

40 CFR PART 257 GROUNDWATER MONITORING PLAN

LCPA, Labadie Energy Center

Franklin County, Missouri, USA

Submitted To: Ameren Missouri

1901 Chouteau Avenue St. Louis, Missouri 63103

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

Distribution: 1 Electronic Copy

Ameren Missouri 1 Hard Copy **Golder Associates**

Date: October 10, 2017

Project No.153-1406

Table of Contents

1.0	IN٦	RODUCTION	1
2.0	SIT	E SETTING	2
2.1	(Coal Combustion Residuals (CCR) LCPA Surface Impoundment	2
2.2	. (Geology	2
2	2.2.1	Physiographic Setting and Regional Geology	2
2	2.2.2	Local Geology	3
2.3		Site Hydrogeology	3
2	2.3.1	Uppermost Aquifer	3
2	2.3.2	Surface Water and Groundwater Elevations	4
	2.3.	2.1 CCR Surface Impoundment Water	4
	2.3.	2.2 Alluvial Aquifer	4
2	2.3.3	Groundwater Flow Directions	5
	2.3.	3.1 Horizontal Gradients	6
	2.3.	3.2 Vertical Gradients	6
2	2.3.4	Hydraulic Conductivities	7
2	2.3.5	Porosity and Effective Porosity	8
3.0	GR	OUNDWATER MONITORING NETWORK	9
3.1	ľ	Monitoring Network Design Criteria	9
3.2	. [Design of the Groundwater Monitoring System	9
(3.2.1	Preferential Migration Pathway Analysis	9
3.3	(Groundwater Monitoring Well Placement	10
3	3.3.1	Background/Upgradient Monitoring Well Locations	10
3	3.3.2	Downgradient Monitoring Well Locations	10
3	3.3.3	Groundwater Monitoring Well Screen Intervals	10
4.0	INS	STALLATION OF THE GROUNDWATER MONITORING SYSTEM	11
4.1	[Orilling Methods and Monitoring Well Constructions	11
4.2	. (Groundwater Monitoring Well Development	11
4.3		Dedicated Pump Installation	11
4.4		Surveying and Well Registration	12
5.0	GR	OUNDWATER MONITORING PROGRAM	13
5.1	E	Baseline Sampling Events	13
5.2	. [Detection Monitoring	13
į.	5.2.1	Sampling Constituents and Monitoring Frequency	13
ţ	5.2.2	Data Evaluation and Response	13
5.3	i A	Assessment Monitoring	13

i

5.3.1 Sampling Constituents and Monitoring Frequency	14
5.3.2 Data Evaluation and Response	14
5.3.2.1 Responding to a SSL	14
5.3.3 Annual Reporting Requirements	15
6.0 GROUNDWATER SAMPLING METHODOLOGY	17
6.1 Equipment Calibration	17
6.2 Monitoring Well Inspection	17
6.3 Water Level Measurement	17
6.4 Monitoring Well Purging	17
6.4.1 Low-Flow Sampling Technique	18
6.4.2 Traditional Purge Techniques	18
6.4.3 Low Yielding Wells	19
6.5 Sample Collection	19
6.6 Equipment Decontamination	19
6.7 Sample Preservation and Handling	19
6.8 Chain-of-Custody Program	20
6.8.1 Sample Labels	20
6.8.2 Sample Seal	20
6.8.3 Field Forms	20
6.8.4 Chain-of-Custody Record	21
6.9 Temperature Control and Sample Transportation	22
7.0 ANALYTICAL AND QUALITY CONTROL PROCEDURES	23
7.1 Data Quality Objectives	23
7.2 Quality Assurance/Quality Control Samples	24
7.2.1 Field Equipment Rinsate Blanks	24
7.2.2 Field Duplicates	24
7.2.3 Field Blank	24
7.2.4 Laboratory Quality Control Samples	24
8.0 DATA EVALUATION AND STATISTICAL ANALYSIS	26
8.1 Evaluation of Rate and Direction of Groundwater Flow	26
8.2 Data Validation	26
8.3 Statistical Analysis	26
9.0 REFERENCES	27

iii

List of Tables

Table 1	Groundwater Level Data
Table 2	Generalized Hydraulic Properties of Uppermost Aquifer
Table 3	CCR Monitoring Well Hydraulic Conductivities
Table 4	Monitoring Well Construction Details
Table 5	Groundwater Quality Monitoring Parameters
Table 6	Analytical Methods and Practical Quantitation Limits

List of Figures

Figure 1	Site Location Topographic Map
Figure 2	Site Location Aerial Map and Monitoring Well Locations
Figure 3	Generalized Cross-Section

List of Appendices

Appendix A	CCR Monitoring Well Boring Logs
Appendix B	Historic Potentiometric Surface Maps
Appendix C	Potentiometric Surface Maps From Background CCR Sampling Events
Appendix D	Grain Size Distribution
Appendix E	CCR Monitoring Well Construction Diagrams
Appendix F	Well Development Forms
Appendix G	CCR MDNR Well Certification Forms
Appendix H	Statistical Analysis Plan
Appendix I	Example Field Forms

This Groundwater Monitoring Plan (GMP) presents information on the design of the groundwater monitoring system, groundwater sampling and analysis procedures, and groundwater statistical analysis methods for the Bottom Ash Surface Impoundment (LCPA) at Ameren Missouri's (Ameren) Labadie Energy Center (Facility) in Franklin County, Missouri (see location on Figure 1). The LCPA is an on-site surface impoundment and manages Coal Combustion Residuals (CCR) from the Facility. The LCPA is approximately 154 acres in size and is located to the south of the generating plant.

1

This GMP was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of an existing CCR Surface Impoundment to install a groundwater monitoring system and develop a sampling and analysis program (§§ 257.90 - 257.94). Ameren Missouri has determined that the LCPA Surface Impoundment is subject to the requirements of the CCR Rule. For this GMP, the Labadie Energy Center generating plant is referred to as the LEC and the LEC and its surrounding facilities, including the Surface Impoundment, are referred to as the Facility or Site.

2.0 SITE SETTING

Ameren owns and operates the Facility in Franklin County, Missouri located approximately 35 miles west of downtown St. Louis. **Figure 1** depicts the location of the Facility and property boundaries referenced to local topographic features and the Missouri River. **Figure 2**, depicts Facility structures relative to site property boundaries and the Missouri River. The Facility encompasses approximately 2,400 acres and is located within the Missouri River Valley. The Facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land and to the south by a railroad line and bedrock bluffs.

2

The LCPA is bounded to the north by the LEC, which is at an elevation of at least 490 feet above mean sea level (MSL). Directly to the east are two additional CCR Units, the Fly Ash Surface Impoundment (LCPB) and the Utility Waste Landfill (UWL), which both have berm elevations above 488 feet MSL. To the south of the LCPA are lower elevation agricultural fields ranging from approximately 465 to 475 feet MSL. South of the railroad, bedrock bluffs rise to an elevation of over 550 feet MSL. The western side of the surface impoundment is bounded by a forested area and Labadie Creek, which flows north to the Missouri River.

2.1 Coal Combustion Residuals (CCR) LCPA Surface Impoundment

The LCPA is located in the floodplain of the Missouri River to the south of the LEC and is constructed with perimeter berms at an elevation of approximately 494 feet MSL, which is above the 100-year flood elevation of 484 feet MSL. Both fly ash and bottom ash have been historically managed and stored in this Surface Impoundment. Construction drawings indicate that the base depth of CCR in the LCPA extends down to an elevation of approximately 400 feet MSL in the deepest portions of the CCR Unit.

2.2 Geology

2.2.1 Physiographic Setting and Regional Geology

The Facility area lies along the northeast margin of the Salem Plateau, a subsection of the Ozark Physiographic Province (USGS, 1994). In this region, the Salem Plateau is mainly comprised of Ordovician dolomite, limestone, and sandstone formations. To the northwest of the Labadie Bottoms area, the Salem plateau transitions into the geologically younger Mississippian and Pennsylvanian subsystems that are regionally known as glaciated plains (GREDELL Engineering Resources, Inc. (GREDELL) and Reitz & Jens, Inc. (Reitz & Jens), 2011). The approximate boundary between these two systems is the Missouri River, which is interpreted as being an ice-margin stream during the latest glacial epoch and defined the approximate southernmost progression of glaciation.

2.2.2 Local Geology

The geology immediately surrounding the Facility is composed of two distinctly different geological terrains; (1) floodplain deposits of the Missouri River Valley and (2) older sedimentary bedrock formations. Most of the Facility, including all of the plant infrastructure, the Surface Impoundments, and UWL lies within the Missouri River Valley, locally referred to as the Labadie Bottoms. The Missouri River Valley in this region is an approximately 2 to 3 mile wide area of floodplain with alluvial deposits (alluvium) that are the result of the water flow and deposition from the Missouri River. Based on the Surficial Material Geologic Map of the Labadie 7.5' quadrangle (Butler and Siemens, 2010), borings logged by Golder during the installation of the CCR monitoring well network and borings conducted during the Detailed Site Investigation (DSI) (GREDELL and Rietz & Jens, 2011), the alluvial deposits are typically comprised of sands and gravels with lesser amounts of silts and clays, generally resulting in an overall fining-upward sequence. Boring logs for the CCR monitoring well network are provided in **Appendix A**.

3

The depth of the alluvial deposits near the surface impoundment typically range from approximately 90 to 110 feet below ground surface (BGS) (365 to 385 feet MSL) with total depths in the area as deep as 135 feet BGS and becoming shallower towards the bluffs to the south based on site specific borings. Sedimentary bedrock underlies the alluvial deposits.

Bluffs to the south, as well as bedrock underlying the floodplain alluvial deposits, are comprised of relatively flat-lying Ordovician-aged limestones, sandstones and dolomites. In progression from youngest to oldest, these deposits consist of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites (Starbuck, 2010; GREDELL and Reitz & Jens, 2011). In deep wells, the Roubidoux Formation and the underlying Gasconade Dolomite can be found at depths of approximately 530-764 feet BGS (GREDELL and Reitz & Jens, 2011).

2.3 Site Hydrogeology

Site hydrogeology has been characterized based on information obtained from 127 piezometers and borings installed by GREDELL and Reitz & Jens (2011) to support a DSI conducted for the Labadie UWL, the CCR groundwater monitoring wells installations completed by Golder, and 36 monitoring wells installed around the perimeter of the UWL in 2013 and 2014 by Reitz and Jens for state required UWL groundwater monitoring. **Figure 3**, provides a generalized north-south depiction of the Surface Impoundment referenced to local geology, groundwater, and the Missouri River.

2.3.1 Uppermost Aquifer

The CCR Rule requires that a groundwater monitoring system be completed in the uppermost aquifer around each CCR Surface Impoundment (§257.91(a)). As shown on **Figure 3**, the uppermost aquifer

beneath all of the CCR impoundments and landfills is the alluvial deposits consisting primarily of alluvial sands with some silt, clay, and gravel associated with the Missouri River Valley alluvium. This alluvium overlies Ordovician-aged sedimentary bedrock formations. As generally described above, these alluvial deposits typically exhibit a fining-upward sequence with some silts and clays present within the shallow zone and mostly coarse sands and gravels present at depth.

4

2.3.2 Surface Water and Groundwater Elevations

2.3.2.1 CCR Surface Impoundment Water

LCPA pond gauge readings were collected concurrently with groundwater measurements from each of the 8 initial background sampling events (baseline events). During this time, LCPA pond levels ranged from approximately 484 to 487 feet MSL. These elevations were approximately 18 to 31 feet above the natural groundwater elevations surrounding the pond. The difference between the pond level and the natural groundwater elevation is greatest when the Missouri River level is low. Data show water mounding within the LCPA regardless of the river level; however, the mounding is less pronounced at times of high river level.

2.3.2.2 Alluvial Aquifer

Groundwater elevations within the alluvial aquifer in the Labadie bottoms area have been obtained in several different studies. As a part of the DSI for the UWL, groundwater elevations were obtained in 100 piezometers located within the alluvial aquifer approximately 2,500 feet to the east of LCPA from December 2009 to November 2010. These piezometers were all located in the alluvial aquifer and had screen intervals ranging from approximately 428 to 452 feet MSL. Groundwater elevation measurements ranged from approximately 456 to 469 feet MSL during this time period. However, during any single round of groundwater level measurements, the aquifer potentiometric surface was relatively flat, with the surface variability in any round of groundwater level measurements ranging from approximately 1 to 4 feet across all of the piezometers. Potentiometric Surface Maps displaying these results are provided in **Appendix B**.

Water level measurements were also collected at 36 monitoring wells during four background sampling events for the UWL from 2013-2014 (GREDELL and Reitz & Jens, 2013a, 2013b, 2013c, and 2014). During this timeframe, groundwater elevations ranged from approximately 448 to 459 feet MSL.

Golder obtained groundwater elevation measurements from March 2016 through May 2017 within the alluvial aquifer for the CCR monitoring wells. For each of the 8 baseline sampling events, groundwater elevations were measured at monitoring wells within a 24-hour timeframe and a potentiometric map was generated from these data (**Appendix C and Table 1**). Groundwater elevations ranged from approximately 453 feet MSL to 467 feet MSL.

2.3.3 Groundwater Flow Directions

Groundwater flow within the alluvial aquifer is dynamic and is influenced by seasonal changes in the water level in the adjacent Missouri River. River water levels measured at the Facility display large seasonal changes in the elevation of the Missouri River water surface. For example, from April 2015 to July 2017, river water levels fluctuated between approximately 451 and 474 feet MSL. Water flows into and out of the alluvial aquifer as a result of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Under normal aquifer conditions, groundwater flow in the alluvial aquifer would be expected to have a flow direction component toward the river and a flow component away from the bluffs, with a likely net flow direction generally to the north.

5

Although the movement of groundwater within the alluvial aquifer at the Facility is complex, the movement has been characterized by frequent groundwater elevation measurements and the generation of potentiometric surface maps generated by GREDELL, Rietz & Jens and Golder (**Appendix B**, **Appendix C and Table 1**). The potentiometric surface maps display some variability in the groundwater flow direction. These changes in flow direction are related to the level within the adjacent Missouri River.

In addition to the DSI potentiometric surface maps, additional groundwater analysis was also completed as a part of the UWL Construction Permit Application (GREDELL and Rietz & Jens, 2014). These analyses calculated the net groundwater flow velocity and direction from December 2009 until November 2010. During this timeframe, groundwater located near proposed UWL cells 1 & 2 was calculated to have a net annual velocity of approximately 12 feet per year with a bearing of 33 (North-northeast). Groundwater located near UWL cells 3 & 4 was calculated to have a net annual flow velocity of approximately 15 feet per year with a bearing of approximately 67 (East-northeast). The UWL results also displayed that groundwater flow direction was highly variable from month to month depending on Missouri River conditions with overall flow directions ranging from a west-northwesterly direction to a southeasterly direction.

Groundwater flow direction and hydraulic gradient were estimated for the CCR wells using the EPA's Online Tool for Site Assessment (USEPA, 2016). Estimated results from this analysis using groundwater elevations within the CCR monitoring wells are provided in **Table 2**. These results indicate that while groundwater flow direction is variable, overall net groundwater flow during the baseline sampling period was generally towards the north/north-northwest, flowing from the bluffs toward the river.

Based on the potentiometric surface maps, a general flow direction from the south (bluffs area) to the north (Missouri River) under normal river conditions is expected. However, during periods of high river levels, groundwater flow can temporarily reverse and flow southward. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease and little net movement of groundwater to the south occurs.

Horizontal and vertical groundwater flow within the uppermost aquifer has been locally influenced by operation of the LCPA Surface impoundment. Ponding of water in the LCPA at elevations greater than the static water levels in the underlying alluvial aquifer groundwater create a localized mounding effect, resulting in localized downward gradients and localized radial groundwater flow downward and outward from the impoundment.

2.3.3.1 Horizontal Gradients

Horizontal groundwater gradients in the alluvial aquifer are typically low and flat. The gradients are very dependent on river water levels (bank recharge and bank discharge conditions described earlier). Horizontal flow gradients calculated for the UWL DSI ranged from 0.000002 to 0.0035 feet/foot. The DSI indicates that the higher gradients were observed closer to the Missouri River and reflect localized river influence and are not representative of site-wide conditions farther from the river. Gradients calculated as a part of the UWL monitoring display similar results to the DSI with groundwater gradients ranging from 0.000002 to 0.00756 feet/foot.

Site-wide horizontal gradients were also calculated for each of the CCR groundwater baseline sampling events and the results of these are displayed on **Table 2**. The horizontal groundwater gradients are low, ranging from 0.0002 to 0.0006 feet/foot.

A review of the potentiometric surface maps confirms the gradient estimates for a larger scale, but also demonstrates that localized horizontal gradients can be higher especially in areas near the Missouri River.

2.3.3.2 Vertical Gradients

A review of downward gradients observed in piezometers was completed by comparing groundwater elevations obtained by GREDELL and Rietz & Jens DSI, as well as by Golder's initial baseline sampling data. This analysis was completed between shallow and intermediate/deep zone piezometer locations where the piezometers are nested (two or more piezometers in close proximity, screened at different elevations). From the review of these data, areas away from the LCPA show relatively variable vertical gradients that fluctuate between upward and downward with no consistent vertical gradient present between shallow and deeper zones of the alluvial aquifer. Areas adjacent to the LCPA (LMW-1S vs UMW-7D and LMW-2S vs UMW-5D) demonstrate a downward gradient. While results vary, overall gradients are typically downward ranging up to 0.4 feet difference between the groundwater levels.

Downward gradients within the LCPA pond and the underlying alluvial groundwater zone are much greater, based on a review of water elevation measurements and the pond gauge levels. This downward gradient changes seasonally based on river levels and fluctuating alluvial aquifer groundwater levels. During high river level conditions, the difference in groundwater elevation between the LCPA pond and the deeper

alluvial groundwater zone has been as low as approximately 18 feet during the baseline sampling period. During low river level conditions, the difference in groundwater elevation has been shown to be as much as approximately 31 feet between the deeper alluvial groundwater zone and the LCPA pond.

7

2.3.4 Hydraulic Conductivities

In-situ hydraulic conductivity tests (slug tests) were conducted as part of the DSI within the shallow portion of the alluvial aquifer in the area of the UWL. The hydraulic conductivity in the area is highly dependent of the geology present within the screening interval of the piezometer. Estimates of the hydraulic conductivity within the aquifer were made using data acquired from slug tests in 25 piezometers. The calculated hydraulic conductivity of the fluvial sediments ranges from 1.01 x 10⁻² to 4.81 x 10⁻² centimeters/second with an average value of 2.49 x 10⁻² centimeters/second. Generally, there is a tendency toward higher hydraulic conductivity values where the screened interval intersects with relatively coarse-grained sands interpreted as channel deposits. For relatively homogenous flood plain/levee sequences containing fine-grained sediments, calculated values are demonstrably lower. Similarly, in piezometers where the screen interval intersects finer-grained, clayey backswamp/cut-off deposits, the DSI indicates lower hydraulic conductivity values were measured.

Groundwater flow velocities were calculated as a part of the DSI using these hydraulic conductivity values, hydraulic gradients, and an estimated value for effective porosity (Table 8 of the DSI). The DSI suggests a representative range of prevailing groundwater movement at the Site is between 0.1 and 10 feet per year, depending on hydraulic conductivity and effective porosity.

Golder also performed rising head hydraulic conductivity tests on the 11 newly installed CCR monitoring wells used to monitor the LCPA, in order to estimate the hydraulic conductivities in February to April, 2016. The tests were conducted using a pneumatic slug (Hi-K slug) and a downhole pressure transducer. The results of Golder's hydraulic conductivity testing estimated the geometric mean of hydraulic conductivity to be approximately 1.8 x 10⁻² cm/sec for the CCR groundwater monitoring wells at LCPA. Golder's findings for hydraulic conductivity values are summarized below in **Table 3** and are consistent with the conductivities calculated in the DSI.

Estimated groundwater flow velocities were calculated using the CCR monitoring well hydraulic conductivity, hydraulic gradients and an estimated value for effective porosity (**Table 2**). Using these values, groundwater flow velocities are estimated to range between 0.05 and 0.08 feet per day, and average approximately 20 feet per year.

Table 3: CCR Monitoring Well Hydraulic Conductivities

Well ID	Total Depth (FT BTOC)	Well Screen Interval (feet BTOC)	Well Screen interval (feet MSL)	Estimated Hydraulic Conductivity (feet/day)	Estimated Hydraulic Conductivity (cm/sec)					
LCPA Bottom Ash Surface Impoundment Monitoring Wells										
UMW-1D	92.32	82.1 - 91.9	397.8 - 407.6	55	1.9E-02					
UMW-2D	82.36	72.2 - 82.0	402.9 - 412.7	44	1.5E-02					
UMW-3D	92.49	82.3 - 92.1	398.5 - 408.3	37	1.3E-02					
UMW-4D	97.22	87.0 - 96.8	398.1 - 407.9	56	2.0E-02					
UMW-5D	98.77	88.6 - 98.4	398.4 - 408.2	56	2.0E-02					
UMW-6D	96.00	85.8 - 95.6	400.6 - 410.4	59	2.1E-02					
UMW-7D	67.36	57.2 - 67.0	402.8 - 412.6	37	1.3E-02					
UMW-8D	72.63	62.4 - 72.2	397.2 - 407.0	60	2.1E-02					
UMW-9D	71.95	61.8 - 71.6	399.1 - 408.9	37	1.3E-02					
Background	Background Monitoring Wells									
BMW-1D	73.20	63.0 - 72.8	400.7 - 410.5	100	3.5E-02					
BMW-2D	71.59	61.4 - 71.2	403.2 - 413.0	41	1.5E-02					

8

Notes:

- 1. ft BTOC feet below top of casing
- 2. ft MSL feet above mean sea level
- 3. ft/day feet per day
- 4. cm/sec centimeters per second
- 5. Slug tests were completed by Golder Associates using a Pneumatic Hi-K Slug®

2.3.5 Porosity and Effective Porosity

Porosities were estimated based on the grain size distributions of an aquifer soil sample collected during monitoring well drilling. A representative grain size distribution was collected from the screen interval at UMW-6D using the ASTM D6912 Method B and the results are provided in **Appendix D**. The sample from UMW-6D was similar in field classification to other well drilling samples and the results indicate that the screened interval of the alluvial aquifer are mostly comprised of sand (at least 85%) with lesser amounts of gravel, silt and clay. Also, the typical grain size of the sand ranges from medium to coarse sand. Textbook values of porosities for sands and sand/gravel mixes range from 25-50% (Fetter, 2000 and Freeze and Cherry, 1979) and fine sands typically range from 29-46%, whereas coarse sands typically range from 26-43% (Das, 2008). An average porosity of 35% is estimated for the alluvial aquifer based on the site data.

Effective porosity is the porosity that is available for fluid flow. Studies completed in unconsolidated sediments have determined that water molecules pass through all pores and the effective porosity is approximately equal to the total porosity (Fetter, 2000). Therefore, the effective porosity of the alluvial aquifer is also estimated to be 35%.

3.0 GROUNDWATER MONITORING NETWORK

3.1 Monitoring Network Design Criteria

§257.91 of the CCR Rule sets out the requirements for development of a groundwater monitoring system for both new and existing CCR landfills and Surface Impoundments. The performance standard in the CCR Rule (§257.91(a)) states that the groundwater monitoring system must consist of a sufficient number of wells at appropriate locations to yield groundwater samples in the uppermost aquifer that accurately represent:

9

- The quality of background groundwater
- The quality of groundwater passing the waste boundary of the CCR unit

3.2 Design of the Groundwater Monitoring System

The detection monitoring well network for the Facility is depicted on **Figure 2**. The network consists of 11 monitoring wells screened in the uppermost aquifer for the purpose of monitoring the LCPA Surface Impoundment. The monitoring well network includes 2 background groundwater monitoring wells (BMW-1D and BMW-2D) that are located approximately 1.5 to 2 miles west of the surface Impoundment in areas unaffected by CCR disposal. Nine (9) of the groundwater monitoring wells are placed ringing the LCPA and are considered to be the downgradient/compliance wells. The groundwater monitoring well locations were selected based on site-specific information presented in section 2.0 of this document, as well as the preferential migration pathway analysis below.

3.2.1 Preferential Migration Pathway Analysis

After detailed review of the information outlined in section 2.0 of this document, a preferential migration pathway for potential groundwater impacts coming from the Surface Impoundment was determined. The preferential migration pathway is a result of downward gradients created by the water level in the Surface Impoundment compared to the surrounding groundwater levels. The movement of constituents from within the Surface Impoundment will be downward and outward from the impoundment, and generally move in the overall downgradient direction toward the Missouri River. The groundwater gradient and the rate of groundwater movement will be variable depending on the river water elevations.

Ash within the Surface Impoundment extends down to an average base elevation of approximately 400 feet MSL. Subsurface materials beneath and around the ash consist of a thick deposit of mostly alluvial sand and gravel (see **Figure 3**) that comprise the alluvial aquifer, which is more permeable than the ash. Migration of potential CCR impacts from the ash into the uppermost aquifer will follow the path of least resistance and the generally coarser sediments in the deeper alluvial aquifer zone with its potential for

higher hydraulic conductivity and the downward gradient beneath the pond presents the highest potential for migration of impacts.

10

3.3 Groundwater Monitoring Well Placement

3.3.1 Background/Upgradient Monitoring Well Locations

As described above, the flow of groundwater in the alluvial aquifer is generally from the bluffs area located south of the site toward the Missouri River to the north, however, alluvial aquifer flow is locally influenced by water levels in the LCPA and the Missouri River level. The CCR Rule (§257.91(a)(1)) requires that background groundwater samples from the uppermost aquifer "Accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit."

As shown in **Figure 2**, the background monitoring wells BMW-1D and BMW-2D are west of the LCPA at a location approximately 2,000 to 3,000 from the Missouri River. These wells provide background groundwater quality representative of upgradient Missouri River influences on the alluvial aquifer.

3.3.2 Downgradient Monitoring Well Locations

As discussed above, downgradient monitoring wells are located ringing the LCPA to monitor potential migration pathways. **Figure 2** shows that the downgradient well network consists of 9 groundwater monitoring wells (UMW-1D, UMW-2D, UMW-3D, UMW-4D, UMW-5D, UMW-6D, UMW-7D, UMW-8D, UMW-9D) around the LCPA at locations that are located as close to the waste boundary as practical.

3.3.3 Groundwater Monitoring Well Screen Intervals

The system of monitoring wells ringing the Surface Impoundment are screened in the alluvial aquifer zone near the base elevation of CCR. Details on the construction of the groundwater monitoring wells are provided in **Table 4**, and **Appendix E**. Screen intervals range from approximately 396 to 413 feet MSL in sandy alluvial deposits.

4.0 INSTALLATION OF THE GROUNDWATER MONITORING SYSTEM

The CCR Rule Groundwater Monitoring System for the LCPA was installed in November 2015 and February 2016 as described in the following subsections.

11

4.1 Drilling Methods and Monitoring Well Constructions

Cascade Drilling LP installed the monitoring wells using a rotosonic drill rig (Mini Sonic CDD 1415) under direct supervision of a Golder Geologist or Engineer. Continuous soil core samples were obtained at each well borehole location and were logged in the field by Golder. Soils were classified according to the Unified Soil Classification System. Boring logs and well construction diagrams are provided in **Appendix A**, and **Appendix E**, respectively.

Groundwater monitoring wells were installed in accordance with Missouri Department of Natural Resources (MDNR) Well Construction Rules (10 CSR 23-4.060 Construction Standards for Monitoring Wells). All groundwater monitoring wells were installed with 2-inch diameter PVC well riser pipe and 10-foot long, 0.010-inch machine slotted well screens. Wells were installed with a sand filter pack, bentonite seal, and annular space in accordance with MDNR Well Construction Rules. Details on the construction of the groundwater monitoring wells are provided in **Table 4** and **Appendix E**.

Monitoring wells were completed with an aluminum protective cover with a locking lid that extends approximately 2 to 3 feet above ground surface and a small concrete pad. Yellow protective posts (concrete filled steel bollards) have been installed around each monitoring well.

4.2 Groundwater Monitoring Well Development

After well construction, a Golder geologist or engineer developed groundwater monitoring wells using surging and purging techniques. During development, field parameters (pH, conductivity, temperature, and turbidity) were recorded and development was complete once a minimum of three well-bore volumes of water were purged, turbidity was typically less than 20 nephelometric turbidity units (NTU) or ± 10% and consecutive measurements of field parameter values were within 10 percent difference. Groundwater monitoring wells were developed using an inertial pump with a surge block ring attached to a foot valve to surge and purge the well. Well development forms are attached in **Appendix F**.

4.3 Dedicated Pump Installation

A dedicated pump was installed in each groundwater monitoring well after development and hydraulic conductivity testing. The dedicated pumps provide a consistent, repeatable sampling method to reduce likelihood of cross-contamination, reduce water sample turbidity, and expedite sampling. For the purposes

12

of this groundwater monitoring network, low-flow QED brand PVC MicroPurge bladder pumps with Dura-Flex Teflon bladders were installed in each well.

4.4 Surveying and Well Registration

Zahner and Associates, Inc., a Professional Land Surveyor licensed in Missouri, surveyed the location and top of casing elevation of the monitoring wells. A drawing showing the location of the groundwater monitoring wells is shown in **Figure 2** and a summary of survey information is provided in **Table 4**. Upon completion of monitoring well installation and surveying, MDNR Well Construction Registration Forms were prepared for each well and submitted to MDNR. Copies of these forms are provided in **Appendix G**.

5.0 GROUNDWATER MONITORING PROGRAM

The groundwater monitoring program for the LCPA Surface Impoundment is described in the following sections.

13

5.1 Baseline Sampling Events

In accordance with section 257.94(b) of the CCR Rule, before starting detection monitoring, eight baseline (or background) samples were collected for all Appendix III and Appendix IV parameters at all downgradient and upgradient/background monitoring wells prior to October 17, 2017. These samples establish initial baseline datasets that are used for the statistical evaluation of groundwater results.

5.2 Detection Monitoring

The Detection Monitoring Program is defined in the CCR Rule in section 257.94 and the following sections outline the procedures for the detection monitoring program.

5.2.1 Sampling Constituents and Monitoring Frequency

Detection monitoring should be completed at a minimum of semi-annually (approximately every 6 months) for all Appendix III constituents (**Table 5**), unless a demonstration that the need for an alternative monitoring schedule is required. **Table 6**, lists the analytical methods and practical quantitation limits used for the monitoring program.

5.2.2 Data Evaluation and Response

As required in the CCR Rule, a statistical evaluation of the groundwater data must be completed within 90 days of receiving data from the laboratory. The data will be analyzed using the methods and procedures outlined in the statistical analysis plan (**Appendix H**).

5.3 Assessment Monitoring

Assessment monitoring is outlined in section 257.95 of the CCR Rule and is initiated after a confirmed SSI has been identified and no alternate source demonstration has been completed. In accordance with the CCR Rule, a notification must be prepared and placed within the Facility operating record and on the publically available website stating that an Assessment Monitoring program has been initiated. The purpose of Assessment Monitoring is to determine whether or not groundwater concentrations are at a Statistically Significant Level (SSL) compared to Groundwater Protection Standards (GWPS). Detection Monitoring sampling continues during Assessment Monitoring.

5.3.1 Sampling Constituents and Monitoring Frequency

As outlined in section 257.95 of the CCR rule, Assessment Monitoring groundwater sampling must begin within 90 days of a confirmed SSI determination. Sampling must be completed at all monitoring wells used in the detection monitoring program, for all Appendix IV analytes (**Table 5**). Within 90 days of receiving data from this initial Assessment Monitoring sampling event, a second sampling event must be completed analyzing the Appendix IV constituents detected in groundwater during the initial sampling event.

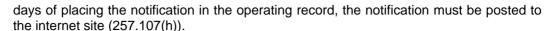
14

Following this initial phase of the Assessment Monitoring Program, the CCR Rule requires sampling of the full list of Appendix IV constituents on an annual basis (Annual Assessment Event). During the other semi-annual Assessment Sampling Event, only those Appendix IV constituents that are detected during the annual sampling event are to be analyzed and reported. Additionally, verification resampling will be performed within 90 days of receiving data from the laboratory for all detected Appendix IV constituents for each event.

5.3.2 Data Evaluation and Response

As required in the CCR Rule, a statistical evaluation of the groundwater data must be completed within 90 days of receiving data from the laboratory. The data will be analyzed using the methods and procedures outlined in the Statistical Analysis Plan (**Appendix H**).

A GWPS is required for each Appendix IV constituent and must be included in the annual report. The GWPS will be either the MCL or a value based on background data, whichever is higher. The generation of the GWPS is discussed in more detail in the Statistical Analysis Plan (**Appendix H**). Statistical analysis must be completed within 90 days of receiving data from the laboratory. The statistical analysis will determine if any constituents are SSLs greater than the GWPS.


In order to discontinue Assessment Monitoring and return to Detection Monitoring, the concentration of all Appendix III and Appendix IV constituents for all compliance wells must be at levels statistically lower than background levels for two consecutive sampling events (257.95(e)). If any constituent is present at a statistical level above background levels, but below the GWPS, then Assessment Monitoring continues.

5.3.2.1 Responding to a SSL

If the Assessment Monitoring statistical evaluations demonstrate that a SSL has been triggered, then the owner/operator of the CCR unit must complete the following four actions as described in 257.95(g):

1. Prepare a notification identifying the constituents in Appendix IV that have exceeded a CCR Unit specific GWPS. This notification must be placed in the facility operating record within 30 days of identifying the SSL (257.95(g)) and 257.105(h)). Additionally, within 30

15

- 2. Define the character and extent of the release and any relevant site conditions that may affect the corrective action remedy that is ultimately selected. The characterization must be sufficient to support a complete and accurate assessment of the corrective measures necessary to effectively clean up releases from the CCR Unit and must include at least the following: (No timeframe is specified in the CCR Rule for this action)
 - A. Installation of additional monitoring wells that are necessary to define the contaminant plume
 - B. Collect data on the nature and estimated quantity of the material released
 - C. Install and sample at least one additional monitoring well at the facility boundary in the direction of the contaminant plume migration
- 3. Notify off-site property owners if the contamination plume has migrated offsite on to their property within 30 days of this determination.
- 4. If possible, provide an alternate source demonstration that determines that the SSL is not caused by a release at the facility within 90 days of completing the statistical evaluation. If no alternate source demonstration can be made and the plume is determined to have originated from the CCR Unit, then proceed to corrective action steps in the CCR Rule.
 - D. If no alternate source demonstration is made, and the CCR Unit is an unlined surface impoundment, the closure or retrofit must be initiated.

Actions 1-3 must be completed regardless of whether or not an alternate source demonstration can be made.

5.3.3 Annual Reporting Requirements

In addition to the periodical reporting listed above, an annual groundwater monitoring report will be prepared according to the requirements of 40 CFR §257.90(e). At a minimum, the annual groundwater monitoring report will contain the following information:

- The current status of the groundwater monitoring program
- A projection of key activities planned for the upcoming year
- A map showing the CCR unit and all background (or upgradient) and downgradient monitoring wells included in this monitoring plan
- A discussion of any monitoring wells that were installed or decommissioned during the preceding year or any other changes made to the groundwater monitoring system
- Analytical results from groundwater sampling
- The monitoring data obtained under §§ 257.90 through 257.98, including a summary of the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels)

■ If required, an alternate source demonstration that is certified by a professional engineer

16

- If required, a demonstration that an alternate sampling frequency is needed
- If assessment monitoring is required, a listing of GWPS for each Appendix IV constituent

6.0 GROUNDWATER SAMPLING METHODOLOGY

Sampling will be performed in accordance with generally accepted practices within the industry and with the provisions of Missouri regulations. The following sections provide details regarding procedures that will be used to collect groundwater samples. Although this section provides reference to specific forms, the use of other equivalent forms to record the necessary data is permissible.

17

6.1 Equipment Calibration

Equipment used to record field water quality parameters will be calibrated each day prior to use following manufacturers' recommendations. Calibration solutions for standardization materials will be freshly prepared or from non-expired stock. In the absence of manufacturer or regulatory guidance, field equipment should be calibrated to within +/- 10 percent of the standard (or 0.1 standard units for pH meters). Equipment that fails calibration may not be used. Calibration records will be maintained. A sample field Instrument Calibration Form is included in **Appendix I**.

6.2 Monitoring Well Inspection

Prior to performing any water purging or sampling, each monitoring well will be inspected to assess its integrity. The condition of each monitoring well will be evaluated for any physical damage or other breach of integrity. The security of each monitoring well will be assessed in order to confirm that no outside source constituents have been introduced to the monitoring well.

6.3 Water Level Measurement

To meet the requirements of §257.93(c), water level measurements will be taken at all monitoring wells and prior to the start of any groundwater purging. These measurements will be taken within a 24 hour period and will be recorded on the Record of Water Level Readings form or Groundwater Sample Collection Form (included in **Appendix I**). Static water levels will be measured in each monitoring well prior to purging using an electric meter accurate to 0.01-foot. The measuring probe will be rinsed with distilled or deionized water before and after use at each well.

6.4 Monitoring Well Purging

Prior to collecting samples, each monitoring well will be purged. Purging will be accomplished using either:

- Low-flow (a.k.a., minimal drawdown, or Micropurge) techniques
- Traditional purging techniques where at least three well volumes are evacuated before samples are collected

6.4.1 Low-Flow Sampling Technique

Low-flow groundwater sampling procedures will be used for purging and sampling monitoring wells that are equipped with dedicated pumps and will sustain a pumping rate of at least 100 milliliters per minute (ml/min). Water will be purged from these wells at low rates in order to minimize drawdown in the well during purging and sampling. Depth to water measurements and field water quality parameters (temperature, pH, turbidity, and conductivity) recorded during purging will be used as criteria to determine when purging has been completed. Sample collection will be initiated immediately after purging at each well.

18

During water purging, wells will be pumped at rates that minimize drawdown in the well. Purging rates in the range of 100-500 ml/min typically will be used; however, higher rates may be used if sustained by the well. Stabilization of the water column will be considered achieved when three consecutive water level measurements vary by 0.3-foot or less at a pumping rate of no less than 100 ml/min (USEPA, 2010).

At a minimum, field water quality parameter measurements of temperature, pH, turbidity, and conductivity, will be measured during purging at each well. Prior to collecting the initial set of field water quality parameters, the water in the sampling pump and discharge tubing (i.e., pump system volume) remaining from the previous sampling event will be removed.

After evacuating the water in the pump system, collecting field measurements will begin. Depth to water measurements and field water quality parameter measurements will be made during purging. If a field meter equipped with a flow cell is used, an amount of water equal to the volume of the flow cell should be allowed to pass through the flow cell between individual field stabilization measurements. Stabilization will be attained and purging considered complete when three consecutive measurements of each field parameter vary within the following limits:

- ± 0.2 for pH
- ± 3% for Conductivity
- ± 10% for Temperature
- Less than 10 nephelometric turbidity units (NTU) or ± 10% for Turbidity

All data gathered during monitoring well purging will be recorded on a form, an example of which is included in **Appendix I**.

6.4.2 Traditional Purge Techniques

If low-flow sampling is not performed, wells will be purged a minimum of 3 well volumes before collecting a sample. Purging procedures will generally follow those for low-flow sampling including measurement of the field parameters listed above with two exceptions:

- Higher flow rate may be used during purging
- Purging is completed after a minimum of 3 well volumes have been removed (see below)

19

Even where low-flow sampling is not performed, the sampling goals are to:

- Stabilize field parameters (listed in previous section) prior to collecting samples
- Minimize drawdown in the well

When traditional purge techniques are used, field stabilization measurements will be collected at the beginning of purging and between each well volume purged. The stability criteria will be those described above for low-flow sampling.

6.4.3 Low Yielding Wells

If a monitoring well purges dry, it will be allowed to recover up to 24 hours before samples are collected. No additional purging will be performed after initially purging the monitoring well dry. If recharge is insufficient to fill all necessary sample bottles, samplers will note this on the field form, and fill as many sample bottles as possible.

6.5 Sample Collection

Sampling should take place immediately after purging is complete. Samples will be transferred directly from field sampling equipment into containers supplied by the analytical laboratory appropriate for the constituents being monitored as listed in **Table 6**. Sample containers will be kept closed until the time each set of sample containers is filled.

6.6 Equipment Decontamination

All non-dedicated field equipment that is used for purging or sample collection shall be cleaned with a phosphate-free detergent and triple-rinsed, inside and out, with deionized or distilled water prior to use and between each monitoring well. Decontamination water shall be disposed of at an Ameren approved location. Any disposable tubing used with non-dedicated pumps should be discarded after use at each monitoring well. Clean latex gloves will be worn by sampling personnel during monitoring well purging and sample collection.

6.7 Sample Preservation and Handling

In accordance with §257.93 of the CCR Rule, groundwater samples collected as part of the monitoring program will not be filtered prior to analysis. Once groundwater samples have been collected and preserved in laboratory supplied containers, they will be packed into insulated, ice-filled coolers to be maintained at a temperature as close as possible to 4 degrees Celsius. Groundwater samples will be collected in the

designated size and type of containers required for specific parameters. Sample containers will be filled in such a manner as not to lose preservatives by spilling or overfilling. Samples will be delivered to the laboratory or sent via overnight courier following chain-of-custody procedures.

20

6.8 Chain-of-Custody Program

The chain-of-custody (COC) program will allow for tracing sample possession and handling from the time of field collection through laboratory analysis. The COC program includes sample labels, sample seals, field Groundwater Sample Collection Forms, and COC record. A sample Chain-of-Custody (COC) form is provided in **Appendix I**.

Each sample will be assigned a unique sample identification number to be recorded on the sample label. The sample identification number for all samples will be designated differently based on the nature of the samples. Each sample identification number and description will be recorded on the field Groundwater Sample Collection Form and on the COC document.

6.8.1 Sample Labels

Sample labels sufficiently durable to remain legible when wet will contain the following information, written with indelible ink:

- Site and sample identification number
- Monitoring well number or other location
- Date and time of collection
- Name of collector
- Parameters to be analyzed
- Preservative, if applicable

6.8.2 Sample Seal

The shipping container will be sealed to prevent the samples from being disturbed during transport to the laboratory.

6.8.3 Field Forms

All field information must be completely and accurately documented to become part of the final report for the groundwater monitoring event. Example field forms are included in **Appendix I**. The field forms will document the following information:

- Identification of the monitoring well
- Sample identification number

- Field meter calibration information
- Static water level depth
- Purge volume
- Time monitoring well was purged
- Date and time of collection
- Parameters requested for analysis
- Preservative used
- Field water quality parameter measurements
- Field observations on sampling event
- Name of collector(s)
- Weather conditions including air temperature and precipitation

6.8.4 Chain-of-Custody Record

The COC record is required for tracing sample possession from time of collection to time of receipt at the laboratory. The National Enforcement Investigations Center (NEIC) of USEPA considers a sample to be in custody under any of the following conditions:

21

- It is in the individual's possession
- It is in the individual's view after being in his possession
- It was in the individual's possession and he locked it up
- It is in a designated secure area

All environmental samples will be handled under strict COC procedures beginning in the field. The field team leader will be the field sample custodian and will be responsible for ensuring that COC procedures are followed. A COC record will accompany each individual shipment. The record will contain the following information:

- Sample destination and transporter
- Sample identification numbers
- Signature of collector
- Date and time of collection
- Sample type
- Identification of monitoring well
- Number of sample containers in shipping container
- Parameters requested for analysis
- Signature of person(s) involved in the chain of possession

Inclusive dates of possession

A copy of the completed COC form will be placed in a water resistant bag and accompany the shipment and will be returned to the shipper after the shipping container reaches its destination. The COC record will also be used as the analysis request sheet. When shipping by courier, the courier does not sign the COC record: copies of shipping forms are retained to document custody.

22

6.9 Temperature Control and Sample Transportation

After collection, sample preservation, and labeling, sample containers will be placed in coolers containing water-ice with the goal of reducing the groundwater samples to a temperature of approximately 4°C or less. All samples included in the shipping container will be packed in such a manner to minimize the potential for container breakage. Samples will be either hand-delivered or shipped via commercial carrier to the certified analytical laboratory. Custody seals will be placed on the shipping containers if a third party courier is used.

