

Focused Site Investigation Report Remedial Objectives Report Remedial Action Plan Remedial Action Completion Report

507 East Washington Street Site Former Champaign MGP – Champaign, Illinois

May 2021

ERM Project No. 0529307

Focused Site Investigation Report Remedial Objectives Report Remedial Action Plan Remedial Action Completion Report

507 East Washington Street Site

Former Champaign MGP LPC: 0190100008 Champaign, Illinois

May 2021

AMEREN SERVICES ST. LOUIS, MISSOURI

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT ROLLING MEADOWS, ILLINOIS

ERM Project No. 0529307

TABLE OF CONTENTS

EXEC	CUTIVE	SUMMARY	vi			
1.0	INTR	ODUCTION	1			
2.0	PROPERTY INFORMATION					
	2.1	PROPERTY SETTING	2			
	2.2	LEGAL DESCRIPTION	2			
	2.3	HISTORICAL PROPERTY USES	2			
	2.4	REGIONAL GEOLOGICAL AND HYDROLOGICAL SETTING				
	2.5	PRIVATE AND PUBLIC DRINKING WATER WELLS IN VICINITY 5				
	2.6 SUBSURFACE GEOLOGY					
		2.6.1 Upper Fill Material	6			
		2.6.2 Silty Clay Unit				
		2.6.3 Weathered Till Unit				
		2.6.4 Unweathered Till Unit	6			
		2.6.5 Lower Silty Sand Unit	7			
	2.7	HYDROGEOLOGIC CONDITIONS				
		2.7.1 Shallow Groundwater System	7			
		2.7.2 Intermediate Groundwater System				
		2.7.3 Deep Groundwater System.				
		2.7.4 Aquifer Parameters	9			
	2.8	FUTURE PROPERTY USES				
3.0	ENFO	RCEMENT ACTIONS	. 11			
4.0	SITE	NVESTIGATION ACTIVITIES	. 12			
	4.1	DIRECT-PUSH SAMPLING				
	4.2	MONITORING WELL INSTALLATION				
	4.3 SOIL SAMPLE SCREENING, COLLECTION AND HAND					
		4.3.1 Sample Screening Procedures				
		4.3.2 Sample Handling Procedures				
		4.3.3 Sample Identification for Chemical Analysis				
	4.4	MONITORING WELL DEVELOPMENT				
	4.5	GROUNDWATER SAMPLE COLLECTION AND HANDLING	. 15			
		4.5.1 Groundwater Sampling Procedures	. 15			
		4.5.2 Sample Identification for Chemical Analysis				
	4.6	LABORATORY ANALYSES				
		4.6.1 Soil Sample Analyses	. 16			
		4.6.2 Groundwater Sample Analyses				
	4.7	SOIL GAS SAMPLING				
	4.8	FIELD DOCUMENTATION	. 17			
	4.9	DECONTAMINATION PROCEDURES	. 18			
	4.10	INVESTIGATION DERIVED WASTE HANDLING				

5.0	INVESTIGATION RESULTS			
	5.1	SOIL SAMPLE ANALYTICAL RESULTS	19	
		5.1.1 BTEX Constituents	19	
		5.1.2 PAH Constituents	19	
		5.1.3 Inorganic Constituents	19	
	5.2	SOIL GAS ANALYTICAL RESULTS	20	
	5.3	GROUNDWATER ANALYTICAL RESULTS	20	
6.0	EXP	OSURE PATHWAY EVALUATION		
	6.1	SOIL INGESTION EXPOSURE PATHWAY		
	6.2	SOIL INHALATION EXPOSURE PATHWAY		
		6.2.1 Residential Exposure		
		6.2.2 Commercial or Industrial Exposure		
		6.2.3 Construction Worker Exposure		
	6.3	SOIL COMPONENT OF GROUNDWATER INGESTION PATHWAY.		
		6.3.1 Exceedance of Class II Objectives	25	
	6.4	INDOOR INHALATION EXPOSURE PATHWAY	25	
	6.5	SOIL SATURATION AND SOIL ATTENUATION CAPACITY		
		EVALUATION		
	6.6	GROUNDWATER INGESTION EXPOSURE PATHWAY		
	6.7	HORIZONTAL AND VERTICAL EXTENT OF IMPACT		
		6.7.1 0-10 foot Depth Interval	27	
		6.7.2 Greater than 10 foot Depth Interval		
	6.8	RECOGNIZED ENVIRONMENTAL CONDITIONS	28	
7.0	TIER	2 EVALUATION		
	7.1	SOIL INHALATION		
	7.2	SOIL COMPONENT OF GROUNDWATER INGESTION	29	
		7.2.1 Surface Water	30	
	7.3	ANALYTICAL DATA COMPARISON TO TIER 2 REMEDIATION	20	
		OBJECTIVES	30	
		7.3.1 Construction Worker Soil Inhalation (Outdoor Air)		
		7.3.2 Soil Component of Groundwater Ingestion		
		7.3.3 Soil Component to Groundwater Ingestion – Migration Calculation	31	
8.0		POSED PATHWAY EXCLUSION		
	8.1	SOIL INGESTION EXPOSURE PATHWAY		
	8.2	SOIL INHALATION EXPOSURE PATHWAY		
		8.2.1 Soil Impact from 3 to 10 Feet		
		8.2.2 Soil Impact Below 10 Feet	33	
	8.3	INDOOR INHALATION EXPOSURE PATHWAY		
	8.4	SOIL COMPONENT OF GROUNDWATER INGESTION EXPOSURE		
		PATHWAY		
	8.5	GROUNDWATER INGESTION EXPOSURE PATHWAY	34	

9.0	SPECI 9.1		ONDITIONS ITUTIONAL CONTROLS Construction Worker Notification Groundwater Environmental Land Use Control	35 35
10.0	SUMN	<i>AARY</i>	AND CONCLUSIONS	37
11.0	REFEI	RENC	ES	38
12.0	LICEN	NSED .	PROFESSIONAL ENGINEER REVIEW	39
APPE APPE APPE APPE APPE	NDIX A NDIX A NDIX A NDIX A NDIX A NDIX A	B C D E F G	HISTORICAL INFORMATION RECORDS OF SUBSURFACE EXPLORATION AND WELL INSTALLATION RECORD EVALUATION OF SOIL GAS DATA COLLECTED AT RESIDENTIAL PROPERTIES NEAR FORMER MGP SITE, CHAMPAIGN, ILLINOIS SOIL ANALYTICAL DATA AND CHAIN OF CUSTODY FORMS GROUNDWATER ANALYTICAL DATA AND CHAIN OF CUSTODY FORMS TIER 2 EVALUATION SUPPORTING DOCUMENTS ENVIRONMENTAL LAND USE CONTROL TO BE APPLIED TO THE SITE	

LIST OF FIGURES

- 1-1 Site Base Map
- 2-1 Site Location Map
- 2-2 Surrounding Property Map
- 2-3 Shallow Groundwater Elevation Contour Map (April 2020)
- 2-4 Intermediate Groundwater Elevation Contour Map (April 2020)
- 4-1 Probehole and Groundwater Monitoring Well Location Map
- 5-1 Probehole Locations with Soil Samples Exceeding Tier 1 Remediation Objectives
- 6-1 Sample Location Exceeding Tier 1 Remediation Objectives for Soil Inhalation 3 to 10 Feet BGS
- 6-2 Sample Locations Exceeding Tier 1 Remediation Objectives for Soil Inhalation Greater than 10 Feet BGS
- 6-3 Sample Locations Exceeding Tier 1 Remediation Objectives for Soil Component of Groundwater Ingestion
- 6-4 Soil Gas Sampling Locations
- 7-1 Modeled Distance to Compliance for Soil Component of Groundwater Ingestion
- 7-2 Probehole Locations Exceeding Tier 2 Remediation Objectives
- 9-1 Area Requiring Construction Worker Notification

LIST OF TABLES

- 1-1 Constituents of Concern Focused Site Investigation
- 5-1 Tier 1 Remediation Objectives
- 5-2 Soil Sample Analytical Results
- 5-3 Soil Gas Analytical Results
- 5-4 Groundwater Analytical Results Monitoring Well UMW-119
- 5-5 Groundwater Analytical Results All Monitoring Wells: April 2020
- 6-1 Tier 1 Soil Ingestion Exposure Pathway Evaluation
- 6-2 Tier 1 Soil Inhalation Exposure Pathway Evaluation
- 6-3 Tier 1 Soil Component of Groundwater Ingestion Exposure Pathway Evaluation - Class II Objectives
- 6-4 Soil Saturation and Soil Attenuation Capacity Evaluation
- 6-5 Summary of Tier 1 Exceedances by Location
- 7-1 Tier 2 Remediation Objectives
- 7-2 Soil to Groundwater Migration Calculations
- 7-3 Comparison to Tier 2 Remediation Objectives Soil Inhalation
- 7-4 Comparison to Tier 2 Remediation Objectives Soil Component of Groundwater Ingestion

EXECUTIVE SUMMARY

Ameren Illinois Company (Ameren) performed a focused site investigation in 2008 on several properties surrounding a former manufactured gas plant (MGP) property located in Champaign, Illinois. Site investigation activities were performed to evaluate environmental conditions at these properties, and to characterize the soil and groundwater in accordance with 35 Illinois Administrative Code (IAC) Section 740. The property located at 507 East Washington Street (the "Site") was among the properties investigated in 2008. An Off-Site Investigation Report (OSIR) was prepared and submitted to the Illinois Environmental Protection Agency (IEPA) on August 22, 2008. The OSIR outlined the approach used to evaluate and delineate the extent of subsurface impact beyond the boundaries of the former Champaign MGP property, which included the 507 East Washington Site. The IEPA reviewed and approved the OSIR (with revisions) on September 26, 2008.

This combined Focused Site Investigation Report (SIR), Remedial Objectives Report (ROR), Remedial Action Plan (RAP), and Remedial Action Completion Report (RACR) pertains only to possibly MGP-related constituents and only to the property at 507 East Washington Street. The Site has been enrolled in the IEPA Site Remediation Program (SRP) along with the former Champaign MGP property located at 308 N. 5th Street, under the State ID 0190100008. Ameren is the current owner and remedial applicant for the Site located at 507 East Washington Street.

As indicated above, site investigation activities were performed on the property in May 2008. The activities consisted of direct-push sampling, groundwater monitoring well installation, and soil gas sampling. Five probeholes were advanced on the Site for sample collection purposes. A total of 16 soil samples were collected from the five probeholes and analyzed for benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), cyanide, arsenic, chromium, and lead. Subsurface soil impact exceeding the project remediation objectives (ROs) for the construction worker soil inhalation and the soil component of groundwater ingestion exposure pathways were identified on the property.

One, two-inch diameter PVC groundwater monitoring well was installed on the property to a depth of 15 feet below ground surface (bgs) during the 2008 investigation activities. Groundwater samples have been collected from this monitoring well on a quarterly basis since December of 2008. To date, no groundwater impact has been identified on the property. A vacant, single family residence was located on the property in 2008. Soil gas sampling was performed on the property in October 2008 by the RAM Group of Gannett Fleming, Inc. (RAM Group). Three soil gas samples were collected: one on the west side, one on the east side, and one on the south side of the residence. Soil gas samples were analyzed for volatile organic compounds (VOCs), naphthalene and a leak detection compound. No exceedances of the indoor inhalation ROs were identified during the soil gas sampling event at the property.

In 2009, the single family residence was demolished following Ameren's purchase of the property. The property is currently a vacant lot.

No remediation activities are proposed for the property at 507 East Washington Street. Ameren has elected to address the subsurface soil impact through the use of institutional controls. Ameren intends to exclude the potential exposure pathways and therefore meet the requirements for a Focused No Further Remediation (NFR) through the implementation of institutional controls, as presented in this report.

PSC Industrial Outsourcing, L.P. (PSC), and its predecessor companies, has been the environmental consultant for Ameren Illinois at the former Champaign MGP since work started in the 1990's. In May of 2020, Environmental Resources Management, Inc. (ERM) was hired as the consultant to complete the report submittal process for the Site. The site investigation activities described in this report, and the data generated during the various phases of investigation were compiled by PSC. ERM has used the available information provided by PSC to prepare this report.

1.0 INTRODUCTION

Ameren Illinois Company (Ameren) performed a focused site investigation in 2008 on several properties surrounding a former manufactured gas plant (MGP) located in Champaign, Illinois. Site investigation activities were performed to evaluate environmental conditions at these properties, and to characterize the soil and groundwater in accordance with 35 Illinois Administrative Code (IAC) Section 740. The property located at 507 East Washington Street (the "Site"), as illustrated on Figure 1-1, was among the properties investigated in 2008. An Off-Site Investigation Report (OSIR) was prepared by PSC and submitted to the Illinois Environmental Protection Agency (IEPA) on August 22, 2008. The OSIR outlined the approach used to evaluate and delineate the extent of subsurface impact beyond the boundaries of the former Champaign MGP property, which included the East Washington Site. The IEPA reviewed and approved the OSIR (with revisions) on September 26, 2008.

The constituents of concern (COCs) identified during the focused site investigation and report preparation activities are presented in Table 1-1. The Site has been enrolled in the IEPA Site Remediation Program (SRP) along with the former Champaign MGP site located at 308 N. 5th Street, under the State ID 0190100008. Ameren is the current owner and remedial applicant for both of these properties.

This combined Focused Site Investigation Report (SIR), Remedial Objectives Report (ROR), Remedial Action Plan (RAP), and Remedial Action Completion Report (RACR) pertains only to the 507 East Washington Street Site. The report was prepared on behalf of Ameren to present the results of the investigation performed on the property at the Site. This report also presents the remediation objectives (ROs) for the Site, the methods Ameren has selected to meet the project ROs, and the measures used to meet the requirements for a Focused No Further Remediation (NFR).

2.0 PROPERTY INFORMATION

The following section presents information relative to property setting, history, previous activities, and geologic and hydrogeological information for the Site located at 507 East Washington Street.

2.1 PROPERTY SETTING

The Site consists of a 0.19-acre lot located within the city limits of Champaign, Illinois, in the northeast quarter of the southwest quarter of Section 7, Township 19 North, Range 9 East of the Third Principal Meridian (Figure 2-1). The property is currently a vacant lot that formerly contained a single family residence. This residential building was demolished in 2009 following Ameren's purchase of the property. The Site is currently a grass-covered lot.

Washington Street borders the property to the north, and a Norfolk-Southern railroad right-of-way borders the property to the south. The former Champaign MGP is located immediately south of the railroad right-of-way. The adjacent properties to the west contain single family residences followed by Fifth Street, and the properties to the east contain single family residences followed by Sixth Street. Figure 2-2 shows the property boundaries and the layout of the surrounding properties. Figure 2-2 also identifies the remediation site boundary for the 507 East Washington Street Site.

2.2 LEGAL DESCRIPTION

The legal description for the property at 507 East Washington Street is as follows:

"Lot 3 in Block 29 of Seminary Addition to Urbana, now part of the City of Champaign, less the railroad right-of-way through said Lot, as per plat recorded in Deed Record "T" at Page 30, situated in Champaign County, Illinois."

2.3 HISTORICAL PROPERTY USES

The summary of historical property uses was developed from Sanborn Fire Insurance Maps (Sanborn Maps), Brown's Directory of American Gas Companies (Brown's Directories), Ameren historical files, and aerial photographs. Copies of the Sanborn Maps, Brown's Directories, and aerial photographs are included in Appendix A – Historical Information. The Site appeared on the 1915 Sanborn map as a single family dwelling. A garage located south of the residence appeared on the 1924 Sanborn Map. The property appeared unchanged on the 1951 Sanborn Map. A single family residence was located on the property in aerial photographs from 1993 through 2008. The residence was demolished after Ameren purchased the property in 2009.

Adjacent Properties

The adjacent properties along Washington Street to the north, east, and west have also consisted of residential dwellings since approximately 1915. A bulk oil station was located at the southwest corner of North 5th Street and East Washington Street, and south of the railroad tracks, from 1915 through 1951 according to Sanborn maps. No Sanborn maps were available after 1951. The bulk oil station is not shown on aerial photographs from 1993 through 2014. The bulk oil station was located approximately 120 feet west-northwest of the MGP Site, and approximately 300 feet west of the 507 Washington Street property.

The Cleveland, Cincinnati, Chicago & St. Louis Railroad and the Wabash Railroad operated rail lines to the south of the Site from 1887 through 1951. A single rail line is depicted in aerial photographs from 1993 to the present. This rail line is currently operated by Norfolk-Southern Railroad.

Former MGP Property

Historical information relative to the former MGP located south of the Site indicates that gas was manufactured at the MGP as early as 1869 and continued through 1933. Gas was produced by coal carbonization, oil gasification, and carbureted water gas methods during various periods of operation. Past Site features included the former gas plant and associated buildings, three tar wells, two gas holders (GH-1 and GH-2), and two oil tanks located on the northern portion of the MGP. The former booster house, a third gas holder (GH-3), three purifiers, and seven oil tanks were located on the southern portion of the MGP property (see the Sanborn Maps in Appendix A).

After gas manufacturing operations ceased in 1933, the plant was maintained for stand-by production purposes until about 1955. Plant facilities were demolished between 1955 and 1960, with the exception of the booster house. Although the MGP property remained vacant, Illinois Power, a predecessor of Ameren Illinois, maintained ownership of the property until 1979 when it was sold to the American Legion. Illinois Power repurchased the MGP property from the American Legion in 1991 after preliminary environmental investigations indicated the presence of MGP-related impacts on the MGP property. The property is currently owned by Ameren Illinois. The booster house was demolished in December 2008 prior to the remediation of the MGP.

Remediation activities were conducted on the former MGP property between 2009 through 2017. These activities consisted of the excavation and disposal of impacted soil. Almost the entire MGP property was excavated to depths ranging from 16 to 28 feet below ground surface (bgs) during remedial activities conducted between 2009 and 2011. Approximately 187,000 tons of impacted soil were removed from the MGP property and replaced with non-impacted backfill. Backfill consisted of silty clay soil or CA6 crushed limestone. Subsequent remedial actions were completed on the MGP property to address remaining impacted soils, which included an In-Situ Chemical Oxidation (ISCO) treatment performed in 2013 and removal of additional soil along the western property boundary in 2017.

2.4 REGIONAL GEOLOGICAL AND HYDROLOGICAL SETTING

The City of Champaign lies within Champaign County in East Central Illinois. Champaign is part of the Bloomington Ridge Plain in the Till Plains section of the Central Lowland physiographic region of Illinois. The landscape is characterized by widely spaced continental glacial moraines with nearly featureless ground moraine plains. The geology beneath Champaign County has been summarized as 100 to 400 feet of Wisconsinan, Illinoian, and Kansan glacial drift deposited on Paleozoic bedrock which dips eastward and southward toward the Illinois Basin.

Groundwater resources in Champaign County come from three aquifers within the Wisconsinan, Illinoian, and Kansan glacial deposits. The aquifers were named the Wedron, Glasford and Banner aquifers by Kempton et al (1982), after the glacial formation in which each is encountered. Within Champaign County, however, the aquifers have simply been defined as the upper, middle, and lower sand and gravel aquifers.

The upper sand and gravel aquifers found in the Wisconsinan Wedron Formation beneath Champaign County occur as isolated pockets or lenses of sand and gravel in the Champaign and Urbana Moraines, or outwash sand and gravel near the front of the moraines. Throughout Champaign County, wells completed in these isolated sands and gravels vary in depth from about 25 to 100 feet bgs. Water table elevations range from 650 feet (NAVD88 elevation) in eastern Champaign County to about 750 feet northwest of Champaign. The middle sand and gravel aquifers found in the Illinoian Glasford Formation occur as fairly continuous layers in the Radnor and Vandalia Till Members. The top of the middle aquifer ranges from about 125 to 175 feet bgs near Champaign/Urbana, while the bottom ranges between 175 and 200 feet bgs. The water level elevations of wells finished in the middle aquifer range from about 630 feet around Champaign/Urbana, to about 720 feet in the northwest part of the County. The direction of flow appears to be towards the southwest (Sanderson and Zewde, 1976).

The lower sand and gravel aquifer encountered in the Kansan Banner Formation occurs as thick sand and gravel deposits of the Mahomet bedrock valley. The lower aquifer can be up to 150 feet thick, depending on proximity to the main channel of the Mahomet bedrock valley. The top of the Mahomet Sand is fairly consistent at an elevation of 500 feet, and the average width of the valley is about 12 miles in Champaign County. This deposit is composed of clean sand and gravel, although the deposit becomes siltier towards the valley margins.

The Paleozoic bedrock beneath the glacial deposits provides only small amounts of water from sandstone and limestone beds of the Pennsylvanian formations. The groundwater in Mississippian and older bedrock is too deep or mineralized to be considered a good source of water.

2.5 PRIVATE AND PUBLIC DRINKING WATER WELLS IN VICINITY

There are no public water supply wells within a one-half mile radius of the Site. The Illinois American Water Company (IAWC) supplies water from wells in the west well field located about three miles west of the Site. These wells average about 310 feet in total depth, and have between 50 and 100 feet of well screen. The wells in the west field produce water from the Mahomet Sand Member. IAWC also has water wells in the north well field located about one mile northeast of the Site. These wells average about 210 feet deep, with screens ranging from 10 to 50 feet in length. These wells produce water from the middle sand and gravel aquifer contained in the Glasford Formation.

2.6 SUBSURFACE GEOLOGY

The major geologic units present at the Site and across the investigation area, in descending order, are the surficial fill layer, the weathered and unweathered till units of the Wedron Formation, Upper Glasford Formation, and the sand member of the Lower Glasford Formation. Below the Glasford formations are the Upper and Middle Banner formations, beneath which is the bedrock at an estimated depth of 290 feet bgs in the vicinity of the Site.

2.6.1 Upper Fill Material

The upper two to five feet of soil across the Site consists of brown to dark brown silty clay with roots and gravel. Wood and brick fragments are also present in the silty clay unit in portions of the Site. Fill material containing gravel, cinders, and brick fragments are present on the southernmost property boundary adjacent to the railroad right-of-way.

2.6.2 Silty Clay Unit

On the Site, a silty clay unit presumed to be part of the weathered till is present below the fill material beginning at a depth of two to six feet bgs and extending to a depth of 12 to 16 feet bgs. The silty clay unit consists of a yellowish tan to yellowish brown material with traces of sand. The silty clay is a low plasticity material.

2.6.3 Weathered Till Unit

The weathered till unit is continuous beneath the study area, including the Site, and is believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. The Weathered Till Unit was contacted at various depths during site investigation activities, averaging 10 to 15 feet thick beneath the Site.

The weathered till unit is comprised of brown to gray, silty clay with some oxidation evident along clay fractures. A number of minor sand and silty sand layers were also encountered. However, these sand layers are laterally discontinuous. The distinction between the weathered and underlying unweathered till units was often difficult to distinguish.

2.6.4 Unweathered Till Unit

The unweathered till unit is also believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. This unit is generally differentiated from the overlying weathered till unit by its gray color and lack of weathering along fractures. The top of the unweathered till was encountered at depths ranging from 12 to 16 feet bgs. Sand and gravel layers were also encountered within the unweathered till unit. However, these layers were also not laterally continuous beneath the Site. The base of the unweathered till was generally encountered at a depth of 30 to 35 feet bgs across the Champaign MGP project area.

2.6.5 Lower Silty Sand Unit

Three deep boreholes drilled on the former MGP property adjacent to the south of the Site, encountered alternating thick sand, silty sand, and gravel units from approximately 30 feet bgs to approximately 100 feet bgs; a sand unit from approximately 100 feet bgs to 145 feet bgs; and alternating layers of sand and silt to boring terminations at approximately 175 feet bgs. The deeper deposits are believed to be the upper units of the Illinoisan Glasford Formation. However, the actual contact between the Wedron (unweathered till unit) and Glasford Formations (sandy units associated with the regional aquifer) was not delineated due to the similarities between these two geological units, and the rotary wash drilling method used in the deeper boreholes, hence the actual thickness of these two units at the Site is undefined.

2.7 HYDROGEOLOGIC CONDITIONS

There are three groundwater zones present in the investigation area, two of which are currently being monitored. The three zones are referred to as the shallow groundwater system, the intermediate groundwater system, and the deep groundwater system. Based upon the hydraulic conductivity testing results and the characteristics of these groundwater systems, the shallow groundwater system is classified as Class II groundwater, and the intermediate and deep groundwater systems are classified as Class I groundwater. Additional information regarding hydraulic conductivity testing is presented in Section 2.7.4 of this report.

Groundwater hydrology investigation activities completed as part of the Champaign MGP project investigation consisted of sampling the monitoring wells that had been installed during previous investigations prior to 2008, and the installation and sampling of 13 additional wells on the properties surrounding the former Champaign MGP during the offsite investigation completed in 2008. One shallow groundwater monitoring well, UMW-119, was installed on the subject Site during the investigation completed in 2008. The following sections describe the groundwater systems identified during investigation activities.

2.7.1 Shallow Groundwater System

The shallow groundwater system is an unconfined water-bearing zone with the saturation depth (water table) found in the surficial fill layer or the uppermost till unit. Nineteen monitoring wells, with screens set to intersect the shallow groundwater table, are located on the Champaign MGP and surrounding properties, and are monitored on a quarterly basis. Groundwater in the shallow system beneath the Site generally flows to the north. The configuration of the shallow water table based upon the data collected during the April 2020 groundwater sampling event is shown on Figure 2-3. The depth to the shallow groundwater system typically ranges from 3 to 10 feet bgs across the study area. Groundwater was measured at a depth of 3.68 feet bgs in monitoring well UMW-119 during the April 2020 sampling event. Five additional shallow monitoring wells are located on or adjacent to the Washington Street properties north of the railroad tracks, as shown on Figure 2-3. The shallow groundwater system is classified as Class II – General Resource Groundwater.

2.7.2 Intermediate Groundwater System

Nine monitoring wells, located on and around the former Champaign MGP, are currently used to monitor the intermediate groundwater unit. There are no intermediate groundwater monitoring wells on the subject Site. However, monitoring well UMW-300 is located in the Washington Street right-of-way immediately north of the Site. The intermediate groundwater monitoring wells were installed with 10-foot screens to depths of 45 to 47 feet bgs to intersect the intermediate groundwater monitoring events, groundwater in the intermediate system beneath the property generally flows to the southeast. The intermediate potentiometric surface contour map from the April 2020 sampling event is provided as Figure 2-4. The depth to the top of the sand unit containing the intermediate groundwater was measured at a depth of 26.65 feet bgs in intermediate monitoring well UMW-300 during the April 2020 sampling event.

2.7.3 Deep Groundwater System

Three deep wells were installed during previous investigations of the former Champaign MGP, and were monitored between 1992 and 1998. None of the deep wells were installed on the East Washington Street Site. The deep groundwater system is a sand and gravel zone within the Lower Glasford Formation beginning at a depth of about 151 feet bgs, and extending to a depth greater than 177 feet bgs. The sand and gravel layers encountered in this zone were much thicker and laterally continuous than the silty sand and sand units encountered in the weathered and unweathered till units. The water levels for the three wells screened in this zone stabilized at depths of approximately 120 feet bgs, and exhibited a regional gradient to the westsouthwest. These three deep wells were abandoned in 1999.

2.7.4 Aquifer Parameters

Field hydraulic conductivity tests were performed on the shallow groundwater system by Burlington Environmental Inc. in 1990. The reporting indicated that a mean hydraulic conductivity was 1.6×10^{-4} centimeters per second (cm/sec) was observed at that time.

In 1997, IEPA began the classification of groundwater to prioritize groundwater bodies for the protection of the environment. According to 35 IAC Part 620, any geological material with a hydraulic conductivity of less than 1×10^{-4} cm/sec, and which does not meet the provisions of Section 620.210 (Class I), Section 620.230 (Class III), or Section 620.240 (Class IV), meets the definition of a Class II – General Resource Groundwater.

In 2011, it was determined that the hydraulic conductivity of the shallow ground water system would be measured and calculated in accordance IEPA guidance. At that time, only two of the groundwater monitoring wells in which hydraulic conductivity testing was historically performed in 1990 still existed. Therefore, additional field hydraulic conductivity testing was conducted in June 2011. In-situ permeability tests were performed on five shallow monitoring wells – UMW-102, UMW-107, UMW-108, UMW-109, and UMW-116.

These monitoring wells were tested by the variable head ("slug") test method. The test methods utilized were modifications of the slug test method described by Cooper et al. (1967), whereby a solid slug is lowered or raised into the saturated portion of the well column, and the resulting change in water level is measured over time. The slug tests were conducted using PVC slugs secured by ropes, and water levels were recorded using Aquistar PT2X Smart Sensors (PT2X) transducer dataloggers. In most cases, multiple tests were performed on each well to provide corroborating data, and because of the inherent variability in groundwater level recoveries when a slug is inserted versus removed from a well. However, not all of the tested wells had multiple tests and/or analyses because of very low permeability or limitations associated with low groundwater levels and well construction.

A laptop computer was used to download the data from the dataloggers, and the data was analyzed using AQTESOLVTM for Windows (Version 4.50.002), an aquifer test analysis software package developed by HYDROSOLVE. Two analytical methods were utilized on the data: the Bouwer-Rice method (1976) for unconfined aquifers, and the KGS model with Skin for unconfined aquifers (Hyder et al., 1994). The hydraulic conductivity results of the June 2011 testing ranged from a low of 2.6 x 10^{-6} cm/sec to a high of 9.6 x 10^{-5} cm/sec, with a geometric mean value of 3.1×10^{-5} cm/sec.

Therefore, based on the testing performed, the groundwater within the shallow aquifer system in the vicinity of the Site meets the definition of a Class II – General Resource Groundwater. Additional information regarding this field hydraulic conductivity testing can be found in the *Groundwater Monitoring Update – Quarter 2, 2011 Sampling Event and Shallow Groundwater Classification Field Hydraulic Conductivity Testing* report dated August 18, 2011 (PSC, 2011).

Based on hydraulic conductivity testing performed in the intermediate groundwater system, this zone is classified as Class I groundwater. Slug testing was performed in four intermediate wells (UMW-301, UMW-302, UMW-303, and UMW-304) during the off-site investigations, which indicated horizontal hydraulic conductivity values that ranged from 2.80 x 10^{-2} centimeters per second to 8.63 x 10^{-2} cm/sec. The mean hydraulic conductivity calculated using data from the four intermediate wells was 4.85×10^{-2} cm/sec. These hydraulic conductivity data were presented in the 2008 OSIR.

2.8 FUTURE PROPERTY USES

As mentioned previously, the Site is currently a vacant residential lot containing one groundwater monitoring well and a concrete driveway from the former residence. Ameren does not anticipate changes to the property use.

3.0 ENFORCEMENT ACTIONS

No enforcement actions have taken place or are known to be pending for the East Washington Street Site. The property was one of several that were investigated and included in the 2008 OSIR for the former Champaign MGP Site that was previously submitted to the IEPA. The Site was also evaluated for vapor intrusion before the residence was demolished, the results of which were presented in the *Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site, Champaign, Illinois* (RAM, 2008) prepared by RAM Group.

4.0 SITE INVESTIGATION ACTIVITIES

As required in IAC Section 740.435(b)(4), the following sections provide documentation of the field activities that were performed to characterize the Site during investigation activities. Site investigation activities were performed in May 2008 to delineate impact beyond the property boundary of the former Champaign MGP. This section describes the investigation activities completed on the Site located at 507 East Washington Street. Additional information from the May 2008 investigation was presented in the 2008 OSIR.

4.1 DIRECT-PUSH SAMPLING

PSC performed soil sampling at the Site using a track-mounted GeoProbe[™] rig with MacroCore samplers. Five probeholes were advanced to a depth of 30 feet bgs on the property at the locations illustrated on Figure 4-1. Each of the five probeholes were continuously sampled, and the soil cores were recovered in disposable acetate liners.

Following recovery, the filled acetate liners were placed on a level surface and opened. The recovered soil was screened in the field for visible impact, odors, and volatile organics using a photoionization detector (PID). Subsurface lithology and soil conditions were noted for the recovered samples. Field observations and PID readings were recorded on Records of Subsurface Exploration (Appendix B). More detail of the sample screening procedures is provided in Section 4.3 of this report.

Sampling equipment was decontaminated between sample intervals with an Alconox® wash and potable water rinse. The water source for decontamination was the Champaign public water supply. The MacroCore[™] sampler and probe rods were decontaminated between each probehole location using a high-pressure wash.

Decontamination fluids were containerized in a 1,000-gallon poly tank staged on the former Champaign MGP. Unused portions of samples from the probeholes were placed within a rolloff container. Following the completion of investigation activities, the containerized decontamination fluids and soil cuttings and other solid materials in the roll-off were managed for off-site disposal, as discussed in Section 4.10.

4.2 MONITORING WELL INSTALLATION

Upon completion of direct-push sampling and evaluation of the field screening data, a shallow groundwater monitoring well (UMW-119) was installed near the center of the Site, as shown on Figure 4-1. The monitoring well was installed using a track-mounted GeoProbe[™] rig with 4.25-inch hollow stem augers, and constructed as a two-inch diameter monitoring well installed to a depth of 15 feet bgs. The well was constructed with 10 feet of 0.010-inch machine-slotted PVC well screen from five to 15 feet bgs to straddle the shallow groundwater system. The well was completed with Schedule 40 PVC riser.

Sand pack was placed around the annular space of the well to a depth of approximately one foot above the top of the well screen. A bentonite clay seal was placed above the sand pack, and the well was completed with a flush-mount well protector set with pre-mix concrete at ground surface. The boring log (B-849) associated with this well is included in Appendix B.

4.3 SOIL SAMPLE SCREENING, COLLECTION AND HANDLING

Sixteen discrete soil samples were collected from five probehole locations installed on the property during the May 2008 investigation activities. The following sections provide a description of the methods used for sample screening, collection, and handling.

4.3.1 Sample Screening Procedures

As stated above, continuous soil sampling was performed at each probehole location. Recovered soil samples from the MacroCore[™] system were placed on a flat-lying surface where the acetate liner containing the sample was removed and opened. The field geologist screened the recovered soil for evidence of impact using a calibrated PID, for indications of visible staining, and for the presence of odors. Screening with the PID was done at one-foot intervals to identify the most likely interval of impact. PID readings were recorded on the Records of Subsurface Exploration (Appendix B).

In addition to screening soil samples for indications of impact, the field geologist also recorded the following information for the characterization of subsurface conditions:

- sample interval and sample recovery;
- stratum thickness and depth;
- lithologic description of material;

- color and approximate grain size;
- visual soil classification by the Unified Soil Classification System (ASTM D2487 and 2488);
- moisture conditions and presence of water; and
- sample stiffness, hardness, and/or plasticity.

Based on field screening methods, samples with the highest observed level of impact were selected for laboratory analysis. Discrete soil samples were typically retained and analyzed representing materials within the zero to three-foot depth interval, the three to 10-foot depth interval, and the greater than 10-foot depth interval.

4.3.2 Sample Handling Procedures

Sixteen discrete soil samples were submitted for laboratory analysis. The field geologist used disposable nitrile gloves when handling the samples. To minimize the potential for cross-contamination, the gloves were discarded between sample intervals. Soil within selected zones of impact was placed directly into sample jars provided by the laboratory.

Sampling procedures for benzene, toluene, ethylbenzene, xylene (BTEX) analysis followed USEPA Method 5035. A portion of the soil from the selected interval was retained using a Teflon syringe provided by the laboratory. After collection of the sample, the soil was immediately placed in 40- milliliter (ml) sample vials provided by the laboratory. Each 40-ml vial contained the appropriate quantity of methanol or sodium bisulfate as pre-measured by the laboratory. Each jar was immediately labeled, sealed and placed into a cooler with ice.

Sampling procedures for polycyclic aromatic hydrocarbons (PAHs), cyanide and metals analyses followed USEPA SW 846. Soil from the selected intervals for sampling was placed in glass sample jars provided by the laboratory. Soil was placed in the jar with minimal disturbance and to provide the laboratory with sufficient quantities for laboratory analysis. Labels were affixed to each sample jar, which were then immediately sealed and placed in a cooler with ice.

4.3.3 Sample Identification for Chemical Analysis

All soil samples were given specific identifications based upon the sample location and depth. The samples were labeled in the field by the on-site geologist or field technician, and the corresponding identifications were entered on chain of custody records. The sample identification label and the chain of custody records included the following information:

- name of collector;
- date and time of collection;
- location;
- sample identification; and
- requested analyses.

4.4 MONITORING WELL DEVELOPMENT

After installation and prior to well purging and sampling, the monitoring well was developed to remove fine particles within the sand pack, well screen, and the well. The well was developed using a submersible WhaleTM pump and disposable tubing. Water was purged until water quality parameters stabilized. A groundwater sample was collected from the well approximately two weeks following well installation.

4.5 GROUNDWATER SAMPLE COLLECTION AND HANDLING

Groundwater samples from the monitoring wells at the Site have been collected on a quarterly basis since well installation in 2008. The following sections discuss the groundwater sampling procedures and methods.

4.5.1 Groundwater Sampling Procedures

At the start of sampling, the depth to groundwater was measured with an electronic water level indicator (EWLI) to the nearest 0.01-foot. Groundwater level measurements were used to establish an estimated flow direction and gradient. Prior to collection of the groundwater samples, the monitoring well was purged using low-flow procedures using a dedicated QED[™] bladder pump and dedicated tubing. Groundwater quality parameters were measured and recorded during purging, which included temperature, pH, conductivity, turbidity, oxidation-reduction potential (ORP), and dissolved oxygen (DO). These groundwater quality measurements were obtained using a water quality instrument fitted with a flow-through cell connected to the discharge side of a pump.

Groundwater samples were placed in sample containers provided by the laboratory immediately following recovery. The samples collected for BTEX analysis were placed in 40-ml vials with a premeasured amount of hydrochloric acid preservative. Samples for PAH analysis were placed in unpreserved, one-liter amber bottles. Samples for cyanide were collected in 500-ml bottles preserved with sodium hydroxide. Following sample collection, the samples were labeled and placed in a cooler of ice and delivered to the laboratory under proper chain-of-custody procedures.

4.5.2 Sample Identification for Chemical Analysis

All groundwater samples were given specific identifications based upon the well location, and were labeled in the field by the on-site geologist or field technician. The corresponding identification was entered on chain of custody records. The sample identification label and the chain of custody records included the following information:

- name of collector;
- date and time of collection;
- location;
- sample identification; and
- requested analyses.

4.6 LABORATORY ANALYSES

Soil and groundwater samples were analyzed for the set of parameters necessary to meet the requirements for a Focused NFR for the Site as provided in IAC Section 740.430. The list of constituents for analysis of soil and groundwater and their applicable analytical methods, are summarized in Table 1-1.

Samples generated during the site investigation activities conducted at the Site and the Champaign MGP Site were submitted to Teklab, Inc. located in Collinsville, Illinois (Teklab). Teklab has been accredited in accordance with the National Environmental Laboratory Accreditation Program (NELAP) and the Illinois Environmental Laboratory Accreditation Program (IL ELAP).

4.6.1 Soil Sample Analyses

Soil samples were analyzed for BTEX using USEPA Method 8260, PAHs using USEPA Method 8270-SIM, total and amenable cyanide using USEPA Method 9012, and arsenic, chromium, and lead using USEPA Method 6010.

4.6.2 Groundwater Sample Analyses

Groundwater samples were analyzed for BTEX using USEPA Method 8260, PAHs using USEPA Method 8270-SIM, arsenic, chromium, lead using Method 6010, and total cyanide using USEPA Method 9014.

During the 2018 second quarter groundwater sampling event, and subsequent quarterly groundwater sampling events, barium, cadmium, mercury, selenium and silver were added to the analysis list for the metals samples submitted to the analytical laboratory for analysis. These additional metals were analyzed using USEPA Methods 6010 and 7470.

4.7 SOIL GAS SAMPLING

Soil gas sampling was performed at the Site on October 15, 2008 by RAM Group. The following information is summarized from the *Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site, Champaign, Illinois* prepared by RAM Group (RAM, 2008). A copy of the report is included in Appendix C.

A vacant, single family home existed on the property at the time of sampling. Three soil gas samples were collected; one on the west side, one on the east side, and one on the south side of the residential building within 3.5 feet of the foundation. Small diameter steel rods were installed using a GeoProbe® 550B track-mounted rig operated by Soil Essentials, Inc. The rods were advanced until the desired depths were reached. Hydrated bentonite was placed around the rods at the ground surface to plug the borehole annulus.

Soil gas samples were collected in one-liter SUMMA canisters (batch certified) using post-run tubing (PRT) methods. Teflon tubing was attached to the PRT adapter and pushed down inside the steel rods, seated, and threaded into an expendable point holder. A Swagelok® three-way valve and disposable syringe were connected to the tubing, and the steel rods were pulled up approximately 6 to 8 inches to dislodge the rods from the expendable point for sampling. Paper towels wetted with difluoroethane as a leak detection compound were placed around the steel rods.

The initial vacuum of each one-liter SUMMA canister was recorded prior to sampling. Purge calculations were completed to determine the volume of air to be removed from the tubing prior to sampling. The tubing was purged using the disposable syringe and three-way valve. The SUMMA canisters were then connected to the three-way valve and the samples were collected until the final vacuum of the canisters were approximately five inches of mercury. The samples were shipped overnight to Air Toxics, Ltd. in Folsom, California for analysis.

4.8 FIELD DOCUMENTATION

Field activities were recorded on daily field reports. Information recorded on daily field reports included:

- beginning and ending times for daily activities;
- beginning and ending times for advancing each probehole or borehole location;

- field conditions and observations;
- refusals or offsets required to continue drilling;
- delays, difficulties, and problem conditions; and
- sequence of daily activities.

Records of Subsurface Exploration were recorded for each probehole or borehole advanced. Field copies of the Records of Subsurface Exploration are maintained with the project file. Information on Records of Subsurface Exploration included:

- borehole/probehole location and identification;
- sampling system, sample interval, and sample recovery;
- soil lithologic description, USCS symbol, and soil conditions (stiffness, moisture content, etc.);
- PID readings and observations for impact; and
- administrative information (driller, geologist, etc.).

4.9 DECONTAMINATION PROCEDURES

Equipment and materials used in direct-push sampling, drilling, sampling, and monitoring well construction were decontaminated prior to use at the Site. In addition, all non-disposable sampling and monitoring equipment was decontaminated between uses, and between sampling and monitoring locations. Equipment was washed using a laboratory-grade detergent followed by a clean-water rinse.

Heavy equipment such as the drill augers, probe rods, samplers, and the internal drill rods were decontaminated using a hot water, high-pressure washer. Decontamination fluids were collected and containerized in the wastewater storage tank staged on the Champaign MGP property for subsequent offsite disposal by Heritage Environmental Services.

4.10 INVESTIGATION DERIVED WASTE HANDLING

Decontamination fluids collected during the investigation was containerized in a 1,000-gallon poly tank staged on the former Champaign MGP property. Unused portions of samples from the probeholes, soil cuttings from drilling, and other solid wastes generated during the investigation were placed within a roll-off container. Following the completion of investigation activities, the contents of the wastewater storage tank and roll-off container were managed for disposal at off-site facilities. Management of the investigation derived wastes is discussed in greater detail in the 2008 OSIR.

5.0 INVESTIGATION RESULTS

The following sections provide a summary of the laboratory analytical results and a comparison to the Tiered Approach to Corrective Action (TACO) Tier 1 ROs outlined in IAC Section 742. The evaluation of subsurface hydrogeologic conditions and subsurface impact is based on investigation data derived from the 2008 activities, as well as subsequent quarterly groundwater monitoring.

5.1 SOIL SAMPLE ANALYTICAL RESULTS

The subsections below summarize soil sample analytical results for the sixteen samples collected from the 507 East Washington Street Site. Soil samples were analyzed for BTEX, PAHs, select RCRA metals, and cyanide. The analytical results were compared to the Tier 1 ROs presented in Table 5-1. The soil sample analytical data is presented in Table 5-2. Figure 5-1 illustrates the soil sample locations and depths that were in exceedance of the Tier 1 ROs. Copies of the laboratory analytical datasheets are provided in Appendix D.

5.1.1 BTEX Constituents

Sixteen soil samples were collected and analyzed for BTEX using USEPA Method 8260. One or more BTEX constituents were detected in all sixteen soil samples. The highest levels of benzene and total BTEX were identified in the soil samples obtained from depths greater than 10 feet bgs. Soil samples with BTEX concentrations exceeding Tier 1 ROs were identified in three of the five sample locations: B-846, B-847 and B-849.

5.1.2 PAH Constituents

Sixteen soil samples were collected and analyzed for PAHs using USEPA Method 8270 SIM. One or more PAH constituents were detected in thirteen of the sixteen samples analyzed. The only constituent with concentrations greater than a Tier 1 ROs was naphthalene, which occurred in samples collected from boring locations B-803, B-846, B-847 and B-849.

5.1.3 Inorganic Constituents

Six soil samples were collected and analyzed for arsenic, chromium, lead, and total cyanide. Metals were detected in all six soil samples collected, and total cyanide was detected in two of the soil samples. However, none of the detected inorganic compounds exceeded the respective Tier 1 ROs.

5.2 SOIL GAS ANALYTICAL RESULTS

The analytical results for the three soil gas samples collected at the Site are presented in Table 5-3. The results were compared to the residential soil gas objectives listed in Table H from Appendix B of IAC 35, Part 742. The comparison indicated that none of the compounds exceeded the indoor inhalation ROs. Additional information is provided in the *Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site, Champaign, Illinois* (RAM, 2008) included in Appendix C.

5.3 GROUNDWATER ANALYTICAL RESULTS

For purposes of this evaluation, groundwater data from the quarterly groundwater sampling conducted in April 2020, in association with the Champaign MGP property, was utilized. The quarterly groundwater sampling being conducted for the Champaign MGP property includes Well UMW-119, which is located on the Site. To evaluate groundwater in the surrounding area of the Site, sampling results from offsite wells UMW-111 (north of the Site boundary), wells UMW-120 and UMW-102 (east of the Site), wells UMW-109 and UMW-118 (west of the Site), and wells UMW-125 and UMW-127 (south of the Site) were examined. The locations of the onsite well and surrounding offsite wells are shown in Figure 4-1.

Groundwater samples were analyzed for BTEX, PAHs, and cyanide. Arsenic, chromium, and lead were also sampled during the December 2008 quarterly groundwater sampling event for the MGP property. Because arsenic, chromium, and lead were not detected at levels above the Tier 1 ROs for groundwater in the December 2008 sampling event, they were removed from the list of analysis during future quarterly sampling events. However, starting with the second quarter groundwater sampling event in 2018, the list of metals selected for analysis was expanded to include the eight RCRA metals.

The sample analytical data were compared to the Illinois TACO ROs for Class II Groundwater Ingestion and the Tier 1 Groundwater Inhalation Diffusion & Advection at Residential Sites. Groundwater samples from monitoring well UMW-119 did not indicate the presence of BTEX nor PAHs in groundwater. Concentrations have also not exceeded the Class II Groundwater Objectives since installation of the well in 2008. Table 5-4 presents the quarterly groundwater analytical data for UMW-119 from the second quarter of 2018 through the second quarter of 2020. There were no detections of BTEX or PAHs in this period. During this period, barium and cyanide have been the only inorganic constituents detected and the concentrations are below Class II Groundwater Ingestion and the Tier 1 Groundwater Inhalation Diffusion & Advection at Residential Sites. It is noted, that although, not applicable, the concentrations are also below Class I Groundwater Standards.

Table 5-5 presents the groundwater analytical data for the samples collected in April 2020 for the onsite well and offsite surrounding wells. With the exception of Well UMW-127, BTEX and PAHs were not detected in groundwater in the surrounding offsite wells, including those to the south of the Site, in the direction of the former MGP Site. Well UMW-127 is located to the southeast, approximately 180 feet from the southeast corner of the Site, upon the property of the former MGP Site. This well indicated the presence of benzene, acenapthene, and naphthalene, but at concentrations one to four orders of magnitude below Class II Groundwater Objectives. Due to the northwest and southeast groundwater flow directions in the shallow and intermediate groundwater, respectively, at the former MGP Site, it is not likely that the constituents detected in Well UMW-127 would impact the Site. Inorganics (barium, cyanide, and chromium) were detected in one or more of the surrounding offsite wells; however, none of the samples collected from surrounding wells exceeded Class II Groundwater Objectives for inorganic constituents.

Additional information pertaining to groundwater beneath the former Champaign MGP and surrounding properties is available in the Groundwater Monitoring Updates submitted quarterly to the IEPA. Copies of the laboratory analytical datasheets for monitoring well UMW-119 from the first year of sampling (March 2009 to March 2010) and the most recent 2 years of sampling (June 2018 to April 2020) are included in Appendix E.

6.0 EXPOSURE PATHWAY EVALUATION

The following sections present an evaluation of the soil ingestion, soil inhalation, soil component of groundwater ingestion, and indoor inhalation exposure pathways as they pertain to the Site. Residential, industrial/commercial, and construction worker exposure scenarios were evaluated for the soil ingestion and soil inhalation exposure pathways. Tables 6-1 through 6-3 summarize the analytical data comparison to the Tier 1 ROs or the IEPA-accepted background levels for the exposure pathways, and identify the sample locations that exceed the ROs. The following sections also contain a discussion on the extent of impact with respect to the applicable exposure pathways.

6.1 SOIL INGESTION EXPOSURE PATHWAY

The soil sample analytical results were compared to the Tier 1 ROs for the soil ingestion pathway for residential exposure (0-3 feet bgs), commercial/industrial exposure (0-3 feet bgs), and construction worker exposure scenarios (all depths examined). None of the soil samples collected from the Site have constituents with concentrations that exceed applicable Tier 1 ROs for the soil ingestion exposure pathways; therefore, the soil ingestion exposure pathway is not a concern at this Site. The comparison of analytical results to the soil ingestion ROs is presented in Table 6-1.

6.2 SOIL INHALATION EXPOSURE PATHWAY

The soil sample analytical results were compared to the Tier 1 ROs for the soil inhalation pathway for residential exposure, commercial/industrial exposure, and construction worker exposure scenarios. This evaluation is presented in Table 6-2. None of the constituents observed to a depth of 10 feet bgs exceeded residential or commercial/industrial soil inhalation Tier 1 ROs; therefore, the soil inhalation exposure pathway for residential or commercial land use is not a concern at this Site.

For the construction worker exposure scenario, which evaluated samples collected at all depths, six of the 16 samples exceeded Tier 1 ROs for the construction worker soil inhalation exposure pathway scenario. One of the six samples was collected from the 3 to 10-foot depth interval; the remaining five samples were collected from depths from 16 to 23 feet bgs. The four COCs identified to exceed the construction worker soil inhalation exposure pathway ROs included benzene, ethylbenzene, total xylenes,

and naphthalene. These exceedances indicate that the soil inhalation pathway for a construction worker is a concern and is to be further evaluated in the Tier 2 evaluation presented in Section 7.

The extent of impact for the soil inhalation exposure pathway for samples collected in the 3 to 10-foot depth interval is illustrated on Figure 6-1. The extent of impact for the soil inhalation exposure pathway for samples collected in the greater than 10-foot depth interval is illustrated on Figure 6-2.

6.2.1 Residential Exposure

No constituents were identified in soil, from the ground surface to 3 feet bgs and from 3 feet bgs to 10 feet bgs, at levels that exceed Tier 1 ROs for residential properties. Benzene was identified at levels that exceed the Tier 1 RO (0.8 mg/kg) for residential property use in samples B-846 (20.0-21.0 feet bgs), B-847 (22.0-23.0 feet bgs) and B-849 (16.0-17.0 feet bgs) - at concentrations of 3.16 milligrams per kilogram (mg/kg), 1.44 mg/kg, and 1.2 mg/kg, respectively – however, these were in soil below the residential Tier 1 exposure depths of 3 feet bgs (ingestion) and 10 feet bgs (inhalation), therefore, no exposure or risk is anticipated via the residential soil ingestion or inhalation pathways.

6.2.2 *Commercial or Industrial Exposure*

This property is currently zoned as residential property. For informational purposes, it is noted that no constituents observed in soil from the ground surface to 10 feet bgs exceeded commercial/industrial Tier 1 ROs for the soil ingestion or inhalation pathways. A benzene concentration in sample B-846 (20.0-21.0 feet bgs) was 3.16 mg/kg, as compared to the Tier 1 RO of 1.6 mg/kg. However, the depth of this concentration was greater than 10 feet bgs, therefore no exposure would be anticipated to occur.

6.2.3 Construction Worker Exposure

Soil sample B-803 (21.0-22.0 feet bgs) was reported to contain a naphthalene concentration that exceeded the Tier 1 RO for inhalation for the construction worker exposure pathway. The naphthalene concentration was 13.0 mg/kg, in comparison to the Tier 1 RO of 1.8 mg/kg.

Soil sample B-846 (8.5-9.5 feet bgs) contained total xylenes and naphthalene concentrations exceeding the Tier 1 ROs for inhalation for construction worker exposure. The total xylenes concentration was 8.82 mg/kg, compared to the Tier 1 RO of 5.6 mg/kg. The naphthalene concentration was 5.44 mg/kg, compared to the Tier 1 RO of 1.8 mg/kg. Soil sample B-846 (10.0-11.0 feet bgs) also contained a naphthalene concentration that exceeded the Tier 1 RO for construction worker exposure, with a concentration of 12.4 mg/kg.

Ethylbenzene, total xylenes, and naphthalene concentrations exceeded the Tier 1 ROs for construction worker exposure in sample B-847 (22.0-23.0 feet bgs). The ethylbenzene concentration was 62.8 mg/kg, compared to the Tier 1 RO of 58 mg/kg. The total xylenes concentration was 75.6 mg/kg, compared to the Tier 1 RO for total xylenes of 5.6 mg/kg. The naphthalene concentration in B-847 (29.0-30.0 feet bgs) was 13.8 mg/kg, in comparison to the Tier 1 RO of 1.8 mg/kg.

Total xylenes and naphthalene concentrations also exceeded the Tier 1 ROs for construction worker exposure in sample B-849 (16.0-17.0 feet bgs). The concentrations were 5.64 mg/kg and 5.37 mg/kg, respectively.

6.3 SOIL COMPONENT OF GROUNDWATER INGESTION PATHWAY

The soil sample analytical results were compared to the Tier 1 ROs for the soil component of groundwater ingestion exposure pathway. As discussed previously, there are two groundwater systems currently monitored in the area of the Site. Based on the hydraulic conductivity testing results and the characteristics of the groundwater systems, the shallow groundwater system, typically encountered at 3 to 10 feet bgs in the area of the Site, is classified as Class II groundwater, and the intermediate groundwater system, typically encountered at 30 to 35 feet bgs, is classified as Class I groundwater. The soil component of groundwater ingestion analytical data comparison to the Class II ROs is presented in Table 6-3.

The unweathered till (silty clay) described in Section 2.6.4 is the hydraulic barrier that separates the shallow and intermediate groundwater systems. Soil samples collected from depths of less than 30 feet bgs were compared to the Class II ROs. The intermediate groundwater is located in the underlying sand unit; the upper elevation of this aquifer at the Site is not known. To be conservative, it is assumed that the intermediate aquifer is associated with the top of the sand unit observed at an approximate depth of 35 feet bgs. Soil samples were not collected at depths greater than 30 feet bgs.

Soil samples collected during the 2008 site investigation did not include analysis for pH. Therefore, to evaluate the soil component of groundwater ingestion exposure pathway for metals, the most conservative ROs from Appendix B: Tables C and D were used for comparison to the concentrations of arsenic, chromium, and lead in the soil samples collected and analyzed.

Based upon comparison to these objectives, five of the sixteen soil samples collected contained concentrations of COCs that exceeded the Tier 1 ROs for the soil component of the groundwater ingestion pathway. The two constituents of concern that were identified were benzene and ethylbenzene.

The extent of impact for the soil component of the groundwater ingestion exposure pathway is illustrated on Figure 6-3.

6.3.1 Exceedance of Class II Objectives

The benzene concentrations in samples B-846 (8.5-9.5 feet bgs), B-846 (10.0-11.0 feet bgs), B-846 (20.0-21.0 feet bgs), B-847 (22.0-23.0 feet bgs), and B-849 (16.0-17.0 feet bgs) exceeded the Class II objectives for the soil component of groundwater ingestion. The reported concentrations were 0.438 mg/kg, 0.205 mg/kg, 3.16 mg/kg, 1.44 mg/kg and 1.21 mg/kg, respectively, compared to the Class II RO of 0.17 mg/kg.

An ethylbenzene concentration of 62.8 mg/kg exceeded the Class II RO of 19 mg/kg at sample location B-847 (22.0-23.0 feet bgs). No other samples were identified to exceed the Class II objectives for the soil component of groundwater ingestion exposure pathway.

Table 6-3 provides a summary of the analytical results compared to the Class II ROs.

The exceedances of benzene and ethylbenzene as compared to the Class II ROs indicate that the Soil Component to Groundwater pathway is a concern and is to be further evaluated in the Tier 2 evaluation presented in Section 7.

6.4 INDOOR INHALATION EXPOSURE PATHWAY

Soil gas sampling was performed on October 15, 2008, at the Site. Three soil gas samples were collected during the event. The sample locations are illustrated on Figure 6-4. The samples were analyzed for volatile organic compounds, naphthalene, and 1,1-difluoroethane (leak detection chemical). The soil gas analytical data from the three samples were compared to the Soil Gas ROs for the Indoor Inhalation Exposure Route – Diffusion and Advection provided in 35 IAC Part 742, Appendix B, Table H. The

comparison indicated that the soil gas concentrations did not exceed the soil gas ROs; therefore, the indoor inhalation pathway is not a concern at this Site. Table 5-3 provides a summary of the soil gas analytical results compared to the ROs.

6.5 SOIL SATURATION AND SOIL ATTENUATION CAPACITY EVALUATION

The concentrations of organic COCs detected in the soil samples collected from the Site were compared to the soil saturation limits in 35 IAC Part 742 Appendix A, Table A for constituents with melting points less than 30°C. The comparison of analytical results to the soil saturation limits is presented in Table 6-4. The only constituents with melting points less than 30°C are benzene, ethylbenzene, toluene, and total xylenes. The soil analytical results for these four parameters were all below the respective soil saturation limit ROs.

In accordance with 35 IAC Part 742.305(b), the sum of the organic COCs was calculated for each of the sixteen soil samples collected. The sum of the organic compounds was then compared to the natural organic carbon fraction (*foc*) default values provided in Part 742.215 to evaluate soil attenuation capacity. The default value of 6,000 mg/kg for soil within the top meter and 2,000 mg/kg for soils below one meter were used. The comparison is presented in Table 6-4. None of the samples were found to exceed the default soil attenuation capacity values.

6.6 GROUNDWATER INGESTION EXPOSURE PATHWAY

Groundwater samples collected onsite were analyzed for BTEX, PAHs, total cyanide, and total RCRA metals over the last nine quarterly groundwater sampling events. No BTEX or PAHs were detected in the groundwater sampling conducted. Barium and cyanide were detected and the analytical results were compared to the Section 742. Appendix B: Table E Tier I Groundwater ROs for the Class II Groundwater Component of the Groundwater Ingestion Route. Neither barium nor cyanide exceeded Class II Groundwater Ingestion ROs for the Site; therefore, the groundwater ingestion pathway is not a concern at this Site.

Although not applicable, the evaluation also noted that these constituents did not exceed Class I Groundwater Ingestion ROs.

To evaluate groundwater in the immediate area of the Site and the potential for future migration of contaminants onto the Site, groundwater samples collected from offsite wells were also examined. As discussed in Section 5.3, with the exception of Well UMW-127, BTEX and PAHs were not detected in groundwater in the surrounding offsite wells. Well UMW-127, located to the southeast of the Site, indicated the presence of benzene, acenapthene, and naphthalene, but at concentrations below Class II Groundwater Objectives and the groundwater flow direction in the area of this well is not towards the Site. Inorganics (barium, cyanide, and chromium) were detected in one or more of the surrounding offsite wells; however, none of the samples collected from surrounding wells exceeded Class II Groundwater Objectives; therefore, groundwater ingestion is not a pathway of concern at this Site.

The groundwater analytical results for monitoring well UMW-119 obtained for the previous two years are provided on Table 5-4. The April 2020 groundwater analytical results for wells in the surrounding area are provided on Table 5-5. Quarterly groundwater reports for previous sampling events completed at the former Champaign MGP and adjacent properties are accessible through the IEPA.

6.7 HORIZONTAL AND VERTICAL EXTENT OF IMPACT

Subsurface soil impact is present across a portion of the Site. Soil samples collected during the site investigation were identified to exceed Tier 1 ROs for:

the construction worker soil inhalation pathway, and
 the soil component of groundwater ingestion exposure pathways.
 A summary of the Tier 1 exceedances by location and exposure route is provided on Table 6-5.

6.7.1 0-10 foot Depth Interval

The soil samples with concentrations exceeding the Tier 1 ROs for the construction worker inhalation and soil component of groundwater ingestion were primarily at depths greater than 10 feet bgs. The only exception was the soil sample collected at probehole location B-846 from a depth of 8.5 to 9.5 feet bgs where total xylene and naphthalene were detected at concentrations exceeding the Tier 1 ROs for soil inhalation for the construction worker exposure pathway. Benzene was the only COC in the sample exceeding the Tier 1 RO for the soil component of the groundwater ingestion exposure pathway. All other COCs in samples collected from the upper 10 feet of soil on the Site were below the other applicable exposure pathway Tier 1 ROs.

