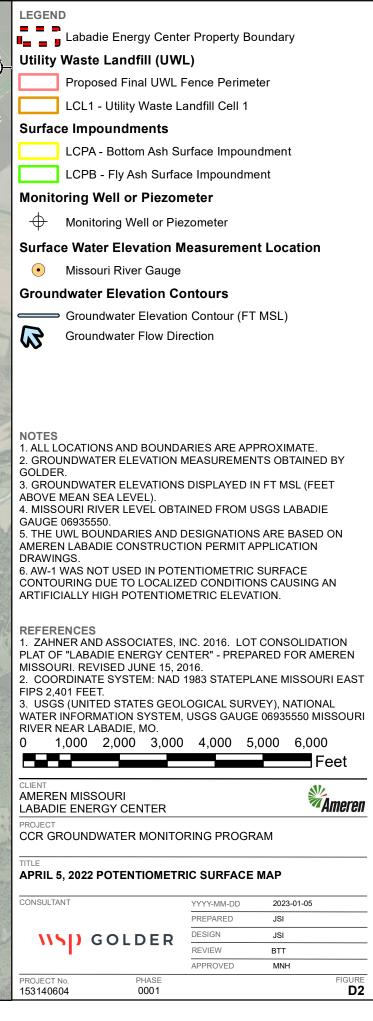




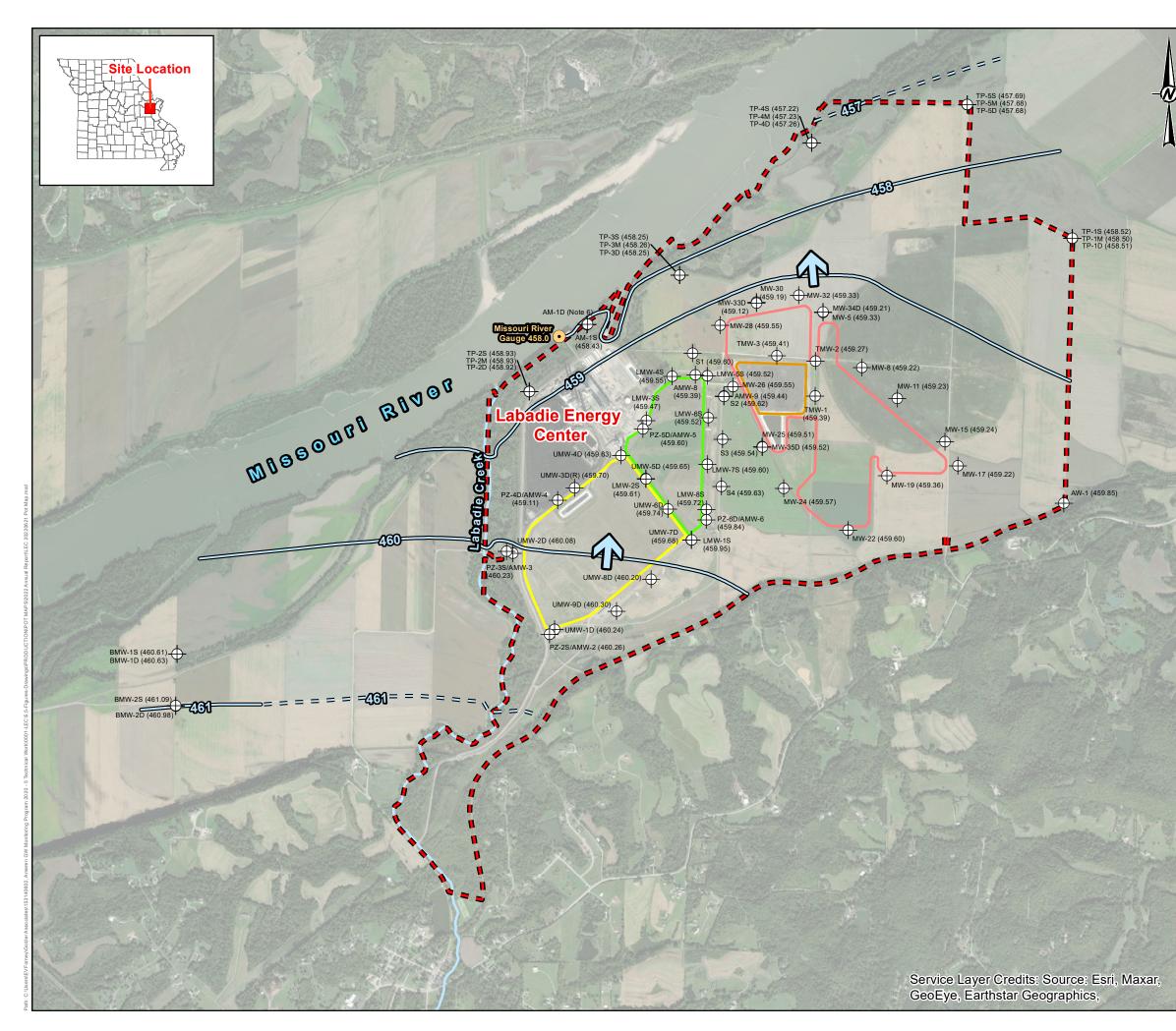





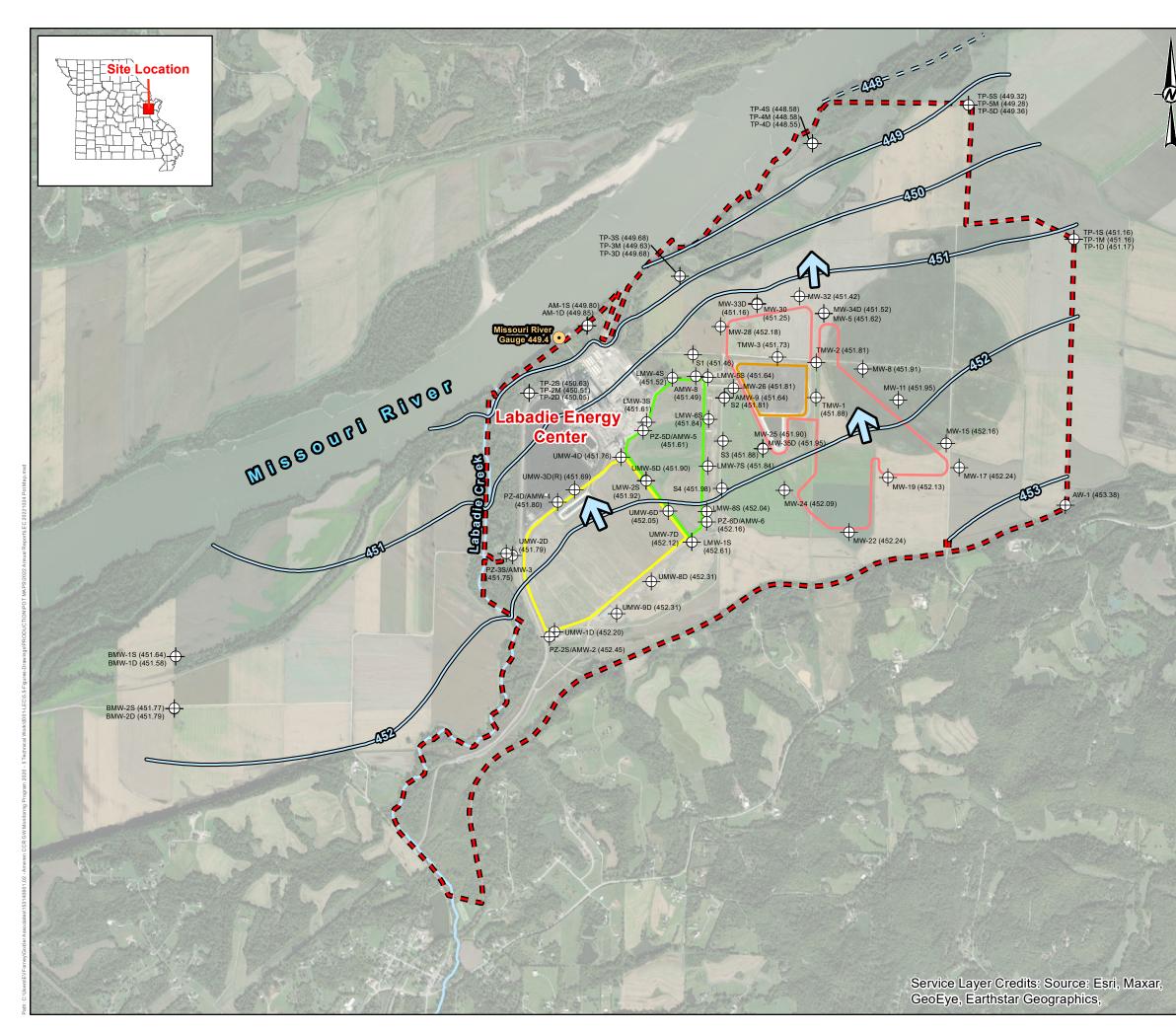





APPENDIX D

# 2022 Potentiometric Surface Maps




| LEGEND                                                     |                |                  |
|------------------------------------------------------------|----------------|------------------|
| Labadie Energy Cente                                       | er Property Bo | oundary          |
| Utility Waste Landfill (UW                                 | L)             |                  |
| Proposed Final UWL                                         | Fence Perime   | eter             |
| LCL1 - Utility Waste L                                     | andfill Cell 1 |                  |
| Surface Impoundments                                       |                |                  |
| LCPA - Bottom Ash Su                                       | urface Impour  | adment           |
| LCPB - Fly Ash Surfac                                      | •              |                  |
|                                                            | ·              | ent              |
| Monitoring Well or Piezon                                  |                |                  |
| Monitoring Well or Pie                                     | zometer        |                  |
| Surface Water Elevation M                                  | leasuremer     | nt Location      |
| Missouri River Gauge                                       |                |                  |
| Groundwater Elevation Co                                   | ontours        |                  |