7.0 ANALYTICAL AND QUALITY CONTROL PROCEDURES

7.1 Data Quality Objectives

As part of the evaluation component of the Quality Assurance (QA) program, analytical results will be evaluated for precision, accuracy, representativeness, completeness, and comparability (PARCC). These are defined as follows:

23

- Precision is the agreement or reproducibility among individual measurements of the same property, usually made under the same conditions
- Accuracy is the degree of agreement of a measurement with the true or accepted value
- Representativeness is the degree to which a measurement accurately and precisely represents a characteristic of a population, parameter, or variations at a sampling point, a process condition, or an environmental condition
- Completeness is a measure of the amount of valid data obtained from a measurement system compared with the amount that was expected to be obtained under correct normal conditions
- Comparability is an expression of the confidence with which one data set can be compared with another data set in regard to the same property

The accuracy, precision and representativeness of data will be functions of the sample origin, analytical procedures and the specific sample matrices. Quality Control (QC) practices for the evaluation of these data quality indicators include the use of accepted analytical procedures, adherence to hold time, and analysis of QC samples (e.g., blanks, replicates, spikes, calibration standards and reference standards).

Quantitative QA objectives for precision and accuracy, along with sensitivity (detection limits) are established in accordance with the specific analytical methodologies, historical data, laboratory method validation studies, and laboratory experience with similar samples. The Representativeness of the analytical data is a function of the procedures used to process the samples.

Completeness is a qualitative characteristic which is defined as the fraction of valid data obtained from a measurement system (e.g., sampling and analysis) compared to that which was planned. Completeness can be less than 100 percent due to poor sample recovery, sample damage, or disqualification of results which are outside of control limits due to laboratory error or matrix-specific interferences. Completeness is documented by including sufficient information in the laboratory reports to allow the data user to assess the quality of the results. The overall completeness goal for each task is difficult to determine prior to data acquisition. For this project, all reasonable attempts will be made to attain 90% completeness or better (laboratory).

Comparability is a qualitative characteristic which allows for comparison of analytical results with those obtained by other laboratories. This may be accomplished through the use of standard accepted methodologies, traceability of standards to the National Bureau of Standards (NBS) or USEPA sources, use of appropriate levels of quality control, reporting results in consistent, standard units of measure, and participation in inter-laboratory studies designed to evaluate laboratory performance.

24

Data quality and the standard commercial report package will be evaluated with respect to PARCC criteria using the laboratory's QA practices, use of standard analytical methods, certifications, participation in interlaboratory studies, temperature control, adherence to hold times, and COC documentation (also called Data Validation).

7.2 **Quality Assurance/Quality Control Samples**

This section describes the various Quality Assurance/Quality Control (QA/QC) samples that will be collected in the field and analyzed in the laboratory and the frequency at which they will be performed.

7.2.1 Field Equipment Rinsate Blanks

In cases where sampling equipment is not dedicated or disposable, an equipment rinsate blank will be collected. The equipment rinsate blanks are prepared in the field using laboratory-supplied analyte-free water. The water is poured over and through each type of sampling equipment following decontamination and submitted to the laboratory for analysis of target constituents. One rinsate blank will be collected for every 10 samples.

7.2.2 Field Duplicates

Field duplicates are collected by sampling the same location twice, but the field duplicate is assigned a unique sample identification number. Samplers will document which location is used for the duplicate sample. One field duplicate will be collected for every 10 samples.

7.2.3 Field Blank

Field blanks are collected in the field using laboratory-supplied analyte-free water. The water is poured directly into the supplied sample containers in the field and submitted to the laboratory for analysis of target constituents. One field blank will be collected for every 10 samples.

7.2.4 Laboratory Quality Control Samples

The laboratory will have an established QC check program using procedural (method) blanks, laboratory control spikes, matrix spikes, and duplicates. Details of the internal QC checks used by the laboratory will be found in the laboratory QAP and the published analytical methods. These QC samples will be used to determine if results may have been affected by field activities or procedures used in sample transportation

or if matrix interferences are an issue. One (1) Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) set (i.e. one sample plus one MS, and one MSD sample at one location) will be collected per 20 samples. MS/MSD samples will have a naming convention as follows:

25

Sample: L-UMW-1DMS: L-UMW-1D-MSMSD: L-UMW-1D-MSD

8.0 DATA EVALUATION AND STATISTICAL ANALYSIS

The following sections describe the evaluation and analysis procedures that are followed upon receipt of the analytical report.

26

8.1 Evaluation of Rate and Direction of Groundwater Flow

Groundwater elevations will be determined for each sampling event and will be used to develop a groundwater elevation contour map that will be submitted with reports. The direction of groundwater flow will be determined from up-and downgradient relationships as depicted on the potentiometric surface map. Based on these maps, groundwater flow velocities will be estimated for each event.

8.2 Data Validation

Before the data are used for statistical analysis, they will be evaluated by examining the quality control data accompanying the data report from the laboratory. Relevant quality control data could include measures of accuracy (percent recovery), precision (relative percent difference, RPD), and sample contamination (blank determinations). Data that fail any of these checks will be flagged for further evaluation. A Data Quality Review (DQR) may be initiated with the laboratory for any anomalous data.

8.3 Statistical Analysis

Upon completion of the data validation, the data will be submitted for statistical analysis in compliance with 40 CFR §257.93. The detailed statistical analysis plan for the Facility will be included in **Appendix H**.

9.0 REFERENCES

Butler, G. and A. Siemens. 2010. Surficial Material Geologic Map of the Labadie 7.5' Quadrangle, Franklin and St. Charles Counties, Missouri. Missouri Department of Natural Resources, Division of Geology and Land Survey, Open File Map OFM-10-557-GS.

27

- Cohen, P.M., 1963. Specific yield and particle-size relations of Quaternary alluvium, Humboldt River Valley, Nevada (No. 1669-M). USGPO. Available at: https://pubs.usgs.gov/wsp/1669m/report.pdf
- Das, B. 2008. Advanced Soil Mechanics. Taylor & Francis, London & New York.
- Fetter, C.W. 2000. Applied Hydrogeology, Fourth Edition. Pearson Education.
- Freeze, R. Allan and Cherry, John A. 1979. Groundwater. Prentice-Hall Inc.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2013a. Groundwater Monitoring Report 1st Background Sampling Event April 16-17, 2013. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. May 2013.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2013b. Groundwater Monitoring Report 2nd Background Sampling Event August 19-21, 2013. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. September 2013.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2013c. Groundwater Monitoring Report 3rd Background Sampling Event November 19-20, 2013. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. December 2013.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2013d. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. January 3, 2013.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2014. Groundwater Monitoring Report 4th Background Sampling Event March 18-20, 2014. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. April 2014.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.

- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.
- Reitz & Jens, Inc. 2014. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. March 31, 2014.
- Reitz & Jens, Inc. 2015. Report of Borings at Labadie Energy Center Coal Pile. Ameren Missouri Labadie Energy Center. Franklin County, Missouri. July 8, 2015.
- USEPA. 2010. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples From Monitoring Wells., U.S. Environmental Protection Agency, Revised January 19, 2010.
- USEPA. 2015. 40 CFR Parts 257 and 261 Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities. Environmental Protection Agency. April 17, 2015.
- USGS. 1994. Geohydrology of the Ozark Plateaus Aquifer System in Parts of Missouri, Arkansas, Oklahoma, and Kansas. Imes J.L., Emmett L.F. U.S. Geological Survey Professional Paper 1414-D.

TABLES

Groundwater Level Data LCPA Surface Impoundment

Labadie Energy Center, Franklin County, MO

	Loca	tion ⁵	Top of Casing ⁶	Ground Surface ⁶	Backgroui 3/22/	nd Event 1 /2016	Backgroui 5/3/	nd Event 2 2016	Backgroui 7/11,	nd Event 3 /2016	Backgrour 9/8/2		Backgrour 11/11		Backgrour 1/16/		Backgroui 3/1/	nd Event 7 2017	Backgrou 5/31,	nd Event 8 /2017
Well ID	Northing	Easting	Feet MSL ⁴	Feet MSL ⁴	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³	DTW ²	GWE ³
UMW-1D	988822.5	723129.4	489.72	487.8	30.90	458.82	26.00	463.72	27.32	462.40	30.90	458.82	32.24	457.48	34.51	455.21	34.72	455.00	22.75	466.97
UMW-2D	990437.2	722248.6	484.81	482.7	26.76	458.05	21.13	463.68	22.87	461.94	26.59	458.22	28.14	456.67	30.43	454.38	30.37	454.44	18.08	466.73
UMW-3D	991830.7	723558.8	490.62	488.8	32.67	457.95	27.66	462.96	29.02	461.60	32.82	457.80	34.16	456.46	36.42	454.20	36.52	454.10	24.63	465.99
UMW-4D	992512.3	724538.1	494.95	493.2	36.98	457.97	32.67	462.28	33.55	461.40	37.17	457.78	38.42	456.53	40.79	454.16	40.96	453.99	29.23	465.72
UMW-5D	992027.2	725067.9	496.76	494.9	38.53	458.23	34.67	462.09	35.24	461.52	38.77	457.99	39.95	456.81	42.31	454.45	42.59	454.17	30.99	465.77
UMW-6D	991382.8	725540.9	496.19	494.5	37.71	458.48	34.14	462.05	34.50	461.69	37.90	458.29	39.00	457.19	41.42	454.77	41.78	454.41	30.40	465.79
UMW-7D	990722.8	726032.4	469.79	468.0	11.09	458.70	7.93	461.86	8.06	461.73	11.33	458.46	12.25	457.54	14.78	455.01	15.20	454.59	4.07	465.72
UMW-8D	989892.7	725179.5	469.47	467.5	10.25	459.22	6.78	462.69	6.98	462.49	10.18	459.29	11.39	458.08	13.84	455.63	14.21	455.26	2.92	466.55
UMW-9D	989220.0	724447.8	470.61	468.8	11.22	459.39	7.25	463.36	7.86	462.75	11.32	459.29	12.43	458.18	14.83	455.78	15.15	455.46	3.71	466.90
BMW-1D	988310.6	715138.4	473.54	471.2	16.49	457.05	9.33	464.21	12.00	461.54	16.42	457.12	18.36	455.18	20.57	452.97	19.77	453.77	6.65	466.89
BMW-2D	987204.3	715104.2	474.39	472.4	17.03	457.36	11.32	463.07	12.37	462.02	16.78	457.61	18.71	455.68	21.16	453.23	20.44	453.95	7.26	467.13
Missouri River	995047.6	723234.9	NA	NA	NA	454.26	NA	464.69	NA	458.15	NA	453.85	NA	451.84	NA	450.11	NA	451.37	NA	464.22

Notes:

- 1.) Groundwater monitoring wells surveyed by Zahner & Associates, Inc. on January 13 and February 11, 2016.
- 2.) DTW Depth to water measured in feet below top of casing.
- 3.) GWE Groundwater elevation measured in feet above mean sea level.
- 4.) MSL Feet above mean sea level.
- 5.) Horizontal Datum: State Plane Coordinates NAD83 (2000) Missouri East Zone feet.
- 6.) Vertical Datum: NAVD88 feet.
- 7.) NA Not Applicable.
- 8.) Missouri River level obtained from United States Geological Survey (USGS) gauge 06935550.

Generalized Hydraulic Properties of Uppermost Aquifer LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

	LCPA Compliance Wells											
(UMW-1D, UMW-2D, UMW-3D, UMW-4D, UMW-5D, UMW-6D, UMW-7D, UMW-8D, and UMW-9D)												
		Average	Estimated	Mean	Mean		Estimated					
Baseline	Baseline	Groundwater	Hydraulic	Hydraulic	Hydraulic	Estimated	Groundwater					
Sampling	Sampling	flow Direction	Gradient	Conductivity	Conductivity	Effective	Velocity					
Event	Event Date	(Azimuth)	(Feet/Foot)	(Feet/Day)	(cm/sec)	Porosity	(Feet/Day)					
1	3/22/2016	327.9	0.0005	48.22	1.7E-02	0.35	0.06					
2	5/3/2016	59.5	0.0005	48.22	1.7E-02	0.35	0.07					
3	7/11/2016	355.4	0.0004	48.22	1.7E-02	0.35	0.05					
4	9/8/2016	338.0	0.0005	48.22	1.7E-02	0.35	0.07					
5	11/11/2016	325.5	0.0006	48.22	1.7E-02	0.35	0.08					
6	1/16/2017	330.8	0.0005	48.22	1.7E-02	0.35	0.07					
7	3/1/2017	342.6	0.0004	48.22	1.7E-02	0.35	0.06					
8	5/31/2017	29.2	0.0004	48.22	1.7E-02	0.35	0.05					

Estimated Results (USEPA Tool)							
Resultant							
Groundwater Flow	352						
Direction (Azimuth)							
Estimated Annual Net							
Groundwater	20						
Movement (Feet/Year)							

Prepared By: JS Checked By: JSI Reviewed By: MNH

Notes:

- 1. Azimuth and Hydraulic Gradient calculated using the United States Environmental protection agency (USEPA) On-Line Tools for Site Assessment Calculation for Hydraulic Gradient (magnitude and direction) available at https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-ns.html.
- 2. Hydraulic conductivity value is the geometric mean of slug test results for the LCPA compliance wells.
- 3. An effective porosity of 0.35 was used based on grain size distributions and published values (Fetter 2000, Cohen 1953, and Johnson 1967).
- 4. Azimuth is measured clockwise in degrees from north.
- 5. cm/sec centimeters per second.

Monitoring Well Construction Details LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

		Location ⁴		Top of Casing Elevation	Ground Surface Elevation	Top of Screen	Bottom of Screen	Base of Well	Total Depth
Well ID	Date Installed	Northing	Easting	(FT MSL) ⁵	(FT MSL) ⁵	(FT MSL) ⁵	(FT MSL) ⁵	(FT MSL) ⁵	(FT BGS) ⁵
UMW-1D	11/19/2015	988822.5	723129.4	489.72	487.8	407.6	397.8	397.4	90.4
UMW-2D	11/21/2015	990437.2	722248.6	484.81	482.7	412.7	402.9	402.5	80.3
UMW-3D	11/22/2015	991830.7	723558.8	490.62	488.8	408.3	398.5	398.1	90.6
UMW-4D	11/24/2015	992512.3	724538.1	494.95	493.2	407.9	398.1	397.7	95.5
UMW-5D	11/23/2015	992027.2	725067.9	496.76	494.9	408.2	398.4	398.0	96.9
UMW-6D	11/22/2015	991382.8	725540.9	496.19	494.5	410.4	400.6	400.2	94.3
UMW-7D	11/20/2015	990722.8	726032.4	469.79	468.0	412.6	402.8	402.4	65.6
UMW-8D	11/19/2015	989892.7	725179.5	469.47	467.5	407.0	397.2	396.8	70.6
UMW-9D	11/19/2015	989220.0	724447.8	470.61	468.8	408.9	399.1	398.7	70.1
BMW-1D	2/1/2016	988310.6	715138.4	473.54	471.2	410.5	400.7	400.3	70.9
BMW-2D	2/2/2016	987204.3	715104.2	474.39	472.4	413.0	403.2	402.8	69.6

Notes:

- 1.) All elevations and coordinates were surveyed on January 13, 2016 and February 11, 2016 by Zahner and Associates, Inc.
- 2.) FT MSL = Feet Above Mean Sea Level.
- 3.) FT BGS = Feet Below Ground Surface.
- 4.) Horizontal Datum: State Plane Coordinates NAD83 (2000) Missouri East Zone Feet.
- 5.) Vertical Datum: NAVD88 Feet.

Prepared By: JS Checked By: JSI/MSG Reviewed By: MNH

Groundwater Quality Monitoring Parameters LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO

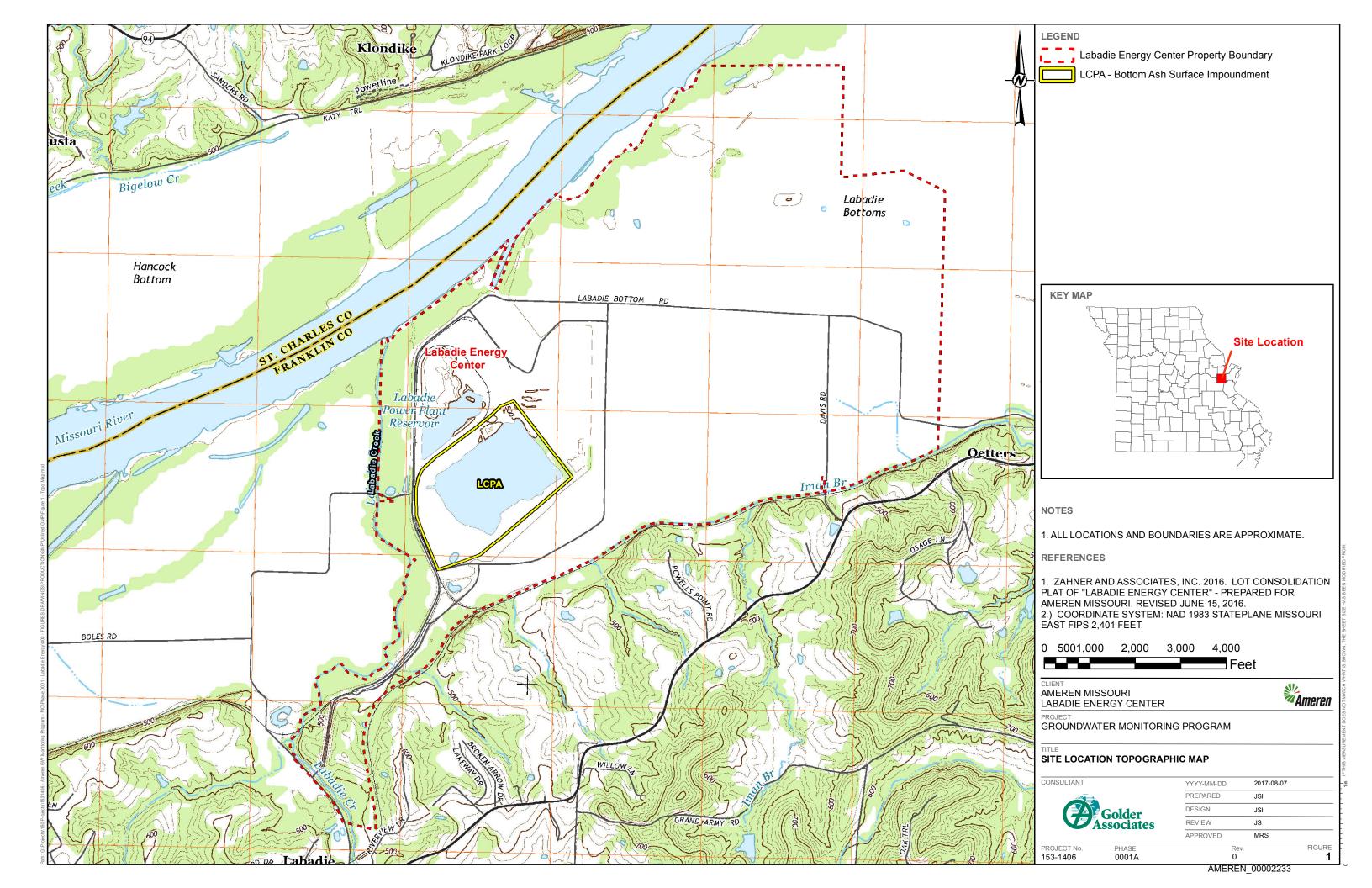
	Monitoring Parameter	Background ²	Detection ³	Assessment ⁴	
Field Parameters	Temperature, pH, Conductivity and Dissolved Oxygen	Х	Х	Х	
	Boron	X	Χ	Х	
	Calcium	Х	Х	Х	
	Chloride	Х	Х	Х	
Appendix III ¹	Fluoride	Х	Х	Х	
	Sulfate	Х	Х	Х	
	рН	X	Х	Х	
	Total Dissolved Solids (TDS)	Х	Х	Х	
	Antimony	X		Х	
	Arsenic	X		Х	
	Barium	Х		Х	
	Beryllium	Х		Х	
	Cadmium	Х		Х	
	Chromium	X		Х	
	Cobalt	Х		Х	
Appendix IV ¹	Fluoride	X		Х	
• •	Lead	Х		Х	
	Lithium	X		Х	
	Mercury	Х		Х	
	Molybdenum	Х		Х	
	Selenium	Х		Х	
	Thallium	Х		Х	
	Radium 226 & 228	Х		Х	

Notes:

- 1.) Analyte lists match requirements for monitoring from USEPA Rule 40 CFR parts 257 and 261.
- 2.) Background will be completed by October 2017 until at least 8 samples are collected.
- 3.) Approximately 6 months will separate each semi-annual sampling event.
- 4.) If necessary, assessment monitoring will be performed in accordance with USEPA Rule.

Prepared By: JS Checked By: MWD Reviewed By: MNH

Analytical Methods and Practical Quantitation Limits LCPA Surface Impoundment Labadie Energy Center, Franklin County, MO


Analyte	Method Reference	Preservative	Hold Times	PQL (μg/L)	MCL (mg/L)
Appendix III - Detection Mon	itoring				
Boron	SW-846 6010/MCAWW 200.7	HNO3	6 months	20.0	NA
Calcium	SW-846 6010/MCAWW 200.7	HNO3	6 months	500.0	NA
Chloride	EPA 300.0/325.5/MCAWW 300/SW846 9251/9056	NA	28 days	500.0	NA
Fluoride	EPA 300.0, 300.1	NA	28 days	-	4
рН	4500 H+B-2000	NA	NA	-	NA
Sulfate	EPA 300.0/SW846 300	NA	28 days	2000.0	NA
Total Dissolved Solids (TDS)	2540 C-1997/SM18-20 2540 C	NA	7 days	10000.0	NA
Appendix IV - Assessment Mo	onitoring	•		-	
Antimony	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	1.0	0.006
Arsenic	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	1.0	0.01
Barium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	2.0	2
Beryllium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	1.0	0.004
Cadmium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	0.5	0.005
Chromium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	1.5	0.1
Cobalt	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	4.0	NP
Fluoride	EPA 300.0	N/A	28 days	-	4
Lead	SW-846 6020	HNO3	6 months	0.005	0.015
Lithium	SW-846 6010	HNO3	6 months	-	NA
Mercury	SW-846 7470	HNO3	28 days	-	0.002
Molybdenum	SW-846 6010	HNO3	6 months	-	NP
Selenium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	1.0	0.05
Thallium	SW-846 6010/6020/MCAWW 200.7/200.8	HNO3	6 months	0.2	0.002
Radium 226 & 228	SW-846 903.1/SM 6500 904	-	-	1.0 (pCi/L)	5.0 (pCi/L)

Notes:

- 1.) NA not applicable.
- 2.) Analyte lists matches requirements for detection and assessment monitoring from United States Environmental Protection Agency (USEPA) Rule 40 CFR parts 257 and 261.
- 3.) SW-846 denotes Test Methods for Evaluating Solid Waste, Physical- Chemical Methods, EPA publication SW-846, 3rd edition, and subsequent updates.
- 4.) MCAWW denotes Methods for the Chemical Analysis of Water and Wastes (MCAWW), United States Environmental Protection Agency (USEPA) published in the 1983.
- 5.) EPA 300 denotes Methods for the Determination of Organic Compounds in Drinking Water Environmental Monitoring Systems Laboratory, Office of Research and Development, USEPA, Cincinnati, Ohio 45268. EPA-300/4-88/039, December 1988 (Revised July 1991).
- 6.) SM18-20 denotes Standard Methods for the Examination of Water and Wastewater, 18th, 19th, and 20th Editions, published by the American Public Health Association, Water Environment Federation, and the American Water Works Association.
- 7.) Other industry-used or agency-approved methods may be used provided that they produce the necessary level of precision and accuracy for data use and reporting.
- 8.) Updates to the methods listed here are approved for use.
- 9.) PQL Practical Quantitation Limit.
- 10.) MCL Maximum Contaminant Level from USEPA 2014 Edition of the Drinking Water Standards and Health Advisories. October 2014. http://water.epa.gov/drink/contaminants/index.cfm.
- 11.) Dash (-) Indicates no information available.
- 12.) μg/L Micrograms per liter.
- 13.) pCi/L Picocuries per liter.
- 14.) NP Not Promulgated.
- 15.) mg/L Milligrams per liter.

Prepared By: JS Checked By: MWD Reviewed By: MRS

FIGURES

Generalized Cross-Section 700 700 675 675 650 650 625 625 Typical Monitoring Well 600 600 Groundwater Level (Varies) 575 575 Labadie Energy Center 550 550 Overview Map Property Boundary - LCPA Surface Missouri River 525 525 Impoundment Coal Pile 500 500 475 475 CCR 450 450 425 425 Alluvial Aquifer 375 375 350 350 325 325 300 300 Bedrock 275 275 Aquifer 250 250 225 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500 North South Distance (feet) NOT TO SCALE **REFERENCES** NOTES 1.) ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE. 1.) AMEREN, 2011. AMEREN MISSOURI LABADIE ENERGY **Ameren** AMEREN MISSOURI GROUNDWATER MONITORING PROGRAM 2.) CROSS-SECTION IS NOT TO SCALE AND IS ONLY A VISUAL CENTER, LABADIE PROPERTY CONTROL MAP, NOVEMBER 2011 LABADIE ENERGY CENTER REPRESENTATION OF THE SUBSURFACE GEOLOGY AND 2.) GREDELL ENGINEERING RESOURCES, INC., AND REITZ & FEATURES. JENS. 2011. DETAILED SITE INVESTIGATION REPORT FOR: CONSULTANT YYYY-MM-DD 3.) MSL - MEAN SEA LEVEL. AMEREN MISSOURI LABADIE POWER PLANT PROPOSED **GENERALIZED CROSS-SECTION** DESIGNED JSI UTILITY WASTE DISPOSAL AREA FRANKLIN COUNTY, MISSOURI. PREPARED JSI REVIEWED REV. **0.0** FIGURE 3 153-1406 0001A APPROVED AMEREN_00002235

APPENDIX A CCR MONITORING WELL BORING LOGS

RECORD OF BOREHOLE UMW-1D SHEET 1 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 487.82 DRILLING INIE 11/05. 0 GGIIG DRILLING DATE: 11/18/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,822.54 E: 723,129.45 SAMPLES SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG **ELEVATION** REMARKS BORING NUMBER DESCRIPTION USCS TYPE DEPTH - 0 (0.0-2.0) FILL - (GW) GRAVEL, fine to coarse angular gravel, some fine sand, some non-plastic fines; pale yellowish brown (10YR 6/2) to moderate yellowish brown (10YR 5/4); non-cohesive, dry, compact Run #1, Recovery greater than 100% due to compacted materials expanding when extruded. Actual recovery: 5.0/5.0, Measured recovery: 5.9/5.0. GW (2.0-5.0) (ML) SILT, non-plastic fines, some fine sand; moderate yellowish brown (10YR 5/4); non-cohesive, 1 SO dry, loose ML - 5 (5.0-10.0) CCR - (ML) SILT, non-plastic fines, some fine sand; grayish brown (5YR 4/1) to light olive gray (5Y 5/2) FLY ASH; non-cohesive, wet, loose ML 10 (10.0-17.0) CCR - (ML) SILT, low plasticity fines, some fine sand; grayish brown (5YR 4/1) to light olive gray (5Y 5/2), FLY ASH; cohesive, w<PL, soft 4.3 5.0 SO 3 ML Sonic - 15 6 470.8 17.0 (17.0-20.0) (ML) SILT, non-plastic fines, some fine sand; medium dark gray (N4); non-cohesive, moist, compact 4 SO ML 20 (20.0-23.8) (ML) CLAYEY SILT, low to medium plasticity 10/9/ fines, trace fine sand; brownish gray (5YR 4/1) to light olive gray (5Y 5/2); cohesive, w~PL, soft CO.GDT MI GLDR 5 SO LEC LOGS.GPJ 464.0 23.8 (23.8-28.8) (ML) sandy SILT, non-plastic fines, fine sand; medium dark gray (N4); non-cohesive, dry, - 25 (25.0) SAA (Same As Above) except, wet 25.0 BOREHOLE MWD ML 4.5 5.0 SO 6 RECORD OF (28.8-40.0) (SP-SM) SAND, fine sand, some non-plastic ft bgs 3/14/2016 fines; dark yellowish brown (10YR 4/2); non-cohe SP-SM moist, compact 30 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-1D SHEET 2 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/18/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 487.82 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,822.54 E: 723,129.45 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 (28.8-40.0) (SP-SM) SAND, fine sand, some non-plastic fines; dark yellowish brown (10YR 4/2); non-cohesive, moist, compact (Continued) 456.6 31.2 (31.2) SAA except, trace non-plastic fines 452.8 35.0 <u>8.2</u> 10.0 - 35 SP-SM 7 SO (35.0) SAA except, light brown (5YR 5/6) to medium gray 450.8 37.0 (37.0) SAA except, medium gray (N5) 40 (40.0-50.0) (SW) SAND, fine to coarse sub-rounded sand, trace fine sub-rounded gravel; medium gray (N5); Run #8 Driller notes bottom 0.7 feet of sample washed out when being pulled to non-cohesive, wet, compact surface. Sonic 9.3 10.0 - 45 SW 8 SO 6 437.8 50.0 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 (50.0-70.0) (SP) SAND, fine to medium sub-rounded sand, trace non-plastic fines, trace sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact 9.7 10.0 SP SO - 55 9 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-1D SHEET 3 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/18/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 487.82 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,822.54 E: 723,129.45 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 Run #10, Driller notes sample washed out. Driller changes bits and attempts to get the sample again (loose sands). (50.0-70.0) (SP) SAND, fine to medium sub-rounded sand, trace non-plastic fines, trace sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact (Continued) <u>4.2</u> 10.0 - 65 SP 10 SO - 70 (70.0-77.0) (SM) SILTY SAND, fine sand, non-plastic to very low plasticity fines; medium gray (N5); non-cohesive, wet, compact SM Sonic 9.2 10.0 - 75 11 SO 6 (77.0-90.4) (SP) SAND, fine sand, trace non-plastic fines; medium gray (N5); non-cohesive, wet, compact 407.8 - 80 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/1 (80.0) SAA except, some coarse sand 80.0 Run #12, Driller notes likely large boulder at bottom of hole preventing continued drilling. Boulder causes poor recovery. SP - 85 SO 12 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

PRO	DJECT	: Ameren CCR GW Monitoring NUMBER: 153-1406.0001A N: Labadie Energy Center RECOR DRILLING METHORICS DRILLING DATE DRILL RIG: Mini	HOD: 6" Sc :: 11/18/20	nic 15	DATU AZIMI	IM: NAVD JTH: N/A	88	822.54 E:	SHEET 4 of 4 ELEVATION: 487.82 INCLINATION: -90 723,129.45
DEPTH (feet)	BORING METHOD	SOIL/ROCK PROFI		GRAPHIC LOG	ELEVATION DEPTH (ft)	NUMBER	SAMPLE		REMARKS
- - - - - -		END OF BORING AT 90.4 FEET BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-1D.	SP		397.4 90.4	12	so		
_ _ _ 100 _ _									
105 									
110 									
- 110 - - - 115 - - - 120 SCA DRII									
SCA DRII	LLING	1 in = 3.8 ft GCONTRACTOR: Cascade : J. Drabek		CHEC	ED: JSI/J KED: JSI WED: PJ				Golder

RECORD OF BOREHOLE UMW-2D SHEET 1 of 3 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 482.71 DRILLING METHOD: 0 Some DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 990,437.17 E: 722,248.58 SAMPLES METHOD SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS BORING REC ATT NUMBER DESCRIPTION USCS TYPE DEPTH - 0 (0.0-5.0) No recovery Run #1, Hit large cobble at surface, cobble clogged bit up and got no recovery in first 5 feet. 1 SO - 5 (5.0-13.0) FILL - (SW & GW) SAND and GRAVEL, fine 000 to coarse sub-angular sand, fine to coarse sub-angular gravel; very pale orange (10YR 8/2); non-cohesive, dry, loose 0000 0000 0000 SO 0000 0000 SW & GW 472.7 10 (10.0) SAA (Same As Above) except, compact 10.0 Run #3. Driller encounters large cobbles/gravel and needs to pull back and switch drill bits. 000 0000 3 SO 0000 000 (13.0-16.5) FILL - (GW) sandy GRAVEL, fine to coarse sub-angular gravel, fine to coarse sub-angular sands; pale yellowish brown (10YR 6/2); non-cohesive, dry, Sonic GW - 15 <u>5.0</u> 5.0 6 SO (16.5-18.0) (CL) SILTY CLAY, low plasticity fines, some sub-angular fine gravel, trace fine to coarse sand; dark yellowish brown (10YR 4/2); cohesive, w<PL, soft CL (18.0-20.0) (ML) SILT, low plasticity fines, some fine sand; dark yellowish brown (10YR 4/2); non-cohesive, Run #5, Driller does a two foot run in order to get back to 5 foot intervals. moist, compact 2.0 2.0 ML 5 SO 20 10/9/1 (20.0-23.0) (SP) SAND, fine sand, trace non-plastic fines; dark yellowish brown (10YR 4/2); non-cohesive, wet, compact CO.GDT SP GLDR (23.0-70.0) (SW) SAND, fine to coarse sub-rounded LEC LOGS.GPJ sand; dark yellowish brown (10YR 4/2); non-cohesive, wet, compact 9.5 10.0 - 25 6 SO BOREHOLE MWD sw RECORD OF Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-2D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 482.71 COORDINATES: N: 990,437.17 E: 722,248.58 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) ELEVATION GRAPHIC LOG REMARKS REC ATT DESCRIPTION NUMBER USCS TYPE DEPTH - 30 (23.0-70.0) (SW) SAND, fine to coarse sub-rounded sand; dark yellowish brown (10YR 4/2); non-cohesive, wet, compact (Continued) <u>8.5</u> 10.0 - 35 7 SO 442.7 40.0 40 (40.0) SAA except, trace gravels, more coarse with depth Sonic 7.0 10.0 - 45 SW 8 SO 6 432.7 50.0 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 (50.0) SAA except, medium light gray (N6) to medium SO - 55 9 Log continued on next page LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-2D SHEET 3 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 482.71 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 990,437.17 E: 722,248.58 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH - 60 (23.0-70.0) (SW) SAND, fine to coarse sub-rounded sand; dark yellowish brown (10YR 4/2); non-cohesive, wet, compact (Continued) <u>6.2</u> 10.0 - 65 SW 10 SO Sonic - 70 (70.0-80.3) (SW) gravelly SAND, fine to coarse sub-rounded sand, fine sub-rounded gravel; medium .9 dark gray (N4); non-cohesive, wet, compact - 75 10.0 10.3 SW 11 SO GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 END OF BORING AT 80.3 FT BELOW GROUND SURFACE.
FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-2D. - 85 LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-3D SHEET 1 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 488.75 DRILLING METHOD: 0 Some DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 991,830.68 E: 723,558.79 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS NUMBER DESCRIPTION TYPE USCS DEPTH - 0 (0.0-0.9) COAL COAL (0.9-5.0) (SP) SAND, fine to coarse sub-rounded sand, trace sub-rounded gravel; dark yellowish brown (10YR 4/2); non-cohesive, dry, loose 2.8 5.0 1 SO SP - 5 (5.0-5.8) (ML) SILT, non-plastic fines, some fine sand; ML moderate brown (10YR 4/4); non-cohesive, dry, compact 483.0 5.8 (5.8-10.0) (SP-SM) SAND, fine to medium sand, some non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, dry, loose SO SP-SM 10 (10.0-11.8) (ML) SILT, non-plastic fines, some fine sand; moderate brown (5YR 4/4); non-cohesive, dry, compact ML (11.8-20.0) (SW) SAND, fine to coarse sub-rounded sand; light olive gray (5Y 5/2); non-cohesive, dry 11.8 SO 3 Sonic - 15 6 SW SO 20 10/9/1 (20.0-26.5) (ML) sandy SILT, non-plastic fines, fine sand; medium dark gray (N4); non-cohesive, moist, compact CO.GDT RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR ML <u>8.5</u> 10.0 - 25 5 SO (26.5-36.0) (CL) SILTY CLAY, low plasticity fines; medium gray (N5); cohesive, w<PL, stiff CL 458.8 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-3D SHEET 2 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 488.75 COORDINATES: N: 991,830.68 E: 723,558.79 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 (26.5-36.0) (CL) SILTY CLAY, low plasticity fines; medium gray (N5); cohesive, w<PL, stiff (Continued) (30.0) SAA (Same As Above) except, trace fine sand 30.0 ft bgs 3/14/2016 CL <u>6.0</u> 10.0 - 35 6 SO (36.0-40.0) (SP) SAND, fine to medium sand; medium gray (N5); non-cohesive, moist, compact SP 40 (40.0-70.0) (SW) SAND, fine to coarse sand; medium gray (N5); non-cohesive, wet, compact Sonic 7.0 10.0 - 45 7 SO 6 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 SW <u>5.6</u> 10.0 SO - 55 8 428.8 Log continued on next page LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-3D SHEET 3 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 488.75 COORDINATES: N: 991,830.68 E: 723,558.79 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER USCS TYPE DEPTH (ft) - 60 (40.0-70.0) (SW) SAND, fine to coarse sand; medium gray (N5); non-cohesive, wet, compact (*Continued*) (60.0) SAA (Same As Above) except, trace sub-rounded gravel 60.0 <u>6.0</u> 10.0 - 65 SW 9 SO - 70 (70.0-90.6) (SW) SAND, fine to coarse sub-rounded sand, some sub-rounded to sub-angular gravel; medium dark gray (N4); non-cohesive, wet, compact Sonic - 75 10 SO 6 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 SW - 85 11 SO Log continued on next page LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-3D SHEET 4 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DRILLING DATE: 11/21/2015 DRILL RIG: Mini Sonic (CDD1415) DATUM: NAVD88 ELEVATION: 488.75 COORDINATES: N: 991,830.68 E: 723,558.79 BORING METHOD SOIL/ROCK PROFILE SAMPLES DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER USCS TYPE DEPTH (ft) - 90 SO SW 11 END OF BORING AT 90.6 FT BELOW GROUND SURFACE.
FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-3D. - 95 - 100 - 105 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 110 - 115 LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-4D SHEET 1 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 493.22 DRILLING INIE 11/05. 0 GGIIG DRILLING DATE: 11/24/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,512.28 E: 724,538.14 SAMPLES SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS BORING NUMBER DESCRIPTION TYPE USCS DEPTH (ft) - 0 (0.0-2.5) (ML) CLAYEY SILT, low plasticity fines, some fine sand; brownish gray (5YR 4/1); cohesive, w<PL, firm ML 490.7 2.5 3.1 5.0 1 SO (2.5-7.7) (ML) SILT, non-plastic fines, some fine sand; alternating layers of moderate yellowish brown (10YR 5/4) and light olive gray (5Y 5/2); non-cohesive, dry, 488.2 - 5 ML (5.0) SAA (Same As Above) except, medium dark gray 5.0 485.5 7 7 (7.7-18.3) CCR - (SP & ML) SAND & SILT, non-plastic fines, fine to medium sub-angular sand, some fine angular gravel; medium dark gray (N4) with black (N1) gravels, BOTTOM ASH; non-cohesive, dry, loose 483.2 10 (10.0) SAA except, trace low plasticity fines 10.0 SO 3 SP & ML Sonic 478.2 - 15 (15.0) SAA except, some low plasticity fines 6 4 SO (18.3-20.0) CCR - (ML) sandy SILT, non-plastic fines, trace low plasticity fines, fine sub-angular sand; medium dark gray (N4), FLY ASH; non-cohesive, moist, compact ML 20 (20.0-24.1) CCR - (ML) sandy SILT, non-plastic fines, race low plasticity fines, fine to medium sub-angular sand, some fine angular gravel; light olive gray (5Y 5/2) with black (N1) gravel, BOTTOM ASH; non-cohesive, wet, compact ML 5 SO LEC LOGS.GPJ (24.1-30.0) (ML & SP) SILT & SAND, non-plastic fines fine sand, trace angular gravel; alternating layers of dark yellow orange (10YR 6/6) & medium dark gray (N4), FLY ASH; non-cohesive, dry, compact (25.0) SAA except, moist to wet - 25 25.0 (25.5) SAA except, medium gray (N4) ML & SP 3.9 5.0 SO 6 RECORD OF 463.2 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