6.7.2 Greater than 10 foot Depth Interval

In the depth interval between 10 and 20 feet bgs, only two samples obtained at the Site had concentrations reported above a Tier 1 RO. These samples included B-846 at a depth of 10 to 11 feet bgs, and B-849 at a depth of 16-17 feet bgs. Tier 1 ROs for the construction worker inhalation exposure pathway and the soil component of the groundwater ingestion exposure pathway for Class II groundwater were exceeded in these samples. Benzene was detected above the numeric RO for the residential inhalation exposure pathway in the sample from B-849; however, this depth is greater than 10 feet bgs and soil gas sampling has been conducted at this Site and indicated no exceedances of Tier 1 ROs for soil gas for the residential exposure pathway.

The majority of the soil impact at the Site was observed at or below a depth of 20 feet bgs, generally confined to a discrete interval between 20 and 23 feet bgs. Impacts were observed in samples collected from probehole locations B-803 (21-22 feet bgs), B-846 (20-21 feet bgs), and B-847 (22-23 feet bgs). The Tier 1 ROs were exceeded for the construction worker inhalation exposure pathway and the soil component of the groundwater ingestion exposure pathway for Class II groundwater.

Samples collected from locations B-803 and B-847 at a depth of 29 to 30 feet bgs, which were collected below the samples discussed in the previous paragraph where impacts were identified, did not exceed Tier 1 ROs for any of the COCs.

The probehole locations where the COCs were reported at concentrations exceeding Tier 1 ROs are shown on Figures 6-1 through 6-3.

6.8 RECOGNIZED ENVIRONMENTAL CONDITIONS

The recognized environmental conditions (RECs) on the Site located at 507 East Washington Street consist of the soil impacts encountered during the site investigation activities completed in 2008. The impacts observed indicated that the Construction Worker Soil Inhalation pathway and the Soil Component to Groundwater Ingestion pathway were pathways of concern in a Tier 1 evaluation and will be evaluated further in Section 7.

The source of impacts encountered at intermediate or greater depths, where the Tier 1 RO exceedances were observed, is not known. No operations associated with the former Champaign MGP Site were conducted on the 507 East Washington Street Site.

7.0 TIER 2 EVALUATION

As permitted in IAC Sections 742.600 and 742.900, Tier 2 evaluations have been performed using site-specific input parameters to establish Tier 2 ROs for the East Washington Street Site. At this time, Ameren has elected to perform Tier 2 evaluations for the construction worker soil inhalation exposure pathway for outdoor air, and Tier 2 evaluations for the soil component of groundwater ingestion pathway. The following sections summarize the Tier 2 evaluation results.

7.1 SOIL INHALATION

Tier 2 ROs for the soil inhalation exposure pathway were calculated using the SSL equations provided in 35 IAC Part 742, Appendix C, Table A. Tier 2 ROs were calculated for benzene, ethylbenzene, toluene, and total xylenes. Although the residential and industrial/commercial scenarios did not present a pathway of concern for soil inhalation, for informational purposes, Tier 2 ROs for carcinogenic compounds were calculated using the S6 and S7 equations for residential, industrial/commercial, and construction worker exposures. The Tier 2 ROs for non-carcinogenic compounds were calculated using the S4 and S5 equations for residential, industrial/commercial and construction worker exposures. The calculated ROs are included in Table 7-1. The input parameters for the Tier 2 calculations consisted of the default values provided in 35 IAC Part 742 Appendix C, Table B. The Tier 2 calculations and input parameters are included in Appendix F.

7.2 SOIL COMPONENT OF GROUNDWATER INGESTION

Two COCs were identified to exceed Tier 1 ROs for the soil component of groundwater ingestion exposure pathway; benzene and ethylbenzene. Tier 2 evaluations were performed using the S17 through S25 equations for the calculation of Tier 2 ROs for the COCs without the inclusion of migration through the groundwater phase. A summary of the calculated Tier 2 ROs is provided in Table 7-1.

Concentrations of the COCs were identified to exceed the calculated Tier 2 ROs developed using the SSL equations. The shallow groundwater at the Site flows in general to the north, towards residential areas north of the Site, and the intermediate groundwater flows in general to the southeast, under the railroad property and back onto the former Champaign MGP property to the south. As the exact depth at which the contribution to the intermediate aquifer begins is not known, to be conservative in calculating the migration of constituents, it is assumed that exceeding concentrations contribute to the shallow groundwater, which flows to the north. Further Tier 2 evaluations were performed incorporating the migration of the constituents through the groundwater phase. The calculations were performed using the SSL / R26 equations described 35 IAC Part 742.715 in order to model a projected migration distance through groundwater. The use of the Tier 2 equations incorporates a migration distance for the constituent to attenuate in the shallow groundwater zone. There is currently no groundwater impact on the East Washington Street Site. Table 7-2 provides a summary of the estimated distances required for each constituent to attenuate to their respective groundwater quality standard. Figure 7-1 depicts the distances required for attenuation. The Tier 2 calculation worksheets are provided in Appendix F.

7.2.1 Surface Water

A distance to meet surface water quality criteria for the soil component of groundwater ingestion exposure pathway was also calculated for the Site. The nearest surface water in the vicinity of the Site is Boneyard Creek, located approximately 1,700 feet west-southwest of the Site at its nearest point. The Tier 2 calculation worksheets are provided in Appendix F. The maximum calculated distance for this exposure pathway was 63 feet.

7.3 ANALYTICAL DATA COMPARISON TO TIER 2 REMEDIATION OBJECTIVES

The soil analytical results from the site investigation were compared to the calculated Tier 2 ROs. Concentrations of COCs that exceeded Tier 2 ROs were identified to exceed the construction worker soil inhalation and soil component of groundwater ingestion exposure pathways. This comparison is presented on Tables 7-3 and 7-4. The sample locations that exceed Tier 2 ROs are identified on Figure 7-2.

7.3.1 Construction Worker Soil Inhalation (Outdoor Air)

Five samples contained naphthalene and total xylenes concentrations that exceeded the Tier 2 ROs for soil inhalation for the construction worker exposure. These five samples are identified on Table 7-3 and are as follows: B-803 (21.0-22.0 feet bgs), B-846 (8.5-9.5 feet bgs), B-846 (10.0-11.0 feet bgs), B-847 (22.0-23.0 feet bgs), and B-849 (16.0-17.0 feet bgs).

The exceedances of naphthalene and total xylenes in subsurface soil will be addressed through exclusion of the pathway, as discussed in Section 8.

7.3.2 Soil Component of Groundwater Ingestion

Two COCs, benzene and ethylbenzene, exceed the calculated Tier 2 ROs for the soil component of groundwater ingestion exposure pathway.

Benzene was reported at concentrations exceeding the RO for Class II groundwater in five soil samples as shown Table 7-4, to include: B-846 (8.5-9.5 feet bgs), B-846 (10.0-11.0 feet bgs), B-846 (20.0-21.0 feet bgs), B-847 (22.0-23.0 feet bgs), and B-849 (16.0-17.0 feet bgs). The calculated Tier 2 value of 0.071 mg/kg for benzene was less than the Tier 1 RO of 0.17 mg/kg, the Tier 1 value was used for the comparison.

Ethylbenzene, at a concentration of 62.8 mg/kg in sample B-847 (22.0-23.0 feet bgs) exceeds the Tier 2 RO of 49.29 mg/kg. No other COCs exceed the Tier 2 ROs.

7.3.3 Soil Component to Groundwater Ingestion – Migration Calculation

Concentrations of benzene and ethylbenzene exceed the Tier 2 RO for the soil component to the groundwater ingestion pathway. Tier 2 evaluations were performed to calculate the modeled downgradient migration distance from the location of soil impact. The results of the Tier 2 migration calculations are summarized in Table 7-2. The maximum calculated migration distance for benzene is 86 feet. The calculated migration distance for ethylbenzene is 13 feet. These distances are shown in Figure 7-1.

8.0 PROPOSED PATHWAY EXCLUSION

Ameren intends to obtain a Focused NFR letter for the Site located at 507 East Washington Street. Exposure pathways will be excluded through the use of Tier 2 evaluations and institutional controls. No soil excavation will be performed on this Site. The following sections provide descriptions of how the COCs for each exposure pathway will be addressed in order to meet the requirements for receipt of a Focused NFR letter.

8.1 SOIL INGESTION EXPOSURE PATHWAY

The analytical data collected during the site investigation activities indicate that there are no COCs on the East Washington Street Site with concentrations that exceed the Tier 1 ROs for soil ingestion. Therefore, no actions are necessary to exclude this exposure pathway.

8.2 SOIL INHALATION EXPOSURE PATHWAY

Five soil samples collected from the Site were found to exceed the Tier 2 ROs for the soil inhalation exposure pathway for the construction worker scenario. One of the samples was in the 3 to 10-foot depth interval, and the remaining samples were at depths greater than 10 feet bgs. None of the soil samples collected in the upper three feet of soil exceeded their respective ROs . The following subsections describe how the exposure pathway will be addressed for each depth interval.

8.2.1 Soil Impact from 3 to 10 Feet

One soil sample collected from a depth of 8.5 to 9.5 feet bgs exceeded the Tier 2 ROs for the soil inhalation exposure pathway in the upper 10 feet of soil. The sample contained a naphthalene concentration exceeding the ROs for construction worker exposure. The exceedance will be addressed through the incorporation of an institutional control. The institutional control will require notification to construction workers of the presence of COCs and the potential for exposure, should construction activities take place within the impacted area. Additional details regarding the notification are provided in Section 9 of this report.

8.2.2 Soil Impact Below 10 Feet

Five soil samples collected at depths below 10 feet bgs exceeded the Tier 2 ROs for the soil inhalation exposure pathway. These samples contained concentrations of COCs that exceeded ROs for construction worker exposure, as described in Section 6.2 of this report. The impacted soil at depths greater than 10 feet bgs will be excluded by institutional control requiring construction worker notification. The institutional control will require notification to construction workers of the presence of COCs and the potential for exposure should construction activities take place within the impacted area.

8.3 INDOOR INHALATION EXPOSURE PATHWAY

The analytical data from soil gas sampling performed on the Site indicate that there are no COCs exceeding the ROs for the indoor inhalation exposure pathway. Additionally, as presented in Table 5-5, groundwater collected from the wells screened in the shallow aquifer indicated no exceedance of the indoor inhalation ROs listed in 35 IAC Part 742, Table H. Benzene, ethylbenzene, and naphthalene were detected at concentrations that would exceed the diffusion and advection groundwater indoor inhalation ROs (Table H); however, these samples were at depths of up to 30 feet bgs and there is a shallow aquifer body between these concentrations and any future buildings if migration were to occur. Therefore, no further actions are necessary to exclude this exposure pathway.

8.4 SOIL COMPONENT OF GROUNDWATER INGESTION EXPOSURE PATHWAY

Five soil samples were identified to exceed Tier 2 ROs onsite for the soil component of groundwater ingestion exposure pathway, as discussed in Section 6.3 of this report. However, no BTEX or PAHs, including benzene and ethylbenzene, have been detected in groundwater below the Site or in the adjacent areas, indicating that migration to groundwater from soil at the Site is not occurring. There have been no industrial activities at this or the neighboring former MGP property for more than 30 years. As no BTEX or PAHs have been detected in groundwater onsite, migration of constituents in groundwater in the area of the Site is not significant and the Tier 2 calculation of migration distance is an overestimation.

Regardless, assuming factors would change and migration from soil to groundwater would become a significant pathway in the future, the nearest point of compliance is estimated to be 100 feet from the source and, as the Tier 2 modeling indicates, benzene and ethylbenzene will meet groundwater objectives prior to reaching compliance points. Due to the above factors, no remedial action is required to address the Soil Component to Groundwater Pathway.

Although the data does not indicate that it is required, Ameren will voluntarily implement a groundwater restriction upon the Site, as discussed in Section 8.

8.5 GROUNDWATER INGESTION EXPOSURE PATHWAY

Groundwater monitoring has been performed on the East Washington Street Site since 2008. None of the samples collected from the monitoring well located on the property (UMW-119) have concentrations of COCs that exceed the Class II groundwater ROs. Further, none of the groundwater monitoring wells located on the adjacent Washington Street properties to the north of the former Champaign MGP property have concentrations of COCs exceeding groundwater ingestion objectives. And no BTEX or PAHs have been detected in groundwater at or north of the Site. Therefore, no further actions are necessary to exclude this exposure pathway. However, Ameren is electing to implement a restriction against the installation of drinking water wells on the Site to be protective.

9.0 SPECIAL CONDITIONS

The use of institutional controls (construction worker notification) will be implemented in order to obtain a Focused NFR letter for the Site. No surface soil impact (0 to 3 feet bgs) was identified, and only one soil sample within the 3 to 10 foot depth interval was identified to exceed Tier 1 ROs for construction worker exposure. Soil impact in exceedance of Tier 1 ROs for soil component of groundwater ingestion and construction worker exposure were identified at depths greater than 10 feet bgs. No soil excavation will be necessary at the property to meet the requirements to obtain a Focused NFR letter. However, the following special conditions are required for site closure.

9.1 INSTITUTIONAL CONTROLS

Institutional controls will be required for the Focused NFR letter for the East Washington Street Site. The institutional control to be implemented to achieve a Focused NFR letter will be for the notification of construction workers for potential exposure to subsurface impact. In addition, although not required by the investigation findings and Tier 2 evaluation, Ameren will implement a deed notice restricting the installation of drinking water wells on the Site.

The following subsections provide additional information about each of the institutional controls.

9.1.1 Construction Worker Notification

Soil samples with concentrations of COCs above Tier 1 ROs for the soil inhalation exposure pathway for the construction workers scenario were identified on the property. Therefore, compliance with construction worker notification and Occupational Safety and Health Administration (OSHA) worker protection standards will be applicable for the property. An institutional control will be required to ensure that construction workers are notified of conditions at the property that exceeded worker protection ROs, and that any future construction activities are conducted in accordance with applicable OSHA regulations pursuant to 29 CFR 1910.120. The construction worker notification will be required for any subsurface work that will be performed within the property boundaries at a depth of three feet or greater. Figure 9-1 illustrates the area that will require construction worker notification. Appendix G presents the planned ELUC for the Site.

9.1.2 Groundwater Environmental Land Use Control

To provide additional assurance in the event that migration of constituents from the soil to the groundwater would occur in the future and to further address the exceedance of the soil component of groundwater ingestion pathway ROs, groundwater at the remediation site will be prohibited from drinking water use. Ameren will implement an Environmental Land Use Control (ELUC) on the Site to prohibit the use of groundwater from beneath the Site for drinking water uses. Ameren will use the standard ELUC format developed by the IEPA. Site investigation activities were performed on the Ameren Site located at 507 East Washington Street in Champaign, Illinois. COCs were identified to exceed Tier 1 ROs in subsurface soils for the construction worker inhalation pathway and the soil component to groundwater ingestion pathway. No groundwater or indoor inhalation impact was identified during the site investigation activities. Tier 2 ROs for the soil inhalation and soil component of groundwater ingestion exposure pathways were calculated for the COCs. Concentrations of COCs exceeding the Tier 2 ROs were identified. Based on the results of these investigations, Ameren has elected to address the reported exceedances through the use of the following specific elements:

- Construction worker notification; and
- Self-implementation of an environmental land use control to prohibit groundwater use at the Site.

The soil inhalation exposure pathway and the soil component of groundwater ingestion pathway are effectively excluded through the use of the institutional controls. No exceedances of the ROs for the soil ingestion or groundwater ingestion exposure pathway were identified.

Ameren has met the requirements to address constituents (BTEX, PAHs, and heavy metals) possibly associated with the former Champaign MGP Site to the south of the Site boundary by investigating the Site and will be implementing institutional controls to control exposure to Site impacts. Therefore, no removal or treatment of the impacted media is considered necessary. Ameren is requesting a Focused NFR letter be issued for the property located at 507 East Washington Street.

11.0 **REFERENCES**

- PSC. (2008). Off-Site Investigation Report (OSIR)
- PSC. (2011). Groundwater Monitoring Update Quarter 2, 2011 Sampling Event and Shallow Groundwater Classification Field Hydraulic Conductivity Testing
- RAM. (2008). Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site, Champaign, Illinois

12.0 LICENSED PROFESSIONAL ENGINEER REVIEW

For those portions of the work performed before my involvement:

I have reviewed documentation of the prior site investigation activities and believe the documentation is suitable for compliance with 35 Ill. Adm. Code 740.

For those portions of the work performed after my involvement:

I attest that all the site investigation and proposed remedial actions, since my involvement, which are subject of this plan(s) or report(s) were performed under my direction, and this document and all attachments were prepared under my direction or reviewed by me, and to the best of my knowledge and belief, the work described in the plan and report has been designed or completed in accordance with the Illinois Environmental Protection Act (415 ILCS 5), 35 Ill. Adm. Code 740, and generally accepted engineering practices or principles of professional geology, and the information presented is accurate and complete.

Name:

Signature:

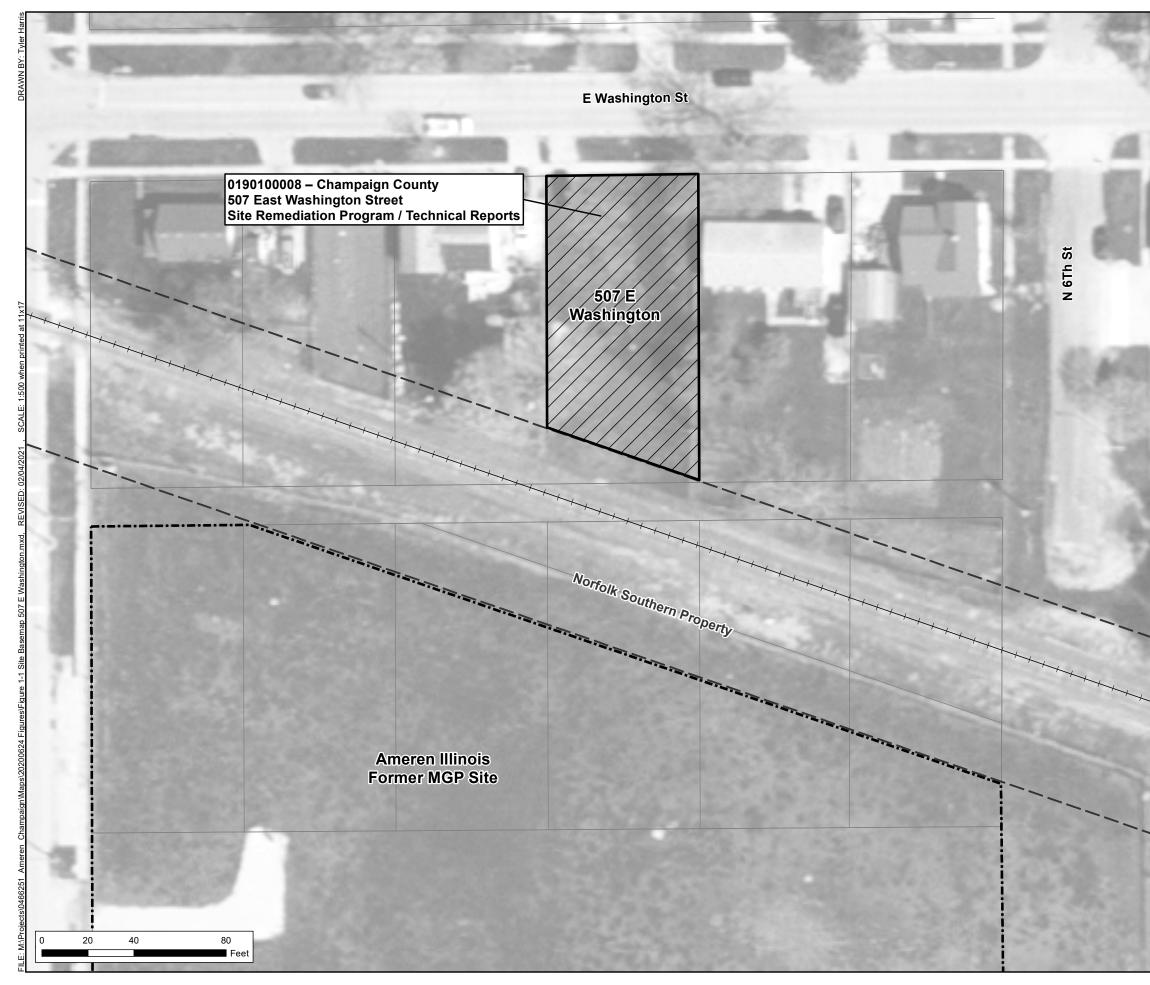
Alan Joseph Cork

Illinois Licensed Professional Engineer

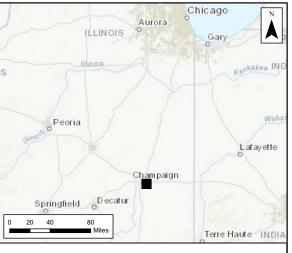
Date:

2021

License No.

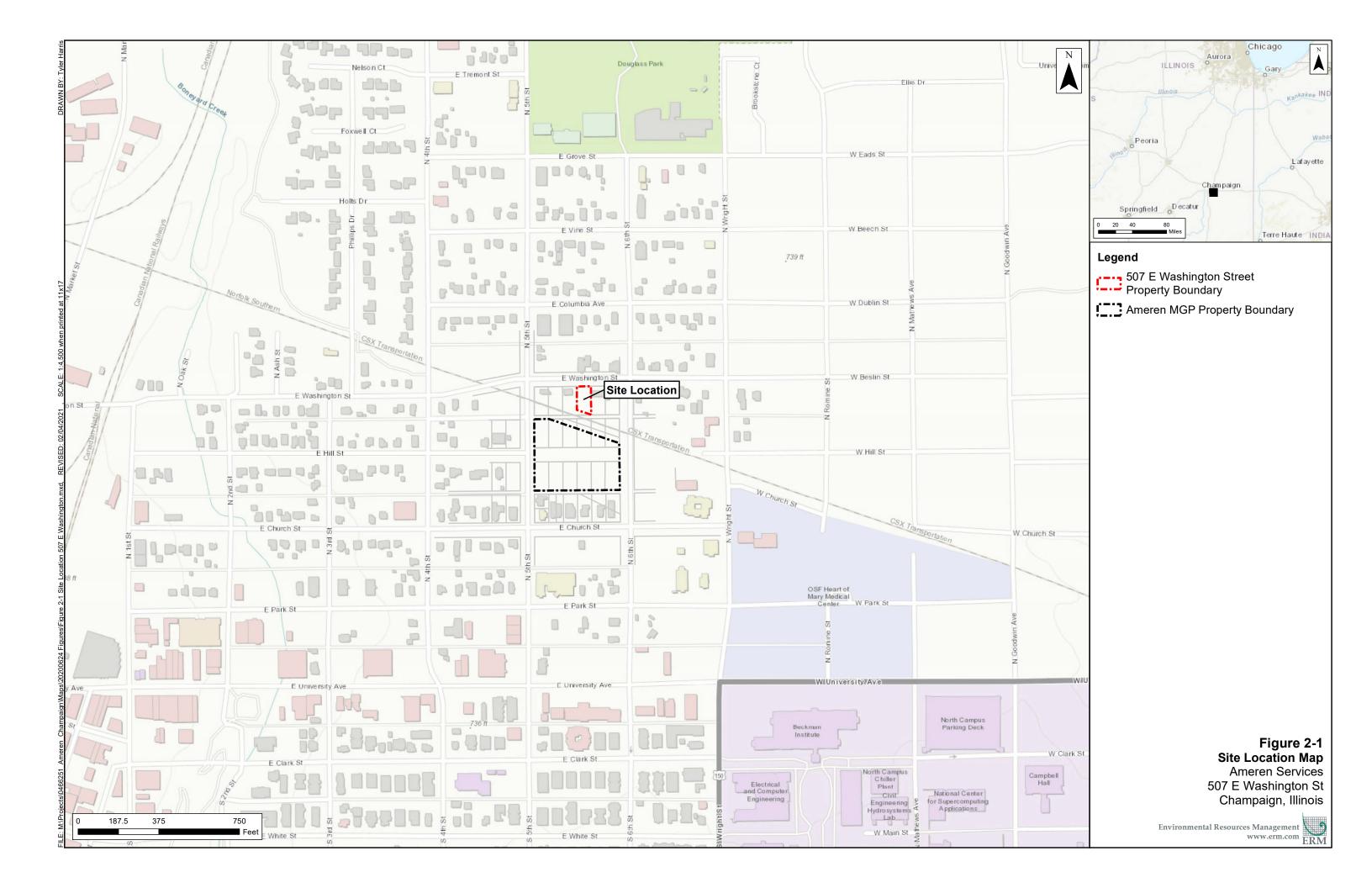

Expiration Date

11/30/2021


062-053938

Figures

Legend


- Ameren MGP Property Boundary
- Remediation Site Area
- – Norfolk Southern Property
- Hereil Railroad Centerline
- Parcel Lot Line

Notes:

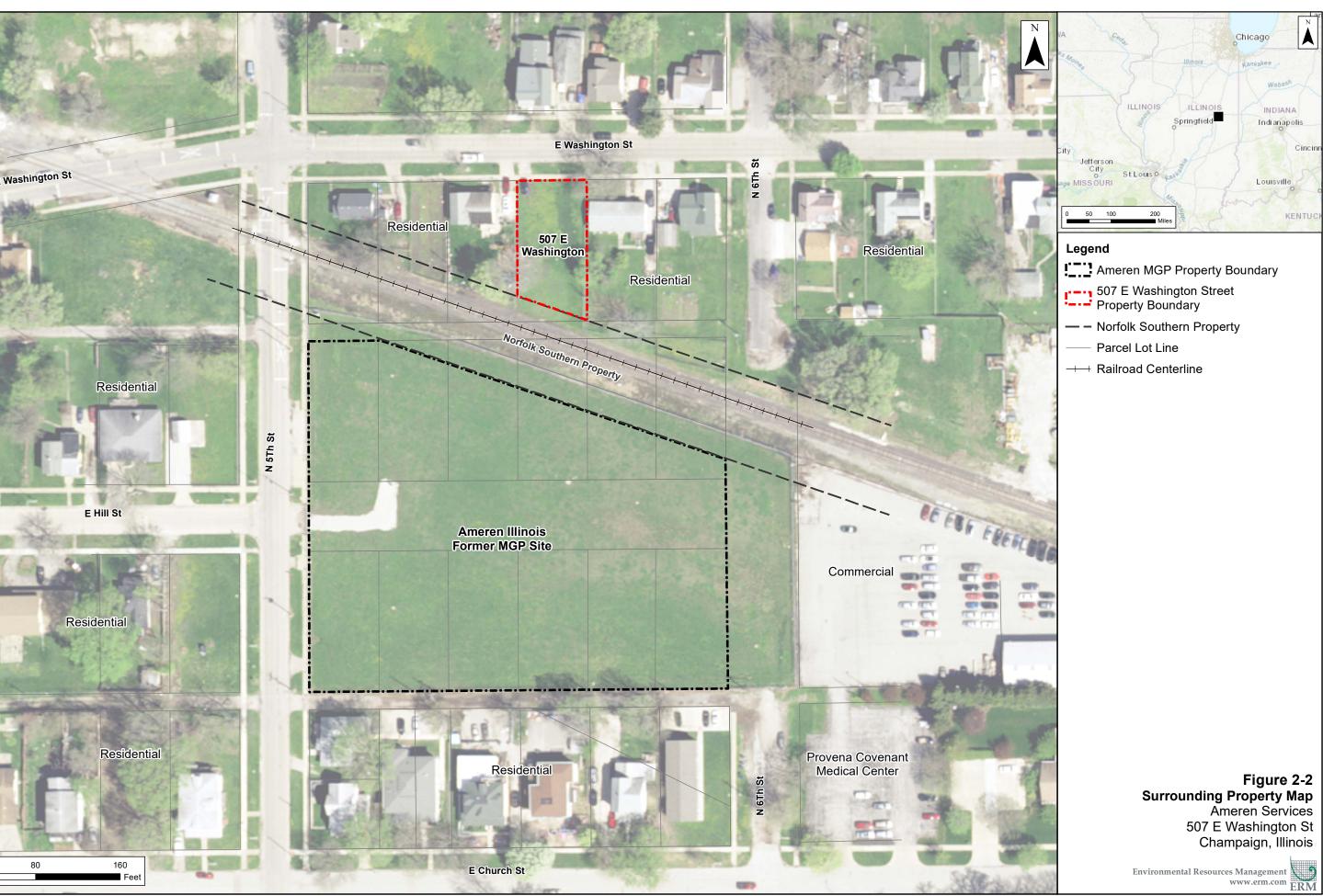
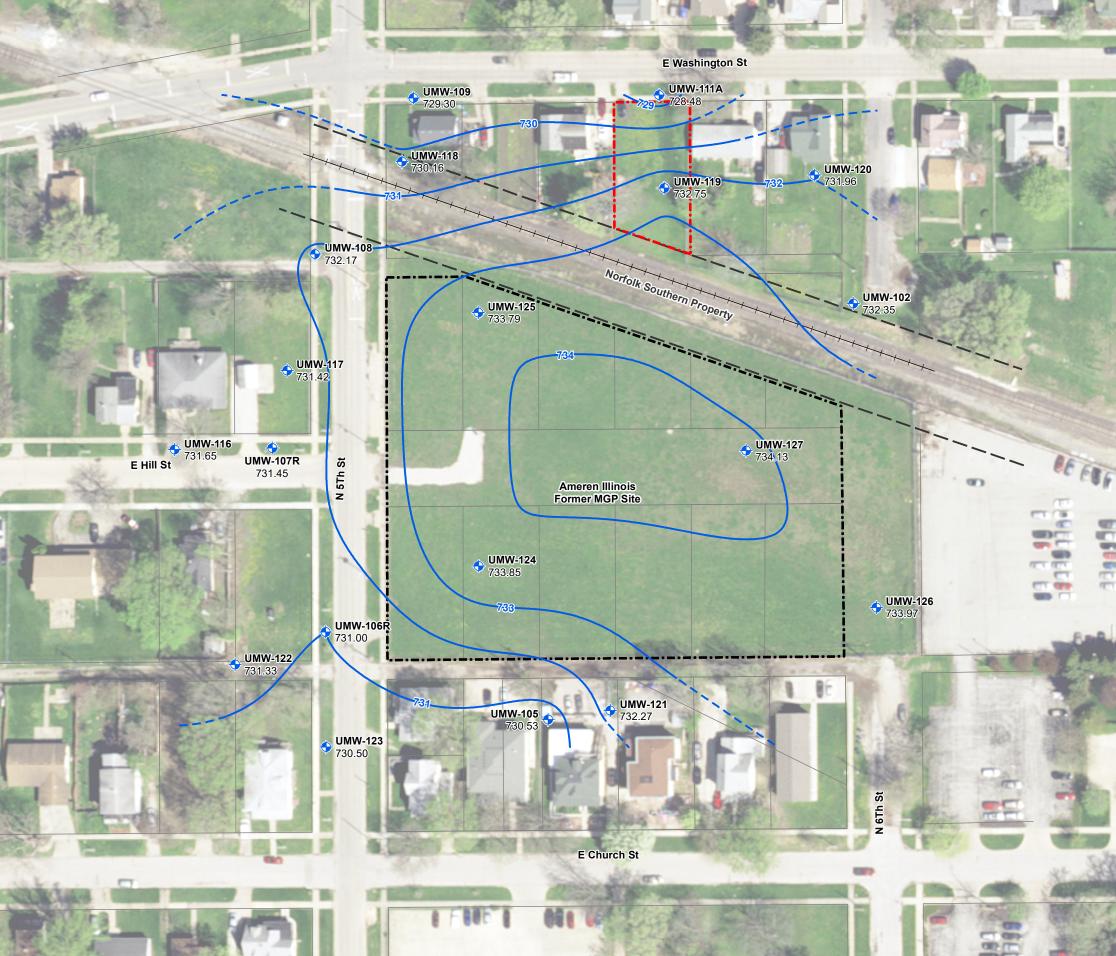

Parcel ID: 46-21-07-330-005 Area = 0.19 Acres

Figure 1-1 Site Base Map Ameren Services 507 E Washington St Champaign, Illinois

Chicago


Wabash

INDIANA Indianapolis

Louisville

Cincin

KENTUC

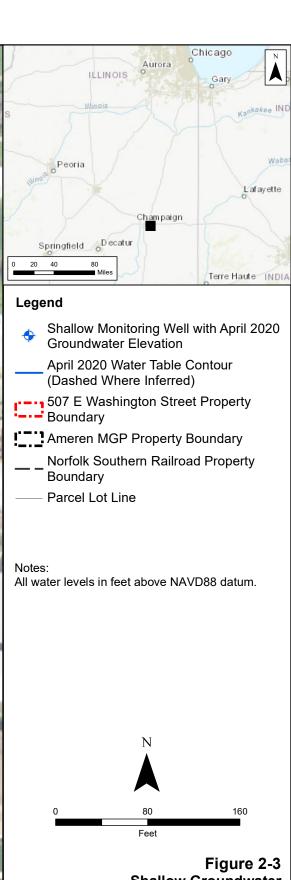
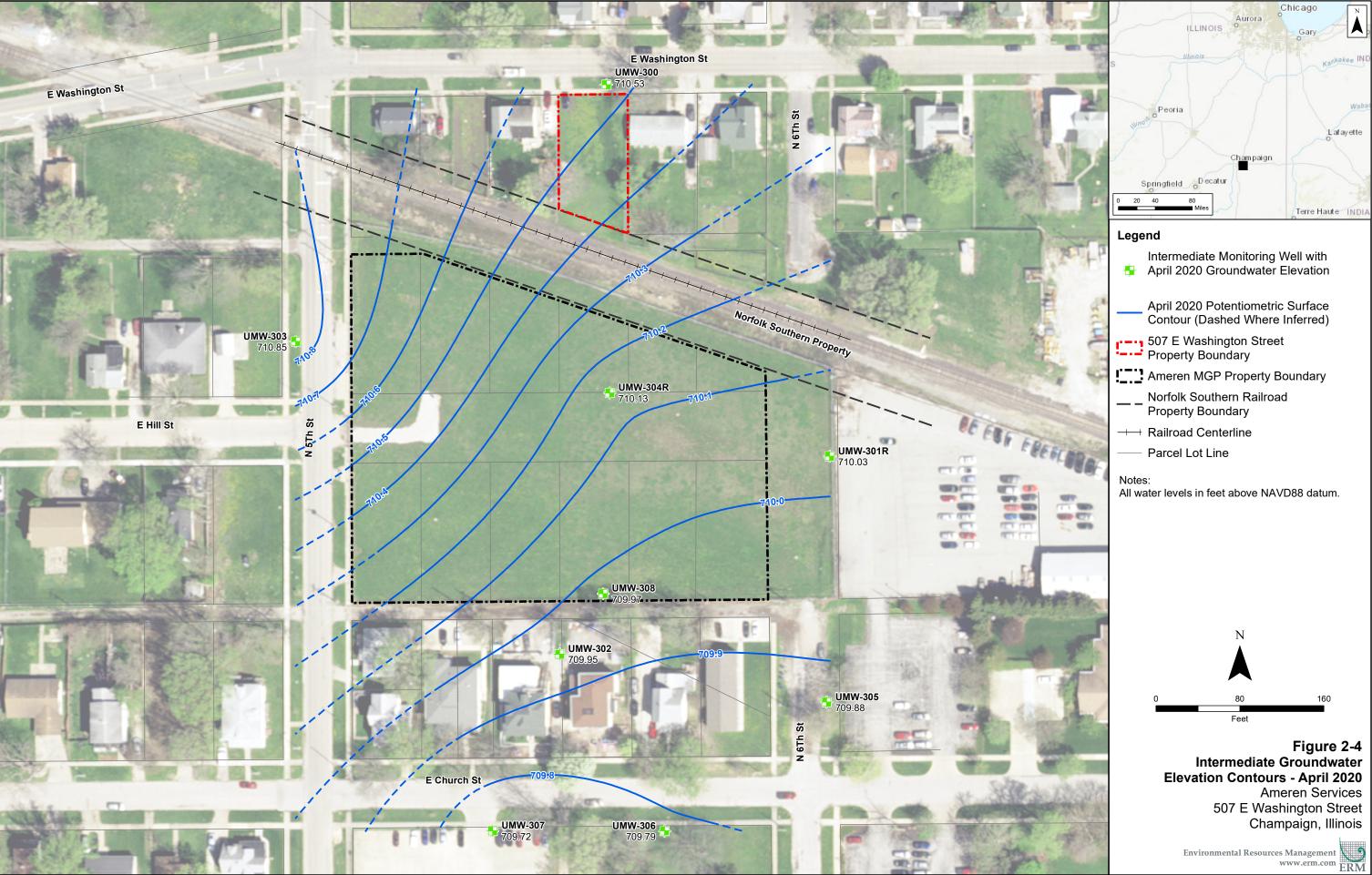
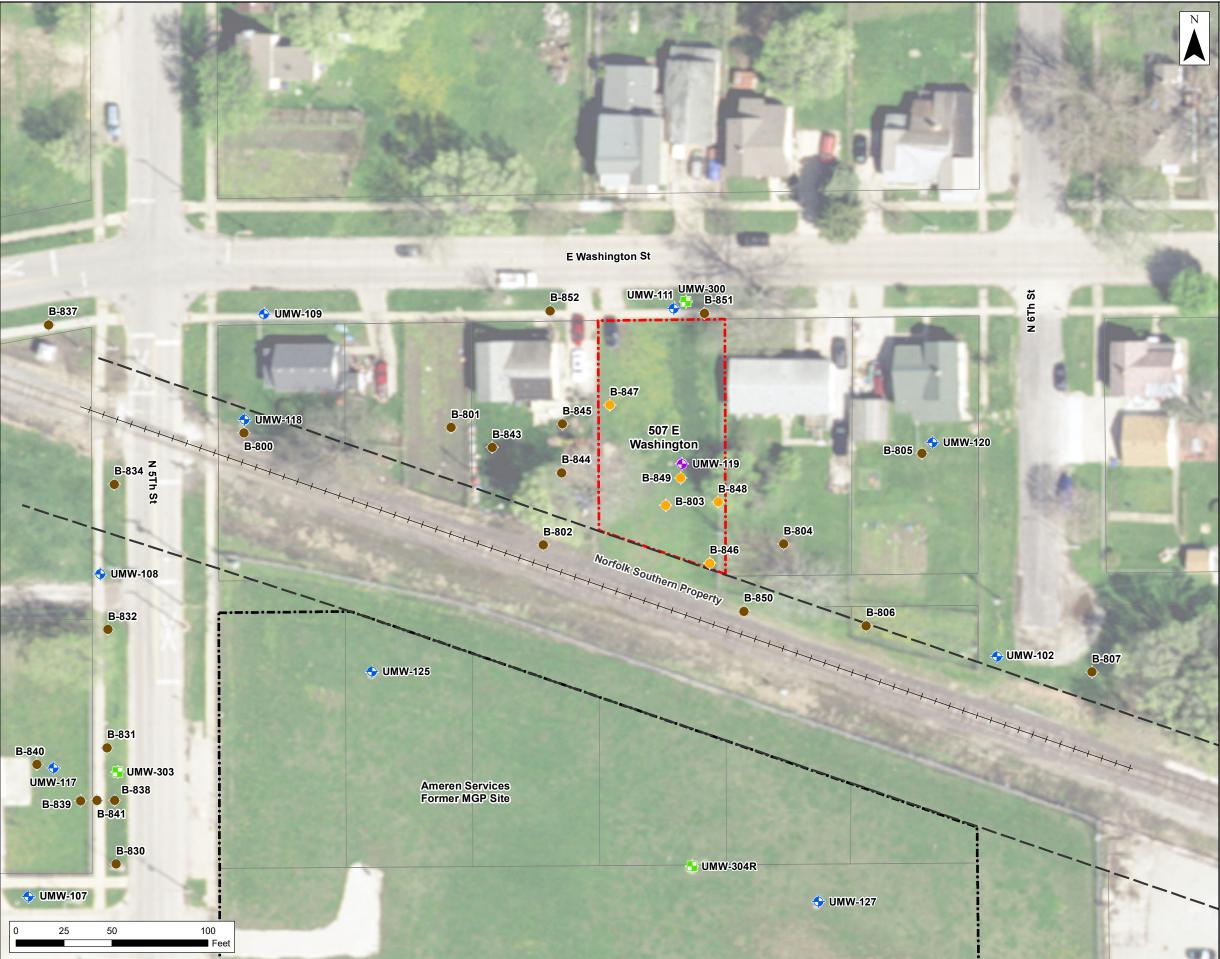
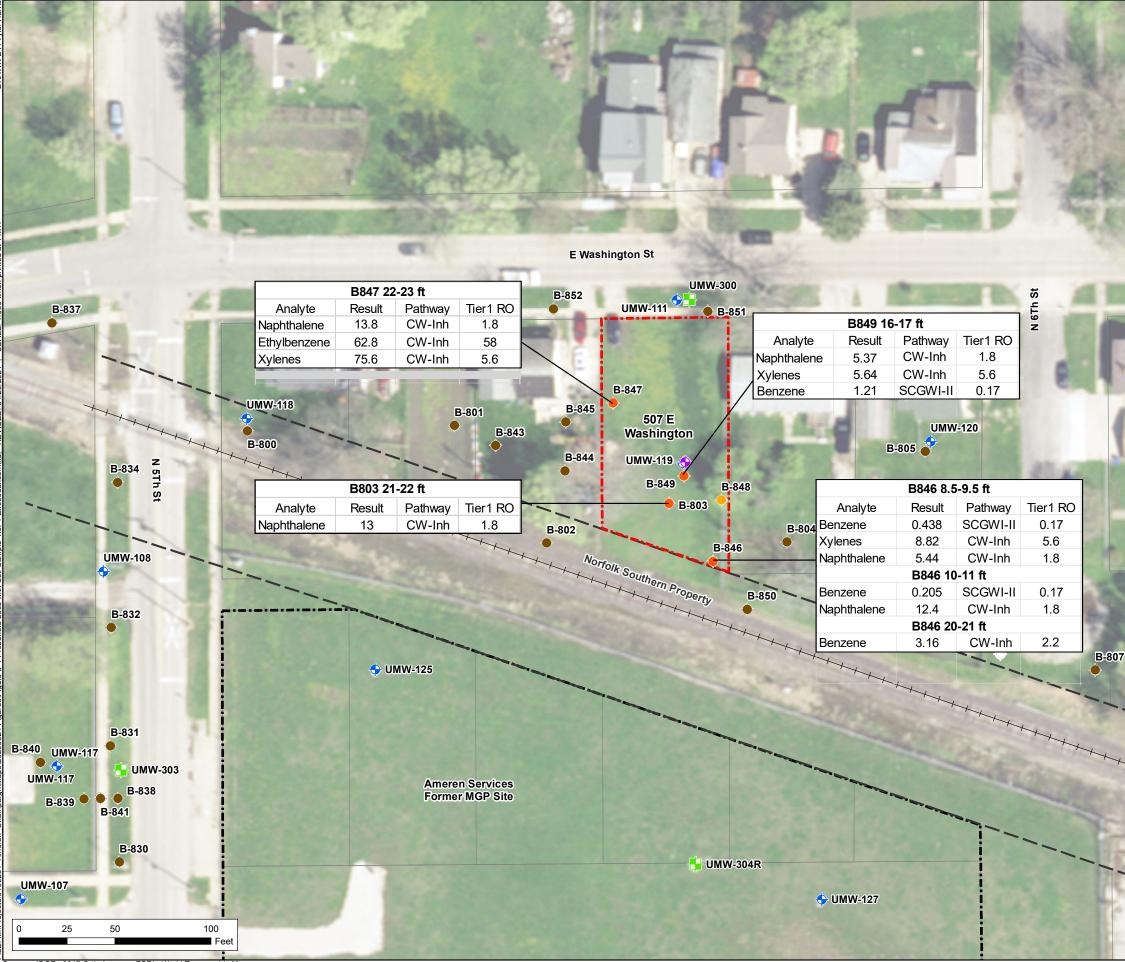




Figure 2-3 Shallow Groundwater Elevation Contours - April 2020 Ameren Services 507 E Washington Street Champaign, Illinois


Sources: IDOT - 2017 Orthoimagery; ESRI - World Topographic Map

ILLINOIS Aurora	Chicago
3 Winois	Kankakee IND
Peoria	Wabat Lafayette
Champa	~
0 20 40 80 Miles	Terre Haute INDIA
Legend	·

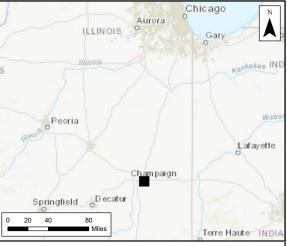
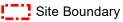

- Offsite Shallow Monitoring Well ♦ Onsite Shallow Monitoring Well
- Offsite Intermediate Monitoring + Well
- Offsite Soil Boring Location (2008) ۲
- Onsite Soil Boring Location (2008)
- Site Boundary
- Former MGP Property Boundary
- Norfolk Southern Railroad Property Boundary
- -+-+ Railroad Centerline
 - Parcel Lot Line

Figure 4-1 Probehole and Groundwater **Monitoring Well Locations** Ameren Services 507 E Washington Street Champaign, Illinois



Legend

- Onsite Soil Boring (2008) with
 Sample Exceeding Tier 1 Remediation Objective
- Offsite Soil Boring Location (2008)
- Onsite Soil Boring Location (2008)
- Onsite Shallow Monitoring Well
- Offsite Shallow Monitoring Well
- Offsite Intermediate Monitoring Well

- • • • • •
- Former MGP Property Boundary
- ____ Norfolk Southern Railroad Property Boundary
- Hereiling Hereiling
- Parcel Lot Line

Notes:

Tier 1 RO: IEPA TACO Tier 1 Remediation Objectives (ROs)

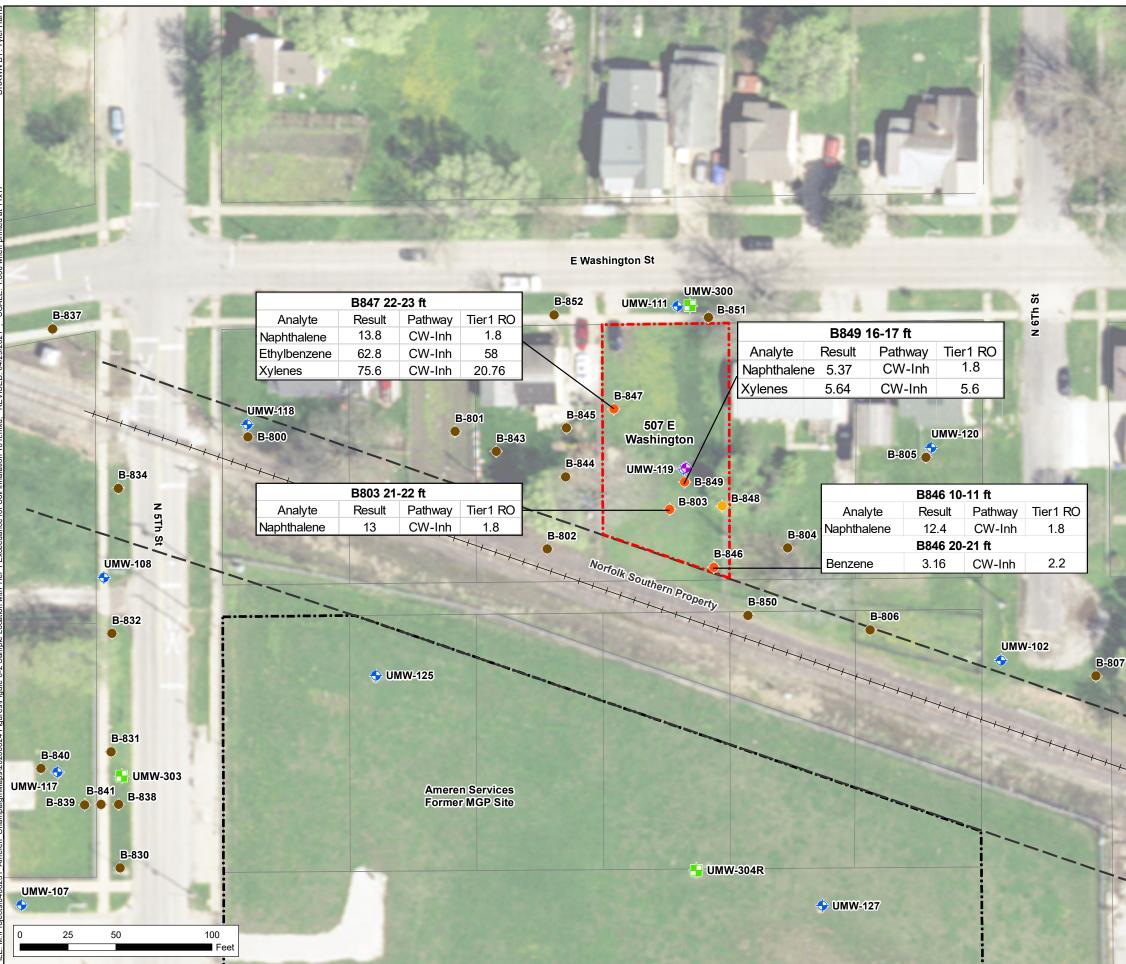
CW-Inh: Construction Worker Inhalation Exposure Pathway SCGWI-I/II: Soil Component of Groundwater Ingestion Exposure Pathway, Class 1 or Class 2 groundwater

Figure 5-1 Probehole Locations with Soil Samples Exceeding Tier 1 Remediation Objectives Ameren Services 507 E Washington Street Champaign, Illinois

ILLINOIS O	Chicago
S	Kankakee IND
Ninos o Peoria	Waba Lafayette
Champai	~
Springfield	
0 20 40 80	Terre Haute INDIA

Legend

- Onsite Soil Boring (2008) with
 Sample Exceeding Tier 1 Remediation Objective
- Onsite Soil Boring Location ۲ (2008)
- Onsite Shallow Monitoring Well \bullet
- Offsite Soil Boring Location (2008)
- Offsite Shallow Monitoring Well
- Offsite Intermediate Monitoring -Well
- Site Boundary
- Former MGP Property Boundary
- Norfolk Southern Railroad **Property Boundary**
- -+-+ Railroad Centerline
- Parcel Lot Line


Notes:

Tier 1 RO: IEPA TACO Tier 1 Remediation Objectives (ROs)

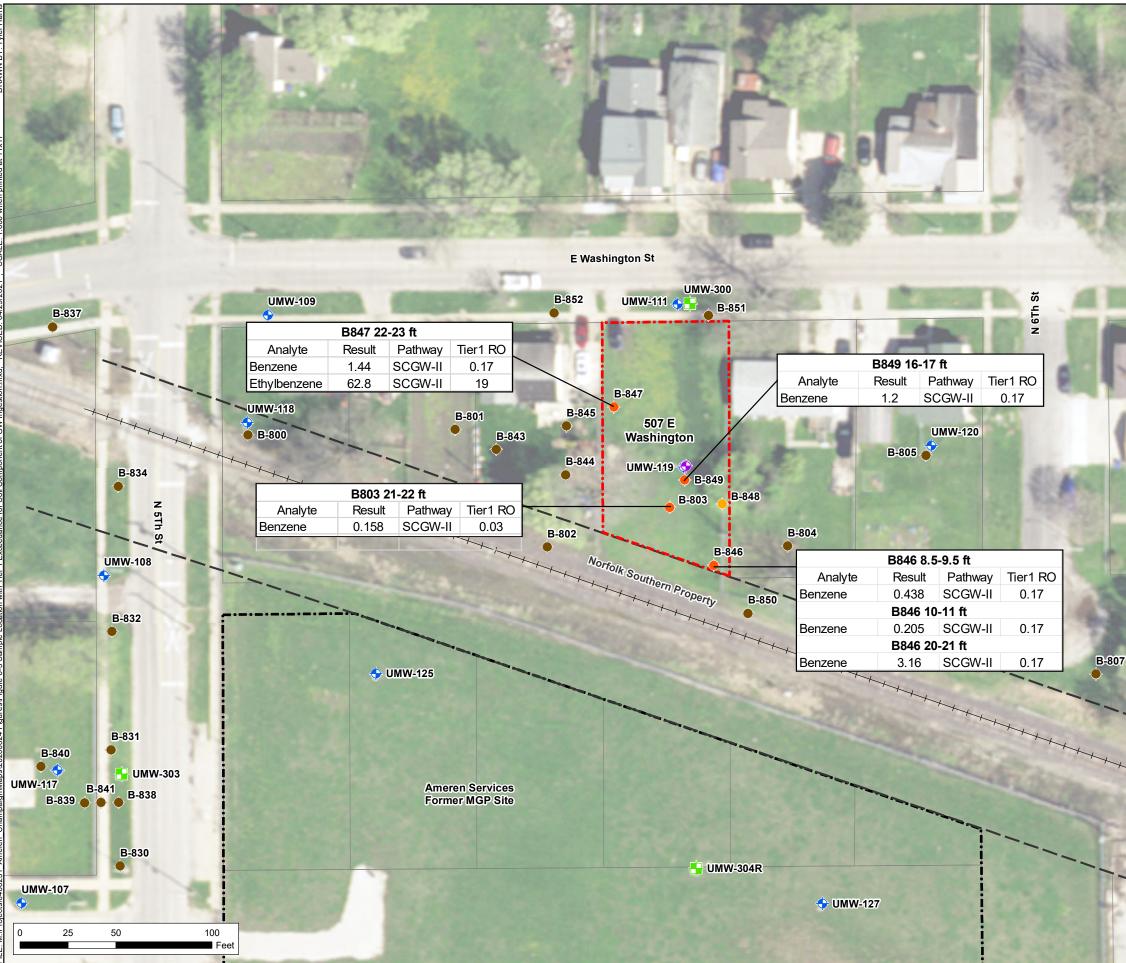
CW-Inh: Construction Worker Inhalation Exposure Pathway

Figure 6-1 Sample Location with Soil Samples **Exceeding Tier 1 Remediation Objective** for Soil Inhalation 3 to 10 Feet BGS Ameren Services 507 E Washington Street Champaign, Illinois

ILLINOIS	Chicago Gary
S	Kankakee IND
Peoria	Wabas Lafayette
Champai	~
Springfield Decatur 0 20 40 80 Miles Miles Miles	Terre Haute INDIA

Legend

- Onsite Soil Boring (2008) with • Sample Exceeding Tier 1 Remediation Objective
- Onsite Soil Boring Location ۲ (2008)
- ♦ Onsite Shallow Monitoring Well
- Offsite Soil Boring Location (2008)
- Offsite Shallow Monitoring Well
- Offsite Intermediate Monitoring + Well
- Site Boundary
- Former MGP Property Boundary
- Norfolk Southern Railroad Property Boundary
- Hereil Railroad Centerline
- Parcel Lot Line


Notes:

Tier 1 RO: IEPA TACO Tier 1 Remediation Objectives (ROs)

CW-Inh: Construction Wokery Inhalation Exposure Pathway

Figure 6-2 Sample Locations with Soil Samples Exceeding Tier 1 Remediation Objective for Soil Inhalation >10 Feet BGS **Ameren Services** 507 E Washington Street Champaign, Illinois

Aurora	Chicago N
ILLINOIS 9	Gary
S	Kankakee IND
Peoria	Wabat
Champa	Lafayette
Springfield Decatur	
0 20 40 80	Terre Haute INDIA

Legend

- Onsite Soil Boring (2008) with • Sample Exceeding Tier 1 **Remediation Objective**
- **Onsite Soil Boring Location** (2008)
- Onsite Shallow Monitoring Well •
- Offsite Soil Boring Location (2008)
- Offsite Shallow Monitoring Well
- Offsite Intermediate Monitoring Well

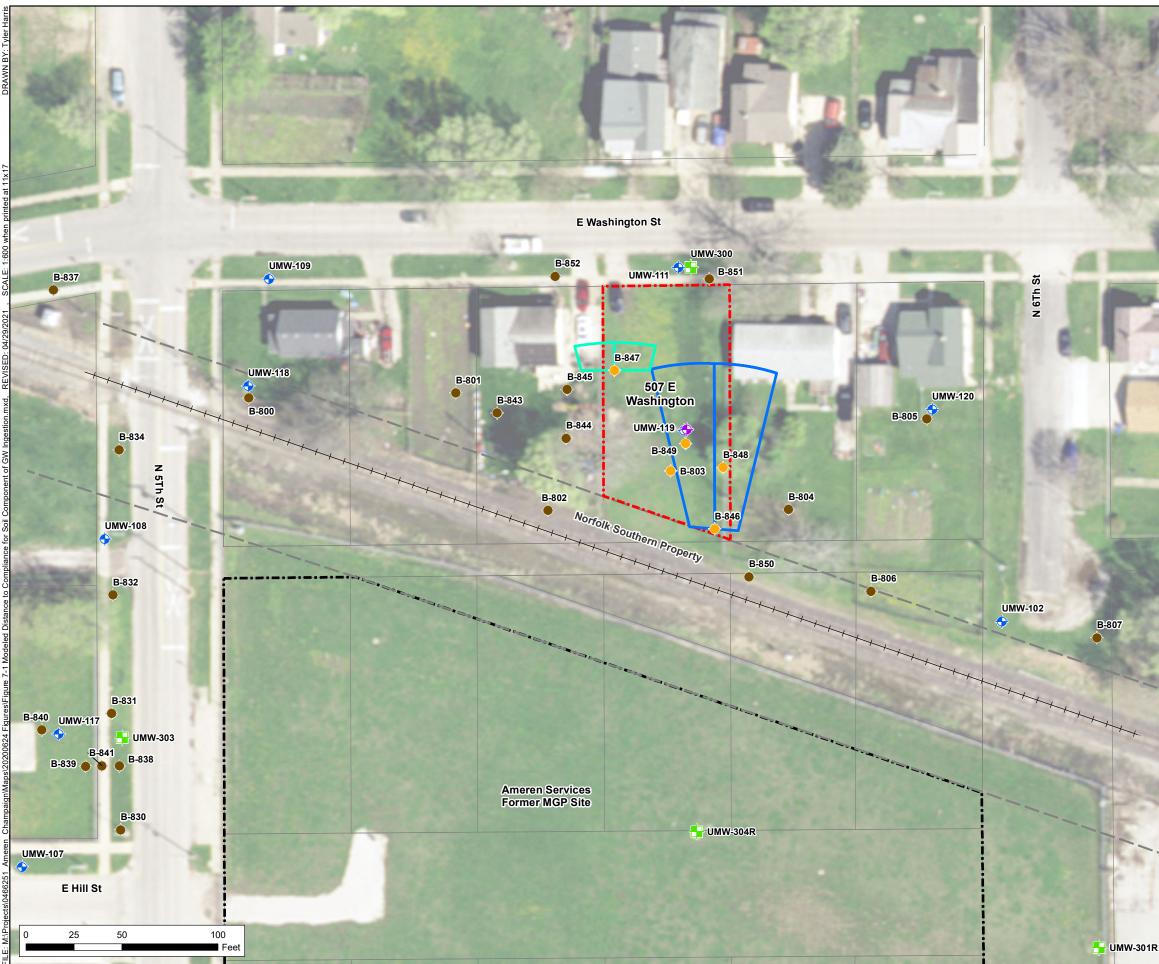
- Former MGP Property Boundary
- Norfolk Southern Railroad **Property Boundary**
- -+-+ Railroad Centerline
- Parcel Lot Line

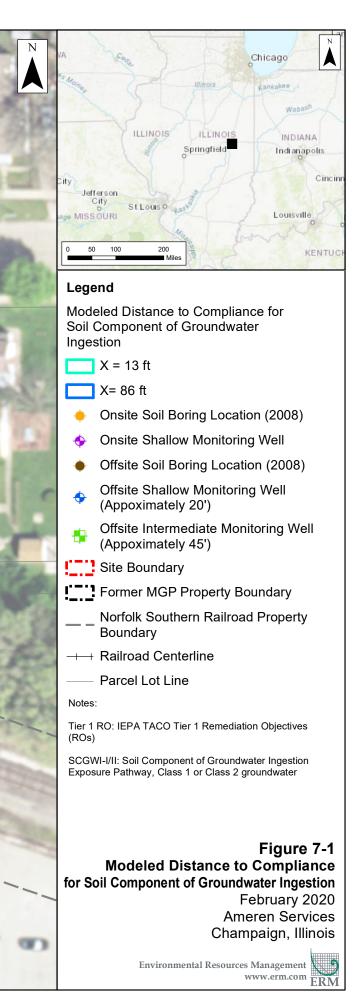
Notes:

Tier 1 RO: IEPA TACO Tier 1 Remediation Objectives (ROs)

SCGWI-I/II: Soil Component of Groundwater Ingestion Exposure Pathway, Class 1 or Class 2 groundwater

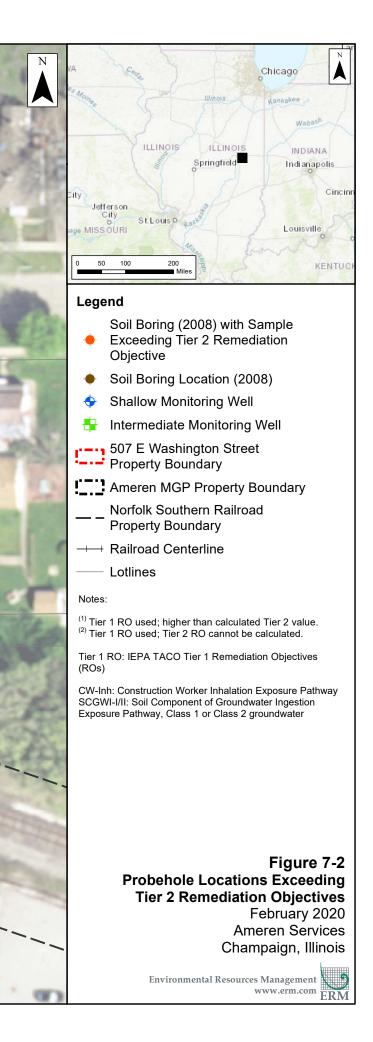
Figure 6-3 Sample Locations with Soil Samples Exceeding Tier 1 Remediation Objective for Soil Component of Groundwater Ingestion Ameren Services 507 E Washington Street Champaign, Illinois


ILLINOIS	Chicago
5 Illinois	Kankakee IND
Peoria	Wabas Lafayette
Champai	
Springfield Decatur 0 20 40 80 Miles	Terre Haute INDIA


Legend

- Onsite Soil Vapor Sample
 Location
- Site Boundary
- Former MGP Property Boundary
- Norfolk Southern Railroad Property Boundary ____
- □ □ Former Building
- Hereiling Railroad Centerline
- Parcel Lot Line

Figure 6-4 Soil Gas Sampling Locations Ameren Services 507 E Washington Street Champaign, Illinois



Sources: IDOT - 2017 Orthoimagery; ESRI - World Topographic Map

Tables

Table 1-1Constituents of Concern - Focused Site Investigation507 East Washington StreetChampaign, Illinois

	Soil Sample A	Analyses	
Method 8260	Method 8270-SIM	Method 6010	Method 9012
Benzene	Acenaphthene	Arsenic	Cyanide
Toluene	Acenaphthylene	Chromium	Cyanide (amenable)
Ethylbenzene	Anthracene	Lead	
Xylene (total)	Benzo(a)anthracene		
	Benzo(a)pyrene		
	Benzo(b)fluoranthene		
	Benzo(ghi)perylene		
	Benzo(k)fluoranthene		
	Chrysene Dibenzo(a,h)anthracene		
	Fluoranthene		
	Fluorene		
	Indeno(1,2,3-cd)pyrene		
	Naphthalene		
	Phenanthrene		
	Pyrene		
	Groundwater Sam	ple Analyses	
Method 8260	Method 8270-SIM	Method 6010	Method 9012
Benzene	Acenaphthene	Arsenic	Cyanide (total)
Toluene	Acenaphthylene	Chromium	
Ethylbenzene	Anthracene	Lead	
Xylene (total)	Benzo(a)anthracene		
	Benzo(a)pyrene		
	Benzo(b)fluoranthene		
	Benzo(ghi)perylene		
	Benzo(k)fluoranthene Chrysene		
	Dibenzo(a,h)anthracene		
	Fluoranthene		
	Fluorene		
	Indeno(1,2,3-cd)pyrene		
	Naphthalene		
	Phenanthrene		
	Pyrene		

Table 5-1Tier 1 Remediation Objectives507 East Washington StreetChampaign, Illinois

		Soil Ingestion			Soil Inhalation		<u>Soil Component</u> of Groundwater	Soil Saturation
CONSTITUENT	Residential	<i>Industrial</i> Commercial	Construction Worker	Residential	Commercial	Construction	(Class II)	<u>Limit</u>
Applicable Depths	0'-3'	0'-3'	All depths	0'-10'	0'-10'	All depths	All depths	All depths
Benzene	12	100	2,300	0.8	1.6	2.2	0.17	580
Ethylbenzene	7,800	200,000	20,000	400	400	58	19	150
Toluene	16,000	410,000	410,000	650	650	42	29	290
Xylene (total)	16,000	410,000	410,000	320	320	5.6	150	110
Acenaphthene	4,700	120,000	120,000				2,900	
Acenaphthylene	2,300 ⁽¹⁾	61,000 (1)	61,000 ⁽¹⁾				420	
Anthracene	23,000	610,000	610,000				59,000	
Benzo(a)anthracene	1.8	8	170				8	
Benzo(a)pyrene	2.1	2.1	17				82	
Benzo(b)fluoranthene	2.1	8	170				25	
Benzo(ghi)perylene	2,300 ⁽¹⁾	61,000 (1)	61,000 ⁽¹⁾				130,000	
Benzo(k)fluoranthene	9	78	1,700				250	
Chrysene	88	780	17,000				800	
Dibenzo(a,h)anthracene	0.42	0.8	17				7.6	
Fluoranthene	3,100	82,000	82,000				21,000	
Fluorene	3,100	82,000	82,000				2,800	
Indeno(1,2,3-cd)pyrene	1.6	8	170				69	
Naphthalene	1,600	41,000	4,100	170	270	1.8	18	
Phenanthrene	2,300 ⁽¹⁾	61,000 (1)	61,000 ⁽¹⁾				1,000	
Pyrene	2,300	61,000	61,000				21,000	
Arsenic	13	13	61	750	1,200	25,000	100	
Chromium	230	6,100	4,100	270	420	690		
Lead	400	800	700				300	
Cyanide (amenable)	1,600	41,000	4,100				120	
Cyanide (total)							120	

Notes:

--- No ROs have been established by the IEPA for the listed constituent.