| Groundwater Elevation                                      | n Contour (FT  | MSL)             |
| = = = Inferred Groundwater                                 |                |                  |
| Groundwater Flow Dir                                       |                | · /              |
| vv                                                         |                |                  |
|                                                            |                |                  |
|                                                            |                |                  |
| NOTES<br>1. ALL LOCATIONS AND BOUNDA                       | ARIES ARE AP   | PROXIMATE        |
| 2. GROUNDWATER ELEVATION I                                 |                |                  |
| GOLDER.<br>3. GROUNDWATER ELEVATIONS                       | DISPLAYED I    | N FT MSL (FEET   |
| ABOVE MEAN SEA LEVEL).<br>4. MISSOURI RIVER LEVEL OBTA     |                |                  |
| GAUGE 06935550.                                            |                |                  |
| 5. THE UWL BOUNDARIES AND I<br>AMEREN LABADIE CONSTRUCT    |                |                  |
| DRAWINGS.<br>6. AW-1 WAS NOT USED IN POTE                  | ENTIOMETRIC    | SURFACE          |
| CONTOURING DUE TO LOCALIZ<br>ARTIFICIALLY HIGH POTENTION   |                |                  |
|                                                            |                |                  |
| REFERENCES                                                 |                |                  |
| 1. ZAHNER AND ASSOCIATES, I<br>PLAT OF "LABADIE ENERGY CEI |                |                  |