10/9/

CO.GDT

GLDR

BOREHOLE MWD

GOLDER STL

RECORD OF BOREHOLE UMW-4D SHEET 2 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/24/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 493.22 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,512.28 E: 724,538.14 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 (30.0-33.5) (ML) sandy CLAYEY SILT, low plasticity fines, fine sand; medium gray (N5) to moderate yellowish brown (10YR 5/4); cohesive, w<PL, soft 30.0 ML 4.1 5.0 7 SO (33.5-60.0) (SP) SAND, fine sand, trace non-plastic fines; pale yellowish brown (10YR 6/2) to light olive gray (5Y 5/2); non-cohesive, moist, compact 458.2 35.0 - 35 (35.0) SAA except, wet 4.7 5.0 8 SO 453.7 39.5 (39.5-41.0) SAA except, some coarse sand 40 452.2 (41.0) SAA except, fine to medium sub-rounded sand 41.0 Sonic <u>8.2</u> 10.0 - 45 9 SO 6 SP 443.2 50.0 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 (50.0) SAA except, light olive gray (5Y 5/2) to medium gray (N5) 8.2 10.0 SO - 55 10 433.2 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-4D SHEET 3 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 493.22 DRILLING METHOD: 0 30116
DRILLING DATE: 11/24/2015
DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,512.28 E: 724,538.14 SOIL/ROCK PROFILE SAMPLES **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 60.0 Run #11, Sample appears to be compacted while being extruded into sample bags. Measured field recovery: 4.5/10.0 Estimated actual recovery: 6.5/10.0. (60.0-76.0) (SW) SAND, fine to coarse sub-rounded sand, some fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact 6.5 10.0 - 65 11 SO SW 70 Run #12, Sample appears to be compacted while being extruded into sample bags. Measured field recovery: 4.7/10.0 Estimated actual recovery: 7.0/10.0. Sonic 7.0 10.0 - 75 12 SO 6 (76.0-95.5) (SW) gravelly SAND, fine to coarse sub-rounded sand, fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact 413.2 - 80 Run #13, Driller could not get recovery on 5 foot run. Instead, driller goes for 10 foot run to see if he can get the material that washed out on the 5 foot run. 10/9/1 (80.0) SAA except, mostly coarse sand, less fine and 80.0 CO.GDT BOREHOLE MWD LEC LOGS.GPJ GLDR SW 2.3 10.0 - 85 13 SO RECORD OF Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-4D SHEET 4 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/24/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 493.22 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,512.28 E: 724,538.14 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER USCS TYPE DEPTH - 90 (76.0-95.5) (SW) gravelly SAND, fine to coarse sub-rounded sand, fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact (Continued) Sonic 1.2 5.5 SW 14 SO .0 - 95 END OF BORING AT 95.5 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-4D. - 100 - 105 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 110 - 115 LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-5D SHEET 1 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 494.89 DRILLING METHOD: 0 Some DRILLING DATE: 11/23/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,027.19 E: 725,067.95 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT NUMBER DESCRIPTION TYPE USCS DEPTH (ft) - 0 (0.0-6.0) Hydrovac material. No samples collected. (0.0-6.0) Hydrovac <u>0.0</u> 6.0 NA NA NA - 5 (6.0-16.5) CCR - (SP & ML) SAND & SILT, fine to medium sub-angular sand, non-plastic to low plasticity fines, some fine angular grave); medium dark gray (N4)(sands and fines) black (N1)(gravel), ASH, Run #1, Excess recovery likely due to cave in of hydrovac hole. non-cohesive, wet, compact <u>4.9</u> 4.0 1 SO 10 Run #2, Excess recovery collected in sample bag. Measured field recovery: 5.2/5.0 Estimated actual recovery: 5.0/5.0. SP&ML <u>5.0</u> 5.0 SO 2 Sonic - 15 6 (16.5-18.9) (CL) SILTY CLAY, medium plastic fines, trace fine sand, some organics (roots), trace sub-rounded fine gravel; medium gray (N5); cohesive, w~PL, fine 4.7 5.0 3 SO CL (18.9-21.0) (ML) sandy SILT, non-plastic fines, fine sand; light olive gray (5Y 5/2); non-cohesive, wet, compact - 20 MI 10/9/1 (21.0-25.0) CCR - (ML) SILT, non-plastic fines, some fine sand; alternating layers of light olive gray (5Y 5/2) to medium light gray (N6) to moderate yellowish brown (10YR 5/4), FLY ASH; non-cohesive, moist, compact CO.GDT GLDR 4 SO ML LEC LOGS.GPJ (25.0-30.0) CCR - (ML) sandy SILT, non-plastic fines, fine sand; medium gray (N4) to light olive gray (5Y 5/2), ASH; non-cohesive, moist, compact - 25 BOREHOLE MWD 5.0 5.0 SO ML 5 RECORD OF 465.2 (29.7-30.0) SAA (Same As Above) except, 2 inch layer Log continued on next page 30 GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-5D SHEET 2 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 494.89 DRILLING METHOD: 0 Some DRILLING DATE: 11/23/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,027.19 E: 725,067.95 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 of coarse angular limestone gravel
(30.0-33.3) (ML) CLAYEY SILT, low plasticity fines, some fine sand; medium gray (N5) to light olive gray (5Y 5/2); cohesive, w~PL, stiff 464.9 30.0 ML 4.1 5.0 6 SO (33.3-38.0) (SM) SILTY SAND, fine sand, non-plastic fines; medium gray (N5) to light olive gray (5Y 5/2); non-cohesive, wet, compact 459.9 - 35 (35.0) SAA except, some moderate yellowish brown (10YR 5/4) 1/4 inch thick layers SM ft bgs 3/14/2016 (38.0-41.0) (SP-SM) SAND, fine to medium sub-rounded sand, trace non-plastic fines; light olive green (5Y 5/2); non-cohesive, wet, compact SP-SM 40 (41.0-60.0) (SP) SAND, fine to medium sub-rounded sand, trace non-plastic fines; light olive gray (5Y 5/2); non-cohesive, wet, compact Sonic - 45 8 SO 6 RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 SP 6.2 10.0 SO - 55 9 434.9 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-5D SHEET 3 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/23/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 494.89 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,027.19 E: 725,067.95 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER USCS TYPE DEPTH (ft) - 60 (60.0-96.9) (SW) SAND, fine to coarse sub-rounded sand; medium dark gray (N4); non-cohesive, wet, 60.0 Run #10, Poor recovery due to loose sands being pushed out of way when as the bit advances. <u>3.0</u> 10.0 - 65 10 SO 424.9 - 70 (70.0) SAA except, trace fine to coarse sub-rounded 70.0 gravel Sonic 6.3 10.0 - 75 SW 11 SO 6 414.9 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 (80.0) SAA except, some fine to coarse sub-rounded gravel, trace cobbles (3-4 inch diameter) 5.5 10.0 - 85 SO 12 404.9 Log continued on next page LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-5D SHEET 4 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/23/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 494.89 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 992,027.19 E: 725,067.95 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER USCS TYPE DEPTH (ft) - 90 (60.0-96.9) (SW) SAND, fine to coarse sub-rounded sand; medium dark gray (N4); non-cohesive, wet, compact (*Continued*) (90.0) SAA except, mostly coarse sand 90.0 Sonic 4.3 6.9 SW 13 SO .0 - 95 END OF BORING AT 96.9 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-5D. - 100 - 105 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 110 - 115 LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-6D SHEET 1 of 4 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 494.52 DRILLING METHOD: 0 Sonic
DRILLING DATE: 11/22/2015
DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 991,382.78 E: 725,540.86 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT NUMBER DESCRIPTION TYPE USCS DEPTH (ft) - 0 (0.0-5.0) Hydrovac (0.0-5.0) Material removed using Hydrovac. No sample collected. NA NA NA - 5 (5.0-8.7) CCR - (ML) sandy SILT, non-plastic fines, fine sand, trace sub-angular gravel; dusky yellowish brown (10YR 2/2), FLY ASH; non-cohesive, dry, loose ML (8.7-10.0) CCR - (ML) SILT, non-plastic fines, trace fine sand, trace sub-angular gravel; dusky yellowish brown (10YR 2/2), FLY ASH; non-cohesive, dry, loose ML 10 (10.0-20.0) CCR - (CL) SILTY CLAY, medium plasticity fines, trace fine sand, trace sub-angular gravel; brownish gray (5YR 4/1), FLY ASH; cohesive, w~PL, firm SO 2 Sonic 479.5 - 15 CL (15.0) SAA (Same As Above) except, some fine sand 6 4.3 5.0 3 SO 20 10/9/1 (20.0-25.0) (SM) SILTY SAND, fine poorly graded sand, non-plastic fines, trace sub-round gravel; dark yellowish brown (10YR 4/2); non-cohesive, dry, compact CO.GDT GLDR SM 4 SO LEC LOGS.GPJ - 25 (25.0-27.5) (CL) SILTY CLAY, low to medium plasticity fines, trace fine sand; dark gray (N3); cohesive, w<PL, BOREHOLE MWD CL 4.5 5.0 SO 5 (27.5-35.0) (CL) SILTY CLAY, low to medium plasticity fines, trace fine sand; moderate brown (5YR 4/4); cohesive, w<PL, stiff RECORD OF CL 464.5 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-6D SHEET 2 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/22/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 494.52 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 991,382.78 E: 725,540.86 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 (27.5-35.0) (CL) SILTY CLAY, low to medium plasticity fines, trace fine sand; moderate brown (5YR 4/4); cohesive, w-PL, stiff (*Continued*) (30.0) SAA except, brownish gray (5YR 4/1) 30.0 5.0 5.0 CL 6 SO - 35 (35.0-60.0) (SP) SAND, fine to medium sand, trace non-plastic fines; dark yellowish brown (10YR 4/2); non-cohesive, moist, compact SO 454.5 - 40 (40.0) SAA except, no fines, wet 40.0 Sonic 10.0 10.0 - 45 8 SO 6 SP GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 8.5 10.0 SO - 55 9 434.5 Log continued on next page LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-6D SHEET 3 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/22/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 494.52 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 991,382.78 E: 725,540.86 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 (60.0-80.0) (SW) SAND, fine to coarse sub-rounded sand, trace sub-rounded gravel; medium dark gray (N4); 60.0 non-cohesive, wet, compact <u>6.0</u> 10.0 - 65 10 SO - 70 SW Run #11, Poor recovery due to loose sands being pushed out of way as the bit Sonic 3.5 10.0 - 75 11 SO 6 RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 (80.0-85.0) (SW) gravelly SAND, fine to coarse sub-rounded sand, sub-rounded gravel; medium dark gray (N4); non-cohesive, wet, compact 10.0 10.0 - 85 SO (85.0-95.0) (SP) SAND, fine to medium sub-rounded sand, some sub-rounded gravel, trace non-plastic fines; medium dark gray (N4); non-cohesive, wet, compact 12 (85.0-95.0) Soil description based off of laboratory grain size analysis. Log continued on next page GOLDER STL LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-6D SHEET 4 of 4 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/22/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 494.52 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 991,382.78 E: 725,540.86 BORING METHOD SAMPLES SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) (85.0-95.0) (SP) SAND, fine to medium sub-rounded sand, some sub-rounded gravel, trace non-plastic fines; medium dark gray (N4); non-cohesive, wet, compact (Continued) - 90 Sonic <u>5.0</u> 5.0 13 SO 6 - 95 END OF BORING AT 95.0 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-6D. - 100 - 105 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 110 - 115 LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-7D SHEET 1 of 3 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 468.03 DRILLING INIE 11/05. 0 GGIIG DRILLING DATE: 11/20/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 990,722.80 E: 726,032.42 SAMPLES SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS BORING NUMBER DESCRIPTION USCS TYPE DEPTH - 0 (0.0-1.0) FILL - (SW) SAND, fine to coarse sub-rounded Run #1, Excess recovery collected in sw sample bag due to compacted fill. Measured field recovery: 4.0/2.0 Estimated actual recovery: 2.0/2.0. sand, trace fine sub-rounded gravel; dark yellowish brown (10YR 4/2); non-cohesive, compact, dry <u>2.0</u> 2.0 1 so (1.0-5.0) (ML) SILT, non-plastic fines, some fine sand, trace sub-rounded gravel; brownish gray (5YR 4/1); 466.0 2.0 non-cohesive, dry, compact (2.0) SAA (Same As Above) except, no gravel ML 2 SO - 5 (5.0-8.7) (CL) SILTY CLAY, medium plasticity fines, (5.0) Drillers take break to look at faulty trace fine sand; brownish gray (5YR 4/1); cohesive, w~PL, stiff valves on drill rig. CL (8.7-19.8) (SP-SM) SAND, fine poorly graded sand bgs 3/14/2016 some non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, moist, compact 458.0 10 (10.0) SAA except, trace medium plasticity fine seams 10.0 SP-SM Sonic 9.5 10.0 - 15 4 SO 6 448.2 20 (19.8-27.6) (SW) SAND, fine to coarse sub-rounded well graded sand; dark yellowish orange (10YR 6/6); Run #5, Poor recovery due to loose sands 10/9/ 448.0 being pushed out of way when as the bit advances. Poor recovery could also be due to washing out of sands as the sampler is non-cohesive, wet, compact (20.0) SAA except, medium gray (N5) CO.GDT retrieved. GLDR LEC LOGS.GPJ SW 5.0 10.0 - 25 5 SO BOREHOLE MWD (27.6-30.0) (CL) sandy SILTY CLAY, low to medium plasticity fines, fine sand; medium gray (N5); cohesive, w<PL, firm RECORD OF CL 438.0 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-7D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/20/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 468.03 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 990,722.80 E: 726,032.42 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 30.0 (30.0-37.0) (SP-SM) SAND, fine sand, non-plastic fines; medium gray (N5); non-cohesive, wet, compact SP-SM <u>5.0</u> 10.0 - 35 6 SO (37.0-64.0) (SW) SAND, fine to coarse well graded sub-rounded sand, trace sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact 428.0 40 (40.0) Poor recovery due to worn drill bit. Driller replaces bit to try to improve (40.0) SAA except, some fine to coarse sub-rounded 40.0 gravel recovery Sonic 4.7 10.0 - 45 7 SO 6 sw GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 Run #8, Poor recovery due to loose sands being pushed out of way as the bit advances. Poor recovery could also be due to washing out of sands as the sampler is retrieved. SO - 55 8 408.0 Log continued on next page LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-7D SHEET 3 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/20/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 468.03 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 990,722.80 E: 726,032.42 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 (37.0-64.0) (SW) SAND, fine to coarse well graded sub-rounded sand, trace sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact (*Continued*) (60.0) SAA except, trace cobbles, trace 1 to 2 inch wood 60.0 fragments (64.0-70.0) (SP) SAND, fine sand, trace cobbles, trace non-plastic fines; medium gray (N5); non-cohesive, wet, Sonic <u>8.5</u> 10.0 - 65 9 SO SP - 70 END OF BORING AT 70.0 FT BELOW GROUND SURFACE.
FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-7D. - 75 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 - 85 LOGGED: JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-8D SHEET 1 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/19/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 467.46 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 989,892.67 E: 725,179.51 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH - 0 (0.0-5.9) (CL) SILTY CLAY, medium plasticity fines, some organics (roots), trace fine sand, trace fine gravel; dark yellowish brown (10YR 4/2); cohesive, w~PL, firm 2.4 5.0 1 SO CL - 5 (5.9-17.6) (SP) SAND, fine sand; light brownish gray (5YR 6/1); non-cohesive, dry, loose 457.5 10 (10.0) SAA (Same As Above) except, trace non-plastic fines, moist $\,$ 10.0 SP Sonic - 15 3 SO 6 (17.6-18.5) (CL) SILTY CLAY, medium plasticity fines, trace fine sand; medium gray (N5); cohesive, w~PL, firm CL 449.0 18.5 (18.5-20.0) (SP) SAND, fine to medium sand; light brownish gray (5YR 6/1) to brownish gray (5YR 4/1); non-cohesive, wet, compact SP 447.5 20.0 20 (20.0-57.7) (SW) SAND, fine to coarse sub-rounded sand, trace sub-rounded gravel; light brownish gray (5YR 6/1) to brownish gray (5YR 4/1); non-cohesive, 10/9/1 RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 7.0 10.0 - 25 SW 4 SO Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-8D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/19/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 467.46 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 989,892.67 E: 725,179.51 SOIL/ROCK PROFILE SAMPLES **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH - 30 (20.0-57.7) (SW) SAND, fine to coarse sub-rounded sand, trace sub-rounded gravel; light brownish gray (5YR 6/1) to brownish gray (5YR 4/1); non-cohesive, wet, compact (Continued) <u>9.5</u> 10.0 - 35 5 SO 427.5 40 (40.0) SAA except, some fine to coarse sub-rounded 40.0 gravel SW Sonic <u>6.2</u> 10.0 - 45 6 SO 6 421.5 46.0 (46.0) SAA except, medium gray (N5) GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 8.0 10.0 SO - 55 (57.7-58.5) (CL) sandy SILTY CLAY, medium plasticity fines, coarse sub-rounded sand; medium gray (N5); cohesive, w~PL, firm CL (58.5-70.6) (SW) SAND, fine to coarse sub-rounded SW sand, some fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

PF	PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center PROJECT NUMBER: 153-1406.0001A DRILLING METHOD: 6" Sonic DRILLING DATE: 11/19/2015 DRILL RIG: Mini Sonic (CDD1415) DRILL RIG: Mini Sonic (CDD1415)							SHEET 3 of 3 ELEVATION: 467.46 INCLINATION: -90 : 725,179.51		
		S	OIL/ROCK PROFIL	.E				SAMPLE	ES	
DEPTH (feet)	BORING METHOD	DESCRIPTION		USCS	GRAPHIC LOG	ELEVATION DEPTH (ft)	NUMBER	TYPE	REC ATT	REMARKS
- 60		(58.5-70.6) (SW) SAND, fine to coarse sul sand, some fine to coarse sub-rounded gray gray (N5); non-cohesive, wet, compact (Co	avel: medium			,				Run #8, Poor recovery due to sample washing out of bit in very coarse sands.
										-
-										
- 65	6" Sonic			SW			8	SO	<u>5.0</u> 10.6	-
-										
-										-
- 70		END OF BORING AT 70.6 FT BELOW GF	OUND			396.9 70.6				
-		SURFACE. FOR WELL DETAILS, SEE WELL CONS' LOG UMW-8D.				70.6				-
-										-
- 75										-
										-
_										
- 80										-
0.GDT 10/6										-
GLDR_CC										-
LOGS.GPJ										-
WWD LECT										-
SREHOLE !										-
GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR_CO.GDT 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER STL RECORD OF BOREHOLE MWD LOGS. GPJ GLDR 10/9/17 GOLDER ST										-
90										-
GOLDER STL	SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade DRILLER: J. Drabek LOGGED: JSI/JS CHECKED: JSI REVIEWED: PJJ/MNH Golder Associates							Golder Associates		

RECORD OF BOREHOLE UMW-9D SHEET 1 of 3 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 468.78 DRILLING METHOD: 0 Some DRILLING DATE: 11/19/2015 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 989,219.95 E: 724,447.77 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT NUMBER DESCRIPTION TYPE USCS DEPTH - 0 (0.0-5.0) (CL) SILTY CLAY, medium plasticity fines some organics (roots), trace fine sand; dark yellowish brown (10YR 4/2); cohesive, w~PL, firm 2.8 5.0 CL 1 SO - 5 (5.0-7.5) (ML) CLAYEY SILT, low plasticity fines, some fine sand; dark yellowish brown (10YR 4/2); cohesive, w<PL, soft ML SO (7.5-10.0) (CL) SILTY CLAY, medium plasticity fines, trace fine sand; light brownish gray (5YR 6/1); cohesive, w~PL, firm CL Water Level 9.05 ft bgs 3/14/2016 10 (10.0-13.8) (ML) sandy SILT, non-plastic fines, fine sand; moderate yellowish brown (10YR 5/4); non-cohesive, wet, loose ML SO 3 (13.8-17.8) (SP-SM) SAND, fine sand, some non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, moist, compact Sonic - 15 Run #4, Sample appears to be compacted while being extruded into sample bags.
Measured field recovery: 3.2/5.0 Estimated actual recovery: 5.0/5.0. 6 SP-SM SO (17.8-35.0) (SP) SAND, fine to medium sub-rounded sand, trace non-plastic fines; brownish gray (5Y 4/1) to light brownish gray (5YR 6/1); non-cohesive, moist, - 20 10/9/1 CO.GDT GLDR LEC LOGS.GPJ SP (24.0) SAA (Same As Above) except, color to light olive gray (5Y 5/2) 7.5 10.0 - 25 5 SO BOREHOLE MWD RECORD OF Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

RECORD OF BOREHOLE UMW-9D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 11/19/2015 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 468.78 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 989,219.95 E: 724,447.77 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH - 30 (17.8-35.0) (SP) SAND, fine to medium sub-rounded sand, trace non-plastic fines; brownish gray (5Y 4/1) to light brownish gray (5YR 6/1); non-cohesive, moist, compact (Continued) SP <u>7.5</u> 10.0 - 35 6 SO (35.0-45.0) (SW) SAND, fine to coarse sand; medium gray (N5); non-cohesive, wet, compact 40 SW Sonic - 45 7 SO (45.0-47.5) (SP-SM) SAND, fine sand, some non-plastic 6 fines; medium gray (N5); non-cohesive, wet, compact SP-SM (47.5-54.5) (SW) SAND, fine to coarse sub-rounded sand, trace non-plastic fines; medium gray (N5); non-cohesive, wet, compact GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 SW (54.5-60.0) (SP) SAND, fine sand, trace non-plastic fines; medium gray (N5); non-cohesive, wet, compact 9.0 10.0 SO - 55 8 SP 408.8 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

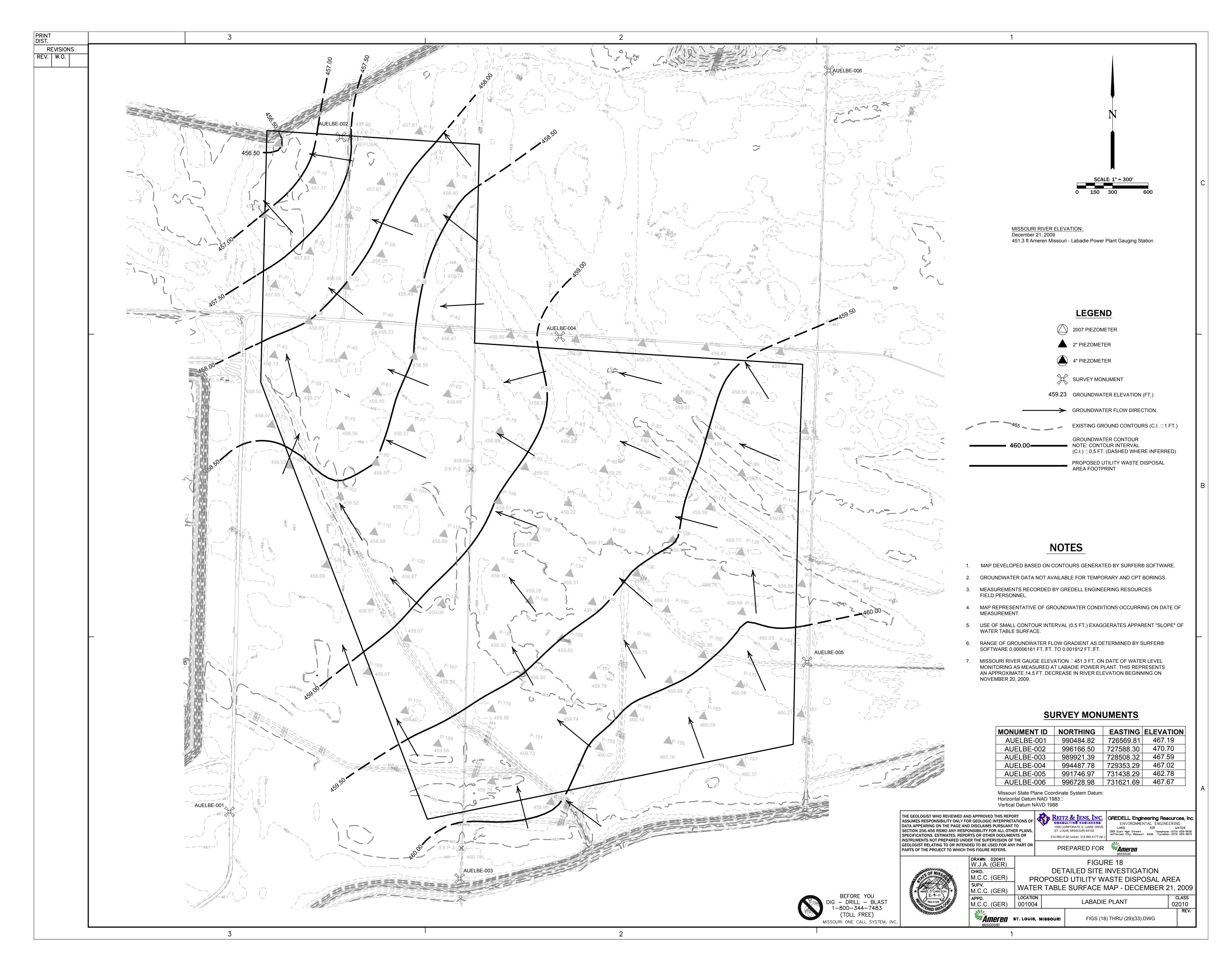
PRO	OJECT CATION	Ameren CCR GW Monitoring NUMBER: 153-1406.0001A I: Labadie Energy Center RECOR DRILLING METI DRILLING DATE DRILL RIG: Mir	HOD: 6" So E: 11/19/20	onic 115	DATU AZIMI	M: NAVD JTH: N/A	88	,219.95 E	SHEET 3 of 3 ELEVATION: 468.78 INCLINATION: -90
	ДQН	SOIL/ROCK PROF	ILE				SAMPLE	ES	
DEPTH (feet)	BORING METHOD	DESCRIPTION	USCS	GRAPHIC LOG	DEPTH (ft)	I NUMBER	TYPE	REC ATT	REMARKS
- 60		(60.0-66.0) (SW) SAND, fine to coarse sub-rounded sand, trace fine to coarse sub-rounded gravels; medium gray (N5); non-cohesive, wet, loose	SW		60.0			, ,	
- 65	6" Sonic	(66.0-70.1) (SP) SAND, fine sand, trace low plasticity fines; medium gray (N5); non-cohesive, wet, loose	SP		402.8	9	SO	<u>9.0</u> 10.1	
70					398.7				
- 70		END OF BORING AT 70.1 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION			70.1				
		FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG UMW-9D.							
- 75									
- 80									
0.5									
- 85									
- 90									
SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade DRILLER: J. Drabek					ED: JSI/J KED: JSI WED: PJ			•	Golder

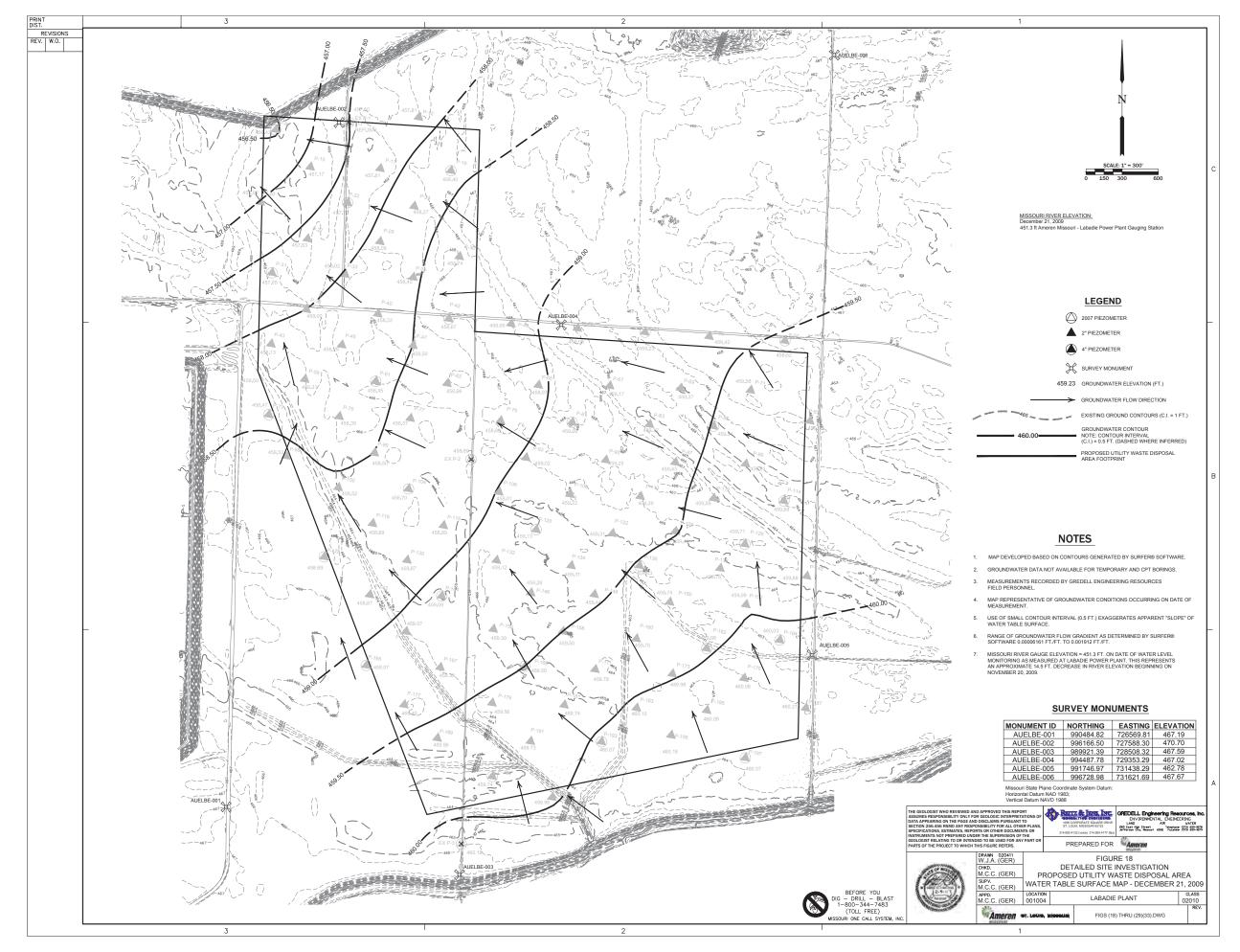
RECORD OF BOREHOLE BMW-1D SHEET 1 of 3 PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DRILLING METHOD: 6" Sonic DATUM: NAVD88 ELEVATION: 471.19 DRILLING INIE 11 IOD. 0 GGIIIG DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,310.58 E: 715,138.40 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS NUMBER DESCRIPTION TYPE USCS DEPTH - 0 (0.0-7.5) (ML) CLAYEY SILT, low plasticity fines, some fine sand, some organics (roots); brownish gray (5YR 4/1); cohesive, w<PL, firm 2.5 5.0 1 SO ML 466.2 - 5 (5.0) SAA (Same As Above) except, no organics (7.5-8.9) (CL) SILTY CLAY, medium plasticity fines, trace fine sand; brownish gray (5YR 4/1) to moderate yellowish brown (10YR 5/4); cohesive, w~PL, firm CL (8.9-10.0) (SP-SM) SAND, fine sand, some non-plastic fines; moderate yellowish brown (10YR 5/4) to dark yellowish brown (10YR 4/2); non-cohesive, moist, loose SP-SM 10 yenowish brown (10 FR 4/2), holf-conesive, moist, loose (10.0-18.3) (SM) SILTY SAND, fine sand, some non-plastic fines, trace low to medium plasticity silty clay pockets; light brownish gray (5YR 6/1) with medium gray (NS) to moderate yellowish brown (10YR 5/4) fines; non-cohesive, wet, loose SM Sonic - 15 3 SO 6 454.9 16.3 (16.0) SAA except, color to medium gray (N5) (18.3-20.0) (SC) CLAYEY SAND, fine to medium sub-rounded sand, medium plasticity fines; medium gray SC 20 10/9/1 (20.0-30.0) (SP) SAND, fine to medium sub-rounded Run #4, Sample appears to be compacted while being extruded into sample bags.

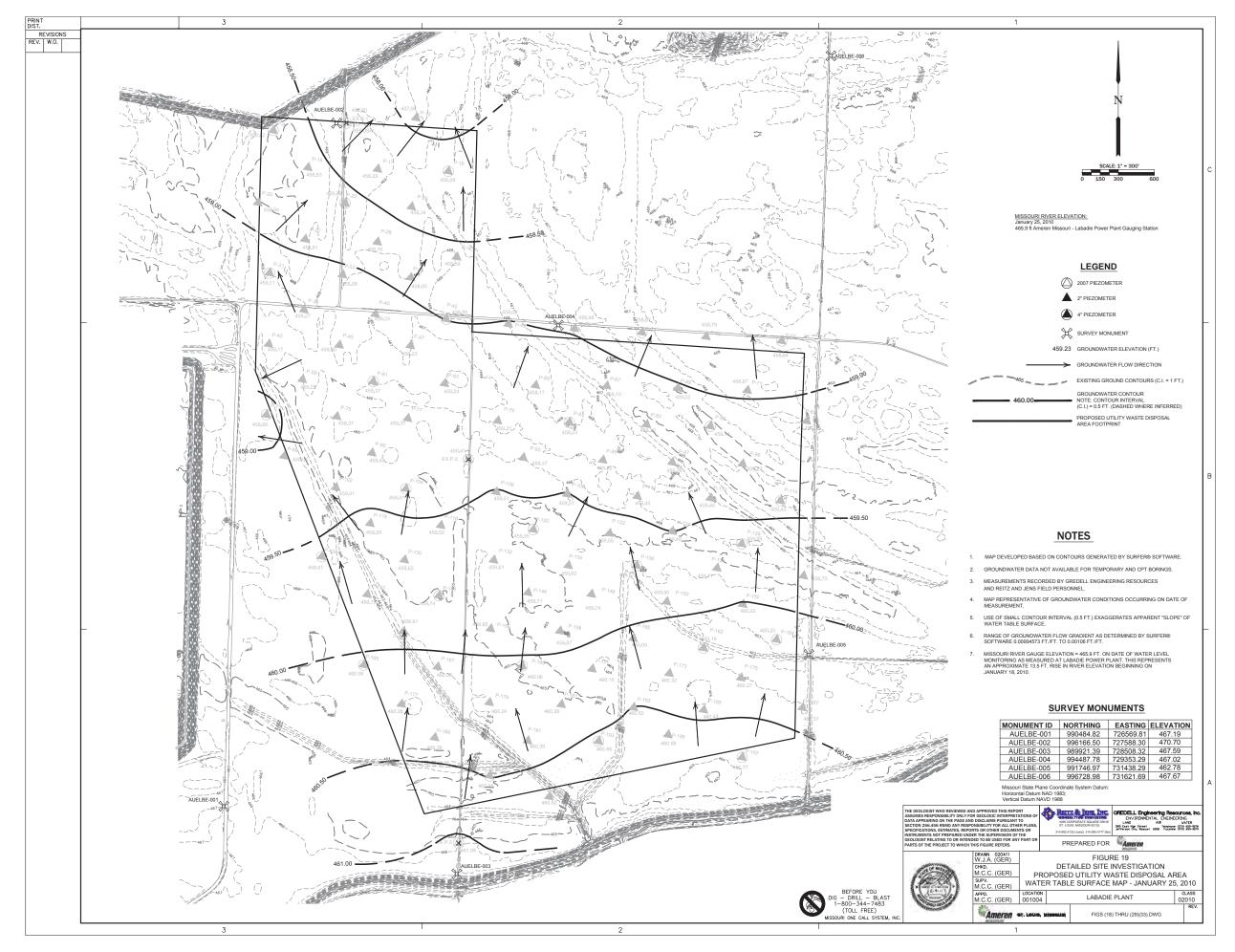
Measured field recovery: 4.1/10.0 Estimated actual recovery: 7.0/10.0. sand, trace non-plastic fines, trace sub-rounded fine gravels; medium gray (N5); non-cohesive, wet, loose CO.GDT GLDR LEC LOGS.GPJ <u>7.0</u> 10.0 SP - 25 4 SO BOREHOLE MWD RECORD OF 441.2 Log continued on next page GOLDER STL SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH **Associates**

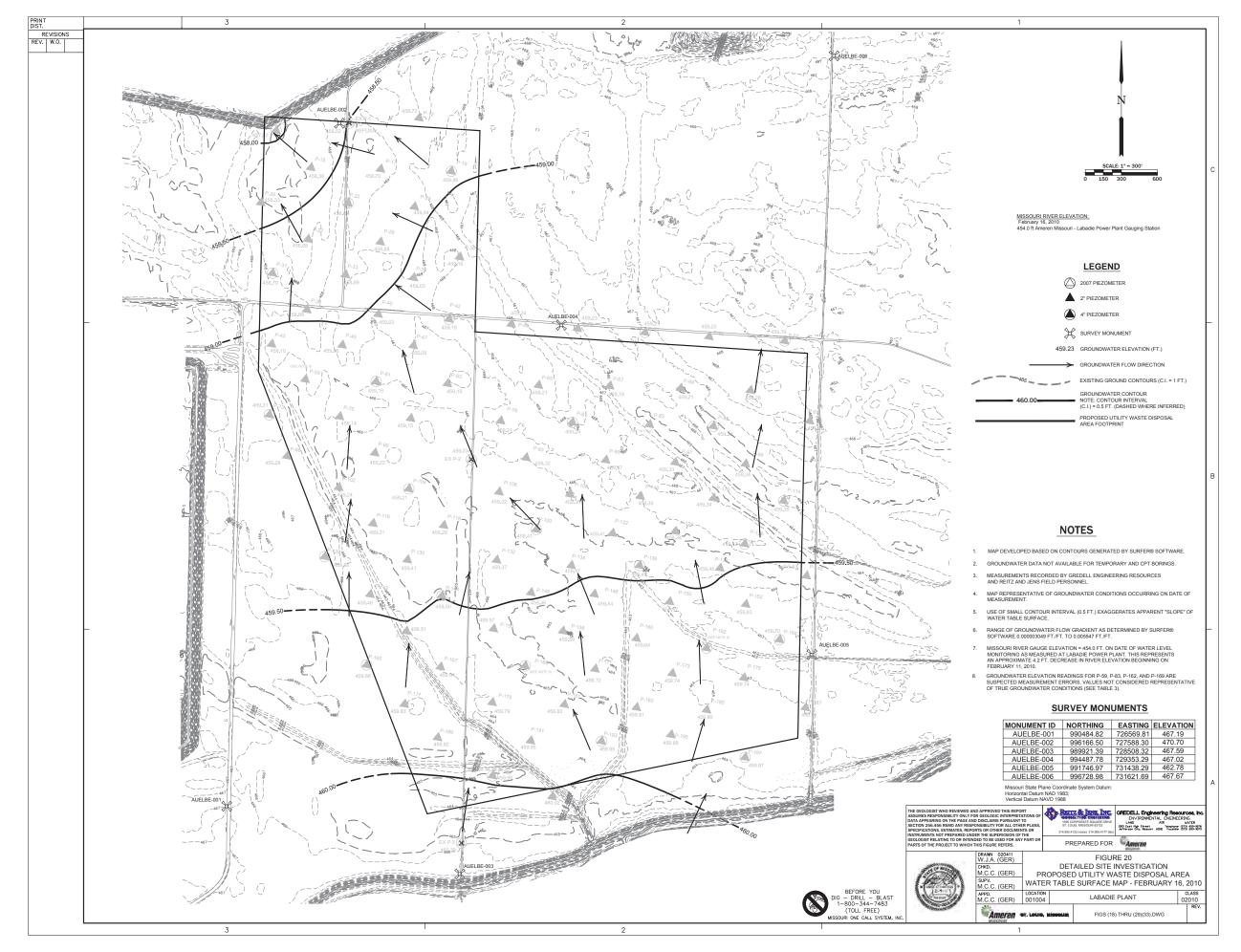
RECORD OF BOREHOLE BMW-1D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 471.19 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,310.58 E: 715,138.40 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 30.0 (30.0-38.5) (SW) SAND, fine to coarse sub-rounded sand, some fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact SW 10.0 10.0 - 35 5 SO (38.5-50.0) (SP) SAND, fine to medium sub-rounded sand, trace fine gravel; medium gray (N5); non-cohesive, wet, compact 431.2 40 (40.0) SAA except, trace non-plastic fines 40.0 SP Sonic - 45 6 SO 6 - 50 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/1 (50.0-75.0) (SW) SAND, fine to coarse, sub-rounded Run #7, Sample appears to be compacted while being extruded into sample bags.

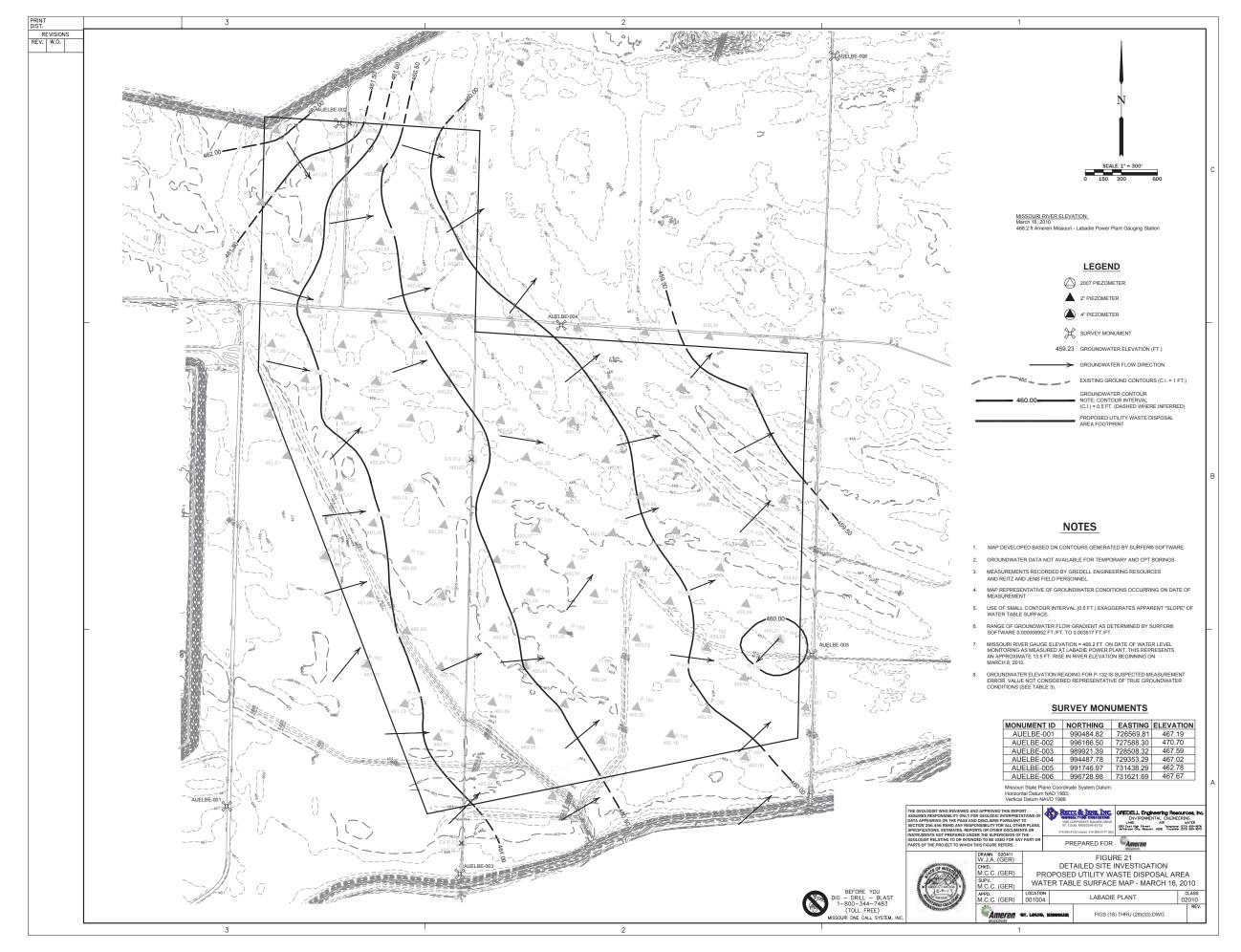
Measured field recovery: 5.3/10.0 Estimated actual recovery: 8.5/10.0. sand, trace fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact so - 55 SW 411.2 Log continued on next page SCALE: 1 in = 3.8 ft LOGGED: JSI/JS DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

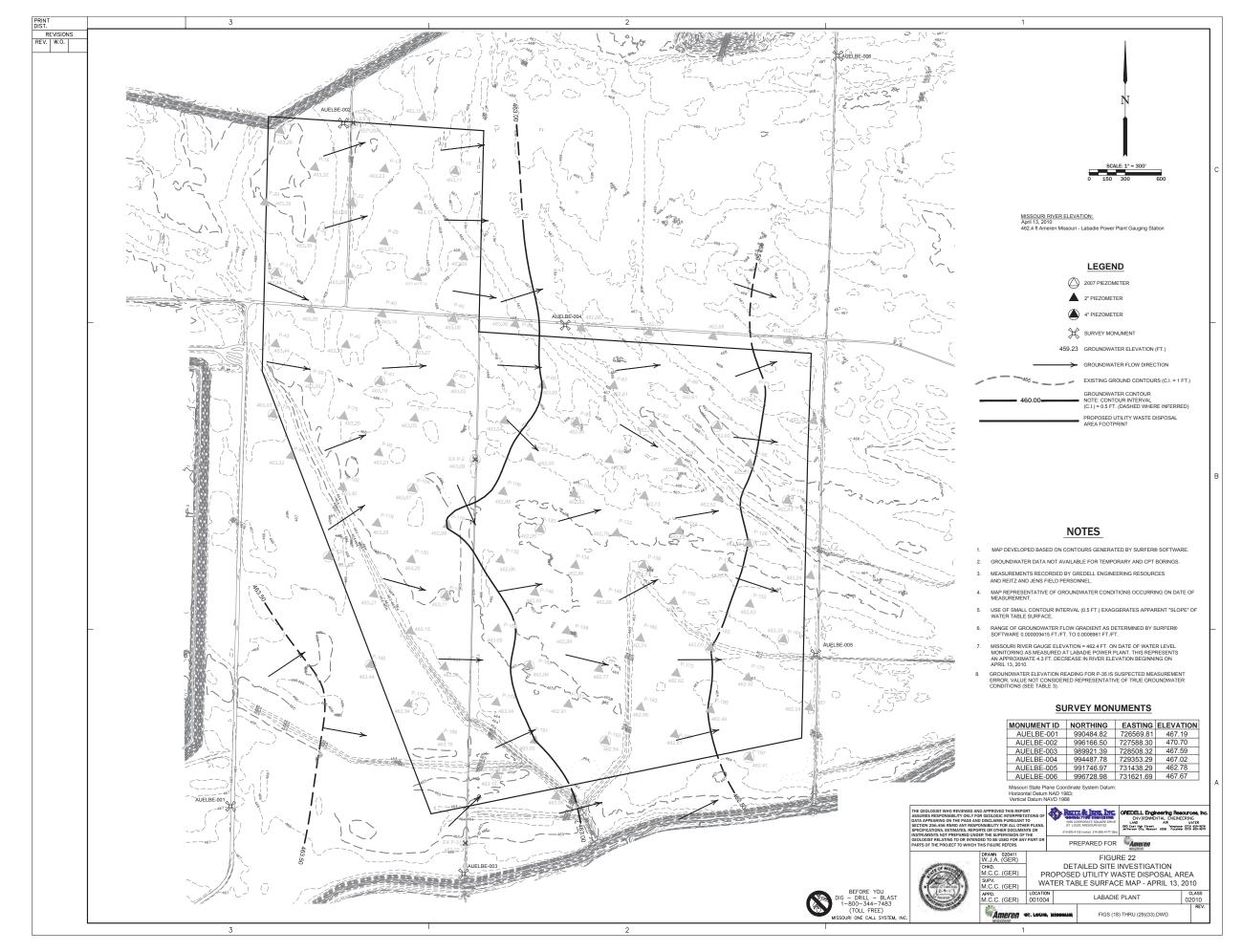

RECORD OF BOREHOLE BMW-1D SHEET 3 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 471.19 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 988,310.58 E: 715,138.40 SAMPLES SOIL/ROCK PROFILE **BORING METHOD** DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 60.0 Run #8, Sample appears to be compacted while being extruded into sample bags. Measured field recovery: 6.1/10.0 Estimated actual recovery: 9.3/10.0. (50.0-75.0) (SW) SAND, fine to coarse, sub-rounded sand, trace fine to coarse sub-rounded gravel; medium gray (N5); non-cohesive, wet, compact (Continued) (60.0) SAA except, some fine to coarse sub-rounded gravel, trace sub-rounded cobbles (up to 4 inches in diameter), trace black (N1) native coal pieces <u>9.3</u> 10.0 - 65 8 SO 6" Sonic 401.2 - 70 (70.0-75.0) SAA except, some black (N1) rounded native 70.0 coal (lignite) gravels Run #9, Driller notes poor recorvery is likely caused by encountering large boulder/cobble (>6") which plugged the sampler and shook the rig. 1.0 5.0 SO 9 - 75 END OF BORING AT 75.0 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG BMW-1D. RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 - 85 GOLDER STL LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