(1) Non-TACO or provisional ROs obtained from the IEPA.

All units are in milligrams per kilogram (mg/kg).

Tier 1 Soil Remediation Objectives for Residential Properties (742.Appendix B: Table A)

Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties (742.Appendix B: Table B)

pH Specific Soil Remediation Objectives for Inorganics and Ionizing Organics for the Soil Component of the Groundwater Ingestion Route - Class I Groundwater (742. Appendix B: Tak

pH Specific Soil Remediation Objectives for Inorganics and Ionizing Organics for the Soil Component of the Groundwater Ingestion Route - Class II Groundwater (742 Appendix B: Ta

Soil Saturation Limits (C_{sat}) for Chemicals Whose Melting Point is Less Than 30°C (742.Appendix A: Table A)

Concentrations of Inorganic Chemicals in Background Soils (742.Appendix A: Table G)

Concentrations of Polynuclear Aromatic Hydrocarbon Chemicals in Background Soils (742.Appendix A: Table H)

Table 5-2Soil Sample Analytical Results507 East Washington StreetChampaign, Illinois

	B-803 B803	B-803 B803	B-803 B803	B-803 B803	B-846 B846	B-846 B846	B-846 B846	B-847 B847	B-847 B847	B-847 B847	B-848 B848	B-848 B848	B-848 B848	B-849 B849	B-849 B849	B-849 B849
	(2.0-3.0 ft)	(9.0-10.0')	(21.0-22.0')	(29.0-30.0')	(8.5-9.5')	(10.0-11.0')	(20.0-21.0')	(6.0-7.0')	(22.0-23.0')	(29.0-30.0')	(2.0-3.0 ft)	(9.0-10.0')	(13.0-14.0')	(0.0-1.0 ft)	(9.0-10.0')	(16.0-17.0')
	5/7/2008 2.0-3.0'	5/7/2008 9.0-10.0	5/7/2008 21.0-22.0	5/7/2008 29.0-30.0	5/7/2008 8.5-9.5	5/7/2008 10.0-11.0	5/7/2008 20.0-21.0	5/7/2008 6.0-7.0	5/7/2008 22.0-23.0	5/7/2008 29.0-30.0	5/7/2008 2.0-3.0	5/7/2008 9.0-10.0	5/7/2008 13.0-14.0	5/7/2008 0.0-1.0	5/7/2008 9.0-10.0	5/7/2008 16.0-17.0
CONSTITUENT	2.0-3.0	9.0-10.0	21.0-22.0	29.0-30.0	0.5-9.5	10.0-11.0	20.0-21.0	0.0-7.0	22.0-23.0	29.0-30.0	2.0-3.0	9.0-10.0	13.0-14.0	0.0-1.0	9.0-10.0	10.0-17.0
Benzene	0.0019	0.0008 J	0.158	0.0014	0.438	0.205	3.16	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.21
Ethylbenzene	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	0.003 J	62.8	<0.0038	<0.0057	0.0039 J	0.0019 J	<0.0053	0.0021 J	6.24
Toluene	0.0039 J	<0.0052	0.32 J	0.002 J	<0.648	0.084 J	<0.0983	0.0068	12.40	0.0018 J	<0.0057	0.0117	0.006	0.0011 J	0.0057	0.89 J
Xylene (total)	0.0107	<0.0052	3.5	0.0013 J	8.82	2.9	<0.0983	0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038 J	<0.0053	0.0046	5.64
Acenaphthene	0.008	0.026	2.96	<0.004	1.87	4.19	0.004	<0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene	0.023	0.008	3.19	<0.004	0.312	0.808	<0.004	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	<0.004	1.55
Anthracene	0.023	0.018	2.54	<0.004	0.928	2.10	<0.004	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	<0.004	1.12
Benzo(a)anthracene	0.086	0.015	1.33	0.004	0.523	1.30	<0.004	0.004 J	1.29	<0.004	0.067	<0.004	<0.004	0.033	<0.004	0.67
Benzo(a)pyrene	0.105	0.012	1.24	<0.004	0.469	1.28	<0.004	< 0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	<0.004	0.661
Benzo(b)fluoranthene	0.131	0.01	0.915	<0.004	0.356	0.979	<0.004	<0.004	0.905	<0.004	0.103	<0.004	<0.004	0.058	<0.004	0.52
Benzo(ghi)perylene	0.066	0.005	0.425	<0.004	0.173	0.471	<0.004	<0.004	0.356	<0.004	0.050	<0.004	<0.004	0.025	<0.004	0.227
Benzo(k)fluoranthene	0.045	<0.004	0.275	<0.004	0.109	0.29	<0.004	< 0.004	0.258	<0.004	0.032	<0.004	<0.004	0.020	<0.004	0.161
Chrysene	0.096	0.014	1.3	<0.004	0.518	1.32	<0.004	<0.004	1.27	<0.004	0.075	<0.004	<0.004	0.043	<0.004	0.661
Dibenzo(a,h)anthracene	0.017	<0.004	0.119	<0.004	0.049	0.133	<0.004	<0.004	<0.190	<0.004	0.013	<0.004	<0.004	0.007	<0.004	0.065
Fluoranthene	0.173	0.025	2.74	0.004 J	1.08	2.47	<0.004	0.005	2.53	<0.004	0.091	<0.004	<0.004	0.062	<0.004	1.21
Fluorene	0.007	0.015	2.61	<0.004	0.941	1.91	<0.004	<0.004	2.5	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	1.07
Indeno(1,2,3-cd)pyrene	0.059	0.004 J	0.345	<0.004	0.142	0.381	<0.004	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene	0.034	0.062	13	0.010	5.44	12.4	0.013	<0.004	13.8	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37
Phenanthrene	0.105	0.063	8.16	0.008	2.78	6.29	0.009	0.011	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene	0.171	0.037	4.13	0.005	1.61	3.94	0.005	0.006	3.79	<0.004	0.111	<0.004	<0.004	0.064	<0.004	1.84
Arsenic	5.49	2.0 J	5.41											2.0 J	5.59	5.88
Chromium	21.2	27.0	14.2											27.5	13.3	12.0
Lead	145.0	14.2	8.65											107.0	12.4	6.88
Cyanide (amenable)	<0.57	<0.61	<0.57											<0.60	<0.56	<0.54
Cyanide (total)	0.37 J	<0.61	<0.57											0.52 J	<0.56	<0.54

Notes:

All units are in milligrams per kilogram (mg/kg).

J Constituent reported below laboratory detection limit - estimated value.

The sample was not analyzed for the listed constituent.

<0.004 The constituent was not detected at the laboratory reporting limit.

Constituent exceeds the Tier 1 Construction Worker Inhalation Patthway RO

Constituent exceeds the Tier 1 Soil Component to GW and Construction Worker Inhalation Pathway

Table 5-3 Soil Gas Analytical Results 507 East Washington Street Champaign, Illinois

CONSTITUENT	Residential Soil Gas Objective ⁽¹⁾ (µg/m ³)	VP507EWASH-1	VP507EWASH-2	VP507EWASH-3
Freon 12		< 6.2	9	< 6.0
Freon 114		< 8.8	< 8.6	< 8.4
Chloromethane		< 10	< 10	< 10
Vinyl Chloride	290	< 3.2	< 3.2	< 3.1
1,3-Butadiene		< 2.8	9.7	4
Bromomethane		< 4.9	< 4.8	< 4.7
Chloroethane		< 3.3	< 3.2	< 3.2
Freon 11		< 7.1	< 6.9	< 6.8
Ethanol		13	18	29
Freon 113		< 9.7	< 9.5	< 9.3
1,1-Dichloroethene	690,000	< 5.0	< 4.9	< 4.8
Acetone	750,000,000	120	180	230
2-Propanol Carbon Disulfide	780,000	37 < 3.9	13 4.3	16 < 3.8
3-Chloropropene	780,000	< 16	4.3 < 15	< 3.0 < 15
Methylene Chloride	5,600	< 4.4	< 4.3	< 4.2
Methyl tert-butyl ether	3,700,000	< 4.6	< 4.3	< 4.2
trans-1,2-Dichloroethene		< 5.0	< 4.9	< 4.8
Hexane		8	14	14
1,1-Dichloroethane	690,000	o < 5.1	< 5.0	< 4.9
2-Butanone (MEK)	6,400,000	21	40	56
cis-1,2-Dichloroethene	1,100,000,000	< 5.0	< 4.9	< 4.8
Tetrahydrofuran		< 3.7	< 3.6	< 3.6
Choroform	110	< 6.2	< 6.0	< 5.9
1,1,1-Trichloroethane	6,600,000	< 6.9	< 6.7	< 6.6
Cyclohexane		< 4.4	5.3	6.1
Carbon Tetrachloride	210	< 8.0	< 7.8	< 7.6
2,2,4-Trimethylpentane		6.9	11	15
Benzene	370	8	14	10
1,2-Dichloroethane	99	< 5.1	< 5.0	< 4.9
Heptane		12	20	19
Trichloroethene	1500	< 6.8	7.3	< 6.5
1,2-Dichloropropane	310	< 5.8	< 5.7	< 5.6
1,4-Dioxane	220	< 18	< 18	< 17
Bromodichloromethane	450,000,000	< 8.5	< 8.3	< 8.1
cis-1,3-Dichloropropene	900	< 5.7	< 5.6	< 5.5
4-Methyl-2-pentanone		< 5.2	< 5.0	< 5.4
Toluene	6,200,000	150	220	170
trans-1,3-Dichloropropene	900	< 5.7	< 5.6	< 5.5
1,1,2-Trichloroethane	170,000,000	< 6.9	< 6.7	< 6.6
Tetrachloroethene	550	< 8.6	< 8.4	< 8.2
2-Hexanone		< 21	< 20	< 20
Dibromochloromethane		< 11	< 10	< 10
1,2-Dibromoethane (EDB)		< 9.7	< 9.5	< 9.3
Chlorobenzene	69,000	< 5.8	< 5.7	< 5.6
Ethylbenzene	1300	44	61	57
m,p-xylene	130,000	180	240	230
o-xylene Styrepe	120,000	83	110	110 < 5.2
Styrene Bromoform	1,400,000	< 5.4	< 5.3 < 13	< 5.2
Cumene	600,000	< 6.2	< 13 8.3	< 12 7.9
Cumene 1,1,2,2-Tetrachloroethane		< 8.7	8.3 < 8.5	< 8.3
Propylbenzene		27	< 8.5 34	< 8.3 34
4-Ethyltoluene		120	150	140
1,3,5-Trimethylbenzene		45	55	76
1,2,4-Trimethylbenzene		160	190	210
1,3-Dichlorobenzene		< 7.6	< 7.4	< 7.3
1,4-Dichlorobenzene	1,200,000	< 7.6	< 7.4	< 7.3
alpha-Chlorotoluene		< 6.5	< 6.4	< 6.3
1,2-Dichlorobenzene	290,000	< 7.6	< 7.4	< 7.3
1,2,4-Trichlorobenzene	5,400	< 38	< 37	< 36
Hexachlorobutadiene		< 54	< 53	< 52
Naphthalene	110	< 26	< 26	< 25
Notes:	ł	•		•
μg/m ³	Micrograms per cubic meter			
<5.4 (1)	The constituent was not dete Tier 1 Soil Gas and Groundv			door Inhalation
(1)	Exposure Route - Diffusion a		-	
	Tier 1 RO has been establis	hed by the IEPA for		
110	Constituent exceeds Tier 1 r			

Tier 1 RO has been established by the IEPA for the listed constituent. Constituent exceeds Tier 1 remedial objective.

110

Table 5-4Groundwater Analytical Results - Monitoring Well UMW-119June 2018 - April 2020507 Washington StreetChampaign, Illinois

			Location Group				Shallow Wells	(Class 2 Ground)	water Ingestion)			
			Location ID	UMW-119	UMW-119	UMW-119	UMW-119	UMW-119	UMW-119	UMW-119	UMW-119	UMW-119
			Sample Date	06/26/2018	09/17/2018	12/03/2018	3/5/2019	5/13/2019	8/19/2019	11/4/2019	2/11/2020	04/28/2020
			Sample Type	Ν	N	N	N	N	N	N	N	N
	CLASS I	CLASS II	GW INHALATION									
	GROUNDWATER	GROUNDWATER	DIFFUSION &									
Parameter/Analyte	INGESTION	INGESTION	ADVECTION RES									
BTEX, mg/L												
Benzene	0.005	0.025	0.11	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ethylbenzene	0.7	1	0.37	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Toluene	1	2.5	530	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Xylene, Total	10	10	30	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
PAH, mg/L												
Acenaphthene	0.42	2.1	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Acenaphthylene	0.21	1.05	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Anthracene	2.1	10.5	NS	< 0.000100	< 0.000100	< 0.000100	0.000144	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000300
Benzo(a)anthracene	0.00013	0.00065	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(a)pyrene	0.0002	0.002	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(b)fluoranthene	0.00018	0.0009	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(g,h,i)perylene	0.21	1.05	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200
Benzo(k)fluoranthene	0.00017	0.00085	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Chrysene	0.0015	0.0075	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Dibenzo(a,h)anthracene	0.0003	0.0015	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Fluoranthene	0.28	1.4	NS	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000300
Fluorene	0.28	1.4	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000200
Indeno(1,2,3-cd)pyrene	0.00043	0.00215	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Naphthalene	0.14	0.22	0.075	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000400
Phenanthrene	0.21	1.05	NS	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000600
Pyrene	0.21	1.05	NS	< 0.000100	< 0.000100	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200
General Chemistry, mg/L								-				
Cyanide CN-	0.2	0.6	NS	0.036	0.033	0.026	0.031	0.027	0.035	0.033	0.033	0.032
Metals, mg/L						-		-	-	-	-	
Arsenic	0.05	0.2	NS	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Barium	2	2	NS	0.0890	0.102	0.0993	0.0950	0.0882	0.0927	0.0855	0.0844	0.0853
Cadmium	0.005	0.05	NS	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.1	1	NS	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Lead	0.0075	0.1	NS	< 0.0150	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075
Mercury	0.002	0.01	0.053	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Selenium	0.05	0.05	NS	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Silver	0.05		NS	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070

Notes:

All values shown in milligrams per liter (mg/L)

< = Compound not detected at concentrations above the laboratory reporting detection limit.

The laboratory reporting detection limit is shown.

N = Normal Environmental Sample

NS = No Standard

Green highlight = Exceeds RO for Class II Groundwater Ingestion

Bold = Exceeds RO for Groundwater Inhalation - Diffusion and Advection for Residential Qualifiers:

All analyses performed by TekLab.

CLASS I GROUNDWATER INGESTION = IEPA TACO Tier 1 CLASS I Groundwater Ingestion

CLASS II GROUNDWATER INGESTION = IEPA TACO Tier 1 CLASS II Groundwater Ingestion

GW INHALATION DIFFUSION & ADVECTION RES = IEPA TACO Tier 1 Groundwater Inhalation Diffusion & Advection at Residential Sites.

Non-TACO Class I and Class II Groundwater Objectives applied for Acenaphthylene, Benzo(g,h,i)perylene, and Phenanthrene. (Revision Date 3/31/2016)

Table 5-5Groundwater Analytical Results - Onsite and Offsite WellsApril 2020 Quarterly Sampling EventAmeren - Champaign MGP SiteChampaign, Illinois

		Location Group	Onsite			Offsite W	/ells (Class 2 Grou	ndwater)		
		Location ID	UMW-119	UMW-102	UMW-109	UMW-111A	UMW-118	UMW-120	UMW-125	UMW-127
		Sample Date	04/28/2020	04/27/2020	04/28/2020	04/28/2020	04/28/2020	04/27/2020	04/30/2020	04/29/2020
		Sample Type	N	N	N	N	N	N	N	N
	CLASS II	GW INHALATION								
	GROUNDWATER	DIFFUSION &								
Parameter/Analyte	INGESTION	ADVECTION RES								
BTEX, mg/L										
Benzene	0.025	0.11	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0019
Ethylbenzene	1	0.37	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Toluene	2.5	530	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Xylene, Total	10	30	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040
PAH, mg/L										
Acenaphthene	2.1	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	0.000229
Acenaphthylene	1.05	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Anthracene	10.5	NS	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300
Benzo(a)anthracene	0.00065	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(a)pyrene	0.002	NS	< 0.000100	< 0.000100 UJ	< 0.000100 UJ	< 0.000100 UJ	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(b)fluoranthene	0.0009	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Benzo(g,h,i)perylene	1.05	NS	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200
Benzo(k)fluoranthene	0.00085	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Chrysene	0.0075	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Dibenzo(a,h)anthracene	0.0015	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Fluoranthene	1.4	NS	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300	< 0.000300
Fluorene	1.4	NS	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200
Indeno(1,2,3-cd)pyrene	0.00215	NS	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100	< 0.000100
Naphthalene	0.22	0.075	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	< 0.000400	0.00188 J+
Phenanthrene	1.05	NS	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600	< 0.000600
Pyrene	1.05	NS	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200	< 0.000200
General Chemistry, mg/L										
Cyanide CN-	0.6	NS	0.032	< 0.005	0.016	< 0.005	0.026	< 0.005	0.019	< 0.005
Metals, mg/L										
Arsenic	0.2	NS	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250	< 0.0250
Barium	2	NS	0.0853	0.0601	0.0892	0.0513	0.101	0.0645	0.0133	0.121
Cadmium	0.05	NS	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	1	NS	< 0.0050	< 0.0050	0.0186	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Lead	0.1	NS	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075	< 0.0075
Mercury	0.01	0.053	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Selenium	0.05	NS	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400
Silver		NS	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070	< 0.0070

Notes:

All values shown in milligrams per liter (mg/L)

< = Compound not detected at concentrations above the laboratory reporting

NS = No Standard

Green highlight = Exceeds RO for Class II Groundwater Ingestion

Bold = Exceeds RO for Groundwater Inhalation - Diffusion and Advection for Residentia (No exceedances present)

Qualifiers:

UJ = Non-detect, estimated report limit

J+ = Detected Results are estimated with a high bias

All analyses performed by TekLab.

CLASS II GROUNDWATER INGESTION = IEPA TACO Tier 1 CLASS II Groundwater Ingestion

GW INHALATION DIFFUSION & ADVECTION RES = IEPA TACO Tier 1 Groundwater Inhalation

Diffusion & Advection at Residential Sites.

Non-TACO Class I and Class II Groundwater Objectives applied for Acenaphthylene, Benzo(g,h,i)perylene, and Phenanthrene. (Revision Date 3/31/2016)

Table 6-1 Tier 1 Soil Ingestion Exposure Pathway Evaluation 507 East Washington Street Champaign, Illinois

CONSTITUENT	Residential	<u>Soil Ingestion</u> Commercial Industrial	Construction Worker	B-803 B803 (2.0-3.0 ft) 5/7/2008 2.0-3.0'	B-803 B803 (9.0-10.0') 5/7/2008 9.0-10.0	B-803 B803 (21.0-22.0') 5/7/2008 21.0-22.0	B-803 B803 (29.0-30.0') 5/7/2008 29.0-30.0	B-846 B846 (8.5-9.5') 5/7/2008 8.5-9.5	B-846 B846 (10.0-11.0') 5/7/2008 10.0-11.0	B-846 B846 (20.0-21.0') 5/7/2008 20.0-21.0	B-847 B847 (6.0-7.0') 5/7/2008 6.0-7.0	B-847 B847 (22.0-23.0') 5/7/2008 22.0-23.0	B-847 B847 (29.0-30.0') 5/7/2008 29.0-30.0	B-848 B848 (2.0-3.0 ft) 5/7/2008 2.0-3.0	B-848 B848 (9.0-10.0') 5/7/2008 9.0-10.0	B-848 B848 (13.0-14.0') 5/7/2008 13.0-14.0	B-849 B849 (0.0-1.0 ft) 5/7/2008 0.0-1.0	B-849 B849 (9.0-10.0') 5/7/2008 9.0-10.0	B-849 B849 (16.0-17.0') 5/7/2008 16.0-17.0
Applicable Depths and Scenarios	0'-3'	0'-3'	All depths	RES, C/I, CW	CW	CW	CW	CW	CW	CW	CW	CW	CW	RES, C/I, CW	CW	CW	RES, C/I, CW	CW	CW
Benzene	12	100	2,300	0.0019	0.0008 J	0.158	0.0014	0.438	0.205	3.16	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.21
Ethylbenzene	7,800	200,000	20,000	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	0.003 J	62.8	<0.0038	<0.0057	0.0039 J	0.0019 J	<0.0053	0.0021 J	6.24
Toluene	16,000	410,000	410,000	0.0039 J	<0.0052	0.32 J	0.002 J	<0.648	0.084 J	<0.0983	0.0068	12.4	0.0018 J	<0.0057	0.0117	0.006	0.0011 J	0.0057	0.89 J
Xylene (total)	16,000	410,000	410,000	0.0107	<0.0052	3.5	0.0013 J	8.82	2.9	<0.0983	0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038 J	<0.0053	0.0046	5.64
Acenaphthene	4,700	120,000	120,000	0.008	0.026	2.96	<0.004	1.87	4.19	0.004	<0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene	2,300 ⁽¹⁾	61,000 ⁽¹⁾	61,000 ⁽¹⁾	0.023	0.008	3.19	<0.004	0.312	0.808	<0.004	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	<0.004	1.55
Anthracene	23,000	610,000	610,000	0.023	0.018	2.54	<0.004	0.928	2.10	<0.004	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	<0.004	1.12
Benzo(a)anthracene	1.8	8	170	0.086	0.015	1.33	0.004	0.523	1.30	<0.004	0.004 J	1.29	<0.004	0.067	<0.004	<0.004	0.033	<0.004	0.67
Benzo(a)pyrene	2.1	2.1	17	0.105	0.012	1.24	<0.004	0.469	1.28	<0.004	<0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	<0.004	0.661
Benzo(b)fluoranthene	2.1	8	170	0.131	0.01	0.915	<0.004	0.356	0.979	<0.004	<0.004	0.905	<0.004	0.103	<0.004	<0.004	0.058	<0.004	0.52
Benzo(ghi)perylene	2,300 ⁽¹⁾	61,000 ⁽¹⁾	61,000 ⁽¹⁾	0.066	0.005	0.425	<0.004	0.173	0.471	<0.004	<0.004	0.356	<0.004	0.050	<0.004	<0.004	0.025	<0.004	0.227
Benzo(k)fluoranthene	9	78	1,700	0.045	<0.004	0.275	<0.004	0.109	0.29	<0.004	<0.004	0.258	<0.004	0.032	<0.004	<0.004	0.020	<0.004	0.161
Chrysene	88	780	17,000	0.096	0.014	1.3	<0.004	0.518	1.32	<0.004	<0.004	1.27	<0.004	0.075	<0.004	<0.004	0.043	<0.004	0.661
Dibenzo(a,h)anthracene	0.42	0.8	17	0.017	<0.004	0.119	<0.004	0.049	0.133	<0.004	<0.004	<0.190	<0.004	0.013	<0.004	<0.004	0.007	<0.004	0.065
Fluoranthene	3,100	82,000	82,000	0.173	0.025	2.74	0.004 J	1.08	2.47	<0.004	0.005	2.53	<0.004	0.091	<0.004	<0.004	0.062	<0.004	1.21
Fluorene	3,100	82,000	82,000	0.007	0.015	2.61	<0.004	0.941	1.91	<0.004	<0.004	2.5	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	1.07
Indeno(1,2,3-cd)pyrene	1.6	8	170	0.059	0.004 J	0.345	<0.004	0.142	0.381	<0.004	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene	1,600	41,000	4,100	0.034	0.062	13	0.010	5.44	12.4	0.013	<0.004	13.8	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37
Phenanthrene	2,300 ⁽¹⁾	61,000 (1)	61,000 ⁽¹⁾	0.105	0.063	8.16	0.008	2.78	6.29	0.009	0.011	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene	2,300	61,000	61,000	0.171	0.037	4.13	0.005	1.61	3.94	0.005	0.006	3.79	<0.004	0.111	<0.004	<0.004	0.064	<0.004	1.84
Arsenic	13	13	61	5.49	2.0 J	5.41											2.0 J	5.59	5.88
Chromium	230	6,100	4,100	21.2	27.0	14.2											27.5	13.3	12.0
Lead	400	800	700	145.0	14.2	8.65											107.0	12.4	6.88
Cyanide (amenable)	1,600	41,000	4,100	<0.57	<0.61	<0.57											<0.60	<0.56	<0.54
Cyanide (total)				0.37 J	<0.61	<0.57											0.52 J	<0.56	<0.54
Notes:				1															L

Notes:

All units are in milligrams per kilogram (mg/kg). RES, C/I, CW

 $\label{eq:RES} \mathsf{Residential}, \, \mathsf{C/I} = \mathsf{Commercial/Industrial}, \, \mathsf{CW} \ \mathsf{-} \ \mathsf{Construction} \ \mathsf{Worker}$

Non-TACO or provisional ROs published by the IEPA. (1)

The sample was not analyzed for the listed constituent. ---

62.8 Constituent exceeds one or more Tier 1 RO or IEPA background.

< 0.004 The constituent was not detected at the laboratory reporting limit.

Constituent reported below laboratory detection limit - estimated value.

Tier 1 Soil Remediation Objectives for Residential Properties (742.Appendix B.Table A)

Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties (742.Appendix B.Table B)

J

Table 6-2Tier 1 Soil Inhalation Exposure Pathway Evaluation507 East Washington StreetChampaign, Illinois

CONSTITUENT	Residential	<u>Soil Inhalation</u> Commercial Industrial	Construction Worker	B-803 B803 (2.0-3.0 ft) 5/7/2008 2.0-3.0'	B-803 B803 (9.0-10.0') 5/7/2008 9.0-10.0	B-803 B803 (21.0-22.0') 5/7/2008 21.0-22.0	B-803 B803 (29.0-30.0') 5/7/2008 29.0-30.0	B-846 B846 (8.5-9.5') 5/7/2008 8.5-9.5	B-846 B846 (10.0-11.0') 5/7/2008 10.0-11.0	B-846 B846 (20.0-21.0') 5/7/2008 20.0-21.0	B-847 B847 (6.0-7.0') 5/7/2008 6.0-7.0	B-847 B847 (22.0-23.0') 5/7/2008 22.0-23.0	B-847 B847 (29.0-30.0') 5/7/2008 29.0-30.0	B-848 B848 (2.0-3.0 ft) 5/7/2008 2.0-3.0	B-848 B848 (9.0-10.0') 5/7/2008 9.0-10.0	B-848 B848 (13.0-14.0') 5/7/2008 13.0-14.0	B-849 B849 (0.0-1.0 ft) 5/7/2008 0.0-1.0	B-849 B849 (9.0-10.0') 5/7/2008 9.0-10.0	B-849 B849 (16.0-17.0') 5/7/2008 16.0-17.0
Applicable Depths and Scenarios	0'-10'	0'-10'	All depths	RES, C/I, CW	RES, C/I, CW	CW	CW	RES, C/I, CW	CW	CW	RES, C/I, CW	CW	CW	RES, C/I, CW	RES, C/I, CW	CW	RES, C/I, CW	RES, C/I, CW	CW
Benzene	0.8	1.6	2.2	0.0019	0.0008 J	0.158	0.0014	0.438	0.205	3.16	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.21
Ethylbenzene	400	400	58	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	0.003 J	62.8	<0.0038	<0.0057	0.0039 J	0.0019 J	<0.0053	0.0021 J	6.24
Toluene	650	650	42	0.0039 J	<0.0052	0.32 J	0.002 J	<0.648	0.084 J	<0.0983	0.0068	12.4	0.0018 J	<0.0057	0.0117	0.006	0.0011 J	0.0057	0.89 J
Xylene (total)	320	320	5.6	0.0107	<0.0052	3.5	0.0013 J	8.82	2.9	<0.0983	0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038 J	<0.0053	0.0046	5.64
Acenaphthene				0.008	0.026	2.96	<0.004	1.87	4.19	0.004	<0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene				0.023	0.008	3.19	<0.004	0.312	0.808	<0.004	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	<0.004	1.55
Anthracene				0.023	0.018	2.54	<0.004	0.928	2.10	<0.004	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	<0.004	1.12
Benzo(a)anthracene				0.086	0.015	1.33	0.004	0.523	1.30	<0.004	0.004 J	1.29	<0.004	0.067	<0.004	<0.004	0.033	<0.004	0.67
Benzo(a)pyrene				0.105	0.012	1.24	<0.004	0.469	1.28	<0.004	<0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	<0.004	0.661
Benzo(b)fluoranthene				0.131	0.01	0.915	<0.004	0.356	0.979	<0.004	<0.004	0.905	<0.004	0.103	<0.004	<0.004	0.058	<0.004	0.52
Benzo(ghi)perylene				0.066	0.005	0.425	<0.004	0.173	0.471	<0.004	<0.004	0.356	<0.004	0.050	<0.004	<0.004	0.025	<0.004	0.227
Benzo(k)fluoranthene				0.045	<0.004	0.275	<0.004	0.109	0.29	<0.004	<0.004	0.258	<0.004	0.032	<0.004	<0.004	0.020	<0.004	0.161
Chrysene				0.096	0.014	1.3	<0.004	0.518	1.32	<0.004	<0.004	1.27	<0.004	0.075	<0.004	<0.004	0.043	<0.004	0.661
Dibenzo(a,h)anthracene				0.017	<0.004	0.119	<0.004	0.049	0.133	<0.004	<0.004	<0.190	<0.004	0.013	<0.004	<0.004	0.007	<0.004	0.065
Fluoranthene				0.173	0.025	2.74	0.004 J	1.08	2.47	<0.004	0.005	2.53	<0.004	0.091	<0.004	<0.004	0.062	<0.004	1.21
Fluorene				0.007	0.015	2.61	<0.004	0.941	1.91	<0.004	<0.004	2.5	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	1.07
Indeno(1,2,3-cd)pyrene				0.059	0.004 J	0.345	<0.004	0.142	0.381	<0.004	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene	170	270	1.8	0.034	0.062	13	0.010	5.44	12.40	0.013	<0.004	13.80	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37
Phenanthrene				0.105	0.063	8.16	0.008	2.78	6.29	0.009	0.011	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene				0.171	0.037	4.13	0.005	1.61	3.94	0.005	0.006	3.79	<0.004	0.111	<0.004	<0.004	0.064	<0.004	1.84
Arsenic	750	1,200	25,000	5.49	2.0 J	5.41											2.0 J	5.59	5.88
Chromium	270	420	690	21.2	27.0	14.2											27.5	13.3	12.0
Lead				145.0	14.2	8.65											107.0	12.4	6.88
Cyanide (amenable)				<0.57	<0.61	<0.57											<0.60	<0.56	<0.54
Cyanide (total)				0.37 J	<0.61	<0.57											0.52 J	<0.56	<0.54
Notes:																			

Notes:

All units are in milligrams per kilogram (mg/kg).

RES, C/I, CW RES = Residential, C/I = Commercial/Industrial, CW - Construction Worker

(1) Non-TACO or provisional ROs published by the IEPA.

--- No objectives have been published for the constituent, or no sample was submitted for analysis.

3.16 Shading indicates value exceeds Construction Worker Inhalation Tier 1 RO.

<0.004 The constituent was not detected at the laboratory reporting limit.

Constituent reported below laboratory detection limit - estimated value.

J

Table 6-3Tier 1 Soil Component of Groundwater Ingestion Exposure Pathway Evaluation - Class II Objectives507 East Washington StreetChampaign, Illinois

CONSTITUENT	<u>Soil Component</u> <u>to Groundwater</u> (Class II)	B-803 B803 (2.0-3.0 ft) 5/7/2008 2.0-3.0'	B-803 B803 (9.0-10.0') 5/7/2008 9.0-10.0	B-803 B803 (21.0-22.0') 5/7/2008 21.0-22.0	B-803 B803 (29.0-30.0') 5/7/2008 29.0-30.0	B-846 B846 (8.5-9.5') 5/7/2008 8.5-9.5	B-846 B846 (10.0-11.0') 5/7/2008 10.0-11.0	B-846 B846 (20.0-21.0') 5/7/2008 20.0-21.0	B-847 B847 (6.0-7.0') 5/7/2008 6.0-7.0	B-847 B847 (22.0-23.0') 5/7/2008 22.0-23.0	B-847 B847 (29.0-30.0') 5/7/2008 29.0-30.0	B-848 B848 (2.0-3.0 ft) 5/7/2008 2.0-3.0	B-848 B848 (9.0-10.0') 5/7/2008 9.0-10.0	B-848 B848 (13.0-14.0') 5/7/2008 13.0-14.0	B-849 B849 (0.0-1.0 ft) 5/7/2008 0.0-1.0	B-849 B849 (9.0-10.0') 5/7/2008 9.0-10.0	B-849 B849 (16.0-17.0') 5/7/2008 16.0-17.0
Benzene	0.17	0.0019	0.0008 J	0.158	0.0014	0.438	0.205	3.16	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.21
Ethylbenzene	19	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	0.003 J	62.8	<0.0038	<0.0057	0.0039 J	0.0019 J	<0.0053	0.0021 J	6.24
Toluene	29	0.0039 J	<0.0052	0.32 J	0.002 J	<0.648	0.084 J	<0.0983	0.0068	12.4	0.0018 J	<0.0057	0.0117	0.006	0.0011 J	0.0057	0.89 J
Xylene (total)	150	0.0107	<0.0052	3.5	0.0013 J	8.82	2.9	<0.0983	0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038 J	<0.0053	0.0046	5.64
Acenaphthene	2,900	0.008	0.026	2.96	<0.004	1.87	4.19	0.004	<0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene	420	0.023	0.008	3.19	<0.004	0.312	0.808	<0.004	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	<0.004	1.55
Anthracene	59,000	0.023	0.018	2.54	<0.004	0.928	2.10	<0.004	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	<0.004	1.12
Benzo(a)anthracene	8	0.086	0.015	1.33	0.004	0.523	1.30	<0.004	0.004 J	1.29	<0.004	0.067	<0.004	<0.004	0.033	<0.004	0.67
Benzo(a)pyrene	82	0.105	0.012	1.24	<0.004	0.469	1.28	<0.004	<0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	<0.004	0.661
Benzo(b)fluoranthene	25	0.131	0.01	0.915	<0.004	0.356	0.979	<0.004	<0.004	0.905	<0.004	0.103	<0.004	<0.004	0.058	<0.004	0.52
Benzo(ghi)perylene	130,000	0.066	0.005	0.425	<0.004	0.173	0.471	<0.004	<0.004	0.356	<0.004	0.050	<0.004	<0.004	0.025	<0.004	0.227
Benzo(k)fluoranthene	250	0.045	<0.004	0.275	<0.004	0.109	0.29	<0.004	<0.004	0.258	<0.004	0.032	<0.004	<0.004	0.020	<0.004	0.161
Chrysene	800	0.096	0.014	1.3	<0.004	0.518	1.32	<0.004	<0.004	1.27	<0.004	0.075	<0.004	<0.004	0.043	<0.004	0.661
Dibenzo(a,h)anthracene	7.6	0.017	<0.004	0.119	<0.004	0.049	0.133	<0.004	<0.004	<0.190	<0.004	0.013	<0.004	<0.004	0.007	<0.004	0.065
Fluoranthene	21,000	0.173	0.025	2.74	0.004 J	1.08	2.47	<0.004	0.005	2.53	<0.004	0.091	<0.004	<0.004	0.062	<0.004	1.21
Fluorene	2,800	0.007	0.015	2.61	<0.004	0.941	1.91	<0.004	<0.004	2.5	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	1.07
Indeno(1,2,3-cd)pyrene	69	0.059	0.004 J	0.345	<0.004	0.142	0.381	<0.004	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene	18	0.034	0.062	13	0.010	5.44	12.4	0.013	<0.004	13.8	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37
Phenanthrene	1,000	0.105	0.063	8.16	0.008	2.78	6.29	0.009	0.011	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene	21,000	0.171	0.037	4.13	0.005	1.61	3.94	0.005	0.006	3.79	<0.004	0.111	<0.004	<0.004	0.064	<0.004	1.84
Arsenic	100	5.49	2.0 J	5.41											2.0 J	5.59	5.88
Chromium		21.2	27.0	14.2											27.5	13.3	12.0
Lead	300	145.0	14.2	8.65											107.0	12.4	6.88
Cyanide (amenable)	120	<0.57	<0.61	<0.57											<0.60	<0.56	<0.54
Cyanide (total)	120	0.37 J	<0.61	<0.57											0.52 J	<0.56	<0.54

Notes:

All units are in milligrams per kilogram (mg/kg).

(1) The samples were not analyzed for pH; therefore, the most conservative objectives were used for comparison.

--- No objectives have been published for the constituent, or no sample was submitted for analysis.

62.8 Constituent exceeds the Tier 1 Soil Component to GW Pathway RO.

<0.004 The constituent was not detected at the laboratory reporting limit.

J Constituent reported below laboratory detection limit - estimated value.

Table 6-4Soil Saturation and Soil Attenuation Capacity Evaluation507 East Washington StreetChampaign, Illinois

CONSTITUENT	Soil Saturation Limit	B-803 B803 (2.0-3.0 ft) 5/7/2008 2.0-3.0'	B-803 B803 (9.0-10.0') 5/7/2008 9.0-10.0	B-803 B803 (21.0-22.0') 5/7/2008 21.0-22.0	B-803 B803 (29.0-30.0') 5/7/2008 29.0-30.0	B-846 B846 (8.5-9.5') 5/7/2008 8.5-9.5	B-846 B846 (10.0-11.0') 5/7/2008 10.0-11.0	B-846 B846 (20.0-21.0') 5/7/2008 20.0-21.0	B-847 B847 (6.0-7.0') 5/7/2008 6.0-7.0	B-847 B847 (22.0-23.0') 5/7/2008 22.0-23.0	B-847 B847 (29.0-30.0') 5/7/2008 29.0-30.0	B-848 B848 (2.0-3.0 ft) 5/7/2008 2.0-3.0	B-848 B848 (9.0-10.0') 5/7/2008 9.0-10.0	B-848 B848 (13.0-14.0') 5/7/2008 13.0-14.0	B-849 B849 (0.0-1.0 ft) 5/7/2008 0.0-1.0	B-849 B849 (9.0-10.0') 5/7/2008 9.0-10.0	B-849 B849 (16.0-17.0') 5/7/2008 16.0-17.0
Benzene	580	0.0019	0.0008 J	0.158	0.0014	0.438	0.205	3.16	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.21
Ethylbenzene	150	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	0.003 J	62.8	<0.0038	<0.0057	0.0039 J	0.0019 J	<0.0053	0.0021 J	6.24
Toluene	290	0.0039 J	<0.0052	0.32 J	0.002 J	<0.648	0.084 J	<0.0983	0.0068	12.4	0.0018 J	<0.0057	0.0117	0.006	0.0011 J	0.0057	0.89 J
Xylene (total)	110	0.0107	<0.0052	3.5	0.0013 J	8.82	2.9	<0.0983	0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038 J	<0.0053	0.0046	5.64
Acenaphthene		0.008	0.026	2.96	<0.004	1.87	4.19	0.004	<0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene		0.023	0.008	3.19	<0.004	0.312	0.808	<0.004	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	<0.004	1.55
Anthracene		0.023	0.018	2.54	<0.004	0.928	2.10	<0.004	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	<0.004	1.12
Benzo(a)anthracene		0.086	0.015	1.33	0.004	0.523	1.30	<0.004	0.004 J	1.29	<0.004	0.067	<0.004	<0.004	0.033	<0.004	0.67
Benzo(a)pyrene		0.105	0.012	1.24	<0.004	0.469	1.28	<0.004	<0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	<0.004	0.661
Benzo(b)fluoranthene		0.131	0.01	0.915	<0.004	0.356	0.979	<0.004	<0.004	0.905	<0.004	0.103	<0.004	<0.004	0.058	<0.004	0.52
Benzo(ghi)perylene		0.066	0.005	0.425	<0.004	0.173	0.471	<0.004	<0.004	0.356	<0.004	0.050	<0.004	<0.004	0.025	<0.004	0.227
Benzo(k)fluoranthene		0.045	<0.004	0.275	<0.004	0.109	0.29	<0.004	<0.004	0.258	<0.004	0.032	<0.004	<0.004	0.020	<0.004	0.161
Chrysene		0.096	0.014	1.3	<0.004	0.518	1.32	<0.004	<0.004	1.27	<0.004	0.075	<0.004	<0.004	0.043	<0.004	0.661
Dibenzo(a,h)anthracene		0.017	<0.004	0.119	<0.004	0.049	0.133	<0.004	<0.004	<0.190	<0.004	0.013	<0.004	<0.004	0.007	<0.004	0.065
Fluoranthene		0.173	0.025	2.74	0.004 J	1.08	2.47	<0.004	0.005	2.53	<0.004	0.091	<0.004	<0.004	0.062	<0.004	1.21
Fluorene		0.007	0.015	2.61	<0.004	0.941	1.91	<0.004	<0.004	2.5	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	1.07
Indeno(1,2,3-cd)pyrene		0.059	0.004 J	0.345	<0.004	0.142	0.381	<0.004	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene		0.034	0.062	13	0.010	5.44	12.4	0.013	<0.004	13.8	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37
Phenanthrene		0.105	0.063	8.16	0.008	2.78	6.29	0.009	0.011	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene		0.171	0.037	4.13	0.005	1.61	3.94	0.005	0.006	3.79	<0.004	0.111	<0.004	<0.004	0.064	<0.004	1.84
	Soil Attenuation Capacity Default foc Default for	c															
	0-3 feet >3 feet								1					1			
Sum of Organic Compounds ⁽¹⁾	6,000 2,000	1.172	0.338	53.82	0.084	37.31	46.87	3.534	0.092	196.7	0.085	0.809	0.093	0.079	0.453	0.079	33.49
Notes																	

Notes

All units are in milligrams per kilogram (mg/kg).

foc Organic carbon fraction

<0.004 The constituent was not detected at the laboratory reporting limit.

J Constituent reported below laboratory detection limit - estimated value.

--- No remediation objective has been established.

(1) Value shown is the sum of detected organic constituents.

62.8 Constituent exceeds either soil attenuation capacity or soil saturation limit.

Soil Saturation Limits (C_{sat}) for Chemicals Whose Melting Point is Less Than 30°C (742.Appendix A: Table A)

Default values for foc: Determination of Soil Attenuation Capacity (Section 742.215)

Table 6-5Summary of Tier 1 Exceedances by Location507 East Washington StreetChampaign, Illinois

Sample Location	Sample Depth	Analyte	Result (mg/kg)	Exposure Route	Tier 1 RO (mg/kg)
B803	21-22 ft	Naphthalene	13	CW-Inh	1.8
		Benzene	0.438	Soil to GW (Class II)	0.17
	8.5-9.5 ft	Naphthalene	5.44	CW-Inh	1.8
		Xylenes	8.82	CW-Inh	5.6
B846	10-11 ft	Benzene	0.205	Soil to GW (Class II)	0.17
		Naphthalene	12.4	CW-Inh	1.8
	20.21 ft	Benzene	3.16	CW-Inh	2.2
	20-21 ft	Delizene	3.16	Soil to GW (Class II)	0.17
		Benzene	1.44	Soil to GW (Class II)	0.17
		Ethylbenzene	62.80	CW-Inh	58
B847	22-23 ft	Luiyibenzene	62.8	Soil to GW (Class II)	19
		Naphthalene	13.8	CW-Inh	1.8
		Xylenes	75.6	CW-Inh	5.6
		Benzene	1.21	Soil to GW (Class II)	0.17
B849	16-17 ft	Naphthalene	5.37	CW-Inh	1.8
		Xylenes	5.64	CW-Inh	5.6

Notes:

Construction Worker Inhalation (CW-Inh) ROs were taken from IEPA TACO Section 742 Appendix B Table B Tier 1 Soil Remediation Objectives for Industrial/Commercial Properties.

Soil Component of Groundwater Ingestion for Class II (Soil to GW Class II) ROs were taken from IEPA TACO Section 742 Appendix B Table A - Soil Remediation Objectives for Residential Properties

Table 7-1Tier 2 Remediation Objectives507 East Washington StreetChampaign, Illinois

CONSTITUENT	Tier 2 Objective Outdoor Inhalation Residential	Tier 2 Objective Outdoor Inhalation Industrial / Commercial	Tier 2 Objective Outdoor Inhalation Construction Worker	Tier 2 Objective Soil Component of Groundwater Ingestion
Benzene	2.69	5.15	7.24	0.071
Ethylbenzene	16,579	26,395	170.76	49.29
Toluene	264.53	99,155	641.46	36.7
Xylenes (total)	2,015	320	20.76	
Naphthalene				15.07

Notes:

All units are in milligrams per kilogram (mg/kg).

- 1 Tier 2 values for carcinogenic compounds were calculated using the SSL-S6 and SSL-S7 equations (742, Appendix C, Table A)
- 2 Tier 2 values for non-carcinogenic compounds were calculated using the SSL-S4 and SSL-S5 equations (742, Appendix C, Table A)
- Tier 2 remediation objective was not calculated for xylene.
- --- Tier 2 remediation objective for the inhalation exposure pathway for naphthalene cannot be calculated. Inhalation Slope Factor (SFI) not provided in RBCA.

Table 7-2Soil to Groundwater Migration Calculations507 East Washington StreetChampaign, Illinois

				Source Width	Source Width			Class II	Distance		
				(Parallel to	(Perpendicular	Distance		GW RO	from Source	Calculated	Calculated
				GW flow in	to GW flow in	from Source	Tier 1	for	to Meet	Ground Water	Ground Water
		Maximum		horizontal	horizontal	to Compliance	Class I	SCGW	Tier 1	Concentration	Concentration
Parameter	CAS #	Concentration	Location	plane)	plane)	Point 1	GW RO 1	Pathway	GW RO 2	at Distance X	at the Source
		(mg/kg)		(feet)	(feet)	(feet)	(mg/L)	(mg/L)	(feet)	(mg/L)	(mg/L)
Benzene	71-43-2	3.16	B-846 (20-21')	90	66	100	0.005	0.025	86	0.025	0.70
Ethyl benzene	100-41-4	62.8	B-847 (22-23')	90	66	100	0.7	1.0	13	0.95	4.05

Key:

GW = Ground water

RO = Remediation objective

SCGW = Soil component of ground water

¹ TACO compounds ROs are from IEPA's TACO of July 15, 2013.

 $^{\ 2}$ Distance was varied until the Class I ground water RO for the SCGW pathway was met.

There is currently no groundwater impact on the property at 507 East Washington Street. Groundwater sample results are below Class II groundwater ingestion ROs. The source width in groundwater perpendicular to groundwater flow was measured from current property boundaries.

Table 7-3Comparison to Tier 2 Remediation Objectives - Soil Inhalation507 East Washington StreetChampaign, Illinois

		Commercial	Construction	B-803 B803	B-803 B803	B-803 B803	B-803 B803	B-846 B846	B-846 B846	B-846 B846	B-847 B847	B-847 B847	B-848 B848	B-848 B848	B-848 B848	B-849 B849	B-849 B849	B-849 B849
	Residential	Industrial ⁽¹⁾	Worker ⁽¹⁾	(2.0-3.0')	(9.0-10.0')	(21.0-22.0')	(29.0-30.0')	(8.5-9.5')	(10.0-11.0')	(20.0-21.0')	(22.0-23.0')	(29.0-30.0')	(2.0-3.0')	(9.0-10.0')	(13.0-14.0')	(0.0-1.0')	(9.0-10.0')	(16.0-17.0')
	<i>(0-3', 0-10')</i> (RES)	(0-3', 0-10')	(all depths)	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008	5/7/2008
	(RES)	(C/I)	(CW)	2.0-3.0'	9.0-10.0	21.0-22.0	29.0-30.0	8.5-9.5	10.0-11.0	20.0-21.0	22.0-23.0	29.0-30.0	2.0-3.0	9.0-10.0	13.0-14.0	0.0-1.0	9.0-10.0	16.0-17.0
CONSTITUENT		Applicable	Depth/Pathway	RES, CW	RES, CW	CW	CW	RES, CW	CW	CW	CW	CW	RES, CW	RES, CW	CW	RES, CW	RES, CW	CW
Benzene	2.69	5.15	7.23	0.0019	0.0008	0.158	0.0014	0.438	0.205	3.16	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.2
Ethylbenzene	16,579	170.76	170.76	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	<0.0983	62.8	<0.0038	<0.0057	0.0039	0.0019	<0.0053	0.0021	6.24
Toluene	62,280	641.46	641.46	0.0039	<0.0052	0.32	0.002	<0.648	0.084	<0.0983	12.4	0.0018	<0.0057	0.0117	0.006	0.0011	0.0057	0.89
Xylene (total)	2,015	320 (2)	20.76	0.0107	<0.0052	3.5	0.0013	8.82	2.9	<0.0983	75.6	<0.0038	<0.0057	0.0072	0.0038	<0.0053	0.0046	5.64
Acenaphthene	· [0.008	0.026	2.96	<0.004	1.87	4.19	0.004	0.95	<0.004	<0.008	<0.004	<0.004	<0.004	<0.004	0.665
Acenaphthylene				0.023	0.008	3.19	< 0.004	0.312	0.808	<0.004	4.73	<0.004	0.024	<0.004	<0.004	0.010	< 0.004	1.55
Anthracene				0.023	0.018	2.54	< 0.004	0.928	2.10	<0.004	2.36	<0.004	0.011	<0.004	<0.004	0.006	< 0.004	1.12
Benzo(a)anthracene				0.086	0.015	1.33	0.004	0.523	1.30	<0.004	1.29	<0.004	0.067	<0.004	<0.004	0.033	< 0.004	0.67
Benzo(a)pyrene				0.105	0.012	1.24	< 0.004	0.469	1.28	<0.004	1.15	<0.004	0.089	<0.004	<0.004	0.039	< 0.004	0.661
Benzo(b)fluoranthene				0.131	0.01	0.915	< 0.004	0.356	0.979	<0.004	0.905	<0.004	0.103	< 0.004	< 0.004	0.058	< 0.004	0.52
Benzo(ghi)perylene				0.066	0.005	0.425	< 0.004	0.173	0.471	<0.004	0.356	<0.004	0.050	< 0.004	< 0.004	0.025	< 0.004	0.227
Benzo(k)fluoranthene				0.045	<0.004	0.275	< 0.004	0.109	0.29	<0.004	0.258	< 0.004	0.032	< 0.004	< 0.004	0.020	< 0.004	0.161
Chrysene				0.096	0.014	1.3	< 0.004	0.518	1.32	<0.004	1.27	< 0.004	0.075	< 0.004	< 0.004	0.043	< 0.004	0.661
Dibenzo(a,h)anthracene				0.017	<0.004	0.119	< 0.004	0.049	0.133	<0.004	<0.190	< 0.004	0.013	< 0.004	< 0.004	0.007	< 0.004	0.065
Fluoranthene				0.173	0.025	2.74	0.004	1.08	2.47	<0.004	2.53	<0.004	0.091	< 0.004	< 0.004	0.062	< 0.004	1.21
Fluorene				0.007	0.015	2.61	< 0.004	0.941	1.91	<0.004	2.5	<0.004	<0.008	< 0.004	< 0.004	<0.004	< 0.004	1.07
Indeno(1,2,3-cd)pyrene				0.059	0.004	0.345	< 0.004	0.142	0.381	<0.004	0.3	<0.004	0.042	<0.004	<0.004	0.024	<0.004	0.187
Naphthalene	170 ⁽²⁾	270 ⁽²⁾	1.8 ⁽²⁾	0.034	0.062	13	0.010	5.44	12.4	0.013	13.8	0.012	0.014	<0.004	<0.004	0.006	< 0.004	5.37
Phenanthrene				0.105	0.063	8.16	0.008	2.78	6.29	0.009	8.04	0.006	0.053	<0.004	<0.004	0.035	<0.004	3.54
Pyrene				0.171	0.037	4.13	0.005	1.61	3.94	0.005	3.79	<0.004	0.111	< 0.004	< 0.004	0.064	< 0.004	1.84

Notes:

(1)

All units are in milligrams per kilogram (mg/kg).

As of Section 742.700(g) the lesser of the calculated soil inhalation value.

⁽²⁾ Tier 1 remediation objective used.

(0-3', 0-10') Samples from 0-3' and 0-10' bgs evaluated for the particulate and volatile pathways, respectively

--- No RO was calculated for the constituent.