| MISSOURI. REVISED JUNE 15, 2<br>2. COORDINATE SYSTEM: NAD  |                | ANE MISSOURI EAS |
| FIPS 2,401 FEET.                                           |                |                  |
| 3. USGS (UNITED STATES GEO<br>WATER INFORMATION SYSTEM,    |                |                  |
| RIVER NEAR LABADIE, MO.<br>0 1,000 2,000 3,000             | 4,000 5        | ,000 6,000       |
|                                                            | 1,000 0        | Feet             |
| CLIENT                                                     |                |                  |
| AMEREN MISSOURI<br>LABADIE ENERGY CENTER                   |                | <b>Mamere</b>    |
| PROJECT                                                    |                | /                |
| CCR GROUNDWATER MONITO                                     | RING PROGF     | AM               |
|                                                            |                |                  |
| FEBRUARY 9, 2022 POTENTIO                                  | METRIC SUR     | FACE MAP         |
| CONSULTANT                                                 | YYYY-MM-DD     | 2022-12-05       |
|                                                            | PREPARED       | GTM              |
| <b>NS</b> ) GOLDER                                         | REVIEW         | JSI<br>SSS/EMS   |
|                                                            | APPROVED       | MNH              |
| PROJECT No. PHASE<br>153140604 0001                        |                | FIGUF            |
|                                                            |                |                  |