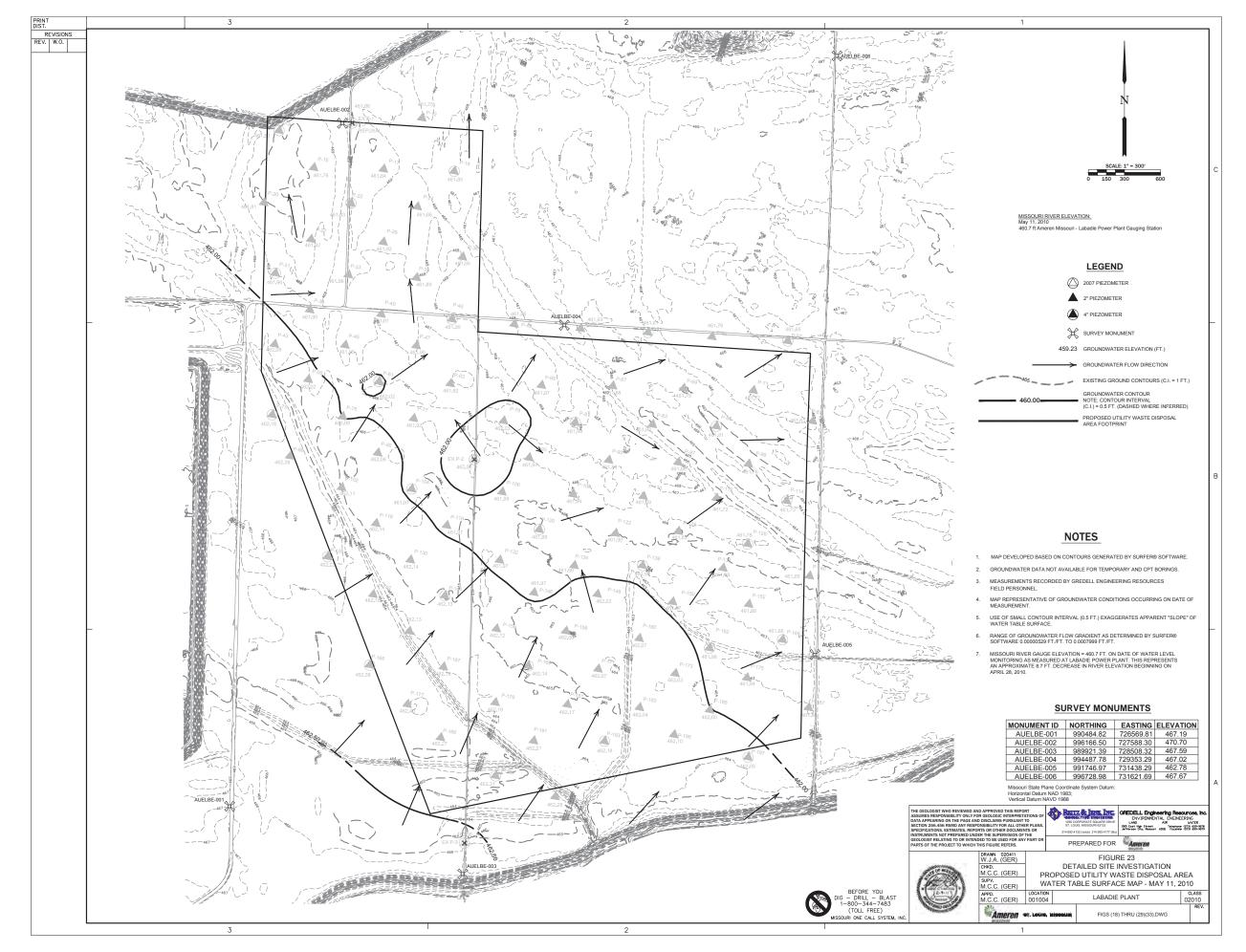

RECORD OF BOREHOLE BMW-2D SHEET 1 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 472.48 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 987,204.30 E: 715,104.23 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT NUMBER DESCRIPTION TYPE USCS DEPTH (ft) - 0 (0.0-4.0) (ML) CLAYEY SILT, low plasticity fines, some fine sand, some organics (roots); brownish gray (5YR 4/1); cohesive, w<PL, firm ML 1.9 5.0 1 SO 468.5 4.0 (4.0-75.0) (SP) SAND, fine sand, trace non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, (4.0) interface between CLAYEY SILT and SAND not known, driller notes that the SAND not known, driller notes that the bottom 3 feet of sample #1 washed out. Run #2, Sample appears to be compacted while being extruded into sample bags. Measured field recovery: 4.1/5.0 Estimated actual recovery: 5.0/5.0. dry, loose - 5 <u>5.0</u> 5.0 SO 462.5 10 (10.0) SAA (Same As Above) except, moist 10.0 5.0 5.0 SO 3 Sonic 457.5 ft bgs 3/14/2016 - 15 (15.0) SAA except, wet, no non-plastic fines 6 SP 4 SO 452.8 19.7 452.5 (19.7) SAA except, trace black (N1) native coal (Lignite) 20 10/9/1 pieces (20.0) SAA except, fine to medium sub-rounded sand, CO.GDT RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR - 25 5 SO 446.5 (26.0) SAA except, color changes to brownish gray (5YR 4/1) to medium gray (N5) $\,$ 443.5 29.0 (29.0) SAA except, trace non-plastic fines 442.5 - 30 Log continued on next page GOLDER STL LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH Associates

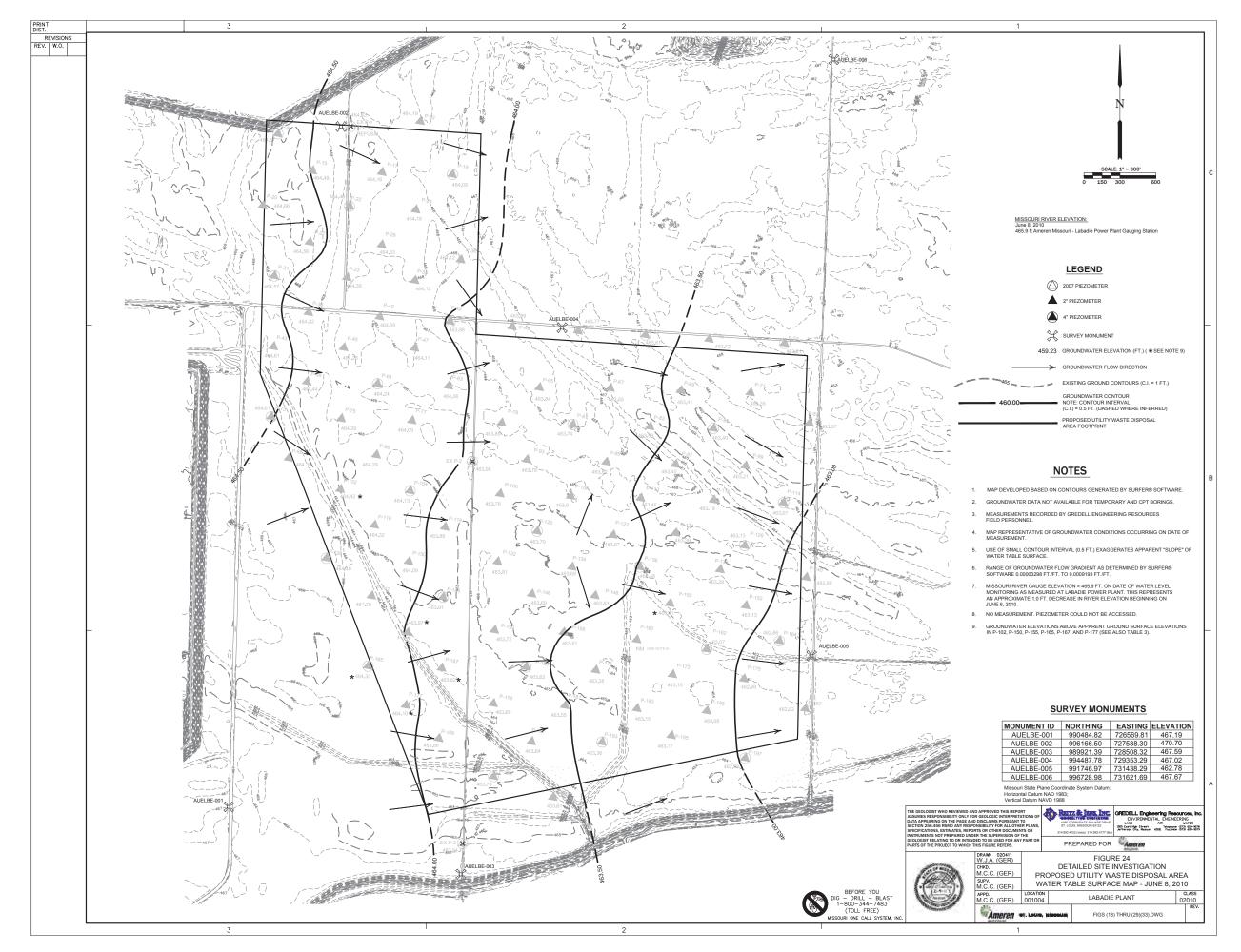

RECORD OF BOREHOLE BMW-2D SHEET 2 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 472.48 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 987,204.30 E: 715,104.23 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 30 (4.0-75.0) (SP) SAND, fine sand, trace non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, dry, loose (*Continued*) (30.0) SAA except, color to medium gray (N4) 30.0 438.5 34.0 (34.0) SAA except, no non-plastic fines 10.0 10.0 - 35 6 SO 432.5 40 (40.0) SAA except, trace sub-rounded gravels, trace non-plastic fines 40.0 Sonic 10.0 10.0 - 45 SP 7 SO 6 422.5 50.0 GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 50 (50.0) Pause drilling overnight. Continue (50.0) SAA except, no gravels drilling @0800 on 2/2/2016 SO - 55 8 412.5 Log continued on next page LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH **Associates**

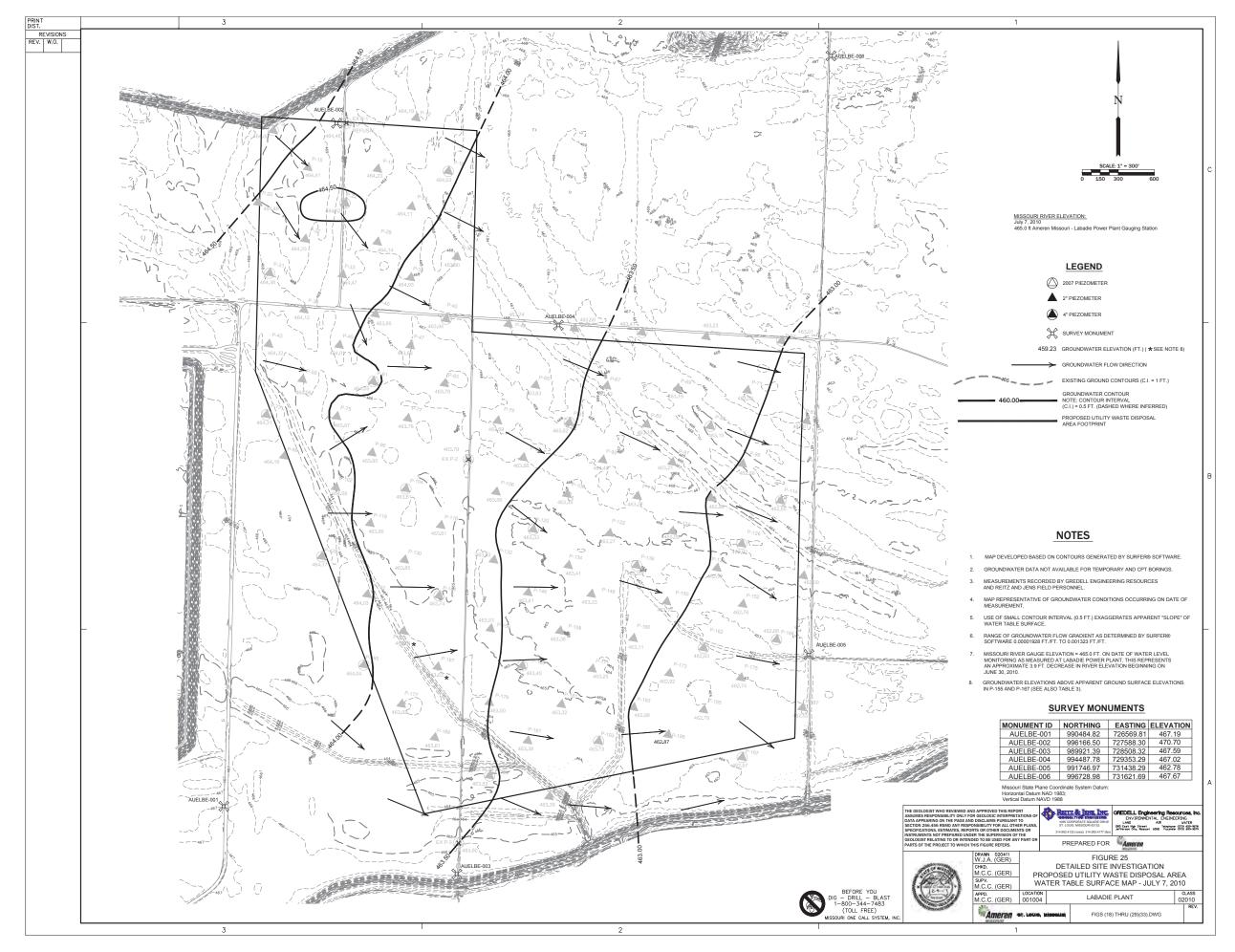

RECORD OF BOREHOLE BMW-2D SHEET 3 of 3 DRILLING METHOD: 6" Sonic DRILLING DATE: 2/1/2016 DRILL RIG: Mini Sonic (CDD1415) PROJECT: Ameren CCR GW Monitoring PROJECT NUMBER: 153-1406.0001A LOÇATION: Labadie Energy Center DATUM: NAVD88 ELEVATION: 472.48 AZIMUTH: N/A INCLINATION: -90 COORDINATES: N: 987,204.30 E: 715,104.23 SAMPLES **BORING METHOD** SOIL/ROCK PROFILE DEPTH (feet) GRAPHIC LOG ELEVATION REMARKS REC ATT DESCRIPTION NUMBER TYPE USCS DEPTH (ft) - 60 (4.0-75.0) (SP) SAND, fine sand, trace non-plastic fines; moderate yellowish brown (10YR 5/4); non-cohesive, dry, loose (*Continued*) (60.0) SAA except, trace sub-rounded fine to coarse 60.0 <u>8.7</u> 10.0 - 65 9 SO 6" Sonic SP 402.5 70.0 - 70 (70.0) SAA except, some coarse sand Run #10, Poor recovery due to sample washing out <u>0.5</u> 5.0 10 SO - 75 END OF BORING AT 75.0 FT BELOW GROUND SURFACE. FOR WELL DETAILS, SEE WELL CONSTRUCTION LOG BMW-2D. GOLDER STL RECORD OF BOREHOLE MWD LEC LOGS.GPJ GLDR_CO.GDT 10/9/17 - 80 - 85 LOGGED: JSI/JS SCALE: 1 in = 3.8 ft DRILLING CONTRACTOR: Cascade CHECKED: JSI Golder DRILLER: J. Drabek REVIEWED: PJJ/MNH **Associates**