3.16 Bold indicates value exceeds Residential Inhalation Tier 2 RO.

3.16 Shading indicates value exceeds Construction Worker Inhalation Tier 2 RO.

<0.004 The constituent was not detected at the given detection limit

Table 7-4Comparison to Tier 2 Remediation Objectives - Soil Component of Groundwater Ingestion507 East Washington StreetChampaign, Illinois

CONSTITUENT	Soil Component to Groundwater Tier 2 RO	B-803 B803 (2.0-3.0') 5/7/2008 2.0-3.0'	B-803 B803 (9.0-10.0') 5/7/2008 9.0-10.0	B-803 B803 (21.0-22.0') 5/7/2008 21.0-22.0	B-803 B803 (29.0-30.0') 5/7/2008 29.0-30.0	B-846 B846 (8.5-9.5') 5/7/2008 8.5-9.5	B-846 B846 (10.0-11.0') 5/7/2008 10.0-11.0	B-84 B846 (20.0 5/7/20 20.0-2
Benzene	0.17 (1)	0.0019	0.0008	0.158	0.0014	0.438	0.205	3.16
Ethylbenzene	49.29	0.0069	<0.0052	4.56	<0.0038	10.1	3.42	< 0.09
Toluene	36.70	0.0039	<0.0052	0.32	0.002	<0.648	0.084	<0.09
Xylene (total)		0.0107	<0.0052	3.5	0.0013	8.82	2.9	<0.09
Naphthalene	15.07	0.034	0.062	13	0.010	5.44	12.4	0.01

CONSTITUENT	Soil Component to Groundwater Tier 2 RO	B-847 B847 (6.0-7.0') 5/7/2008 6.0-7.0	B-847 B847 (22.0-23.0') 5/7/2008 22.0-23.0	B-847 B847 (29.0-30.0') 5/7/2008 29.0-30.0	B-848 B848 (2.0-3.0') 5/7/2008 2.0-3.0	B-848 B848 (9.0-10.0') 5/7/2008 9.0-10.0	B-848 B848 (13.0-14.0') 5/7/2008 13.0-14.0	B-849 B849 (0.0-1.0') 5/7/2008 0.0-1.0	B-849 B849 (9.0-10.0') 5/7/2008 9.0-10.0	B-849 B849(16.0-17.0') 5/7/2008 16.0-17.0
Benzene	0.17 (1)	0.0027	1.44	0.0012	0.0013	0.0058	0.003	0.0012	0.0026	1.2
Ethylbenzene	49.29	0.003	62.8	<0.0038	< 0.0057	0.0039	0.0019	< 0.0053	0.0021	6.24
Toluene	36.70	0.0068	12.4	0.0018	<0.0057	0.0117	0.006	0.0011	0.0057	0.89
Xylene (total)		0.0057	75.6	<0.0038	<0.0057	0.0072	0.0038	<0.0053	0.0046	5.64
Naphthalene	15.07	<0.004	13.8	0.012	0.014	<0.004	<0.004	0.006	<0.004	5.37

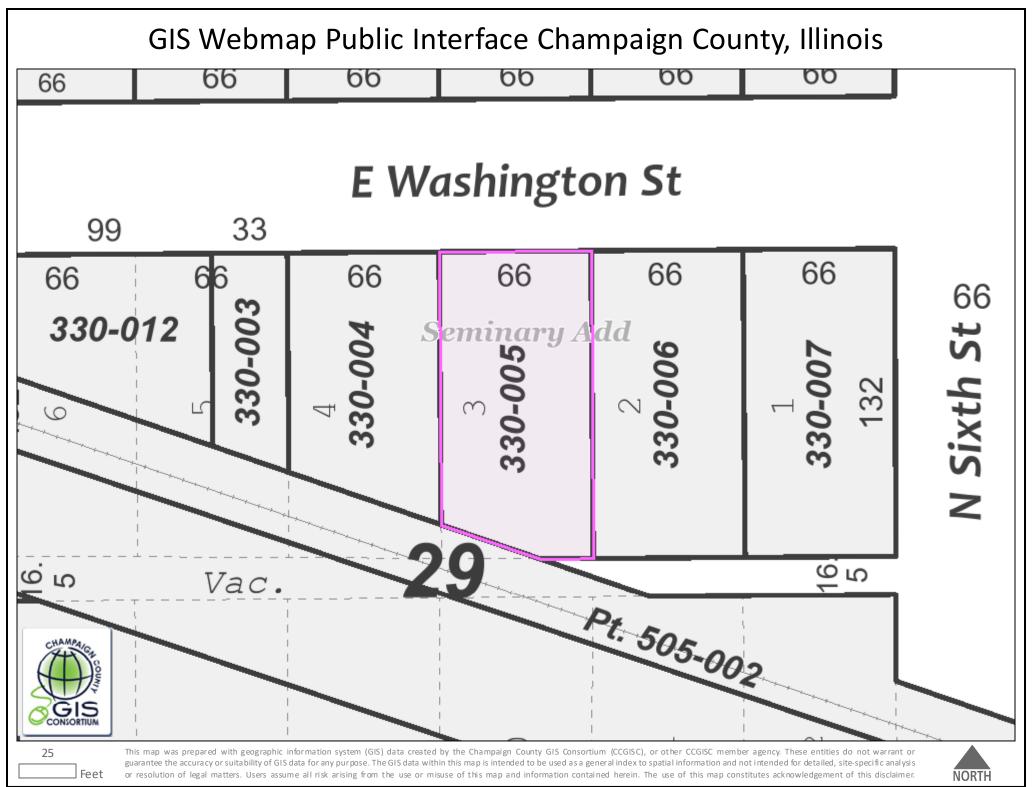
Notes:

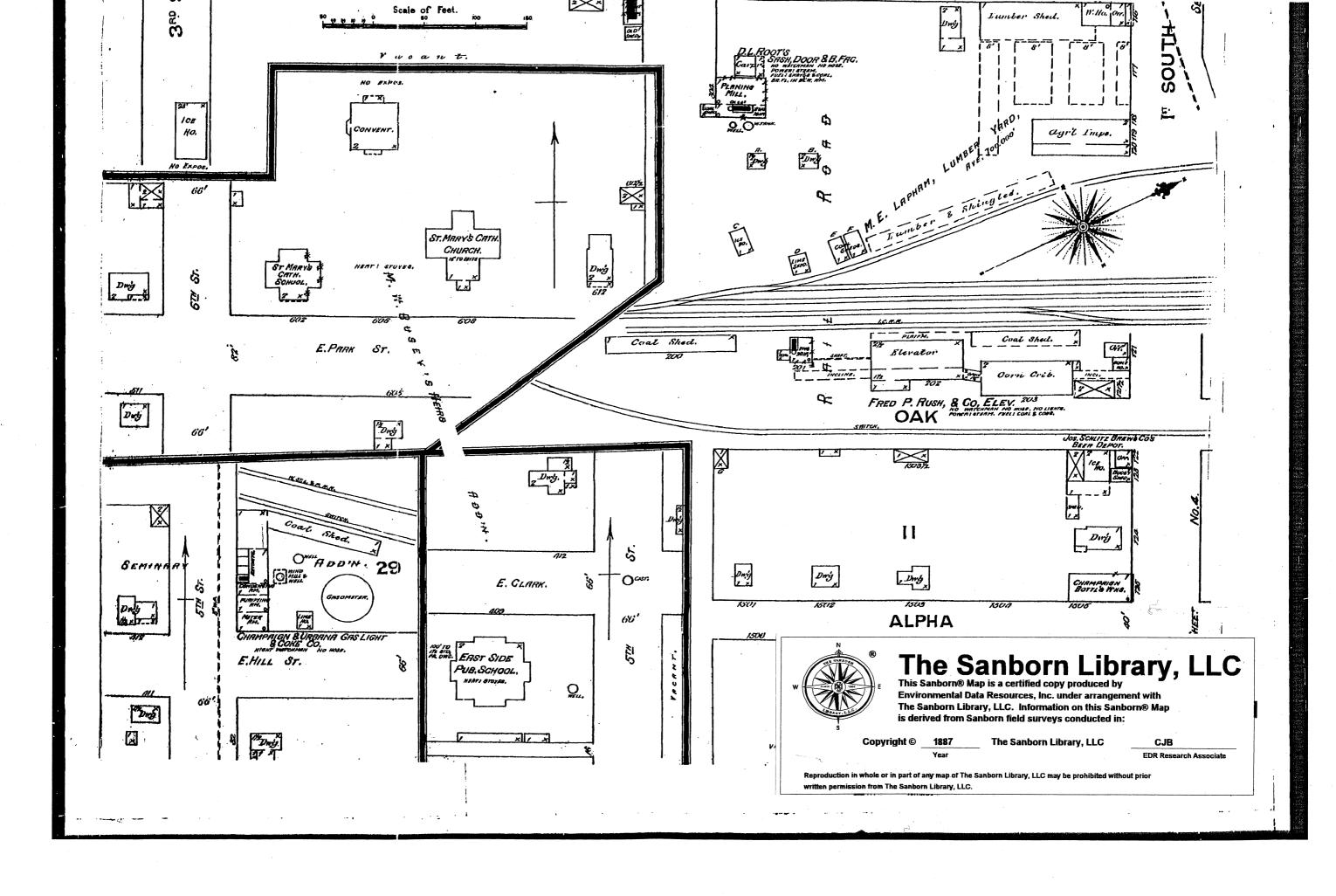
All units are in milligrams per kilogram (mg/kg).

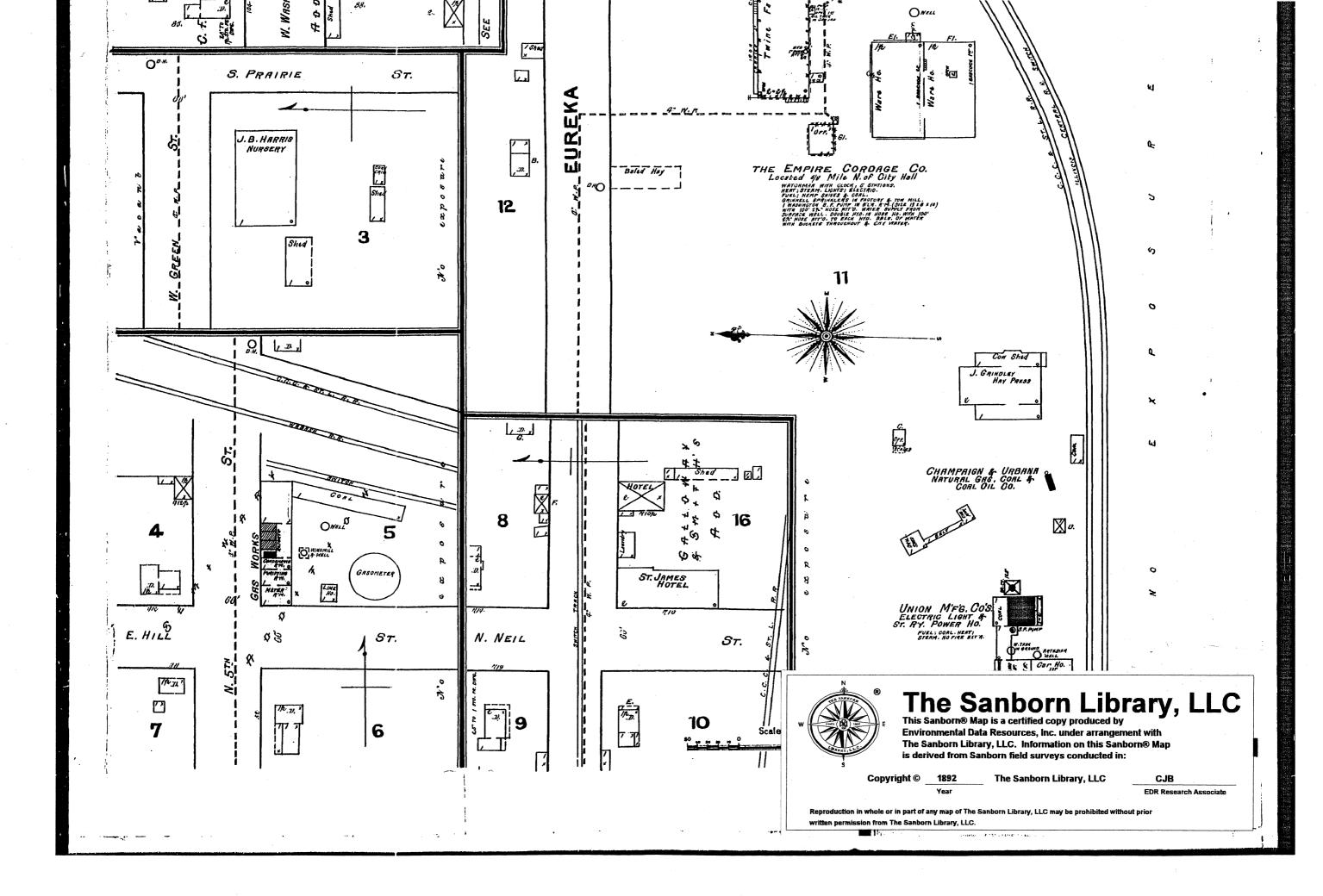
(1) Tier 2 calculated RO value was below Tier 1 - the Tier 1 RO value was retained.

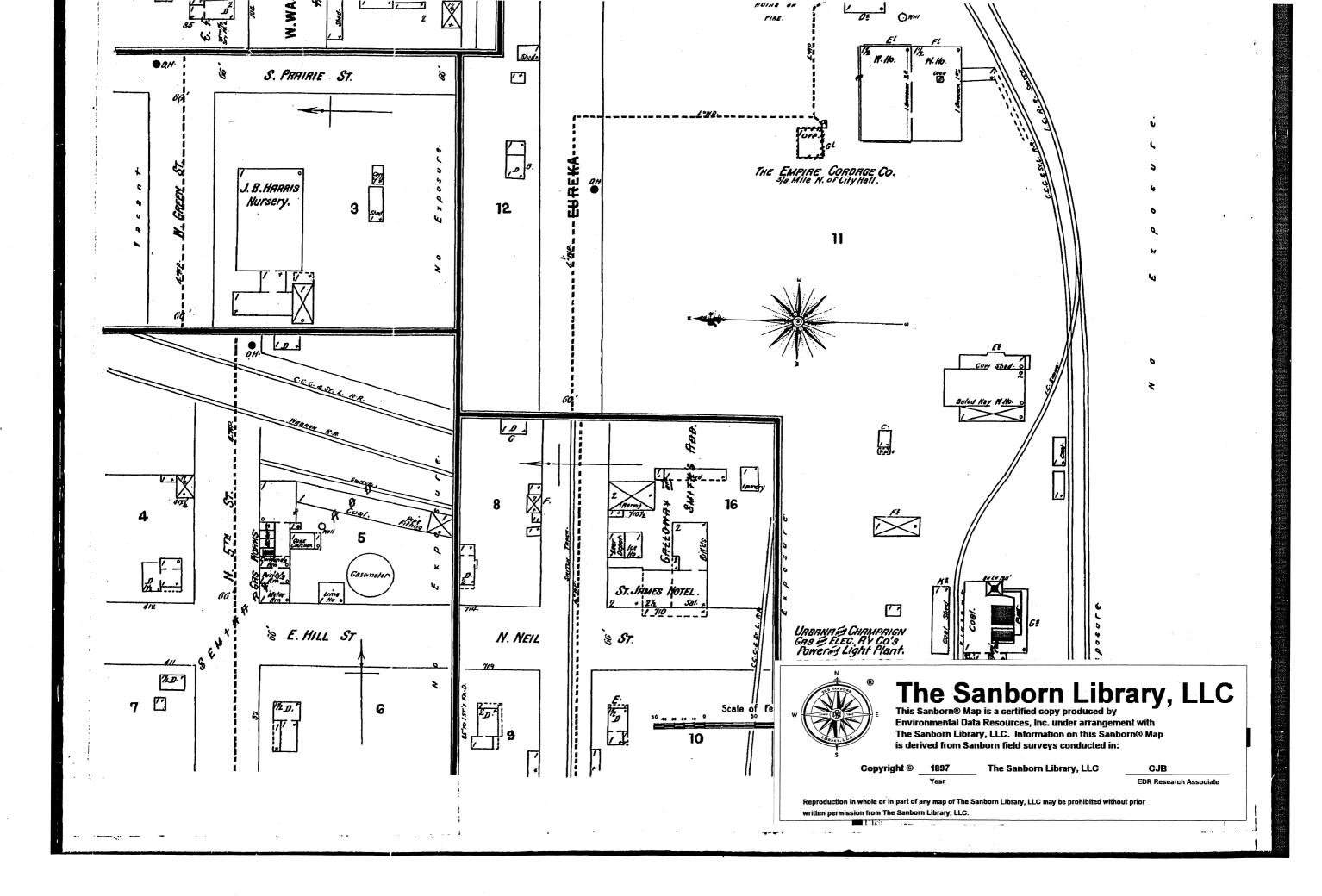
--- Tier 2 Remediation Objective was calculated for xylene. All concentrations reported below Class I/II remediation objective value.

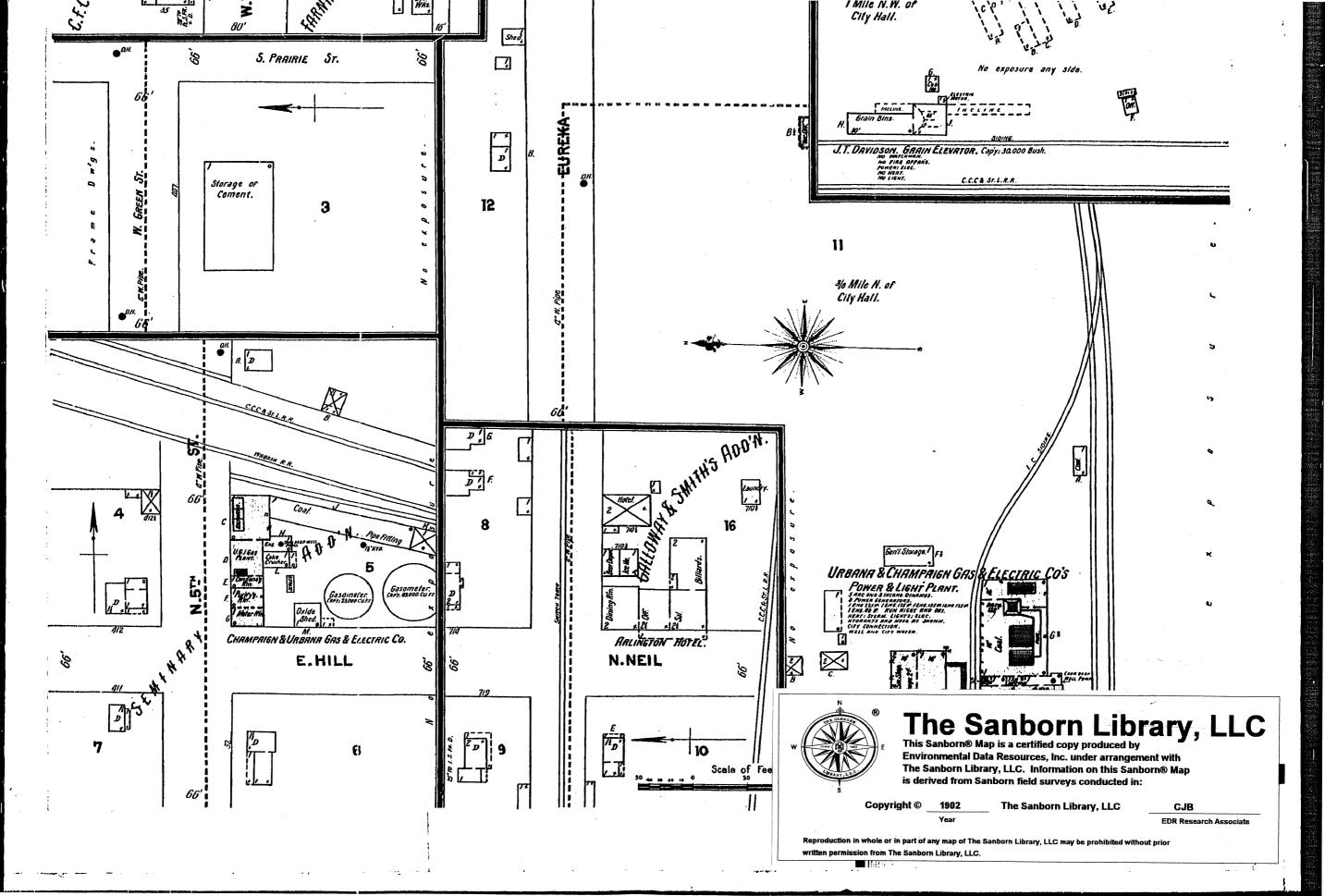
62.8 Constituent exceeds the Tier 2 RO.

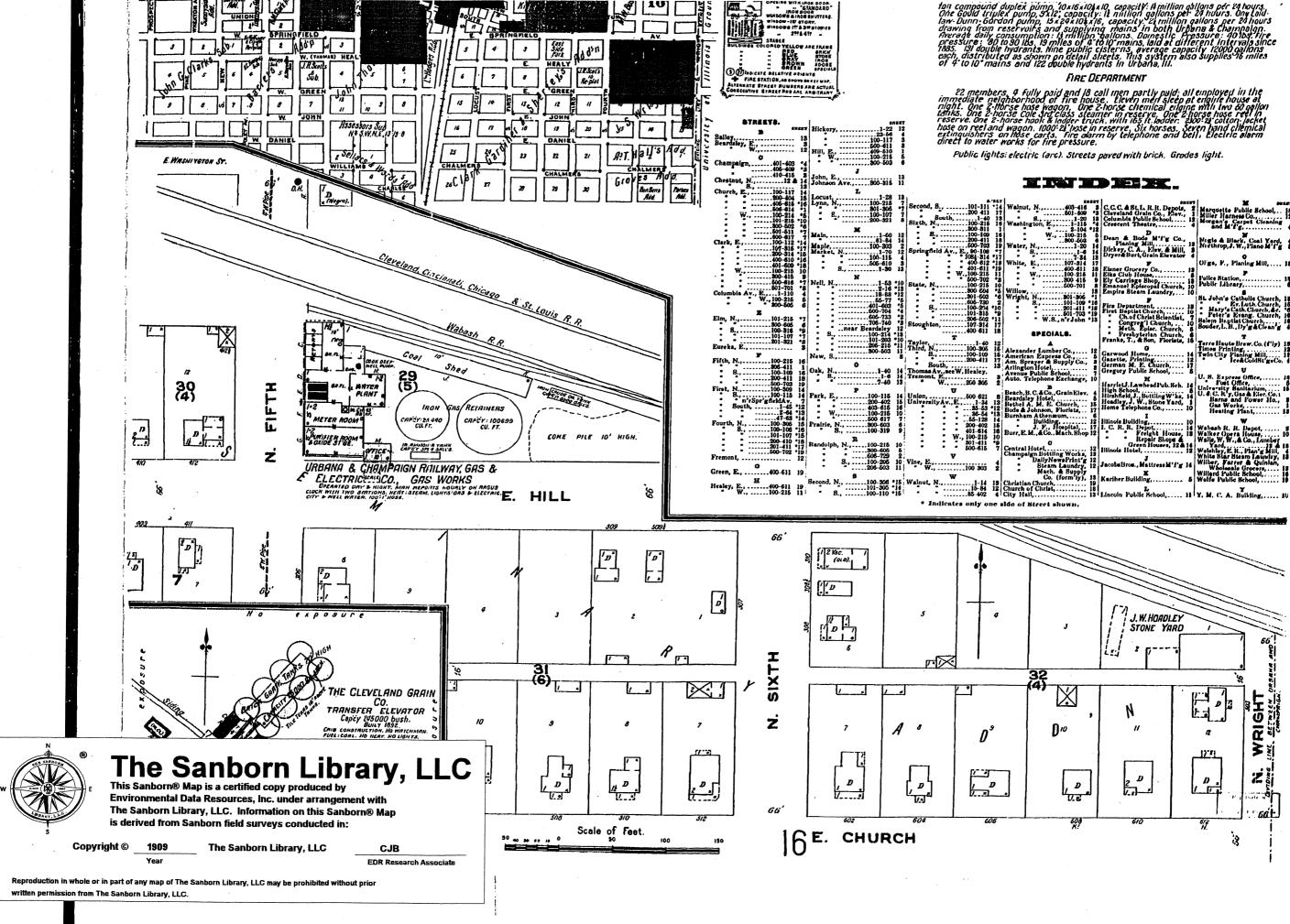

<0.004 The constituent was not detected at the given detection limit.

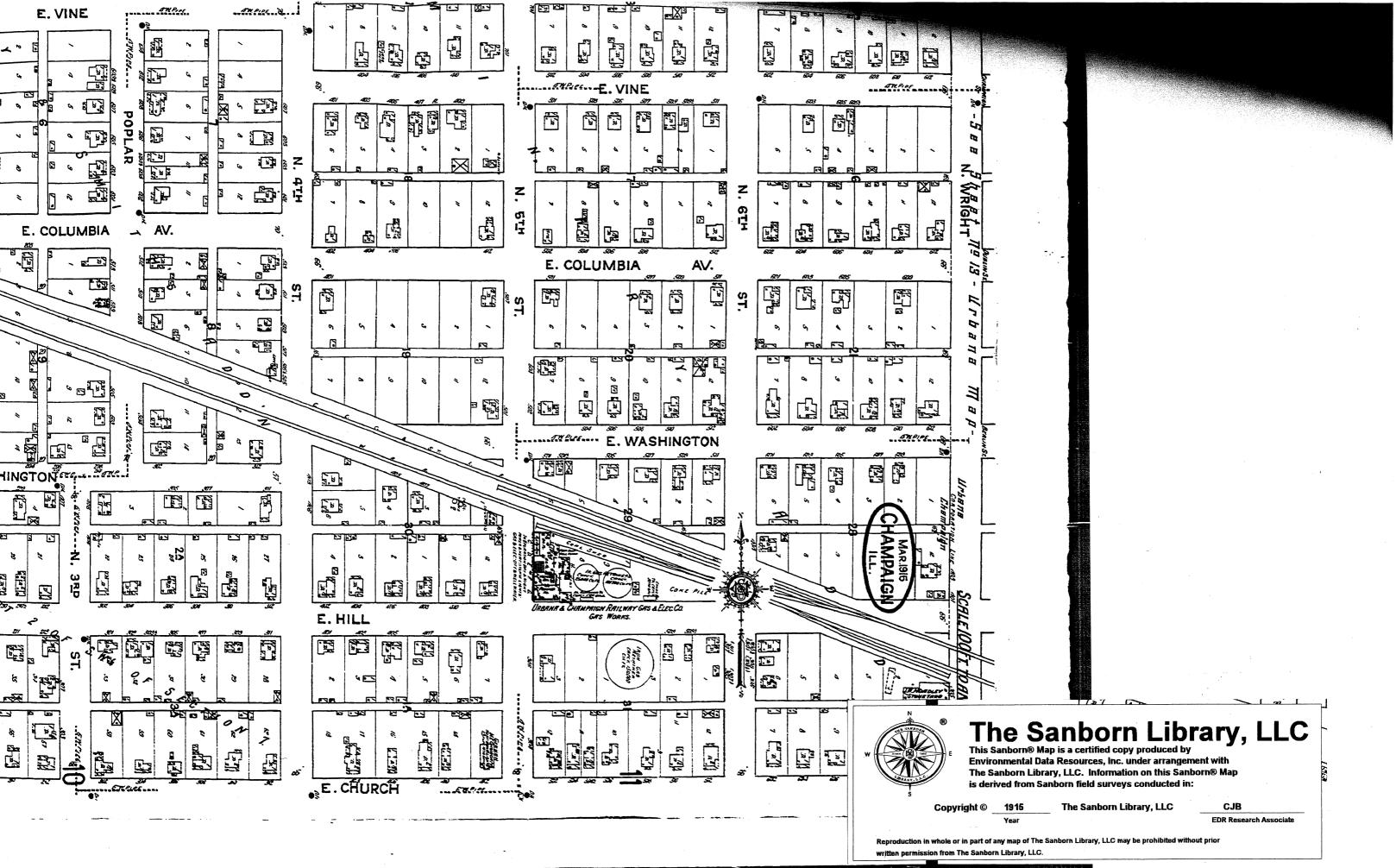

46 .0-21.0') 2008 21.0
16
983
983
983
13

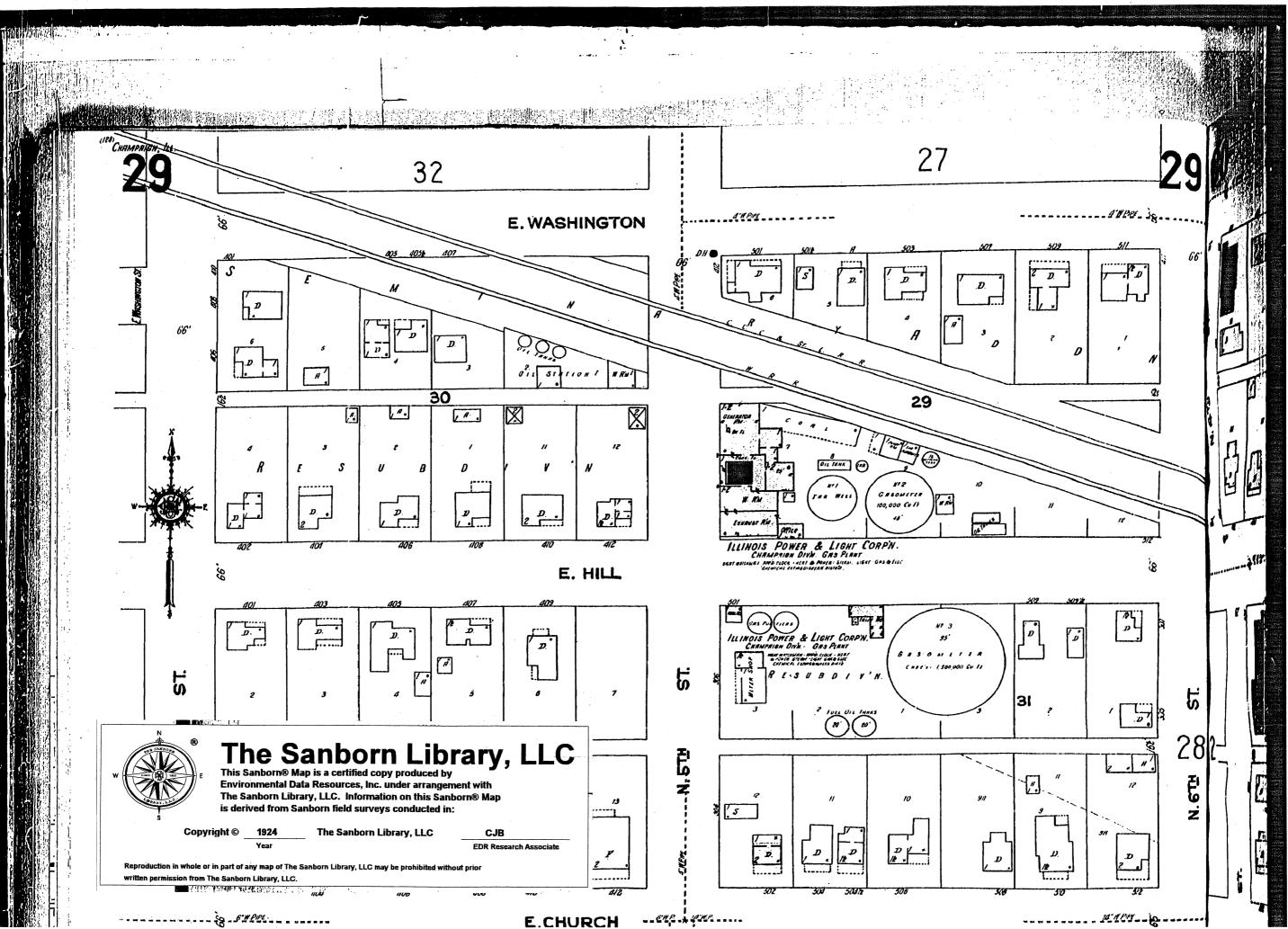

Appendix A

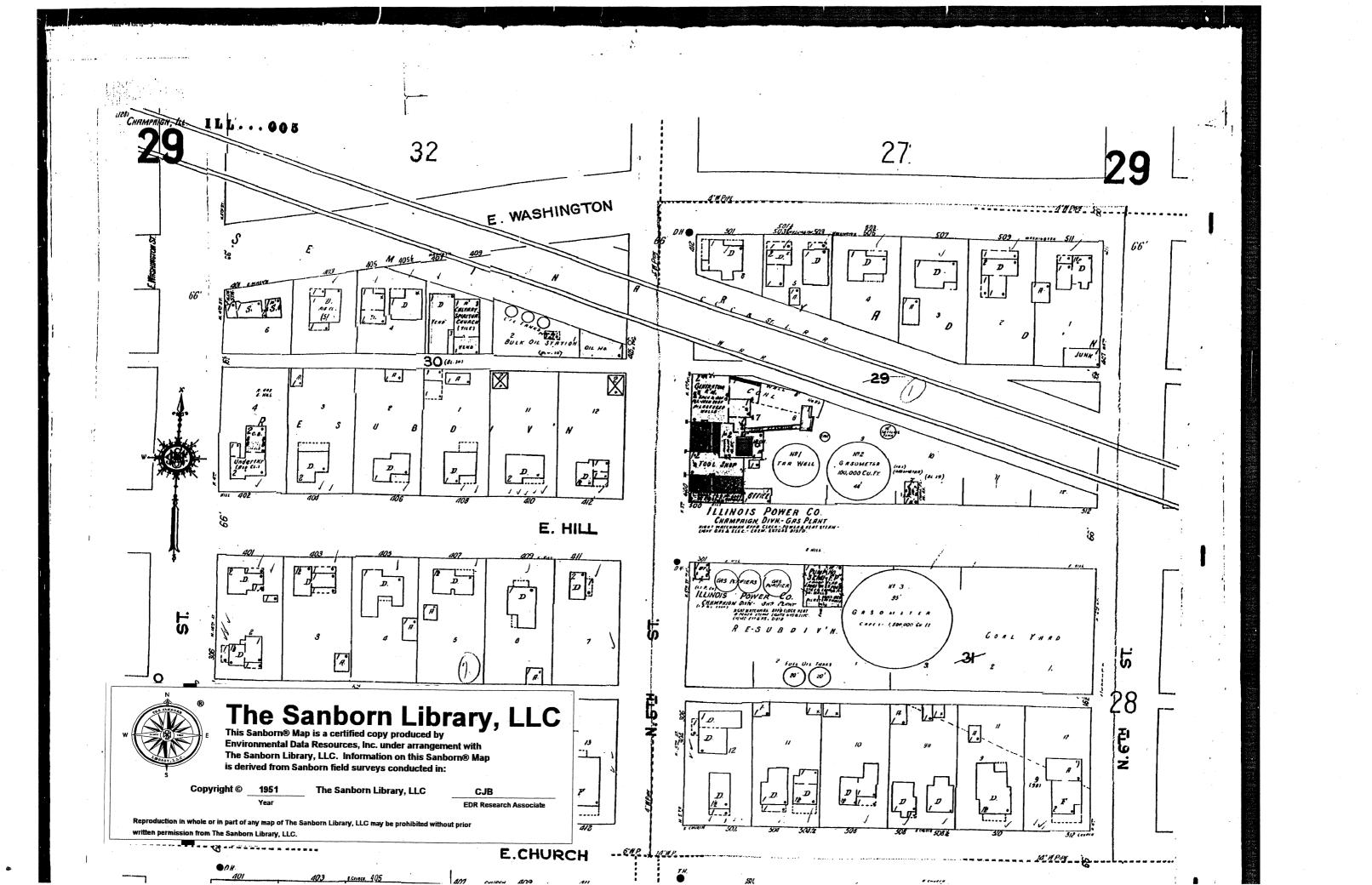

Historical Information


Sanborn Fire Insurance Maps Brown's Directory Summary Aerial Photographs








.

	•	
SHEET		X susat
N.,	C.C.C. & Bt.L. H. H. Depots, 2	Marquette Public School, 15
*		Miller Harness Co.,
8.,	Columbia Public School 12	Moranda Cashed Chandras
ton, E., 1-115 *4	Creteant Theatre	Morgan's Carpet Cleaning and M'f'g,
W., 100-215 5		
W., . 100-215 5		1 X
		Negle & Black, Coal Yard, 4
N.,	Planing Mill,	Northrop, J. W., I'lano M'f'g \$
3.,	Dickey, C. A., Elev. & Mill, S Dryer&Burt, Grain Elevator 4	
7-84 18	Dryer&Burt, Grain Elevator 4	0
107 014 15	· · ·	Ol'ge, P., Planing Mill, 18
400-611 18	Pl	Con Bal and a second beneft 10
	Einner Grocery Co., 13	
W.,	Eiks Club House,	Police Station,
	Ely Carriage Bhop, 18	Buble fillesse
	Ely Carriage Shop,	Public Library,
	Empire Steam Laundry, 10	
N.,		St. John's Catholis Church, 18
0 101 100 114		Er. Luth. Church, 18
	Fire Department,	Mary's Cath. Church, &c. '6
•	First Baptist Church, 10	Peter's Evang, Church, 16
* W.S., n'r John *13	Ch.of Christ Scientist, 7	A aler a strang, Choren, 10
11.15.7 A 18 VAM 10	Congreg'l Church, 10	Salem Heptlat Church, 16
	" Meth. Episc. Church, 8	Bouder, L. H., Dy'g & Clean'g 4
SPECIALS.	* Presbyterian Church, 6	-
	Franks, T., & Son, Florists, 18	T .
▲		Terre Haute Brew. Co. (f'ly) 18
er Lumber Co., 12	0	Times Printing 12
Express Co., 5	Garwood Home, 14	Twin City Planing Mill, 18 Ice&ColdSt geCo, 4
A Supply Co.	Gazette, Printing. 12	lee & ColdHt we Co. 4
eyer & Bupply Co., 8	German M. E. Church, 17	
1 lotel 8	Gregory Public School, 8	U
Public School, 7	and a solid belle and a solid state of	U. S. Express Office, 18
lephone Exchange, 10	н	U. A. E. Press Unice, In
	Harriet. Lawhead Pub. Sch. 14	Tout Omco,
C.&Co., GrainElev. 4	High Schoul, 8	University Banitarium, 15
Listal	Hirshfield, J., Bottling W'ks, 14	
y Hotel, 8		
	Hondley, J. W., Stone Yard 1	liarns and l'ower Ho., \$
M. E. Church, 15	Hoadley, J. W., Stone Yard, 1	Fost Office, 5 University Sanitarium, 5 U. & C. R'y, Gas & Fice, Co.; Barne and Fower Ho., 3 Gas Works, 1
ohnson, Flurists, 17	Hoadley, J. W., Stone Yard, 1 Home Telephone Co., 10	UM WOTE,
ohnson, Flurists, 17 Athenæum, 6	liome Telephone Co., 10 I	Harns and Power Ho., 3 Gas Works,
ohnson, Flurists,	liome Telephone Co., 10 I Illinois Building 10	UM WOTE,
ohnson, Flurists,	liome Telephone Co., 10 I Illinois Building 10	Heating Plant,
ohnson, Flurists,	Ilome Telephone Co., 10 Illinois Building, 10 I. C. R. R. Depot, 10 Freibeit House, 12	Heating Plant,
ohnson, Flurists,	Ilome Telephone Co., 10 Illinois Building, 10 I. C. R. R. Depot,	Heating Flant,
ohnson, Flurists,	Ilome Telephone Co., 10 Illinois Building, 10 I. C. R. R. Depot,	Heating Flant,
ohnson, Flurists, 17 A thenæum, 6 Building, 12 J. F., Hospital, 17 I., & Co., Mach. Shop 12 (otel	Ilome Telephone Co., 10 Illinois Building, 10 I. C. R. R. Depot,	Heating Flant,
ohnson, Flurists, 17 A thenæum, 6 Building, 12 J. F., Hospital, 17 I., & Co., Mach. Shop 12 (otel	Ilome Telephone Co.,	Heating Plant,
ohnson, Florists, 17 Athenæum,	Ilome Telephone Co.,	Watesh R. H. Depot, 3 Watesh R. H. Depot, 3 Walker Opera House, 10 Walky, W. W. & Co., Lunnber Yard, W. Dian & Mill, 4 Welshby, E. H., Plan's Mill, 4 White Blar Meamdry, 13
ohnson, Florists, 17 Athenæum,	Ilome Telephone Co.,	Una worzy,
ohnson, Flurists. 17 A thenseum	Home Telephone Co.,	Wathash R. H. Diepot, 1 Wathash R. H. Diepot, 1 Walker Opera House, 10 Walky W. W. & Co., Lunnber Yard, W. W. & Co., Lunnber Yard, Steam Lawdry, 18 White Star Steam Lawdry, 18 White Star Steam Lawdry, 18
ohnson, Flurists, 17 Athenseum, 6 Building, 12 J. F., Hospital, 12 J. F., Hospital, 12 f., & Co., Mach. Shop 12 Otel, 12 m Bottling Works, 13 DallyNewsPrint [*] Steam Laundry, 12 Mach. & Supply	Itome Telephone Co.,	Wabash R. H. Depot, 3 Wabash R. H. Depot, 3 Walker Opera House, 10 Walky W, W. & Co., Lunnier Yard, W. W. & Co., Lunnier Wather, Parter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, 12
ohnson, Floristä, 17 A thensewin, 18 Building,	Itome Telephone Co.,	Wabash R. H. Depot, 3 Wabash R. H. Depot, 3 Walker Opera House, 10 Walky W, W. & Co., Lunnier Yard, W. W. & Co., Lunnier Wather, Parter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, 12
ohnson, Floristä 17 A thenævn	Home Telephone Co.,	Wabash R. H. Depot, 3 Wabash R. H. Depot, 3 Walker Opera House, 10 Walky W, W. & Co., Lunnier Yard, W. W. & Co., Lunnier Wather, Parter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, Farter & Quintan, 12 Wilter, 12
ohnson, Floristä, 17 A thenswim, 6 Building, 12 J. F., Hospital, 17 J. J. Kospital, 17 Gotel, 12 Bottling Works, 18 DailyNewsPrint'g 12 Stram Laundry, 12 Mach. & Supply Co. (form by), 18 (church, 19	Ilome Telephone Co.,	Wabash R. M. Depot. 1 Wabash R. M. Depot. 1 Walker Opera House, 10 Walk, W. M. & Co., Luniber Walk, W. M. & Co., Luniber Weinkey, E. H., Plan'r Jill, 4 White Blar Steam Laundry, 13 Wilber, Parcer & Quinan, Wholesale (Forcers, 12 Willard Public Rchool, 19 Wolfe Fublic Rchool, 19
ohnson, Floristä, 17 A thenswim, 6 Building, 12 J. F., Hospital, 17 J. J. Kospital, 17 Gotel, 12 Bottling Works, 18 DailyNewsPrint'g 12 Stram Laundry, 12 Mach. & Supply Co. (form by), 18 (church, 19	Ilome Telephone Co.,	Wabash R. M. Depot. 1 Wabash R. M. Depot. 1 Walker Opera House, 10 Walk, W. M. & Co., Luniber Walk, W. M. & Co., Luniber Weinkey, E. H., Plan'r Jill, 4 White Blar Steam Laundry, 13 Wilber, Parcer & Quinan, Wholesale (Forcers, 12 Willard Public Rchool, 19 Wolfe Fublic Rchool, 19
ohnson, Floristä, 17 A thenswim, 6 Building, 12 J. F., Hospital, 17 J. J. Kospital, 17 Gotel, 12 Bottling Works, 18 DailyNewsPrint'g 12 Stram Laundry, 12 Mach. & Supply Co. (form by), 18 (church, 19	Itome Telephone Co.,	Wabash R. M. Depot. 1 Wabash R. M. Depot. 1 Walker Opera House, 10 Walk, W. M. & Co., Luniber Walk, W. M. & Co., Luniber Weinkey, E. H., Plan'r Jill, 4 White Blar Steam Laundry, 13 Wilber, Parcer & Quinan, Wholesale (Forcers, 12 Willard Public Rchool, 19 Wolfe Fublic Rchool, 19

BROWN'S DIRECTORY SUMMARY Champaign MGP Site Champaign, Illinois

			Annual	Gas Holder	Gas	Tar	Tar	Coke	Coke	Coke	Gas Oil	
Year	Company Name	Process	Production	Capacity	Unaccounted	Produced	Sold	Produced	Sold	Used	Used	Notes
		Type/Name	(cubic feet)	(cubic feet)	For	(gals)	(gals)	(tons)	(tons)	(tons)	(gals)	
1887	Champaign & Urbana Gas Light Co.											
1888												
1889	Champaign & Urbana Gas Light Co.	Coal										
1890	Champaign & Urbana Gas Light & Coke Co.	Coal	6,000,000									
1891	Champaign & Urbana Gas Light & Coke Co.	Coal	6,000,000									
1892	Champaign & Urbana Gas Light & Coke Co.	Coal										
1893	Champaign & Urbana Gas Light & Coke Co.	Coal	6,000,000									
1894	Champaign & Urbana Gas Light & Coke Co.	Coal	6,000,000									
1895												
1896												
1897												
1898												
1899	Urbana & Champaign Gas & Elec. Co.	Coal	15,000,000									
1900	Urbana & Champaign Gas & Elec. Co.	Coal	22,000,000									
1901	Urbana & Champaign Gas & Elec. Co.	Coal	26,000,000									
1902	Urbana & Champaign Gas & Elec. Co.	Coal	26,000,000									
1903	Urbana & Champaign Gas & Elec. Co.	Coal	26,000,000									
1904	Urbana & Champaign Gas & Elec. Co.	Coal	26,000,000									
1905	Urbana & Champaign Gas & Elec. Co.	Coal	26,000,000									
1906	Urbana & Champaign Railway, Gas & Elec. Co.	Coal	35,000,000									
1907	Urbana & Champaing Railway, Gas & Elec. Co.	Coal & Oil	30,000,000									
1908	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Oil	40,000,000									
1909	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Oil	40,000,000									
1910	Urbana & Champaingn Railway, Gas & Elec. Co.	Coal & Oil	63,000,000	120,000	12.00%							1
1911	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Oil	50,000,000	500,000	15.00%							

Notes:

1. Annual Production is reported as sales; therefore, actual production estimated to be 12% higher

2. Controlled by Illinois Traction Co.

3. Annual production: Coal gas, 30,232,500 c.f.; oil gas, 100,687,000 c.f.

4. Annual production; Coal gas, 40,020,000 c.f.; oil gas, 102,800,000 c.f.

5. controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Traction Co.

6. Annual production; Coal gas, 14,818,500 c.f.; Water gas, 152,287,900 c.f.

7. Controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Power & Light Co.

8. Formerly Urbana and Champaign Railway Gas & Electric Co.

9. Gas holder capacity, 500,000 c.f.; relief, 100,000 c.f.

10. "Coke Used" is reported as "coal " used; water gas generator fuel , 6,034 tons

11. Gas purchased, 5,320,000 c.f. from Coal Gas Experimental Plant

12. Boiler fuel used; 2,787 tons Indiana screenings; 74,313 gals. Tar

13. Bituminous coal used as water gas generator fuel, 5,676 tons

14. Boiler fuel used, 1,628 tons coal; tar, 170,820 gal.

15. Bituminous coal used as water gas generator fuel

16. Subsidiary of North American Light & Power Co.

17. Carbureted water gas plant now shut down, serving natural gas

18. Gas purchased, 185,199,000 c.f. natural gas from Panhandle Illinois Pipe Line Co.

BROWN'S DIRECTORY SUMMARY Champaign MGP Site Champaign, Illinois

			Annual	Gas Holder	Gas	Tar	Tar	Coke	Coke	Coke	Gas Oil	
Year	Company Name	Process	Production	Capacity	Unaccounted	Produced	Sold	Produced	Sold	Used	Used	Notes
		Type/Name	(cubic feet)	(cubic feet)	For	(gals)	(gals)	(tons)	(tons)	(tons)	(gals)	
1912	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	65,000,000	500,000	11.00%							
1913	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	76,016,000	500,000	10.00%							1
1914	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	76,016,000	500,000	10.00%							
1915	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	90,000,000	500,000	10.00%							1,2
1916	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	90,000,000	500,000	10.00%							1,2
1917	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	107,787,300	500,000	10.50%	34,864	34,864	2,074	2,074			1,2,3
1918	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	107,787,300	500,000	10.50%	34,864	34,864	2,074	2,074			1,2,3
1919	Urbana & Champaign Railway, Gas & Elec. Co.	Coal & Lowe	128,000,000	440,000	8.00%	75,000	75,000	2,060	2,060			1,2,4
1920	Urbana & Champaign Railway, Gas & Elec. Co.	Water & coal gas	125,089,460	440,000		110,394	110,394	920	920			1,5,6
1921	Urbana & Champaign Railway, Gas & Elec. Co.	Water & coal gas	181,990,000	440,000	10.80%							5
1922	Urbana & Champaign Railway, Gas & Elec. Co.	Water gas	194,652,800	440,000	6.90%		78,240				668,998	5
1923	Urbana & Champaign Railway, Gas & Elec. Co.	Water gas	218,306,200	600,000	11.10%		40,000				668,998	5
1924	Urbana & Champaign Railway, Gas & Elec. Co.	Water gas	218,306,200	600,000	11.10%		40,000				668,998	7
1925	Illinois Power & Light Corp.	Water gas	230,366,600	630,000	11.10%		73,000			4,847	734,534	8
1926	Illinois Power & Light Corp.	Water gas	258,387,500	600,000	11.30%	122,703	100,000			4,847	734,534	
1927	Illinois Power & Light Corp.	Water gas	298,543,000	600,000	18.31%	95,000				5,139	949,992	9,10
1928	Illinois Power & Light Corp.	Water gas	301,745,000	600,000	18.33%	191,400				5,139	945,918	9,10
1929	Illinois Power & Light Corp.	Water gas	397,465,000	600,000	13.45%	399,402				4,870	976,778	9,11
1930	Illinois Power & Light Corp.	CWG	338,722,000	600,000	14.89%	229,453				5,250	1,122,986	9,12
1931	Illinois Power & Light Corp.	CWG	336,360,00	600,000	15,94%	244,305				5,655	1,097,384	9,15,16
1932	Illinois Power & Light Corp.	CWG	338,769,000	600,000	15.10%	171,497				5,676	1,052,314	9,13,14
1933	Illinois Power & Light Corp.	CWG	58,841,000	600,000	13.80%	8,473				1,131	73,052	9, 16,17,18
1934	No Listing											
1935	No Listing											

Notes:

1. Annual Production is reported as sales; therefore, actual production estimated to be 12% higher

2. Controlled by Illinois Traction Co.

3. Annual production: Coal gas, 30,232,500 c.f.; oil gas, 100,687,000 c.f.

4. Annual production; Coal gas, 40,020,000 c.f.; oil gas, 102,800,000 c.f.

5. controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Traction Co.

6. Annual production; Coal gas, 14,818,500 c.f.; Water gas, 152,287,900 c.f.

7. Controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Power & Light Co.

8. Formerly Urbana and Champaign Railway Gas & Electric Co.

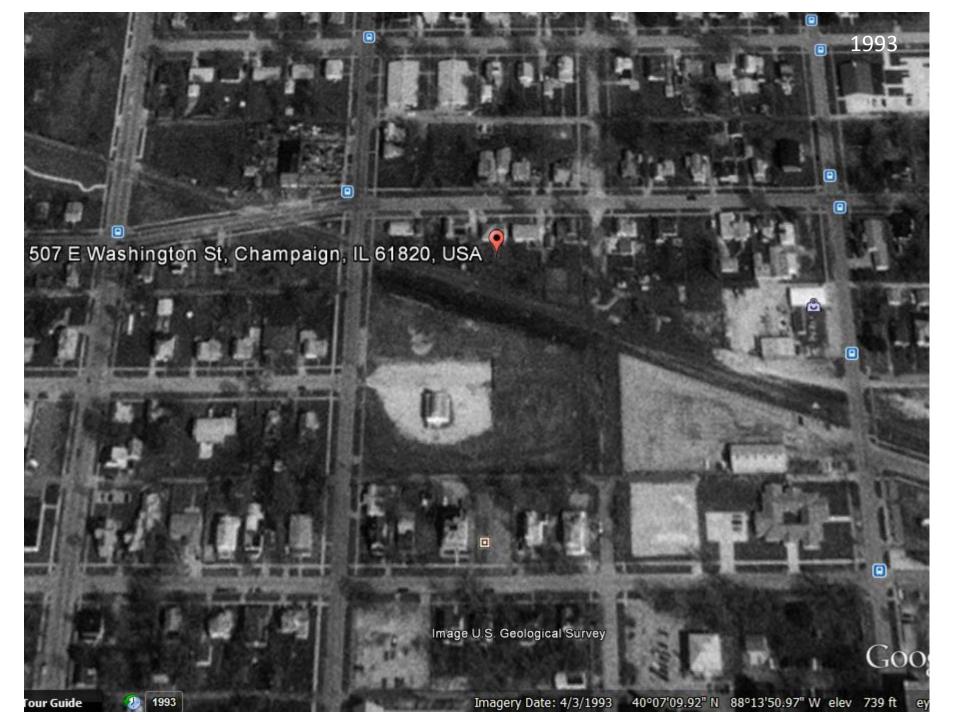
9. Gas holder capacity, 500,000 c.f.; relief, 100,000 c.f.

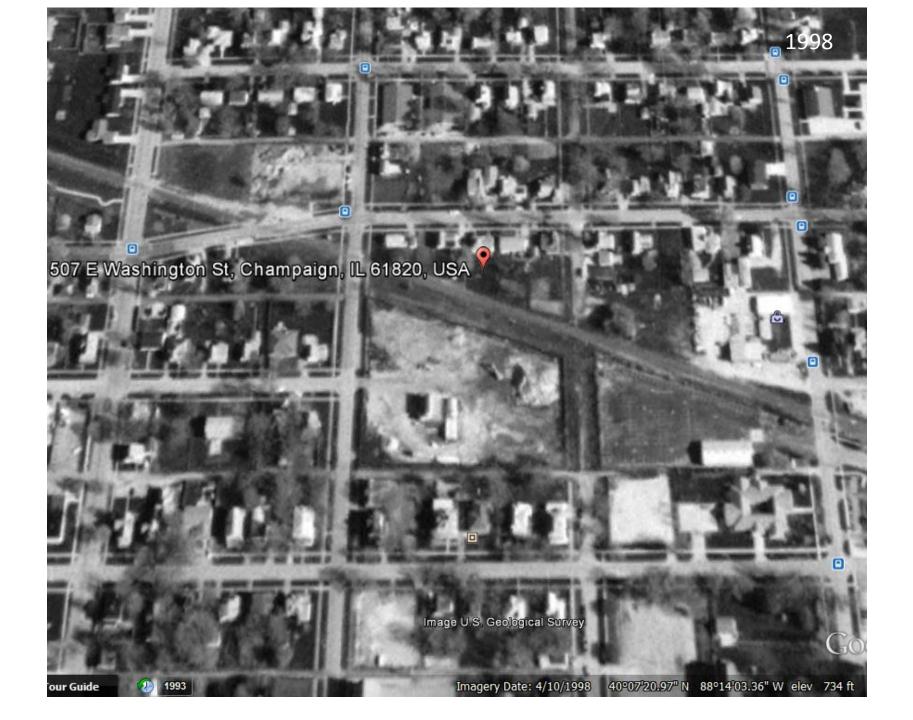
10. "Coke Used" is reported as "coal " used; water gas generator fuel , 6,034 tons

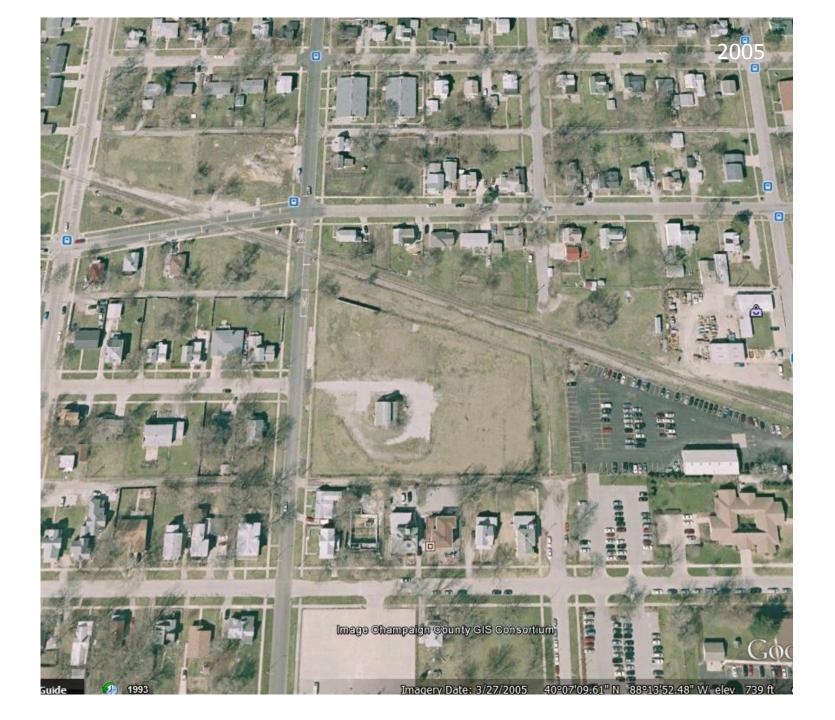
11. Gas purchased, 5,320,000 c.f. from Coal Gas Experimental Plant

12. Boiler fuel used; 2,787 tons Indiana screenings; 74,313 gals. Tar

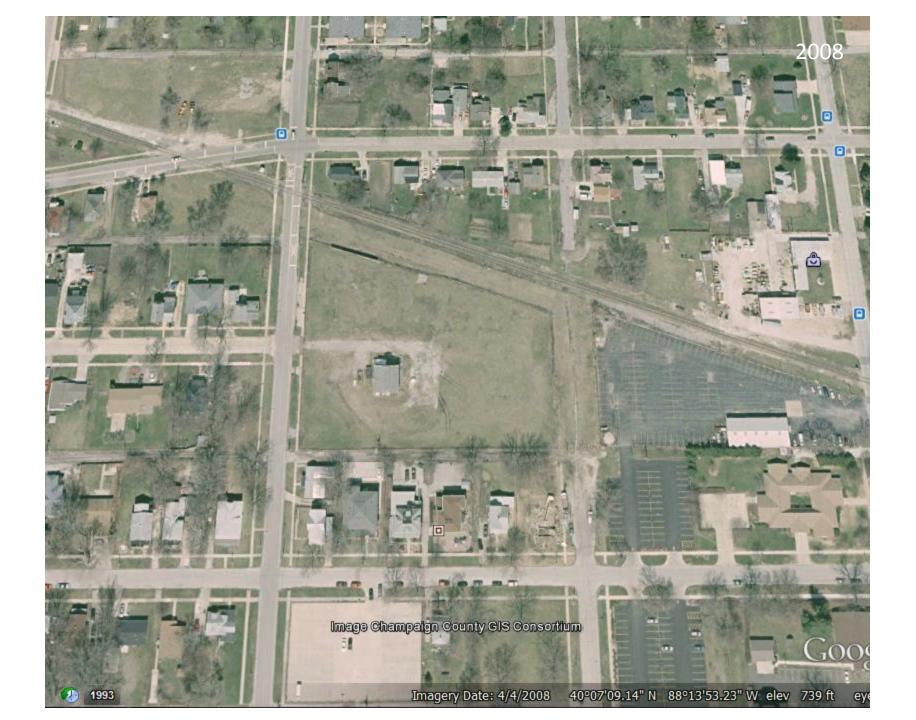
13. Bituminous coal used as water gas generator fuel, 5,676 tons

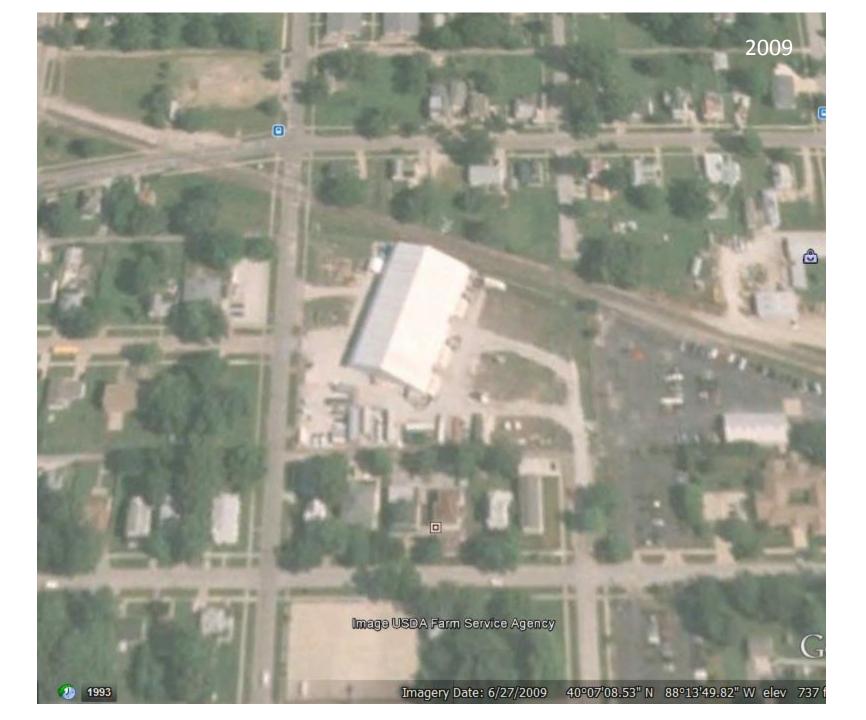

14. Boiler fuel used, 1,628 tons coal; tar, 170,820 gal.

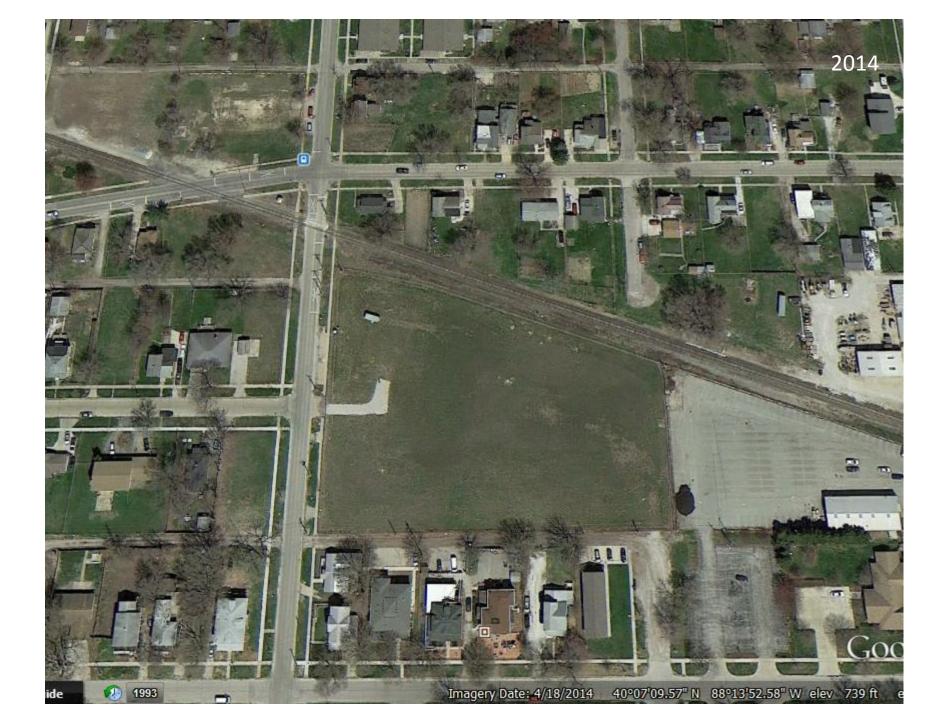

15. Bituminous coal used as water gas generator fuel


16. Subsidiary of North American Light & Power Co.

17. Carbureted water gas plant now shut down, serving natural gas


18. Gas purchased, 185,199,000 c.f. natural gas from Panhandle Illinois Pipe Line Co.





Appendix B

Records of Subsurface Exploration and Well Installation Records

		ŀ				10NITORING WELL	PROBEHOLE/TEST PIT I	ID:				
Project Name:	P - Champaig	n Foi	mer M	IGP	Elevation:	736.51'	Datum:					
	2403053				Coordinate X:		Coordinate Y: 125					
ocation: () ate Started: 05/0	Off-Site (North	Cen		Site) e Completed: 05/07/08	Total Depth:	30.00'	Borehole Dia.: 2.00	in				
Consultant: PSC	11/00			ed By: PSC	Section/Towns	hip/Range:						
ogged By: R. H	ison			ing Method: GeoProbe				-				
Elevation (feet) Depth (feet) Sample No. (Depth Interval)	Recovery Percent Recovery	Water Level	USCS Code		Material Description							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 100 100 100 100 100 100 100 100 100 100 100 100 100		FI	Topsoil (FI) Silty CLAY with travel gravel; da Silty CLAY; yellowish gray to ye - Slight coal tar-like odor; med - Color change to gray/brownis Silty CLAY with sand and grave - color change to orangish gray Silty CLAY with gravel and sand coal tar-like odor; damp; (CL) - color change to gray; coal tar - Strong coal tar-like odor - Coal tar-like substance at 21 - silty zone ~2.0" thick, wet - moderate odor - 22.4' sand layer (~1.0" thick) - very slight coal tar-like odor - no odor Termination of boring at 30.0' of	ellowish brown; no ium stiff; color cha sh gray with grave l; yellowish gray; y; very slight odor d; yellowish gray; r-like odor .0' moderate coal ta	visible impact; soft; i ange to yellow gray l; moderate odor no visible impact; sof	no odor; damp; (CL) t; very slight odor; (CL)	1.2 1.3 0.0 3.2 2.3 3.5 28.7 5.0 0.0	2.0-3.0 9.0-10.0 21.0-22.0 29.0-30.0			

							BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:					
			P				B-846					
Project Name: IP - Champaign Former MGP						GP	Elevation: 735.78'	Datum:				
Project Number: 62403053							Coordinate X: 1012846.53	Coordinate Y: 1257567.34				
Location: Date Started			(North (Cent		Site) e Completed: 05/07/08	Total Depth: 30.00'	Borehole Dia.: 2.00)in			
		7700				•	Section/Township/Range:					
Consultant: PSC Drilled By: PSC Logged By: L. Hoosier Drilling Method: GeoProbe												
Elevation (feet) Depth (feet)	Sample No. (Depth Interval)	Recovery Percent	Recovery Graphic Log	Water Level	USCS Code		Material Description		PID/OVM Reading (ppm)	Lab Sample		
735	1 0-5 2 5-10 3 10-14 4 14-18 5 18-22 6 22-26 7 26-30	20 100 100 100 100			FI	stiff; no odor; damp; (FILL) CLAY; greenish gray; no visible - coal tar-like substance - strong odor SAND with some clay, gravel, a odor; wet - saturated; (SC) Silty CLAY with some gravel; lig moist; (TILL) Silty CLAY with some sand and slight coal tar-like odor; damp; (T Silty CLAY with gravel and sand - no odor - 0.5" sand seam; moist - at 25.10' 1.0" sand seam	l; gray; no visible impact; slight odor; mo gravel; gray; no visible impact; no odor;	bist; (CL) oft; strong coal tar-like dium stiff; slight odor; o visible impact; stiff; bist; (TILL)	0.9 0.7 1.3 29.5 10.7 4.8 1.3 3.4 3.1 20.8 17.6 16.9 18.1 18.4 10.7 0.9 1.1 0.9 1.1 0.8 0.7 0.6	8.5-9.5 10.0-11.0 20.0-21.0		

	P	S		BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:					
				B-847					
Project Name: IF	? - Champaign	Former I	MGP	Elevation: 737.12'	Datum:				
	2403053			Coordinate X: 1012794.16	Coordinate Y: 1257648.36				
Location: O Date Started: 05/0	ff-Site (North (Site) te Completed: 05/07/08	Total Depth: 30.00'	Borehole Dia.: 2.0	0in			
Consultant: PSC	1100	_	lled By: PSC	Section/Township/Range:					
Logged By: R. Hu	son		lling Method: GeoProbe						
Elevation (feet) Depth (feet) Sample No. (Depth Interval)	Recovery Percent Recovery Graphic Log	Water Level USCS Code		Material Description		PID/OVM Reading (ppm)	Lab Sample		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 100 100 100 100 100 100 100	TL	Silty CLAY; yellowish brown; no - wood fragments at 5.0' - silt layer, 3.0" thick; wet Silty CLAY; yellowish gray; no v - soft; wet - faint odor from 14.0-`16.0' - 2.0" sand - no odor Silty CLAY; gray; no visible imp - 2.0-3.0" sand seam with coal - stiff clay - 6.0" gravel seam with clay - 22.0-23.0' sand and gravel se - slight odor	o visible impact; medium stiff; no odor; mo visible impact; medium stiff; no odor; mois act; very stiff; no odor; damp; (TILL) tar-like substance (18.5-19.0') eam; coal tar-like substance, 5.0" wet-sat o visible impact; slight coal tar-like odor; (n 5/7/08	st; (CL) turated; strong odor	0.5 21.6 86.6 10.5 60.1 22.9 12.6 8.4 6.0 1.8 1.7 1.5 1.3	6.0-7.0 22.0-23. 29.0-30.		

							BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:				
							B-848				
Project Name: IP - Champaign Former MGP						GP	Elevation: 736.27'	Datum:			
Project Number: 62403053							Coordinate X: 1012858.91	Coordinate Y: 1257602.02			
Location: Date Started			(North (Cent			Total Depth: 30.00'	Borehole Dia.: 2.0)0in		
		/06		+		e Completed: 05/07/08 ed By: PSC	Section/Township/Range:				
						ing Method: GeoProbe	-				
Elevation (feet)	Sample No. (Depth Interval)	Recovery Percent	Recovery Graphic Log	Water Level	USCS Code		Material Description		PID/OVM Reading (ppm)	Lab Sample	
$ \begin{array}{c} 1 \\ 735 \\ - 5 \\ 730 \\ - 5 \\ - 10 \\ 725 \\ - 10 \\ - 20 \\ - 15 \\ - 20 \\ - 20 \\ - 25 \\ - 30 \\ - 35 \\ - 30 \\ - 35 \\ - 40 \\ 695 \\ - 40 \\ 695 \\ - 45 \\ 685 \\ - 50 \\ 685 \\ - 50 \\ - $		£			FI CL TL	Silty CLAY; brown grading to lig soft; no odor; moist; (CL) - very soft; trace sand; moist 10.0-12.0' - no recovery Silty CLAY; light brownish yellow - sand from 13.0-14.0' 14.0-16.0' - no recovery SAND with some silt; light gray; Silty CLAY with gravel; light bro moist; (TILL) Silty CLAY with gravel; light bro moist; (TILL) 22.0-26.0' - no recovery	ts, gravel, and roots; dark brown; mediu ht brwon with red and orange mottling; w; no visible impact; very soft; no odor; we wnish gray; no visible impact; medium s wnish gray; no visible impact; medium s o visible impact; medium stiff; no odor; d n 5/7/08	no visible impact; wet; (CL) et; (SC) stiff; no odor; stiff to stiff; no odor;	0.3 0.4 0.3 0.4 0.3 0.0 0.0	2.0-3.0 9.0-10. 13.0-14.	

							BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:					
							B-849					
Project Name: IP - Champaign Former MGP							Elevation: 737.29'	Datum:				
Project Number: 62403053							Coordinate X: 1012829.64		Coordinate Y: 1257622.86			
Location: Off-Site (North Center of Site)							Total Depth: 30.00'	Borehole Dia.: 2.00	Din			
							Completed: 05/07/08 Section/Township/Range:					
Consultant: PSC Logged By: L. Hoosier						ed By: PSC ng Method: GeoProbe						
Logged by.	L. 1100	1				ing method. Geor robe			D			
Elevation (feet) Depth (feet)	Sample No. (Depth Interval)	Recovery Percent	<u>Recovery</u> Graphic Log	Water Level	USCS Code		Material Description		PID/OVM Reading (ppm)	Lab Sample		
735 -	1 0-5	47		-	FI	Silty CLAY with trace roots and gr moist; FI	ravel; dark brown; no visible impac	t; medium stiff; no odor;		0.0-1.0		
- 5 730 - 10 725 - 15 720 - 25 710 - 25 710 - 30 705 - 35 700 - 40 695 - 45 690 - 55	2 5-10 3 10-14 4 14-18 5 18-22 6 22-26 7 26-30	80 75 100 94 100			CL	CLAY; light brown; no visible impa - some orange mottling - medium stiff Sandy CLAY; light brown with oran sand seam at 8.5' Sandy CLAY with some gravel; light - slight coal tar-like odor - color grades to gray - coal tar-like substance, 16.0-17 - strong odor - strong odor at 18.0' Silty CLAY with some gravel; gray 19.0' - SILT; gray; no visible impac Silty CLAY with gravel; no visible i - 0.5" sand seam; wet Sandy CLAY with some gravel; gr - silty CLAY Termlation of boring at 30.0' on 5/	inge mottling; no visible impact; ve ole impact; very soft; no odor; wet- t brown; no visible impact; medium 7.0' y; no visible impact; stiff; slight odo ct; soft; no odor; wet; ML impact; stiff; no odor; moist; TI ray; no visible impact; stiff; no odo	saturated a stiff; no odor; moist; TI ar; TI	0.7 0.6 0.7 0.6 0.7 1.0 27.2 5.6 2.2 1.4 1.8 0.8 0.6 0.7	9.0-10.0		

Appendix C

Evaluation of Soil Gas Data Collected at Residential Properties Near Former MGP Site, Champaign, Illinois December 10, 2008

Gregory W. Dunn, L.P.G. Illinois Environmental Protection Agency (IEPA) 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

RE: Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site, Champaign, Illinois

Dear Mr. Dunn:

The Risk Assessment and Management Group of Gannett Fleming, Inc. (RAM Group) is submitting one original and two copies of the above referenced report to the IEPA on behalf of our client Ameren Services. The soil gas sampling fieldwork was performed on October 15, 2008.

Please call any of the following if you have questions or need clarification or additional documentation:

- Kendall Pickett, RAM Group 713-784-5151
- Atul Salhotra, RAM Group 713-784-5151
- Brian Martin, Ameren Services (314) 554-2233

Sincerely,

Salhotra, Ph.D.

Principal Professional

Whicht

Kendall L. Pickett Senior Geologist

cc: Cary Ware, Illinois Department of Public Health (1 copy) Brian Martin, Ameren Services (2 copies) Stuart Cravens, Kelron Environmental (4 copies)

Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site Champaign, Illinois

Prepared for:

Ameren Services One Ameren Plaza 1901 Chouteau Avenue MC 602 St. Louis, MO 63103

Prepared by:

RAM Group of Gannett Fleming, Inc. 5433 Westheimer Road, Suite 725 Houston, TX 77056 Ph: (713) 784-5151 Fax: (713) 784-6105 <u>e-mail: asalhotra@ramgp.com</u>

December 2008

LIST LIST LIST	OF TA OF FIC OF AP	CONTENTS ABLES GURES PPENDICES ATIONS	<u>Page</u> i ii ii iii iii
EXE(CUTIV	VE SUMMARY	ES-1
1.0	INTI	RODUCTION	1-1
	1.1	SITE LOCATION	1-1
		SETTING	1-1
	1.3		1-1
	1.4	OVERVIEW	1-2
2.0	FIEI	LD INVESTIGATION	2-1
	2.1	PRE-INVESTIGATION ACTIVITIES	2-1
		2.1.1 Utilities Clearance	2-1
		2.1.2 Daily Site Health & Safety Meetings	2-1
	2.2	SOIL GAS AND AMBIENT AIR SAMPLING	2-2
		2.2.1 Soil Gas Sampling and Analysis	2-2
		2.2.1.1 505 E. Washington Street	2-3
		2.2.1.2 507 E. Washington Street	2-3
		2.2.1.3 412 E. Hill Street	2-4
	0.0	2.2.2 Ambient Air Sampling and Analysis	2-4
	2.3	BASEMENT SURVEYS	2-5
		2.3.1 505 E. Washington Street2.3.2 507 E. Washington Street	2-5 2-6
		2.3.2 507 E. Washington Street 2.3.3 412 E. Hill Street	2-6 2-6
	2.4	SAMPLE ANALYSIS	2-0
	2.5	DECONTAMINATION PROCEDURES	2-7
	2.6	INVESTIGATION DERIVED WASTE (IDW)	2-8
	2.7	QUALITY ASSURANCE AND CONTROL	2-8
		2.7.1 Field Methods	2-8
		2.7.2 Laboratory Methods	2-9
3.0	SOII	L GAS DATA EVALUATION	3-1
	3.1	INTRODUCTION	3-1
	3.2	EVALUATION OF MGP RELATED CHEMICALS	3-1
		3.2.1 Selection of MGP Related Chemicals	3-1

5.0	REF	ERENC	ES	5-1
4.0	CON	CLUSI	ONS AND RECOMMENDATIONS	4-1
	3.4	SUM	MARY OF DATA EVALUATION	3-3
		3.3.3	Soil Gas ROs Evaluation of 9 Other Non-MGP and Non-TACO Chemicals	3-3 3-3
		3.3.2	Evaluation of Non-MGP chemicals without TACO Tier 1	2.2
			Soil Gas ROs	3-3
		3.3.1	Evaluation of Non-MGP Chemicals with TACO Tier 1	
	3.3	EVAI	Properties JUATION OF NON-MGP RELATED CHEMICALS	3-2 3-2
			with Tier 1 Soil Gas Remediation Objectives for Residential	3-2
		3.2.2	Comparison of Soil Gas Concentrations for MGP Chemicals	

LIST OF TABLES

Table 2-1	Soil Gas Sample Details
Table 2-2	Comprehensive Soil Gas Concentrations
Table 2-3	Comparison of Original Sample Results to Field Duplicate
Table 3-1	Soil Gas Concentrations for MGP Chemicals
Table 3-2	Soil Gas Concentrations for Non-MGP Chemicals
Table 3-3	Soil Gas Concentrations for Non-MGP Chemicals with TACO Tier 1
	Remediation Objectives
Table 3-4	Toxicological Information Used to Calculate Tier 1 ROs for Non-MGP
	Soil Gas Chemicals without TACO ROs
Table 3-5	Physical Chemical Properties Used to Calculate Tier 1 ROs for Non-
	MGP Soil Gas Chemicals without Tier 1 ROs
Table 3-6	Tier 1 ROs Developed for Non-MGP Soil Gas Chemicals without
	TACO Tier 1 ROs
Table 3-7	Soil Vapor Concentrations for Non-MGP Chemicals without TACO Tier
	1 Remediation Objectives

LIST OF FIGURES

- Figure 1-1
- Soil Gas Sampling Locations Basement Layout for 505 E. Washington Street Figure 2-1
- Figure 2-2 Basement Layout for 507 E. Washington Street
- Figure 2-3 Basement Layout for 412 E. Hill Street

Appendix A	Scope of Work
Appendix B	Site Health & Safety Plan
Appendix C	Photographs
Appendix D	Field Sampling Forms
Appendix E	Basement Survey Forms
Appendix F	Laboratory Analytical Report and Chain of Custody Form
Appendix G	References for Selection of MGP Related Chemicals
Appendix H	Input Parameters to Develop the Tier 1 ROs for non-MGP Chemicals without TACO Tier 1 ROs
Appendix I	Possible Sources for 9 Other Non-MGP Chemicals without TACO Tier 1 ROs
Appendix J	Illinois Licensed Professional Engineer Review Letter

ABBREVIATIONS

ATSDR	Agency for Toxic Substances and Disease Registry
CCV	Continuing Calibration Verification
COC	Chain of Custody
EPA	Environmental Protection Agency
GRI	Gas Research Institute
HASP	Health and Safety Plan
IDW	Investigation Derived Waste
IEPA	Illinois Environmental Protection Agency
IRIS	Integrated Risk Information System
LCS	Laboratory Control Sample
MGP	Manufactured Gas Plant
MRL	Minimal Risk Level
NHDES	New Hampshire Department of Environmental Services
OEHHA	Office of Environmental Health Hazard Assessment
OSWER	Office of Solid Waste and Emergency Response
PAH	Polycyclic Aromatic Hydrocarbons
PPE	Personal Protective Equipment
PRG	Preliminary Remediation Goal
PRT	Post Run Tubing
RfC	Reference Concentration
RL	Reporting Limit
RO	Remediation Objective
RPD	Relative Percent Difference
RSL	Regional Screening Level
SRC	Syracuse Research Corporation
TACO	Tiered Approach to Corrective Action Objectives
URF	Unit Risk Factor
WBEOH	Wisconsin Bureau of Environmental and Occupational Health
	-

Appendix A	Scope of Work
Appendix B	Site Health & Safety Plan
Appendix C	Photographs
Appendix D	Field Sampling Forms
Appendix E	Basement Survey Forms
Appendix F	Laboratory Analytical Report and Chain of Custody Form
Appendix G	References for Selection of MGP Related Chemicals
Appendix H	Input Parameters to Develop the Tier 1 ROs for non-MGP Chemicals without TACO Tier 1 ROs
Appendix I	Possible Sources for 10 Other Non-MGP Chemicals without TACO Tier 1 ROs
Appendix J	Illinois Licensed Professional Engineer Review Letter

ABBREVIATIONS

ATSDR	Agency for Toxic Substances and Disease Registry
CCV	Continuing Calibration Verification
COC	Chain of Custody
EPA	Environmental Protection Agency
GRI	Gas Research Institute
HASP	Health and Safety Plan
IDW	Investigation Derived Waste
IEPA	Illinois Environmental Protection Agency
IRIS	Integrated Risk Information System
LCS	Laboratory Control Sample
MGP	Manufactured Gas Plant
MRL	Minimal Risk Level
NHDES	New Hampshire Department of Environmental Services
OEHHA	Office of Environmental Health Hazard Assessment
OSWER	Office of Solid Waste and Emergency Response
PAH	Polycyclic Aromatic Hydrocarbons
PPE	Personal Protective Equipment
PRG	Preliminary Remediation Goal
PRT	Post Run Tubing
RfC	Reference Concentration
RL	Reporting Limit
RO	Remediation Objective
RPD	Relative Percent Difference
RSL	Regional Screening Level
SRC	Syracuse Research Corporation
TACO	Tiered Approach to Corrective Action Objectives
URF	Unit Risk Factor
WBEOH	Wisconsin Bureau of Environmental and Occupational Health

This report presents the results of the soil gas sampling and basement survey event performed on October 15, 2008 at the following three residential properties near the former MGP site in Champaign, Illinois:

- 505 E. Washington Street
- 507 E. Washington Street
- 412 E. Hill Street

The soil gas sampling event consisted of the collection of nine soil gas samples (including one duplicate) and one ambient air sample from eight locations along the perimeter of the three residential properties. The samples were collected in SUMMA canisters using Geoprobe[®] post-run tubing (PRT) methods. Appropriate QA/QC samples were also collected.

The soil gas samples were compared to the draft Illinois Environmental Protection Agency (IEPA) Tiered Approach to Corrective Action Objectives (TACO) Tier 1 soil gas remediation objectives (ROs) for residential land use. The comparison indicated that the concentrations of none of the chemicals exceeded the Tier 1 ROs, and hence the residual soil and groundwater impacts from the former MGP are not of concern.

The Illinois Licensed Professional Engineer review letter is included in Appendix J.

1.1 SITE LOCATION

The former manufactured gas plant (MGP) site is located at 308 North Fifth Street in Champaign, Illinois. This investigation focused on the collection of soil gas samples to evaluate soil gas inhalation risk at three residential properties located to the north and west of the former MGP site.

The MGP site has been the subject of several previous investigations (PSC 2008). These investigations have resulted in the collection of soil and groundwater data, as well as site stratigraphy and hydrogeology.

Figure 1-1 shows the locations of the three residential properties, former MGP site boundary, railroad easement, and nearby streets. The former MGP site is mostly vacant with the former booster house building remaining and some poly tanks used to store investigation-derived wastewater. The former MGP site is fenced and access is restricted by locked gates.

1.2 SETTING

The residences are located within the city of Champaign, Illinois in Champaign County. The general area consists of mostly residential and some commercial properties.

Two of the subject residential properties are located to the north of the former MGP site and also north of an active railroad right-of-way that borders the former MGP site to the north. These homes are located at 505 East Washington (resident owner occupied and full time day-care facility in basement) and 507 East Washington (currently vacant). Each of the homes have basements that are partially below grade. The third residence is located at 412 East Hill (resident occupied) west of the former MGP site across N. Fifth Street and also has a basement that is partially below grade.

1.3 OBJECTIVE OF THIS REPORT

This report presents the results of the October 15, 2008 soil gas sampling event at the three residential properties. The objective of the sampling was to:

- Obtain nine soil gas samples (including one duplicate) near the three residences and one ambient air sample;
- Perform laboratory analysis of the soil gas and ambient air samples and duplicate for MGP related chemicals;
- Perform basement surveys at the three residences and interview occupants as available;

- Compile and evaluate the field and laboratory analysis data in regards to the potential for MGP chemicals to cause vapor inhalation concerns to the residences; and
- Document the results of the investigation in a formal report.

This investigation was performed in accordance with the RAM Group letter to Mr. Brian Martin dated August 21, 2008 (Appendix A).

1.4 OVERVIEW

The October 15, 2008 soil gas sampling event was performed by the RAM Group of Gannett Fleming, Inc. Geoprobe[®] services were provided by Soil Essentials, Inc. and laboratory analytical services were provided by Air Toxics, Ltd., both under subcontract to RAM Group.

Soil gas sampling and basement surveys were performed on October 15, 2008 at the following three residential properties in Champaign, Illinois:

- 505 E. Washington Street
- 507 E. Washington Street
- 412 E. Hill Street

The following personnel performed the soil gas sampling and basement surveys:

- Cory Johnson, Soil Essentials driller
- Keith Klemm, Gannett Fleming
- Kendall Pickett, RAM Group
- Stu Cravans, Kelron Environmental (basement survey at 412 E. Hill Street on October 22, 2008)

The following personnel were also present to observe activities:

- Brian Martin, Ameren
- Pete Szama, PSC
- Gregory Dunn, IEPA
- Andy Friereich, IEPA
- Student intern, IEPA
- Gina Jackson, District 1 Representative
- Matthew Miller, Gannett Fleming
- Grant Antonlini and another representative of the Champaign County Healthcare Consumers group

2.1 **PRE-INVESTIGATION ACTIVITIES**

2.1.1 Utilities Clearance

Soil Essentials, Inc., the drilling company, contacted the state utility locate service in Illinois (JULIE Locate) to coordinate marking of underground utilities at the surface on and near the three residential properties. Upon arrival at the site on October 15, 2008, paint markings and flags were present. RAM Group used these markings and site observations to avoid encountering subsurface utilities during sampling.

2.1.2 Daily Site Health & Safety Meetings

A field safety meeting was held on the morning of October 15, 2008 before any fieldwork was performed to review the site-specific health and safety plan prepared for this project (Appendix B).

2.2 SOIL GAS AND AMBIENT AIR SAMPLING

The weather conditions were overcast in the 60-70's $^{\circ}F$ with occasional rain showers throughout the day.

Based on the PSC *Off-Site Investigation Report, Former Manufactured Gas Plant, Champaign, Illinois, State ID 0190100008*, dated August 22, 2008, the soils in the vicinity of the site consist of glacial till of mostly tight silty clays in the upper 10 feet bgs and sandy sediments below 10 feet bgs. The water table has been measured at depths of 7 to 8 feet bgs.

2.2.1 Soil Gas Sampling and Analysis

Nine soil gas samples (including one duplicate) were collected from eight locations using hand and Geoprobe[®] sampling methods. The work plan called for soil gas samples to be collected from each boring, at approximately 6 ft bgs (approximately one foot below the bottom of the basement slab, estimated at 5 ft bgs and above the water table, estimated at 7-8 ft bgs) adjacent to three private residences. However, tight soils encountered in the soil column did not allow for gas collection at the designated depths, instead sampling was performed at depths where a more permeable soil layer was encountered. Specific depths are shown in Table 2-1. Small diameter steel rods were temporarily installed at each sample location by Soil Essentials. Extreme care was taken to prevent damage to the properties. Ground water was not encountered at any of the sample locations.

Soil gas samples were collected in 1-liter SUMMA canisters (batch certified) using Geoprobe[®] post-run tubing (PRT) methods. One duplicate soil gas sample was collected from a location at the 507 E. Washington Street property.

The sampling approach involved the use of small diameter steel rods that were advanced vertically by hand or using a Geoprobe[®] 550B track-mounted rig. Hydrated bentonite was placed around the rods where they entered the ground to plug the borehole annulus (Photograph 1, Appendix C). Teflon[®] tubing was attached to the PRT adapter and pushed down inside the rods, seated, and threaded into the expendable point holder. Next, a Swagelok[®] three-way valve and a gas-tight 60-mL disposable syringe were connected to the Teflon[®] tubing and the steel rods were pulled up approximately 6 to 8 inches to dislodge the rods from the expendable point.

A tracer test was performed using difluoroethane to check for the presence of leaks in the sampling system (i.e., short-circuiting). Household paper towels, wetted with difluoroethane, were wrapped around the steel rods at the ground surface/bentonite seal (to test for short-circuiting at the borehole annulus) and around the Teflon[®] tubing where the tubing exited the steel rods to test for short-circuiting across the O-ring seal in the PRT adapter.

The initial vacuum of each 1-L Summa canister was measured in the field prior to sampling using a liquid-filled vacuum gauge to confirm the vacuum was at least 27 inches of mercury (in Hg). The initial vacuum was recorded on the chain of custody (COC) and in the field log book. Purge volume calculations were performed and the tubing was purged prior to sample collection using a Swagelok[®] three-way valve and a gas-tight 60-mL disposable syringe. A 5-micron filter was installed on the canister inlet to prevent solids from entering and to restrict the soil gas flow rate into the canister. The 1-L Summa was then connected to the Swagelok[®] three-way valve and the sample was collected. Generally, the sampling duration was between 5 and 7 minutes with one exception (VP412EHILL-1 was sampled for 18 minutes) until the final vacuum in the canister was about 5 in Hg. The sample collection time, initial vacuum, and the final vacuum were recorded on the COC and in the field log book. A copy of the pertinent pages from the field logbook is presented in Appendix D.

The samples were shipped by overnight courier in containers sealed with custody seals to the Air Toxics, Ltd. laboratory in Folsom, California. The samples were analyzed for volatile organic compounds, naphthalene, and 1,1-difluoroethane (leak detection chemical) using EPA method TO-15 (modified).

After collection of each sample and withdrawal of the steel rods, the resulting borehole was filled with hydrated bentonite chips to the surface.

The sample locations at the following residential properties are shown on Figure 1-1.

2.2.1.1 505 E. Washington Street

This property was occupied by the residents and the basement was in operation as a daycare center with children and employees.

Two soil gas samples were collected, one on the south side (Sample ID #VP505EWASH-1) and one on the west side (Sample ID #VP505EWASH-2), both within 2.5 ft of the house. The small diameter steel rods were installed by hand using a slide hammer to push the rod to the desired sampling depths.

Sample #VP505EWASH-1 was collected at a depth of 5.5 feet below ground surface (ft bgs), and Sample #VP505EWASH-2 was collected at a depth of 4.5 ft bgs. Table 2-1 presents details of the soil gas samples.

Photographs 2-4 show sampling procedures at the VP505EWASH-2 location (Appendix C).

2.2.1.2 507 E. Washington Street

This property was vacant and we were informed by the client that the interior was in such disrepair that the home would likely have to be demolished. The basement did not appear to be used for habitation.

Three soil gas samples were collected, one on the west side (Sample ID #VP507EWASH-1), one on the south side (Sample ID #VP507EWASH-2), and one on the east side (Sample ID #VP507EWASH-3), all within 3.5 ft of the house. The small diameter steel rods were installed using a Geoprobe[®] 550B track-mounted rig to push the rod to the desired sampling depths.

The first attempt to collect Sample #VP507EWASH-1 was not successful and several attempts were made to collect soil gas at depths of 6 ft bgs, 5 ft bgs, and 4 ft bgs, but the soils were too tight. This location was about mid-way between the houses at 505 E. Washington Street and 507 E. Washington Street. Near the end of the day, a successful attempt was made to collect Sample #VP507EWASH-1 at a location adjacent to the house.

Sample #VP507EWASH-1 was collected at a depth of 3.5 ft bgs, Sample #VP507EWASH-2 was collected at a depth of 5.0 ft bgs, and Sample #VP507EWASH-3 was collected at a depth of 5.0 ft bgs. A duplicate soil gas sample was collected at 5.0 ft bgs from the #VP507EWASH-2 sample location and was labeled #VP507EWASH-F. Table 2-1 presents details of the soil gas samples.

2.2.1.3 412 E. Hill Street

Three soil gas samples were collected, one on the north side (Sample ID #VP412EHILL-1), one on the east side (Sample ID #VP412EHILL-2), and one on the south side (Sample ID #VP412EHILL-3), all within 3.5 ft of the house. The small diameter steel rods were installed using a Geoprobe[®] 550B track-mounted rig to push the rods to the desired sampling depths. Plywood sheets were used at this location to protect the lawn from damage by the rig.

Sample #VP412EHILL-1 was collected at a depth of 6.0 ft bgs, Sample #VP412EHILL-2 was collected at a depth of 3.8 ft bgs, and Sample #VP412EHILL-3 was collected at a depth of 4.5 ft bgs. Table 2-1 presents details of the soil gas samples.

Photographs 5-8 show sampling procedures at the VP412EHILL-3 sample location (Appendix C).

2.2.2 Ambient Air Sampling and Analysis

One ambient (outdoor) air sample was collected at the 507 E. Washington Street property in a 6-liter SUMMA canister to characterize the ambient air in the vicinity of the sampling locations during sampling. Figure 1-1 shows the location of this sample.

An ambient air sample was labeled VP507EWASH(AMBIENT) and was collected from just above ground surface near the #VP507EWASH-1 sample location. The sample location was conducted within 30 feet of a residential street (E. Washington Street), which is lightly traveled. The initial vacuum of the 6-L Summa canister was measured in

the field prior to sampling using a liquid-filled vacuum gauge to confirm the pressure was at least 25 in Hg. The initial vacuum was recorded on COC and in the field log book. A 5-micron particulate filter was installed on the inlet to prevent solids from entering the canister and to restrict the sample flow rate. The sampling duration was about 18 minutes and the final vacuum in the canister was about 5 in Hg. The sample collection time, initial vacuum, and the final vacuum were recorded on the COC and in the field log book.

The samples were shipped by overnight courier in a container sealed with custody seals to the Air Toxics, Ltd. laboratory in Folsom, California. The samples were analyzed for volatile organic compounds and naphthalene using EPA method TO-15 (modified).

2.3 BASEMENT SURVEYS

The basement surveys consisted of a walk-through of the basement, documentation of observations on a form, and some photographs. Copies of the field forms are presented in Appendix E. Photographs are presented in Appendix C. The surveys of the 505 E. Washington Street and 507 E. Washington Street basements were performed on October 15, 2008 by Kendall Pickett of RAM Group. The survey of the 412 E. Hill Street basement was performed on October 22, 2008 by Stu Cravans of Kelron Environmental, as access was not available on October 15, 2008.

2.3.1 505 E. Washington Street

Much of the following information was provided by the resident and owner of the daycare business and documented on the Indoor Air Building Survey Form in Appendix E. The entry door is accessed from the backyard near the southeast corner of the house. The basement is used as an operating day-care and consists of a washroom, kitchen preparation area, day care area, bathroom, office, and a bedroom for a son of the resident. No crawl spaces were noted. There is reportedly a sump in the washroom that could not be observed due to storage of materials on top. The basement walls and floor slab are concrete with paneling and floor coverings and appear to be in good condition. The basement has not fooded in the past. The house is on central heat (natural gas) and central air conditioning (electric) and includes storm doors and storm windows. Various plumbing pipes enter the basement into the bathroom, washroom, and kitchen areas on the south and east sides of the basement. The layout of the basement is shown on Figure 2-1, which includes the approximate locations of the soil gas sampling locations. The basement extends approximately 3 feet above grade and 4 feet below grade with a footprint of approximately 38 ft (east-west by 28 ft (north-south).

Photograph 9 (Appendix C) shows the presence of oven cleaner and tire shine containers located inside the basement on the window sill. Other chemical products in the basement area include cleaning solvents, oven cleaners, floor wax, furniture/floor polish, air fresheners, glues, and paints. Also, the linoleum flooring is reportedly new.

The day care typically includes 16 children and 2 adults during the day, 10 children and 2 adults at night until midnight, and one adult resident in the bedroom at various times

during day and night. The day care operates from about 6 AM to midnight, Monday-Friday. There are adult smokers in the house and basement. Dry cleaned clothes enter the house on a weekly basis. Pest control services are provided by professionals on a monthly basis. The resident noted foul odors outside at the end of June or July 2008, but did not provide specifics.

2.3.2 507 E. Washington Street

This home was not occupied; therefore, no occupants were interviewed. The basement survey was based on observations made during a walk-though of the basement and documented on the Indoor Air Building Survey Form in Appendix E.

The basement does not appear to have been used for habitation. It appears to have been used primarily for storage. The basement consisted of a slanted storm entry door accessed from the backyard, concrete floor slab, masonry brick walls below grade, and cinder block walls above grade. There were no floor, wall, or ceiling coverings. There are ledges that extend into the basement about 1.5 to 2 feet from most walls at a level of about 3 feet above the floor slab. There is one brick column and several temporary support posts holding first floor joists in place. Approximately 3 feet of the basement extended above grade and about 4.5 feet below grade below the building footprint of about 40 ft (east-west) by 28 ft (north-south), except for the crawl spaces.

The basement consists of a large open room that extends to the south, west, and north perimeter of the house footprint and contains a hot water heater (natural gas) and a central heat unit (natural gas) and duct work (system appears new), and an open sump. The sump contained water and trash. A small room is present to the east of the main room and extends to the east perimeter of the house footprint. There are two crawl spaces in the northeast and southeast corners of the basement. There are no floor drains or sinks/toilets. The main room contained discarded clothing, toys, cooking utensils, furniture, a ladder, books, plastic gasoline container, paint cans, files, mattress, 5-gallon plastic water bottles, and miscellaneous debris. Plumbing pipes enter the basement from the south and east walls and the electrical panel is on the south wall. The layout of the basement is shown on Figure 2-2, which includes the approximate locations of the soil gas sampling locations.

The walls have several openings due to deteriorated mortar between bricks, cinder blocks, and around window and door frames, as well as holes in the walls. The concrete floor slab is cracked and deteriorated in some areas thus exposing the underlying soil. The basement did not appear to prevent water infiltration and there was a musty odor.

Photographs 10-16 show various views inside the basement (Appendix C).

2.3.3 412 E. Hill Street

During the soil gas sampling activities on October 15, 2008, the resident would not allow access to the basement to perform a survey. Therefore, a representative of Kelron

Environmental returned on October 22, 2008 to perform the basement survey. Observations made during the survey and information provided by the tenant are documented on a form and diagram (Appendix E).

The owner of the property resides next door to the west. The house is wood frame with $\frac{1}{2}$ basement and $\frac{1}{2}$ crawl space. The first floor footprint is 36 ft (east-west) by 28 ft (north-south). The basement extends one foot above grade and about 5 feet below grade. The floor slab is concrete and walls are masonry brick with outer concrete facing. The floor was dry at the time of the reconnaissance. There is a sump with water that was reportedly sampled on September 15, 2008 and was non-detect for the constituents analyzed. There are no floor drains or sinks/toilets. Stairs enter the first floor near the center of the house. There is one window located at the south end of the east wall. There are three crawl spaces in the northeast corner and along the west wall of the basement with dirt floors. There is a forced air gas furnace and gas water heater located in the center of the basement. Cracks were noted along the floor/wall intersections. There is no basement or enclosed crawl space below the front porch (southeast corner of house). The layout of the basement is shown on Figure 2-3, which includes the approximate locations of the soil gas sampling locations.

2.4 SAMPLE ANALYSIS

Laboratory analysis was performed by Air Toxics Ltd. in Folsom, California. Air Toxics analyzed the soil gas samples using Method TO-15 GC/MS in full scan mode and included naphthalene and the leak detection chemical (1,1-difluoroethane). The ambient air sample was analyzed using the same method, but without the leak detection compound. The laboratory report and chain-of-custody form are included in Appendix F. Table 2-2 presents a summary of the laboratory analysis results.

2.5 DECONTAMINATION PROCEDURES

Personal Protective Equipment (PPE) and decontamination procedures are described in the site-specific health and safety plan (HASP) included in Appendix B. The following comments provide a general description of measures taken to mitigate cross contamination between soil gas sampling locations and from the natural environment.

The primary source of cross contamination from one sampling location to the next is the use of non-dedicated equipment. During this sampling event, 1.25-inch diameter rods with expendable point holder, Swagelok[®] components, valves, quick connects, adapters, syringes, and Teflon[®] tubing were used to obtain samples at each location. The Teflon[®] tubing and syringes were new and dedicated for each sample location and disposed after each use. The 1.25-inch diameter rods with expendable point holder, Swagelok[®] components, valves, quick connects, and adapters were decontaminated before use at each soil gas sampling point using an Alconox soap wash followed by a water rinse.

Contamination from the natural environment and other outside sources was controlled through the use of the following:

- Dedicated sampling equipment (new dedicated disposable Teflon[®] tubing and syringes for purging and sampling),
- Use of disposable Nitrile gloves,
- Use of custody seals and chain-of-custody protocols during delivery of samples to the laboratory.

2.6 INVESTIGATION DERIVED WASTE (IDW)

Investigative derived waste consisted of decon water and disposables. The decon water was placed in a poly tank inside the fenced, gated, and locked former MGP site for future disposal by Ameren. Disposables were contained in a plastic garbage bag and disposed in the trash.

2.7 QUALITY ASSURANCE AND CONTROL

2.7.1 Field Methods

Specific controls were implemented during the soil gas sampling activities to ensure sample quality and to avoid false positives or false negatives during data acquisition.

- The samples were collected in SUMMA canisters that were batch certified by Air Toxics, which included two 100% certified 1-liter SUMMA canisters out of the 10 SUMMA canisters used (nine 1-liter and one 6-liter). For batch certification, canisters are typically processed in the same manner and up to 6 canisters are placed in the oven at a time. One of the 6 canisters is 100% certified.
- SUMMA canister pressures were acceptable during this sampling event for the canisters used. According to Air Toxics, Ltd., the canister vacuum in the field should have a vacuum greater than 25-inches of mercury (Hg). Also, canisters should be returned to the lab with some vacuum remaining and the lab receipt vacuum reading should not vary from the final field vacuum reading by more than 7-inches Hg. These criteria were met as shown on Table 2-1.
- Leak detection compound was used during sampling. In five samples the leak detection compound (1,1-difluoroethane) was detected at very low concentrations that ranged from 15 to 27 ug/m³. These results do not indicate leaks that could affect the data quality. Although, IEPA has not established criteria for the acceptable amount of leak detection compound in a sample, according to Air Toxics, Ltd. (personal communication), California Department of Toxic Substances Control and California Regional Water Quality control Board, Los Angeles Region (California EPA 2003) considers up to 10 ug/L (1.00E+04 ug/m³) to be acceptable.

- Dedicated sampling equipment (new dedicated disposable Teflon[®] tubing and syringes for purging and sampling) was used.
- Use of disposable Nitrile gloves.
- Non-dedicated equipment was decontaminated between sampling locations.
- Chain-of-Custody protocols were followed including the use of custody seals.
- A "field duplicate" sample was collected (VP507EWASH-F) in a separate 1-liter SUMMA canister immediately following the collection of the original sample (VP507EWASH-2). The results between the original and "field duplicate" are comparable as can be seen in Table 2-3. Although, these are not strictly duplicate samples, the relative percent difference (RPD) between the concentrations for all chemicals was less than 25% except for benzene and toluene for which the RPD was 36.3% and 37.8%, respectively.

2.7.2 Laboratory Methods

A comparison of the chain-of-custody to the laboratory login confirmation revealed no discrepancies. Sampling dates, times, name of sampler, received date, analyses requested, initial and final canister vacuum were listed on the chain-of-custody form. According to the chain-of-custody, all samples were received at the laboratory on October 18, 2008 within three days of sample collection in good condition with custody seals intact.

Typical holding time for TO-15 analysis is 30 days. All samples were collected on October 15, 2008 and analyzed on October 29, 2008 within the holding time.

The Air Toxics report includes a narrative and various laboratory flags to qualify specific results if necessary. No issues were identified in the narrative. Three results were flagged in the Laboratory Control Sample (LCS):

- Bromomethane was Q-flagged
- MTBE was Q-flagged
- 1,1-Difluoroethane was NS-flagged

Based on discussions with Air Toxics' personnel, bromomethane and MTBE %-recoveries were slightly elevated; therefore, the results reported for these chemicals in each sample may be biased high. This means that the reported results may be higher than the actual sample concentrations. Since neither of these chemicals were detected in the samples submitted and are typically not MGP related, this does not affect the quality of the results.

The NS-flag for 1,1-difluoroethane means the LCS sample was not spiked for this compound, since this compound is not on the standard list of chemicals for the TO-15 method. This chemical was added to the analysis request on the Chain-of-Custody form

since it was the leak detection chemical used in the field. This chemical was not detected in the laboratory blank and this chemical was spiked in the Continuing Calibration Verification (CCV) sample and met method retention requirements; therefore, this flag does not indicate that the results have been compromised.

Dilutions of the samples ranged from 2.42 to 2.53. This is within the standard range of dilutions due to the repressurization of the samples after receipt at the laboratory and was not due to high concentrations of any chemicals in the samples. Therefore, these dilutions are part of the standard method procedures and do not indicate an issue with the quality of the sample results.

The results of the lab blank, lab surrogates, and lab duplicate were within the method requirements.

Internal standard responses and retention times were within method limits for all field samples and quality control samples unless qualified or discussed in the lab narrative.

The initial and all continuing calibration verification standards were within method limits for all samples and quality control samples unless qualified or in the narratives.

The laboratory data passed the data usability review. It is our opinion that the data are reliable and can be used in the overall evaluation and management of the site.

3.1 INTRODUCTION

This chapter discusses the evaluation of soil gas samples described in Section 2.0 and presented in Table 2-2. The evaluation is presented in two parts. Section 3.2 evaluates the volatile chemicals potentially related to the operations of the former MGP and Section 3.3 evaluates volatile chemicals not related to the MGP operations. The evaluation is consistent with the Illinois Environmental Protection Agency's (IEPA's) draft 35 Ill. Adm. Code Part 742: Tiered Approach to Corrective Action (TACO).

3.2 EVALUATION OF MGP RELATED CHEMICALS

This section focuses on the MGP related chemicals.

3.2.1 Selection of MGP Related Chemicals

To select chemicals that are potentially associated with former MGP operations, the following references were reviewed:

- Gas Research Institute (GRI), 1996. Management of Manufactured Gas Plant Sites Vol I. (edited by Hayes, T.D., Linz, D.G., Nakles, D.V., and Leuschner, A.P.). Amherst Scientific Publishers, Amherst, MA.
- Hatheway, A., 2002. Geoenvironmental Protocol for Site and Waste Characterization of Former Manufactured Gas Phants: Worldwide Remediation Challenge in Semi-volatile Organic Wastes. Engineer. Geol. 64:317–338.
- New Hampshire Department of Environmental Services (NHDES), 2006. Environmental Fact Sheet, Manufactured Gas Plant Sites.
- Wisconsin Bureau of Environmental and Occupational Health (WBEOH), 2004. Health-based Guidelines for Air Management, Public Participation, and Risk Communication during the Excavation of Former Manufactured Gas Plants.

GRI (1996) classifies the potential chemicals in former MGP wastes as inorganics, metals, volatile aromatics, phenols, and polycyclic aromatic hydrocarbons (PAHs). Table 5-1 of GRI (1996) presenting chemicals at MGP sites is included in Appendix G.

Hatheway (2002) discusses that there is a relationship between various chemical substances generated by the former MGP and various processes of gas manufacturing both in terms of characteristics and quantity of the waste. For instance, light tar oils, which contain monocyclic and duo cyclic PAHs were the typical wastes generated in carbureted water gas process. Specifically, the benzene, toluene, ethylbenzene, and

xylenes (BTEX) were the components of gas liquor waste, which was produced by carbureted water gas and oil gas processes.

NHDES (2006) states the chemical composition of former MGP waste depends on the type of coal and the gasification process used. The fact sheet also states that VOCs (benzene and toluene), PAHs (naphthalene), tar acids (phenol and cresol), and creosote are the main chemicals associated with former MGP waste.

WBEOH (2004) presents the chemicals in soil, sediment, and groundwater at former MGP sites located in Wisconsin. Table 1 of WBEOH (2004) presenting MGP chemicals is included in Appendix G.

The above references indicate that BTEX, styrene, and naphthalene are the primary MGP-related volatile chemicals.

Of the 63 chemicals detected in soil gas samples collected at the Champaign site, the following seven chemicals were identified as MGP-related chemicals:

- Benzene
- Toluene
- Ethylbenzene
- m,p-Xylenes
- o-Xylene
- Styrene
- Naphthalene

As per Section 742.200 of the draft TACO rule, all of the above chemicals meet the definition of volatile chemicals.

3.2.2 Comparison of Soil Gas Concentrations for MGP Chemicals with Tier 1 Soil Gas Remediation Objectives for Residential Properties

The Tier 1 soil gas remediation objectives (ROs) for residential properties were obtained from Table G of Appendix B in Section 742 of draft TACO rule. Table 3-1 presents both soil gas ROs and soil gas concentrations for MGP chemicals. The comparison of soil gas concentrations with Tier 1 soil gas ROs indicated none of the MGP chemicals exceeds the Tier 1 soil gas ROs.

3.3 EVALUATION OF NON-MGP RELATED CHEMICALS

Of the 63 chemicals detected, 56 are non-MGP related chemicals and are presented in Table 3-2. As per Section 742.200 of draft TACO rule, all of these chemicals meet the definition of volatile chemicals. Of these chemicals, 30 have TACO Tier 1 soil gas ROs; whereas, 26 chemicals do not have TACO Tier 1 soil gas ROs.

3.3.1 Evaluation of Non-MGP Chemicals with TACO Tier 1 Soil Gas ROs

The Tier 1 soil gas ROs for residential properties for these 30 chemicals were obtained from Table G of Appendix B in Section 742 of draft TACO rule. Table 3-3 presents both soil gas concentrations and Tier 1 soil gas ROs. Comparison of soil gas concentrations with Tier 1 soil gas ROs indicated that none of the soil gas concentrations exceeds the Tier 1 soil gas ROs.

3.3.2 Evaluation of Non-MGP Chemicals without TACO Tier 1 Soil Gas ROs

Consistent with the methodology presented in TACO Section 742.515(f), Tier 1 soil gas ROs were developed for these chemicals. Of the 26 chemicals relevant input parameters were readily available for 17 chemicals. For these chemicals Tier 1 ROs were developed as discussed in Appendix H.

Tier 1 soil gas ROs developed are presented in Table 3-6. The Tier 1 soil gas ROs were compared with soil gas concentrations. The comparison indicated that none of the soil gas concentrations exceeded the respective Tier 1 soil gas ROs.

3.3.3 Evaluation of 9 Other Non-MGP and Non-TACO Chemicals

There are nine non-MGP and non-TACO chemicals for which ROs have not been developed due to non-availability of toxicity and some physical/chemical information. These chemicals may be generated by various natural and anthropogenic sources; however, none is MGP related. Table 3-7 presents concentrations of these chemicals. Also, these chemicals and their possible sources are presented in Appendix I.

3.3 SUMMARY OF DATA EVALUATION

Based on the above evaluation none of the soil gas concentrations exceeds the Tier 1 soil gas ROs.

This report presents the results of the soil gas sampling and basement survey event performed on October 15, 2008 at the following three residential properties near the former MGP site in Champaign, Illinois:

- 505 E. Washington Street
- 507 E. Washington Street
- 412 E. Hill Street

The soil gas sampling event consisted of the collection of nine soil gas samples (including one duplicate) and one ambient air sample from eight locations along the perimeter of the three residential properties. The samples were collected in SUMMA canisters using Geoprobe[®] post-run tubing (PRT) methods. Appropriate QA/QC samples were also collected.

The soil gas samples were compared to the draft Illinois Environmental Protection Agency (IEPA) Tiered Approach to Corrective Action Objectives (TACO) Tier 1 soil gas remediation objectives (ROs) for residential land use. The comparison indicated that the concentrations of none of the chemicals exceeded the Tier 1 ROs, and hence the residual soil and groundwater impacts from the former MGP are not of concern.

Based on the above results, no further action is recommended relative to potential indoor air inhalation risks to the residents.

Agency for Toxic Substances and Disease Registry (ATSDR), December 2006. Minimal Risk Levels (MRLs).

California EPA. Office of Environmental Health Hazard Assessment (OEHHA), Toxicity Criteria Database.

California EPA, 2003. Advisory – Active Soil Gas Investigations. California Department of Toxic Substances Control and California Regional Water Quality Control Board Los Angeles Region. January 28.

Gas Research Institute (GRI), 1996. Management of Manufactured Gas Plant Sites Vol I. (edited by Hayes, T.D., Linz, D.G., Nakles, D.V., and Leuschner, A.P.). Amherst Scientific Publishers, Amherst, MA.

Hatheway, A., 2002. Geoenvironmental Protocol for Site and Waste Characterization of Former Manufactured Gas Plants: Worldwide Remediation Challenge in Semi-volatile Organic Wastes. Engineer. Geol. 64:317–338.

IEPA, 2008. Draft 35 Ill. Adm. Code Part 742: Tiered Approach to Corrective Action (TACO).

New Hampshire Department of Environmental Services (NHDES), 2006. Environmental Fact Sheet, Manufactured Gas Plant Sites.

PSC Industrial Outsourcing, LP, 2008. Off-Site Investigation Report, Former Manufactured Gas Plant, Champaign, Illinois, State ID 0190100008, August 22.

RAM Group of Gannett Fleming, Inc., 2008. Soil Vapor Sampling, Former Manufactured Gas Plant Site, Champaign, Illinois. August 21 Letter to Brian Martin of Ameren Services.

Syracuse Research Institute (SRC), June 2008. CHEMFATE Chemical Search

SRC, PHYPROP Database.

Texas Commission on Environmental Quality (TCEQ), June 2007. Table for Risk Reduction Program Rule.

USEPA, Integrated Risk Information System (IRIS).

USEPA, 2003. Office of Solid Waste and Emergency Response (OSWER) Directive 9285.7-53. Human Health Toxicity Values in Superfund Risk Assessments

USEPA, 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings.

USEPA, June 2008. Regional Screening Levels for Chemical Contaminants at Superfund Sites, Chemical Specific Parameters.

USEPA, July 2008. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

Wisconsin Bureau of Environmental and Occupational Health (WBEOH), 2004. Healthbased Guidelines for Air Management, Public Participation, and Risk Communication during the Excavation of Former Manufactured Gas Plants.

Table 2-1Soil Gas Sample DetailsFormer MGP Site, Champaign, Illinois

Sample	Depth	Canis	ter Pressure/V	acuum	Concentration of Leak Detection	Analytical	Date	Date
o unipro		Initial ¹	Final ²	Lab receipt ³	Compound*	Method	Collected	Analyzed
	[ft]		[Hg]		[ug/m ³]			
			412 E. H	Hill Street				
VP412EHILL-1	6	-28.9	-5.0	-6	15	Modified TO-15	10/15/2008	
VP412EHILL-2	3.8	-27.7	-5.0	-6	<14	(Full Scan)		10/31/2008
VP412EHILL-3	4.5	-28.0	-5.0	-6	27	(Full Scall)		
			505 E. Wash	nington Street				
VP505EWASH-1	5.5	-27.4	-5.0	-6	<14	Modified TO-15	10/15/2008	10/31/2008
VP505EWASH-2	4.5	-27.1	-5.0	-6	<14	(Full Scan)	10/13/2008	10/31/2008
			507 E. Wash	nington Street				
VP507EWASH-1	3.5	-27.5	-5.0	-6	19			
VP507EWASH-1(lab duplicate)			-5.0	6	16			
VP507EWASH-2	5	-27.4	-5.0	-5.5	27	Modified TO-15	10/15/2008	10/31/2008
VP507EWASH-3	5	-28.4	-5.0	-5	<13	(Full Scan)	10/13/2008	10/31/2008
VP507EWASH-F	5	-28.9	-5.0	-5	20			
VP507EWASH(AMBIENT)	Ground Surface	-28	-5.0	-6	N/A			

Notes:

N/A: Not applicable

Hg: Inches of mercury

ug/m³: micrograms per meter cube

*: Leak detection compound was 1,1-Difluoroethane

<: Reporting limit

1: Field measurement prior to filling canister

2: Field measurement after filling canister

3: Lab measurement upon receipt of canister

Table 2-2 Comprehensive Soil Gas Concentrations (ug/m³) 412 E Hill Street, Champaign, Illinois

		412 E Hill Street			505 E Washington Street			507 E Washington Street				
Chemical	CAS	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	Original	Lab Duplicate	VP507EWASH-2	VP507EWASH-F (field duplicate of -2)	VP507EWASH-3	Ambient Air
Freon 12	75-71-8	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	9	8.8	<6.0	<6.2
Freon 114	76-14-2	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.6	<8.4	<8.4	<8.8
Chloromethane	74-87-3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Vinyl Chloride	75-01-4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.1	<3.1	<3.2
1,3-Butadiene	106-99-0	9.2	2.9	25	4.4	9.4	<2.8	<2.8	9.7	5	4	<2.8
Bromomethane	74-83-9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.8	<4.7	<4.7	<4.9
Chloroethane	75-00-3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.2	<3.2	<3.2	<3.3
Freon 11	75-69-4	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<6.9	<6.8	<6.8	<7.1
Ethanol	64-17-5	50	17	280	14	20	13	12	18	19	29	11
Freon 113	76-13-1	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
1.1-Dichloroethene	75-35-4	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.1
Acetone	67-64-1	230	110	580	120	160	120	120	180	180	230	16
2-Propanol	67-63-0	14	50	100	<12	46	37	38	13	<12	16	23
Carbon Disulfide	75-15-0	<3.9	<3.9	<3.9	7.6	<3.9	<3.9	<3.9	4.3	<3.8	<3.8	<3.9
3-Chloropropene	107-05-1	<16	<16	<16	<16	<16	<16	<16	<15	<15	<15	<16
Methylene Chloride	75-09-2	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.3	<4.2	<4.2	<4.4
Methyl tert-butyl ether	1634-04-4	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.4	<4.4	<4.4	<4.6
trans-1.2-Dichloroethene	156-60-5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.0
Hexane	110-54-3	9.5	7.3	20	17	14	8	8.5	14	11	14	<4.4
1,1-Dichloroethane	75-34-3	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
2-Butanone (MEK)	78-93-3	47	18	130	26	43	21	18	40	34	56	<3.7
cis-1,2-Dichloroethene	156-59-2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.0
Tetrahydrofuran	109-99-9	>3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.6	<3.6	<3.6	<3.7
Chloroform	67-66-3	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.0	<5.9	<5.9	<6.2
1,1,1-Trichloroethane	71-55-6	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Cyclohexane	110-82-7	<4.4	<4.4	5.9	8.9	4.8	<4.4	<4.4	5.3	4.2	6.1	<4.4
Carbon Tetrachloride	56-23-5	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<7.8	<7.6	<7.6	<8.0
2,2,4-Trimethylpentane	540-84-1	8.1	7.2	13	14	10	6.9	7.7	11	8.9	15	<5.9
Benzene	71-43-2	8.5	5.9	14	13	10	8	7.4	14	9.7	10	<4.0
1,2-Dichloroethane	107-06-2	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
Heptane	142-82-5	10	7.6	21	19	17	12	13	20	13	19	<5.2
Trichloroethene	79-01-6	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	7.3	<6.5	<6.5	<6.8
1,2-Dichloropropane	78-87-5	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
1,4-Dioxane	123-91-1	<18	<18	<18	<18	<18	<18	<18	<18	<17	<17	<18
Bromodichloromethane	75-27-4	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.3	<8.1	<8.1	<8.5

Table 2-2 Comprehensive Soil Gas Concentrations (ug/m³) 412 E Hill Street, Champaign, Illinois

		412 E Hill Street			505 E Wash	ington Street	507 E Washington Street					
							VP507E	VP507EWASH-1		F f -2)		
Chemical	CAS	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	Original	Lab Duplicate	VP507EWASH-2	VP507EWASH-F (field duplicate of	VP507EWASH-3	Ambient Air
cis-1,3-Dichloropropene	10061-01-5	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7
4-Methyl-2-pentanone	108-10-1	<5.2	<5.2	6.5	<5.2	<5.2	<5.2	<5.2	<5.0	<5.0	5.4	<5.2
Toluene	108-88-3	120	86	190	210	200	150	140	220	150	170	<4.8
trans-1,3-Dichloropropene	10061-02-6	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7
1,1,2-Trichloroethane	79-00-5	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Tetrachloroethene	127-18-4	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.4	<8.2	<8.2	<8.6
2-Hexanone	591-78-6	<21	<21	<21	<21	<21	<21	<21	<20	<20	<20	<21
Dibromochloromethane	124-48-1	<11	<11	<11	<11	<11	<11	<11	<10	<10	<10	<11
1,2-Dibromoethane (EDB)	106-93-4	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
Chlorobenzene	108-90-7	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
Ethyl Benzene	100-41-4	40	28	52	50	50	44	42	61	51	57	<5.5
m,p-Xylene	108-38-3/ 106-42-3	160	120	210	190	200	180	180	240	210	230	<5.5
o-Xylene	95-47-6	77	54	94	84	89	83	81	110	98	110	<5.5
Styrene	100-42-5	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.3	<5.2	<5.2	<5.4
Bromoform	75-25-2	<13	<13	<13	<13	<13	<13	<13	<13	<12	<12	<13
Cumene	98-82-8	<6.2	<6.2	7.2	6.6	<6.2	<6.2	<6.2	8.3	7	7.9	<6.2
1,1,2,2-Tetrachloroethane	79-34-5	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.5	<8.3	<8.3	<8.7
Propylbenzene	103-65-1	25	20	30	24	26	27	26	34	34	34	<6.2
4-Ethyltoluene	622-96-8	100	83	130	97	100	120	110	150	150	140	<6.2
1,3,5-Trimethylbenzene	108-67-8	56	42	45	34	52	45	41	55	59	76	<6.2
1,2,4-Trimethylbenzene	95-63-6	160	120	160	120	140	160	150	190	210	210	<6.2
1,3-Dichlorobenzene	541-73-1	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,4-Dichlorobenzene	106-46-7	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
alpha-Chlorotoluene	100-44-7	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.4	<6.3	<6.3	<6.5
1,2-Dichlorobenzene	95-50-1	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,2,4-Trichlorobenzene	120-82-1	<38	<38	<38	<38	<38	<38	<38	<37	<36	<36	<38
Hexachlorobutadiene	87-68-3	<54	<54	<54	<54	<54	<54	<54	<53	<52	<52	<54
Naphthalene	91-20-3	<26	<26	<26	<26	<26	<26	<26	<26	<25	<25	<26

Notes:

<: Reporting limit shown

Values with bold font are detected values.