1 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFII



| LEGEND                     |                                        |              |                      |
|----------------------------|----------------------------------------|--------------|----------------------|
| La La                      | badie Energy Cente                     | er Property  | Boundary             |
| Utility Wa                 | ste Landfill (UW                       | L)           |                      |
| Pr                         | oposed Final UWL F                     | ence Perir   | neter                |
|                            | L1 - Utility Waste L                   | andfill Cell | 1                    |
| Surface In                 | mpoundments                            |              |                      |
|                            | י<br>PA - Bottom Ash Su                | Irface Impo  | undment              |
|                            | PB - Fly Ash Surfac                    |              |                      |
|                            | g Well or Piezon                       | •            |                      |
| 1                          | onitoring Well or Pie                  |              |                      |
| т                          | ·                                      |              |                      |
|                            | Vater Elevation N                      | leasurem     | ent Location         |
| _                          | ssouri River Gauge                     |              |                      |
|                            | ater Elevation Co                      |              |                      |
|                            | oundwater Elevation                    |              |                      |
|                            | erred Groundwater                      |              | Contour (FT MSL)     |
| Gr Gr                      | oundwater Flow Dire                    | ection       |                      |
|                            |                                        |              |                      |
|                            |                                        |              |                      |
| NOTES                      |                                        |              |                      |
|                            | ATIONS AND BOUNDA<br>WATER ELEVATION N |              |                      |
| GOLDER.<br>3 GROUND        | WATER ELEVATIONS                       |              | ) IN FT MSL (FFFT    |
| ABOVE MEA                  | AN SEA LEVEL).<br>RI RIVER LEVEL OBTA  |              | ,                    |
| GAUGE 069                  | 35550.                                 |              |                      |
|                            | BOUNDARIES AND E<br>BADIE CONSTRUCT    |              |                      |
| DRAWINGS<br>6. GROUND      | WATER ELEVATION (                      | COULD NOT    | BE COLLECTED         |
|                            | HOURS OF OTHER EI<br>ION AT AM-1D.     | LEVATIONS    | DUE TO AN            |
| obornoor                   |                                        |              |                      |
| REFERENC                   |                                        |              |                      |
| PLAT OF "LA                |                                        | NTER" - PRE  | PARED FOR AMEREN     |
|                            | REVISED JUNE 15, 2<br>NATE SYSTEM: NAD |              | PLANE MISSOURI EAST  |
| FIPS 2,401 F<br>3. USGS (U | FEET.<br>NITED STATES GEOL             | OGICAL SU    | RVEY). NATIONAL      |
| WATER INF                  |                                        |              | GE 06935550 MISSOURI |
| 0 1,00                     | ,                                      | 4,000        | 5,000 6,000          |
|                            |                                        |              | Feet                 |
|                            |                                        |              | N/                   |
|                            | NERGY CENTER                           |              | Ameren               |
| PROJECT<br>CCR GROU        | INDWATER MONITO                        | RING PRO     | GRAM                 |
| TITLE                      |                                        |              |                      |
|                            | 022 POTENTIOMET                        |              | CE MAP               |
| CONSULTANT                 |                                        | YYYY-MM-DD   | 2023-01-05           |
|                            |                                        | PREPARED     | ETF                  |
| <b></b>                    | GOLDER                                 | DESIGN       | ETF                  |
| l '                        |                                        | APPROVED     | GTM<br>MNH           |
| PROJECT No.<br>153140604   | PHASE<br>0001                          |              | FIGURE<br>D3         |
| 100140004                  |                                        |              |                      |