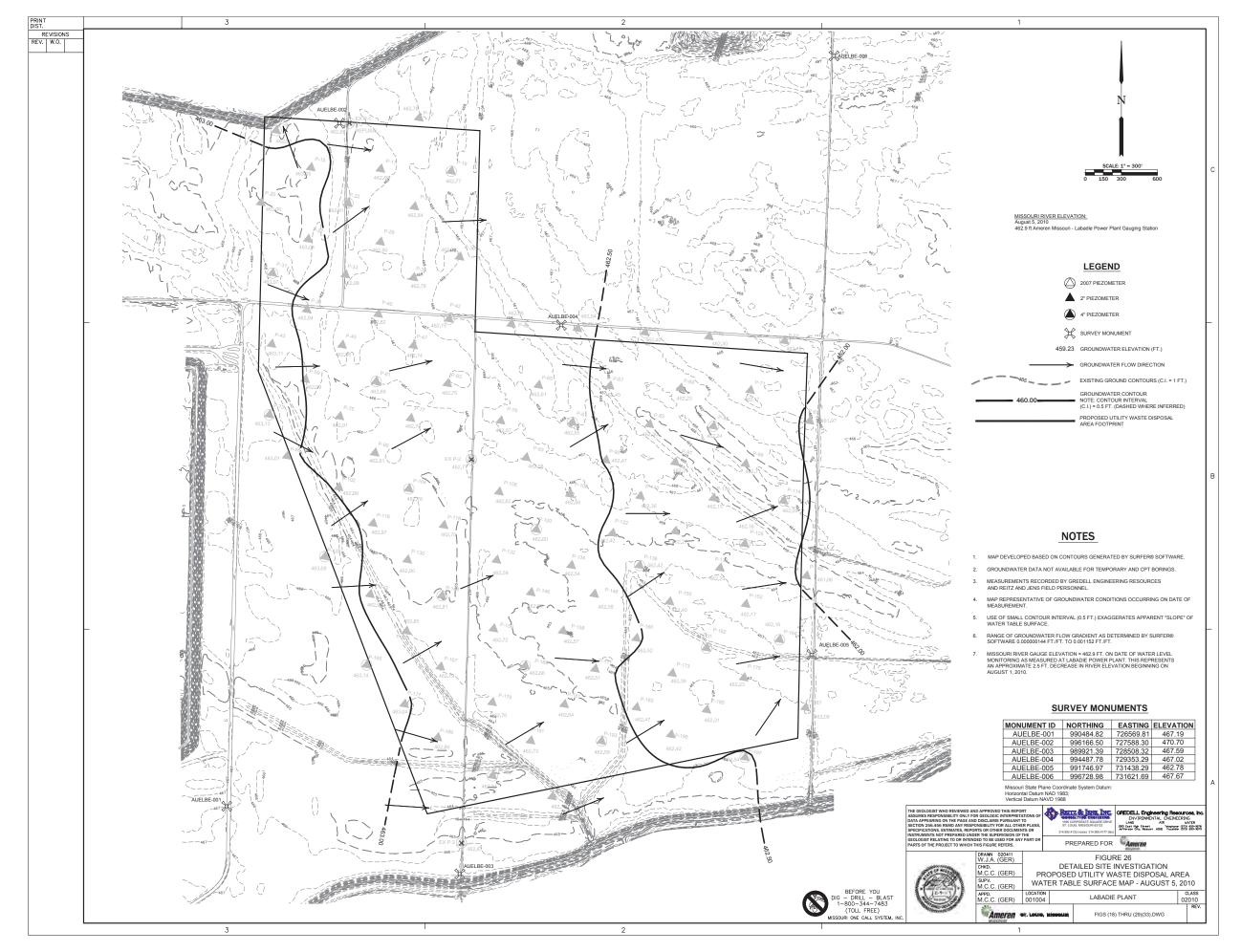

APPENDIX B HISTORIC POTENTIOMETRIC SURFACE MAPS

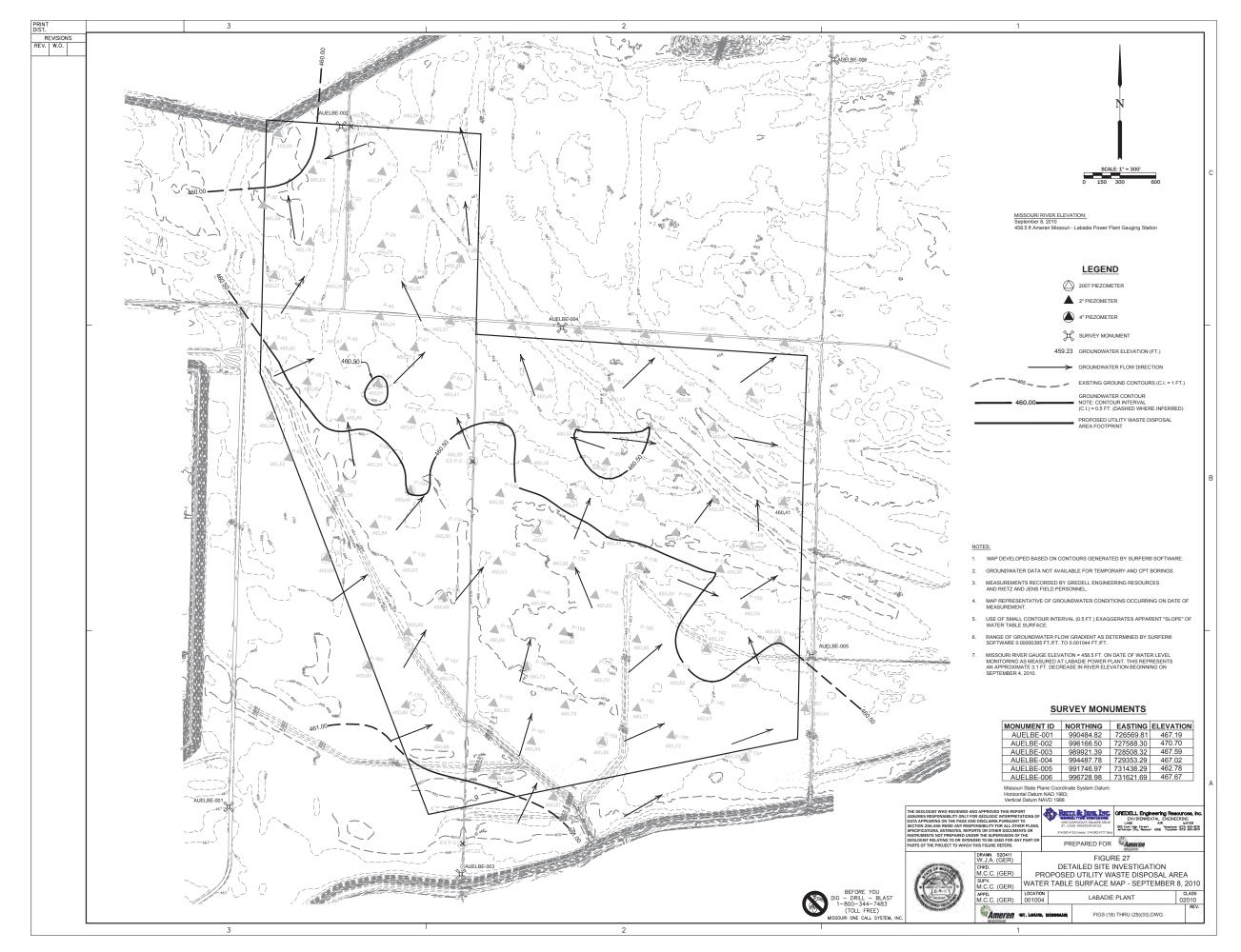


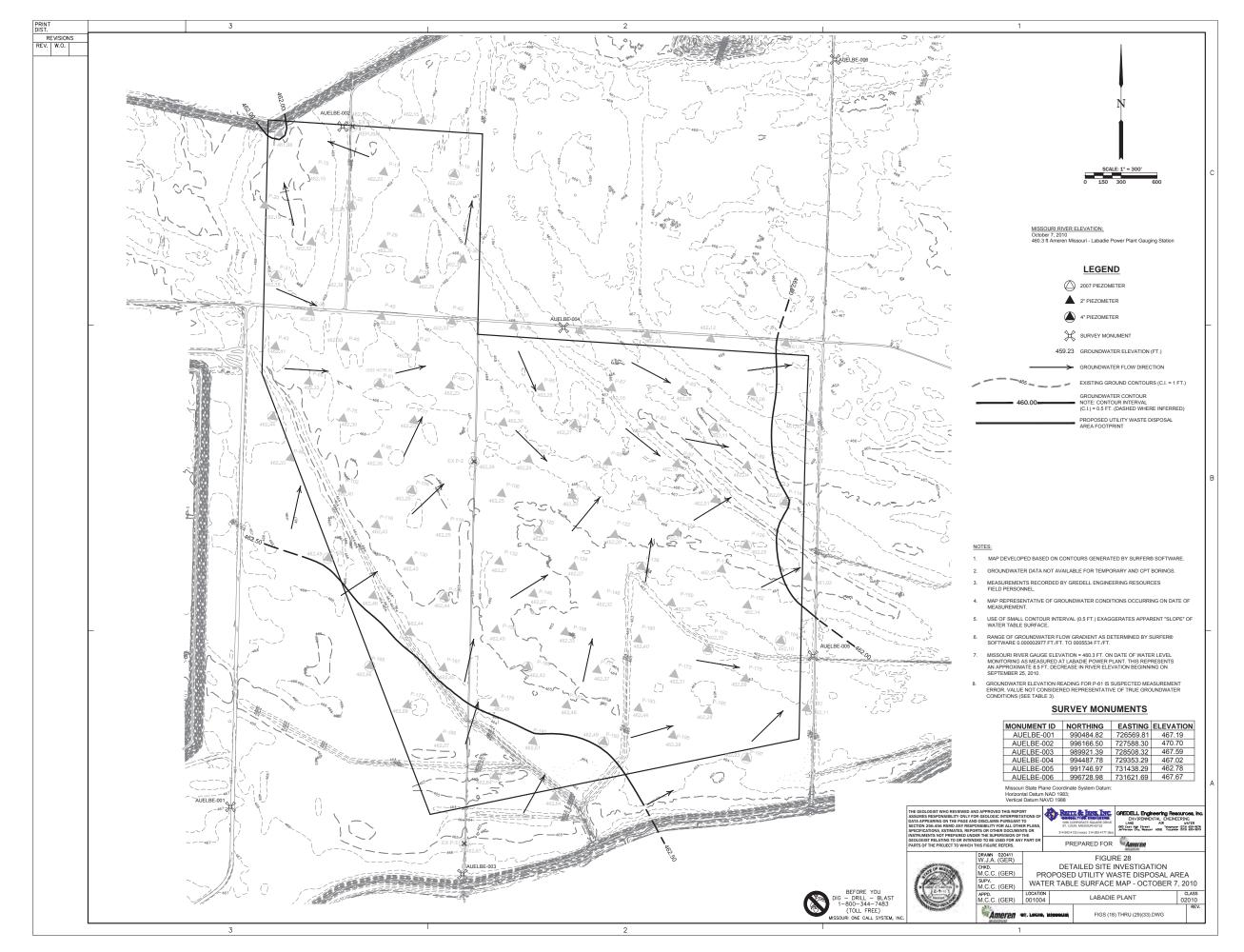


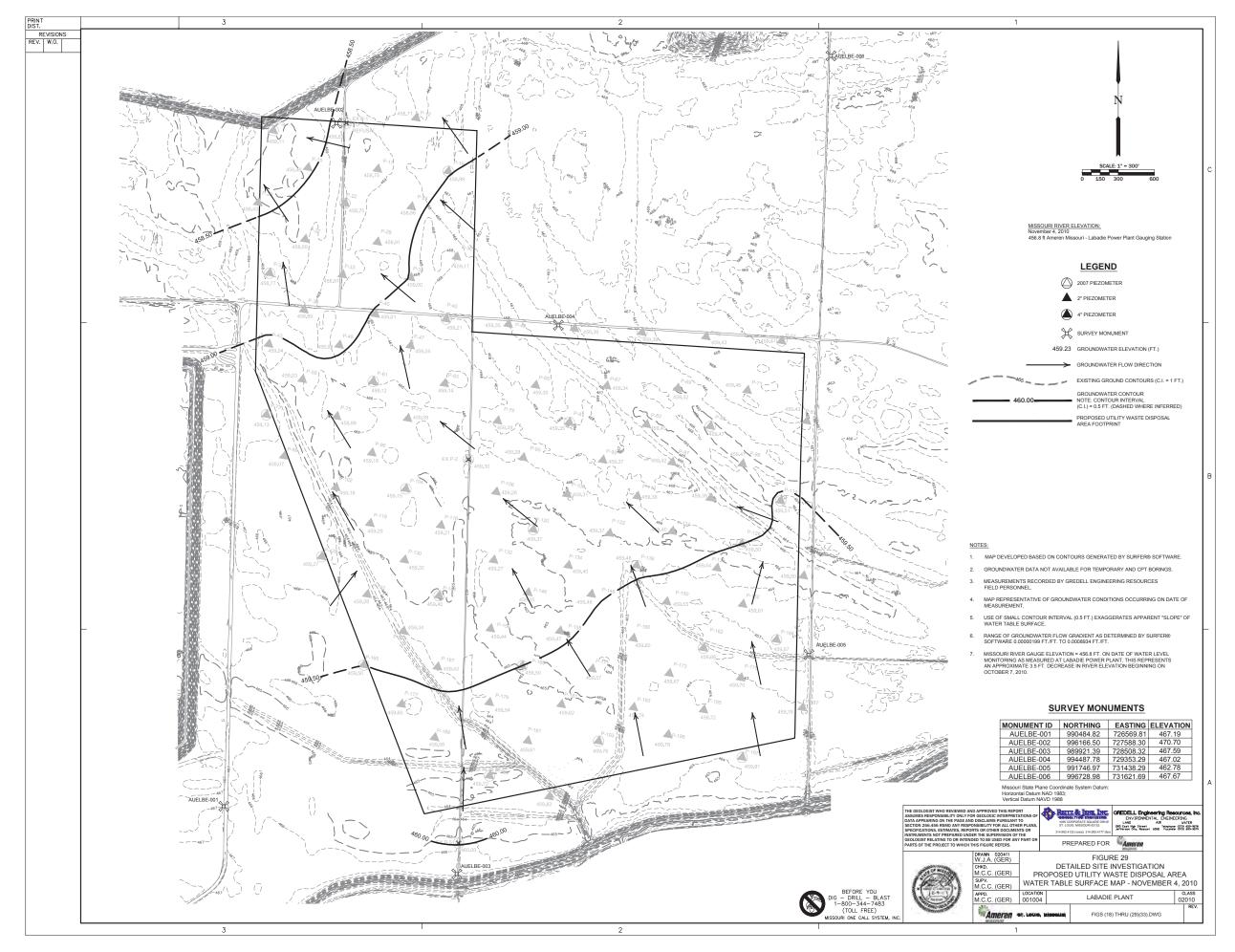


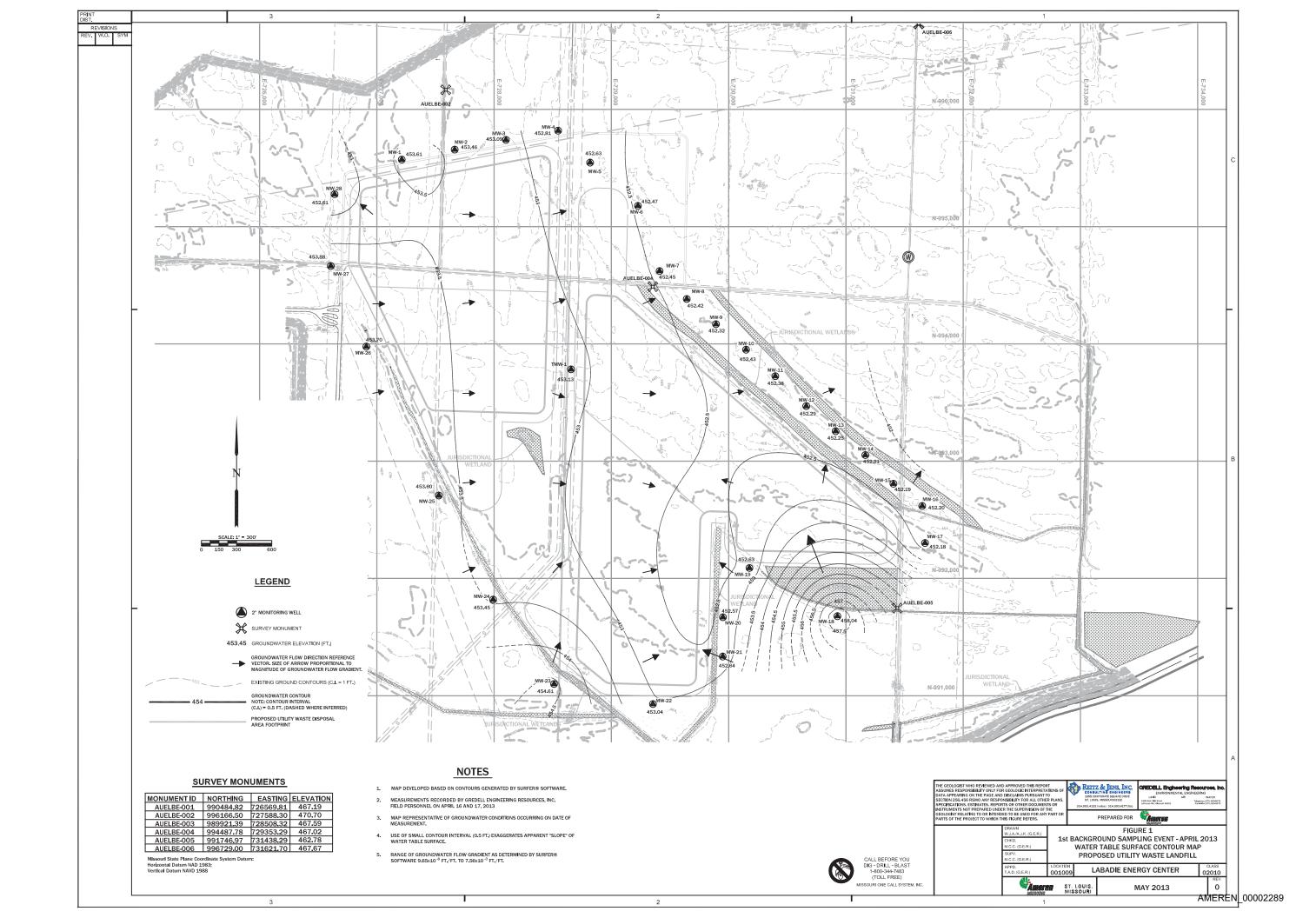


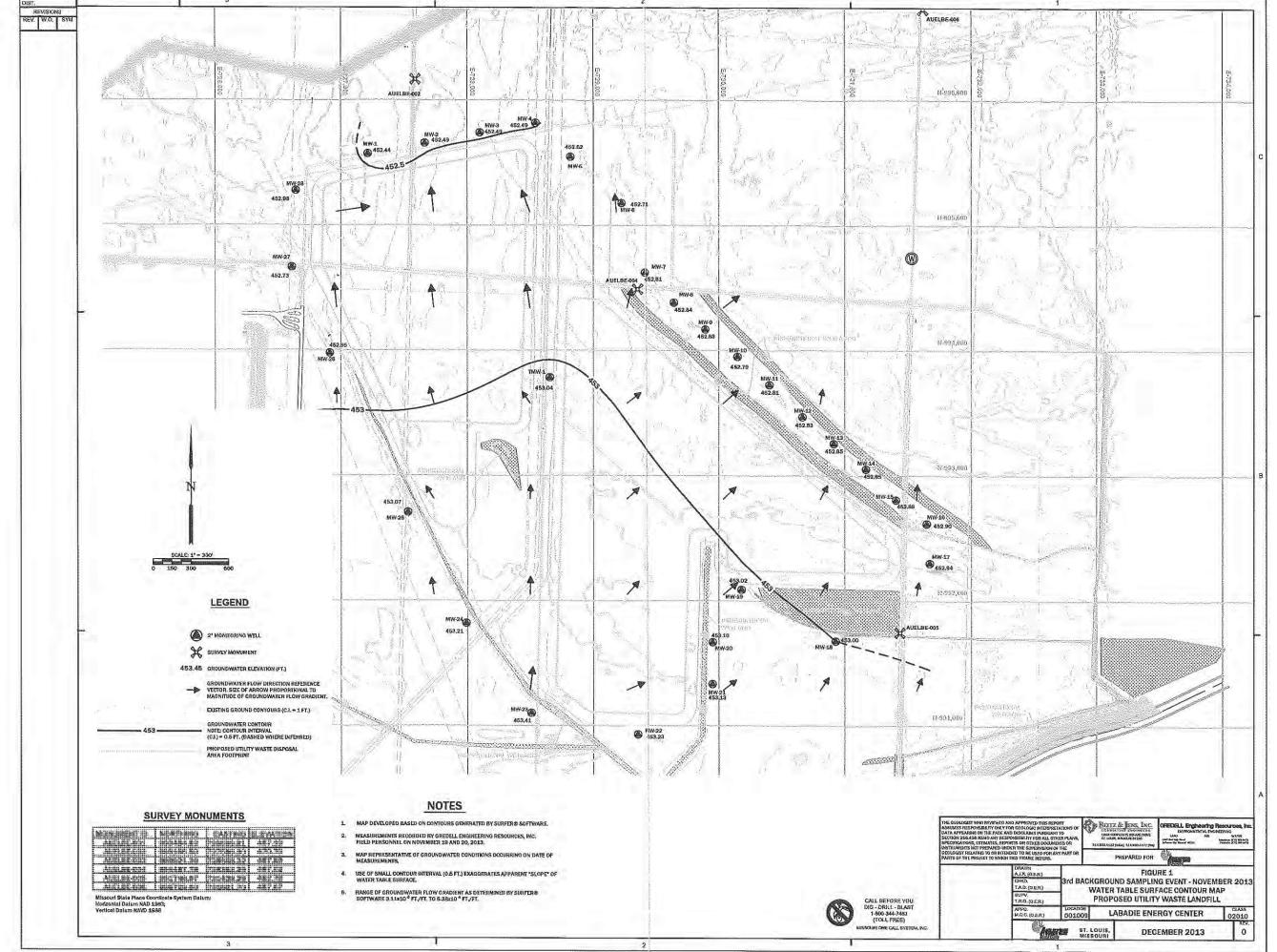


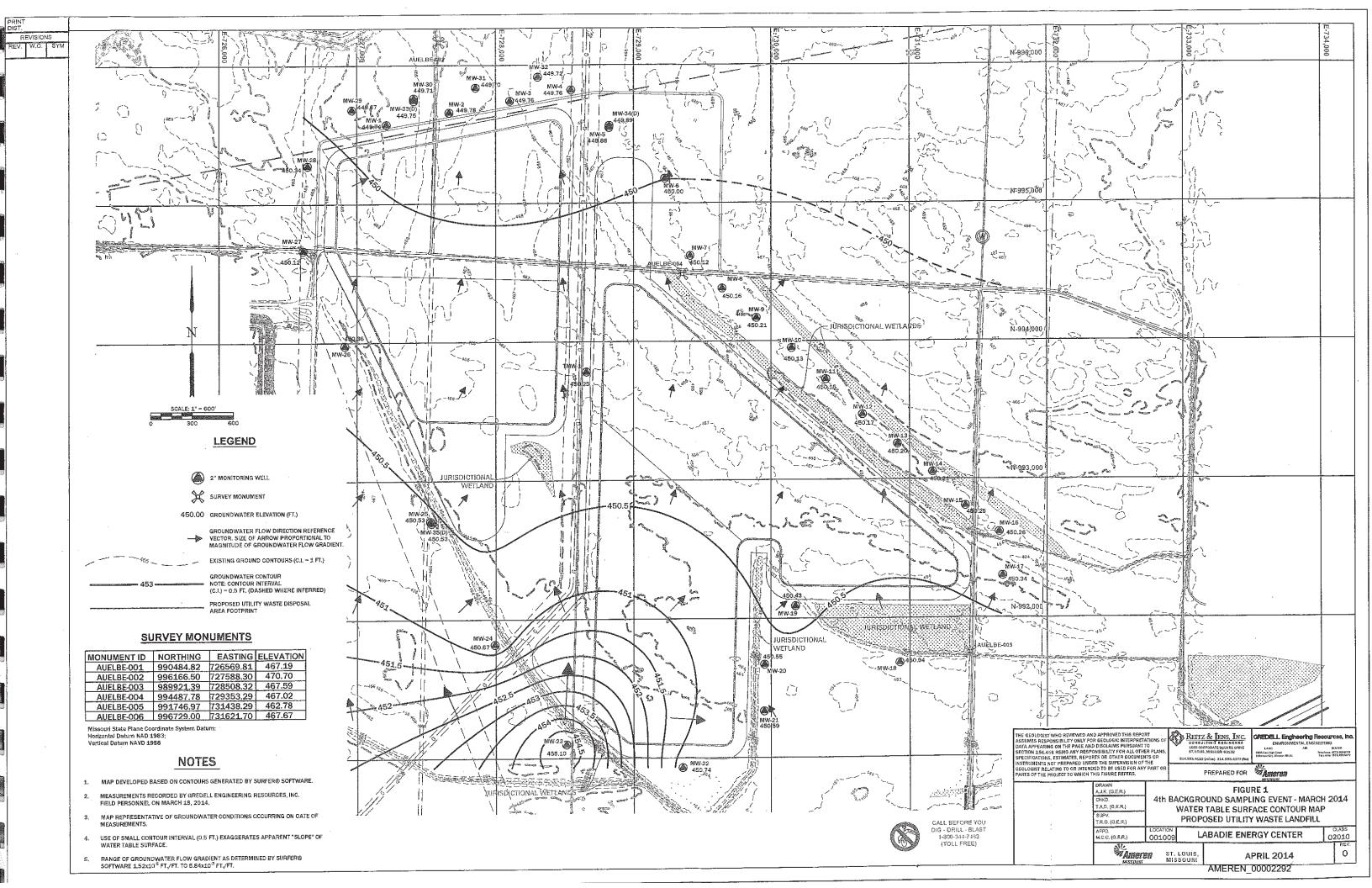


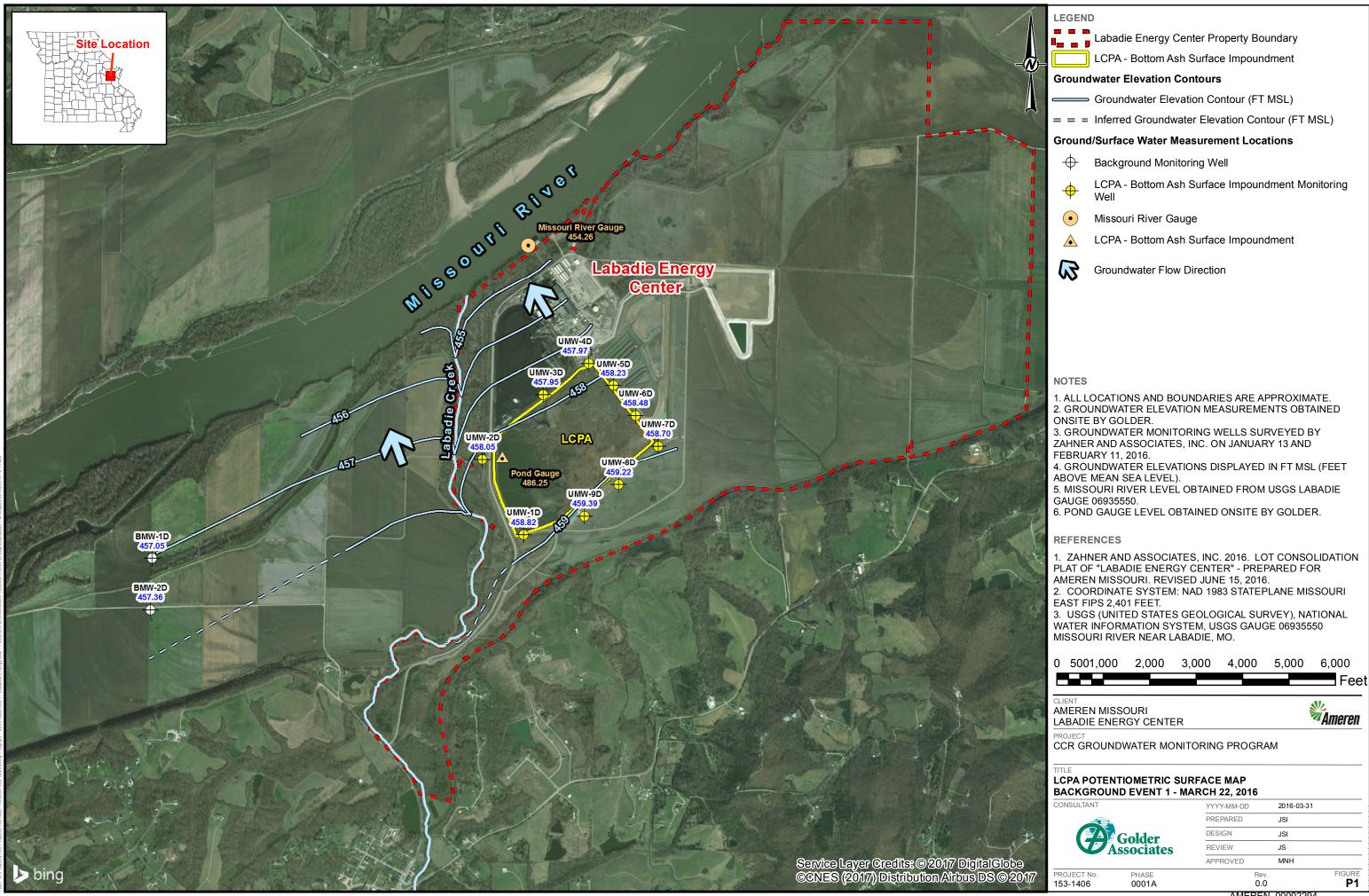


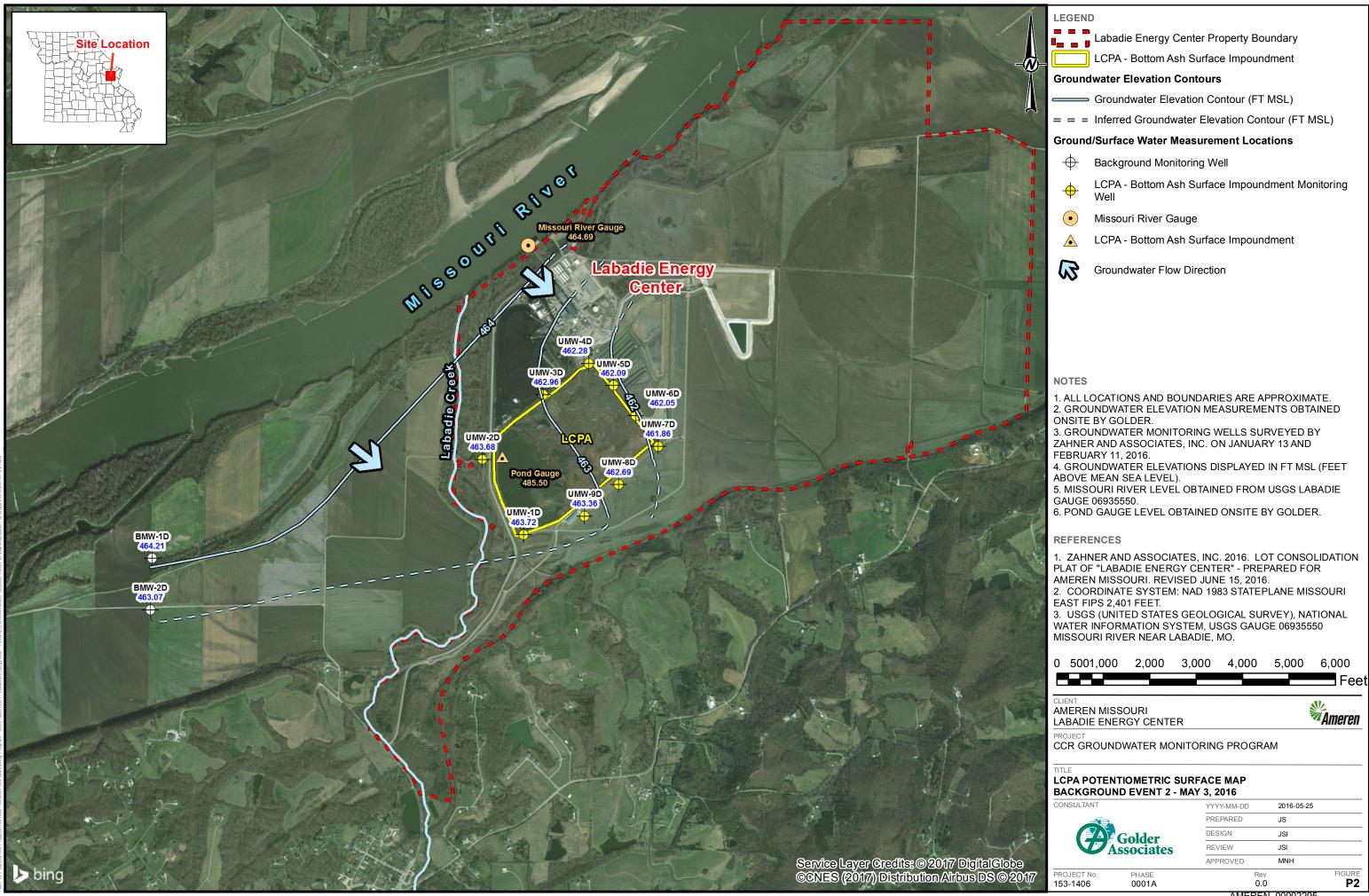


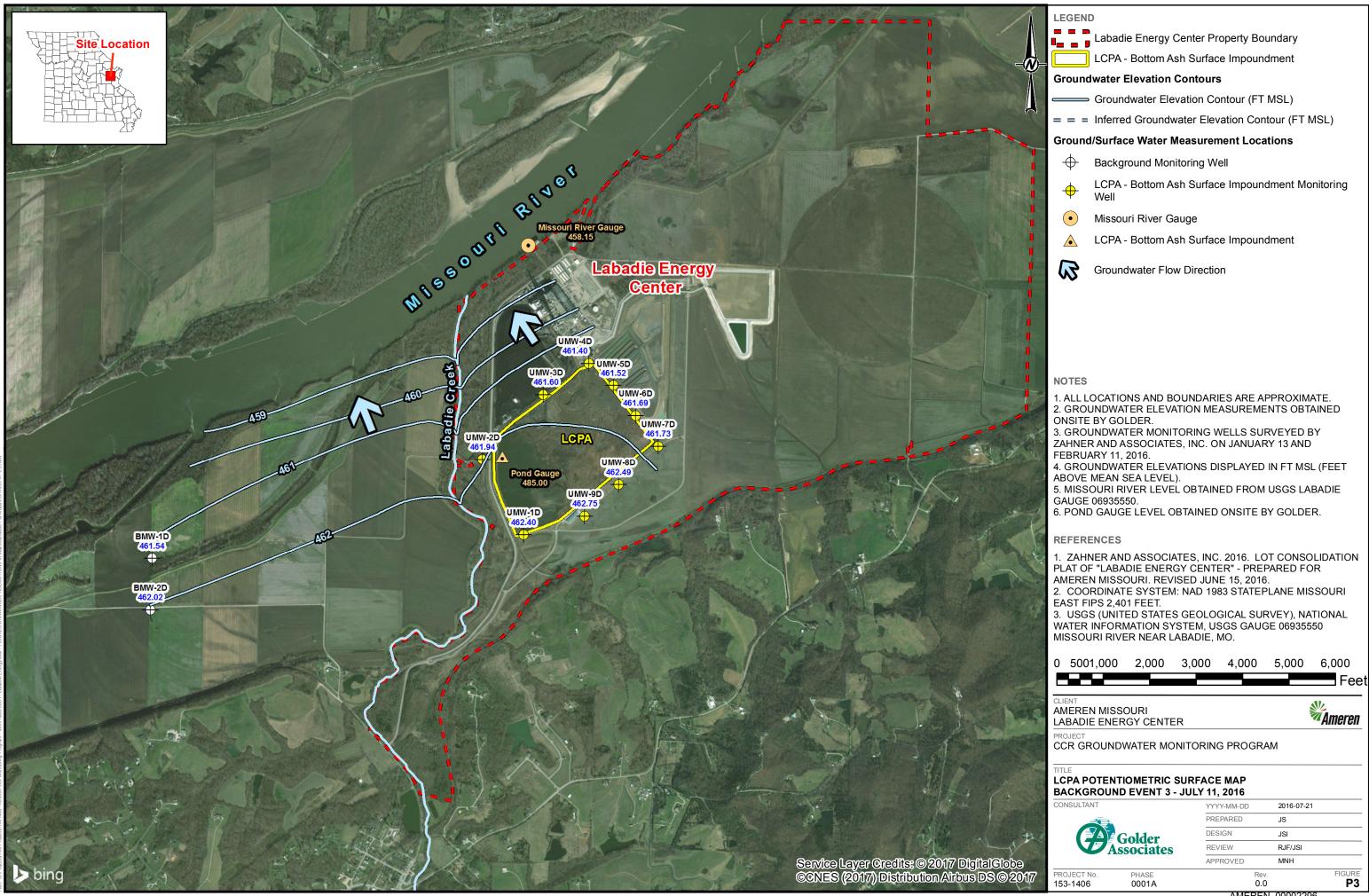


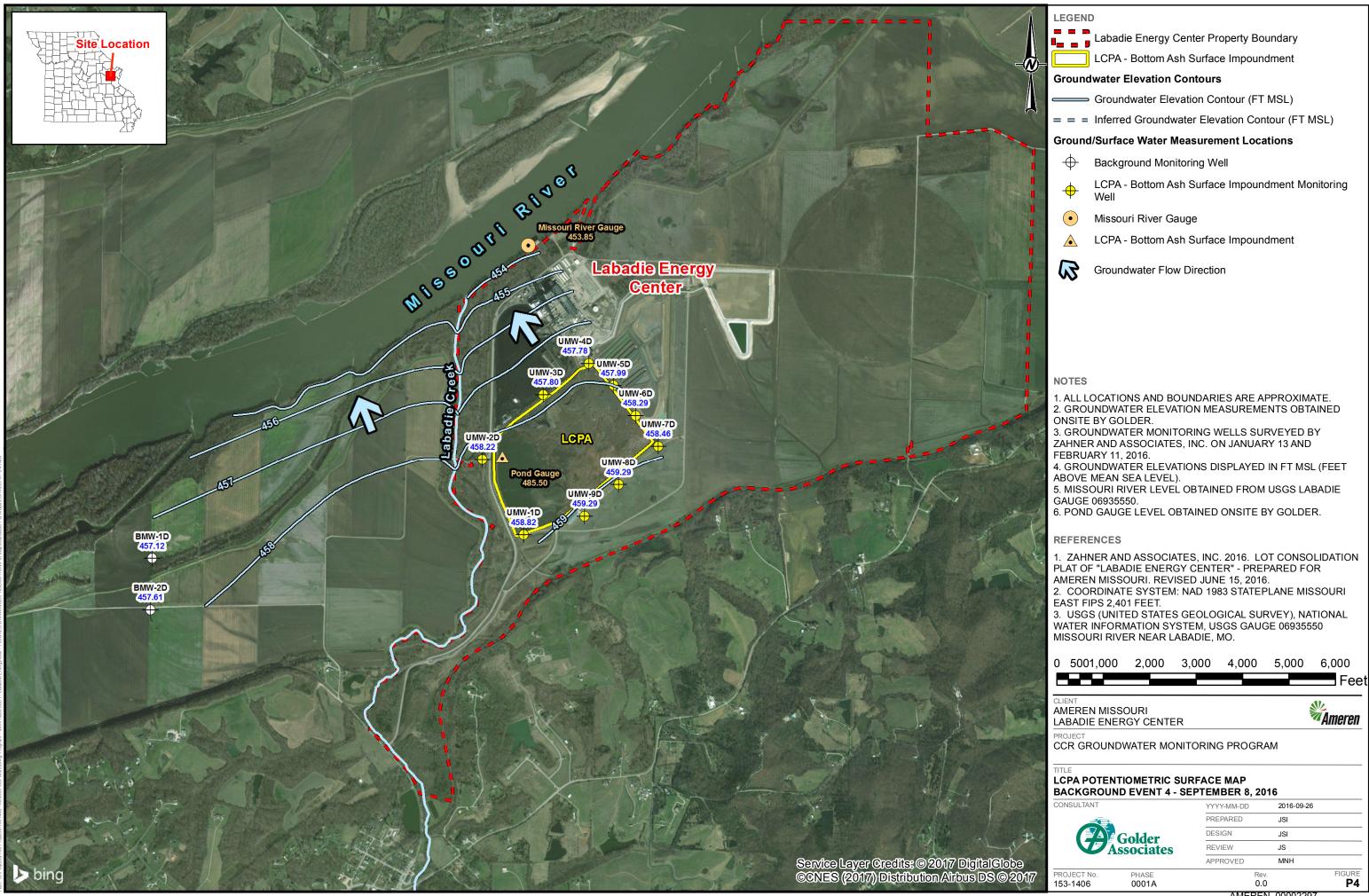


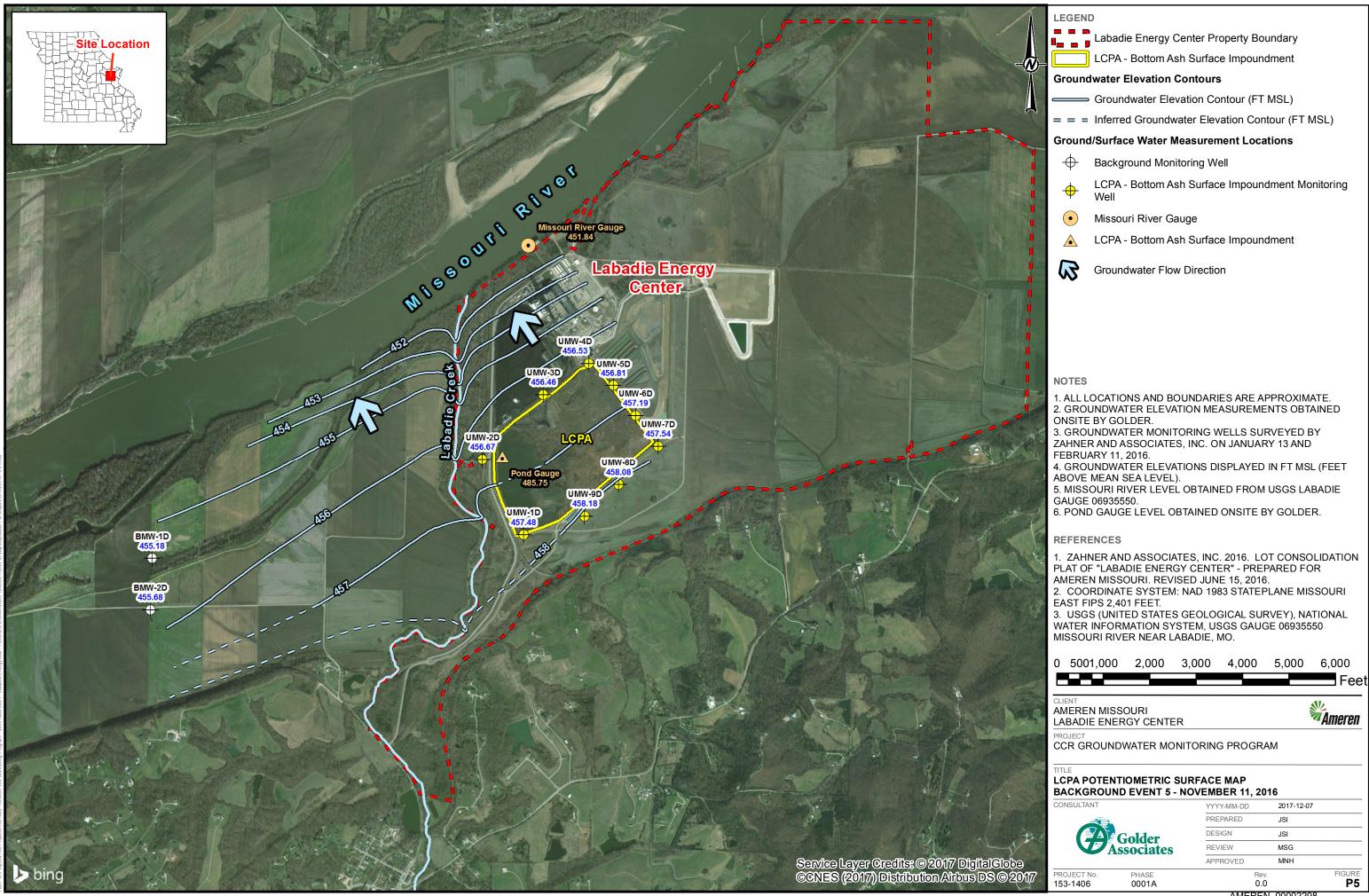


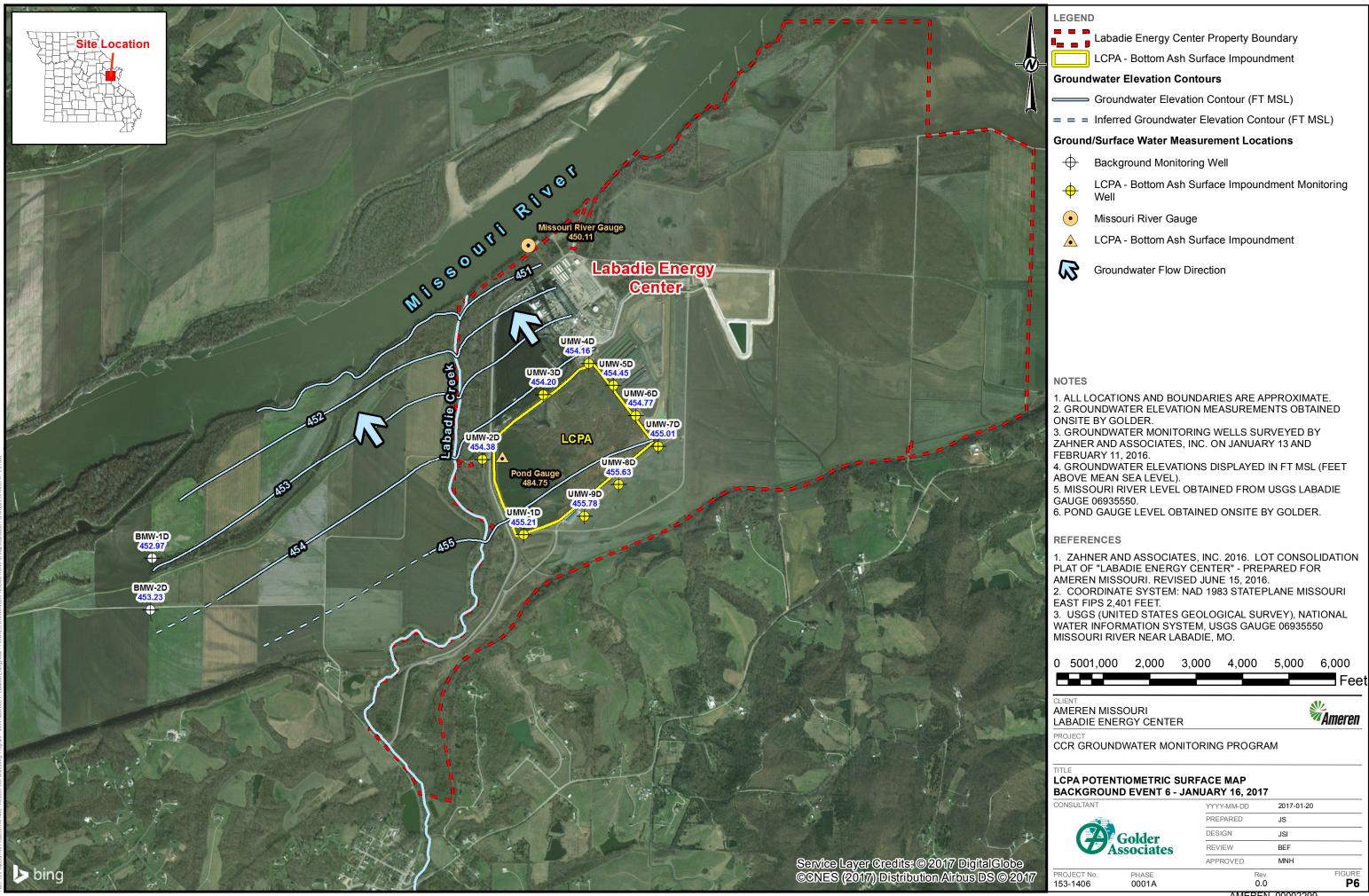


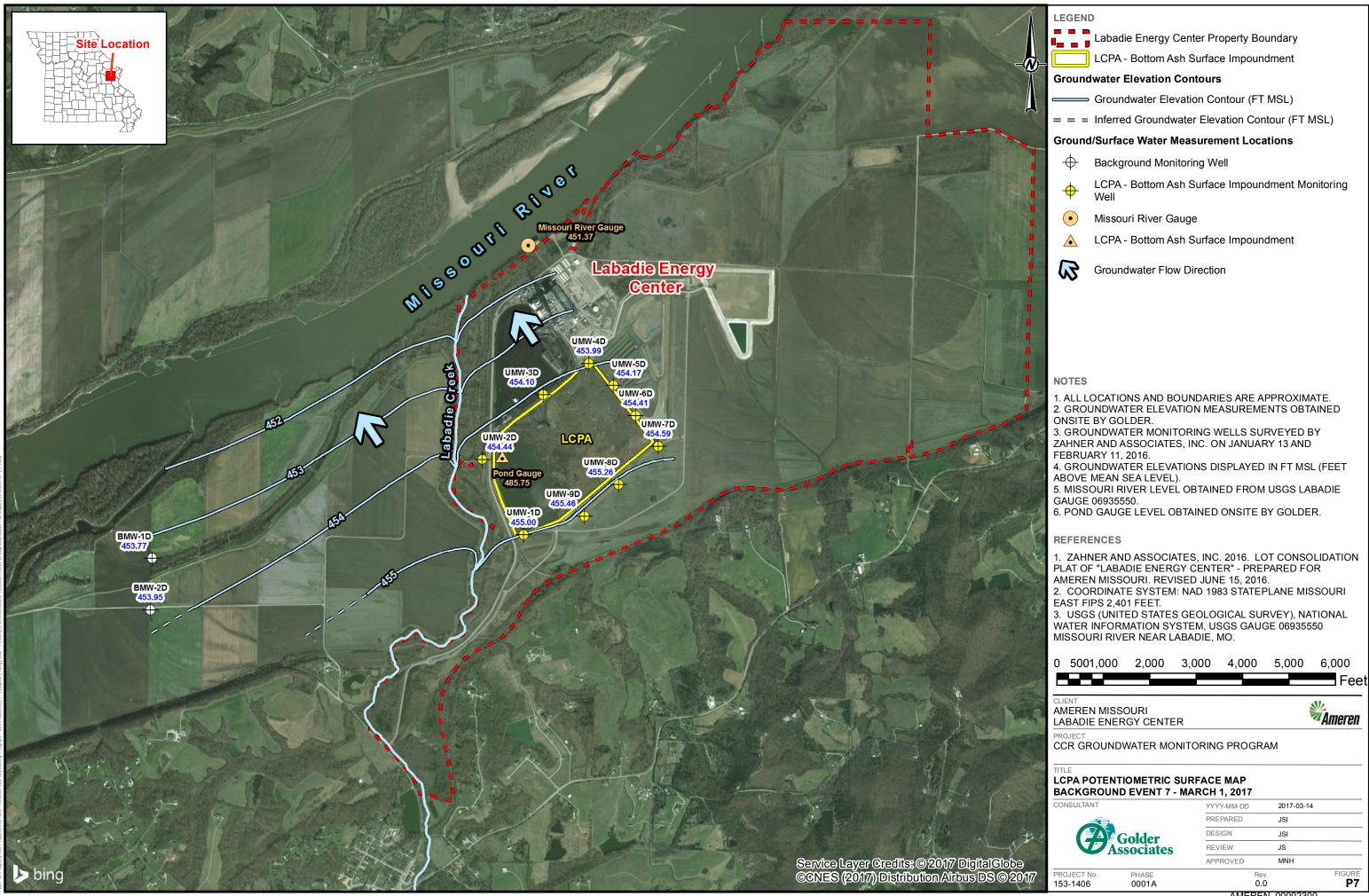


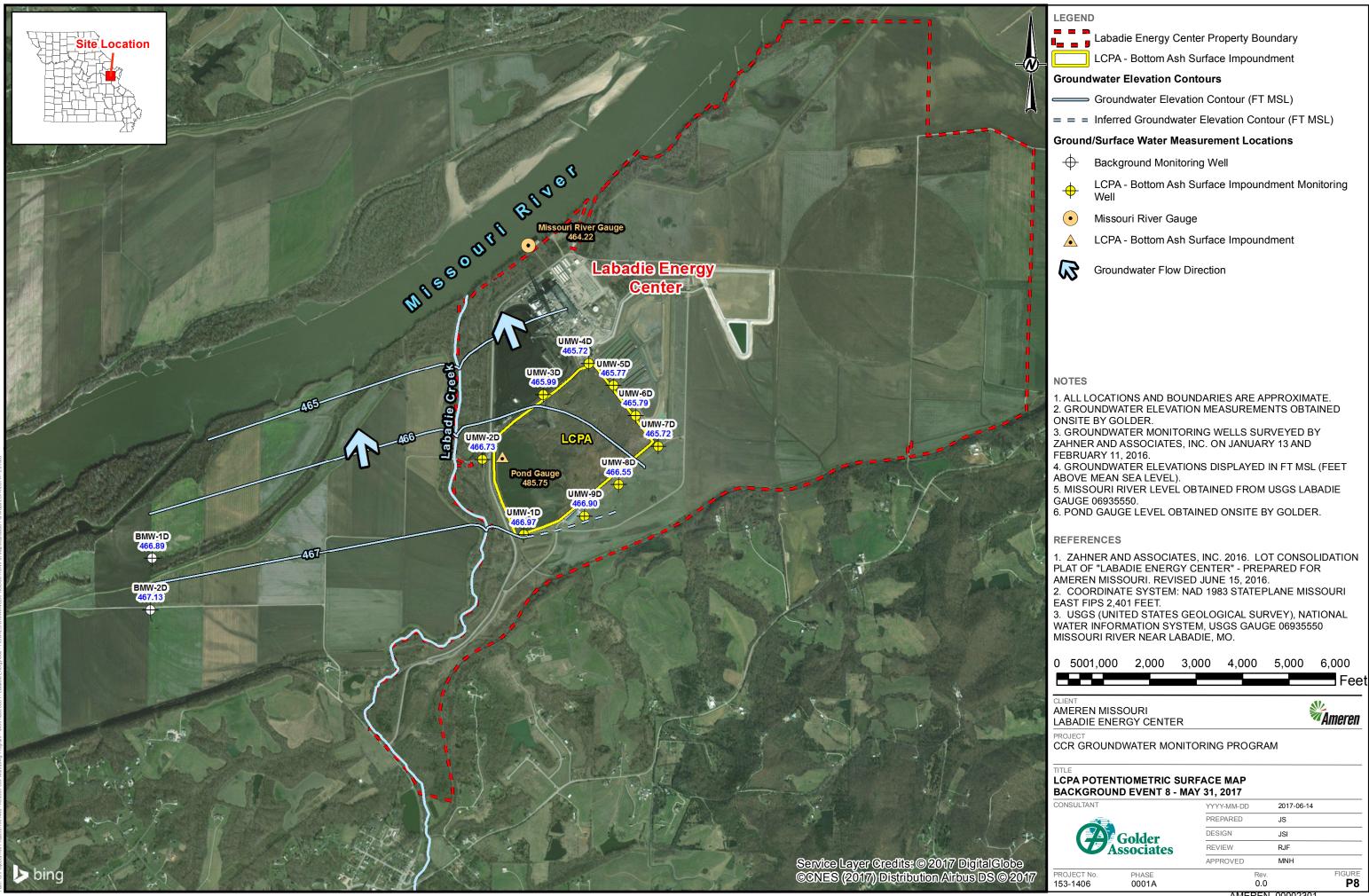


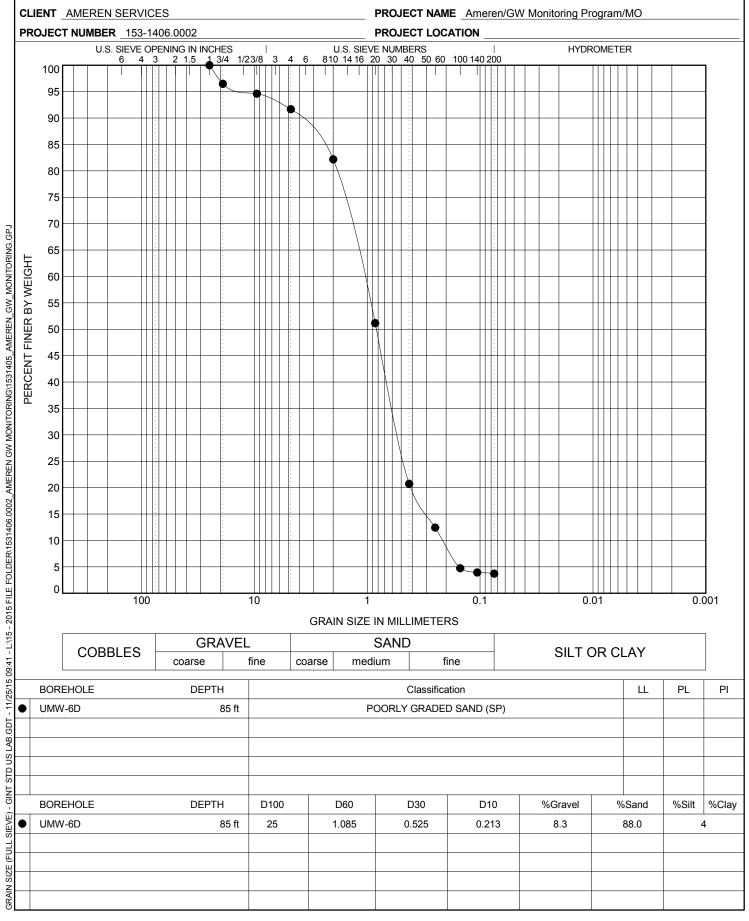

APPENDIX C POTENTIOMETRIC SURFACE MAPS FROM BACKGROUND CCR SAMPLING EVENTS




AMEREN_00002294



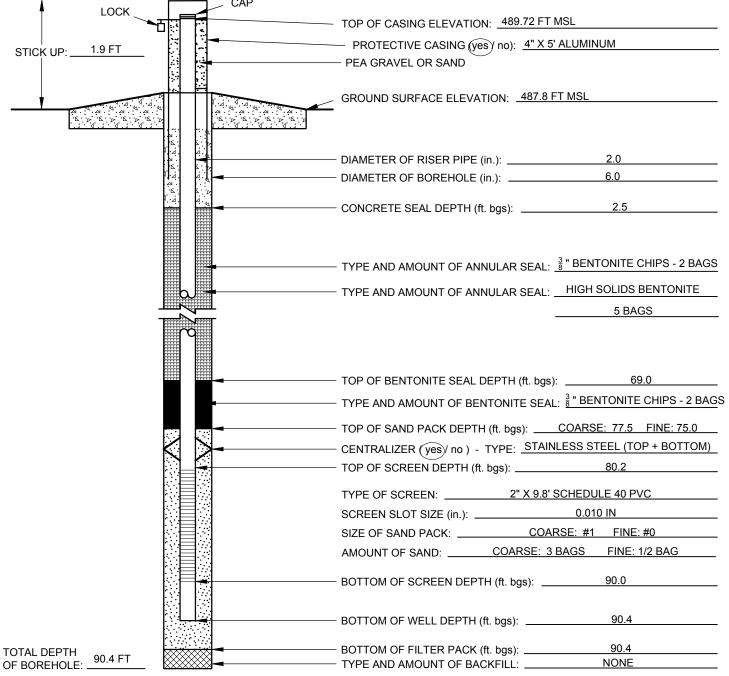




APPENDIX D GRAIN SIZE DISTRIBUTION

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

GRAIN SIZE DISTRIBUTION ASTM D6913 Method B



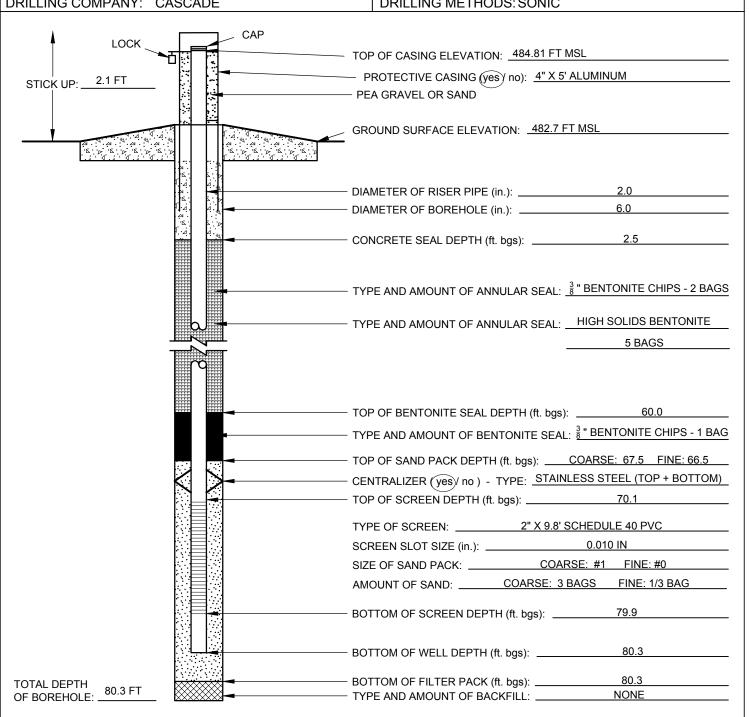
APPENDIX E CCR MONITORING WELL CONSTRUCTION DIAGRAMS

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG UMW-1D

PROJECT NAME: AMEREN CCR GW MONITORING PROJECT NUMBER: 153-1406.0001A SITE NAME: LABADIE ENERGY CENTER LOCATION: UMW-1D CLIENT: AMEREN MISSOURI SURFACE ELEVATION: 487.8 FT MSL GEOLOGIST: J. INGRAM NORTHING: 988822.5 EASTING: 723129.4 DRILLER: J. DRABEK STATIC WATER LEVEL: 28.40 FT BTOC COMPLETION DATE: 11/19/2015 DRILLING COMPANY: CASCADE DRILLING METHODS: SONIC CAP LOCK TOP OF CASING ELEVATION: 489.72 FT MSL - PROTECTIVE CASING (yes) no): 4" X 5' ALUMINUM

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

350 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000)
MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016.
FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.


CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG

PROJECT NAME: AMEREN CCR GW	MONITORING	PROJECT NUMBER: 153-1406.0001A				
SITE NAME: LABADIE ENERGY CEN	NTER	LOCATION: UMW-2D				
CLIENT: AMEREN MISSOURI		SURFACE ELEVATION: 482.7 FT MSL				
GEOLOGIST: J. SUOZZI	NORTHING: 990437.2	2	EASTING: 722248.6			
GEOLOGIST: J. SUOZZI NORTHING: 990		EL: 23.81 FT BTOC	COMPLETION DATE: 11/21/2015			
DDILLING COMPANY: CASCADE		DDILLING METHODS: CONIC				

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

200 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET(2000)

MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016.

FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

PREPARED BY: MEREN JOOG 0230 25 ZI

UMW-2D

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG UMW-3D

PROJECT NAME: AMEREN CCR GW MONITORING PROJECT NUMBER: 153-1406.0001A SITE NAME: LABADIE ENERGY CENTER LOCATION: UMW-3D CLIENT: AMEREN MISSOURI SURFACE ELEVATION: 488.8 FT MSL GEOLOGIST: J. SUOZZI NORTHING: 991830.7 EASTING: 723558.8 DRILLER: J. DRABEK STATIC WATER LEVEL: 30.14 FT BTOC COMPLETION DATE: 11/22/2015 DRILLING COMPANY: CASCADE DRILLING METHODS: SONIC CAP LOCK . - TOP OF CASING ELEVATION: 490.62 FT MSL PROTECTIVE CASING (yes) no): 4" X 5' ALUMINUM STICK UP: ___1.8 FT - PEA GRAVEL OR SAND GROUND SURFACE ELEVATION: 488.8 FT MSL DIAMETER OF RISER PIPE (in.): DIAMETER OF BOREHOLE (in.): ___ CONCRETE SEAL DEPTH (ft. bgs): _____ - TYPE AND AMOUNT OF ANNULAR SEAL: $\frac{3}{8}$ BENTONITE CHIPS - 2 BAGS TYPE AND AMOUNT OF ANNULAR SEAL: HIGH SOLIDS BENTONITE 5 BAGS - TOP OF BENTONITE SEAL DEPTH (ft. bgs): ______69.0 - TYPE AND AMOUNT OF BENTONITE SEAL: $\frac{3}{8}$ BENTONITE CHIPS - 1 BAG - TOP OF SAND PACK DEPTH (ft. bgs): COARSE: 76.0 FINE: 75.0 CENTRALIZER (yes/ no) - TYPE: STAINLESS STEEL (TOP + BOTTOM) TOP OF SCREEN DEPTH (ft. bgs): 80.4 TYPE OF SCREEN: 2" X 9.8' SCHEDULE 40 PVC SCREEN SLOT SIZE (in.): 0.010 IN SIZE OF SAND PACK: COARSE: #1 FINE: #0 AMOUNT OF SAND: COARSE: 3 BAGS FINE: 1/3 BAG BOTTOM OF SCREEN DEPTH (ft. bgs): 90.2 BOTTOM OF WELL DEPTH (ft. bgs): _____ BOTTOM OF FILTER PACK (ft. bgs): ____ TOTAL DEPTH OF BOREHOLE: 90.6 FT NONE - TYPE AND AMOUNT OF BACKFILL: _____ ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL. 350 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000) MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016. FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

PREPARED BY:MEREN JOOS 023077ZI

Golder	ABOVE G	ROUND MONITOR	ING WELL CONST	RUCTION LOG <u>UMW-4D</u>				
PROJECT NAME: AM	IEREN CCR GV	/ MONITORING	PROJECT NUMBER:	153-1406.0001A				
SITE NAME: LABADI	IE ENERGY CE	NTER	LOCATION: UMW-4D					
CLIENT: AMEREN	MISSOURI		SURFACE ELEVATION	ON: 493.2 FT MSL				
GEOLOGIST: J. INGF	RAM	NORTHING: 992512.3	3	EASTING: 724538.1				
DRILLER: J. DRAB	BEK	STATIC WATER LEV	EL: 34.78 FT BTOC	COMPLETION DATE: 11/24/2015				
DRILLING COMPANY	: CASCADE		DRILLING METHODS	S: SONIC				
STICK UP: 1.8 FT		PE PE GROUP DIA DIA COI	P OF CASING ELEVATION: ROTECTIVE CASING (yes) A GRAVEL OR SAND DUND SURFACE ELEVATIO METER OF RISER PIPE (in. METER OF BOREHOLE (in.) NCRETE SEAL DEPTH (ft. b	no): 4" X 5' ALUMINUM ON: 493.2 FT MSL D): 2.0 C): 6.0				
		TYF	PE AND AMOUNT OF ANNU	LAR SEAL: HIGH SOLIDS BENTONITE 5 BAGS				
		TYF TOF CEN TYF SCF SIZ	PE AND AMOUNT OF BENTO P OF SAND PACK DEPTH (f NTRALIZER (yes) no) - TY P OF SCREEN DEPTH (ft. bg PE OF SCREEN: REEN SLOT SIZE (in.):	2" X 9.8' SCHEDULE 40 PVC 0.010 IN COARSE: #1 FINE: #0				
			ITOM OF SCREEN DEPTH (

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

250 GALLONS OF H20 USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000) MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016. FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

— BOTTOM OF FILTER PACK (ft. bgs): ___

TYPE AND AMOUNT OF BACKFILL: ___

J. INGRAM CHECKED BY: _ DATE CHECKED: 4/19/2016

TOTAL DEPTH

OF BOREHOLE: 95.5 FT

95.5

NONE

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG UMW-5D

PROJECT NAME: AMEREN CCR GW MONITORING PROJECT NUMBER: 153-1406.0001A SITE NAME: LABADIE ENERGY CENTER LOCATION: UMW-5D CLIENT: AMEREN MISSOURI SURFACE ELEVATION: 494.9 FT MSL GEOLOGIST: J. INGRAM NORTHING: 992027.2 EASTING: 725067.9 DRILLER: J. DRABEK STATIC WATER LEVEL: 35.86 FT BTOC COMPLETION DATE: 11/23/2015 DRILLING COMPANY: CASCADE DRILLING METHODS: SONIC CAP LOCK TOP OF CASING ELEVATION: 496.76 FT MSL - PROTECTIVE CASING (yes) no): 4" X 5' ALUMINUM STICK UP: ___1.9 FT PEA GRAVEL OR SAND GROUND SURFACE ELEVATION: 494.9FT MSL DIAMETER OF RISER PIPE (in.): DIAMETER OF BOREHOLE (in.): __ CONCRETE SEAL DEPTH (ft. bgs): ___ - TYPE AND AMOUNT OF ANNULAR SEAL: $\frac{\frac{3}{8}"}{8}$ BENTONITE CHIPS - 6 BAGS TYPE AND AMOUNT OF ANNULAR SEAL: HIGH SOLIDS BENTONITE 5 BAGS - TOP OF BENTONITE SEAL DEPTH (ft. bgs): ______75.0 - TYPE AND AMOUNT OF BENTONITE SEAL: $\frac{3}{8}$ BENTONITE CHIPS - 1 BAG TOP OF SAND PACK DEPTH (ft. bgs): COARSE: 83.0 FINE: 82.0 CENTRALIZER (yes/ no) - TYPE: STAINLESS STEEL (TOP + BOTTOM) TOP OF SCREEN DEPTH (ft. bgs): TYPE OF SCREEN: 2" X 9.8' SCHEDULE 40 PVC SCREEN SLOT SIZE (in.): 0.010 IN COARSE: #1 FINE: #0 SIZE OF SAND PACK: ____ AMOUNT OF SAND: COARSE: 3 BAGS FINE: 1/3 BAG BOTTOM OF SCREEN DEPTH (ft. bgs): ___ BOTTOM OF WELL DEPTH (ft. bgs): _____ 96.9 BOTTOM OF FILTER PACK (ft. bgs): ___ TOTAL DEPTH OF BOREHOLE: 96.9 FT NONE TYPE AND AMOUNT OF BACKFILL: _____ ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL. 400 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000) MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016. FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

PREPARED BY MEREN _0.09(25)221

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG UMW-6D

PROJECT NAME: AMEREN CCR GW MONITORING PROJECT NUMBER: 153-1406.0001A SITE NAME: LABADIE ENERGY CENTER LOCATION: UMW-6D CLIENT: AMEREN MISSOURI SURFACE ELEVATION: 494.5 FT MSL GEOLOGIST: J. SUOZZI NORTHING: 991382.8 EASTING: 725540.9 DRILLER: J. DRABEK STATIC WATER LEVEL: 35.50 FT BTOC COMPLETION DATE: 11/22/2015 DRILLING COMPANY: CASCADE DRILLING METHODS: SONIC CAP LOCK . - TOP OF CASING ELEVATION: 496.19 FT MSL PROTECTIVE CASING (yes) no): 4" X 5' ALUMINUM STICK UP: ___1.7 FT - PEA GRAVEL OR SAND GROUND SURFACE ELEVATION: 494.5 FT MSL DIAMETER OF RISER PIPE (in.): _____ DIAMETER OF BOREHOLE (in.): ___ - CONCRETE SEAL DEPTH (ft. bgs): ______ - TYPE AND AMOUNT OF ANNULAR SEAL: $\frac{3}{8}$ " BENTONITE CHIPS - 6 BAGS TYPE AND AMOUNT OF ANNULAR SEAL: HIGH SOLIDS BENTONITE 5 BAGS - TOP OF BENTONITE SEAL DEPTH (ft. bgs): ______74.0 - TYPE AND AMOUNT OF BENTONITE SEAL: $\frac{3}{8}$ BENTONITE CHIPS - 1 BAG - TOP OF SAND PACK DEPTH (ft. bgs): COARSE: 82.0 FINE: 81.0 CENTRALIZER (yes/ no) - TYPE: STAINLESS STEEL (TOP + BOTTOM) TOP OF SCREEN DEPTH (ft. bgs): 84.1 TYPE OF SCREEN: 2" X 9.8' SCHEDULE 40 PVC SCREEN SLOT SIZE (in.): 0.010 IN SIZE OF SAND PACK: COARSE: #1 FINE: #0 AMOUNT OF SAND: COARSE: 3 BAGS FINE: 1/3 BAG BOTTOM OF SCREEN DEPTH (ft. bgs): BOTTOM OF WELL DEPTH (ft. bgs): _____ BOTTOM OF FILTER PACK (ft. bgs): _____ TOTAL DEPTH OF BOREHOLE: 95.0 FT TYPE AND AMOUNT OF BACKFILL: 0.7 FT - NATURAL CAVE IN ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL. 450 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000) MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016. FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

PREPARED BY MEREN JOOG 028 1221

Golder	ABOVE G	ROUND MONITOR	RING WELL CONST	RUCTION LOG <u>UMW-7D</u>				
PROJECT NAME: AM	MEREN CCR GV	V MONITORING	PROJECT NUMBER: 153-1406.0001A					
SITE NAME: LABAD			LOCATION: UMW-7D					
CLIENT: AMEREN			SURFACE ELEVATION: 468.0 FT MSL					
GEOLOGIST: J. SUO		NORTHING: 990722		EASTING: 726032.4				
DRILLER: J. DRAE								
DRILLING COMPANY		10171110111111111111	DRILLING METHODS					
LOCK STICK UP: 1.8 FT		PI GF DI DI TY	OP OF CASING ELEVATION: PROTECTIVE CASING (yes) EA GRAVEL OR SAND ROUND SURFACE ELEVATION AMETER OF RISER PIPE (in.) ONCRETE SEAL DEPTH (ft. b) YPE AND AMOUNT OF ANNU	469.79 FT MSL (no): 4" X 5' ALUMINUM ON: 468.0 FT MSL (c): 2.0 (c): 6.0				
	00000	•	P OF BENTONITE SEAL DE	PTH (ft. bgs):46.0				
				ONITE SEAL: $\frac{3}{8}$ " BENTONITE CHIPS - 1 BAG				
		CE	NTRALIZER (yes)/ no) - TY	ft. bgs): COARSE: 53.0 FINE: 51.0 YPE: STAINLESS STEEL (TOP + BOTTOM)				
		TC	P OF SCREEN DEPTH (ft. bo	gs):				
				2" X 9.8' SCHEDULE 40 PVC				
			CREEN SLOT SIZE (in.):					
				COARSE: #1 FINE: #0				
		AN	MOUNT OF SAND:	COARSE: 3 BAGS FINE: 1/3 BAG				
		———— ВС	OTTOM OF SCREEN DEPTH	(ft. bgs): 65.2				
		——— вс	OTTOM OF WELL DEPTH (ft.	bgs):65.6				
TOTAL DEPTH 70.0 F	Т	BC TY	OTTOM OF FILTER PACK (ft. PE AND AMOUNT OF BACK	bgs):				
150 GALLONS OF H2O UMISSOURI EAST ZONE.	JSED DURING DRIL VERTICAL DATUM	LING. HORIZONTAL DATU : NAVD88. WELL SURVEY!		NATES NAD83 US SURVEY FEET (2000) CIATES, INC ON JANUARY 16, 2016.				