*: RO for 1,3-dichloropropylene (cis + trans)

**: RO for p-xylene

Table 2-3
Comparison of Original Sample Results to Field Duplicate (ug/m ³)
Former MGP Site, Champaign, Illinois

		VP507EWASH							
CAS Number	Chemical	Original (-2)	Original (RL)	5 X Original RL	Duplicate (-F)	Duplicate (RL)	5 X Duplicate RL	RPD (%)	
71-55-6	1,1,1-Trichloroethane	<6.7			<6.6				
79-34-5	1,1,2,2-Tetrachloroethane	<8.5			<8.3				
79-00-5	1,1,2-Trichloroethane	<6.7			<6.6				
75-34-3	1,1-Dichloroethane	<5			<4.9				
75-35-4	1,1-Dichloroethene	<4.9			<4.8				
75-37-6	1,1-Difluoroethane	27	<13	65	20	<13	65		
120-82-1	1,2,4-Trichlorobenzene	<37			<36				
95-63-6	1,2,4-Trimethylbenzene	190	<6.1	30.5	210	<5.9	29.5	10.00	
106-93-4	1,2-Dibromoethane (EDB)	<9.5			<9.3				
95-50-1	1,2-Dichlorobenzene	<7.4			<7.3				
107-06-2	1,2-Dichloroethane	<5			<4.9				
78-87-5	1,2-Dichloropropane	<5.7			<5.6				
108-67-8	1,3,5-Trimethylbenzene	55	<6.1	30.5	59	<5.9	29.5	7.02	
106-99-0	1,3-Butadiene	9.7	<2.7	13.5	5	<2.7	13.5		
541-73-1	1,3-Dichlorobenzene	<7.4			<7.3				
106-46-7	1,4-Dichlorobenzene	<7.4			<7.3				
123-91-1	1,4-Dioxane	<18			<17				
540-84-1	2,2,4-Trimethylpentane	11	<5.8	29	8.9	<5.6	28		
78-93-3	2-Butanone (Methyl Ethyl Ketone)	40	<3.6	18	34	<3.6	18	16.22	
591-78-6	2-Hexanone	<20			<20				
67-63-0	2-Propanol	13			<12				
107-05-1	3-Chloropropene	<15			<15				
622-96-8	4-Ethyltoluene	150	<6.1	30.5	150	<5.9	29.5	0.00	
108-10-1	4-Methyl-2-pentanone	<5			<5				
67-64-1	Acetone	180	<12	60	180	<11	55	0.00	
100-44-7	alpha-Chlorotoluene	<6.4			<6.3			1.57	
71-43-2	Benzene	14	<3.9	19.5	9.7	<3.9	19.5	36.29	
75-27-4	Bromodichloromethane	<8.3			<8.1				
75-25-2	Bromoform	<13			<12				
74-83-9	Bromomethane	<4.8			<4.7				
75-15-0	Carbon Disulfide	4.3			<3.8				
56-23-5	Carbon Tetrachloride	<7.8			<7.6				
108-90-7	Chlorobenzene	<5.7			<5.6				
75-00-3	Chloroethane	<3.2			<3.2				
67-66-3	Chloroform	<6			<5.9				
74-87-3	Chloromethane	<10			<10				
156-59-2	cis-1,2-Dichloroethene	<4.9			<4.8				
10061-01-5	cis-1,3-Dichloropropene	<5.6			<5.5				
98-82-8	Cumene	8.3	<6.1	30.5	7	<5.98	29.9		
110-82-7	Cyclohexane	5.3	<4.2	21	4.2	<4.2	21		
124-48-1	Dibromochloromethane	<10			<10				

Table 2-3
Comparison of Original Sample Results to Field Duplicate (ug/m ³)
Former MGP Site, Champaign, Illinois

		VP507EWASH									
CAS Number	Chemical	Original (-2)	Original (RL)	5 X Original RL	Duplicate (-F)	Duplicate (RL)	5 X Duplicate RL	RPD (%)			
64-17-5	Ethanol	18	<9.3	46.5	19	<9.1	45.5				
100-41-4	Ethyl Benzene	61	<5.4	27	51	<5.2	26	17.86			
75-69-4	Freon 11	<6.9			<6.8						
76-13-1	Freon 113	<9.5			<9.3						
76-14-2	Freon 114	<8.6			<8.4						
75-71-8	Freon 12	9	<6.1	30.5	8.8	<6	30				
142-82-5	Heptane	20	<5.1	25.5	13	<5	25				
87-68-3	Hexachlorobutadiene	<53			<52						
110-54-3	Hexane	14	<4.4	22	11	<4.3	21.5				
108-38-3/106-42-3	m,p-Xylene	240	<5.4	27	210	<5.2	26	13.33			
1634-04-4	Methyl tert-butyl ether	<4.4			<4.4						
75-09-2	Methylene Chloride	<4.3			<4.2						
91-20-3	Naphthalene	<26			<25						
95-47-6	o-Xylene	110	<5.4	27	98	<5.2	26	11.54			
103-65-1	Propylbenzene	34	<6.1	30.5	34	<5.9	29.5	0.00			
100-42-5	Styrene	<5.3			<5.2						
127-18-4	Tetrachloroethene	<8.4			<8.2						
109-99-9	Tetrahydrofuran	<3.6			<3.6						
108-88-3	Toluene	220	<4.6	23	150	<4.6	23	37.84			
156-60-5	trans-1,2-Dichloroethene	<4.9			<4.8						
10061-02-6	trans-1,3-Dichloropropene	<5.6			<5.5						
79-01-6	Trichloroethene	7.3			<6.5						
75-01-4	Vinyl Chloride	<3.2			<3.1						

Notes:

<: Reporting limit SAD: Sample absolute difference

ifference RPD: Relative percent difference

RL: Reporting limit

Table 3-1 Soil Gas Concentrations for MGP Chemicals (ug/m³) Former MGP Site, Champaign, Illinois

			4	12 E Hill Stre	et	505 E Washington Street		507 E Washington Street						
Chemical	CAS	Residential Tier 1 Soil Gas RO (ug/m ³)	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	VP507E	Lab Duplicate	VP507EWASH-2	VP507EWASH-3	VP507EWASH-F	Ambient Air	
Benzene	71-43-2	41000	8.5	5.9	14	13	10	8	7.4	14	10	9.7	<4.0	
Toluene	108-88-3	140000000	120	86	190	210	200	150	140	220	170	150	<4.8	
Ethyl Benzene	100-41-4	59000000	40	28	52	50	50	44	42	61	57	51	<5.5	
m,p-Xylene	108-38-3/ 106-42-3	16000000*	160	120	210	190	200	180	180	240	230	210	<5.5	
o-Xylene	95-47-6	17000000	77	54	94	84	89	83	81	110	110	98	<5.5	
Styrene	100-42-5	34000000	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.3	<5.2	<5.2	<5.4	
Naphthalene	91-20-3	610000	<26	<26	<26	<26	<26	<26	<26	<26	<25	<25	<26	

Notes:

<: Reporting limit shown

Values with bold font are detected values.

*: RO for p-xylene

Table 3-2 Soil Gas Concentrations for Non-MGP Chemicals (ug/m³) Former MGP Site, Champaign, Illinois

		4	12 E Hill Stre	et	505 E Washi	ington Street			507 E Wash	ington Street		
		l	2				VP507E	WASH-1	5	3	H.,	
Chemical	CAS	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	Original	Lab Duplicate	VP507EWASH-2	VP507EWASH-3	VP507EWASH-F	Ambient Air
Freon 12	75-71-8	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	9	<6.0	8.8	<6.2
Freon 114	76-14-2	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.6	<8.4	<8.4	<8.8
Chloromethane	74-87-3	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Vinyl Chloride	75-01-4	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.1	<3.1	<3.2
1,3-Butadiene	106-99-0	9.2	2.9	25	4.4	9.4	<2.8	<2.8	9.7	4	5	<2.8
Bromomethane	74-83-9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.8	<4.7	<4.7	<4.9
Chloroethane	75-00-3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.2	<3.2	<3.2	<3.3
Freon 11	75-69-4	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<6.9	<6.8	<6.8	<7.1
Ethanol	64-17-5	50	17	280	14	20	13	12	18	29	19	11
Freon 113	76-13-1	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
1,1-Dichloroethene	75-35-4	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.1
Acetone	67-64-1	230	110	580	120	160	120	120	180	230	180	16
2-Propanol	67-63-0	14	50	100	<12	46	37	38	13	16	<12	23
Carbon Disulfide	75-15-0	<3.9	<3.9	<3.9	7.6	<3.9	<3.9	<3.9	4.3	<3.8	<3.8	<3.9
3-Chloropropene	107-05-1	<16	<16	<16	<16	<16	<16	<16	<15	<15	<15	<16
Methylene Chloride	75-09-2	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.3	<4.2	<4.2	<4.4
Methyl tert-butyl ether	1634-04-4	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.4	<4.4	<4.4	<4.6
trans-1,2-Dichloroethene	156-60-5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.0
Hexane	110-54-3	9.5	7.3	20	17	14	8	8.5	14	14	11	<4.4
1,1-Dichloroethane	75-34-3	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
2-Butanone (MEK)	78-93-3	47	18	130	26	43	21	18	40	56	34	<3.7
cis-1,2-Dichloroethene	156-59-2	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.0
Tetrahydrofuran	109-99-9	>3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.6	<3.6	<3.6	<3.7
Chloroform	67-66-3	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.0	<5.9	<5.9	<6.2
1,1,1-Trichloroethane	71-55-6	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Cyclohexane	110-82-7	<4.4	<4.4	5.9	8.9	4.8	<4.4	<4.4	5.3	6.1	4.2	<4.4
Carbon Tetrachloride	56-23-5	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<7.8	<7.6	<7.6	<8.0
2,2,4-Trimethylpentane	540-84-1	8.1	7.2	13	14	10	6.9	7.7	11	15	8.9	<5.9
1,2-Dichloroethane	107-06-2	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
Heptane	142-82-5	10	7.6	21	19	17	12	13	20	19	13	<5.2
Trichloroethene	79-01-6	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	7.3	<6.5	<6.5	<6.8
1,2-Dichloropropane	78-87-5	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
1,4-Dioxane	123-91-1	<18	<18	<18	<18	<18	<18	<18	<18	<17	<17	<18
Bromodichloromethane	75-27-4	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.3	<8.1	<8.1	<8.5
cis-1,3-Dichloropropene	10061-01-5	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7

Table 3-2 Soil Gas Concentrations for Non-MGP Chemicals (ug/m³) Former MGP Site, Champaign, Illinois

		4	12 E Hill Stre	et	505 E Wash	ington Street			507 E Wash	ington Street		
Chemical	CAS	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	VP507E	Lab Duplicate	VP507EWASH-2	VP507EWASH-3	VP507EWASH-F	Ambient Air
4-Methyl-2-pentanone	108-10-1	<5.2	<5.2	6.5	<5.2	<5.2	<5.2	<5.2	<5.0	5.4	<5.0	<5.2
trans-1,3-Dichloropropene	10061-02-6	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7
1,1,2-Trichloroethane	79-00-5	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Tetrachloroethene	127-18-4	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.4	<8.2	<8.2	<8.6
2-Hexanone	591-78-6	<21	<21	<21	<21	<21	<21	<21	<20	<20	<20	<21
Dibromochloromethane	124-48-1	<11	<11	<11	<11	<11	<11	<11	<10	<10	<10	<11
1,2-Dibromoethane (EDB)	106-93-4	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
Chlorobenzene	108-90-7	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
Bromoform	75-25-2	<13	<13	<13	<13	<13	<13	<13	<13	<12	<12	<13
Cumene	98-82-8	<6.2	<6.2	7.2	6.6	<6.2	<6.2	<6.2	8.3	7.9	7	<6.2
1,1,2,2-Tetrachloroethane	79-34-5	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.5	<8.3	<8.3	<8.7
Propylbenzene	103-65-1	25	20	30	24	26	27	26	34	34	34	<6.2
4-Ethyltoluene	622-96-8	100	83	130	97	100	120	110	150	140	150	<6.2
1,3,5-Trimethylbenzene	108-67-8	56	42	45	34	52	45	41	55	76	59	<6.2
1,2,4-Trimethylbenzene	95-63-6	160	120	160	120	140	160	150	190	210	210	<6.2
1,3-Dichlorobenzene	541-73-1	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,4-Dichlorobenzene	106-46-7	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
alpha-Chlorotoluene	100-44-7	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.4	<6.3	<6.3	<6.5
1,2-Dichlorobenzene	95-50-1	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,2,4-Trichlorobenzene	120-82-1	<38	<38	<38	<38	<38	<38	<38	<37	<36	<36	<38
Hexachlorobutadiene	87-68-3	<54	<54	<54	<54	<54	<54	<54	<53	<52	<52	<54

Notes:

<: Reporting limit shown

Values with bold font are detected values.

*: RO for 1,3-dichloropropylene (cis + trans)

**: RO for p-xylene

Table 3-3 Soil Gas Concentrations for Non-MGP Chemicals with TACO Tier 1 Remediation Objectives (ug/m³) Former MGP Site, Champaign, Illinois

			4	12 E Hill Stre	et	505 E Washi	ington Street			507 E Washi	ington Street		
		Residential Tier	_		-	-1	7	VP507E	WASH-1		-3	Ŀ	
Chemical	CAS	1 Soil Gas RO (ug/m ³)	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	Original	Lab Duplicate	VP507EWASH-2	VP507EWASH-3	VP507EWASH-F	Ambient Air
Freon 12	75-71-8	32000000	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	9	<6.0	8.8	<6.2
Vinyl Chloride	75-01-4	30000	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.1	<3.1	<3.2
Bromomethane	74-83-9	830000	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.8	<4.7	<4.7	<4.9
Freon 11	75-69-4	9700000	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<7.1	<6.9	<6.8	<6.8	<7.1
1,1-Dichloroethene	75-35-4	240000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.9	<4.8	<4.8	<5.1
Carbon Disulfide	75-15-0	81000000	<3.9	<3.9	<3.9	7.6	<3.9	<3.9	<3.9	4.3	<3.8	<3.8	<3.9
Methylene Chloride	75-09-2	590000	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.3	<4.2	<4.2	<4.4
Methyl tert-butyl ether	1634-04-4	35000000	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.4	<4.4	<4.4	<4.6
trans-1,2-Dichloroethene	156-60-5	10000000	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<4.9	<4.8	<4.8	<5.0
1,1-Dichloroethane	75-34-3	81000000	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
2-Butanone (MEK)	78-93-3	44000000	47	18	130	26	43	21	18	40	56	34	<3.7
cis-1,2-Dichloroethene	156-59-2	27000000	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<4.9	<4.8	<4.8	<5.0
Chloroform	67-66-3	12000	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.2	<6.0	<5.9	<5.9	<6.2
1,1,1-Trichloroethane	71-55-6	77000000	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Carbon Tetrachloride	56-23-5	24000	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<7.8	<7.6	<7.6	<8.0
1,2-Dichloroethane	107-06-2	10000	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.0	<4.9	<4.9	<5.1
Trichloroethene	79-01-6	180000	<6.8	<6.8	<6.8	<6.8	<6.8	< 6.8	<6.8	7.3	<6.5	<6.5	<6.8
1,2-Dichloropropane	78-87-5	7200	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
1,4-Dioxane	123-91-1	15000	<18	<18	<18	<18	<18	<18	<18	<18	<17	<17	<18
Bromodichloromethane	75-27-4	45000000	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.5	<8.3	<8.1	<8.1	<8.5
cis-1,3-Dichloropropene	10061-01-5	110000*	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7
trans-1,3-Dichloropropene	10061-02-6	110000*	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.7	<5.6	<5.5	<5.5	<5.7
Tetrachloroethene	127-18-4	66000	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.6	<8.4	<8.2	<8.2	<8.6
1,2-Dibromoethane (EDB)	106-93-4	1600	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
Chlorobenzene	108-90-7	8300000	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<5.7	<5.6	<5.6	<5.8
Bromoform	75-25-2	1800000	<13	<13	<13	<13	<13	<13	<13	<13	<12	<12	<13
Cumene	98-82-8	3000000	<6.2	<6.2	7.2	6.6	<6.2	<6.2	<6.2	8.3	7.9	7	<6.2
1,4-Dichlorobenzene	106-46-7	317000	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,2-Dichlorobenzene	95-50-1	11000000	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6
1,2,4-Trichlorobenzene	120-82-1	1600000	<38	<38	<38	<38	<38	<38	<38	<37	<36	<36	<38
									1				

Notes:

<: Reporting limit shown

Values with bold font are detected values.

*: RO for 1,3-dichloropropylene (cis + trans)

 Table 3-4

 Toxicological Information Used to Calculate Tier 1 ROs for Non-MGP Soil Gas Chemicals without TACO ROs

 Former MGP Site, Champaign, Illinois

Chemical	CAS No.		RF n3) ⁻¹]	RfC [mg/m ³]			
Chemicai	CAS NO.	Value	Source	Value	Source		
Chloromethane	74-87-3	1.80E-06	R	9.00E-02	I		
1,3-Butadiene	106-99-0	3.00E-05	Ι	2.00E-03	Ι		
Chloroethane	75-00-3	NA		1.00E+01	Ι		
Freon 113	76-13-1	NA		3.00E+01	R		
Acetone	67-64-1	NA		1.30E+01	А		
2-Propanol	67-63-0	NA		3.20E-03	C(1hr)		
3-Chloropropene	107-05-1	NA		1.00E-03	Ι		
Hexane	110-54-3	NA		7.00E-01	Ι		
Cyclohexane	110-82-7	NA		6.00E+00	Ι		
4-Methyl-2-pentanone	108-10-1	NA		3.00E+00	Ι		
1,1,2-Trichloroethane	79-00-5	1.60E-05	Ι	NA			
Dibromochloromethane	124-48-1	2.70E-05	С	NA			
1,1,2,2-Tetrachloroethane	79-34-5	5.80E-05	Ι	NA			
1,3,5-Trimethylbenzene	108-67-8	NA		6.00E-03	R		
1,2,4-Trimethylbenzene	95-63-6	NA		7.00E-03	R		
alpha-Chlorotoluene	100-44-7	4.90E-05	С	1.00E-03	R		
Hexachlorobutadiene	87-68-3	2.20E-05	Ι	NA			

Notes:

I = USEPA, Integrated Risk Information System (IRIS). Accessed via Internet.

C = California EPA, Office of Environmental Health Hazard Assessment, Toxicity Criteria Database, accessed via Internet.

A = Agency for Toxic Substances and Disease Registry (ATSDR), December 2006. Minimal Risk Levels (MRLs).

R = USEPA, July 2008. Regional Screening Levels for Chemical Contaminants at Superfund Sites. NA: Not available

 Table 3-5

 Physical Chemical Properties Used to Calculate Tier 1 ROs for Non-MGP Soil Gas Chemicals without Tier 1 ROs

 Former MGP Site, Champaign, Illinois

Chemical	CAS No.	Vapor Pressure (P)	Molecular Weight (MW)	Solubility in Water (S)	Dimensionle ss Henry's Law Constant (H') at	Organic Carbon Partition Coefficient (K _{oc})	Diffusivity in Air (D _i)	Diffusivity in Water (D _w)	Normal Boiling Temperature T _B	Critical Temperature T _c	Enthalpy of Vaporization at the Normal Boiling Point
		atm	[g/mole]	[mg/L]	25 °C [-]	[L/kg]	[cm ² /s]	[cm ² /s]	°K	°K	cal/mole
Chloromethane	74-87-3	5.66E+00	5.05E+01	5.33E+03	3.62E-01	6.30E+00	1.26E-01	6.50E-06	2.50E+02	4.17E+02	5.12E+03
1,3-Butadiene	106-99-0	2.77E+00	5.41E+01	7.35E+02	3.02E+00	4.47E+01	2.49E-01	1.08E-05	2.70E+02	4.25E+02	5.37E+03
Chloroethane	75-00-3	1.33E+00	6.45E+01	5.68E+03	3.62E-01	1.62E+01	2.71E-01	1.15E-05	2.86E+02	4.60E+02	5.88E+03
Freon 113	76-13-1	4.36E-01	1.87E+02	1.70E+02	1.96E+01	3.72E + 02	3.80E-02	8.60E-06	3.22E+02	4.87E+02	6.46E+03
Acetone	67-64-1	3.03E-01	5.80E+01	1.00E+06	1.60E-03	7.80E-01	1.24E-01	1.14E-05	3.29E+02	5.08E+02	6.96E+03
2-Propanol	67-63-0	5.98E-02	6.01E+01	<u>1.97E+04</u>	3.21E-04	2.50E+01	<u>9.59E-02</u>	<u>1.03E-05</u>	3.56E+02	NA	NA
3-Chloropropene	107-05-1	4.84E-01	7.65E+01	3.37E+03	4.50E-01	5.00E+01	9.40E-02	1.10E-05	3.19E+02	NA	NA
Hexane	110-54-3	1.99E-01	8.62E+01	1.24E+01	7.38E+01	1.58E+03	2.00E-01	7.77E-06	3.43E+02	5.08E+02	6.90E+03
Cyclohexane	110-82-7	1.28E-01	8.42E+01	5.50E+01	6.15E+00	6.31E+02	8.39E-02	9.10E-06	3.55E+02	NA	NA
4-Methyl-2-pentanone	108-10-1	2.63E-02	1.00E+02	1.90E+04	5.70E-03	1.00E+01	7.50E-02	7.80E-06	3.94E+02	5.71E+02	8.24E+03
1,1,2-Trichloroethane	79-00-5	3.03E-02	1.30E+02	4.40E+03	3.73E-02	5.01E+01	7.80E-02	8.80E-06	3.88E+02	6.02E+02	8.32E+03
Dibromochloromethane	124-48-1	6.45E-03	2.08E+02	2.60E+03	3.20E-02	6.92E+01	3.66E-02	1.05E-05	4.07E+02	6.78E+02	5.90E+03
1,1,2,2-Tetrachloroethane	79-34-5	6.05E-03	1.70E+02	3.00E+03	1.39E-02	1.00E+02	7.10E-02	7.90E-06	4.24E+02	6.61E+02	<u>9.00E+03</u>
1,3,5-Trimethylbenzene	108-67-8	3.26E-03	1.20E+02	4.82E+01	3.60E-01	6.17E+02	6.02E-02	8.67E-06	4.39E+02	6.37E+02	9.32E+03
1,2,4-Trimethylbenzene	95-63-6	2.76E-03	1.20E+02	5.70E+01	2.53E-01	1.17E+03	6.06E-02	7.92E-06	4.44E+02	<u>6.49E+02</u>	<u>9.37E+03</u>
alpha-Chlorotoluene	100-44-7	1.72E-03	1.27E+02	5.25E+02	1.69E-02	1.39E+02	6.30E-02	8.80E-06	4.54E+02	6.85E+02	<u>8.77E+03</u>
Hexachlorobutadiene	87-68-3	2.89E-04	2.60E+02	3.20E+00	3.32E-01	5.00E+04	5.61E-02	6.16E-06	4.94E+02	7.38E+02	1.02E+04

Notes:

Normal: IEPA Italic: Chemfate Bold: PhysProp Italic Bold: Regional Screening Levels Normal with Underline: USEPA, 2004 Italic with Underline: TCEQ, June 2007 NA: Not available

Table 3-6
Tier 1 ROs Developed for Non-MGP Soil Gas Chemicals without TACO Tier 1 ROs (ug/m ³)
Former MGP Site, Champaign, Illinois

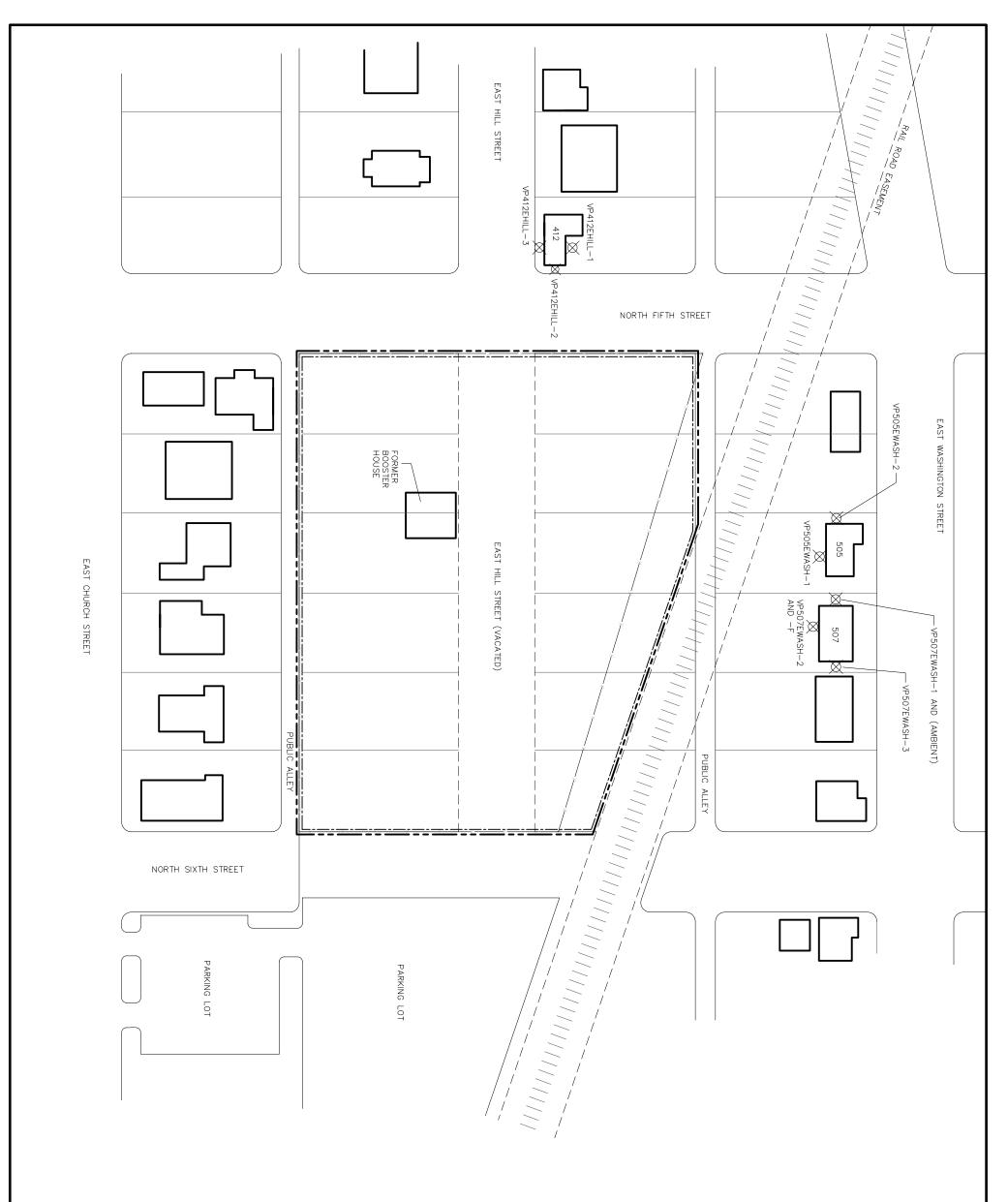
			4	12 E Hill Stre	et	505 E Wash	ington Street			507 E Washi	ington Street		
Chemical	CAS	Residential Tier 1 Soil Gas RO (ug/m ³)	VP412EHILL-1	VP412EHILL-2	VP412EHILL-3	VP505EWASH-1	VP505EWASH-2	VP507E	Lab Duplicate	P507EWASH-2	VP507EWASH-3	VP507EWASH-F	Ambient Air
Chloromethane	74-87-3	124000	<10	> <10	<10	> <10	> <10	<u> </u>	- 1 <10	> <10	<10	<10	<10
1.3-Butadiene	106-99-0	3770	9.2	2.9	25	4.4	9.4	<2.8	<2.8	9.7	4	5	<2.8
Chloroethane	75-00-3	446000000	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<3.2	<3.2	<3.2	<3.3
Freon 113	76-13-1	9530000000	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.7	<9.5	<9.3	<9.3	<9.7
Acetone	67-64-1	1250000000	230	110	580	120	160	120	120	180	230	180	16
2-Propanol	67-63-0	387000	14	50	100	<12	46	37	38	13	16	<12	23
3-Chloropropene	107-05-1	128000	<16	<16	<16	<16	<16	<16	<16	<15	<15	<15	<16
Hexane	110-54-3	42300000	9.5	7.3	20	17	14	8	8.5	14	14	11	<4.4
Cyclohexane	110-82-7	457000000	<4.4	<4.4	5.9	8.9	4.8	<4.4	<4.4	5.3	6.1	4.2	<4.4
4-Methyl-2-pentanone	108-10-1	481000000	<5.2	<5.2	6.5	<5.2	<5.2	<5.2	<5.2	<5.0	5.4	<5.0	<5.2
1,1,2-Trichloroethane	79-00-5	22600	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.9	<6.7	<6.6	<6.6	<6.9
Dibromochloromethane	124-48-1	28500	<11	<11	<11	<11	<11	<11	<11	<10	<10	<10	<11
1,1,2,2-Tetrachloroethane	79-34-5	6830	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.7	<8.5	<8.3	<8.3	<8.7
1,3,5-Trimethylbenzene	108-67-8	1200000	56	42	45	34	52	45	41	55	76	59	<6.2
1,2,4-Trimethylbenzene	95-63-6	1390000	160	120	160	120	140	160	150	190	210	210	<6.2
alpha-Chlorotoluene	100-44-7	9110	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.5	<6.4	<6.3	<6.3	<6.5
Hexachlorobutadiene	87-68-3	22800	<54	<54	<54	<54	<54	<54	<54	<53	<52	<52	<54

Notes:

<: Reporting limit shown

Values with bold font are detected values.

Table 3-7 Soil Vapor Concentrations for Non-MGP Chemicals without TACO Tier 1 Remediation Objectives (ug/m³) Former MGP Site, Champaign, Illinois


			4	12 E Hill Stre	et	505 E Wash	ington Street			507 E Washi	ington Street		
Chemical	CAS	Residential Tier 1 Soil Gas RO (ug/m ³)	P412EHILL-1	P412EHILL-2	VP412EHILL-3	VP505EWASH-1	P505EWASH-2	VP507E	ab Duplicate	P507EWASH-2	P507EWASH-3	P507EWASH-F	mbient Air
E	76.14.2	NC	>	>	F	F	>		Г		>	>	▲
Freon 114	76-14-2	NC	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.8	<8.6	<8.4	<8.4	<8.8
Ethanol	64-17-5	NC	50	17	280	14	20	13	12	18	29	19	11
Tetrahydrofuran	109-99-9	NC	>3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.6	<3.6	<3.6	<3.7
2,2,4-Trimethylpentane	540-84-1	NC	8.1	7.2	13	14	10	6.9	7.7	11	15	8.9	<5.9
Heptane	142-82-5	NC	10	7.6	21	19	17	12	13	20	19	13	<5.2
2-Hexanone	591-78-6	NC	<21	<21	<21	<21	<21	<21	<21	<20	<20	<20	<21
Propylbenzene	103-65-1	NC	25	20	30	24	26	27	26	34	34	34	<6.2
4-Ethyltoluene	622-96-8	NC	100	83	130	97	100	120	110	150	140	150	<6.2
1,3-Dichlorobenzene	541-73-1	NC	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<7.4	<7.3	<7.3	<7.6

Notes:

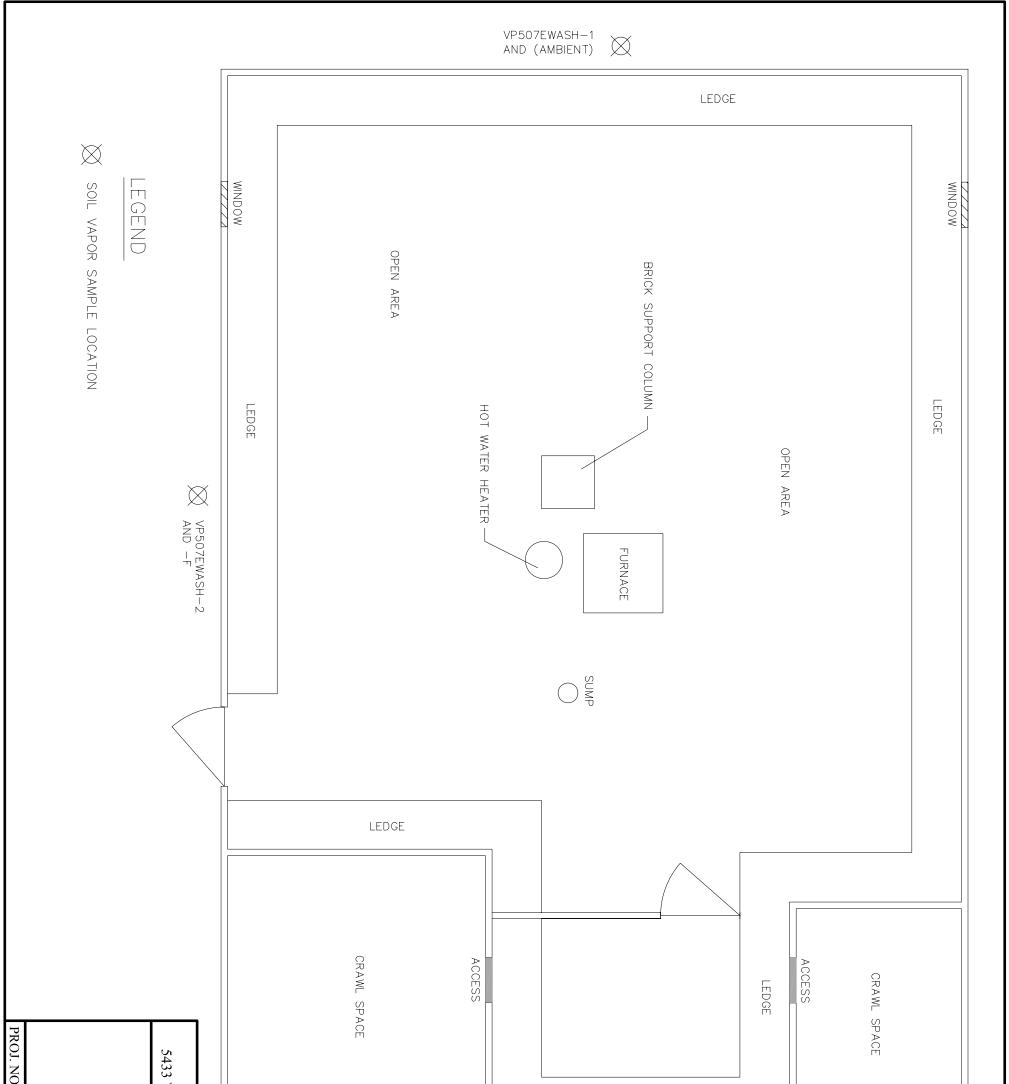
<: Reporting limit shown

Values with bold font are detected values.

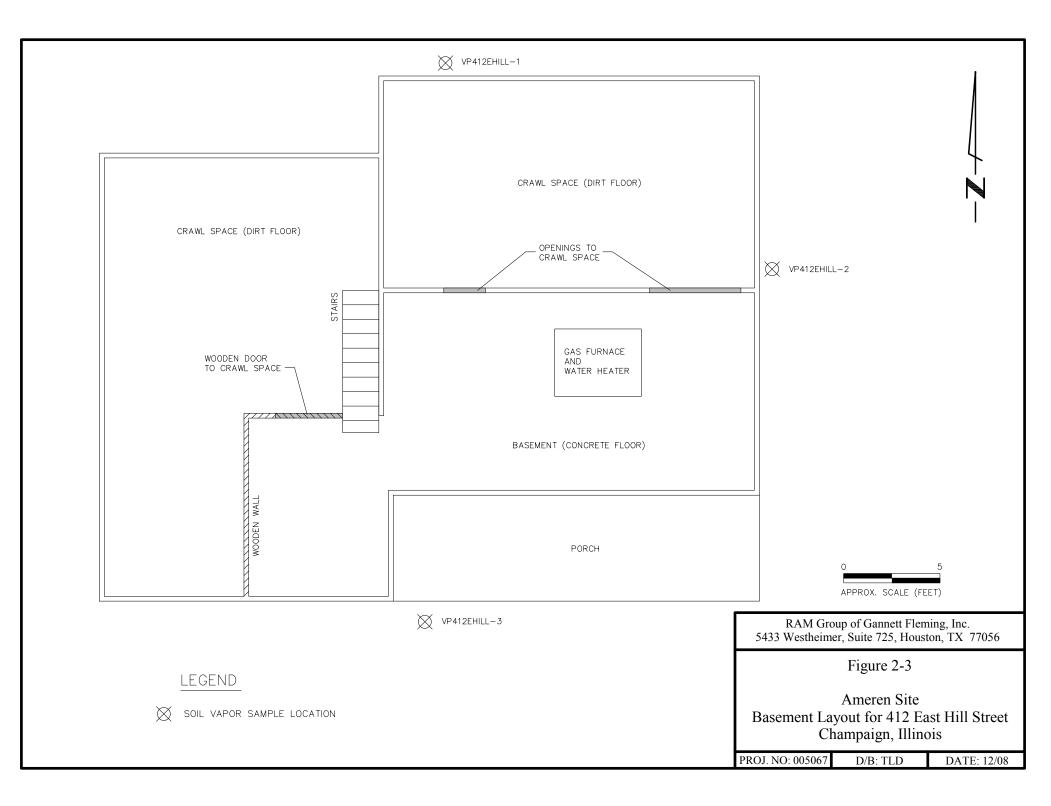
NC: Not calculated due to lack of toxicity or physical chemical information

PROJ. NO: 005067	Ch	Soil Ga	RAM Gro 5433 Westheime	
D/B: TLD	Ameren Champaign, Illinois	Figure 1-1 Soil Gas Sampling Locations	RAM Group of Gannett Fleming, Inc. 5433 Westheimer, Suite 725, Houston, TX 77056	O 8 APPROX. SCALE (FEET)
DATE: 12/08	01S	cations	ning, Inc. ton, TX 77056	ET) ∎ 80

\Box
Π
Z


SOIL VAPOR SAMPLE LOCATION	FENCE	REMEDIATION SITE BOUNDARY	CURRENT AMEREN PROPERTY BOUNDARY	EXISTING STRUCTURES (APPROXIMATE)
ATION		ARY	RTY BOUNDARY	PROXIMATE)

 \boxtimes


-Z-/---

NO: 005067	Basem V C	RAM Group (33 Westheimer, S		
D/B: TLD D.	Figure 2-1 Basement Layout for 505 E Washington Street Ameren Site Champaign, Illinois	of Gannett Fleming, Suite 725, Houston,	0 5 Approx. Scale (feet)	
DATE: 12/08	East	Inc. TX 77056	T) L 5	

O: 005067	Basement Was ∕	RAM Group 3 Westheimer, 1			
D/B: TLD DATE: 12/08	Figure 2-2 Layout for 507 East shington Street Ameren Site npaign, Illinois	oup of Gannett Fleming, Inc. er, Suite 725, Houston, TX 77056	0 5 APPROX. SCALE (FEET)	WINDOW VP507EWASH-3	WINDOW

August 21, 2008

Transmitted by E mail

Mr. Brian Martin Ameren Services One Ameren Plaza 1901 Chouteau Avenue, MC 602 St. Louis, MO 63166-6149

Re: Soil Vapor Sampling Former Manufactured Gas Plant Site, Champaign, Illinois

Dear Brian:

Thank you very much for the opportunity to collect the data necessary to evaluate potential soil vapor migration and vapor inhalation risk at this site. With our merger with Gannett Fleming (GF), we are excited at the opportunity to continue to provide an expanded set of high quality services to you.

The following tasks will be conducted:

An OSHA-compliant health and safety plan (HASP) will be prepared prior to mobilization. The state one-call service will be notified at least 48 hours before the fieldwork to mark the locations of sub-surface utilities along the public rights-of-way in the vicinity of the three residential properties to be sampled. These markings as well as visual observations at each residence will be used in an effort to avoid encountering sub-surface utilities during the fieldwork.

Coordination with residents and owners will be conducted to explain and coordinate the work prior to mobilization to the field. We understand the three residential homes are located at 412 East Hill (resident owner occupied) located west of the former MGP site, 505 East Washington (resident owner occupied and full time day care in basement) located north of the MGP site, and 507 East Washington (resident renter occupied) located north of the MGP site. Each of the homes have basements that are partially below grade extending to a depth of approximately five feet below ground surface (bgs).

We understand that the soils in the vicinity of the site consist of glacial till consisting of mostly tight silty clays in the upper 10 feet bgs and sandy sediments below 10 feet bgs. The water table has been measured at depths of 7 to 8 feet bgs.

Keith Klemm or Devin Yeatman will perform the fieldwork according to the following schedule:

Day 1: Travel to the site and perform site reconnaissance, mark utility and sampling locations, inspect all Summa canisters and other field equipment, and purchase any field supplies necessary.

Day 2: Install eight temporary vapor sampling borings to a target depth of approximately six feet below ground surface (approximately one foot below the bottom of the basement slab, estimated at 5 ft bgs and above the water table, estimated at 78 ft bgs) adjacent to three private residences. We will verify groundwater depths prior to beginning the field works at nearby accessible shallow monitoring wells. The vapor borings will be installed using a geoprobe track-mounted rig. Extreme care will be taken to prevent damage to private property. Soil vapor samples will be collected from the borings using post-run tubing (PRT) methods. One co-located duplicate soil vapor sample will be collected from a location between the two residences located on East Washington Street along with one ambient (outdoor) air sample.

Day 3: Continuation of work performed on Day 2. The samples will be shipped and the field technician will travel back to the office to complete any remaining paperwork.

Day 20: Receipt of all data from laboratory (standard turnaround) in electronic format.

Day 45: Submission of draft report for your review and comments. Single report including data collection, risk evaluation, and recommendations.

Day 60: Finalization of the report.

[cost portion of letter deleted for proprietary reasons]

We look forward to working with you on this project and will call you soon to discuss this.

Sincerely,

Kendall L. Pickett Senior Geologist

FORMER AMEREN MANUFACTURED GAS PLANT SITE HEALTH AND SAFETY PLAN GANNETT FLEMING, INC.

SITE NAME	Ameren - Champaign	PROJECT #	50067
ADDRESS	308 N. 5th Street	PROJECT CONTACT	Kendall Pickett
			(Houston Office)
CITY, STATE	Champaign, Illinois	PM PHONE	(713) 784-5151
VERSION NO.	1	CLIENT CONTACT	Brian Martin
DATE	October 6, 2008	CLIENT PHONE	(314) 554-2233
PREPARED	Erin Beares	SIGNATURE	a. B.
BY			Eig Deones
APPROVED BY	Chris Ralston	SIGNATURE	Mapo
REVIEWED BY	Rob Scrafford	SIGNATURE	that w. ml

1 SITE BACKGROUND AND DESCRIPTION

The former Champaign and Urbana Gas Light Company and subsequently AmerenIP, operated a manufactured gas plant on this site from approximately 1869 to the 1930's. The plant was then on standby status from the 1930's through the 1950's and was used to meet peak demands. The site was vacant and unused from 1960 until 1979 when the property was sold to American Legion Post 559 as a meeting house. The property was then repurchased by AmerenIP in 1991 and has since remained vacant.

The site consists of a vacant flat area secured by a chain-link fence. There are residential properties to the north, south and west and commercial properties to the east.

1.1 SITE TYPE

	Active		Agricultural	Recreational
Х	Inactive	X	Commercial	Natural Area
Х	Secure	X	Residential	Unknown
	Unsecured	X	Industrial	Other
	Landfill		Military	

1.2 SURROUNDING POPULATION

Х	Industrial	Х	Residential
	Urban		Rural

1.3 SITE TOPOGRAPHY

This site consists of flat topography.

1.4 ANTICIPATED WEATHER CONDITIONS

The predicted weather is fall temperatures and a possibility of rain showers.

2 DESCRIPTION OF ON-SITE ACTIVITIES

Soil sampling	Well gauging
Lagoon/pond sampling	Well sampling
Drum sampling	Tank sampling

X	Oversight of drill crew		Asbestos sampling
	Site walk		On-site meeting
	Tank removal oversight		Air monitoring
	Groundwater sampling		Product removal from specified wells
X	Geoprobe [®] Soil Borings		Monitoring Well Installation
	Sump gauging	X	Soil Vapor Sampling

2.1 SPECIFIC WORK TASKS

- 1. Installation of eight soil borings using Geoprobe.
- 2. Sample soil vapor using Geoprobe post-run tubing.

2.2 SUBCONTRACTOR TASKS

Geoprobe drilling will be performed by a subcontractor, yet to be determined.

3 ON-SITE ORGANIZATION AND COORDINATION

The following personnel are designated to carry out the stated job functions onsite.

GF Project Manager/Contact:	Kendall Pickett
GF Safety Manager:	Sid Curran
Site Safety and Health Supervisor (SSHS):	Keith Klemm
Field Team Leader (FTL):	Keith Klemm
Field Team Members:	Keith Klemm, Kendall Pickett
Contractor Personnel:	TBD
Regulators/Client:	Ameren Services

All personnel arriving or departing from the site should log in and out with the SSHS. All activities on-site must be approved by the Gannett Fleming, Inc. Project Manage. The SSHS will maintain a site log.

3.1 TRAINING AND MEDICAL SURVEILLANCE

All onsite personnel must meet the requirements of OSHA 29CFR 1910.120 (f) prior to entry into the exclusion zone. Documentation of each employee's health monitoring records is the responsibility of their employer. Employees must be able to produce copies of their training records, if asked to do so.

4 ON-SITE CONTROL

N/A

5 HAZARD ASSESSMENT

5.1 Hazard evaluation

X	Slip/trip/fall	Х	Chemical		Heat stress
	Open trenches (small for piping)		Radiation	X	Overhead utilities
	Confined spaces		Flammable atmospheres		Cold stress
	Work around vacuum tank and hoses		Asbestos	X	Machinery

	Floor openings	Ladder	rs X	Buried utilities
X	Vehicle traffic	Gas cy	linders	Poisonous plants
	Entry into excavation	Insects	5	

**Note this list is not inclusive of all hazards, which may be encountered.

5.2 On-site hazards

The substance(s) in Table 1 (attached) are known or suspected to be on-site. The primary hazards of each are identified.

6 PERSONAL PROTECTIVE EQUIPMENTAND SAFETY PROCEDURES

6.1 Personal Protective Equipment

The following designated items will be the minimum protection required while in the exclusion zone. Specific activities may require modification to this list.

ANTICIPATED LEVEL OF PROTECTION: B____ C___ D_X

JUSTIFICATION: Level D protection is anticipated based on the open atmosphere. Upgrades would be based on air monitoring results or field observations.

LEVEL B WILL INCLUDE: (Check all that apply) COVERALL: Saranex___ Polytyvek__ Tyvek GLOVES: Latex___ Nitrile___ Silver Shields___ Butyl___ Other BOOTS: Steel Toe___ Latex Booties___ Robars___ Other SUPPLIED AIR: SCBA___ Airlines SPLASH APRON: Acid___ Other/Type:__/ OTHER EQUIPMENT: Hardhat___ Flash Light___ Radio___ Life Jacket___ Car Phone Earplugs

<u>ACTIVITIES TO BE PERFORMED IN LEVEL B:</u> (Please List) Not anticipated.

LEVEL C WILL INCLUDE: (Check all that apply) COVERALL: Saranex____ Polytyvek___ Tyvek GLOVES: Latex___ Nitrile___ Silver Shields___ Butyl___ Other BOOTS: Steel Toe___ Latex Booties___ Robars___ Other FULL FACE RESPIRATOR: Positive Pressure___ Negative Pressure CARTRIDGES: GMC-P100___ Other/Type__/____ Escape Pack: OTHER EQUIPMENT: Hardhat___ Flash Light___ Radio___ Life Jacket___ Car Phone Earplugs

<u>ACTIVITIES TO BE PERFORMED IN LEVEL C:</u> (Please List) Not anticipated.

<u>LEVEL D WILL INCLUDE:</u> (Check all that apply) COVERALL: Tyvek____ Cotton___ Other GLOVES: Latex____ Nitrile_X_ Cotton___ Other <u>(leather/work)</u> BOOTS: Steel Toe_X_ Latex Booties___ Robars___ Other____ OTHER EQUIPMENT: Hardhat_X (if an overhead hazard is present) Safety Glasses_X Flash Light___ Radio___ Cell Phone_X_Earplugs_X_ Safety Vest_X

ACTIVITIES TO BE PERFORMED IN LEVEL D: (Please List)

- 1. Soil vapor sampling
- 2. Installation of soil borings

AIR MONITORING: (Check all that apply)	
FID _X_ PIDCGI DRAGER PUMP (LIST TUBES)	_RADIATION
METER	
LOW-VOLUME PUMP HI-VOLUME PUMPOTHERS	
(LIST)	

6.2 Safety Procedures

- Eating, drinking, chewing gum or tobacco, smoking, or any practice which increases the potential of hand-to-mouth transfer of dangerous material is **PROHIBITED**.
- Any facial hair that interferes with a satisfactory fit of respiratory protective devices to the face is PROHIBITED.
- All joins between the protective suit and gloves, boots, respirator and zipper must be taped with duct tape when working near the machinery.
- An eye station will be located in the staging area.

7 COMMUNICATION PROCEDURES

Hand signals will be agreed upon during the tailgate safety meeting prior to commencement of activities each day. Cell phones will be available for emergency use. Personnel should remain within sight of the Field Team Leader.

Thee short blasts of the vehicle horn is the emergency signal to indicate that all personnel should leave the area and convene at the location designated by the Field Team Leader.

The following standard hand signals will be used in case of failure of radio communications.

Hand gripping throat	Out of air; can't breathe
Grip partner's wrist or both hands around waist	Leave area immediately
Hands on top of head	Need assistance
Thumbs up	OK; I am alright; I understand
Thumbs down	No; negative

Telephone communication to the Command Post should be established as soon as practicable.

8 DECONTAMINATION PROCEDURES

8.1 Personnel Decontamination

All boots and other potentially contaminated garments that have, or may have, contacted contaminated materials will be cleaned with detergent/water solution and rinsed with water in wash tubs. The wash water, rinse water, and residues will be collected and properly stored until sampling results are received and final disposition of the waste can be determined. Disposable PPE will be

properly bagged and disposed of. All contaminated boots, clothing, and equipment that cannot be decontaminated will be disposed of with the disposable garments.

8.2 Sampling Equipment Decontamination

Sampling equipment will be decontaminated in the field using buckets, brushes, alconox, water and isopropyl alcohol.

8.3 Heavy Equipment Decontamination

Geoprobe rods will be decontaminated between sampling locations using buckets, brushes, alconox, and water.

8.4 Emergency Decontamination

Emergency decontamination will be conducted in the same manner as described above, when possible.

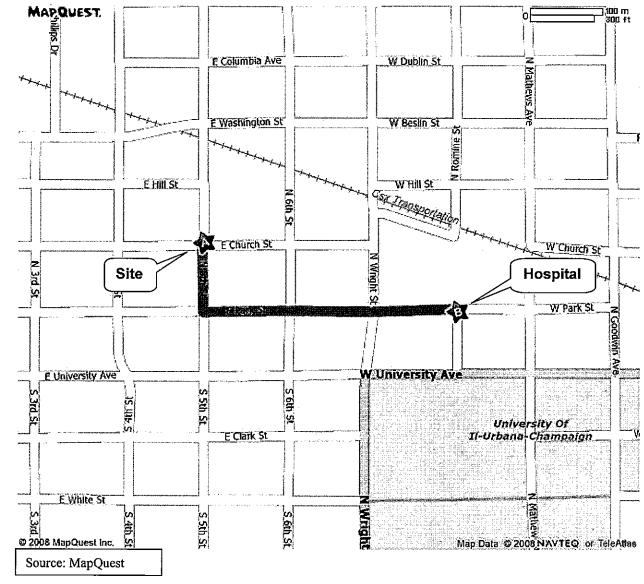
8.5 Decontamination Equipment

The following decontamination equipment is required:

Х	Buckets	X	Decontamination pad
Х	Brushes		Water hoses
X	Tubs		Disposal drums
	Steam cleaner	X	Cleaning solution
	Other	X	Water

9 SITE SAFETY AND HEALTH PROCEDURES

9.1 Environmental Monitoring


See Table 2 (attached) for the specified intervals and action levels for the PID to be used onsite.

The following activities will be performed:

- Recharge each instrument at the end of each day.
- Record all reading in the site logbook.
- If an instrument fails to work, it must be repaired or replaced before work requiring its use can continue.
- Instrument readings above the action level require evacuation, reevaluation, and consultation with the Gannett Fleming, Inc. Health and Safety Manager for PPE upgrade.
- Dusty conditions may warrant upgrade in PPE. Consult with the Gannett Fleming, Inc. Health and Safety Manager if dusty conditions exist.

9.2 Emergency Medical Care

HOSPITAL: Provena Covenant Medical Center 1400 W. Park Street Urbana, IL 61801

- DIRECTIONS TO HOSPITAL
 1. Start at 308 N 5th St going toward E Church St
 2. Turn left on E Park St go 0.3 miles
- 3. Arrive at 1400 W Park St on left

APPROXIMATE DISTANCE: 0.34 Miles

APPROXIMATE TRAVEL TIME: 1 Minute

FIRE DEPARTMENT: 911

POLICE DEPARTMENT: 911

AMBULANCE 911

FIRST AID KIT AVAILABLE AT Field vehicle

EYE WASH STATION AVAILABLE AT Field vehicle

GANNETT FLEMING TELEPHONE NO.

(410) 585-1460 Baltimore Office Sid Curran, Health and Safety Manager (717) 763-7211 Harrisburg Office (Headquarters) Thomas Gingrich, Regional Health & Safety Officer

9.3 Fire and Rescue Equipment

Fire extinguishers are located inside the wash building located immediately adjacent to the site. In addition, the Field Team Lead should have a fire extinguisher in the car.

First aid equipment is available on-site as follows: First aid kit: In field vehicle and in wash building Emergency eye wash: In field vehicle Emergency shower: N/A

I have read and I understand the safety guidelines presented in this plan. I further understand that each contractor performing work on this site is solely responsible for the health and safety of their workers.

NAME (signature)

NAME (print)

Keith Klenn Kendall Picket

CHANGES AND/OR DEVIATIONS FROM THIS PLAN REQUIRE A SAFETY PLAN AMENDMENT

m:\cierical\go\forms\shortfor.wpd

Table 1. Chemicals of Concern

-

Contaminant	Chemical / Physical Properties	Incompat -ibilities	Threshold Limit Value/ Permissible Exposure Limit	Immediately Dangerous to Life & Health	Route	Exposure Symptoms	First Aid
Benzene	MW: 78.1 BP: 176°F FI.P: 12°F Sol: 0.07% VP: 75 mmHg	Strong Oxidizers, many fluorides & perchlorates nitric acid	0.1 ppm	500 ppm	Inhalation Ingestion Contact Skin absorption	Irritated eyes, skin, nose Dizziness, nausea Lassitude, Dermatitis, bone marrow depression	Eye: Immediately wash eyes with water Skin: Wash with soap and water immediately Inhalation: Move to fresh air, medical attention ASAP Swallow: Immediate medical attention
Ethyl benzene	MW: 106.2 BP: 62°F FI.P: 55°F Sol: 0.01% VP: 7 mmHg	Strong Oxidizers	100 ppm	800 ppm	Inhalation, Ingestion, Contact	Irritated eyes, skin; Headache, dermatitis, narcosis	Eye: Immediately wash eyes with water Skin: Flush with water promptly Inhalation: Move to fresh air, medical attention ASAP Swallow: Immediate medical attention
Xylene	MW: 106.2 BP: 292°F FI.P: 90°F Sol: 0.02% VP: 7 mmHG	Strong oxidizers, strong acids	100 ppm	mdd 006	Inhalation, Absorption, Ingestion, Contact	Irritated eyes, skin, nose throat; dizziness, excitement, drowsiness, nausea, vomiting, abdominal pain	Eye: Immediately wash eyes with water Skin: Wash skin with soap and water immediately Inhalation: Move to fresh air, medical attention immediately Swallow: Medical attention immediately
Toluene	MW: 92.1 BP: 232°F FI.P: 40°F Sol: 0.07% VP: 21 mmHG	Strong Oxidizers	100 ppm	500 ppm	Inhalation, Absorption, Ingestion, Contact	Irritated eyes, skin, nose, coughing, dizziness, headache, Lassitude, dilated pupils, liver and kidney damage	Eye: Immediately wash eyes with water Skin: Flush with water immediately Inhalation: Move to fresh air, medical attention ASAP Swallow: Medical attention immediately

*Numerous PAH's have also been identified to exist at this site, including Benzo(a)pyrene in concentrations ranging from 10 mg/kg to 7700 mg/kg. Proper PPE, including gloves and safety glasses will be worn at all times during the short periods when exposure to these compounds is possible.

CHANGES AND/OR DEVIATIONS FROM THIS PLAN REQUIRE A SAFETY PLAN AMENDMENT

m:\clerical\go\forms\shortfor.wpd

Table 2

AIR MONITORING ACTION LEVELS

Monitoring Equipment	Ambient Reading	Action
FID/PID*	Background	Level D
	1 - 5 units/ppm	Level C
	5-500 units/ppm	Level B
	>500 units/ppm	Exit area, consult health and safety coordinator.
		Note: Action levels based on sustained reading in breathing zone.

*Action levels provided as guidelines. Compound specific action levels may be lower or higher based on the TLV for the compound. Where unknown concentrations of organic vapors may be present caution is advised. Level B may be required until ambient concentrations are determined.

EFFECTS OF HEAT EXPOSURE

Adverse weather conditions are important considerations in planning and conducting site operations. Hot or cold weather can cause physical discomfort, loss of efficiency, and personal injury. Of particular importance is heat stress resulting from protective clothing decreasing natural ventilation of the body. Heat stress can occur even when temperatures are considered moderate. One or more of the following recommendations will help reduce heat stress:

- Provide plenty of liquids. Drink plenty of water or commercial drink mixes along with more heavily salted foods (unless on a low salt diet) to replace body fluids (water and electrolytes) lost due to sweating. To prevent dehydration, response personnel should be encouraged to drink generous amounts of water even if not thirsty. Heat-related problems can happen before the sensation of thirst occurs.
- Provide cooling devices to aid natural body ventilation. These devices, however, add weight, and their use should be balanced against worker fatigue. Long cotton underwear or similar type garments act as a wick to help absorb moisture and protect the skin from direct contact with heat-absorbing chemical protective clothing. It should be the minimum undergarment worn.
- Install mobile showers and/or hose-down facilities to reduce body temperature and cool
 protective clothing.
- Ensure that adequate shelter is available to protect personnel against heat, cold, rain, snow, and that a shaded resting area is provided on sunny days. On hot days, air conditioned rest areas should be provided.
- In hot weather, rotate teams of workers wearing protective clothing or performing extremely
 arduous tasks. In extremely hot weather, conduct non-emergency response operations in
 the early morning or evening.
- Response personnel should be encouraged to maintain their physical fitness. Physically fit personnel are less prone to stress-related problems.
- Liquids which act as diuretics (such as alcohol and coffee) should be avoided or their intake minimized before anticipated operation. These can contribute to dehydration and subsequent heat-related problems.

HEAT STRESS MONITORING

For monitoring the body's recuperative ability to handle excess heat, one or more of the following techniques should be used as a screening technique. Monitoring of personnel wearing protective clothing should commence when the ambient temperature is 70°F or above. Frequency of monitoring should increase as the ambient temperature increases or if slow recovery rates are indicated. When temperatures exceed 80°F, workers must be monitored for heat stress after every work period.

- Heart rate (HR) should be measured by counting the radial pulse for 30 seconds as early as
 possible in the resting period. The HR at the beginning of the rest period should not exceed
 110 beats per minute. If the HR is higher, the next work period should be shortened by 10
 minutes (or 33 percent), while the length of the rest period stays the same. If the pulse rate
 is 100 beats per minute at the beginning of the next rest period, the following work cycle
 should be shortened by 33 percent.
- Body temperature should be measured orally with a clinical thermometer as early as possible in the resting period. Oral temperature (OT) at the beginning of the rest period should not exceed 99°F. If it does, the next work period should be shortened by 10 minutes (or 33 percent), while the length of the rest period stays the same. However, if the OT

exceeds 99.7°F at the beginning of the next period, the following work cycle should be further shortened by 33 percent. OT should be measured again at the end of the rest period to make sure that it has dropped below 99°F.

Body water loss (BWL) due to sweating should be measured by weighing the worker in the morning and in the evening. The clothing worn should be similar at both weighing; preferably the worker should be nude. The scale should be accurate to plus or minus
pounds. BWL should not exceed 1.5 percent of the total body weight. If it does, workers should be instructed to increase their daily intake of fluids to replace the water lost through perspiration. Ideally, body fluids should be maintained at a corstant level during the work day. This requires replacement of salt lost in sweat as well.

Good hygienic standards must be maintained by frequent change of clothing and daily showering. Clothing should be permitted to dry during rest periods. Persons who notice skin problems should immediately consult medical personnel.

EFFECT OF HEAT STRESS

If the body's physiological processes fail to maintain a normal body temperature because of excessive heat, a number of physical reactions can occur ranging from mild (such as fatigue, irritability, anxiety, and decreased concentration, dexterity, or movement) to fatal. Standard reference books should be consulted for specific first aid treatment. Medical help must be obtained for the more serious conditions.

Heat-related problems are:

- <u>Heat Rash:</u> caused by continuous exposure to heat and humid air and aggravated by chafing clothes. Decreases ability to tolerate heat as well as being a nuisance.
- <u>Heat Cramps:</u> caused by profuse perspiration with inadequate fluid intake and chemical replacement (especially salts). Signs: muscle spasm and pain in the extremities and abdomen.
- <u>Heat Exhaustion:</u> caused by increased stress on various organs to meet increased demands to cool the body. Signs: shallow breathing; pale, cool, moist skin; profuse sweating; dizziness and lassitude.
- <u>Heat Stroke</u>: the most severe form of heat stress. Can be fatal. Medical help must be obtained immediately. Body must be cooled immediately to prevent severe injury and/or death. Signs: red, hot, dry skin; no perspiration; nausea; dizziness and confusion; strong, rapid pulse; coma.

<u>USEPA STANDARD OPERATING SAFETY GUIDES</u>, Office of Emergency and Remedial Response, Emergency Response Division, July 1988.

<u>USEPA STANDARD OPERATING SAFETY GUIDES</u>, Office of Emergency and Remedial Response, Emergency Response Division, July 1988.

PHOTO 3: Purging VP505EWASH-2.

Essentials truck & trailer and Geoprobe rig at VP412EHill-3 location.

PHOTO 7: Attaching 1-Liter SUMMA canister at VP412EHill-3 location. Note white paper towels with leak detection compound wrapped around equipment.

basement wall at 505 E. Washington.

PHOTO 11: Inside basement of 507 E. Washington looking North from entrance on south side of house. Note gasoline container, paint cans, and floor sump.

PHOTO 12: Inside basement of 507 E. Washington looking at water in swamp. Note broken concrete floor slab and exposed soil.

PHOTO 13: View of small basement room looking SE at corner of room. Left wall is outside east wall and right wall is interior wall with crawl space beyond.