| LEGENI             | )                                           |                    |                 |
|--------------------|---------------------------------------------|--------------------|-----------------|
| ╸╸╸<br>╵╸╺╴╹       | Labadie Energy Cen                          | ter Property Bo    | oundary         |
| Utility            | Waste Landfill (UV                          | VL)                |                 |
|                    | Proposed Final UWL                          | Fence Perime       | ter             |
|                    | LCL1 - Utility Waste                        | Landfill Cell 1    |                 |
| Surfac             | e Impoundments                              |                    |                 |
|                    | LCPA - Bottom Ash S                         | Surface Impour     | idment          |
|                    | LCPB - Fly Ash Surfa                        | ace Impoundm       | ent             |
| Monito             | ring Well or Piezo                          | meter              |                 |
| $\oplus$           | Monitoring Well or Pi                       | iezometer          |                 |
| Surfac             | e Water Elevation                           |                    | t Location      |
| •                  | Missouri River Gauge                        |                    |                 |
| _                  | dwater Elevation 0                          |                    |                 |
|                    | Groundwater Elevation                       |                    | MSL)            |
|                    | Inferred Groundwate                         |                    |                 |
|                    | Groundwater Flow Di                         |                    |                 |
| Ś                  |                                             |                    |                 |
|                    |                                             |                    |                 |
|                    |                                             |                    |                 |
| NOTES<br>1. ALL LO | DCATIONS AND BOUND                          | OARIES ARE API     | PROXIMATE.      |
| 2. GROU<br>GOLDEF  | NDWATER ELEVATION                           | MEASUREMEN         | ITS OBTAINED BY |
|                    | NDWATER ELEVATION<br>MEAN SEA LEVEL).       | IS DISPLAYED II    | N FT MSL (FEET  |
| 4. MISSO           | DURI RIVER LEVEL OB<br>06935550.            | TAINED FROM U      | ISGS LABADIE    |
| 5. THE U           | WL BOUNDARIES AND                           |                    |                 |
| DRAWIN             | I LABADIE CONSTRUC<br>GS.                   | TION PERMITA       | PPLICATION      |
|                    |                                             |                    |                 |
|                    |                                             |                    |                 |
| REFERE             | INCES                                       |                    |                 |
|                    | ER AND ASSOCIATES,<br>"LABADIE ENERGY CE    |                    |                 |
| MISSOU             | RI. REVISED JUNE 15,<br>RDINATE SYSTEM: NAD | 2016.              |                 |
| FIPS 2,4           |                                             |                    |                 |
| WATER              | NFORMATION SYSTEM                           |                    |                 |
|                    | EAR LABADIE, MO.<br>,000 2,000 3,00         | 0 4,000 5          | ,000 6,000      |
|                    |                                             |                    | Feet            |
| CLIENT             |                                             |                    | SV/             |
|                    | N MISSOURI<br>E ENERGY CENTER               |                    | Mameri Ameri    |
| PROJECT            |                                             |                    | AM              |
|                    |                                             |                    |                 |
|                    | ER 24, 2022 POTENTIC                        |                    | ACE MAP         |
|                    |                                             | YYYY-MM-DD         | 2023-01-05      |
| CONSULTA           | NT                                          |                    |                 |
| CONSULTA           | NT                                          | PREPARED           | ETF             |
| CONSULTA           |                                             | PREPARED<br>DESIGN | JSI             |
|                    |                                             | PREPARED           |                 |

1 II IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MO

wsp.com