CHECKED BY: J. INGRAM DATE CHECKED: 4/19/2016

PREPARED BY MEREN JOOG PROTECTION

Associates ABOVE GI	ROUND MONITORI	NG WELL CONSTR	RUCTION LOG <u>UMW-8D</u>				
PROJECT NAME: AMEREN CCR GW	MONITORING	PROJECT NUMBER:	153-1406.0001A				
SITE NAME: LABADIE ENERGY CEN	NTER	LOCATION: UMW-8D					
CLIENT: AMEREN MISSOURI		SURFACE ELEVATION: 467.5 FT MSL					
GEOLOGIST: J. INGRAM	NORTHING: 989892.7	7 EASTING: 725179.5					
DRILLER: J. DRABEK	STATIC WATER LEV	EL: 5.75 FT BTOC	COMPLETION DATE: 11/19/2015				
DRILLING COMPANY: CASCADE		DRILLING METHODS	:SONIC				
STICK UP: 2.0 FT	PI PE PE GRC DIAN DIAN TYP	OF CASING ELEVATION: ROTECTIVE CASING (ves) in A GRAVEL OR SAND DUND SURFACE ELEVATION METER OF RISER PIPE (in.): METER OF BOREHOLE (in.): ICRETE SEAL DEPTH (ft. bg:	469.47 FT MSL 10): 4" X 5' ALUMINUM N: 467.5 FT MSL 2.0 6.0				
**************************************	ТОР	OF BENTONITE SEAL DEP	TH (ft. bgs):				
•	TYP	E AND AMOUNT OF BENTO	NITE SEAL: $\frac{3}{8}$ BENTONITE CHIPS - 1 BAG				
0.7 PRI	TOP	OF SAND PACK DEPTH (ft.	bgs):COARSE: 58.0 FINE: 56.0				
	CEN	TRALIZER (yes)/ no) - TYF	PE: STAINLESS STEEL (TOP + BOTTOM)				
	TOP	OF SCREEN DEPTH (ft. bgs	3):				
	TYP	E OF SCREEN:	2" X 9.8' SCHEDULE 40 PVC				
	SCR	EEN SLOT SIZE (in.):	0.010 IN				
	SIZE	OF SAND PACK:	COARSE: #1 FINE: #0				
	AMC	OUNT OF SAND:C	OARSE: 3 BAGS FINE: 1/3 BAG				
	вот	TOM OF SCREEN DEPTH (f	t. bgs):				
	вот	TOM OF WELL DEPTH (ft. bọ	gs):				
TOTAL DEPTH 70 6 FT		TOM OF FILTER PACK (ft. b					
OF BOREHOLE: 70.6 FT	TYP	E AND AMOUNT OF BACKF	ILL: NONE				
ADDITIONAL NOTES: FT BGS = FEET BELO	W GROUND SURFACE. FT	MSL = FEET ABOVE MEAN	SEA LEVEL.				
150 GALLONS OF H20 USED DURING DRIL MISSOURI EAST ZONE. VERTICAL DATUM:							
FT BTOC = FEET BELOW TOP OF CASING.			ATES, INC ON JANUART 10, 2010.				

CHECKED BY: J. INGRAM DATE CHECKED: 4/19/2016

PREPARED BY MEREN JOO 1221

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG UMW-9D

PROJECT NAME: AMEREN CCR GW MONITORING

SITE NAME: LABADIE ENERGY CENTER

CLIENT: AMEREN MISSOURI

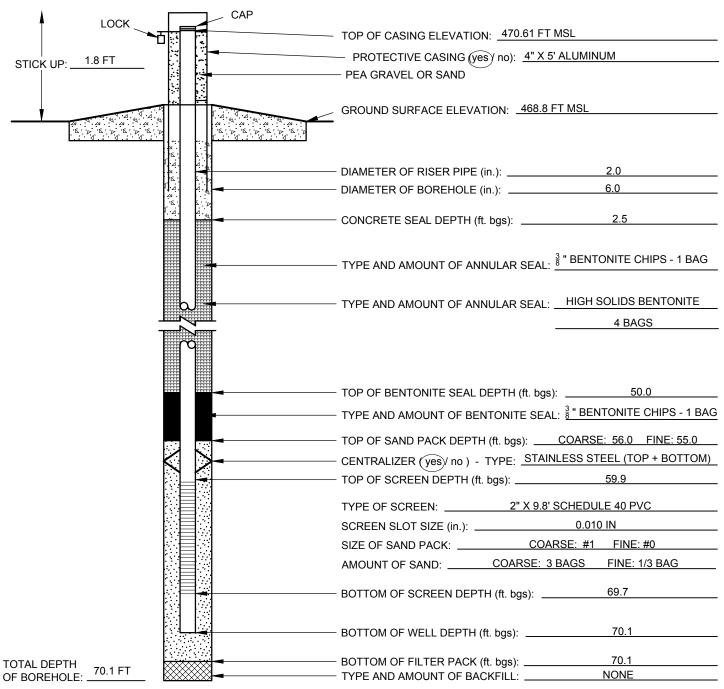
GEOLOGIST: J. INGRAM

DRILLER: J. DRABEK

STATIC WATER LEVEL: 9.20 FT BTOC

DRILLING COMPANY: CASCADE

PROJECT NUMBER: 153-1406.0001A


LOCATION: UMW-9D

SURFACE ELEVATION: 468.8 FT MSL

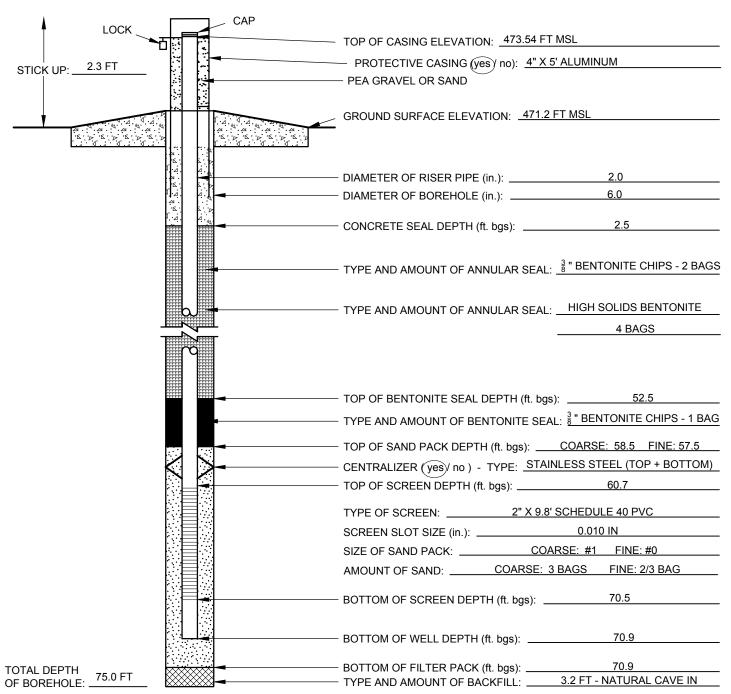
EASTING: 724447.8

COMPLETION DATE: 11/19/2015

DRILLING METHODS: SONIC

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

175 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000)
MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016.
FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.


CHECKED BY:	J. INGRAM
DATE CHECKED:	4/19/2016

PREPARED BY MEREN JOO DE TEZI

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG BMW-1D

PROJECT NAME: AMEREN CCR GW	MONITORING	PROJECT NUMBER: 153-1406.0001A			
SITE NAME: LABADIE ENERGY CEN	NTER	LOCATION: BMW-1D			
CLIENT: AMEREN MISSOURI		SURFACE ELEVATION: 471.2 FT MSL			
GEOLOGIST: J. INGRAM	NORTHING: 988310.6	EASTING: 715138.4			
DRILLER: J. DRABEK	STATIC WATER LEV	EL: 13.6 FT BTOC COMPLETION DATE: 2/1/2010			
DRILLING COMPANY: CASCADE		DRILLING METHODS: SONIC			

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

225 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000)

MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON JANUARY 16, 2016.

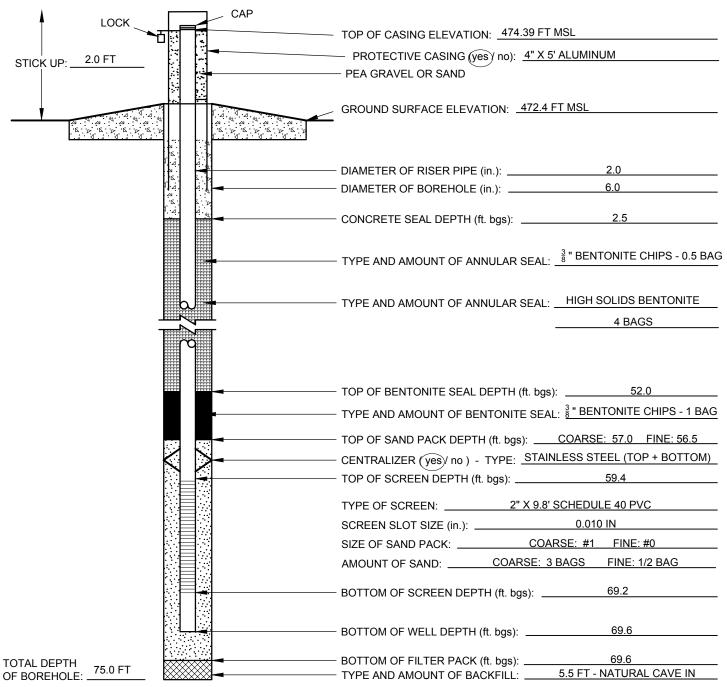
FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

ABOVE GROUND MONITORING WELL CONSTRUCTION LOG BMW-2D

PROJECT NAME: AMEREN CCR GW MONITORING PROJECT NUMBER: 153-1406.0001A


SITE NAME: LABADIE ENERGY CENTER LOCATION: BMW-2D

CLIENT: AMEREN MISSOURI SURFACE ELEVATION: 472.4 FT MSL

GEOLOGIST: J. INGRAM NORTHING: 987204.3 EASTING: 715104.2

DRILLER: J. DRABEK STATIC WATER LEVEL: 14.0 FT BTOC COMPLETION DATE: 2/2/2016

DRILLING COMPANY: CASCADE DRILLING METHODS: SONIC

ADDITIONAL NOTES: FT BGS = FEET BELOW GROUND SURFACE. FT MSL = FEET ABOVE MEAN SEA LEVEL.

200 GALLONS OF H2O USED DURING DRILLING. HORIZONTAL DATUM: STATE PLANE COORDINATES NAD83 US SURVEY FEET (2000)

MISSOURI EAST ZONE. VERTICAL DATUM: NAVD88. WELL SURVEYED BY ZAHNER AND ASSOCIATES, INC ON FEBRUARY 11, 2016.

FT BTOC = FEET BELOW TOP OF CASING. SAND AND BENTONITE BAGS WEIGH 50 LBS EACH.

CHECKED BY: J. INGRAM

DATE CHECKED: 4/19/2016

APPENDIX F WELL DEVELOPMENT FORMS

Project	Ref: A	meren GW	/ Monito	oring			Project I	No.: 153-	1406. 00	001
Locati	ion	UMW-	-1D					Tax E		
Monitore	ed By:	73		Date	12/10/15		Time	103	4	
Well P	Piezom	eter Data	a							
Depth of \	Vell (from	(circle one) top of PVC or	around)		92.32	2		feet		
		m top of PVC			28.40	9 1] feet		
Radius of					Q			inches		
rtaalab or	odomig						-	feet	1.0	and the same
Casing Vo	olume				6		3 4 3	cubic feet	1	350 gul in arriving
				3.14.2	. = 43	gal	gallons		292 cal Lital	
Devel	opmen	it / Purgii	ng Dise	charge	e Data		U			393 gal total
Purging M	Method				Wateur	a fun	P			
Start Purg	ging			Date	12/10/1	5	Time	1045		
Stop Purg	jing			Date	17/10/13		Time	1340	1134	
Monitoring	g									
Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
12/10/15	1100	30	14.86	7.95	0.748	71000	2.65	-126.7	28.46	Muddly
1847	1130	100	14.85	7.92	0-744	71000	2.35	-128.2	28.50	Middy
	1200	180	14.90	7.96	0.731	155	2.22	-111.4	2836	Cloudy
	1512	230	14.89	7.95	0.730	308	2.16	-109.6	29.64	Cloudy !
	1230	250	14.95	7.96	- 7211	100	1 0 0	-110 2	0611	Dum purge water
	1245	310	14.78	7.16	0.734	19.9	2.70	-110.2	28.50	Clear
	1315	340	14.70		0.739	16.2	2.47	-1060	28.57	clear
17.5	1330	375	14.76	7.91	0-074	11.	2.66	-101.0	18.60	clear
4.7	1336	400	14.69	7.90	0.740	9.60	2.71	-99.6	28.62	clear
	-							-		
						10-17-201				
							4 1			
								-	100	

199								1 3 5		
21										
		1		1.0				L		

Project	Ref: A	meren GV	/ Monito	ring			Project I	No.: 153-	1406.	00 (
Locat	ion	UMI	N-25							
Monitore	ed By:	35		Date	12/10/15	40	Time	075	3	
Well F	Piezom	eter Data	a							
Depth of	Well (from	(circle one) top of PVC or	ground)		82.36	1 1.30		feet		
Depth of	Water (fro	m top of PVC	or ground)	1.0	23.81			feet		
Radius of	Casing				a	525.00		inches		
					feet					
Casing Volume				13.2:3	3 = 40		cubic feet gallons			
]9		
Devel	opmer	it / Purgii	ng Disc	charge						1 41 10
Purging N						ra Punf	1	- C/ - A		= 240 gal Hz0
Start Purging Date					12/16/15		Time	0808		= 240 gal Hz0
Stop Pur	ging			Date	12/10/15	100	Time	094	0	
Monitorin	g			100	The same		od.	2.5		
Date	Time	Volume Discharge (gals)	Temp (°)	рН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
12/10/15	0110	155	17.45	7.97	0.737	478	2.58	-105.0	24.35	Cloudy,
	0930	210	17.70	8.29	0-743	5.56	2.16	-119.0	24.38	(leat
1	0940	245	17.73	8.28	0.747	4.31	7.08	-124.8	23.77	clear, for flow
a yelgi				1 1		AL II				
			10					1,000	H T H	
				7. CF			Carlot Carlo			
77-1		TEN 25		1						
			-1471							
		3/13/15	77 4 7			T I			E3 45.	
			1011301							
					444			17.23	1 55	
			E III	le d						
				<u> </u>	<u> </u>					

Project	Ref: A	meren GV	/ Monito	oring		31.75 · · · 31	Project I	No.: 153-	1406. 0	001
Locati	ion	Uarh	1.31							
lonitore		ক্ত		Date	12/9/15		Time	123	b	
Vell F	ezom	eter Data	1							
epth of \	Nell (from	(circle one) top of PVC or	ground)		92.49			feet		
JE 13	45	n top of PVC			30.14			feet		
Radius of Casing Casing Volume		2								
					feet cubic feet gallons	350 gol used for d = 393 gal H20				
)evel	opmen	t / Purgiı	ng Dis	charge	Data					= 393 gal H20
urging N	lethod				W	eterra f	UMP			
tart Purg	ing			Date	12/9/15		Time	124	L	
top Purg	ing			Date	12/4/15	elejp je	Time	153	2	American State of the
onitorin	9									
Date	Time	Volume Discharge (gals)	Temp	рН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
19/15	1313	60	17.45		0.834	71006	1.20	-134.6	30.26	middy
1	1345	145	17,41	8.95	0.882	71000	1.07	-139.3	30.28	cloudy
	1400	320	12.20	C O	A # 2.1	2/014	1 112	-148.6	-	Dung pulge watys
-	1430	270	17.22	8.88	0.825	71000	1.60	-113.6	30.20	eloudy
+	1500	310	1734	8.82	0.822	7.88	1.48	-111-4	30.26	Clear
	1515	350	11.35	2.78	0.822	3.33	1.48	-126.4	30.30	Clear
V	1530	395	1746	8.84	0.816	2.70	1.39	-129.1	30.28	Clear
				4 4						
		Birmany I	- Verilla							
								1		
							-		Are	
						VA. 1				
									10/11/2	
						-				
					8/2				3	
		Y I								

Locati	ion	Unin	Q4-		- Kojo-			1 1 2 10		
Monitore		JS		Date	12/8/15		Time	095	2	
Well F	Piezom	eter Data	1							
Depth of	Well (from	top of PVC or	ground)	. 4	97.22			feet		
Depth of \	Water (fron	n top of PVC	or ground)		34.7	8		feet		
Radius of					3	3.5-7A		inches		
	outg						- 1	feet		
Casing Vo	olume							cubic feet		· Fram dellans
Saanig volume				15.6.3 -	- 41.		gallons x 250 gal			
Devel	opmen	t / Purgii	na Disa					4		250 gal from drillmy = 291 gal Hz 0
	1000	tri aigii	ig Dio	Jiiui g		0	***			1
Purging N					Waterra	Pump	1	1/ 0-		
Start Purg	ging			Date	12/8/15		Time	1600		
Stop Purg	ing			Date	12/8/15		Time	1220		
Monitoring	g									
Date	Time	Volume Discharge (gals)	Temp (°)	рН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
12/8/15	1030	60	19.01	9.02	1.067	71000	1.80	1025	34.89	muddy
	1100	120	19.61	B8.75		26.5	1.81	-111.1	35.34	Cloudy
1	1170	180	19.35	8.68	1.088	9.11	1.84	-109.8	35.40	clear
	1140	210	19.75	8.67	1.093	4.38	1.55	-111.2	35.49	clear
	1150	240	10.72	0.11	1000	2111	1.36	11/2/10	2521	Dump purge water
101363	1220	300	14.77	8.66	1.098	3.64	1.36	-118.4	35-36	Clear
7.00	2		- 1 (C)			i i i i i i i i i i i i i i i i i i i				
	F 15									
No.										
_		404	1	3.11						
									17/10	
		7.35								
	-									
	1									
		V 45.00								

Project	t Ref: A	meren GV	V Monit	oring			Project	No.: 153-	1406. 66	901
Locat	ion	Umw	-5D							
Monitore	ed By:	TS		Date	12/3/15	Trans.	Time	075	6	
Well F	Piezom	eter Data	a							
Depth of	Well (from	(circle one) top of PVC or	r around)		98-77] _{feet}		
		n top of PVC	177		35.86]feet		
		II top of FVC	or ground,	4				1		
Radius of	Casing			40	<u>a</u>			inches feet		6 4 41
0	THE TY						7		+ 4	60 sal used for duri
Casing V	olume				14.3=	1	cubic feet gallons		3	
					14.2.	42 90	-	Juanons	-	445 561
Devel	opmen	t / Purgi	ng Dis	charge	e Data					60 g=1 used for duril
Purging N	Method				waterro	pum	P			
Start Purg	ging			Date	12/3/15		Time	079	00	Committee of the commit
Stop Purg	aina			Date	12/3/15		Time	110		
					11-1-11					W. J. Carlotte, and Carlotte,
Monitorin	9	16								
Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (_S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Commen
17/3/15	0848	134	16.73	9,55	0-542	71000	1.76	-186.3	36.01	middy
1	0915	100	17.06		0.548	27.1	1,47	-151.8	35.94	Cloudy
	0930	235	17.35	10.17	0.550	8.88	1.29	-154.8	36.03	elear
	1004	310	17.00	10.13	0.547	4.97	1.41	-167.0	36.01	Clear
	1030	360	17.25	10.14	0.550	4.53	1.48	-164,7	36.03	elegr
	1056	425	件、30	10.10	0.550	3.64	1.58	-164.6	35.95	Clear
- 1	1100	445	17,80	10.13	1-556	3.70	1.46	-169.0	35.90	clear
	1.					-				
							52.7			
										100000000000000000000000000000000000000
1711-37										
										The second second
			4 3 3							at the state of the state of
									A STATE OF THE STA	
							1000			
-										
			-							
100										
				413/14						
	19.45									•
735 EN 13	150-									

Project Ref: Ameren GW Monito	ring		Proje	ct No.: 153-14	06. DD	0 (
Location UMW-6D					1,6	
Monitored By: 35 and Cascade deillin	Date [12/3/15	Tim	e BZHO		
Well Piezometer Data	0					
Depth of Well (from top of PVC or ground)		96.00	4 8 4	feet		
Depth of Water (from top of PVC or ground)		35.5	F-7	feet		
Radius of Casing		7		inches		
Casing Volume	[7 HO.5		feet cubic feet gallons		450 gal from dolling
Development / Purging Disc	harge	Data			-	491 gal
Purging Method		Waterra P	UMP			
Start Purging	Date [12/3/15	Time	0740		
Stop Purging	Date	12/3/15	Time	1140		
Monitoring			5.50 El			
				1	-	

Monitoring	9									
Date	Time	Volume Discharge (gals)	Temp (°)	рН	Spec.Cond. (_S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
12/3/15	9:30	220	15.54	9.53	0.581	71000	8-34	-159.0	35.4	muddy
	9:55	260	15,26	9.41	0-576	71000	2.5	-154.6	35.5	cloudy
	10'70	310	15.26	9.50	0.581	71000	216	-156.8	35.4	cloudy
	10:97	3100	15.05	9.37	0-582	200	260	-148.6	35.4	strahily cloudy
	11:03	420	15.7D	9.45	0.588	10.6	2.93	-155.0	35.4	CICAY
40.700	1/23	475	14.83	9.05	0.579	8.2	2.35	-97.4	35.4	Clear
	11:33	495	14.05	9.01	0.576	7.00	2.49	-97.8	354	Clear
			ļ							
			100			ļ				
		-								
						ļ				
						-				<u> </u>
						-		N-1-1-1		
	41					 				
-										
		19 3/								
					3 - 300-300-31-20					
						No.		L		

Project Ref: Ameren GW Monitoring

Location

Monitore	ed By:	75		Date	12/11/15		Time	1007	E 2 1 4]	
Well F	Piezom	eter Dat	a								
Depth of	Well (from	(circle one) top of PVC o	r around)		67.3	1		feet			
		m top of PVC			9.35]feet			
Radius of		iii top or i vo	or ground,		2	<u> </u>		inches			
ivadius o	Casing						-	feet		LKAG	al from des
Casing V	olume				2			cubic feet	7	1307	41
					3/13.	6=4	1	gallons		+ 191	gal tota
Loslin					MEST				/	P [1.	gal tota
Devel	opmer	nt / Purgi	ng Dis	charge	e Data						
Purging N	Method				WAC	VVA PU.	мр				
Start Pur	ging			Date	12/11/15		Time	100	7		
Stop Purg	ing			Date	12/11/15		Time	112	2		
										The same	
Monitorin	g										
Date	Time	Volume Discharge	Temp	pН	Spec.Cond.	Turbidity	Dissolved Oxygen	Redox Potential	WL (ft	Appearance	of Water and Comments
		(gals)	(°)		(S/cm)	(NTU)	(mg/L)	(+/- mV)	BTOC)		
12/11/15	1020	30	14.23	8.05	1.017	71000	3.07	-111.3	10.28	mudly	
	1040	90	14.72	8.89	1.039	71000		-1296	10-25	muddy	
	1050	105	14,75	8.07	1.048	23.5	2.62	-(21.2	10.30	slightly	Cloudy
	1110	130	14 72	8.08	1.048	7.72	2.35	-122.3	10.18	clear	
	1122	195	1478	8.04	1.054	4.47	1.40	-119.4	10.24	Clear	
	50.11	23/		1 - 1 G	WWA TEN						
								457		8	
				-/-							
				13		10.77			-		
				7.002.000					18.0		
							-				
								75.			
									V 3		
		- R1							10	o sila	
									-		
-										4 (1953)	
		·						L			

Project No.: 153-1406. 6001

Project	Ref: A	meren GV	V Monite	oring	1		Project	No.: 153-	1406.	
Locat	ion	U	MW-	50		AT			- >	I - FYCY Land
Monitore	ed By:	23		Date	12/17	115	Time	3910		
Well F	Piezom	eter Data	a	Ŋ.					191	
Depth of	Well (from	top of PVC or	ground)		3/8	07	2.63	feet		A VALUE OF THE PERSON OF THE P
Depth of	Water (fro	n top of PVO	or ground)		3	.75		feet		
Radius of						0,	11	linches	14	19+150 (1114)
						0	14/1	feet	1	
Casing V	olume						-	cubic feet	1144	(3)+150
						195		gallons		
T. David		H42					-		4	4.7+150=
Devel	opmen	t / Purgi	ng Dis	charge		3				11/1/
Purging N	fethod				W-	tora	Q	JM		194,>
Start Purg	ging			Date	12/	17115	Time	090	7	
Stop Purg	ing			Date	721	17/15	Time	113	2.4	
Monitoring	9					NA	1	3 5 1		
		Volume		F - ***			Dissolved	Redox		
Date	Time	Discharge (gals)	Temp	рН	Spec.Cond. (<u></u> S/cm)	Turbidity (NTU)	Oxygen (mg/L)	Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
12/17	407	-	-			=				Starr-noll
1	420	35	12,65	7.33	1058	71000	7.59	-70K	5.78	SI. 14 (1004)
	430	45	12.75	7.96	1064	7/000	3.12	-106,0	5.78	
	Q40	65	13.83	7.92	1086	Molo	2.19	-1054	578	
	950	23	13.80	795	1076	367	8.87	-110.0	5.79	Cleury
\vdash	1000	100	DAR	7.93	10-74	₹00	2.73	-102.7	5.79	
	16019	11/2	13.58	7.99	1073	142	5.86	-104.2	5.79	
	1050	137	13.59	7.89	1933	121	1.76	-90.2	5.29	
. 0	1979	18-	U.57	7.27	1093	115	2.40	-1652	5.77	
	1041		13.56	2.90	1044	360	2.06	-1133	5.29	La de la companya della companya della companya de la companya della companya del
	108	215	13.49	1.90	1026	110	-	-114.5	5.79	Ma
	Lill	230	13.47	7.27	1527	25.5	2.07	-14.9	5.79	001 0 15 640/Sbullow
	1120	735	13.46	7.82	1077	7.07	0.07	-109 U	8.71	Clark Charles
	1120	2001	12 40	7.85	1078	2.16	D1. C	-108.7	5.79	0:-05
			2 4-17		100		W. 11 3	1000	3/1/	3371 (*)
3										
	100		74112			Halet				

Locat	ion		MW-	90			4.74			MATERIAL CONTRACT
onitore	ed By:	JI	AT-LINE		12/n/s	W V	Time	0745		i de la companya de
Vell F	Piezom	eter Data	a							
Depth of	Well (from	(circle one) top of PVC or	r ground)		71.95		TWE	feet		
epth of	Water (fro	m top of PVC	or ground)		9.20			feet		
adius of	Casing				2			inches feet		
asing Vo	olume				14.1	3= 47	1.1	cubic feet gallons		
Devel	opmen	ıt / Purgi	ng Dis	charge	e Data					1 + 175 501 from d
urging N	lethod				Wal	enva Pe	how			1 + 175 501
Start Purg				Date	12/11/15		Time	0747		- 0.4
top Purg	ing			Date	12/11/15		Time	09.15		- 218 gal
lonitoring			N. A.							
Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
2 11/18	0820	100	13.27	7.56	0.731	71000	4.19	-1135	10.11	moldy
1	0840	195	13.87	7.77	0-758	364	3.62	-101.7	10.04	very dovy
	0905	220	13.94	7 79	0.744	10-3	2.71	-105.1	10.23	Clear /
V	0915	240	13.99	7.85	0.732	8.14	2.97	-107.8	10-28	Clew
mr.										
		2			10 A A					
						9				
										42 0
										1) o
										42 - 4
										42
										4. 6.
			20							
										1) o

Project Ref: Ameren GW Monitoring	_ 1, 11	Project No.: 153-1	406. 606
Location BMW-1D			
Monitored By: Date	2 11 16	Time 0904	
Well Piezometer Data			
(circle one) Depth of Well (from top of PVC or ground)	73.20	feet	
Depth of Water (from top of PVC or ground)	13.59	feet	4
Radius of Casing	2	inches feet	
Casing Volume	14 13: 42	cubic feet gallons	+225 gal thro used indiling 267 gal Hro total
Development / Purging Discharg	e Data		267 gal Hyo total
Purging Method	Watera		
Start Purging Date	2/11/16	Time 0924	
Stop Purging Date	2/11/16	Time 1150	
Monitoring			

Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
2/11/16	1035	145	13.25	7.54	6.824	71000	2.37	-29.4	13-80	Very clordy
1	1645	165	12.66	7.62	0.817	114	1.08		13.83	cloudy
	1055	185	12-66	7.58		46.9	1.23	-76.0	13.80	Slighty cloudy
	1105	205	12,43		0.815	72.7	1.46	-76.0	13.81	cleur
	1115	215	11.28		0.813	17.8	1.23	-89.2	13.86	clear
	1125	225	12.38		0.819	15.8	1.77	-83.6	13.80	clear
	1140	250	17.06		0 819	13.3	1.98		13.86	elen
	1150	270	12.30	7.17	0.818	12.8	1.85	-71.4	13.80	Clear
							-			S+
			1							
							134			
1915					San Inc.			-30		
		1//	Prince Control	1.32				3/6_60		
						Alexandra				
						1				
				4, 5						
			MAT							

post Devit TD: 73.17

Projec	t Ref: /	Ameren G\	N Monit	oring			Project	No.: 153-	1406.	
Locat	ion	BMW.	-2D	-						1
Monitore	ed By:	JS		Date	2/11/16		Time	1511		j
Well F	Piezom	eter Dat			7					
Depth of	Well (from	(circle one) top of PVC o			71-59			feet		
Depth of	Water (fro	m top of PVC	or ground)	14.64			feet		
Radius of	f Casing				2	-	-	inches feet		
Casing V	olume				13 '3	39		cubic feet gallons	1200	9 gals 420 from drillh
Devel	opmer	nt / Purgi	ng Dis	charg	e Data				= 23	9 gal total
Purging N	Method				Waller	4				
Start Purg	ging			Date	2/11/16	THE PERSON	Time	1529		
Stop Purg	ging			Date	2/11/16		Time	170	5	
Monitorin	9									
Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft BTOC)	Appearance of Water and Comments
2 11 16	1535	15	9.80	7.72	0.851	71000	0.39	-105.2	1441	very mody
	1550	40	16.11	7.58	6.852	71000	0.32	-109.0	14.44	very andly
	1600	70	13.06	7.50	6.812	71000		-113.7	14.45	very mulde
	1610	110	12.81	739	6.215	71000	0.77	-102.1	14.39	Vi cloudy
	1620	136		7.42	0.878	38.8	0.75	-99.7	14.47	clear
	1630	190	12.89	7.39	0.825	25.5	0.82	-97.4	14.50	Ches
	1650	215	12.88	7.37	0.829	76.1	1.04	-95.3 -80.8	14.51	dear.
	1700	230	-	737	6.832	18.1	0.84	-81.6	14.52	Clear
	1705	245	17.81		6831	18.0	0.86	-81.4	14.51	Clear
	Title					100				
									D. TET	
3 7 - 3 - 3										
			Line		10000					

post Devit TD: 71.70

APPENDIX G CCR MDNR WELL CERTIFICATION FORMS

MISSOURI DEPARTMEN	-	REF NO		DAT	E RECEIVED				
NATURAL RESOURCES		CR NO	0512859	CHE	CK NO.		01/27/20	016	
DIVISION OF	LIDVEV	OK NO		0112	orrito.		17007	7	
GEOLOGY AND LAND S	URVEY	STATE WELL NO)			REVENU	E NO.		
(573) 368-2165			02/04/2016					012716	
MONITORING WELL CERTIFICATION RECORD		PH1 PH2	ASSM PH3		APPROVED B	Y		ROUTE	
CENTIFICATION RECORD			1/2016 02/01/2016						
INFORMATION SUPPLIED BY PRIMARY CONNOTE: THIS FORM IS NOT TO BE USED FOR NESTED WELLS	NTRACTOR OR	DRILLING CO	ONTRACTOR						
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY	CONTACT NAME AMEREN MISSOU	RI C/O BILL KUTO	SKY					VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S. LINDBERGH BLVD.	CITY ST LOUIS			STA MO	TE	ZIP 63127		NUMBER	
SITE NAME LABADIE ENERGY CENTER				WEL	L NUMBER V1D		COUNTY FRANKLIN		
SITE ADDRESS 226 LABADIE POWER PLANT RD				CITY	, ADIE			STATIC WATER LEVEL 28.0 FT	
SURFACE COMPLETION TYPE LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D SURFACE COMPL PLACED		LE SURFACE COI	MPLET	TION GROUT	LOCATIO	N OF WEL	L	
X ABOVE GROUND LENGTH 5.0 FT.	DIAMETER 12.0	IN.	X CONCRET	E			<u>38</u> °3		
FLUSH MOUNT DIAMETER 4.0 IN.	LENGTH 2.5 FT. OTHER						<u>90</u> ° LEST	50' 22.03' LARGEST	
								1/4 NW 1/4	
LOCKING CAP			SURFACE COMPL	ETTIC	N				
WEEP HOLE	TE	T —	STEEL X AI	LUMINUM	PLASTIC			TWN. <u>44</u> NORTH	
			_			RANGE	2 RING FOR:	Direction <u>E</u>	
						RADIONL		PETROLEUM PRODUCTS ONLY	
			RISER			EXPLOSI*	ves X	METALS VOC PESTICIDES/HERBICIDESS	
ELEVATIONFT.	_ '	1'1	RISER PIPE DIAME	TER	2.0IN.			T EO TIOISE GITTE TO ISE EO	
·			RISER PIPE LENGT			PROPOS	ED USE O	F WELL	
ANNULAR SEAL			HOLE DIAMETER				GRATION WELL		
LENGTH <u>67.5</u> FT.		+	WEIGHT OR SDR#		SCH40	PIEZOM	CTION WELL	OPEN HOLE	
SLURRY CHIPS						DIRECT			
PELLETS GRANULAR CEMENT/SLURRY			MATERIAL STEEL	X THE	RMOPLASTIC (PVC)	DEF	тн	FORMATION	
IF CEMENT/BENTONITE MIX:			OTHER			FROM	то	DESCRIPTION	
BAGS OF CEMENT USED:			L u			0.0	2.0	FILL	
%OF BENTONITE USED:						2.0	20.0	SLT	
WATER USED/BAG: GAL.						20.0	23.8	CLY SLT	
			BENTONITE SEAL			23.8		ML SDY SLT	
			LENGTH: 6.0	.ETS	GRANULAR	28.9 40.0	40.0 50.0	SP SM SND SND	
			SLURRY			50.0	70.0	SND	
			SATURATED ZONE		X HYDRATED	70.0	77.0	SLT SND	
SECONDARY FILTER PACK						77.0	90.0	SND	
LENGTH:1.5FT.	7 1		SCREEN						
			SCREEN DIAMETE	R:	2.0IN.				
			SCREEN LENGTH:						
DEPTH TO TOP OF PRIMARY			DIAMETER OF DR						
FILTER PACK:77.1FT.			DEPTH TO TOP	8	<u>u.∠</u> F1.				

SCREEN MATERIAL

SIGNATURE (APPRENTICE)

OTHER

FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED.

PERMIT NUMBER

PERMIT NUMBER 004484

006124

HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS

LENGTH OF PRIMARY FILTER

PACK: <u>12.9</u>FT.

SIGNATURE (PRIMARY COUNTRACTOR)

SIGNATURE (WELL DRILLER) × JASON DRABEK X THERMOPLASTIC (PVC)

TOTAL DEPTH:

11/19/2015

PUMP INSTALLED

_90.0 FEET

DATE WELL DRILLING WAS COMPLETED

APPRENTICE PERMIT NUMBER

/ \ *********	SOURI DEPARTMEN	-	REF NO		DAT	DATE RECEIVED				
	JRAL RESOURCES		CR NO	0512860	CHE	CK NO.		01/27/20	16	
4 A a=a	SION OF	LIDVEV	OK NO		OHL	OK NO.	170077			
1507	LOGY AND LAND S	URVEY	STATE WELL NO)			REVENU	E NO.		
` ,	368-2165		A206229 (012716		
MONITORING W CERTIFICATION			PH1 PH2	NSSM PH3		APPROVED B	Y		ROUTE	
CERTIFICATION	INECOND		02/01/2016 02/01/2016 02/01/2016							
INFORMATION SUPI	PLIED BY PRIMARY CON	NTRACTOR OR	DRILLING CO	ONTRACTOR						
OWNER NAME AMEREN MISSOURI C/O B	ILL KUTOSKY	CONTACT NAME AMEREN MISSOUI	RI C/O BILL KUTO	SKY					VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S. LINDBERGH BLVD.		CITY ST LOUIS		STA [*]	STATE Z MO 6		27	NUMBER		
SITE NAME LABADIE ENERGY CENTER	२			WELL NUMBER UMW2D			COUNTY FRANKLIN			
SITE ADDRESS 226 LABADIE POWER PLAN	NT RD				CITY	, ADIE			STATIC WATER LEVEL 23.0 FT	
SURFACE COMPLETION TYPE X ABOVE GROUND	LENGTH AND DIAMETER OF SURFACE COMPLETION LENGTH _5.0 FT.	DIAMETER AND DI SURFACE COMPL PLACED DIAMETER 12.0	ETION WAS	X CONCRET		TION GROUT	LAT	N OF WELL	<u>3' 11.38</u> "	
FLUSH MOUNT	DIAMETER <u>4.0</u> IN.	LENGTH <u>2.5</u> FT.		OTHER				90° 5	00' <u>33.2"</u> LARGEST	
								LEST 1/4	1/4 SW 1/4	
LOCKING CAP				SURFACE COMPL	LETTIC	N				
WEEP HOLE		T	\exists T $-$	STEEL X A	LUMINUM	PLASTIC			WN. <u>44</u> NORTH	
							RANGE		Direction <u>E</u>	
							RADIONL	RING FOR:	PETROLEUM PRODUCTS ONLY	
				RISER			EXPLOSI*	ves X	METALS VOC PESTICIDES/HERBICIDESS	
ELEVATION	FT.	r '	1'	RISER PIPE DIAME	TER	2.0IN.			T ESTIGIBESTI ENDIGIBESS	
	<u> </u>			RISER PIPE LENGT			PROPOS	ED USE OF	WELL	
ANNULAR SEAL				HOLE DIAMETER		6.0IN.		GRATION WELL	X OBSERVATION	
LENGTH57	<u>7.5</u> FT.		+	WEIGHT OR SDR#		SCH40	PIEZOM	CTION WELL	OPEN HOLE	
SLURRY							DIRECT			
PELLETS GR CEMENT/SLURRY	RANULAR			MATERIAL STEEL	Y THEF	RMOPLASTIC (PVC)	DEF	тн	FORMATION	
IF CEMENT/BENTO	NITE MIX:			OTHER	Δ	,	FROM	ТО	DESCRIPTION	
BAGS OF CEMENT	USED:			L U			0.0	13.0	FILL SND GRVL	
%OF BENTONITE U	SED:						13.0		GRVL	
WATER USED/BAG:	GAL.						16.5	18.0	STY CLY	
		_		BENTONITE SEAL			18.0		STY SND	
				LENGTH: 6.5	LETE	GRANULAR	20.0		SND	
				SLURRY	LEIS	GRANOLAK	23.0	80.0	SND	
		_		SATURATED ZONE		HYDRATED				
SECONDARY FILTE										
LENGTH:	<u>1.0</u> FT.	7 11		SCREEN						
				SCREEN DIAMETE	ER:	2.0IN.				
				SCREEN LENGTH	l:	<u>9.8</u> FT.				
DEPTH TO TOP OF	PRIMARY		DIAMETER OF DR							
FILTER PACK:	<u>67.2</u> FT.		DEPTH TO TOP _	7	<u>0.2</u> FT.					