PHOTO 15: View of window along south wall of basement. There are several gaps between window frame and bricks & cinder blocks in this area and throughout basement.

PHOTO 16: View of entrance to basement from south exterior of house.

e Terres e		111	0155 UBU201	24254 063356	atter of	allent	(all a	atter	104430105146	105800110345	1 stattingt	addingt	at it	2 003/11	Statte pt	~ attent	329201	attents		-} -}	וולאלינסב וועון:וי	1527001531:4		11636:10 1642:2	
	Deta	<u>.</u>	19 521			17.0 m 216	570 34	170 JS	JOB 104	501	300	<u></u> <u></u> <u></u> <u></u> <u></u>	700 34	115511	310 13	610 2	137056	pog oobr	1 280 -	1500	11 0021	340 152		113	9
<u> </u>	Sampling		2.0	5.0	K I				50	9 50				f 5.0	e-		5.07		+ +	-{	Sø	0 X/ 0	<u> </u>		0 2 0
·	<u>_</u>		771		67 274	1	2	11 11	1/ 1/	5 28	36522 264	16	<i>د</i> د ار	11 28¢	081 289	-	R		2219 27	1		94 730	, , ,	121(1-21	0.7Z.
	1.05		26	2	0-13416					Wash-F208	M				Hil-1 340	<u> </u>	2			· · ·	•)	L-3 36494		Walk-1(33	ila.t
9	-cimple-	Loca	(Le) And And Fulled -1	(1410) 11 (1410) 11 (1910)	NP577EW1	× aí é	(f) =	VPS07E. Werk-d	(21)	VP 507 E. Wash-	VP507E.W.Ih	(e) (2:3) 1((2) 1:	Ą	VP4 ZEH	2	<u>s</u>	17	VP 412 BHIL		*	VPHZEHIU	(+15!)	VP507EWach-1(3372-7) 271.9	So Fear War
																	,		-						
		· ·	1		K	- H		<u>d</u>		•												*****			S
	8	-	(MH)	- ternhan	K	- H			adu ti		, <u>B</u> GS			2	<u>ک</u> رز .					et le		<u>4</u>	150 7 E.W.	36	5
	ders arms		K. Mickett (PAM)	als) cosit	E-Washington St.	RA DerMission 4	to kace that	Z	E. Wedn	Supple -	et 6		ky 6 - 8 4.	CULAL-	400 6-54.	of service	12 " 5	o reference	2 sading	ł	36	4 - 1.	-505 / 50 7 F. W.	flow purple	b(+)
	Hunders/		and Kitickett (PAM)	Sul Esertals cosit	a at sos E. Washington St.	RA DerMission 4	Residents koon that	Z	507 8. Weda	- Elite de la constante	- 11506 25 6'B	Coniste	4 lift up 6-8"	iled ~	SS Intro	do not sey	another 16-12" 7	· on point ·	2 sading	et le	Walnut and	VP507 (1) (1) -1.	150 7 E. W.	" tight - No flow purple.	(\$)
	+ 10/12/07		the Drop Ser Cul war a with	Sul Esertals cosit	begin of 505 E. Mashinaton 5t.	to America Criven permission to	work. Residents kage that	will be present.	1 font of 507 8. Wednes	28+ , 28th (-1)	typ ~ 19505 at 6'B	6555 Conste		CULAL-	- 6, BGS 11/4 cp	gast say	1) another 16-12" }	~	VP505 E.West-Z. Sanding	ared Dage of survive of	7 C. Way	tup on VPSOTEWash-1.	veer hones at 505 / 50 7 Elui.	+ too, tight -no flow purpe.	le - (cm] or p(s).
	+ 10/12/07		andre to mon to cut where a min	about Sav Essentials cosit	a at sos E. Washington St.	to America Criven permission to	Residents koon that	We will be present.	Fint of 507 E. Wedney	28+ , 28th (-1)	typ ~ 19505 at 6'B	Coniste	27.4 11H 40.	CULAL-	SS Intro	do not sey	another 16-12" 7	attach on	of VP 505 E. West-Z. Sanding	et le	Er	0- VP507 ((Una h - 1.	veer hones at 505 / 50 7 Elui.	too, tight -no flow putoe.	b(+)

.

.

/bulyand 5 VP5075,441 eart side of houx ξ 2 c 2 15 CH . Q Q to 5.5 GA bas 2010 22S ž J ê 1 VPU12EHILL-Z 202 J ł 1 5 2,7 50 2 207 0417 F4 10 ٢ 5.01 2 D is 5 0 CHA approx. 3'-10" bys こ"しちのもか 54 PS 9 5 M うろ diamin \$ 1 101 Ó ſ 2 Ø Pulled 20 ŧ 1027 0 20 P507210451 Levi Noho 2000 ž C 6 ture ł 5 فأناهك Safe Settin LOT R P 15 RCHU g Centined Obrige 210/16 Sample 6-0% (citro) 227 PEDT TEWF 1 200 かか ALAr N ł 1004 たつロ S, 60 d G ন্থ 10/15/03 Q ١ 3 20 3 1350 5 3 1055 0/1 760 Ũ 2 0 Ц ۰. • ٩, in Can a Parent Curren 4 & come c of ٩ d' ş ł 1 ğ 20'2" eart of sug L'SWC 57" west of w. w cleaner & time Sh r I S. Well 29" call of E. bater baker to Alc slab - 22 " Spart 3 outride 2.4/4/WN Dese 19" West 2f over VP 505 E.Walk-2 Wash -Č Q \mathbf{r} ١ NTU-Prot UP SOBE, Wasi -bulk yaud VP567E くのべ hestside Vain Ś 42

Thursday, 10/16/08	1052 - Kulum GPD ansite at 1052 - Kulum GPD ansite at 1052 - Kulum GPD ansite at Unill attempt a rend Uumbr, hlaw 4, dry Uumbr, hlaw 4, dry 1223 - Winter enconfered vul-1, u, 1, attempt 1227 - Rendra appear da fam vul-1, u, 1, attempt 1227 - Rendra appear da fam vul-1, u, 1, bettempt 1227 - Rendra appear da fam vul-1, u, 1, bettempt is submostered is submostered i	
14 10/15/08 (cantinued) 1432 - Aple to camplere Veruz Ettill - 2 Twith hothern of -1 of to "	1505 Schopt Scrale NP 41264111-3 1535 Schopt Scrale NP 41264111-3 1535 Scrapted Scraphers (1000, 1 1605 Setept Scrapted of Morse (1000, 1 1605 Setept Scrapted of Morse (1000, 1 1000 Classer to Morse (1000, 1 1000 Classer to Morse (1000, 1 1000 M Scot of Morse (1000, 1 1665 Set of Scrapted of Mold up to 335 by: 1655 Set of Scot Burded (1000, 1 1655	

•

·

.

10/15/08

Charge jo Location 412 E. Hill 34" nortz of northernwit well VP 412 0 Hill-1 10' z" ent of patio slab 10' west of NEG of house VP4120H11-2 40" eart of east well of house 7'10" south of NEC of have UP412 EHill -3 40" sorth of cinde block supporting porch between SEC of porch & entrance ramp onts porch 8'3" weitt of SEC of porch VP507 E. Wash - Z 38" south of suth well 16'9" fort of SWC of house VP507E Wash-3 12" east of eastermost well 14' South of NEC of house 14' North of SECofhouse VP507 EWASH-1 29" west of west wall 12'6" south of NWC of house IS 10" North at SWC of house

Field Forms and Check lists

for Manufactured Gas Plant Sites

Developed for:

Ameren Services One Ameren Plaza 1901 Choutean Avenue P.O. Box 66149, MC 602 St. Louis, MO 63166-6149

Developed by:

Risk Assessment & Management (RAM) Group, Inc. 5433 Westheimer, Suite 725, Houston, TX 77056 Ph: (713) 784-5151 Fax: (713) 784-6105 www.ramgp.com

MGP Site Name:	Ameren-	Champingse,	TU		
MOI DIE HAME.		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······································
Ameren:	: .				
Date:	10/15/08				
Prepared By:			••		· · ·
			•-		
Completed On:	•		• • • •		

September 2006

, vi

Ć

Ć

3

۲. ۲

3

	Table of Contents	
Form	Description	Check box if
	Field Forms and Checklists	
Form 1	Building Characteristics to be Determined Before Finalization of Work Plan	
Form 2	Location of Soil, Soil Vapor, and Geotechnical Data to be Collected	
Form 3	Summary of Data Collected	<u> </u>
Form 4.1		<u> </u>
Form 4.2	Vapor Sampling Analysis and Equipment Checklist	<u> </u>
Form 5	Vapor Sampling Field Documentation Checklist	<u> </u>
Form 6	Soil Vapor Sampling Documentation During Sampling	
Form 7	Geotechnical Parameters	·
		<u></u>
•		·
• ••• • ••		
<u> </u>		
		···· <u>-</u> 2···
		······

٠

and the second second

September 2006

.

٠

Ċ

<u>(</u>_____

RAM Group, Inc. (5151)

.

•

1

.

					Ċ
	Building	Characteristics to be Determined Before Finalization of Work Plan	zatlau of Work Plan		
एभोमिकिट्ट प्रिंक्शीर्ताट्न फिल्ह				-	T 82.00-1
Ownership					
Áge of Building				•	
Number of Floors (YesNo)				• •	
Namber af Elevators (YestNo)					
First Floor Footprint Dimessions (L z. W in A)	•			•	
Caul Space Dimendens (L. x W x H in fl)					
Hastment Footprint Dimensions (L x W in R)					
Bateracet Hcight (fl)					
Bosement Height Above Growni Surface (B)					
र्माडरा जिल्हा रिकोडुप्रेर (मै)					
Barement Floor Type			•		
Taidocas of Boscond Walls (B)				,	
Thickness of Stah (A)					
Cundition of State					
Vapor Bantor (Yee/No)					•
Post-Tension Sleft (Yez/10)					
Sump Classeceristics					
HVAC Chanadacinics					•
unformation on Doors/Windows				•	
िक्टकोलन भी थिकर संग्रोम, अंग्रेस, क्रिंटिक का रिभज्ज शिक्त व फिलीसंह				-	
AT-Built Drawings or Fluos Reviewed (YezNo)					
Expasure Characteristics:		-			
Building Activitics-General				•	
First Flour Autivities					
Batenteti Activities					
Number of Workers	•	•			•
Work-week sumber of days					
Workeday number of boors				•	•
Not:: Arti aditional फ्रेन्टाs हत relevant municutsfationanios;	immedice; Locale all buildings un = site mer.	चैन्छ म्			

٠

•

•

.

September 2006

RAM Group, Inc. (5151)

.

•

Print Description Multimeter P 3-4 yea No No No No T 5-55 yea No No No No No T 5-55 yea No No No No No No No T 5-55 No N	Mrt Destination Mrt Inserence Mittance P 2.3 0 10.1	12 12	GW Tab	I.ocatio GW Tatte Ranse fo (11 have	scation of Soi	C Soil Vand	ridnd Geoti	schaical Dat	a ta be Coll	ected					Form 2
P 34 74 74 7640 76 <	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Depths (ft bgs)		420001311 000 41105-110-1 41105-110-1 10-1 10-1 10-1 10-1 10-1 10-1	ງແອງນຳຊີ	อทอนไปให้แอว/v	Апіртясене	עועטרבחב	สกรโหนีได้จูลไว้	ាំងរោះ Citemicals**	रूपिलाम्ड प्रिटड	Bio-Indicatora ^{ant}	Geo(echnica) Sampler
T c_{3} c_{3} c_{4} c_{4} c_{6} $c_$	T \leftarrow 3.54 μ_{cld} <t< td=""><td><u>р</u></td><td>36</td><td>c T</td><td></td><td> </td><td></td><td></td><td></td><td>1 1</td><td>οN.</td><td></td><td></td><td></td><td></td></t<>	<u>р</u>	36	c T						1 1	οN.				
T Sessert X<	T Sessert X X X X X T 5ft X X 1 <t< td=""><td></td><td>1354</td><td>2</td><td>71-01</td><td>₽ ></td><td>מא</td><td>^az</td><td>2</td><td>%</td><td>^QN</td><td>ž</td><td>Ya</td><td>Yes</td><td>Yes</td></t<>		1354	2	71-01	₽ >	מא	^a z	2	%	^Q N	ž	Ya	Yes	Yes
T 5.6.4 X X Image: Constraint of the constrain	5.ft X <thx< th=""> <thx< th=""></thx<></thx<>	4	135.51			4>									
T Er K <th< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>4</td><td>54</td><td></td><td></td><td>{></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	54			{ >									
T 39:1-10;n; X X N T 5 Et X 1 1 T 5 Et X 1 1 T 1.5 Et X 1 1 1 T 1.5 Et X 1 1 1 1 T 1.5 Et X 1<	T 357-10/m X X N T 5 Ft X N N T 5 Ft X N N T 1.5 Ft X N N N T 1.5 Ft X N N N N T 1.5 Ft X N	<u> </u>	564	:		××									
T Self.5Ft X X N T J.5.6Ft X N N N T J.5.6Ft X N N N N T J.5.6Ft X N N N N N N T J.5.6Ft X N <td>T Self.5Ft X X N T J.5.6.1 X N N T J.5.6.1 X N N T J.5.6.1 X N N N T J.5.6.1 X N N N N meta 2.667 X 0 0</td> <td>ـــــــــــــــــــــــــــــــــــــ</td> <td>1. 10 1 - HOIN</td> <td></td>	T Self.5Ft X X N T J.5.6.1 X N N T J.5.6.1 X N N T J.5.6.1 X N N N T J.5.6.1 X N N N N meta 2.667 X 0	ـــــــــــــــــــــــــــــــــــــ	1. 10 1 - HOIN												
T SFH X N N T $H_{2}G_{1}$ X $H_{1}G_{1}$ X $H_{1}G_{1}$ T $H_{2}G_{1}$ X $H_{1}G_{1}$ X $H_{1}G_{1}$ $H_{1}G_{1}$ T $H_{2}G_{1}$ X $H_{1}G_{1}$ X $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}$ $H_{1}G_{1}G_{1}G_{1}G_{1}G_{1}G_{1}G_{1}G$	T 5.6.4 X A A T N.5.6.4 X A A A T 2.6.6.4 X A B A B	4	4.561			X							:		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T. H.5.6t X M M T. Babert X M M M mile X 0	ŀ	5 61			×									
T. Refet X 0 <td>T. act64t X 0<!--</td--><td>۲ ۲</td><td>りらけ</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	T. act64t X 0 </td <td>۲ ۲</td> <td>りらけ</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	۲ ۲	りらけ			×									
*Completed for Illustration only, *Provide dealls in comments section. 0 0 0 0 0 *Completed for Illustration only, *Provide dealls in comments section. *PBID-indicators (QOM_CKt_ etc.) for evaluation of blodgendation. Provide dealls in comments section. *PBID-indicators (QOM_CKt_ etc.) for evaluation of blodgendation. Provide dealls in sort. D *PBID-indicators (QOM_CKt_ etc.) for evaluation of blodgendation. Provide dealls in sort. D *PBID-indicators (QOM_CKt_ etc.) for evaluation of blodgendation. Provide dealls in sort. D *Pie also callected (VPE or DEWASHCAMSTENT) is astron immedicately 507E WASHI. scilicated in some location as VPE or EWASH-Z.	0 0 <td>۲</td> <td>1995</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	۲	1995			X									
 ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	0 0 <td>•</td> <td>•</td> <td></td> <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	•	•			• •					•				
 ⁶Cumpleted for Illustration only, "Fravida devals in comments section; ⁶Cumpleted for Illustration only, "Fravida devals in comments section; ⁸Cumpleted for Illustration only, "Fravida devals in comments, For Genechnical mathed are Form?, ⁸Cumpleted for Star VOCs and Nephlialene-Use methods in Section 34.6.1 in SOP. G ⁹Le also collected (VPE o7EWASHENT) is area immediated in Section 34.6.1 in SOP. G ⁹Conte WASHI. ⁶ collected in same locartan as VPE 07EWASH-2. 	0 0			:		•					; ;				
rempling probes: "Completed for Illustration only. "Provide details in comments, For Generaturical methode see Form 7. "rempling probes: ""Bib-indicators (Q. CO., N. CI3, etc.) for evaluation. Provide details in comments, For Generaturical methode see Form 7. see methode in Section 34.6.2 in SOP: For VOCs and Nephdineke-Use methode in Section 34.6.1 in SOP. D bient sample also collected (YPE or TEWASHCAMBIENT) is area immediated ordely the YP SOPTEWASH1. Ashirt was collected in same location as NP507 EWASH-2.	"Completed for Illustration only, "Provide dealls for comments section; "Histo-indicentus (Q. CO., Nr. Cit., etc.) for evaluation of biologradation. Provide dealls in comments; For Gentechnical methods see Form 7. In 3.46.2 in SOP: Far VOCS and Nephdialene-Use methods in Section 3.4.6.1 in SOP. D ple also collected (VPE or EWASHCAMBIENT) is area immediated or collected or also collected in same location as VP5 07 EWASH-2.					6	0	c	•:	0	0	6.		0	Ð
icmple also collected (YP507EWASHCAMBLENT)) is area YP507EWASH1. was collected in same location as NP507EWASH-2	emple also collected (VP507EWASHCAMBIENT) is area immediately VP507EWASHI. was collected in same location as NP507EWASH-Z.	sampling probes; sampling probes; ise methods in Sectit	*Cumpleted fa ***Bio-indicate on 3.4.6.2 in St	r Illustranton only na (O2, CO2, N2, DP; Fur VOCs au	y, **Provida del CH, etc.) for ev ad Naphthalenc-	talls in commu altation of bio Use methods in	iis section; degradation. P. i Section 3.4.6	rovide details i L1 in SOP. 🗆	ومسطلح 1	or Geotechnic	ul methodis stee	Form 7.	•		a g
was collected in same location as	was collected in same location as NP507 EWASH-Z.	1 7	ple alse 507EWA	collect SHI.	1 -	arewas	HCAMBLE	6			uctel y	- - - 1		i	
			: s coller			ocertaoo	s v	P507E	wAsH-	Ň					· · ·
		•		•						•			•		
		· ·			:	•								-	•

t

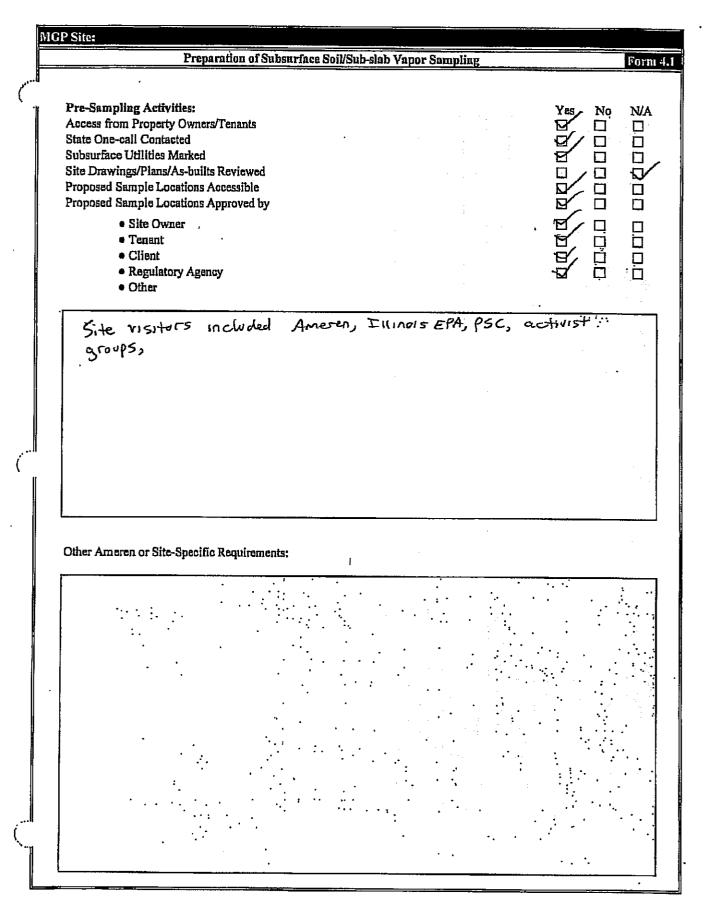
MGP Site:					
		Summary of Data Collected			Form 3
Number	Activity	Pianned	Lab (F. M. B)	Actual	Lab (R. M. B)
	Method of Drilling	Geoprobe PRT	NA	Geombe PRT	NA ·
2	Number of Permanent Probes		NA		NA .
en	Number of Temporary Probes		NA		NA
4	Number of Soil Vapor Samples	8 + 1 Duplicate	4	3 + 1 Duplicate	4
5	Number of Soil Samples				
G	Number of Geo-technical Samples				
7	Number of Bio-indicator Samples				
8	Number of Sub-slab vapor Samples			•	
Mater D - Bland I alard	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				

•

.

.

Noies: P - Fixed Laboratory; M - Mobile Laboratory; B - Both Fixed and Mobile Laboratories: NA - Not Applicable.


.

.

September 2006

•

.

<u></u>	Vapor Sampling Analysis and Equipme	ot Checklist
Vapor Laborat		18 X 1
Mobil		Yes No 1
	nent Lab	
	Regulatory Target Levels	
Vapor Samplia	Equipment:	· · · · ·
Tedlar	Bags	
Syring		
	and Cartridges	
Summ	a Canisters	
. Flow (Controller	
Tubin	; Туре	
• N	'lon	
• Te	flon	
• 01	her	·
	•	
Leak Test Meth		
Contai		
	(Recommended)	
2-prop		
	ade of Tracer Gas	
Other		
Dit	tuoroethane used as leak de	tector compound
		·
Air Pu	nps .	
N/	Ą	· · · ·
197	•	
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · ·
		·
. Connec	tors	
		(stain less steel)
	(Things 10-0 -4 Swagelor	CSTRAIN STEEL
L		· · · · · · · · · · · · · · · · · · ·

;

•

•

		Documentation Checklist
	Field Personnel;	Kenth Klemm (Gannett Fleming). Kendall Pickett (RAM Group) Cory Johnson (Suil Essentials)
	Wenther Conditions: Raining, Humidity Cloudiness, etc.	Cloudy in morning, changing rain showers by noon. Showers throughout enfire afternoon.
	Temperature	Ranged 60°F - 70°F
	Barometric Pressure	Not measured .
	Wind Speed and Direction	Not measured
5	Surface Soil Conditions: Wet Dry Moist Standing Water Frozen/Snow covered	Morst to wet
C	Chain of Custody Forms Completed:	1 ZOC FOR AIT TOXICS, LTD
S	bipment Method and Tracking Numbers;	Fedex overnight

,

September 2006

.

Ć

.

RAM Group, Inc. (5151)

,

P.1063

.

•

(t				مٽ
Mbr. Site:	-	C		C	
• •	Soll Vapor Samoline Dicen	centration During Semuling			
Sample ID & Interval		VPC-> 151.1Actu-7		Form 6	
Sample Dates/Linus	10/16/09	- Lerio Contant	L CLA	VPSO7EWASH . F	
Equilibration Time		1 GDA 8 1/21/01	10/15/08 N55	10/15/08 NO3	
Purging:	-				
Volume Purged	Lizo MC	1-0720			
Flaw Raig	200 ml Ann 260ml Ania	Z Cont Law	-700 mL	N/A - Duplicate for Ellight z	N
l'line Jaterval	× 70 Sec		2 DA	mc/min tor Eligit -	N
Canistar	N/A	700	10,500		
Pump	N/A			~	
Other					
Leek Terting:					
Surface Seal	Hidrated hontanite 1				
Bucket Containment	N/A			~	
Tracer Chemical	DIFLUATO SHAANE			~	•
Tracer gus labgrada (Yes/No)	No .				
Onsite Mensurement	Na				
Lab Measurement	Yes (AIL TOXICS, CTD)				
Pre-sample test				:	
Post-sample test.	N/A				
Field Adjustment Parfement ?*	N/A			: ~	
Sample Collection**:				1	
Sanple Volunts	1-1-ter				
Baginalag Yacaum	27.5	27.4	78.4	140	
Ending Vacuum	5.0 In.H.g.			- 102	
Finw Rate	< ZOOML/MIN				
Sample Container	Summa Canister bayest				
Notes:					

.

Inductes inspection of probe and other system components.
 Refer to Sections 3.4.6.1 and 3.4.6.2 of SOP for details. ** For sub-slob sumpling refer to Section 4 of SOP.

•

September 2006

•

.

6.2 of 3

MGP Site:				
	Soil Vapor Sampling Documentation During Sampling	aentation During Sampling		Form 6
Sample ID & Interval	1-THE EHINC-1	NP412 EHILL-2	VP4/2EHILL-3	VP 505
Sample Dates/Times	10/15/08 1329	10/15/08 1441	10/15/08	1531 10/15/08 0802
Equilibration Time				
Purging:				
Volume Purged	AN M	TROOS/	340ml	125 MC
Flow Rate	LO ML/MIN	<60ml/MIN	-bomethin	<60mL/MIN)
Time Interval	Z 100 SEC	220320	2505ec	± 20 sec
Canister	-41 1801-E	2-19 VA	30194 NA	36555 NA
Pump	T.A.	A	FX	NA
Other				
Leak Testing:				
Surface Seal	Hydrated Demborite			<u>^</u>
Bucket Containment	VA	A A	XX	V.A.
Tracer Chemical	Difluoroethane			$\left(\begin{array}{c} \\ \end{array} \right)$
Tracer gas labgrade (Yes/No)		6	Ŷ	No
Onsite Measurement	V 0	00	<i>V</i> 0	No
Lab Measurement	Yes (AirToxics Ltd)			. ^
Pre-sample test	××		VA -	Ú.A.
Post-sample test	Х		<i>W</i>	<u>84</u>
Field Adjustment Performed ?*	the second se	k	<i>M</i>	NA -
Sample Collection**:				
Sample Volume		1 Lita	1 Liter	1 Liter
Beginning Vacuum	28,9	L'17	28.0	
Ending Vacuum	0	5, o	5.0	5.0
Flow Rate	< 200 ML/MIN -			\uparrow
Sample Container	SUMMA Canister (batchcertified)	certified)		^
				Constraints of the second s

Notes: * Includes inspection of probe and other system components. * Refer to Sections 3.4.6.1 and 3.4.6.2 of SOP for details. ** For sub-slab sampling refer to Section 4 of SOP. RAM Group, Inc. (5151)

September 2006

P. 306 3

Sold Vagoe Sampling Documentation During Sampling Sound Sampling Documentation During Sampling Councy Sumpt DA Interval $V/ISD 5 E UMSt (MB/BENST)$ $PISD 5 E UMSt (MB/BENST)$ $PISD 5 E UMSt (MB/BENST)$ Sumpt Data Times PI/SJ_0E $OES3$ PI/SJ_0E $OES3$ PI/SJ_0E $OES3$ PI/SJ_0E $OES3$ PI/SJ_0E $OES3$ PI/SJ_0E $PISD$ Putting $PISD$ V/ISD V/ISD V/ISD V/ISD $PISD$ Volue Purged V/ISD V/ISD V/ISD V/ISD V/ISD Provide V/ISD V/ISD V/ISD						
couldVP505 E UASH-2UP505 E WASH (MABLENT)cs $ v F_{0} = 0.853$ $ v F_{0} = 0.115$ c $ v F_{0} = 0.853$ $ v F_{0} = 0.115$ c $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ c $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ c $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ c $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ an $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ min $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ min $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ min $ v F_{0} = 0.853$ $ v F_{0} = 0.853$ min $ v F_{0} = 0.856$ $ v F_{0} = 0.856$ min $ v F_{0} = 0.856$ $ v F_{0} = 0.856$ min $ v F_{0} = 0.866$ $ v F_{0} = 0.856$ min $ v F_{0} = 0.856$ $ v F_{0} = 0.856$ min 2.71 2.50 min 2.70 2.00 min 2.71 2.00 min 2.71 2.50 min 2.71 2.50		Soil Vapor Sampling Docum	centation During S	ampling	Form	1 6
e e e e e e e e e e e e e e e e e e e	Sample ID & Interval	VP505 EWASH-2	UP SOS EW	ASU (ANBIENT)		
e ant n n n n n n n n n n n n n n n n n n	Sample Dates/Times	10/15/08 0853	10/15/08	1715		
I TO ML NA < 60 mL/MIN	Equilibration Time					
ITO MC NA < 60 mc/press	Purging:					
C 60 mic/min NA 25 sec NA NA NA	Volume Purged	170 ML	V.A			
* 25 sec NA 3655 NA NA <	Flow Rate	<60mc/MIN	NA A			
Bet SS NA WA MA MA MA MA MA MA MA MA MA NA MA NA NA NA N	Time Interval	25 Sec	4 A			
mi NA mi NA Mi Hidrated bentonite NA NA be (Yes/No) No be (Yes/No) No No NA NA NA NA NA NA NA NA NA NA	Canister	34553NA	NA NA			
nt MArated bentonite NA nt NA NA NA NO NO NO nt NO NO NA NA Performed ?" NA NA Performed ?" NA NA Performed ?" NA NA 27.1 Liter CLiter 27.0 5.0 27.1 28.0 SUMMA Carister (bated Certificed)	Pump	The second se	XX			
nt NA nt NA NA NA NA NA NA NA NA NA NA	Other					
mt Mdrated bentonite NA MA NA NA le (Yes/No) NO nt NO NO NA NA NA NA NA NA NA NA NA NA	Leak Testing:					
nt KIA NA NA le (Yes/No) No No No No NA ant NO NA NA Performed ?* NA NA NA I Liter C Liter n 27,1 28.0 mL/MIN 25.0 mL	Surface Seal	Harted pentonit	N A			
le (Yes/No) Mo Mo VA VA VA VA VA VA VA VA VA VA	Bucket Containment		ХХ			
le (Yes/No) No No No No NA	Tracer Chemical	Difluorochane.	•	Λ		
nt No No No Yer (Artexics Ltd) No Performed ?* NA NA "**: "*: " " " " " " " " " " " " " " "	Tracer gas labgrade (Yes/No)	No	\$			
Yer (Aritoxics Ltd) WA NA NA NA Performed ?* NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA N	Onsite Measurement	160	No			
Performed ?* NA NA NA Performed ?* NA NA "*: " " " " " " " " " " " " " " " " " "	Lab Measurement	Air Taxics		A		
Performed ?* NA NA Performed ?* NA NA "": " " " " " " " " " " " " " " " " "	Pre-sample test	A A	VA			
Performed ?* NIA NA "*: " " " " " " " " " " " " " " " " " "	Post-sample test		A A			
" 27.1 Liter & Liter 27.1 28.0 5.0 N/M/N # 350 mil 30MMA Carister (batch Certifica)	Field Adjustment Performed ?*					
n 1 Liter 6 Liter 27,1 28.0 5.0 5.0 20 mL/M/N 2 350 mL	Sample Collection**:					
а 27,1 5.0 5.0 мг/м/N # 350 мг/ 30мм A Caris ter (batch Certified)	Sample Volume		6 Liter			
5.0 mi/m/n # 35.0 Summit Canis ter (batch Certifica)	Beginning Vacuum	27,1	26.0			
< 200 mL/M/N # 350 mL/ SUMMA Canis ter (Dated Certifica) -	Ending Vacuum	5.0	5.0			
SUMMA Canister (Dated Certifica)	Flow Rate	< 200 ML/MIN	# 350 mr/1	×1.×		
	Sample Container	SUMMA Canister (batch	revtition -	<u>,</u> እ		

,

* Includes inspection of probe and other system components. ** Refer to Sections 3.4.6.1 and 3.4.6.2 of SOP for details. ** For sub-slab sampling refer to Section 4 of SOP.

September 2006

INDOOR AIR BUILDING SURVEY FORM PAGE 1 OF 4

Building Address: 505 F. Washingt	
Property Contact: Pear Buchanan Samuels Owner / Renter / other:	
Contact's Phone: home () work (217) 351-9847 cell ()	
Contact's Phone: home () work (217)_351-9847 cell () Building occupants: Children under age 13 2 16 day How long in this residence? 17-18 yrs	_
How long in this residence? <u>17-18 yrs</u> - Fill midnight naps in base of	
History of wet basement or flooding? 1250 SF	
No	

General Description of Building Construction and Materials:

How many occupied stories does the building have? 1 + Base 4BR 2BAA, Does someone sleep in the basement?

Has the building been weatherized with any of the following? (Circle all that apply) Insulation Storm Windows Energy-Efficient Windows Other (specify) Approximately how much of the basement is below grade level? is 4 belongende Total wall area: 30X TX2 + 22×7X2 = 712854. Total wall area in contact with soil: 7 Cerling in base 30×4×2 + 22×4×2 = 41655. Basement Floor Description: I Bedroon Bath Laundry Day-Care I ofc Puty Kitche Basement Walls Description: Paneled wall & Wafen board on Concrete Moisture, water, or wet floors or walls observed or sensed: Mo

No Is a basement sump present? (Y/N) Landy low Sufficient water for sampling? (Y/N) ? Covered, corld ust Sump Construction: <u>a(eess</u>

Does the basement have any observable characteristics that might permit soil vapor entry? (i.e. cracks in concrete, crack at wall/floor, pipe penetrations): 5 Rooms in basement, floor in good and it. 5 Rooms in basement, floor in pipes in laundy room,

but room (kitchen in basen t

5 Rooms in base et 12 pares E-W (=3B) 9 pares N-S (228)

Building address: 505 E. Washington Date: 10/15/08
INDOOR AIR BUILDING SURVEY FORM PAGE 2 OF 4
Heating and Ventilation System(s) Present
What type of heating system(s) are used in this building? (Circle all that apply) Hot Air Circulation Hot Air Radiation Unvented Kerosene heater Electric Baseboard Other (specify)
What type(s) of fuel(s) are used in this building? (Circle all that apply) Natural Gas Electric Coal Other (specify) Fuel Oil Wood Solar
What type of mechanical ventilation systems are present in the building? (Circle all that apply)Central Air ConditioningMechanical FansBathroom Ventilation FanIndividual Air Conditioning UnitsKitchen Range HoodAir-to-Air Heat ExchangerOpen windowsOther (specify)
Do any occupants of the building smoke? Yes / No How often?
Has anyone smoked within the building within the last 48 hours?
Do the occupants of the building have their clothes dry-cleaned?
When were dry-cleaned clothes last brought into the building?
Have the occupants ever noticed any unusual odors in the building?
Describe (with location): End of June / Toly - office Foul smells
Any known spills of a chemical immediately outside or inside the building? Yes (No)
Describe (with location):
Has the building been treated with any insecticides/pesticides? If so, what chemicals are used and how often are they applied?
Do any of the occupants apply pesticides/herbicides in the yard or garden? If so, what chemicals are used and how often are they applied?

Any use of chemicals not listed above? Yes / No

Building address: 505 E. Washington Date: 10/15/08 INDOOR AIR BUILDING SURVEY FORM PAGE 3 OF 4

Indoor Contaminant Sources

Identify all potential indoor sources found on the <u>first floor</u> and <u>basement</u> levels, the location of the sources, and whether the item was removed from the building at least 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	Outrile And	
Gas-powered equipment	" Lawn hova	+
Kerosene storage cans	" Yorches	+
Paints / thinners / strippers	h voi ches	+
Cleaning solvents	Indry room 1 MStairs	$+$ \sim
Oven cleaners	Lady room 3 MStairs	
Carpet / upholstery cleaners		
Moth balls		
Polishes / waxes	Wax Jaroch P	
Insecticides	Carrony Ka	+ 4
Furniture / floor polish		
Nail polish / polish remover	und st h	+ <u> </u>
Hairspray	- pspains Below-	- Y
Cologne / perfume	11 Bedra	<u> </u>
Air fresheners	170415-	7
Hobbies - glues, paints, etc.	Laundy i upstais	- Y
Fireplace	1 State Of C	Y
Wood stove or kerosene burner		A NA
New furniture / upholstery	Ale Ala Al	N NA
New carpeting / flooring	New table - ifstains 1, no len File à Dosent	Y NA
Recent painting in building?	Linolow Till & booking	Y NA
Medical Equipment		N/ NA
		_∕V NA
····		

INDOOR AIR BUILDING SURVEY FORM PAGE 4 OF 4

Indoor Contaminant Sources - Did not perform survey with meter

Identify all potential indoor sources as detected by the ppbRAE located on the <u>first floor</u> and <u>basement</u> levels, the location of the sources. Provide a brief description of source and the two PID responses obtained from the initial and follow-up screenings.

				ppbRAE Response
Location Number		Drief Decemination	ppbRAE Response	(follow-up
1	Location	Brief Description	(initial screening)	screening)
2				ļ
3				
4	· · · · · · · · · · · · · · · · · · ·			
5				
6				
7				
8				
9	· · · · · · · · · · · · · · · · · · ·			
10				
11				
12				
12				
13				
14	· · · · · · · · · · · · · · · · · · ·			
15		· · · · · · · · · · · · · · · · · · ·		
17				
18				
19				
20	l 			
20		· ·		
21				
22		· · · · · · · · · · · · · · · · · · ·		
23				
24 25				
26				
20				
28				
28				
30				
31	······································			
32				
33				
		I		

MGP Site:	Building Characteristics	Building Characteristics to be Determined Refere Finalization of Work Plan		
Building Identification				Form I
Оwnership	Nine Sible			
Age of Building				
Number of Floors (Yes/No)	1 + brent			
Number of Elevators (Yes/No)	No			
First Floor Footprint Dimensions (L x W in ft)				
Crawl Space Dimensions (L x W x H in ft)	No			
Basement Footprint Dimensions (L x W in ft)				
Basement Height (ft)	, ζ			
Basement Height Above Ground Surface (ft)	,S-7			
First Floor Height (ft)	<u>, </u>			
Basement Floor Type	Lindle T			
Thickness of Basement Walls (ft)				
Thickness of Slab (ft)				
Condition of Slab				
Vapor Barrier (Yes/No)	CN -			
Post-Tension Slab (Yes/No)	No			
Sump Characteristics				
HVAC Characteristics				
Information on Doors/Windows	Str- with	dans / door		
Locations of floor drains, sinks, toilets on lowest floor of building				
As-Built Drawings or Plans Reviewed (Yes/No)				
Exposure Characteristics:				
Building Activities-General	Residen	M.C.		
First Floor Activities	Ridnee			
Basement Activities	Dar Care (Reliden		
Number of Workers	7			
Work-week number of days	M-F			
Work-day number of hours	459			
				APPROX. CONTRACTOR OF A CONTRA

Note: Add additional sheets for relevant comments/information; Locate all buildings on a site map.

RAM Group, Inc. (5151)

September 2006

INDOOR AIR BUILDING SURVEY FORM PAGE 1 OF 4

	1
Building Address: 507 E. Washington	
Property Contact: NA	Owner / Renter / other: Valat
Contact's Phone: home () work ()	cell ()
Building occupants: Children under age 13 Childrer	age 13-18 Adults
How long in this residence? <u>NA</u>	
History of wet basement or flooding?	
7	
General Description of Building Construction and Materials: "botent: Brick walls, concrete stab, wood from and composition roof. 1 Story + bosent How many occupied stories does the building have? Does someone steep in the basement?	~ 1st Floor with sidens
and composition root. I story + basend	(Drich Delangrade, crude bloch abregrade) & Duit (1
How many occupied stories does the building have? Does someone sleep in the basement?	block
Has the building been weatherized with any of the following? (Circle Insulation Storm Windows Energy-Efficient Window	(C) Other (checify)
Approximately how much of the basement is below grade level? Total wall area: Total wall area in contact with soil:	L' Footpunt of house 40'X28' cerling 13 paces × 9 proces
Approximately how much of the basement is below grade level? Total wall area: Total wall area in contact with soil: <u>Basement Floor Description:</u> Count Slab, Crached, broken, exposed F One Sump with debris & Stating <u>Basement Walls Description:</u> <u>Basement Walls Description:</u>	Soil areas, poor ladite unter about 6-5" below Hoorg
Basement Walls Description: Brick, Deterior ted, holes, Gaps aro Doorfrane, No door, Storn door u	and undon traves ; outsid
Moisture, water, or wet floors or walls observed or sensed:	per per per post team
No	
Is a basement sump present? (Y/N) Sufficient water for sa Sump Construction:	mpling? (Y/N) <u>Y</u>
Does the basement have any observable characteristics that migh concrete, crack at wall/floor, pipe penetrations):	
Crached Floores, crached wells, holes bricks & motor, exposed soil the	mudle, gaps better
bricks & motion, exposed soil This	orgh Hear
Catel heat-gas in basent	

Hot with heath-gas in base t Buseret (footpintof house less 6'x 16' offset (NEC of baset)

Building address: 507 E. Washingto-Date: 10/15/08 INDOOR AIR BUILDING SURVEY FORM PAGE 2 OF 4

Heating and Ventilation System(s) Present

What type of heating system(s) are Hot Air Circulation Heat Pump Hot Air Radiation Unvented Ke	used in this building? (Ci Stream R rosene heater Electric B	Radiation	Wood Stove Other (specify)
What type(s) of fuel(s) are used in t Natural Gas Electric Fuel Oil Wood	his building? (Circle all th Coal Other (sp Solar	at apply) ecify)	
What type of mechanical ventilation Central Air Conditioning Individual Air Conditioning Units Open windows	Mechanical Fans	Bathroom Ve Air-to-Air Hea	ntilation Fan
Do any occupants of the building sm	oke? Yes / No	How often?	NA
Has anyone smoked within the build			NO 1/A
Do the occupants of the building hav			
When were dry-cleaned clothes last			
Have the occupants ever noticed any			
—			
Any known spills of a chemical imme Describe (with location): For I an Exponded weat Has the building been treated with an are they applied?	diately outside or inside th	ne building Yes/ and due to a r in base ? If so, what chem	No moldy belongings m f nicals are used and how often
Do any of the occupants apply pestici how often are they applied?	des/herbicides in the yarc	l or garden? If so,	what chemicals are used and
Any use of chemicals not listed above Noted gasolice plas	(Yes) No Tri la tainera	el paint ca	ns in basent

Building address: <u>507 E. Wishington</u> Date: <u>10/15/08</u>

INDOOR AIR BUILDING SURVEY FORM PAGE 3 OF 4

Indoor Contaminant Sources

Identify all potential indoor sources found on the <u>first floor</u> and <u>basement</u> levels, the location of the sources, and whether the item was removed from the building at least 48 hours prior to indoor air sampling event.

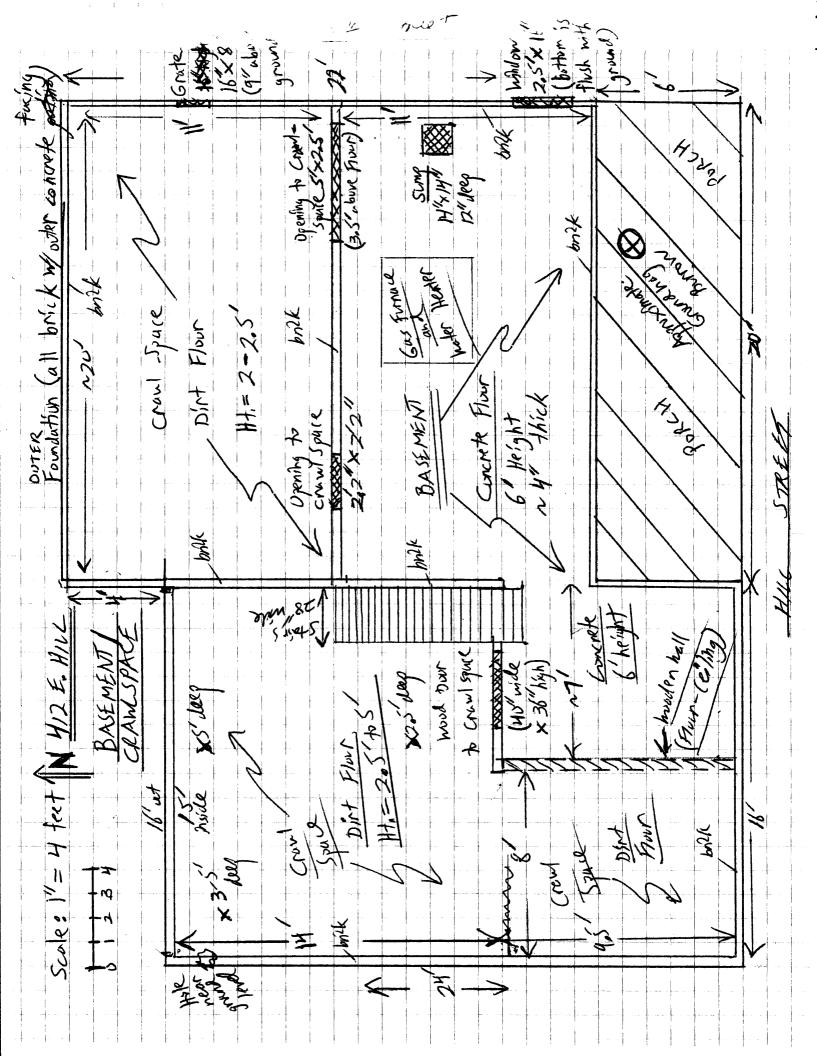
Potential Sources		Removed Prior to Sampling? (Yes / No /
	Location(s)	NA)
Gasoline storage cans	basert	V
Gas-powered equipment		
Kerosene storage cans	······································	
Paints / thinners / strippers	pasent	Y
Cleaning solvents		
Oven cleaners		
Carpet / upholstery cleaners		
Moth balls		
Polishes / waxes		
Insecticides		
Furniture / floor polish		
Nail polish / polish remover		
Hairspray		
Cologne / perfume		
Air fresheners		
Hobbies - glues, paints, etc.		
Fireplace		NA
Wood stove or kerosene burner		NA
New furniture / upholstery		NA
New carpeting / flooring		NA
Recent painting in building?		NA
Medical Equipment		NA

INDOOR AIR BUILDING SURVEY FORM PAGE 4 OF 4

Indoor Contaminant Sources - Did not perform survey with wete

Identify all potential indoor sources as detected by the ppbRAE located on the first floor and basement levels, the location of the sources. Provide a brief description of source and the two PID responses obtained from the initial and follow-up screenings.

				ppbRAE Response
Location			ppbRAE Response	(follow-up
Number	Location	Brief Description Gasoline & Paint Co	(initial screening)	screening)
1	130sound	Basaline & Paint Cu	-1	
2				
3	-			
4				
5				
6				
7			· · · · · · · · · · · · · · · · · · ·	
8				
9				
10				
11				
12		· · · · · · · · · · · · · · · · · · ·		
13				
14				
15				
16				
17				
18				
19	· · · · · · · · · · · · · · · · · · ·			
20				
21	····			
22				
23				
24				
25				
26				
27				
28				
29	· · · · · · · · · · · · · · · · · · ·			
30				
31				
32				
33				


	Building Characteristics to	Building Characteristics to be Determined Before Finalization of Work Plan	alization of Work Plan		Form 1
Building Identification					
Ownership	٢-				
Age of Building	$\mathcal{V}_{\mathcal{C}}$				
Number of Floors (Yes/No)	1 + basened				
Number of Elevators (Yes/No)	No				
First Floor Footprint Dimensions (L x W in ft)					
Crawl Space Dimensions (L x W x H in ft)					
Basement Footprint Dimensions (L x W in ft)					
Basement Height (ft)	<u>)</u>				
Basement Height Above Ground Surface (ft)	5. 7				
First Floor Height (ft)	20				
Basement Floor Type	court slub				
Thickness of Basement Walls (ft)					
Thickness of Slab (ft)					
Condition of Slab	Por Clarled	1:05 brocks			
Vapor Barrier (Yes/No)		17,935			
Post-Tension Slab (Yes/No)	No				
Sump Characteristics					
HVAC Characteristics	as inti the	A. Nurt we	or bet 1st Flag		
Information on Doors/Windows	Stadud				
Locations of floor drains, sinks, toilets on lowest floor of building	Sup The	No drai	in sinker to lit.	: met	
As-Built Drawings or Plans Reviewed (Yes/No)	<u>М</u> ,			Contractor Carlos	
Exposure Characteristics:					and a second
Building Activities-General	Variat				
First Floor Activities	N2C				
Basement Activities	Nor				
Number of Workers	None				
Work-week number of days	Nor				
Work-dav number of hours					

Note: Add additional sheets for relevant comments/information; Locate all buildings on a site map.

10/15/08 Har

Basent at 507 E. Wishington Sarvey -sup with asto - Brich walls - cancrete slab floor with cracks & exposed so il, - tuo separate rooms - not used for living quarters or hum autity - musty odors - gas hot with heater - gas furnace - Flow about 4,5 below grade - craches around undows along brich - one window boarded - holes in well to Asile - Ston doorentrace from back yard - No entrance from Surface - 14 paces - Sade tiside entre basut - 1,5-2,0 foot ledge about 3' above floor all around - Utility entrances in baseret wells -neufornace - paint cans - gasolingan - 7 paies a floor fut to bach large -- 9 pues a floor side to side roor Shullion - 3×3 pales a floor

Rental Tenant (Y) N) Construction Age of Building Number of Floors/Description First Floor Footprint	years Istury 1/2 bu	Ownership <u>Number/Type Residents</u> with 1/2 basement and 1/2 cra	
Construction Age of Building Number of Floors/Description First Floor Footprint	Wood frame 1 story house years		Adults/1child 20
Construction Age of Building Number of Floors/Description First Floor Footprint	Wood frame 1 story house years		
Age of Building Number of Floors/Description First Floor Footprint	years Istury 1/2 bu	e with 1/2 basement and 1/2 cra	wlspace
First Floor Footprint	1 story, 1/2 bu		
•		sement, 1/2 craw	Ispuel
Consul Florence	Length 36	use ment, 1/2 craw Width 28-	Height
Second Floor (if applicable)	Length	Width	= Height
BASEMENT	20		
Location	Length 7		= 11 42
Finished	Yes No		$=\frac{60}{78142}$
Basement Height	Total Floor to Ceiling	6 Below ground	5
Floor Type	Concrete	Above ground Thickness $3_{2}5''$	/
Wall Type	Brick wy outer lache	Thickness 23,5	=
o			=
Condition of Floor	Cracks Wet	Damp Dry	
Additonal Description			
Vapor Barrier	Yes No	Description	· · · · · · · · · · · · · · · · · · ·
Sump	(Yes No		
Dimensions	14-14" 12	deer from top of	slab
Additional Description	NYT waters Ju	mp Pilmp. Sandpled 9	s/ub 115/08-non-detect
	Yes 🔊	Location	
Sinks/Toilets Additional Description	Yes No	Location	
· · ·	Stints (28" while	at nest-central (center of house
	\sim	ut nest- central ((n) of noise
Basement Windows	Yes No	Number /	=
Location Window 1	Soend of to wall	Dimension Aboveground	Belowground
Location Window 2	action of the	16×30" Frush	NO
Location Window 3			
CRAWL SPACE	201		÷ = 2504.0
Location	Length 15	- Width JN AN	$= - 210 \mu^2$
Access Point		= <u>9.5'sn</u>	$r = 71 H^2$
Floor Type	DIRT	Floor Thickness	/
Additional Description	Craul space ht.	ranges from 2 to	5 puts
- Vapor Barrier	Yes No	Description	-
•			
Type of System	Forced	Ah/ Gas Fim	ace
Location of System	center of ba	se ment	
	Cracks in Floor	Yes No	
-	Cracks in Wall		old mortar
	Floor/Wall Intersection Cracks Pipe Penetrations	Yes No	
Surveyed by:	Stu Cravens/Kel	hun Enr, Date:	11/22/11/2
Signature:	1116	Time In/Out	5:05/5:55 om
Access Point Floor Type Additional Description Vapor Barrier Heating System in Basement Type of System Location of System Observable Entry Points for Soil Vapor Entry	h Hple DJRJ Craul space ht. Avy 2,5- Yes No Forcel Cracks in Floor Cracks in Wall Floor/Wall Intersection Cracks	ranges from 2 to Description And Gas From Se ment Yes Yes No Brick my	

10/31/2008 Mr. Kendall Pickett Gannett Fleming 5433 Westheimer Road Suite 725 Houston TX 77056-5312

Project Name: Ameren - Champaign Project #: 050067

Dear Mr. Kendall Pickett

The following report includes the data for the above referenced project for sample(s) received on 10/18/2008 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for you air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Bryanna Langley at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Bujanna Lanefey

Bryanna Langley Project Manager

WORK ORDER #: 0810427

Work Order Summary

CLIENT:	Mr. Kendall Pickett Gannett Fleming 5433 Westheimer Road Suite 725 Houston, TX 77056-5312	BILL TO:	Accounts Payable Gannett Fleming 4701 Mt. Hope Dr. Suite A Baltimore, MD 21215-1883
PHONE:	(713) 784-5151	P.O. #	050067.C
FAX:	(713) 784-6105	PROJECT #	050067 Ameren - Champaign
DATE RECEIVED: DATE COMPLETED:	10/18/2008 10/31/2008	CONTACT:	Bryanna Langley

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	VP507EWASH-1	Modified TO-15	6.0 "Hg	15 psi
01AA	VP507EWASH-1 Lab Duplicate	Modified TO-15	6.0 "Hg	15 psi
02A	VP505EWASH-1	Modified TO-15	6.0 "Hg	15 psi
03A	VP507EWASH-2	Modified TO-15	5.5 "Hg	15 psi
04A	VP507EWASH-F	Modified TO-15	5.0 "Hg	15 psi
05A	VP412EHILL-2	Modified TO-15	6.0 "Hg	15 psi
06A	VP505EWASH-2	Modified TO-15	6.0 "Hg	15 psi
07A	VP507EWASH-3	Modified TO-15	5.0 "Hg	15 psi
08A	VP412EHILL-3	Modified TO-15	6.0 "Hg	15 psi
09A	VP412EHILL-1	Modified TO-15	6.0 "Hg	15 psi
10A	VP507EWASH(AMBIENT)	Modified TO-15	6.0 "Hg	15 psi
11A	Lab Blank	Modified TO-15	NA	NA
12A	CCV	Modified TO-15	NA	NA
13A	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>10/31/08</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 1 of 38

LABORATORY NARRATIVE Modified TO-15 Gannett Fleming Workorder# 0810427

Seven 1 Liter Summa Canister, Two 1 Liter Summa Canister (100% Certified), and one 6 Liter Summa Canister samples were received on October 18, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 0.2 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	= 30% Difference</td <td><!--= 30% Difference; Compounds exceeding this criterion<br-->and associated data are flagged and narrated.</td>	= 30% Difference; Compounds exceeding this criterion<br and associated data are flagged and narrated.
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction no performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP507EWASH-1

Lab ID#: 0810427-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Ethanol	5.1	6.7	9.5	13
Acetone	5.1	50	12	120
2-Propanol	5.1	15	12	37
Hexane	1.3	2.3	4.4	8.0
2-Butanone (Methyl Ethyl Ketone)	1.3	7.0	3.7	21
2,2,4-Trimethylpentane	1.3	1.5	5.9	6.9
Benzene	1.3	2.5	4.0	8.0
Heptane	1.3	3.0	5.2	12
Toluene	1.3	40	4.8	150
Ethyl Benzene	1.3	10	5.5	44
m,p-Xylene	1.3	41	5.5	180
o-Xylene	1.3	19	5.5	83
Propylbenzene	1.3	5.6	6.2	27
4-Ethyltoluene	1.3	25	6.2	120
1,3,5-Trimethylbenzene	1.3	9.2	6.2	45
1,2,4-Trimethylbenzene	1.3	33	6.2	160
1,1-Difluoroethane	5.1	7.0	14	19

Client Sample ID: VP507EWASH-1 Lab Duplicate

Lab ID#: 0810427-01AA

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Ethanol	5.1	6.4	9.5	12
Acetone	5.1	51	12	120
2-Propanol	5.1	16	12	38
Hexane	1.3	2.4	4.4	8.5
2-Butanone (Methyl Ethyl Ketone)	1.3	6.2	3.7	18
2,2,4-Trimethylpentane	1.3	1.6	5.9	7.7
Benzene	1.3	2.3	4.0	7.4
Heptane	1.3	3.1	5.2	13
Toluene	1.3	38	4.8	140
Ethyl Benzene	1.3	9.8	5.5	42
m,p-Xylene	1.3	41	5.5	180
o-Xylene	1.3	19	5.5	81
Propylbenzene	1.3	5.3	6.2	26
4-Ethyltoluene	1.3	23	6.2	110
1,3,5-Trimethylbenzene	1.3	8.4	6.2	41

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP507EWASH-1 Lab Duplicate

Lab ID#: 0810427-01AA				
1,2,4-Trimethylbenzene	1.3	30	6.2	150
1,1-Difluoroethane	5.1	6.0	14	16

Client Sample ID: VP505EWASH-1

Lab ID#: 0810427-02A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	1.3	2.0	2.8	4.4
Ethanol	5.1	7.7	9.5	14
Acetone	5.1	51	12	120
Carbon Disulfide	1.3	2.4	3.9	7.6
Hexane	1.3	4.7	4.4	17
2-Butanone (Methyl Ethyl Ketone)	1.3	9.0	3.7	26
Cyclohexane	1.3	2.6	4.4	8.9
2,2,4-Trimethylpentane	1.3	3.1	5.9	14
Benzene	1.3	4.2	4.0	13
Heptane	1.3	4.6	5.2	19
Toluene	1.3	55	4.8	210
Ethyl Benzene	1.3	11	5.5	50
m,p-Xylene	1.3	43	5.5	190
o-Xylene	1.3	19	5.5	84
Cumene	1.3	1.3	6.2	6.6
Propylbenzene	1.3	4.8	6.2	24
4-Ethyltoluene	1.3	20	6.2	97
1,3,5-Trimethylbenzene	1.3	7.0	6.2	34
1,2,4-Trimethylbenzene	1.3	25	6.2	120

Client Sample ID: VP507EWASH-2

Lab ID#: 0810427-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.2	1.8	6.1	9.0
1,3-Butadiene	1.2	4.4	2.7	9.7
Ethanol	4.9	9.5	9.3	18
Acetone	4.9	78	12	180
2-Propanol	4.9	5.4	12	13
Carbon Disulfide	1.2	1.4	3.8	4.3
Hexane	1.2	4.0	4.4	14

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP507EWASH-2

Lab ID#: 0810427-03A				
2-Butanone (Methyl Ethyl Ketone)	1.2	14	3.6	40
Cyclohexane	1.2	1.5	4.2	5.3
2,2,4-Trimethylpentane	1.2	2.4	5.8	11
Benzene	1.2	4.5	3.9	14
Heptane	1.2	4.8	5.1	20
Trichloroethene	1.2	1.4	6.6	7.3
Toluene	1.2	57	4.6	220
Ethyl Benzene	1.2	14	5.4	61
m,p-Xylene	1.2	56	5.4	240
o-Xylene	1.2	26	5.4	110
Cumene	1.2	1.7	6.1	8.3
Propylbenzene	1.2	6.9	6.1	34
4-Ethyltoluene	1.2	30	6.1	150
1,3,5-Trimethylbenzene	1.2	11	6.1	55
1,2,4-Trimethylbenzene	1.2	38	6.1	190
1,1-Difluoroethane	4.9	9.9	13	27

Client Sample ID: VP507EWASH-F

Lab ID#: 0810427-04A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.2	1.8	6.0	8.8
1,3-Butadiene	1.2	2.3	2.7	5.0
Ethanol	4.8	10	9.1	19
Acetone	4.8	76	11	180
Hexane	1.2	3.0	4.3	11
2-Butanone (Methyl Ethyl Ketone)	1.2	11	3.6	34
Cyclohexane	1.2	1.2	4.2	4.2
2,2,4-Trimethylpentane	1.2	1.9	5.6	8.9
Benzene	1.2	3.0	3.9	9.7
Heptane	1.2	3.2	5.0	13
Toluene	1.2	40	4.6	150
Ethyl Benzene	1.2	12	5.2	51
m,p-Xylene	1.2	49	5.2	210
o-Xylene	1.2	22	5.2	98
Cumene	1.2	1.4	5.9	7.0
Propylbenzene	1.2	7.0	5.9	34
4-Ethyltoluene	1.2	31	5.9	150
1,3,5-Trimethylbenzene	1.2	12	5.9	59

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP507EWASH-F

Lab ID#: 0810427-04A				
1,2,4-Trimethylbenzene	1.2	43	5.9	210
1,1-Difluoroethane	4.8	7.3	13	20

Client Sample ID: VP412EHILL-2

Lab ID#: 0810427-05A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	1.3	1.3	2.8	2.9
Ethanol	5.1	9.2	9.5	17
Acetone	5.1	45	12	110
2-Propanol	5.1	20	12	50
Hexane	1.3	2.1	4.4	7.3
2-Butanone (Methyl Ethyl Ketone)	1.3	6.2	3.7	18
2,2,4-Trimethylpentane	1.3	1.5	5.9	7.2
Benzene	1.3	1.8	4.0	5.9
Heptane	1.3	1.8	5.2	7.6
Toluene	1.3	23	4.8	86
Ethyl Benzene	1.3	6.6	5.5	28
m,p-Xylene	1.3	28	5.5	120
o-Xylene	1.3	12	5.5	54
Propylbenzene	1.3	4.0	6.2	20
4-Ethyltoluene	1.3	17	6.2	83
1,3,5-Trimethylbenzene	1.3	8.5	6.2	42
1,2,4-Trimethylbenzene	1.3	25	6.2	120