TOTAL DEPTH: _80.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/21/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: _____12.8FT.

SCREEN MATERIAL

OTHER

MISS	SOURI DEPARTMEN	IT OF	REF NO		DATE	RECEIVED			
NATI	JRAL RESOURCES		0	0512861				01/27/20	16
DIVIS	SION OF		CR NO		CHE	CK NO.			
🛮 🛕 🖟 🖟 GEO	LOGY AND LAND S	URVEY	STATE WELL NO			170077 REVENUE NO.			
(3/2)	368-2165		A206230 02/04/2016					E NO.	012716
MONITORING W			ENTERED NRBA		APPROVED B	V		ROUTE	
CERTIFICATION			PH1 PH2	PH3		711 T ROVED D	•		NOOTE
02.11.11.1071.11011	TREGORD		02/01/2016 02/01/2016 02/01/2016						
INFORMATION SUP	PLIED BY PRIMARY CON	NTRACTOR OR	DRILLING CO	ONTRACTOR	<u> </u>				
OWNER NAME AMEREN MISSOURI C/O B		CONTACT NAME AMEREN MISSOUR	RLC/O BILL KUTO	SKY					VARIANCE GRANTED BY
	LE NOTOCKI	IN O/O BILL NOTO	JIC1						
OWNER ADDRESS 3750 S. LINDBERGH BLVD.				STAT MO	I E	ZIP 6312	27	NUMBER	
SITE NAME LABADIE ENERGY CENTER	२				WEL	L NUMBER /3D			COUNTY FRANKLIN
SITE ADDRESS 226 LABADIE POWER PLAI	NT RD				CITY LABA				STATIC WATER LEVEL 30.0 FT
SURFACE COMPLETION TYPE X ABOVE GROUND	LENGTH AND DIAMETER OF SURFACE COMPLETION LENGTH <u>5.0</u> FT.	DIAMETER AND DI SURFACE COMPLI PLACED DIAMETER 12.0	ETION WAS	E SURFACE COI		ION GROUT		N OF WEL	
FLUSH MOUNT	DIAMETER 4.0 IN.	LENGTH <u>2.5</u> FT.		OTHER			LONG	90°_	50' 16.77"
							SMAL	LEST	LARGEST
LOCKING CAP				SURFACE COMPL	ETTIO	N	_	1/4	1/4 <u>SE</u> 1/4
		L			LUMINUM		CEC	40 -	TWN 44 NODTH
WEEP HOLE		١r	¬ -		201111110111	1 5.01.0	RANGE		TWN44 NORTH Direction E
		- 11						RING FOR:	Direction <u>L</u>
							RADIONU	ICLIDES	PETROLEUM PRODUCTS ONLY
							SVOCS	ves X	METALS VOC PESTICIDES/HERBICIDESS
ELEVATION	FT	_ ' 	1'	RISER PIPE DIAME	TER	2 0IN			1 1201101020112101010200
				RISER PIPE LENGT			PROPOS	ED USE OF	WELL
ANNULAR SEAL				HOLE DIAMETER				GRATION WELL	X OBSERVATION
LENGTH66	<u>3.5</u> FT.			WEIGHT OR SDR#		SCH40	EXTRAC	CTION WELL	OPEN HOLE
SLURRY	IIPS						PIEZOM		
	RANULAR	- $ $ $ $		MATERIAL	_		DIRECT	rush	
CEMENT/SLURRY	AUTE MIV.			STEEL	X THER	MOPLASTIC (PVC)	DEF	PTH	FORMATION
IF CEMENT/BENTO	NITE WIX:			OTHER			FROM	TO	DESCRIPTION
BAGS OF CEMENT	USED:			L			0.0	0.9	COAL
%OF BENTONITE U	SED:						0.9	5.0	SND
WATER USED/BAG:	GAL.						5.0		SLT
		_		BENTONITE SEAL			5.8		SND
				LENGTH: 6.0		П	10.0		SLT
				SLURRY	LEIS	GRANULAR	11.8		SND
				SATURATED ZONE		HYDRATED	12.0 26.5		SND SLT STY SND
SECONDARY FILTE	R PACK						36.0		SND
LENGTH:	-					40.0		SND	
	_			SCREEN			70.0		SND
		- I		SCREEN DIAMETE			86.5		GRVL SND
				SCREEN LENGTH:					
DEPTH TO TOP OF			DIAMETER OF DR DEPTH TO TOP						
FILTER PACK:	<u>75.4</u> FT.			DEFINITION _	0	<u>v.z</u> ı I.			

TOTAL DEPTH: _90.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/22/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: _____14.6FT.

SCREEN MATERIAL

OTHER

MISSOURI DEPARTMEN	_	REF NO	2540000	DAT	RECEIVED		04/07/0	240
NATURAL RESOURCES	•	CR NO	0512862	CHE	CK NO.		01/27/20	J16
DIVISION OF GEOLOGY AND LAND S	IID\/EV						17007	7
(573) 368-2165	OKVLI	STATE WELL NO				REVENU	E NO.	0.40740
MONITORING WELL		A206231 C	02/04/2016 JSSM		APPROVED B	Y		012716 ROUTE
CERTIFICATION RECORD		PH1 PH2	PH3		/			
		02/01/2016 02/01	/2016 02/01/2016					
INFORMATION SUPPLIED BY PRIMARY COINOTE: THIS FORM IS NOT TO BE USED FOR NESTED WELLS	NTRACTOR OR	DRILLING CO	ONTRACTOR					
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY	CONTACT NAME AMEREN MISSOU	RI C/O BILL KUTO:	SKY					VARIANCE GRANTED BY DNR
OWNER ADDRESS 3750 S. LINDBERGH BLVD.	CITY ST LOUIS			STA ⁻ MO	ΓE	ZIP 6312	27	NUMBER
SITE NAME LABADIE ENERGY CENTER					ELL NUMBER IW4D			COUNTY FRANKLIN
SITE ADDRESS 226 LABADIE POWER PLANT RD				CITY LAB				STATIC WATER LEVEL 34.78 FT
SURFACE COMPLETION TYPE LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D SURFACE COMPL PLACED		LE SURFACE COM	MPLET	ION GROUT	LOCATIO	N OF WEL	L
X ABOVE GROUND LENGTH <u>5.0</u> FT.	DIAMETER 12.0	IN.	X CONCRET	E			<u>38</u> °3	 ''
FLUSH MOUNT DIAMETER _4.0 IN.	LENGTH <u>7.5</u> FT.		OTHER				90°	
							LEST 1/4	LARGEST 1/4 SE 1/4
LOCKING CAP			SURFACE COMPL	ETTIO	N			
WEEP HOLE	Tr	$\exists T =$	STEEL X AL	LUMINUM	PLASTIC			TWN. 44 NORTH
	- 11		-			RANGE	2 RING FOR:	Direction <u>E</u>
						RADIONU	CLIDES	PETROLEUM PRODUCTS ONLY
			RISER			EXPLOSI*	/ES X	METALS VOC PESTICIDES/HERBICIDESS
ELEVATIONFT.		1.	RISER PIPE DIAME	TER	2.0IN.			
			RISER PIPE LENGT				ED USE O	
ANNULAR SEAL LENGTH75.5FT.			HOLE DIAMETER WEIGHT OR SDR#				GRATION WELL	OBSERVATION OPEN HOLE
			WEIGHT OR SDR#		301140	PIEZON	ETERS	
SLURRY CHIPS PELLETS GRANULAR	_		MATERIAL			DIRECT	PUSH	
CEMENT/SLURRY			STEEL	X THER	MOPLASTIC (PVC)	DEF	TH	FORMATION
IF CEMENT/BENTONITE MIX:			OTHER			FROM	TO	DESCRIPTION
BAGS OF CEMENT USED:			L			0.0	2.5	CLY SLT
%OF BENTONITE USED: WATER USED/BAG: GAL.						2.5 7.7	7.7 18.3	SLT SND SLT
WATER OSED/BAG. GAL.	L		BENTONITE SEAL			18.3		SDY SLT
			LENGTH:4.0			20.0	24.1	SDY SLT
			X CHIPS PELL	ETS.	GRANULAR	24.1	33.5	SLT SND
			SATURATED ZONE		HYDRATED	33.5 60.0	60.0 76.0	SND SND
SECONDARY FILTER PACK						76.0	95.0	GRVL SND
LENGTH: <u>0.5</u> FT.	7 1		CODEEN					
			SCREEN DIAMETE	R:	2.0IN.			
			SCREEN LENGTH:					
DEPTH TO TOP OF PRIMARY			DIAMETER OF DRI					
FILTER PACK: <u>82.0</u> FT.			DEPTH TO TOP	8	<u>5.2</u> ⊦1.			

SCREEN MATERIAL

SIGNATURE (APPRENTICE)

OTHER

FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED.

PERMIT NUMBER

PERMIT NUMBER 004484

006124

HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS

LENGTH OF PRIMARY FILTER

PACK: _____13.0FT.

SIGNATURE (PRIMARY COUNTRACTOR)

SIGNATURE (WELL DRILLER) × JASON DRABEK X THERMOPLASTIC (PVC)

TOTAL DEPTH:

11/24/2015

PUMP INSTALLED

AMEREN_00002332

_95.0 FEET

DATE WELL DRILLING WAS COMPLETED

APPRENTICE PERMIT NUMBER

MISSOURI DEPARTMEN	_	REF NO		DAT	DATE RECEIVED					
NATURAL RESOURCES			00512863	0115	01/110		01/27/2	016		
DIVISION OF		CR NO		CHE	CK NO.		17007	7		
🛮 🧸 🛞 🛮 GEOLOGY AND LAND S	URVEY	STATE WELL N	0			REVENU		•		
(573) 368-2165		A206232	02/04/2016			012716				
MONITORING WELL		ENTERED NRBASSM APPROVED BY						ROUTE		
CERTIFICATION RECORD		PH1 PH2								
INFORMATION OF IDDITED BY DDIMARY OOM	ITD A OTOD OD		1/2016 02/01/2016							
INFORMATION SUPPLIED BY PRIMARY CONNOTE: THIS FORM IS NOT TO BE USED FOR NESTED WELLS	1	DRILLING CO	UNTRACTOR							
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY	CONTACT NAME AMEREN MISSOUR	RI C/O BILL KUTC	SKY					VARIANCE GRANTED BY DNR		
OWNER ADDRESS 3750 S. LINDBERGH BLVD.	CITY ST LOUIS			STA [*] MO	ΓE	ZIP 6312	27	NUMBER		
SITE NAME LABADIE ENERGY CENTER				WEL	L NUMBER /5D		COUNTY FRANKLIN			
SITE ADDRESS 226 LABADIE POWER PLANT RD			CITY		STATIC WATER LEVEL 35.86 FT					
SURFACE COMPLETION										
TYPE LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND DE SURFACE COMPLE		SURFACE COM	MPLET	ION GROUT	LOCATIO	N OF WEL	.L		
X ABOVE GROUND LENGTH 5.0 FT.	PLACED DIAMETER 12.0	IN	X CONCRET	E		LAT	38 °	33' 27 2"		
FLUSH MOUNT DIAMETER 4.0 IN.	LENGTH 2.5 FT.		OTHER	Ī			90°			
						SMAI	LEST	LARGEST		
LOCKING CAP			SURFACE COMPL	ETTIO	N		1/4	1/4 <u>SE</u> 1/4		
WEEP HOLE	<u></u>			LUMINUM		CEC.	40	TMN 44 NODTH		
WEEP HOLE	Ir			201111110111	1 2.01.0	RANGE		TWN. 44 NORTH Direction E		
	- 11						RING FOR			
			-			RADIONU		PETROLEUM PRODUCTS ONLY METALS VOC		
			RISER			EXPLOSI SVOCS	VES	PESTICIDES/HERBICIDESS		
ELEVATIONFT.			RISER PIPE DIAME	TER	2.0IN.					
			RISER PIPE LENGT				ED USE O			
ANNULAR SEAL			HOLE DIAMETER				GRATION WELL	DEN HOLE		
LENGTH		++	WEIGHT OR SDR#		<u>SCH40</u>	PIEZON		OF ENTINEE		
SLURRY CHIPS	_		MATERIAL			DIRECT	PUSH			
PELLETS GRANULAR CEMENT/SLURRY			STEEL	X THER	MOPLASTIC (PVC)	DEF	PTH	FORMATION		
IF CEMENT/BENTONITE MIX:			OTHER			FROM	то	DESCRIPTION		
BAGS OF CEMENT USED:						0.0	6.0	HYDROVAC FILL		
%OF BENTONITE USED:						6.0	16.5	SND SLT		
WATER USED/BAG: GAL.						16.5	18.9	STY CLY		
			BENTONITE SEAL			18.9	21.0	SDY SLT		
			LENGTH:	FTS	GRANULAR	21.0 25.0	25.0 30.0	SLT SDY SLT		
			SLURRY		отпорт	30.0	33.0	CLUMPY SLT		
			SATURATED ZONE		HYDRATED	33.0	38.0	STY SND		
SECONDARY FILTER PACK						38.0	46.0	STY SND		
LENGTH:1.0FT.	7 1 1		SCREEN			46.0	60.0	SND		
			SCREEN DIAMETE	R:	2.0IN.	60.0	96.0	SND		
			SCREEN LENGTH:							
DEPTH TO TOP OF PRIMARY			DIAMETER OF DRI							
FILTER PACK: 82.1FT.			DEPTH TO TOP	8	<u>6.2</u> FT.					

FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED.

SIGNATURE (PRIMARY COUNTRACTOR)

SIGNATURE (PRIMARY COUNTRACTOR)

1006124

11/23/2015

I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS

SIGNATURE (WELL DRILLER)

X JASON DRABEK

PERMIT NUMBER

004484

SIGNATURE (APPRENTICE)

APPRENTICE PERMIT NUMBER

004484

LENGTH OF PRIMARY FILTER

PACK: _____13.9FT.

SCREEN MATERIAL

OTHER

X THERMOPLASTIC (PVC)

TOTAL DEPTH:

_96.0 FEET

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND LAND SURVEY (573) 368-2165			REF NO		DATE RECEIVED				
			00512864		01/27/2016				
			CR NO		CHECK NO. 170077				
			STATE WELL NO			REVENUE NO.			
			A206233	2/04/2016		012716			
MONITORING W			ENTERED NRBA	SSM	APPROVED BY			ROUTE	
CERTIFICATION	RECORD		PH1 PH2	PH3					
INFORMATION OF IDE	NIED DV DDIMADV OOM	ITD A OTOD OD	02/01/2016 02/01						
NOTE: THIS FORM IS NOT TO BE USED I	PLIED BY PRIMARY CON FOR NESTED WELLS	NIRACTOR OR	DRILLING CC	INTRACTOR					
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY CONTACT NAI AMEREN MISS			RI C/O BILL KUTO:	SKY				VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S. LINDBERGH BLVD.		CITY ST LOUIS			STATE MO			NUMBER	
SITE NAME LABADIE ENERGY CENTER	R	I		WELL NUMBER UMW6D	1		COUNTY FRANKLIN		
SITE ADDRESS 226 LABADIE POWER PLAN	IT RD		CITY LABADIE					STATIC WATER LEVEL 35.5 FT	
SURFACE COMPLETION TYPE	LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D		E SURFACE COM	MPLETION GROUT	LOCATIO	N OF WELL		
X ABOVE GROUND	LENGTH 5.0 FT.	PLACED DIAMETER 12.0		X CONCRETI	E	ΙΔΤ	38° 33	3' 20 85"	
FLUSH MOUNT	DIAMETER 4.0 IN.	LENGTH 2.5 FT.		OTHER			90° 4		
· · · · · · · · · · · · · · · · · · ·		•				SMAI	LEST	LARGEST	
L COKINO CAR				CUREAGE COMPL	ETTION		1/4	1/4SE 1/4	
LOCKING CAP		<u></u>		SURFACE COMPLI	UMINUM PLASTIC	050	40 T	MAN 44 NORTH	
WEEP HOLE	I					WN. <u>44</u> NORTH Direction E			
						RANGE MONITOR	RING FOR:	<u></u>	
						RADIONU		PETROLEUM PRODUCTS ONLY METALS VOC	
				RISER		EXPLOSI SVOCS		PESTICIDES/HERBICIDESS	
ELEVATION	FT.			RISER PIPE DIAMET	TER2.0IN.				
			RISER PIPE LENGTH85.8FT.				ED USE OF		
ANNULAR SEAL			HOLE DIAMETER6.0IN.				GAS MIGRATION WELL X OBSERVATION EXTRACTION WELL OPEN HOLE		
LENGTH71	<u>.5</u> F1.		++	WEIGHT OR SDR#	SCH40	PIEZOM		OPEN HOLE	
SLURRY CH				MATERIAL		DIRECT	PUSH		
PELLETS GR. CEMENT/SLURRY	ANULAR			STEEL	X THERMOPLASTIC (PVC)	DEF	PTH	FORMATION	
IF CEMENT/BENTON	NITE MIX:			OTHER		FROM	ТО	DESCRIPTION	
BAGS OF CEMENT U	JSED:			L		0.0	5.0 H	HYDROVAC FILL	
%OF BENTONITE US	SED:					5.0	8.7	SDY SLT	
WATER USED/BAG:	GAL.					8.7		SLT	
				BENTONITE SEAL		10.0		STY CLY	
				LENGTH:7.0	ETS GRANULAR	20.0 25.0		STY SND STY CLY	
				SLURRY		27.5		STY CLY	
		_		SATURATED ZONE	HYDRATED	35.0		SND	
SECONDARY FILTE						60.0		SND	
LENGTH:	<u>1.0</u> FT.			SCREEN		85.0	95.0	SND	
				SCREEN DIAMETE	R:2.0IN.				
				SCREEN LENGTH:	9.8FT.				
DEPTH TO TOP OF I				DIAMETER OF DRI					
FILTER PACK:	<u>82.7</u> FT.			DEPTH TO TOP	<u>85.2</u> ⊦T.				

TOTAL DEPTH: _95.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/22/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: <u>12.3</u>FT.

SCREEN MATERIAL

OTHER

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND LAND SURVEY (573) 368-2165			REF NO		DATE RECEIVED					
			00512865		01/27/2016					
			CR NO	CHECK NO. 170077						
			STATE WELL NO			R	REVENUE NO.			
			A206234	02/04/2016		012716			16	
MONITORING W			ENTERED NR	BASSM	APPRO	APPROVED BY			ROUTE	
CERTIFICATION	RECORD		PH1 PH2	PH3						
INFORMATION OF IDE	NIED DV DDIMADY OOM	ITD A OTOD OD		01/2016 02/01/2016						
NOTE: THIS FORM IS NOT TO BE USED I	PLIED BY PRIMARY CONFORNESTED WELLS	NIRACIOR OR	DRILLING (ONTRACTOR						
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY CONTACT I AMEREN M			ME OURI C/O BILL KUTOSKY							RIANCE GRANTED BY R
OWNER ADDRESS 3750 S. LINDBERGH BLVD.		CITY ST LOUIS			STATE MO			NU	MBER	
SITE NAME LABADIE ENERGY CENTER	R	1	WELL NUMBER UMW7D							UNTY ANKLIN
SITE ADDRESS 226 LABADIE POWER PLAN	IT RD		CITY LABADIE							ATIC WATER LEVEL 9.35 FT
SURFACE COMPLETION TYPE	LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D		OLE SURFACE CO	MPLETION GR	ROUT L	OCATIO	N OF WELI	L	
X ABOVE GROUND	LENGTH 5.0 FT.	PLACED DIAMETER 12.0	IN	X CONCRE	TE	1.4	ΔΤ	38°3	3' 14 34"	
FLUSH MOUNT	DIAMETER 4.0 IN.	LENGTH <u>2.5</u> FT.		OTHER				90° 4		
							SMAL	LEST		LARGEST
LOCKING CAP				SURFACE COMP	ETTION			1/4		1/4SE 1/4
WEEP HOLE		<u></u>			_	PLASTIC S	EC	10 1	E\A/NI	44 NORTH
WEEP HOLE		١r	\neg			0	ANGE		Directio	<u>44</u> NORTH n E
								ING FOR:		
							RADIONU		PETROLEU METALS	IM PRODUCTS ONLY VOC
				RISER			SVOCS	-3		S/HERBICIDESS
ELEVATION	FT.			RISER PIPE DIAME	ETER	2.0IN.				
***************************************			RISER PIPE LENGTH <u>57.2</u> FT.				_	ED USE OF		ODGEDVATION
ANNULAR SEAL LENGTH43	SET		HOLE DIAMETER6.0IN. WEIGHT OR SDR# SCH40					TION WELL		X OBSERVATION OPEN HOLE
LENGIII	<u></u> . 1.		+	WEIGHT OK SDIK#			PIEZOMI			
SLURRY CHI PELLETS GR.	IPS ANULAR			MATERIAL			DIRECT	PUSH		
CEMENT/SLURRY				STEEL	X THERMOPLASTIC	IC (PVC)	DEP	TH		FORMATION
IF CEMENT/BENTON	NITE MIX:			OTHER		F	FROM	TO		DESCRIPTION
BAGS OF CEMENT U	JSED:			L			0.0	1.0	SND	
%OF BENTONITE US							1.0		SLT	
WATER USED/BAG:	GAL.			DENTONITE OF AL			5.0	-	STY CLY	(
				BENTONITE SEAL LENGTH:5.0			8.7 19.8		SND SND	
				- CHIPS PEL		ANULAR	27.6		SND	
				SLURRY			30.0	70.0	SND	
				SATURATED ZONE	HYDI	RATED				
SECONDARY FILTE LENGTH:2		_								
LLINOIII.	<u></u>			SCREEN						
		-		SCREEN DIAMET						
DEDT				SCREEN LENGTH DIAMETER OF DR						
DEPTH TO TOP OF I FILTER PACK:				DEPTH TO TOP _		<u>.</u>				
				I						

TOTAL DEPTH: _70.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/20/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: <u>12.6</u>FT.

SCREEN MATERIAL

OTHER

MISSOURI DEPARTMENT OF NATURAL RESOURCES			REF NO		DATE RECEIVED					
			00512866		01/27/2016					
DIVIS	CR NO		CHECK NO. 170077							
GEOLOGY AND LAND SURVEY (573) 368-2165			STATE WELL NO			RE	REVENUE NO.			
			A206235	02/04/2016		012716			012716	
MONITORING WI			ENTERED NR	BASSM	APPRO\	VED BY		R	OUTE	
CERTIFICATION	RECORD		PH1 PH2	PH3						
INFORMATION OUR	N IED DV DDIMADV OOM	ITD A OTOD OD		01/2016 02/01/2016						
NOTE: THIS FORM IS NOT TO BE USED F	PLIED BY PRIMARY CON OR NESTED WELLS	NIRACIOR OR	DRILLING (CONTRACTOR						
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY CONTACT NAME AMEREN MISSO			JRI C/O BILL KUTOSKY						VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S. LINDBERGH BLVD.		CITY ST LOUIS			STATE MO				NUMBER	
SITE NAME LABADIE ENERGY CENTER			WELL NUMBER UMW8D			ER			COUNTY FRANKLIN	
SITE ADDRESS 226 LABADIE POWER PLAN	T RD		CITY LABADIE						STATIC WATER LEVEL 5.75 FT	
	LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D		OLE SURFACE CO	MPLETION GRO	OUT LO	CATION	OF WELL		
X ABOVE GROUND	LENGTH <u>5.0</u> FT.	PLACED DIAMETER 12.0	IN.	X CONCRE	TE	LA	T	38 ° <u>33</u> '	6.11"	
FLUSH MOUNT	DIAMETER <u>4.0</u> IN.	LENGTH 2.5 FT.		OTHER		LO	NG	90 ° <u>49</u> '	<u>56.25</u> "	
							SMALLE		LARGEST	
LOCKING CAP				SURFACE COMP	LETTION			1/4 _	1/4 N <u>E</u> 1/4	
WEEP HOLE		ү —	ㅡ _	STEEL X	ALUMINUM PL	ASTIC SE	C.	19 TW	/N44 NORTH	
		١r					NGE _		Direction <u>E</u>	
							NITORIN			
							RADIONUCL EXPLOSIVES		ETROLEUM PRODUCTS ONLY IETALS VOC	
		_		RISER			SVOCS	PI	ESTICIDES/HERBICIDESS	
ELEVATION	FT.			RISER PIPE DIAME	•					
ANNULAR SEAL			RISER PIPE LENGTH62.4FT. HOLE DIAMETER6.0IN.				PROPOSED USE OF WELL GAS MIGRATION WELL X OBSERVATION			
LENGTH 48.5FT.				WEIGHT OR SDR#	·		EXTRACTIO		OPEN HOLE	
							PIEZOMETI			
SLURRY CHIF PELLETS GRA	PS INULAR	-		MATERIAL			DIRECT PU	JSH		
CEMENT/SLURRY IF CEMENT/BENTON	ITE MIV			STEEL	X THERMOPLASTIC	(PVC)	DEPTI	Н	FORMATION	
IF CEMENI/BENION	IIE MIX:			OTHER		FF	ROM	TO	DESCRIPTION	
BAGS OF CEMENT U				L.			0.0	5.9 ST	TY CLY	
%OF BENTONITE US									ND DV OLV	
WATER USED/BAG:	GAL.			BENTONITE SEAL					TY CLY ND	
				LENGTH:5.0					ND	
				CHIPS PEL	LETS GRAN	IULAR 5	57.7	58.5 SN	ND STY CLY	
				SLURRY	П		58.5	70.5 SN	ND	
SECONDARY FILTER	PACK			SATURATED ZONE	HYDR	AIED				
LENGTH:2		-								
<u></u>	_			SCREEN						
				SCREEN DIAMET SCREEN LENGTH						
DEDTH TO TOP OF P	DIMADV			DIAMETER OF DR						
DEPTH TO TOP OF P FILTER PACK:				DEPTH TO TOP _						
		1888.79	**************************************	1		- 1		- 1		

TOTAL DEPTH: _70.5 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/19/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: <u>12.6</u>FT.

SCREEN MATERIAL

OTHER

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND LAND SURVEY			REF NO I		DATE RECEIVED				
			00512867		01/27/2016				
			CR NO		CHECK NO.				
			STATE WELL NO	1		REVENII	170077		
(573)	368-2165		-	2/04/2016	REVENUE NO.			012716	
MONITORING WI	ELL		ENTERED NRBA		APPROVED BY			ROUTE	
CERTIFICATION	RECORD		PH1 PH2	PH3					
			02/01/2016 02/01/2016 02/01/2016						
INFORMATION SUPP	PLIED BY PRIMARY CON	NTRACTOR OR	DRILLING CC	NTRACTOR					
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY CONTACT NAME AMEREN MISSOURI AMEREN MISSOURI			RI C/O BILL KUTOSKY					VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S. LINDBERGH BLVD.		CITY ST LOUIS			STATE ZIP 63127		27	NUMBER	
SITE NAME LABADIE ENERGY CENTER			WELL NUMBER UMW9D					COUNTY FRANKLIN	
SITE ADDRESS 226 LABADIE POWER PLAN	T RD		CITY LABADIE					STATIC WATER LEVEL 9.2 FT	
	LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND DI SURFACE COMPL		E SURFACE COM	IPLETION GROUT	LOCATIO	N OF WELL	'	
X ABOVE GROUND	LENGTH 5.0 FT.	PLACED DIAMETER 12.0	IN.	X CONCRETE		LAT.	38 ° 32'	59.43"	
FLUSH MOUNT	DIAMETER 4.0 IN.	LENGTH 2.5 FT.		OTHER		LONG. 90 ° 50' 5.46"			
						SMAI	LLEST	LARGEST	
				01175405 00471			1/4	1/4NE 1/4	
LOCKING CAP				SURFACE COMPLE					
WEEP HOLE	STEEL X ALUMINUM PLASTIC			SEC19 TWN44 NORTH RANGE2 Direction E					
		- 11					Z I	Direction <u>E</u>	
						RADIONI		PETROLEUM PRODUCTS ONLY	
			[EXPLOSIVES X METALS VOC SVOCS PESTICIDES/HERBICIDESS			
ELEVATION	FT.	_ '		RISER	TED 2.0IN	SVOCS	F	PESTICIDES/HERBICIDESS	
ELEVATION	F1.		RISER PIPE DIAMETER			PROPOSED USE OF WELL			
ANNULAR SEAL			HOLE DIAMETER6.0IN.			GAS MIGRATION WELL X OBSERVATION			
LENGTH 47.5FT.			WEIGHT OR SDR# SCH40			EXTRACTION WELL OPEN HOLE			
			PIEZOMETERS DIRECT PUSH						
SLURRY CHIF PELLETS GRA	PS INULAR	_		MATERIAL		DIRECT	PUSH		
CEMENT/SLURRY				STEEL	(THERMOPLASTIC (PVC)	DEF	PTH	FORMATION	
IF CEMENT/BENTON	ITE MIX:			OTHER		FROM TO		DESCRIPTION	
BAGS OF CEMENT U	SED:					0.0	5.0 S	TY CLY	
%OF BENTONITE US	ED:					5.0		LY SLT	
WATER USED/BAG:	GAL.					7.5	10.0 S	TY CLY	
		_		BENTONITE SEAL		10.0	13.8 S	ND SLT	
				LENGTH:5.0		13.8		ND	
				CHIPS PELLE	TS GRANULAR	17.8		ND	
				SATURATED ZONE	HYDRATED	35.0 45.0		ND ND	
SECONDARY FILTER	RPACK					45.0 47.5		ND	
LENGTH:1		-				54.5		ND	
<u></u>	_			SCREEN		60.0		ND	
		-		SCREEN DIAMETER		66.0		ND	
				SCREEN LENGTH:					
DEPTH TO TOP OF P				DIAMETER OF DRIL					
FILTER PACK:	<u>55.9</u> FT.			DEPIRIO 10P	<u>0∪.∠</u> FI.				

TOTAL DEPTH: _70.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x <u>JEFFREY INGRAM</u> 006124 11/19/2015 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: _____14.1FT.

SCREEN MATERIAL

OTHER

MISSOURI DEPARTMEN	_	REF NO DATE RECEI			/ED			
NATURAL RESOURCES		00.110	00304711	03/14/2016				
DIVISION OF		CR NO		CHECK NO.	170083			
🛮 🧸 🛞 🛮 GEOLOGY AND LAND S	URVEY	STATE WELL	NO		REVENU		,	
(573) 368-2165		A206411	03/15/2016				031416	
MONITORING WELL		ENTERED NR	BASSM	APPROVED B	Y		ROUTE	
CERTIFICATION RECORD		PH1 PH2	PH3					
		03/14/2016 03/	/15/2016 03/15/2016					
INFORMATION SUPPLIED BY PRIMARY CONNOTE: THIS FORM IS NOT TO BE USED FOR NESTED WELLS	NTRACTOR OR	R DRILLING (CONTRACTOR					
OWNER NAME AMEREN MISSOURI C/O BILL KUTOSKY	CONTACT NAME AMEREN MISSOU	IRI C/O BILL KUT	OSKY				VARIANCE GRANTED BY DNR	
OWNER ADDRESS 3750 S LINDEBERGH BLVD	CITY ST LOUIS			STATE MO	ZIP 6312	27	NUMBER	
SITE NAME LABADIE ENERGY CNETER				WELL NUMBER BMW1D			COUNTY ST LOUIS CITY	
SITE ADDRESS BOLES RD				CITY ST LOUIS		STATIC WATER LEVEL 13.6 FT		
SURFACE COMPLETION TYPE LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND D		SURFACE COI	MPLETION GROUT	LOCATIO	N OF WELL	L	
X ABOVE GROUND LENGTH <u>5.0</u> FT.	PLACED DIAMETER 12.0	IN.	X CONCRET	E	LAT.	38° 3	<u>2</u> ' <u>50.09</u> "	
FLUSH MOUNT DIAMETER 4.0 IN. LENGTH 2.5 FT. OTHER						90° 5	52'2.6"	
						LLEST	LARGEST	
LOCKING CAP			SURFACE COMPL	ETTION		1/4	1/4 1/4	
WEEP HOLE	Ļ			LUMINUM PLASTIC	SEC. LO	3002577	TWN NORTH	
WEET HOLE	١r				RANGE	3002311	Direction E	
	- 11				MONITOR	RING FOR:		
			-		RADIONU EXPLOSI	1/	PETROLEUM PRODUCTS ONLY METALS VOC	
		III			SVOCS PESTICIDES/HERBICIDESS			
ELEVATIONFT.			RISER PIPE DIAME	TER2.0IN.				
			RISER PIPE LENGT	ΓH <u>63.0</u> FT.	PROPOSED USE OF WELL			
ANNULAR SEAL			HOLE DIAMETER		l 📙	GRATION WELL CTION WELL	X OBSERVATION OPEN HOLE	
LENGTH50.0FT.		++	WEIGHT OR SDR#	SCH40	PIEZON		OPEN HOLE	
SLURRY CHIPS			MATERIAL		DIRECT			
PELLETS GRANULAR CEMENT/SLURRY				X THERMOPLASTIC (PVC)	DEF	РТН	FORMATION	
IF CEMENT/BENTONITE MIX:			OTHER		FROM	то	DESCRIPTION	
BAGS OF CEMENT USED:					0.0	7.5	CLY SLT	
%OF BENTONITE USED:		1 1			7.5		STY CLY	
WATER USED/BAG: GAL.					8.9	10.0	SND	
			BENTONITE SEAL		10.0	18.3	STY SND	
			LENGTH:5.0		18.3		CLY SND	
			SLURRY PELL	LETS GRANULAR	20.0		SND	
			SATURATED ZONE	HYDRATED	30.0 38.5		SND SND	
SECONDARY FILTER PACK					50.0		SND	
LENGTH:1.0FT.	-							
			SCREEN	-D. 0.011				
			SCREEN DIAMETE SCREEN LENGTH:					
DEPTH TO TOP OF PRIMARY			DIAMETER OF DR					
DEPTH TO TOP OF PRIMARY FILTER PACK:62.6FT.			DEPTH TO TOP _					

TOTAL DEPTH: _75.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x JEFFREY INGRAM 006124 02/01/2016 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: <u>12.4</u>FT.

SCREEN MATERIAL

OTHER

X THERMOPLASTIC (PVC)

/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OURI DEPARTMEN				DATE RECEIVED				
	JRAL RESOURCES		CR NO	0304713	CHE	CK NO.		03/14/201	16
4 A a=a	SION OF	LIDVEV	OKNO		OHL	OK NO.	170083		
(N/2)	LOGY AND LAND S	URVEY	STATE WELL NO)			REVENU	E NO.	
MONITORING W	368-2165			03/15/2016		45550\/E5 5\	,		031416
CERTIFICATION			PH1 PH2	PH3		APPROVED B	Y		ROUTE
OLIVIII IOATION	KLOOKD			5/2016 03/15/2016					
INFORMATION SUPPLIED IN NOTE: THIS FORM IS NOT TO BE USED	PLIED BY PRIMARY CONFORNESTED WELLS	NTRACTOR OR	DRILLING CO	ONTRACTOR					
OWNER NAME AMEREN MISSOURI C/O BI	LL KUTOSKY	CONTACT NAME AMEREN MISSOUR	RI C/O BILL KUTO	SKY					VARIANCE GRANTED BY DNR
OWNER ADDRESS 3750 S LINDEBERGH BLVD		CITY ST LOUIS			STA ³	TE	ZIP 6312	27	NUMBER
SITE NAME LABADIE ENERGY CNETER	₹				WEL	L NUMBER V2D			COUNTY ST LOUIS CITY
SITE ADDRESS BOLES RD					CITY ST L	, OUIS			STATIC WATER LEVEL 14.0 FT
SURFACE COMPLETION TYPE	LENGTH AND DIAMETER OF SURFACE COMPLETION	DIAMETER AND DI SURFACE COMPLI PLACED	ETION WAS			TION GROUT		N OF WELL	
X ABOVE GROUND FLUSH MOUNT	LENGTH <u>5.0</u> FT. DIAMETER <u>4.0</u> IN.	DIAMETER 12.0 LENGTH 2.5 FT.	IN. X CONCRETE OTHER					38° 32 90° 5	
TEOSITIVOORIT DIAWIETER 4.0 IV.							LEST	LARGEST	
								1/4	1/41/4
LOCKING CAP		C	\Box	SURFACE COMPL	LETTIC		050 1		TAIN NODELL
WEEP HOLE		Ir	\neg $\overline{}$	STEEL X A	COMITON	T EAGING	RANGE	30025// I	WN NORTH Direction E
		- 11						RING FOR:	
				·			RADIONU EXPLOSI		PETROLEUM PRODUCTS ONLY METALS VOC
		_		RISER			svocs		PESTICIDES/HERBICIDESS
ELEVATION	FT.			RISER PIPE DIAME					
ANNULAR SEAL				RISER PIPE LENGT HOLE DIAMETER			PROPOSED USE OF WELL GAS MIGRATION WELL OBSERVATION		
LENGTH 49	<u>ı.5</u> FT.			WEIGHT OR SDR#			EXTRAC	CTION WELL	OPEN HOLE
SLURRY CH	IPS						PIEZOM		
PELLETS GR	ANULAR	-		MATERIAL					
CEMENT/SLURRY IF CEMENT/BENTON	NITE MIX:			STEEL OTHER	X THEF	RMOPLASTIC (PVC)	DEF FROM	TO	FORMATION DESCRIPTION
BAGS OF CEMENT U	ISED:			L U					
%OF BENTONITE US WATER USED/BAG:	SED:						0.0 4.0		CLY SLT SND
WATER USED/BAG.	GAL.			BENTONITE SEAL					
				LENGTH:4.5					
				CHIPS PELI	LETS	GRANULAR			
				SATURATED ZONE		HYDRATED			
SECONDARY FILTE									
LENGTH:	<u>0.5</u> FT.	7 11		SCREEN					
			SCREEN SCREEN DIAMETER: 2.0IN.						
			SCREEN LENGTH: 9.8FT.						
DEPTH TO TOP OF	PRIMARY			DIAMETER OF DR					
FILTER PACK:	<u>62.4</u> FT.			DEPTH TO TOP _	6	<u>5.∠</u> F1.			

_75.0 FEET FOR CASED WELLS, SUBMIT ADDITIONAL AS BUILT DIAGRAMS SHOWING WELL CONSTRUCTION DETAILS INCLUDING TYPE AND SIZE OF ALL CASING, HOLE DIAMETER AND GROUT USED. SIGNATURE (PRIMARY COUNTRACTOR) PERMIT NUMBER DATE WELL DRILLING WAS COMPLETED x JEFFREY INGRAM 006124 02/02/2016 I HEREBY CERTIFY THAT THE MONITORING WELL HEREIN DESCRIBED WAS CONSTRUCTED IN ACCORDANCE WITH MISSOURI DEPARTMENT OF NATURAL RESOURCES REQUIREMENTS FOR THE CONSTRUCTION OF MONITORING WELLS PUMP INSTALLED SIGNATURE (WELL DRILLER) × JASON DRABEK PERMIT NUMBER SIGNATURE (APPRENTICE) APPRENTICE PERMIT NUMBER 004484

LENGTH OF PRIMARY FILTER

PACK: <u>12.6</u>FT.

SCREEN MATERIAL STEEL

OTHER

X THERMOPLASTIC (PVC)

TOTAL DEPTH:

APPENDIX H STATISTICAL ANALYSIS PLAN

STATISTICAL ANALYSIS PLAN

Prepared in accordance with the United States Environmental Protection Agencies Coal Combustion Rule, part 40 CFR 257.93 for Ameren Missouri's LCPA Surface Impoundment at the Labadie Energy Center, Franklin County, Missouri

Submitted To: Ameren Missouri

1901 Chouteau Avenue St. Louis, Missouri 63103

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

Date: October 10, 2017

Project No.153-1406

EXECUTIVE SUMMARY

This Statistical Analysis Plan (SAP) was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the Rule or CCR Rule). The Rule requires owners or operators of an existing Coal Combustion Residuals (CCR) Surface Impoundment to install a groundwater monitoring system and develop a sampling and analysis program (§§ 257.90 - 257.94). Ameren Missouri has determined that the LCPA (Bottom Ash) Surface Impoundment at the Labadie Energy Center in Franklin County, Missouri is subject to the requirements of the CCR Rule.

As a part of the groundwater sampling and analysis requirements of the Rule, statistical methods as described in Section §257.93(f) of the Rule need to be implemented to statistically evaluate groundwater quality. The selected statistical method must then be certified by a qualified professional engineer stating that the statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit. Detailed descriptions of the acceptable statistical data methods are provided in the USEPA's *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance* (USEPA, 2009) (Unified Guidance). The Unified Guidance is also recommended in the CCR Rule to be used for guidance in the selection of the appropriate statistical evaluation method.

This SAP details the statistical procedures to be used to establish background conditions, to implement detection monitoring, and to implement assessment monitoring (if needed) for Ameren Missouri at the above mentioned CCR Unit. Detailed information on collection, sampling techniques, preservation, etc. are provided in the Groundwater Monitoring Plan (GMP) for the CCR Unit specified above. This SAP is a companion documents to the GMP and assumes that data analyzed by the procedures described in this SAP are from samples that were collected in accordance with the GMP.

This SAP was prepared by Golder Associates, Inc. (Golder) on behalf of Ameren in order to document appropriate method of groundwater data evaluation in compliance with CCR Rules. The methods and groundwater data evaluation techniques used in this SAP are appropriate for evaluation of the groundwater monitoring data for the above mentioned CCR Unit and are in compliance with performance standards outlined in Section §257.93(g) of the CCR Rule.

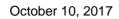


Table of Contents

EXECUTIVE SUMMARY	ES-
1.0 BASELINE STATISTICS	
1.1 STATISTICAL DATA PR	REPARATION AND INITIAL REVIEW
1.1.1 Physical and Statistic	cal Independence of Groundwater Samples
1.1.2 Data Review – Testir	ng For Outliers
1.1.2.1 Time Series Plots.	
1.1.2.2 Dixon's and Rosne	er's Tests
1.2 Upgradient Monitoring V	Vells
1.2.1 Calculate for Mean a	nd Standard Deviation
1.2.1.1 Reporting of Low a	nd Zero Values
1.2.2 Data Distribution	
1.2.3 Temporal Trend	
1.2.4 Comparing Backgrou	nd Datasets (Spatial Variation)
1.3 Compliance Monitoring	Wells and Statistically Significant Increases
1.3.1 Interwell vs Intrawell	Statistical Analysis
1.3.1.1 Interwell Statistical	Analysis
1.3.1.2 Intrawell Statistical	Analysis
1.3.2 Statistical Power	
1.3.2.1 Site-Wide False Po	ositive Rate
1.3.2.2 Verification Sampli	ng
	Methods
1.3.4 Prediction Intervals	
1.3.5 Double Quantification	n Rule1
	1
1.5 Updating Background V	alues1
	RING STATISTICAL EVALUATION1
	Vater Protection Standard (GWPS)1
2.1.1 Maximum Contamina	nt Level (MCL) Based GWPS1
2.1.2 Non-MCL Based GW	PS1
2.1.2.1 Tolerance Interval	Approach1
2.1.2.2 Prediction Interval	Approach1
2.2 Returning to Backgroun	d Detection Monitoring1
•	1
2.4 Updating Background V	alues1
O DEEEDENCES	1

i

ii

List of Tables

Table 1

Physical Independence Confidence Interval Method Selection Table 2

1.0 BASELINE STATISTICS

This section discusses the procedures, methods, and processes that will be implemented as part of the Detection Monitoring statistical evaluation. Detection Monitoring will begin after eight rounds of sampling are completed at each monitoring well for each of the Appendix III and Appendix IV parameters. This background monitoring period provides baseline data for each monitoring well which can be used as the basis of the statistical evaluation. Detection monitoring will be completed on a semiannual basis unless adequate groundwater flow is not available for semiannual sampling and proper documentation as outlined in §257.94(d) is completed. Detection monitoring will analyze for Appendix III analytes as outlined in the Groundwater Monitoring Plan for this CCR Unit.

1

1.1 STATISTICAL DATA PREPARATION AND INITIAL REVIEW

Many of the statistical comparison tests used in detection, and assessment monitoring require various analyses to be completed prior to the data being used for the calculation of statistical limits. This section discusses the methods and procedures for completing this initial review of the data. The analyses required include testing for statistical independence, physical independence, and procedures to evaluate potential outliers.

1.1.1 Physical and Statistical Independence of Groundwater Samples

Detection, and Assessment Monitoring statistical evaluations assume that background and downgradient sampling results are statistically independent. The Unified Guidance states that "Physical independence of samples does not guarantee statistical independence, but it increases the likelihood of statistical independence." (Section 14.1, Unified Guidance). Physical independence is most likely achieved when consecutive groundwater samples are collected from independent volumes of water within a given aquifer zone. Using the Darcy Equation, minimum time intervals between sampling events can be calculated in order to confirm the minimum time interval for groundwater to travel through the borehole is less than the time between sampling events (**Table 1, Physical Independence**). This minimum time can be calculated as displayed in Section 14.3.2 of the Unified Guidance.

	rable 1. Filysical independence											
		Average										
	Hydraulic	Hydraulic	Effective	Well Bore								
Well ID	Conductivity	Gradient	Porosity	Volume	Minimum Time							
Symbol	K	I	n	D	T _{min}							
Units	Feet/Day	Feet/Foot	%	Feet	Days							
UMW-1D	55	0.00043	0.35	0.5	7.4							
UMW-2D	44	0.00043	0.35	0.5	9.3							
UMW-3D	37	0.00043	0.35	0.5	10.9							
UMW-4D	56	0.00043	0.35	0.5	7.2							
UMW-5D	56	0.00043	0.35	0.5	7.2							
UMW-6D	59	0.00043	0.35	0.5	6.9							
UMW-7D	37	0.00043	0.35	0.5	10.9							
UMW-8D	60	0.00043	0.35	0.5	6.8							
UMW-9D	37	0.00043	0.35	0.5	10.9							
BMW-1D	100	0.00043	0.35	0.5	4.1							
BMW-2D	41	0.00043	0.35	0.5	9.8							

Table 1: Physical Independence

Notes:

- Average hydraulic gradient and effective porosity taken from table 2 in the Groundwater Monitoring Plan (GMP)
- 2. Hydraulic Conductivity taken from table 3 of the Groundwater Monitoring Plan (GMP)
- Calculation completed using the Darcy Equation as outlined in section 14.3.2 of the Unified Guidance.

1.1.2 Data Review – Testing For Outliers

Careful review of the data is critical for verifying that there is an accurate representation of the groundwater conditions. Early identification of anomalous data (outliers) helps play a key role in a successful SAP. Possible causes for outliers include:

- Sampling error or field contamination;
- Analytical errors or laboratory contamination;
- Recording or transcription errors;
- Faulty sample preparation, preservation, or shelf-life exceedance; or
- Extreme, but accurately detected environmental conditions (e.g., spills, migration from the facility).

The following sections outline a few graphical and statistical tests that should be completed prior to the data being used to calculate statistical limits.

1.1.2.1 <u>Time Series Plots</u>

Time Series plots are a quick and simple method to check for possible outliers. Time series plots should be generated with the concentration of the analyte on the Y-axis and the sample date (time) on the X-axis. If any data points look to be potential outliers, the data should be flagged and further evaluated as described in Section 1.1.2.2 below.

1.1.2.2 Dixon's and Rosner's Tests

If graphical methods demonstrate that potential outliers exist, further investigation of these data points can be completed using Dixon's test for datasets with fewer than 25 samples and Rosner's test with datasets greater than 20 samples. Formal testing should only be performed if an observation seems particularly high compared to the rest of the dataset. If statistical testing is to be completed to whether an outlier exists, it should be cautioned that these outlier tests assume that the rest of the data (other than the outlier) are normally distributed. Additionally, because log-normally distributed data often contain one or more values that appear high relative to the rest, it is recommended that the outlier test be run on the transformed values instead of their original observations. This way, one can avoid classifying a high log-normal measurement as an outlier just because the test assumptions were violated. Most groundwater statistical packages can complete Dixon's and Rosner's tests and more information about Dixon's and Rosner's tests is provided in Sections 12.3 and 12.4 of the Unified Guidance. If the test designates an observation as a statistical outlier, the source of the abnormal measurement should be investigated. In general, if a data point is found to be a statistical outlier, it should not be used for statistical evaluation. However, outlier removal should be performed carefully, and typically only when a specific cause for the outlier can be identified.

3

In some cases where a specific cause for an outlier cannot be identified, professional judgment can be used to determine whether the outlier significantly affects the statistical results to the extent that removal is deemed necessary. If an outlier value with much higher concentration than other background observations is not removed from background prior to statistical testing, it will tend to increase both the background sample mean and standard deviation. In turn, this may substantially raise the magnitude of the prediction limit or control limit calculated from that data set. Thus, experience shows that it is a good practice to remove obvious outliers from the database even when independent evidence of the source of the outlier does not exist. The removal of outliers tends to normalize the data and therefore produce a more robust statistical limit. Outlier removal also tends to produces a more conservative statistical limit, since the data variability is decreased, thereby decreasing the standard deviation.

1.2 Upgradient Monitoring Wells

Following the identification and removal of outliers, the upgradient data are further reviewed to determine appropriate methods for statistical evaluation to maintain adequate statistical power while minimizing the chance of false positives. The following sections describe the procedures and methods that should be used, based on the background dataset, to compare the background datasets, to calculate the data distribution, to handle non-detect (ND) data, and to select appropriate statistical evaluation methods (interwell vs intrawell).

1.2.1 Calculate for Mean and Standard Deviation

Following outlier removal, initial summary statistics including mean and standard deviation should be calculated for the background monitoring well datasets. While these summary statistics are easily

completed in many groundwater statistical software packages, it is important to account for values that have low or zero values as described below.

4

1.2.1.1 Reporting of Low and Zero Values

1.2.1.1.1 Estimated Values (J Flag)

Estimated values are values that have a concentration between the method detection limit (MDL¹) and the practical quantitation limit (PQL²) for any given compound. These values are typically displayed with a J flag in laboratory report packages and are often referred to as "J-values". In most cases, The Unified Guidance recommends using the estimated value provided for statistical evaluation. Estimated values are typically used because the accuracy and power of most statistical evaluations lose power as the percentage of non-detects increases. While they are below the PQL, estimated values are considered detectable concentrations for statistical calculations, which has the effect of lowering the percentage of non-detects.

This "rule" should be applied with care, as there is an exception. Estimated values are not considered detectable concentrations if all values for a single constituent are less than the PQL. This is discussed in more detail in Section 1.3.5 of this document.

1.2.1.1.2 Non-Detects Values (ND)

Non-Detect Values (ND) are concentrations that were not detected at a concentration above the MDL. ND values are typically displayed with a "U" or "ND" flag in laboratory data report packages. The following approaches for managing ND values are based on recommendations in the Unified Guidance and are applicable for use with the statistical evaluation procedures that will be further discussed and used in this SAP (prediction intervals, confidence intervals, and tolerance intervals):

- If <15% ND, substitute ½ the PQL;
- If between 15% to 50% ND, use the Kaplan-Meier or robust regression on ordered statistics to estimate the mean and standard deviation;
- If >50% but less than 100% ND, use a non-parametric test; or
- If 100% of values are less than the PQL, use the Double Quantification Rule.

1.2.2 Data Distribution

Statistical evaluations of groundwater data require an understanding of the data distribution for each analyte in each monitoring well. Data typically fall into one of the following distributions:

² PQL = minimum concentration of an analyte (substance) that can be measured with a high degree of confidence that the analyte is present at or above that concentration (typically 5-10x higher than the MDL).

¹ MDL = lowest level of an analyte (substance) that the laboratory can reliably detect with calibrated instrumentation; generally based on results of an annual "MDL study" performed in accordance with 40 CFR Part 136, Appendix B; MDLs are generally set using laboratory grade deionized water spiked with a known concentration and thus do not account for effects of matrix interference inherent in typical groundwaters.

- Normal distribution Sometimes referred to as Gaussian distribution, a normal distribution is a common continuous distribution where data form a symmetrical bellshaped curve around a mean. Normally distributed data are tested using parametric methods.
- Transformed-normal distribution Similar to a normal distribution, however, data are asymmetrical until transformation is applied to all data which then causes it to form a bell-curve. Transformed-normal data distributions are also tested use parametric methods.
- Non-Normal Distribution When the data are not or cannot be transformed into a symmetrical distribution. Non-normal data distributions are tested using Nonparametric methods.

Testing for data distributions can be completed in several different ways including the skewness coefficient, probability plots with Filliben's test, or the Shapiro-Wilk/Shapiro-Francia Test. All of these methods may be employed, however, the Shapiro-Wilk and Shapiro-Francia tests are generally considered the best method according to the Unified Guidance. The Shapiro-Wilk test is best for sample sizes under 50 while the Shapiro-Francia test is best with larger datasets of 50 or more observations. Most groundwater statistical software packages can complete both Shapiro-Wilk and Shapiro-Francia tests and a detailed discussion of the testing procedures is provided in Section 10.5.1 of the Unified Guidance.

Based on the outcome of the data distribution testing, data will use either Parametric or Non-parametric tests. It is important to note that non-parametric testing usually requires larger datasets in order to minimize the Site Wide False Positive Rate (SWFPR) therefore when the raw data are not normally distributed, a transformed-normal distribution is preferred when possible.

1.2.3 Temporal Trend

Most statistical tests assume that the sample data are statistically independent and identically distributed. Therefore, samples collected over a period of time should not exhibit a time dependence. A time dependence could include the presence of trends or cyclical patterns when observations are graphed on a time series plot. Trend analysis methodologies test to see whether the dataset displays an increasing, decreasing, or seasonal trend. A statistically significant increasing or decreasing trend could indicate a release from the CCR unit (or alternative source) and further investigation of the cause of the trend may be necessary.

If a trend is suspected, a Theil-Sen trend line should be used to estimate slope and the Mann-Kendall Trend Test should be used to evaluate the slope significance (Chapter 14, Unified Guidance). If a statistically significant trend is reported, based on a Sen's slope/Mann-Kendall trend test, the source of the trend should be investigated. If the trend can be shown to be a result of an upgradient or off-site source, the data can be de-trended and used to calculated statistical limits. De-trending can be accomplished by computing a linear regression on the data (see Section 17.3.1 of the Unified Guidance) and then using the regression residuals instead of the original measurements in subsequent statistical analysis.

1.2.4 Comparing Background Datasets (Spatial Variation)

After physical independence, outlier, trend, and summary statistical testing is completed, the datasets from the background monitoring wells should be compared to one another for each individual constituent. The comparison of these background datasets is useful for determining whether spatial variability exists in the background dataset, and can also be used to decide whether an interwell or intrawell approach is more appropriate for statistical evaluation.

6

Box and whisker plots can be used to perform side by side comparison for each well and can be completed for each individual analyte to determine if the variance is equal across the background datasets. If the box plots appear to be staggered and do not appear to be from the same population (same variance) then a Lavene's test using an α of 0.01 should be used as a check to determine if the background datasets have spatial variation. Testing methods and procedures are provided in Section 11.2 of the Unified Guidance.

The preferred method for comparing background datasets is a Mann-Whitney (or Wilcoxon Rank Sum) Test, which evaluates the ranked medians of both the historical and new dataset populations. An α of 0.05 should be used for this evaluation. After calculation, if the Mann-Whitney statistic does not exceed the critical point, the test assumes that the two data populations have equal medians, and therefore are likely from the same statistical distribution. The testing methods and procedures for this analysis are provided in Section 16.2 of the Unified Guidance.

If spatial variability is identified within the background dataset, an additional investigation may be needed in order to confirm that the variability is not caused by impacts from the CCR unit. If there is spatial variability and it is not caused by impacts from the CCR unit, then an intrawell approach to statistical evaluation may be appropriate.

1.3 Compliance Monitoring Wells and Statistically Significant Increases

After completing the previously described analyses of the background data, a statistical evaluation of the compliance monitoring data should be completed to determine if there are any Statistically Significant Increases³ (SSIs) that could trigger assessment monitoring. Section §257.93(F) of the CCR Rule specifies the list of methods that can be used for statistical evaluation. These specific methods to be used for statistical evaluation of data from the RMSGS are detailed below. Further, the Unified Guidance is recommended in the CCR Rule to be used for guidance in the selection of the appropriate statistical evaluation method. This section provides a guide to choosing the correct statistical evaluation to analyze the compliance wells for SSIs, the basic principles of each method, and response activities for identified SSIs.

³ SSI = a verified statistical exceedance; under compliance monitoring programs, the first time an exceedance is reported it is an initial statistical exceedance and is only considered an SSI if a confirmatory result verifies the initial exceedance.

1.3.1 Interwell vs Intrawell Statistical Analysis

1.3.1.1 Interwell Statistical Analysis

An interwell statistical evaluation compares the groundwater results from the compliance (downgradient) monitoring wells to a pool of background (typically upgradient) monitoring well results. If results from the downgradient wells are statistically higher (or significant) than the background dataset then an exceedance is triggered. This upgradient verses downgradient method typically assumes that:

7

- Naturally, un-impacted groundwater characteristics in the compliance monitoring wells is comparable and equal on average to the background monitoring wells.
- Upgradient and downgradient monitoring well samples are drawn from the same aquifer and are screened in essentially the same hydrostratigraphic position.
- The aquifer unit is homogeneous and isotropic.
- Groundwater flow is in a definable pathway from upgradient to downgradient wells beneath the CCR Unit.

An interwell approach is preferable for statistical evaluation because it compares data to a background dataset that is not influenced by the CCR Unit. Interwell methods should be used with two exceptions: (1) there are significant differences in the datasets of the background wells (as indicated by methods described in Section 1.2.4) or (2) it can be demonstrated that groundwater geochemistry at all wells (background and compliance) is not impacted by the CCR Unit.

1.3.1.2 Intrawell Statistical Analysis

An intrawell statistical evaluation compares the groundwater results from a compliance monitoring well to historical data collected from that same compliance monitoring well. This method can be used for CCR monitoring when groundwater data from the background monitoring wells is statistically different than that of the compliance monitoring wells or when it can be shown that there is no impact from the CCR Unit in either upgradient or downgradient/compliance wells.

1.3.2 Statistical Power

As discussed above, one of the primary goals of the selection of a proper statistical evaluation method is to limit the potential for results to falsely trigger a SSI while also maintaining sufficient statistical power to detect a true SSI. Falsely triggering a SSI when no release from the CCR unit has occurred is referred to as a false positive. The False Positive Rate (FPR), typically denoted by the Greek letter α , is also known as the "significance level". The FPR is the probability that a future compliance observation will be declared to be from a different statistical distribution than the background data. If the FPR is set too high, it can lead to the conclusion that there is evidence of impact when none exists. Conversely, if the FPR is set too low, it can lead to a false conclusion that no contamination exists, when it actually does exist (also known as a "false negative"). Ultimately, the ability to accurately identify SSIs depends on the selection of an appropriate FPR, which is referred to as the statistical power. FPRs are set for each parameter (or for each

parameter in each well for intrawell analysis). However, statistical analysis programs and the resulting decision making do not depend on each individual measurement/comparison error rates, but are dependent on the collective error rate from all of the individual comparisons. When the individual FPRs are integrated over the entire statistical monitoring program, it is referred to as the site-wide false positive rate (SWFPR), which is a better measure of the ability of the entire statistical program to detect false positive observations.

8

1.3.2.1 Site-Wide False Positive Rate

For CCR monitoring, detection monitoring events are based on multiple comparisons, which include the seven (7) Appendix III parameters, at each compliance monitoring well. The SWFPR can be calculated based on several input parameters, including the assumed FPR, the number of downgradient monitoring wells (n), the number of parameters, and the number of statistical comparisons events in a given year for the CCR Unit. The Unified Guidance recommends that a statistical evaluation program be designed with an annual, cumulative SWFPR of approximately 10%.

The Unified Guidance recommends measuring statistical power using power curves which display the probability that an individual comparison will detect a concentration increase relative to background results. After determining the statistical method based on the background data, a power curve can be generated in order to determine the statistical power of the compliance monitoring program. The methods and procedures for calculating the SWFPR are described in Section 6.2.2 of the Unified Guidance.

1.3.2.2 **Verification Sampling**

Verification Sampling is an important aspect of the SAP as it improves statistical power while maintaining the SWFPR. Most statistical evaluations incorporate verification sampling mathematically into their determination of the SWFPR. Verification sampling is typically completed at a 1 of 2 pass strategy. As described above if an initial statistical exceedance is reported, then verification sampling will be performed to confirm the initial exceedance. Verification samples should be collected on a schedule that allows for physical independence of the samples. In a 1 of 2 pass strategy, if the concentration of the verification sample is less than the calculated compliance limit, then no SSI is triggered. If the initial and subsequent verification observation are above the calculated compliance limit, a SSI is triggered.

Due to the time constraints for reporting put forth in the CCR rule, it is suggested that verification sampling not be completed at the next regularly scheduled sampling event, but instead be collected prior to the next sampling event. Verification sampling within 90 days (assuming a 1 of 2 pass verification sampling strategy) will typically allow sufficient time to complete laboratory and statistical analysis in accordance with the timeframes set forth in the CCR Rules.

1.3.3 Statistical Evaluation Methods

As outlined above, the CCR rule list 5 possible methods for statistical evaluation. The different methods that can be employed for CCR monitoring as outlined in §257.93(F) are:

9

- §257.93(F)(1) "A parametric analysis of variance followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's mean and the background mean levels for each constituent."
- §257.93(F)(2) "An analysis of variance based on ranks followed by multiple comparison procedures to identify statistically significant evidence of contamination. The method must include estimation and testing of the contrasts between each compliance well's median and the background median levels for each constituent."
- §257.93(F)(3) "A tolerance or prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data and the level of each constituent in each compliance well is compared to the upper tolerance or prediction limit."
- §257.93(F)(4) "A control chart approach that gives control limits for each constituent."
- **§257.93(F)(5)** "Another statistical test method that meets the performance standards of paragraph (g) of this section."

1.3.4 Prediction Intervals

Section §257.93(F)(3) outlines using prediction intervals or tolerance intervals for statistical evaluation. Based on recommendation from the Unified Guidance, prediction limits are the preferred method for calculating detection monitoring compliance limits and will be used to calculate compliance limits for the seven Appendix III constituents. In addition, the Unified Guidance suggests using prediction limits with verification sampling (Chapter 19 of the Unified Guidance), because prediction limits help to maintain low SWFPR while still providing high statistical power. Tolerance intervals, which are a backward looking procedure, should not be used for detection monitoring, but will likely be used in assessment monitoring, as further described in Section 2.0 below. If, at any point in the future, a different statistical method becomes more applicable to the site conditions, this document may be modified to include that method as recommended by the Unified Guidance.

Prediction interval methods can be used for parametric and non-parametric datasets as well as for intrawell or interwell statistical analysis. Prediction limits use background data from either background monitoring wells for interwell analysis or from historical data for intrawell analysis calculate a concentration that represents an upper limit of expected future concentrations for a particular population. In contrast to tolerance limits, prediction intervals are a forward looking, predictive analysis, which incorporate uncertainty in future measurements, and are thus the most appropriate method for detection monitoring programs. Typically, a one-sided upper prediction limit is used to evaluate detection monitoring observations. Observations must be lower than the prediction limit (or within the upper and lower prediction limits for pH) to be considered "in control". Parametric methods are generally preferred over non-parametric methods, because they result in lower SWFPRs and higher statistical power.

For detection monitoring, if parametric testing is required, the procedures outlined in Section 19.3.1 of the Unified Guidance should be used to calculate prediction limits for the statistical analysis. If non-parametric testing is required, the procedures outlined in Section 19.4.1 of the Unified Guidance should be used to calculate prediction limits. Most groundwater statistical software includes algorithms for calculating either parametric or non-parametric prediction limits.

1.3.5 Double Quantification Rule

In situations where the entire background dataset is reported as ND or Estimated (J-flag), the Double Quantification Rule (DQR) will be used to supplement the prediction limit analyses. Generally, the Appendix III constituents occur at detectable concentrations in natural groundwater; however, if ND results are encountered for a given constituent, the DQR can be implemented. A demonstration that this statistical evaluation is as least as effective as any other test and results as described in §257.93(f)(5) can be made. The DQR is recommended by the Unified Guidance as a supplement to prediction limits because it reduces the number of non-detects used for statistical analysis and provides a lower SWFPR while maintaining statistical power.

Under the DQR, a SSI is triggered if a compliance well observation is higher than the reporting limit (RL)/PQL in either (1) both a detection monitoring sample and its verification resample, or (2) two consecutive sampling events in a program were resampling is not utilized.

1.4 Responding to SSIs

If the statistical evaluation for an Appendix III analyte triggers a SSI, the data must be evaluated to determine if the cause of the SSI is due to a release from the CCR Unit or from an alternative source. Possible alternative sources may include laboratory causes, sampling causes, statistical evaluation causes, or natural variation. If the SSI can be attributed to one of these sources and the SSI was not caused by the CCR Unit, an alternate source demonstration (ASD) can be completed. An ASD must be certified by a qualified professional engineer and completed in writing within 90 days of completing the statistical evaluation for a particular sampling event. If the SSI cannot be attributed to an alternative source and is from the CCR Unit, then Assessment Monitoring is triggered.

1.5 Updating Background Values

The Unified Guidance suggests that updating statistical limits should only be completed after a minimum of 4 to 8 new measurements are available (i.e., every 2 to 4 years of semiannual monitoring, assuming no verification sampling). The periodic update of background, during which additional data are incorporated into the background, improves statistical power and accuracy by providing a more conservative estimate of the true background population. Prior to incorporating new data into the background dataset, a test should be performed to demonstrate that the "new data" are from the same statistical population as the existing

background results. Below are three methods that can be used in determining if the "new" data should be included in the background:

11

- Time Series Graphs As described in Section 1.1.2.1, time series graphs can be used as a qualitative test to assist with the determination whether a new group of data match the historical data or if there is a concentration trend that could be indicative of a release or evolving groundwater conditions.
- Box-Whisker plots can also be used to determine whether or not the datasets are similar.
- Mann-Whitney (or Wilcoxon Rank) Test Used to evaluate the ranked medians of both the historical and new dataset populations. An α of 0.05 should be used for this evaluation. After calculation, if the Mann-Whitney statistic does not exceed the critical point, the test assumes that the two data populations have equal medians, and therefore are likely similar.

Ultimately, the Mann-Whitney (Wilcoxon Rank Sum) Test is the statistical test that is used to determine whether new observations should be included in the background dataset. It is important to note that a difference in background datasets does not automatically prevent the new data from being used; however, if differences are noted, a review of the new data will be conducted to determine if the noted difference is a result of a change in the natural conditions of the groundwater or if it is the result of a potential release from the CCR Unit. If the new data are included in the background dataset, the prediction limits will be recalculated, as described in Section 1.3.4 above.

This section discusses the procedures, methods, and processes that will be implemented as part of the assessment monitoring statistical evaluation, if required. Assessment monitoring will be initiated if a SSI is triggered during detection monitoring. As per the CCR Rule in Section §257.95(b), assessment monitoring must be initiated within 90 days of identifying an SSI (not the sample event which provided the data that resulted in the SSI). This 90-day period includes sampling the groundwater monitoring network for the Appendix IV constituents. Following the initial sampling event for all Appendix IV constituents, the monitoring network is then sampled again within 90 days of receiving the results from the initial Appendix IV sampling event. Following these initial assessment monitoring events, assessment monitoring is performed on a semiannual basis. During one of the two semiannual events, the full list of Appendix IV constituents must be tested. During the second assessment monitoring event of each year, only the Appendix IV constituents that are detected during the previous semiannual event are required to be Assessment monitoring is terminated if concentrations for all Appendix III and Appendix IV monitored. constituents in all compliance wells are statistically lower than background for two consecutive sampling events (§257.95(e)). The following sections discuss the procedures, methods, and processes that will be implemented as part of the assessment monitoring statistical evaluation. As discussed in Section 1.1 of this document, many of the statistical comparisons used in assessment monitoring require various analyses to be completed prior to the data being accepted into the statistical evaluation. Before using the results from assessment monitoring, the steps outlined in Sections 1.1 and 1.2 will be completed. Please refer to those sections for descriptions on the methods and techniques required to complete these analyses.

2.1 Establishing a Ground Water Protection Standard (GWPS)

Following the removal of outliers and the performance of general statistics described in Sections 1.1 and 1.2, GWPS will be developed for use in the assessment monitoring program. The GWPS is a key element to the assessment monitoring process. GWPS must be generated for each of the detected Appendix IV analytes. If interwell methods are utilized (preferred method), a site-wide GWPS will be generated for each analyte based on Appendix IV results reported for background/hydraulically upgradient wells. If intrawell methods are utilized, a well specific GWPS will be generated for each analyte.

For Appendix IV parameters that have a maximum contaminant level (MCL), as established by the United States Environmental Protection Agency, the GWPS is set equal to the MCL. For those constituents whose background concentration are greater than the MCL, the GWPS will be calculated from the background data. Finally, for those constituents that do not have an established MCL, the GWPS will be calculated. Several analytes (cobalt, lead, lithium, and molybdenum) do not have MCLs established and therefore the GWPS must be calculated based on their background concentrations.

2.1.1 Maximum Contaminant Level (MCL) Based GWPS

Many of the Appendix IV analytes have USEPA MCL levels. As specified in the CCR Rule in Section §257.95(b), the GWPS must either be the MCL, or a limit based on background data, whichever is greater. This section describes the methods to be used for statistical analysis when the MCL is to be used as the GWPS.

For Assessment Monitoring, the Unified Guidance recommends the confidence interval method to evaluate for potential exceedances, which are referred to as "statistically significant levels" (SSLs) (Chapter 21, Unified Guidance). Using confidence intervals, SSLs are identified by comparing the calculated confidence interval against the GWPS. A confidence interval statistically defines the upper and lower bounds of a specified population within a stipulated level of significance. Confidence intervals are required to be calculated based on a minimum of 4 independent observations, but a more representative confidence interval can be developed when all of the available data are utilized.

The specific type of confidence interval should be based the attributes of the data being analyzed, including: (1) the data distribution, (2) the detection frequency, and (3) potential trends in the data. Table 1 below is based on Table 4-4 from the Electric Power Research Institute's *Groundwater Monitoring Guidance for the Coal Combustion Residual Rule* (2015), which displays the criteria for selecting an appropriate confidence interval. The method and procedure for calculating the Upper Confidence Limit (UCL) and Lower Confidence Limit (LCL) is provided in the section reference from the Unified Guidance, which is listed in the last column of Table 1, below.

Table 2- Confidence Interval Method Selection

Data Distribution	Non-detect Frequency	Data Trend	Confidence Interval Method
Normal	Low	Stable	Confidence Interval Around Normal Mean (Section 21.1.1)
Transformed Normal (Log-Normal)	I OW Stable		Confidence Interval Around Lognormal Arithmetic Mean (Section 21.1.3)
Non-normal	N/A	Stable	Nonparametric Confidence Interval Around Median (Section 21.2)
Cannot Be Determined High		Stable	Nonparametric Confidence Interval Around Median (Section 21.2)
Residuals After Subtracting Trend are Normal (with equal variance)	Low	Trend	Confidence Band Around Linear Regression (Section 21.3.1)
Residuals after Subtracting Trend are Non-Normal	Low	Trend	Confidence Band Around Theil-Sen Line (Section 21.3.2)

14

In an assessment monitoring program the LCL is of prime interest. If the LCL exceeds the GWPS, there is statistical evidence that a SSL has been triggered. An initial SSL should be confirmed by verification sampling. If only the UCL exceeds the GWPS while the LCL is below the GWPS, the test is considered inconclusive and the Unified Guidance recommends that this situation be interpreted as "in compliance". If both the UCL and the LCL are below the GPWS, the data are also "in compliance" with the GWPS.

It is important to note that a slightly different set of criteria are used to determine whether assessment monitoring can be terminated. Additional discussion of the criteria used for exiting assessment monitoring and returning to detection monitoring is provided below in Section 2.2.

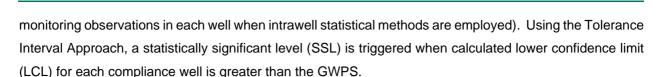
During Assessment Monitoring, a per test FPR (α) of 0.05 will be used as an initial error level for calculating the two-tailed confidence intervals for the compliance wells (which actually means 2.5% FPR per tail). In some cases based on recommendations from the Unified Guidance, it is appropriate to adjust the FPR of the confidence interval based on the number of data points available as well as the distribution of the data being evaluated. If deemed necessary based on recommendations from the Unified Guidance, an approach is provided in Section 22 of the Unified Guidance for determining an appropriate per test FPR based on the data characteristics.

When performing assessment monitoring statistical evaluations, it is important to evaluate the compliance data for shifts. If no shifts have occurred, then all of the available Appendix IV data for a particular constituent can be used in the statistical evaluation. If shifts are noted (typically based on qualitative evaluation of a time series plot), only the data collected after the shift should be used in the statistical evaluation.

2.1.2 Non-MCL Based GWPS

Background or historical concentration limits should be assessed using the following techniques for all Appendix IV analytes. These concentration limits should then be compared with the MCL, if available, and the higher of these two values will be used as the GWPS.

The Unified Guidance provides two acceptable approaches for establishing a non-MCL based GWPS (unless all values are ND, in which case the Double Quantification Rule as described above in Section 1.3.5 should be used). The two methods include the tolerance interval approach or the prediction interval approach.


2.1.2.1 Tolerance Interval Approach

If the background dataset is normally or transformed normally distributed, the Unified Guidance recommends Tolerance Intervals over the Prediction Intervals for establishing a GWPS. The GWPS should be based on a 95 percent coverage/95 percent confidence tolerance interval. If the background data are non-normal (even after transformation), then a large number of background observations are required to calculate a non-parametric tolerance interval (typically a minimum of 60 background observations are required to meet these requirements). If there is an insufficient number of background observations to calculate a non-parametric tolerance interval, then a non-parametric Prediction Interval approach should be used, as described in Section 2.1.2.2 below.

The Upper Tolerance Limit (UTL) is calculated for each detected Appendix VI constituent. Tolerance Limits, as outlined in the Unified Guidance (Section 17.2), are a concentration limit that is designed to contain a pre-specified percentage of the dataset population. Two coefficients associated tolerance intervals are (1) the specified population proportion and (2) the statistical confidence. The coverage coefficient (γ), which is used to contain the population portion, and the tolerance coefficient (or confidence level (1- α)), which is used to set the confidence of the test. Typically, the UTL is calculated to have a coverage and confidence of 95%. When an MCL does not exist or the background concentrations are greater than the MCL, the calculated UTL for each constituent is used as the GWPS. The confidence interval for each compliance well is then compared with the GWPS.

In order to calculate a valid confidence interval, a minimum of four data points are necessary for each of the detected Appendix IV constituents in each compliance monitoring well (or four "new" assessment

Tolerance limits can be completed using both parametric (Section 17.2.1 of Unified Guidance) or non-parametric methods (Section 17.2.2 of Unified Guidance). However, as described above, the non-parametric method requires at least 60 background (or historical) measurements in order to achieve 95% confidence with 95% coverage. Tolerance Intervals can be calculated using most groundwater statistical software packages.

2.1.2.2 <u>Prediction Interval Approach</u>

If Tolerance Intervals cannot be used to calculate the GWPS (based on recommendation from the Unified Guidance, such as non-parametric datasets, ect.), then a Prediction Interval method should be used. This method is very similar to Section 1.3.4 of this document, however, for assessment monitoring, the Unified Guidance suggests using a prediction interval about a future mean for normally/transfomred-normally distributed datasets or a prediction interval about a future median for datasets with a high percent of ND or non-normally distributed data.

When using prediction intervals to calculate for a GWPS, a one-sided prediction interval is calculated using background (or historical) datasets based on a specified number of future comparisons - four future comparisons is typical. The Upper Prediction Limit that is calculated as a product of this method then becomes the GWPS, and is compared against the confidence interval for the compliance data, as described in Section 2.1.2.1, above. As also described above, if the LCL is greater than the calculated prediction limit then an SSL is triggered.

2.2 Returning to Background Detection Monitoring

As specified in 257.95(e) of the CCR Rule, in order to return to detection monitoring, the concentration of all constituents listed in Appendix III and Appendix IV must be shown to be at or below calculated "background (or historical) values" for two consecutive semiannual sampling events. This determination of background values is based on the statistical evaluation procedure established for detection monitoring. Therefore, if prediction limits (with the double quantification rule for analytes with all non-detects) are used for detection monitoring, prediction limits should be calculated and used for all Appendix III and IV analytes to determine when the monitoring program can return to Detection Monitoring. It is important to remember that Appendix IV constituents are only required to be sampled annually with only those Appendix IV constituents that are detected during the previous semiannual event being required to be analyzed during the second semiannual event of a given year. If statistical results demonstrate that concentrations for all constituents are below background levels for a particular event, all Appendix IV constituents should be sampled during the next event in order to achieve this goal of returning to Detection Monitoring. If this

statistical evaluation demonstrates that any of the Appendix III or Appendix IV are at a concentration above background levels, but no SSLs have been triggered, then the CCR unit will remain in assessment monitoring (257.95(f)).

2.3 Response to a SSL

If the assessment monitoring statistical evaluation demonstrates that a SSL has been triggered, then the owner/operator of the CCR unit must complete the following four actions as described in 257.95(g):

- Prepare a notification identifying the constituents in Appendix IV that have exceeded a CCR Unit specific GWPS. This notification must be placed in the facilities operating record within 30 days of identifying the SSL
- Define the nature and extent of the release and any relevant site conditions that may affect
 the corrective action remedy that is ultimately selected. The characterization must be
 sufficient to support a complete and accurate assessment of the corrective measures
 necessary to effectively clean up releases from the CCR Unit and must include at least the
 following;
 - A. Installation of additional monitoring wells that are necessary to define the contaminant plume.
 - B. Collect data on the nature and estimated quantity of the material released,
 - C. Install and sample at least one additional monitoring well at the facility boundary in the direction of the contaminant plume migration,
- 3. Notify off-site property owners if the contamination plume has migrated offsite on to their property, and
- 4. If possible, provide an alternative source demonstration that determines that the SSL is not caused by a release at the facility within 90 days of completing the statistical evaluation. If no alternative source demonstration can be made and the plume is determined to have come from the CCR Unit then initiate corrective action.

Actions 1-3 must be completed regardless of whether or not an alternate source demonstration can be made.

2.4 Updating Background Values

The background for Assessment Monitoring Parameters should be updated using the same methods and techniques described in Section 1.5 for updating detection monitoring background data.

3.0 REFERENCES

- EPRI. 2015. Groundwater Monitoring Guidance for the Coal Combustion Residual Rule. Electric Power Research Institute. November.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.

 Office of Resource Conservation and Recovery Program Implementation and Information Division.

 March
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.

APPENDIX I EXAMPLE FIELD FORMS

ooot o	Sheet	of	
--------	-------	----	--

		CIUCS									
Project	Ref:						Project No.:				
Locati	on										
Monitore	d By:			Date			Time				
Well P	iezom	eter Data	ı								
Depth of V	Vell (from	top of PVC or	ground)					feet			
Depth of V	Vater (fror	n top of PVC o	or ground)					feet			
Radius of	Casing							inches feet			
Casing Vo	olume							cubic feet gallons			
Develo	pmen	t / Purgir	ng Disc	charge	e Data						
Purging M	ethod										
Start Purg	ing			Date			Time				
Stop Purg	ing			Date			Time				
Monitoring	J										
Date	Time	Volume Discharge (gals)	Temp (°)	рН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft TOC)	Appearance of Water and Comments	

Date	Time	Volume Discharge (gals)	Temp (°)	pН	Spec.Cond. (S/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Redox Potential (+/- mV)	WL (ft TOC)	Appearance of Water and Comments
-										
	l						ĺ			

GROUNDWATER SAMPLE COLLECTION FORM

Project Ref:						Project No. :			
WEATHER COM	NDITIC	NS							
Temperature	·			_Weather					
Sample Loca Sample Date	ation _				_ Sample No. Sample By				
•									
	V V V	Vell Volun /olume Wa Vater Leve Vater Leve	ne: ater Removed Be el Before Samplir el After Sampling	efore Sampling: _ ng: :					
FIELD MEASUR	REME	NTS							
Volume Disch Spec. C	Time narge pH Cond. bidity ature ygen ential	Units hhmm gals StandardS/CM NTU omg/l +/- mV			Measurement				
Sub-			nalysis Paguasta	d	Type and Size of	Filtered	Type of		
Sample			Analysis Requeste	<u> </u>	Sample Container	(Yes or No)	Preservative		
1									
2									
3									
4									
5									
6									
7									
8									
REMARKS: _									
NA = Not applica	able								
SAMPLING METH Ba	ailer: F	PVC/PE		altic Pump	Air-Lift Pump				

Hand Pump

Teflon

Golder	ABOVE G	ROUND MONITORING	WELL CONST	RUCTION LOG				
PROJECT NAME:		PI	PROJECT NUMBER:					
SITE NAME:		L(LOCATION:					
CLIENT:		S	URFACE ELEVATION	ON:				
GEOLOGIST:		NORTHING:		EASTING:				
DRILLER:		STATIC WATER LEVEL:		COMPLETION DATE:				
DRILLING COMPANY:		D	RILLING METHODS	3:				
STICK UP:		PROT PEA GI WEEP H GROUN DIAMET DIAMET CONCR TYPE A TOP OF TYPE A TOP OF TYPE OF SCREEI SIZE OF AMOUN	FECTIVE CASING (yes TRAVEL OR SAND HOLE ID SURFACE ELEVATION FOR BOREHOLE (in. FER OF BOREHOLE (in. FER OF BOREHOLE (in. FER SEAL DEPTH (ft. b) THE SCREEN DEPTH (ft. b) THE SCREEN: THE SEAL DEPTH (ft. b)					
TOTAL DEPTH OF BOREHOLE (ft. bgs):		вотто	M OF FILTER PACK (ft.	bgs): bgs):				
CHECKED BY:				PREPARED BY:				

RECORD OF WATER LEVEL READINGS

Borehole No. Date Time Measuring Device / Sarial No. Measurement Point (M.P) Water Level Below M.P. Correction To Survey Mark Elevation Survey Mark Su	Project N	lame:			Location:	 	Project No.:			
	Borehole No.	Date	Time	Measuring Device / Serial No.		То	Survey Mark Elevation	Water Level Elevation	Ву	Comments
								<u> </u>		
			 							

Sheet ___ of ___

Project Name:			Project No:				
Calibration By:							
Instrument Details							
Instrument Name							
Serial No.							
Model No.							
Calibration Details							
Required Calibration Frequ	ency/Last Ca	alibration					
Calibration Standard							
Calibration Standard(s) Exp	oiration Date						
Calibration:	Date	Time	Calibration Standard Units:	Instrument Reading Units:			
Comments:							

Chain of Custody Record >>> Select a Laboratory <<< #N/A #N/A #N/A Regulatory Program: DW NPDES RCRA Other: #N/A COC No: **Client Contact** Project Manager: Site Contact: Date: Tel/Fax: Carrier: COCs Your Company Name here Lab Contact: of Address **Analysis Turnaround Time** Sampler: For Lab Use Only: WORKING DAYS City/State/Zip CALENDAR DAYS Walk-in Client: Phone (xxx) xxx-xxxx TAT if different from Below FAX Lab Sampling: (xxx) xxx-xxxx 2 weeks Project Name: 1 week Site: Job / SDG No.: 2 days P O # 1 day Sample Type Sample Sample # of (C=Comp, Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Unknown Poison B Return to Client Archive for___ Non-Hazard Flammable Disposal by Lab Months Special Instructions/QC Requirements & Comments: **Custody Seals Intact:** Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Custody Seal No .: Yes No. Relinquished by: Date/Time: Received by: Company: Company: Date/Time: Relinguished by: Date/Time: Date/Time: Received by: Company: Company:

Date/Time:

Company:

Received in Laboratory by:

Company:

Relinquished by:

Date/Time:

Golder Associates

Field Boring Log

DEPTH HOLE PROJ. NO DEPTH SOIL DRILL GA INSP DEPTH ROCK CORE WEATHER	PROJECT	BORING NO OF SURFACE ELEV			
ABANDONMENT	DRILL RIG	DRILLER	DATUM		
DEPTHS / / / WATER LEVEL CAVE-IN DATE-TIME NOTE DEPTHS / / / (DELAYED) WATER LEVEL CAVE-IN DATE-TIME NOTE	SAMPLER HAMMER TYPE	WT DROP	STARTED/_ COMPLETED/_ TIME DATE		

SAMPLE TYPES	<u>ABBREVIATIONS</u>	ORDER OF DESCRIPTION	NON-COHESIVE SOILS	COHESIVE SOILS
A.S. AUGER SAMPLE C.S. CHUNK SAMPLE BL BLACK BLACK D.O. DRIVE OPEN (SPT) D.S. DENISON SAMPLE F.S. FOIL SAMPLE CIN CAVE-IN P.S. PITCHER SAMPLE S.C. SOIL CORE T.D. THIN-WALLED, OPEN T.P. THIN-WALLED, PISTON W.S. WASH SAMPLE W.S. WASH SAMPLE FL FINE FL FRAGMENTS TRACK TRACK TRACK TOTAL ANG ANGULAR BLACK BL	OG ORANGE WL WATER LEVEL ORG ORGANIC WH WEIGHT OF HAMMEI	SE SOLIC ROUP SYMBOL	RELATIVE DENSITY BLOWS	VERY SOFT

* NOTE SIZE	FRAG FRAGMENTS PP POO IGL GRAVEL PL PLA	STIC LI	IMIT Y	WR WEI	_OW	КОВО	H L 15	i) MOISTUR b) DENSITY	/CONSISTE	NCY	'			WEI WIIHFF	REE WATER W > PL C	AN ROLL	THREAD <2 mm	
ELEV.		SAMPLES					CONSTITUENTS BEHAVIOR											
DEPTH	LITHOLOGY	NO.	TYPE	DEPTH SPT N	/ BLOWS	REC ATT	GL PROPORTI	SD ON; SIZE, SHAPE PLASTICITY	CL/SI , GRADING;	CO or	MOIST. or W	DENS./	uscs	SAMPLE	DESCRIPTION	AND	DRILLING	NOTES
-				\neg	, Litton	AII		PLASTICITY		NO	01 11	CONO.						
 				\equiv														
				且									l					
L I				=														
L I				\exists														
				-									—					
F				\exists														
F				7														
F				\equiv														
 																		
 				=									l					
				_														
E I																		
 ┣_ │																		
F				\exists														
F																		
┡╴╵				\exists									—					
 				\exists														
 																		
F				\exists														
FI				$\overline{}$														
F																		
				_									l —					
 				\exists														
 																		
				_														
L I																		
L I													l					
E I				\exists														
F																		
F I				_									—					
F																		
F				\exists														
				\equiv									_					
Ļ │																		
<u></u> ⊨ ∣				\exists									l					
<u></u> ⊨ ∣				\exists														
<u></u>																		
┝╶╵													—					
F																		
F				7														
 				_									_					
┡																		
<u></u> ⊨ ∣				\exists									l					
<u></u> ⊨ ∣				\exists														
<u></u>																		
⊢∣				_									—					
F																		
F				7														
F				$\overline{}$									_					
╞																		
<u></u>				\exists									l					
<u></u>				\exists														
Ŀ ∣				\exists														
F				=									—					
		<u> </u>					I											

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Africa + 27 11 254 4800
Asia + 852 2562 3658
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Inc. 820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

Tel: (636) 724-9191 Fax: (636) 724-9323