Client Sample ID: VP505EWASH-2

Lab ID#: 0810427-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	1.3	4.2	2.8	9.4
Ethanol	5.1	10	9.5	20
Acetone	5.1	69	12	160
2-Propanol	5.1	19	12	46
Hexane	1.3	3.8	4.4	14
2-Butanone (Methyl Ethyl Ketone)	1.3	14	3.7	43
Cyclohexane	1.3	1.4	4.4	4.8
2,2,4-Trimethylpentane	1.3	2.1	5.9	10
Benzene	1.3	3.3	4.0	10

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP505EWASH-2

Lab ID#: 0810427-06A					
Heptane	1.3	4.2	5.2	17	
Toluene	1.3	53	4.8	200	
Ethyl Benzene	1.3	11	5.5	50	
m,p-Xylene	1.3	46	5.5	200	
o-Xylene	1.3	20	5.5	89	
Propylbenzene	1.3	5.2	6.2	26	
4-Ethyltoluene	1.3	21	6.2	100	
1,3,5-Trimethylbenzene	1.3	10	6.2	52	
1,2,4-Trimethylbenzene	1.3	28	6.2	140	

Client Sample ID: VP507EWASH-3

Lab ID#: 0810427-07A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	1.2	1.8	2.7	4.0
Ethanol	4.8	16	9.1	29
Acetone	4.8	96	11	230
2-Propanol	4.8	6.6	12	16
Hexane	1.2	4.0	4.3	14
2-Butanone (Methyl Ethyl Ketone)	1.2	19	3.6	56
Cyclohexane	1.2	1.8	4.2	6.1
2,2,4-Trimethylpentane	1.2	3.2	5.6	15
Benzene	1.2	3.2	3.9	10
Heptane	1.2	4.7	5.0	19
4-Methyl-2-pentanone	1.2	1.3	5.0	5.4
Toluene	1.2	46	4.6	170
Ethyl Benzene	1.2	13	5.2	57
m,p-Xylene	1.2	52	5.2	230
o-Xylene	1.2	25	5.2	110
Cumene	1.2	1.6	5.9	7.9
Propylbenzene	1.2	7.0	5.9	34
4-Ethyltoluene	1.2	28	5.9	140
1,3,5-Trimethylbenzene	1.2	16	5.9	76
1,2,4-Trimethylbenzene	1.2	42	5.9	210

Client Sample ID: VP412EHILL-3

Lab ID#: 0810427-08A

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP412EHILL-3

Lab ID#: 0810427-08A

Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1.3	11	2.8	25
5.1	150	9.5	280
5.1	240	12	580
5.1	41	12	100
1.3	5.8	4.4	20
1.3	45	3.7	130
1.3	1.7	4.4	5.9
1.3	2.8	5.9	13
1.3	4.2	4.0	14
1.3	5.2	5.2	21
1.3	1.6	5.2	6.5
1.3	52	4.8	190
1.3	12	5.5	52
1.3	48	5.5	210
1.3	22	5.5	94
1.3	1.5	6.2	7.2
1.3	6.1	6.2	30
1.3	26	6.2	130
1.3	9.1	6.2	45
1.3	33	6.2	160
5.1	10	14	27
	(ppbv) 1.3 5.1 5.1 5.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1	(ppbv)(ppbv)1.3115.11505.12405.1411.35.81.3451.31.71.32.81.34.21.35.21.31.61.3521.3121.3481.3221.31.51.36.11.3261.333	$\begin{tabular}{ c c c c c } \hline (ppbv) & (uG/m3) \\ \hline 1.3 & 11 & 2.8 \\ \hline 5.1 & 150 & 9.5 \\ \hline 5.1 & 240 & 12 \\ \hline 5.1 & 41 & 12 \\ \hline 1.3 & 5.8 & 4.4 \\ \hline 1.3 & 5.8 & 4.4 \\ \hline 1.3 & 45 & 3.7 \\ \hline 1.3 & 1.7 & 4.4 \\ \hline 1.3 & 2.8 & 5.9 \\ \hline 1.3 & 4.2 & 4.0 \\ \hline 1.3 & 5.2 & 5.2 \\ \hline 1.3 & 1.6 & 5.2 \\ \hline 1.3 & 52 & 4.8 \\ \hline 1.3 & 12 & 5.5 \\ \hline 1.3 & 12 & 5.5 \\ \hline 1.3 & 48 & 5.5 \\ \hline 1.3 & 48 & 5.5 \\ \hline 1.3 & 22 & 5.5 \\ \hline 1.3 & 1.5 & 6.2 \\ \hline 1.3 & 6.1 & 6.2 \\ \hline 1.3 & 9.1 & 6.2 \\ \hline 1.3 & 33 & 6.2 \\ \hline \end{tabular}$

Client Sample ID: VP412EHILL-1

Lab ID#: 0810427-09A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Butadiene	1.3	4.1	2.8	9.2
Ethanol	5.1	26	9.5	50
Acetone	5.1	96	12	230
2-Propanol	5.1	5.8	12	14
Hexane	1.3	2.7	4.4	9.5
2-Butanone (Methyl Ethyl Ketone)	1.3	16	3.7	47
2,2,4-Trimethylpentane	1.3	1.7	5.9	8.1
Benzene	1.3	2.6	4.0	8.5
Heptane	1.3	2.5	5.2	10
Toluene	1.3	32	4.8	120
Ethyl Benzene	1.3	9.1	5.5	40

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: VP412EHILL-1

Lab ID#: 0810427-09A					
m,p-Xylene	1.3	38	5.5	160	
o-Xylene	1.3	18	5.5	77	
Propylbenzene	1.3	5.1	6.2	25	
4-Ethyltoluene	1.3	22	6.2	100	
1,3,5-Trimethylbenzene	1.3	11	6.2	56	_
1,2,4-Trimethylbenzene	1.3	32	6.2	160	-
1,1-Difluoroethane	5.1	5.4	14	15	

Client Sample ID: VP507EWASH(AMBIENT)

Lab ID#: 0810427-10A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Acetone	5.1	6.6	12	16
2-Propanol	5.1	9.3	12	23
Ethanol	5.1	6.0	9.5	11

Client Sample ID: VP507EWASH-1 Lab ID#: 0810427-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102908 2.53		Date of Collection: Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	6.7	9.5	13
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	50	12	120
2-Propanol	5.1	15	12	37
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	2.3	4.4	8.0
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	7.0	3.7	21
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	1.5	5.9	6.9
Benzene	1.3	2.5	4.0	8.0
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	3.0	5.2	12
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	40	4.8	150
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP507EWASH-1 Lab ID#: 0810427-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102908 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	10	5.5	44
m,p-Xylene	1.3	41	5.5	180
o-Xylene	1.3	19	5.5	83
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	5.6	6.2	27
4-Ethyltoluene	1.3	25	6.2	120
1,3,5-Trimethylbenzene	1.3	9.2	6.2	45
1,2,4-Trimethylbenzene	1.3	33	6.2	160
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	7.0	14	19

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	121	70-130
4-Bromofluorobenzene	117	70-130

Client Sample ID: VP507EWASH-1 Lab Duplicate

Lab ID#: 0810427-01AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102909 2.53		Date of Collection:	
		Amount	Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	(ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	6.4	9.5	12
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	51	12	120
2-Propanol	5.1	16	12	38
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	2.4	4.4	8.5
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	6.2	3.7	18
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	1.6	5.9	7.7
Benzene	1.3	2.3	4.0	7.4
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	3.1	5.2	13
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	38	4.8	140
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP507EWASH-1 Lab Duplicate

Lab ID#: 0810427-01AA

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102909 2.53	Date of Collection: 10/15/08 Date of Analysis: 10/29/08 03:01 I		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	9.8	5.5	42
m,p-Xylene	1.3	41	5.5	180
o-Xylene	1.3	19	5.5	81
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	5.3	6.2	26
4-Ethyltoluene	1.3	23	6.2	110
1,3,5-Trimethylbenzene	1.3	8.4	6.2	41
1,2,4-Trimethylbenzene	1.3	30	6.2	150
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	6.0	14	16

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	120	70-130
4-Bromofluorobenzene	109	70-130

Client Sample ID: VP505EWASH-1 Lab ID#: 0810427-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102910 2.53		Date of Collection: Date of Analysis: 1		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	1.3	Not Detected	6.2	Not Detected	
Freon 114	1.3	Not Detected	8.8	Not Detected	
Chloromethane	5.1	Not Detected	10	Not Detected	
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected	
1,3-Butadiene	1.3	2.0	2.8	4.4	
Bromomethane	1.3	Not Detected	4.9	Not Detected	
Chloroethane	1.3	Not Detected	3.3	Not Detected	
Freon 11	1.3	Not Detected	7.1	Not Detected	
Ethanol	5.1	7.7	9.5	14	
Freon 113	1.3	Not Detected	9.7	Not Detected	
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected	
Acetone	5.1	51	12	120	
2-Propanol	5.1	Not Detected	12	Not Detected	
Carbon Disulfide	1.3	2.4	3.9	7.6	
3-Chloropropene	5.1	Not Detected	16	Not Detected	
Methylene Chloride	1.3	Not Detected	4.4	Not Detected	
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected	
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected	
Hexane	1.3	4.7	4.4	17	
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	1.3	9.0	3.7	26	
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected	
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected	
Chloroform	1.3	Not Detected	6.2	Not Detected	
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected	
Cyclohexane	1.3	2.6	4.4	8.9	
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected	
2,2,4-Trimethylpentane	1.3	3.1	5.9	14	
Benzene	1.3	4.2	4.0	13	
1.2-Dichloroethane	1.3	Not Detected	5.1	Not Detected	
Heptane	1.3	4.6	5.2	19	
Trichloroethene	1.3	Not Detected	6.8	Not Detected	
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected	
1,4-Dioxane	5.1	Not Detected	18	Not Detected	
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected	
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected	
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected	
Toluene	1.3	55	4.8	210	
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected	

Client Sample ID: VP505EWASH-1 Lab ID#: 0810427-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102910 2.53	Date of Collection: 10/15/08 Date of Analysis: 10/29/08 03:42		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	11	5.5	50
m,p-Xylene	1.3	43	5.5	190
o-Xylene	1.3	19	5.5	84
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	1.3	6.2	6.6
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	4.8	6.2	24
4-Ethyltoluene	1.3	20	6.2	97
1,3,5-Trimethylbenzene	1.3	7.0	6.2	34
1,2,4-Trimethylbenzene	1.3	25	6.2	120
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	124	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: VP507EWASH-2 Lab ID#: 0810427-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102911 2.47		Date of Collection:	
DII. Factor:			Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.2	1.8	6.1	9.0
Freon 114	1.2	Not Detected	8.6	Not Detected
Chloromethane	4.9	Not Detected	10	Not Detected
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
1,3-Butadiene	1.2	4.4	2.7	9.7
Bromomethane	1.2	Not Detected	4.8	Not Detected
Chloroethane	1.2	Not Detected	3.2	Not Detected
Freon 11	1.2	Not Detected	6.9	Not Detected
Ethanol	4.9	9.5	9.3	18
Freon 113	1.2	Not Detected	9.5	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	4.9	78	12	180
2-Propanol	4.9	5.4	12	13
Carbon Disulfide	1.2	1.4	3.8	4.3
3-Chloropropene	4.9	Not Detected	15	Not Detected
Methylene Chloride	1.2	Not Detected	4.3	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	4.0	4.4	14
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.2	14	3.6	40
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	6.0	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Cyclohexane	1.2	1.5	4.2	5.3
Carbon Tetrachloride	1.2	Not Detected	7.8	Not Detected
2,2,4-Trimethylpentane	1.2	2.4	5.8	11
Benzene	1.2	4.5	3.9	14
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	4.8	5.1	20
Trichloroethene	1.2	4.8 1.4	6.6	7.3
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,2-Dichloropropane	4.9	Not Detected	18	Not Detected
Bromodichloromethane	4.9	Not Detected	8.3	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.0	Not Detected
Toluene	1.2	57	4.6	220
trans-1,3-Dichloropropene	1.2	Not Detected	4.6 5.6	Not Detected

Client Sample ID: VP507EWASH-2 Lab ID#: 0810427-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102911 2.47		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Tetrachloroethene	1.2	Not Detected	8.4	Not Detected
2-Hexanone	4.9	Not Detected	20	Not Detected
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.5	Not Detected
Chlorobenzene	1.2	Not Detected	5.7	Not Detected
Ethyl Benzene	1.2	14	5.4	61
m,p-Xylene	1.2	56	5.4	240
o-Xylene	1.2	26	5.4	110
Styrene	1.2	Not Detected	5.3	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	1.7	6.1	8.3
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.5	Not Detected
Propylbenzene	1.2	6.9	6.1	34
4-Ethyltoluene	1.2	30	6.1	150
1,3,5-Trimethylbenzene	1.2	11	6.1	55
1,2,4-Trimethylbenzene	1.2	38	6.1	190
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,2,4-Trichlorobenzene	4.9	Not Detected	37	Not Detected
Hexachlorobutadiene	4.9	Not Detected	53	Not Detected
Naphthalene	4.9	Not Detected	26	Not Detected
1,1-Difluoroethane	4.9	9.9	13	27

Container Type: 1 Liter Summa Canister (100% Certified)

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	116	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: VP507EWASH-F Lab ID#: 0810427-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102912 2.42		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.2	1.8	6.0	8.8
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	4.8	Not Detected	10	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	2.3	2.7	5.0
Bromomethane	1.2	Not Detected	4.7	Not Detected
Chloroethane	1.2	Not Detected	3.2	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	10	9.1	19
Freon 113	1.2	Not Detected	9.3	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	4.8	76	11	180
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	1.2	Not Detected	3.8	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	1.2	Not Detected	4.2	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	3.0	4.3	11
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.2	11	3.6	34
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	1.2	4.2	4.2
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	1.9	5.6	8.9
Benzene	1.2	3.0	3.9	9.7
1.2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	3.2	5.0	13
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.0	Not Detected
Toluene	1.2	40	4.6	150
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected

Client Sample ID: VP507EWASH-F Lab ID#: 0810427-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102912 2.42		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
2-Hexanone	4.8	Not Detected	20	Not Detected
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected
Chlorobenzene	1.2	Not Detected	5.6	Not Detected
Ethyl Benzene	1.2	12	5.2	51
m,p-Xylene	1.2	49	5.2	210
o-Xylene	1.2	22	5.2	98
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	1.4	5.9	7.0
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	7.0	5.9	34
4-Ethyltoluene	1.2	31	5.9	150
1,3,5-Trimethylbenzene	1.2	12	5.9	59
1,2,4-Trimethylbenzene	1.2	43	5.9	210
1,3-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected
Naphthalene	4.8	Not Detected	25	Not Detected
1,1-Difluoroethane	4.8	7.3	13	20

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	118	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: VP412EHILL-2 Lab ID#: 0810427-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102913 2.53		Date of Collection: Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	1.3	2.8	2.9
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	9.2	9.5	17
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	45	12	110
2-Propanol	5.1	20	12	50
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	2.1	4.4	7.3
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	6.2	3.7	18
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	1.5	5.9	7.2
Benzene	1.3	1.8	4.0	5.9
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	1.8	5.2	7.6
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	23	4.8	86
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP412EHILL-2 Lab ID#: 0810427-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102913 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	6.6	5.5	28
m,p-Xylene	1.3	28	5.5	120
o-Xylene	1.3	12	5.5	54
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	4.0	6.2	20
4-Ethyltoluene	1.3	17	6.2	83
1,3,5-Trimethylbenzene	1.3	8.5	6.2	42
1,2,4-Trimethylbenzene	1.3	25	6.2	120
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	120	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: VP505EWASH-2 Lab ID#: 0810427-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102914 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	4.2	2.8	9.4
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	10	9.5	20
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	69	12	160
2-Propanol	5.1	19	12	46
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	3.8	4.4	14
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	14	3.7	43
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	1.4	4.4	4.8
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	2.1	5.9	10
Benzene	1.3	3.3	4.0	10
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	4.2	5.2	17
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	53	4.8	200
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP505EWASH-2 Lab ID#: 0810427-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102914 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	11	5.5	50
m,p-Xylene	1.3	46	5.5	200
o-Xylene	1.3	20	5.5	89
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	5.2	6.2	26
4-Ethyltoluene	1.3	21	6.2	100
1,3,5-Trimethylbenzene	1.3	10	6.2	52
1,2,4-Trimethylbenzene	1.3	28	6.2	140
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

Container Type: 1 Liter Summa Canister (100% Certified)

	· · · · · · · · · · · · · · · · · · ·	Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: VP507EWASH-3 Lab ID#: 0810427-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102915 2.42		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	4.8	Not Detected	10	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	1.8	2.7	4.0
Bromomethane	1.2	Not Detected	4.7	Not Detected
Chloroethane	1.2	Not Detected	3.2	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	16	9.1	29
Freon 113	1.2	Not Detected	9.3	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	4.8	96	11	230
2-Propanol	4.8	6.6	12	16
Carbon Disulfide	1.2	Not Detected	3.8	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	1.2	Not Detected	4.2	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	4.0	4.3	14
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.2	19	3.6	56
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	1.8	4.2	6.1
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	3.2	5.6	15
Benzene	1.2	3.2	3.9	10
1.2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	4.7	5.0	19
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	1.3	5.0	5.4
Toluene	1.2	46	4.6	170
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected

Client Sample ID: VP507EWASH-3 Lab ID#: 0810427-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102915 2.42	Date of Collection: 10/15/08 Date of Analysis: 10/29/08 07:0		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
2-Hexanone	4.8	Not Detected	20	Not Detected
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected
Chlorobenzene	1.2	Not Detected	5.6	Not Detected
Ethyl Benzene	1.2	13	5.2	57
m,p-Xylene	1.2	52	5.2	230
o-Xylene	1.2	25	5.2	110
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	1.6	5.9	7.9
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	7.0	5.9	34
4-Ethyltoluene	1.2	28	5.9	140
1,3,5-Trimethylbenzene	1.2	16	5.9	76
1,2,4-Trimethylbenzene	1.2	42	5.9	210
1,3-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected
Naphthalene	4.8	Not Detected	25	Not Detected
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: VP412EHILL-3 Lab ID#: 0810427-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102917 2.53		Date of Collection: Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	11	2.8	25
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	150	9.5	280
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	240	12	580
2-Propanol	5.1	41	12	100
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	5.8	4.4	20
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	45	3.7	130
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	1.7	4.4	5.9
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	2.8	5.9	13
Benzene	1.3	4.2	4.0	14
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	5.2	5.2	21
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	1.6	5.2	6.5
Toluene	1.3	52	4.8	190
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP412EHILL-3 Lab ID#: 0810427-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102917 2.53	Date of Collection: 10/15/08 Date of Analysis: 10/29/08		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	12	5.5	52
m,p-Xylene	1.3	48	5.5	210
o-Xylene	1.3	22	5.5	94
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	1.5	6.2	7.2
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	6.1	6.2	30
4-Ethyltoluene	1.3	26	6.2	130
1,3,5-Trimethylbenzene	1.3	9.1	6.2	45
1,2,4-Trimethylbenzene	1.3	33	6.2	160
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	10	14	27

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	115	70-130
4-Bromofluorobenzene	109	70-130

Client Sample ID: VP412EHILL-1 Lab ID#: 0810427-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102918 2.53		Date of Collection: Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	4.1	2.8	9.2
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	26	9.5	50
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	96	12	230
2-Propanol	5.1	5.8	12	14
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	2.7	4.4	9.5
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	16	3.7	47
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	1.7	5.9	8.1
Benzene	1.3	2.6	4.0	8.5
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	2.5	5.2	10
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	32	4.8	120
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected

Client Sample ID: VP412EHILL-1 Lab ID#: 0810427-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102918 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	9.1	5.5	40
m,p-Xylene	1.3	38	5.5	160
o-Xylene	1.3	18	5.5	77
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	5.1	6.2	25
4-Ethyltoluene	1.3	22	6.2	100
1,3,5-Trimethylbenzene	1.3	11	6.2	56
1,2,4-Trimethylbenzene	1.3	32	6.2	160
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected
1,1-Difluoroethane	5.1	5.4	14	15

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	117	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: VP507EWASH(AMBIENT)

Lab ID#: 0810427-10A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102919 2.53		Date of Collection: Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	1.3	Not Detected	6.2	Not Detected
Freon 114	1.3	Not Detected	8.8	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
Bromomethane	1.3	Not Detected	4.9	Not Detected
Chloroethane	1.3	Not Detected	3.3	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Freon 113	1.3	Not Detected	9.7	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
Benzene	1.3	Not Detected	4.0	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.8	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
trans-1,3-Dichloropropene	1.3	Not Detected	5.7	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.7	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.5	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Hexane	1.3	Not Detected	4.4	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected

Client Sample ID: VP507EWASH(AMBIENT)

Lab ID#: 0810427-10A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102919 2.53		Date of Collection: Date of Analysis: 1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Heptane	1.3	Not Detected	5.2	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
Cumene	1.3	Not Detected	6.2	Not Detected
Propylbenzene	1.3	Not Detected	6.2	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
Acetone	5.1	6.6	12	16
Carbon Disulfide	1.3	Not Detected	3.9	Not Detected
2-Propanol	5.1	9.3	12	23
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.3	Not Detected	3.7	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.2	Not Detected
Ethanol	5.1	6.0	9.5	11
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	5.9	Not Detected
Naphthalene	5.1	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	117	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: Lab Blank Lab ID#: 0810427-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102905 1.00		Date of Collection: N Date of Analysis: 1	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected

Client Sample ID: Lab Blank

Lab ID#: 0810427-11A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	Date of Collection: N Date of Analysis: 1			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	113	70-130

Client Sample ID: CCV

Lab ID#: 0810427-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102902 1.00	Date of Collection: NA Date of Analysis: 10/29/08 09:04 AM
	1.00	
Compound		%Recovery
Freon 12		114
Freon 114		107
Chloromethane		97
Vinyl Chloride		94
1,3-Butadiene		97
Bromomethane		114
Chloroethane		79
Freon 11		111
Ethanol		89
Freon 113		99
1,1-Dichloroethene		102
Acetone		86
2-Propanol		91
Carbon Disulfide		91
3-Chloropropene		86
Methylene Chloride		96
Methyl tert-butyl ether		127
trans-1,2-Dichloroethene		89
Hexane		84
1,1-Dichloroethane		91
2-Butanone (Methyl Ethyl Ketone)		88
cis-1,2-Dichloroethene		92
Tetrahydrofuran		87
Chloroform		90
1,1,1-Trichloroethane		103
Cyclohexane		86
Carbon Tetrachloride		107
2,2,4-Trimethylpentane		82
Benzene		84
1,2-Dichloroethane		113
Heptane		89
Trichloroethene		100
1,2-Dichloropropane		89
1,4-Dioxane		91
Bromodichloromethane		109
cis-1,3-Dichloropropene		96
4-Methyl-2-pentanone		92
Toluene		89
trans-1,3-Dichloropropene		98

Client Sample ID: CCV

Lab ID#: 0810427-12A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102902 1.00	Date of Collection: NA Date of Analysis: 10/29/08 09:04 AM
Compound		%Recovery
1,1,2-Trichloroethane		90
Tetrachloroethene		94
2-Hexanone		81
Dibromochloromethane		104
1,2-Dibromoethane (EDB)		91
Chlorobenzene		91
Ethyl Benzene		91
m,p-Xylene		92
o-Xylene		93
Styrene		90
Bromoform		111
Cumene		93
1,1,2,2-Tetrachloroethane		91
Propylbenzene		100
4-Ethyltoluene		85
1,3,5-Trimethylbenzene		125
1,2,4-Trimethylbenzene		95
1,3-Dichlorobenzene		101
1,4-Dichlorobenzene		100
alpha-Chlorotoluene		103
1,2-Dichlorobenzene		99
1,2,4-Trichlorobenzene		105
Hexachlorobutadiene		108
Naphthalene		98
1,1-Difluoroethane		114

Container Type: NA - Not Applicable

······································		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: LCS

Lab ID#: 0810427-13A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102903 1.00	Date of Collection: NA Date of Analysis: 10/29/08 09:39 AM
Compound		%Recovery
Freon 12		119
Freon 114		111
Chloromethane		104
Vinyl Chloride		102
1,3-Butadiene		100
Bromomethane		131 Q
Chloroethane		93
Freon 11		116
Ethanol		106
Freon 113		122
1,1-Dichloroethene		122
Acetone		95
2-Propanol		103
Carbon Disulfide		102
3-Chloropropene		95
Methylene Chloride		113
Methyl tert-butyl ether		147 Q
trans-1,2-Dichloroethene		97
Hexane		98
1,1-Dichloroethane		104
2-Butanone (Methyl Ethyl Ketone)		96
cis-1,2-Dichloroethene		102
Tetrahydrofuran		95
Chloroform		100
1,1,1-Trichloroethane		114
Cyclohexane		96
Carbon Tetrachloride		117
2,2,4-Trimethylpentane		93
Benzene		93
1,2-Dichloroethane		122
Heptane		99
Trichloroethene		106
1,2-Dichloropropane		98
1,4-Dioxane		97
Bromodichloromethane		119
cis-1,3-Dichloropropene		106
4-Methyl-2-pentanone		104
Toluene		103
trans-1,3-Dichloropropene		107

Client Sample ID: LCS

Lab ID#: 0810427-13A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	5102903 1.00	Date of Collection: NA Date of Analysis: 10/29/08 09:39 AM
Compound		%Recovery
1,1,2-Trichloroethane		98
Tetrachloroethene		102
2-Hexanone		88
Dibromochloromethane		114
1,2-Dibromoethane (EDB)		96
Chlorobenzene		98
Ethyl Benzene		98
m,p-Xylene		98
o-Xylene		99
Styrene		98
Bromoform		117
Cumene		102
1,1,2,2-Tetrachloroethane		97
Propylbenzene		108
4-Ethyltoluene		115
1,3,5-Trimethylbenzene		99
1,2,4-Trimethylbenzene		99
1,3-Dichlorobenzene		105
1,4-Dichlorobenzene		104
alpha-Chlorotoluene		111
1,2-Dichlorobenzene		102
1,2,4-Trichlorobenzene		106
Hexachlorobutadiene		108
Naphthalene		104
1,1-Difluoroethane		Not Spiked

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	110	70-130

- D'
- 21
-
~
-
1.1
- 10
- 26
-
-
æ
- C.

.

	Date/Time Received by: (signature) Date/Time	Reprintinguished by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time	Tature) Date/Time Received by: (signature) Date/Time	VP4/2 E PirL-1 34081 / /329	VPUIZEHILL-3	OLA VPS07EWASH-3 36522 1155 1	VP505 EWASH-2 36555	054 vruzemu - Z - 2219 4441	CHA VPS07EWASH-F 2085 1103	VP507EWASH-2 34167 1051 1	VP565 EWASH -1 36555 0902	VP 507 EWNSH-1 33727 10/15/03 :642 TO-15 : Full), Field Sample I.D. (Location) Can # of Collection of Collection		Phone 410-585-1460 Fax 410-585-1420 Project Name Ameren - Champ	Suite A tope by Eal	1 v	9	č
			Notes	15/ Fuil Cran with							Naphthalene and	scan with	Analyses Requested		Ameren - Champergne s	<u>∞6 7</u> □ Rush		- -	
	2 . 3 . 3 .		28.0	28,9	28.0	28.4 5.0	1,72	27.7	6'82	27,4	27.4	2.15	l'nit'al	Canist	specify	ush	Normal	Turn Around	
08104			, 1 2	50	5.0	5.0	6,2	0.5	Š Š	.0 	5 6	5.0	Final	er Press	Z	Pressur	Date:	Proseurize	Page [
0810427	E 5 5 7						·					.	Receipt Final	Canister Pressure/Vacuum	N, He	Pressurization Gas:		Proseurized by:	of of

i

TOXICS LTD.


Sample Transportation Notice Helinquishing signature or this document indicates that sample is being shipped in compliance with all applicable local. State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the

180 BLUE RAVINE HOAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (918) 985-1020

VOLUME 1

671

Two-Volume Practical Reference Guide from Gas Research Institute

EDITED BY

Thomas D. Hayes, Ph.D. David G. Linz David V. Nakles, Ph.D. Alfred P. Leuschner

Amherst Scientific Publishers 150 Fearing Street Amherst, Massachusetts 01002 © 1996 by Amherst Scientific Publishers. All rights reserved.

Library of Congress Cataloging-in-Publication Data Management of manufactured gas plant sites: the Gas Research Institute's twovolume practical reference guide/edited by Thomas D. Hayes...[et. al.].

p. cm. ISBN 1-884940-08-0 (v. 1). – ISBN 1-884940-09-9 (v. 2) 1. Gas manufacture and works–Waste disposal. 2. Gas manufacture and works–Management. 3. Hazardous waste sites–Management. TD899.G3M36 1996 665.7'8–dc20 96-35099CIP

The material contained in this document was obtained from independent and highly respected sources. Every attempt has been made to insure accurate, reliable information, however, the publisher cannot be held responsible for the information or how the information is applied. Opinions expressed in this book are those of the authors and/or contributors and do not reflect those of the publisher.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Amherst Scientific Publishers, provided that \$.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Prior to photocopying items for educational classroom use, please contact the Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01023. 508-750-8400

A portion of the proceeds from the sale of this book will be donated to the Plant-a-Tree Program, a reforestation program managed by the U.S. Forest Service.

Printed in the United States of America

Gas Research Institute Disclaimer

LEGAL NOTICE: This document was prepared by Remediation Technologies, Inc. as an account of work sponsored by the Gas Research Institute (GRI). Neither GRI, members of GRI, nor any person acting on behalf of either:

a. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

ISBN 1-884940-06-4

88

Benzo(b)fluoranthene HYDROCARBONS Benzo(g,h,i)perylene POLYNUCLEAR Benzo(a)anthracene AROMATIC Acenaphthylene Benzo(a)pyrene Acenaphthene Organic-contaminated vessel, surface, Anthracene Mixed wastes and fill 2,4-Dimethylphenol and groundwaters PHENOLICS 2-Methylphenol 4-Methylphenol Purifier wastes Phenol AROMATICS Ethyl Benzene VOLATILE Total Xylenes Toluene Benzene Free tars, oils, and lampblack Organic-contaminated soils - Heavily contaminated - Lightly contaminated Table 5-1 Wastes and Chemicals of Interest at MGP Sites Chromium Aluminum METALS Antimony Cadmium Copper Arsenic Barium INORGANICS Thiocyanates Ammonia Cyanide Sulfide Sulfate Nitrate CHEMICALS WASTES

Management of Manufactured Gas Plant Sites

Indeno(1,2,3. cd)pyrene

Fluorene

2-Methyl Naphthalene

Phenanthrene

Pyrene

Naphthalene

Dibenzo(a,h)anthracene

Chrysene

Dibenzofuran Fluoranthene

Manganese Mercury

Lead

Iron

Vanadium

Zinc

Silver

Selenium

Nickel

Benzo(k)fluoranthene

Wastes and Chemicals of Inte

5.1 WASTES

The five wastes listed based upon the survey o of the process residuals as man and nature have The wastes reveal th

oils and lampblack and based upon the relativel and the regulatory signihydrocarbons. Potential which tend to be widel should be noted again t site wastes with miscella demolition. Mixed was combination of hazardc

5.2 CHEMICALS

The methodology f The chemicals of regula in the EPA CLP or in compared to the chem residuals (Chapter 2). T of regulatory concern t to be there based upon smaller set of chemicals of interest for MGP si

The chemical scree limitations of both the identified in the site v scope of the study frc available at the time t understand the impac investigations should c scans of both aqueous classes and chemicals j

The results of the six primary chemic extent that exceptions rationale for and impa

5.2.1 Inorganic Chen

Six inorganic com nitrogen (cyanide, am sulfates) compounds.

Engineering Geology 64 (2002) 317-338

www.elsevier.com/locate/enggeo

Geoenvironmental protocol for site and waste characterization of former manufactured gas plants; worldwide remediation challenge in semi-volatile organic wastes*

Allen W. Hatheway*

Consultant in Mitigation and Forensics Rolla, Missouri and Big Arm, Montana, USA

Abstract

The most common and difficult of all hazardous waste sites are those that historically produced artificial (manufactured) gas; for gas-making was international in scope and at the very core of the industrial revolution. With former manufactured gas plants (FMGPs), virtually no geologic region in the industrialized or urbanized world or its trade centers and ports escaped the gas industry. These plants applied pyrolysis of organic matter (roasting to drive off volatiles in the form of useful gases) to illuminate the world and to fuel all manner of progress. Gas was and is the universal fuel. Its prominence stemmed from the omnipresence of organic matter and the universal process for the extraction of its volatile contents to manufacture useful gas. Furthermore, for most of the century and a half-long history of manufactured gas, natural gas was unavailable to slow or daunt the production of man-made gas and the universal creation of its toxic tar residues and other harmful waste residuals. Today we face the presence of toxic organic gas manufacturing residuals as a unique threat to both the health and welfare of contemporary society, as well as being a long-term threat to the environment that is dominantly geologic in character. Most of these tar residuals are highly resistant to natural degradation or attenuation in the environment and their lives, therefore, they are measured in geologic time. Given its environmental persistence, potential problems associated with tar may exist centuries to thousands of years. Engineering geologists and geological engineers are, by training and experience, particularly well equipped to plan, manage and conduct site and waste characterization efforts for FMGPs and related coal-tar sites. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Site and waste characterization; Former manufactured gas plants; Semi-volatile organic wastes

1. Introduction

Derelict industrial waste sites are among the greatest environmental problems worldwide. "Uncontrolled hazardous waste sites" (UHWS) have been noticed as a major societal threat for about the last quarter century. With these sites we face a vast spectrum of compounds comprising the waste and an infinite variety of complex geological materials/waste settings. The variable relationships between geologic conditions and the fate of hazardous waste is the most difficult of all site characterization challenges for those working in the applied earth sciences.

The very presence, design layout, management and operation of each gas works was wholly influenced by geologic site features and accessibility to natural and man-made resources. Likewise, historically, the

^{*} An Inaugural Paper in Principles of Engineering Geology; The George A. Kiersch Series, Engineering Geology, Amsterdam.

^{*} Fax: +1-573-341-6935.

E-mail address: allen@hatheway.net (A.W. Hatheway).

management options for toxic waste by-products (i.e. sell, use, discard) were often governed by the location of the gas works or their geologic setting, including proximity to surface water bodies, wetlands, and unoccupied land. Economics also played a large role in the operations of the gas plant, from the selection of feedstock to the management of by-products and wastes.

Most of the broad advances made in dealing with toxic and persistent groundwater contaminants have been concentrated on and successful in dealing with halogenated (chlorinated), specialty chemical compounds created since 1928 to serve as solvents, pesticides and heat-dissipation oils. These solvents are volatile organic compounds (VOCs) and their nature and geologic affinities and associations are very different from the predominant semi-volatile organic compounds (SVOCs) associated with the processes of manufacturing gas, as well as the halogenated pesticides and heat-dissipation compounds.

This paper deals with the associations between geologic conditions and the nature and ultimate face of the tar residuals and oils generated by the manufacture of gas and coke, and by the processing of the tar and oil by-products of the industry. Tar residuals and gas oil are composed of complex mixtures of hundreds of aliphatic and aromatic organic hydrocarbons. The constituents of tar and oil that are of specific interest for investigation and remediation at former manufactured gas plant (FMGP) sites are the polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are of particular concern because they are suspected human carcinogens. Sixteen of the PAHs found in tar are on the U.S. Environmental Protection Agency (USEPA) list of priority pollutants. Also of grave concern are the known and emerging carcinogenicity of the PAHs and the toxic threats of associated cyanides, heavy metals, and sulfur compounds.

2. Historic background of manufactured gas

Prior to 1792, inhabited portions of the earth were lit at night by various types of tallow candles and oil lamps. The streets of most cities were unlit and on moonless nights thieves abounded so that no citizen was safe. Likewise, commerce was restricted to daylight hours and nighttime deliberations of government were carried on under the feeble light of whale oil and candle. Factories worked on single 12-h shifts when possible.

The complacency of this world was shattered by a discovery by Scotsman William Murdoch (now known as Murdock) in 1792. Murdock was a brilliant self-educated mechanical engineer who was employed as an erection engineer by Boulton & Watt of Birmingham, England. While on assignment in Cornwall, to install a steam (pumping) engine at a local mine, Murdock fashioned the world's first gas manufacturing and house lighting system, in his spare time, at his home at Redruth. The rest truly is history.

Murdock returned soon to Birmingham and, by 1798, had built institutional gas plants for double-shift lighting factories in England's industrial "Black Country" northwest of Birmingham and raised the specter of gas lighting. By the turn of the 19th century, awareness of artificial gas and gas lighting had awakened in Moravia (now Czech Republic), Belgium and France. This knowledge came to be focused by the German Moravian Friedrich Albrecht Winzler, at London, around the year 1804.

Murdock went on to pursue other important works in practical engineering and Winzler, anglicized as Winsor, created the world-pioneering Chartered Gas Light and Coke of London (1812), sometimes known as the London and Westminster Gas Light and Coke Company. The world took note and the British Empire, upon whose flag the "sun never set," cheerfully began to light its nighttime world. The first experimentation with gas lighting in the United States was in 1796 at Philadelphia (the Italian fireworks manufacturers, the Brothers Ambroise) and around 1810 at Newport, RI, by David Melville. America's first commercial gas lighting occurred in Baltimore in 1816.

A complete treatment of the historic technical aspects of the subject is contained in *Remediation of Former Manufactured Gas Plants and Other Coal-Tar Sites* (Hatheway, in press (a)).

3. The chemical-geologic connection of manufactured gas

Gas manufacturing and gas lighting were of the highest order of technologies at the turn of the 19th

Table 1 De facto geologic siting conditions for manufactured gas plants

Geologic/related anthropogenic factors	Application	Rationale
Proximity to central business district	Optimal gas distribution at minimal cost	Saves in cost and effort toward placing gas mains for distribution of plant gas to the city.
Size of site	Half hectare minimum; generally much larger	Based on premise that city would grow and that more and more gas could be sold, hence the need to expand the plant; a few to tens of ha. of space most desirable.
Sited on transportation route	Rail, river or canal ideally accessible to the plant site by spur or slip. Vehicle transport rarely available during the era of manufactured gas.	Incoming feedstock such as coal, coke, and oils, as well as replacement supplies and parts for the making machines. Export of such salable residuals as must go off-site, such as coke, tar, light oils, ammonia, sulfur and cyanides.
Plant elevation lower than distribution zone	Illuminating and fuel gas is lighter than air	Designed to rise from the plant throughout the gas distribution area.
Entrance "Fluids" at the highest elevated portion of the works Source of process water	Fluids able to move through plant from process start to finish On-site well or adjacent water body (lake, river, stream)	Facilitates movement of process water and fluids by gravity, without requiring pump energy. High demand for water; to generate steam and to clarify gas; water used to gather and manage tar residuals and to produce tar for possible use or sale.
Stable foundation for works structure	Retort benches and other gas-manufacturing machines, as well as clarification, purification, and storage structures have heavy foundation loads	Entire function of gas manufacturing, treatment and storage is sensitive to stress fracturing as well as gas and fluid leakage from foundation settlemen on poor or over-stressed foundation earth materials
Located on inferior site of rail tracks	Gas works were considered nuisances by the public	Resulted in devaluation of surrounding properties.
Site drainage	From gate to lower end of the site.	Most operators took effort to see that the working surface of the gas yard was trafficable in all weather.
Off-site drainage	Effluents could not be stored on the plant site	Required consideration of some form of off-site removal of liquids from the plant site.
Above frequent flood levels	Gas machines highly susceptible to thermal and silting damage from floodwaters	Gas was considered essential once the supply was initiated and coal-gas retorts could not be shut down without thermal damage.
Plant "Upsets"; explosions and other emergency situations	Floods, explosions, hurricanes, unseated gas holders, frozen valves	May have resulted in direct discharges of process residuals and wastes to the ground, to include surface waters. Also flood erosion and transport of residuals and wastes. Search for contemporary newspaper accounts of impact on FMGP.
Waste disposal area(s)	Plant generated significant amounts of solid and liquid waste that could not be accommodated on the plant site	Typically solids assigned to plant dump, mostly as broken bricks and ceramic retort fragments, along with purification wastes. Dumps typically had high voids ratios and were a tempting disposal for toxic liquids and sludges.
	Large and sometimes deep tar ponds have been encountered at Duquoin, IL, Larium and Pontiac, MI, and Carondelet Coke Works, St. Louis, MO; the latter measured in hectare of area and meters of depth	Contemporary swamps, sloughs and lowlands were favorite dumpsite candidates. Adjacent low land was often selected for use as typically unlined tar ponds and tar lagoons, as a waste disposal option when tar quality fell below sales or during bad-market conditions.

century. Science and trade journals eagerly carried news of its developments and applications. Likewise, technical books began to appear, in English as early as 1815 (Accum, 1815). All that was needed to create gas and to have gas lighting was feedstock (coal), an iron monger (i.e. blacksmith) and some ready financing.

At its beginning and for several decades thereafter, manufactured gas could be generated anywhere, given the two essential ingredients, but it required a local means of storage. This was solved immediately by invention of the *gasometer*—or *gas holder*. The technical impracticalities of its transmission prevented its distribution beyond a few miles of each gas works. Reliable, high-pressure metal pipelines were to be a thing of the future, a problem not wholly solved until 1928.

Initially, the gas engineer was faced with physical decisions related to the actual siting and layout of the gas works. Once the financing was raised (about $\pounds 6,000$ or US\$30,000), the rest of the equation was based on geologic and anthropogenic factors (Table 1), the latter not directly recognized at the time.

4. Generic process of gas-making

It is imperative that the remedial site manager tasked with investigation and remediation of an FMGP have knowledge of the general gas manufacturing processes and the specific processes, equipment, and operational practices of the plant being investigated.

Basically, an organic feedstock (e.g. coal or oil) was pyrolytically roasted (in the absence of oxygen) to release volatile constituents in the form of raw gas. For manufacture of coal gas roasting was a batch process of a few hours' duration. For production of gas from oil (i.e. water gas, carburetted water gas, oilenriched water gas, and the various types of oil gas), roasting was a continuous process conducted in sequential cycles of a few minutes each.

Once created, the gas always contained tar and other microscopic impurities inimical to the purpose of the gas, which was for illumination, heating, or used as an industrial fuel. Removal of these impurities was performed in two sequential efforts. The first effort, which occurred immediately after the gas was

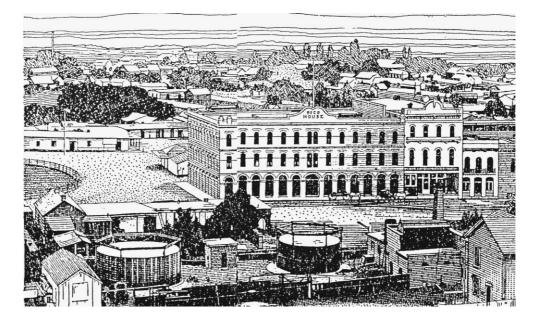


Fig. 1. Los Angeles Gas Company works off Aliso Street at today's historic Olvera Street Plaza. This was a coal-gas plant employing feedstock sent from Australia and from Britain as return cargoes for California grains. The works fronted Governor Pio Pico's hotel and it sported gas lights. Note the two gas holders already present at the 3-year-old plant. In the center is the lime house, storing purification media (from Newcomen Society of America, 1966).

generated and released from the retort (coal gas) or the generator (water gas, carburetted water gas [CWG], oil-enriched water gas and oil gas), never had a simplistic name and was conducted in devices named condensers, washers and scrubbers and in combinations of those devices. For this overall process, I use the generic term of *clarification*. The subsequent and finishing process of treatment always was termed *purification*.

Most of the gas treatment was involved in clarification. Purification, however, was essentially the same process for all forms of manufactured gas. Purifiers came in a wide variety of shapes, mainly right-circular cylinders and square-sided paralellapipeds. Known generically as "boxes," these devices produced "box wastes" that demanded strict attention toward their management as solid wastes. In the past 2 years, a rash of discoveries of derelict box wastes has brought their fate and today's threats, mainly from forms of cyanide, to the forefront of our national remediation attention.

4.1. Generic layout for a manufactured gas plant

After examining the layout evidence for hundreds of former plants, I have concluded that there never was a consensus physical arrangement employed by the manufactured gas industry. Gas works were designed

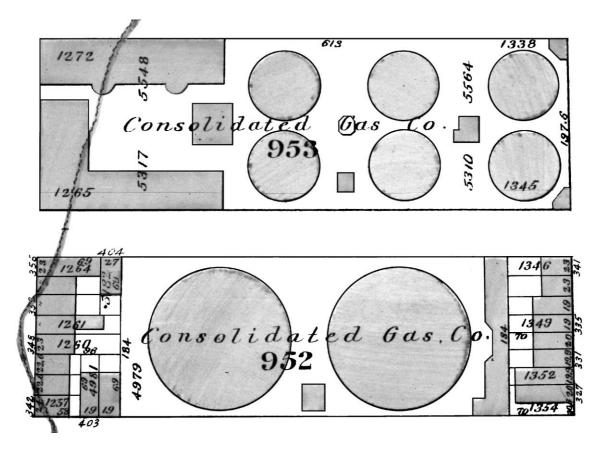


Fig. 2. Large urban gas works, that of the Consolidated Gas of New York City, 1884, when it was formed to consolidate six of the many competing manufactured gas companies. This portion of the plant covers most of two city blocks, with a rail spur in the alleyway. The remainder of the gas works occupied nearly three more city blocks. Each of the blocks is nearly 200 ft wide at the sidewalk. The drawing is a portion of G.M. Hopkins' Ward Maps of the City, published in many water-colored plates. Of course, no external trace of the gasworks exists today but the subsurface predictably will be saturated with tars, to include probable invasion of the utility systems, including drinking water. The bold, irregular line represents a topographic break in slope (from the author's collection of manufactured gas memorabilia).

A.W. Hatheway / Engineering Geology 64 (2002) 317-338

Table 2
Typical components of FMGPs as potential waste sources

Component	MGP use	Waste source location and potential
Transportation spur	Delivery point of feedstocks;	Human labor was a significant cost to gas making.
	exit point of salable residuals	Feedstocks were brought as close as possible to
		the retorts and generator houses.
Coal yard	Storage area which kept coal dry for	Kept as close as feasible to the retorts and generators.
	optimal use in firing boilers or as	Many plants chose to place coal in sheds so as to
	retort feedstock	optimize gasification in the presence of minimal
		water content.
Coke yard	By-product coke from coal-gas plants	Used symbiotically as feedstock for various water
		gas plants, especially as co-located.
Retort house	Coal-gas retorts housed internally in	The central building of the gas-making process;
	benches; groups of benches as stacks	generally located at the corner of the plant with
		highest elevation and near the gate, from which the
		processed gas left the plant through the station meter.
Generator house	Location of generator sets for	Generation capacity such that vastly smaller
	carburetted water gas process	space required for commensurate production
~	5 M.M. 1 M.M. 1 M.M. 1	over coal-gas process.
Condenser house	Building or addition immediately	After 1920, tended to be out-of-doors. Same
	adjacent to retort house	configuration used for all gas generating
~	or generator house	processes; usually a wet process.
Scrubber	Tall (5–10 m) right-circular cylinders	Usually employed a water shower to remove tar
1 1	with slanted trays holding wood fiber/chips	and other process residuals from the gas.
Washer	Gas immersed in agitated water bath	With carburetted water gas and enhanced oil-gas,
	to cool gas and drop tar particles	placed first in the clarification sequence as a seal
Combined weeksn	When appleved conceptly next 1905	against back-flow of gas.
Sumps of clarification	When employed, generally post-1895 Condensers, scrubbers and washers,	Enhanced the recovery of tar from gas. Tar generally removed manually for recovery,
devices	and their combinations had bottom	reuse or dumping.
devices		Spills and leaks assumed in a generic sense.
	sumps to trap and yield tar and tar sludges	Tar sludges contained refractory geologic
		impurities such as quartz and feldspar.
Exhauster	Steam-driven gas evacuator to reduce gas	Position of exhauster chosen by the plant gas
Exhluster	pressure and promote flow through system	engineer to achieve optimal flow of gas through
	pressure and promote now anough system	the tar-removal clarification process; most plants
		had a backup exhauster.
Purifiers (Purifier Boxes)	Gas was passed through "boxes" containing	Trapped some tar, but designed to trap sulfur,
	layers of lime, wood chips and/or strips of	cyanide, arsenic and other heavy metals all
	iron as various forms of sorbants, often in	of which originated in or from the organic gas
	conjunction with each other	feedstock materials.
	Generally employed minimally as a pair of	
	"boxes" in series, with at least a spare pair	
	in series	
Relief holder	(1) With coal gas, the oldest of the gas	Relief holders of the first variety can be expected
	holders, serving as a raw-gas exposure	to be of the subsurface variety and left virtually
	to tar-dropping seal water before	full of unrecovered tar as commonly abandoned.
	clarification/purification	Second variety holder tanks tend to be less
	(2) With carburetted or oil-enhanced water	commonly abandoned with large volumes of
	gas a necessary presence to buffer gas-	water-gas tar, unless dumped at time of plant
	pressure variations on blow-run cycles	decommissioning.
Gas holders (Gasometers)	As many as needed	Of several basic design variations.
	Generally predicated on the largest	Those pre-1900 have a subsurface
	being equivalent to 1 day's make	water-seal tank likely to have leaked considerable
	Of prime concern are the subsurface tanks	amounts of PAHs to the subsurface through
	most common to pre-1900 varieties	various fractures related to brick, masonry and/or

Table 2 (continued)

Component	MGP use	Waste source location and potential
		concrete or composite construction materials.
		Valve pits commonly exhibit hot-spot
		concentrations of PAH contamination.
Tar wells and tar cisterns	Subsurface tanks, right-circular cylinders	Commonly designed with a self-functioning gas-liquor
	and rectangular or square-sided; brick,	(process water) discharge system to carry off lightest-
	masonry or concrete or composite	fraction of gas liquor while retaining the gravity-separated
	Less commonly known as "ammonia wells"	tar fraction; all subject to through-fracture flow leakage to
		the surrounding earth during the operational period.
Tar separator	Both as above-ground devices housed	Above-ground devices were machines built to physically
	in structures and as subsurface rectangular-form	separate tar particles from liquor; below-ground devices
	concrete or wood "tanks," the latter often made	contained flow baffles functioning to slow in-out flow
	of wood planks subject to between-plank leakage	of gas liquor carrying suspended tar, the latter dropped
		to the sump of the tar separator.
Boiler house	Necessary to power the exhauster and a variety	Generally consumed coal or by-product coke; could be
	of small steam engines and fluid pumps	rigged for burning tar, under close supervision of
		temperatures.
		Ash not expected to be toxic unless exposed.
Oil storage tanks	Illuminating or enriching oil for	Generally petroleum oils susceptible
(above ground and	non-coal-gas production	to biodegradation if leaked or spilled;
underground)		generally no incentive or reason to dump.
Plant plumbing	Below-ground piping, often in	Virtually all process piping was subject to corrosion
	trenches or pipe chases	and release of PAHs, or release through joints and seams.
Yard drips (Drip Pots)	Light-oil (drip oil) collection sumps	Used to collect naphthalene and other light oils; these were
	placed along gas-flow pipes in the	of value and were recycled, usually as carburettion oils for
-	gas yard	water gas, or as industrial solvents.
Furnaces	The fire box located below	Source of operational heat; residue was only
	gas benches and all boilers	ash, cinder, clinker or slag; not expected to
G:		be hazardous by nature of its formation.
Station meter	Plant production measuring	Generally co-located with the plant office and in the
	device housed in a structure	up-gradient end of the site, near the plant gate. Not a source of contamination.
Governor	at the gas-outlet from the plant Gas flow control device adjusting	Should not be a source of contamination.
Governor	distributed gas to main distribution pressure	Should not be a source of containination.
Poil onur onillo	Operational-era spills of tars and	Naturally most prominent at larger plants and
Rail-spur spills	other fluid residuals (light oils and ammonia)	those plants engaged in by-product recovery
	being transferred off-site as by-products	operations.
Purification box media	Wood-chip and some forms of iron oxide	Action implies shaking and mass-expansion
spreading ground	media could be <i>revivified</i> on this pad and	via pitch forks.
spreading ground	returned for re-use short of ultimate "spent"	Sulfur and Prussian blue (cyanide) could be raked
	condition	up and sold as by-products in many instances.
Spent wood-chip box	A corner or side area of the gas yard where	Required dry climate or dry season; ashes
waste burning ground	dry chips could be torched and destroyed by fire	carried to a plant dump.
Plant dump	Primary disposal site on the gas yard; broken,	Expect a toxic character in general.
<i></i> P	fractured, slagged retort bricks; generator lining	Plant dump likely will be found in or at the furthest
	bricks, all manner of scurf or other carbon-slag	down-slope corner or extension of the gas yard,
	wastes, ash, clinker, slag, off-specification tar, tar	along the adjacent creek, stream, or river, or filling
	sludge, lampblack, box wastes, bottles, purifier	any original topographic declivity of the ground at
	shelf slats, broken windows, corroded pipe, scrap	the site.
	iron, wagon and vehicle parts, and broken	In almost all cases, the plant dump was filled early
	gas-plant equipment	and supplemented with multiple dumps around the
	• •	periphery of the gas plant, to within a several-block
		wagon haul distance.

initially by veteran gas men, who later included master plumbers, and after about 1870 in North America and Europe, by graduate gas engineers, mostly of the mechanical discipline, but including a significant percentage of civil engineers (about 40%). The overall governing condition was the topography of the site, mainly site surface gradient and the presence of an adjacent stream or body of surface water. The designer

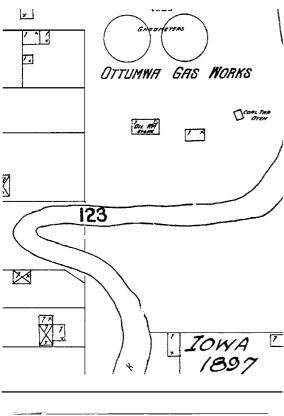


Fig. 4. Solid waste typical of the gas works dump. This riverside location displays a variety of maker-marked fire and refractory brick into which typically liquid-waste PAHs were channeled or dumped, either out of convenience to the operators or during times and conditions under which the economics of by-product recovery were considered infeasible (photograph by the author, Lansing, MI, 2001).

made the components fit the site and the flow of activity was from higher to lower elevation. Fig. 1 is the small original gas works at Los Angeles, CA. A

Fig. 3. Medium-sized works displayed by two editions of the Sanborn Fire Insurance Maps of Ottumwa, IA. The plant was independent as shown in the first view and as shown in the second view, was controlled by the United Light and Power, of Chicago (after the Library of Congress Collection). Upper view shows a portion of the plant in 1897, with a prominent "run" (creek) plies the gas yard flowing from the right toward the bottom of the view on its way to join the nearby river. At this time, the plant appears to have been burning at least some of its tar residuals, while other wastes likely made use of the large unoccupied gas yard rear (bottom) for disposal of ammoniacal liquors to the run and disposal of box wastes and other solid debris to the ground. Lower view, drawn in 1930, shows no trace of the now-infilled run, surely the plant dump. Owner Ottumwa Gas Company is modern in its array of symbiotic gas manufacturing processes. Coal gas yet is prominent, for Iowa coal was everywhere abundant and the agricultural rail grid was the finest in America. Coke from the coal-gas retorts likely was fed to the carburetted water gas generators and carburetting oil tanks are prominent. Water gas (blue gas) producers, the third gas manufacturing process, were present to make fuel gas for lively sales for heating and cooking and such gas likely was stored in the 100,000 cf. gas holder by the run. Illuminating gas was stored as a mix of CWG and coal gas in the newer gas holder across South Vine Street. The two older gas holders (gasometers) had been converted to carburetting oil storage and for accumulation of tar for minimum loads to be shipped via tank cars arriving on the nearby railroad siding (both maps are after coverage held in the Library of Congress).

truly large urban FMGP, the 1884 Consolidated Gas Company of New York City is shown as Fig. 2 and portrays the heroic dimensions of the gas yard and its individual buildings such as were common to large cities. Today, greater New York City is the site of at least 130 FMGPs.

To develop an accurate and effective site characterization plan for an FMGP site, an investigator must first understand how the individual *components* of the gas works (Table 2) contributed to the gas-making, treatment, storage and distribution process. The physical layout of the various plant components on a site and the likely subsurface piping connections between them will dictate where wastes were generated, leaked, or spilled. Conversely, bodies of wastes not having these associations were likely dumped around the fringes of the gas yard, in adjacent gullies or topographically low areas (Figs. 3, 4 and 5 and Hatheway, 2000). Without an appreciation of the functions of the various process components, and a knowledge of their locations, field investigators with the best of intentions can develop site and waste characterizations that are flawed. Worse-yet, such flaws may prompt injudicious choices and decisions related to public health and environmental protection. To be blunt, a flawed, inaccurate, or possibly incom-

Fig. 5. Some outstanding gas works residuals. (5L) Motor spirit (a.k.a. Benzol) was the forerunner of our gasoline and benzine was a distilled derivitive of the benzol. Today, these two light nonaqueous-phase liquids (LAPLs) are commonly found as groundwater contaminants, though more often not as free phase (from the Author's collection). (5L) The motor spirit can is British and holds one imperial gallon (both are from the author's collection). (5LL) Freshly excavated box-waste wood chips from the gas works dump at Sacramento FMGP no. 2, California (photographed by the author, 1999). (5RR) Typical appearance of the gas works dump at creek or riverside. This is at Manistee, MI (photographed by the author, 2001).

petent site and waste characterization of an FMGP destroys the accuracy and purpose of risk assessment of any sort. This is especially the case when carcinogenicity is considered.

4.2. Identifying the process flow path

Through the use of standard references sources, such as Brown's Directory of North American Gas Plants (Brown's Directory of North American Gas Companies; From 1889), Sanborn (Sanborn Fire Insurance Maps) or other fire insurance maps, and the many technical and association journals, it is possible to identify a chronological history of operations of the subject FMGP. I generally employ a working enlargement of the plant layout as found in the literature. To this drawing is applied a series of dashed arrows to denote the likely locations of leaks, spills, or discharges of toxic gas-making residuals to the ground (including discharge to surface drainage and bodies of surface water). Fig. 5 shows two prominent Light, Non-aqueous-Phase Liquid (LNAPL) "light oils" that frequently are encountered as solubilized into ground water passing below the surface of FMGPs.

This is a desktop assessment made before visiting the field. For this exercise, it is always prudent to attempt to secure both historic and recent aerial photographs of the site, particularly stereoscopic coverage. The use of image interpretation, of course, is a standard technique in engineering geology. A search for archival topographic and planar map coverage may well yield additional information concerning original topography. Of special consideration are high and low elevations and topographic lows that will have influenced, if not governed, the layout and the fate of site wastes, whether solid, liquid, toxic or non-toxic.

4.3. A word about sampling gas-house wastes

Characterization of FMGP sites in the United States is rather hindered by the fact that the Resource Conservation and Recover Act (RCRA, 1976, as amended) regulations (Code of Federal Regulations [CFR], Part 260–299) lists only 16 PAHs. In reality, there are some 500 to 3000 separate PAH compounds that can be expected to have been produced and wasted on and around a given FMGP. It is important also to recognize that "tar" and PAHs originate from non-petroleum organic material and it is "asphalt" that is the SVOC product relating to petroleum refining. A distinction is made, however, with the residuals formed from the various processes of oil-gas generation, all of which also are termed "tars" and which contain PAHs. Incomplete combustion of wood, whether used in manufacturing resin-gas or from wood fires, wood furnaces, or forest fires, also produce PAHs.

Since 1995, the popular Voluntary Cleanup Program (VCP), developed by the State of California as the *Expedited Remedial Action Program Act of 1994* have been selected by Responsible Parties (RPs) as a more favorable basis for conduct of their FMGP site cleanups. USEPA embraced this concept nationally and has allowed the States considerable freedom in the conduct of these actions. As with all hazardous waste cleanups, the VCP program generally offers the greatest degree of freedom to the Responsible Party (RP) in proposing key chemical parameters and other sampling and analysis details for site and waste characterization work plans. VCP also is the seat of the ensuing *Brownfields* program of USEPA.

With this in mind, an early site sampling effort designed to test the interpretations generated under the recommended provisions presented later in the paper is recommended. It may be in the best interests of those requesting the investigation or those funding the characterization, to generate an accurate assessment of which detectable PAHs are present in the largest concentrations, thereby possibly indicating those species that may also represent the greatest environmental threats. If strict adherence to the RCRA Appendix VIII list (40CFR261, Appx. VIII) is mandatory, a few supplemental compounds may be proposed for purposes more directly associated with the remediation philosophy of the funding organization.

The hazardous waste list that applies to Comprehensive Environmental Response, Liability and Compensation Act (CERCLA) or SUPERFUND LAW activities (40CFR302.4) does not specify individual compounds, rather, "characteristic" wastes as well as "listed" wastes.

Furthermore, in selecting plant waste bodies for sampling, high priority should be given to selecting samples representative of detected waste sources ("hot spots") as well as of the host stratigraphic unit (the latter for waste that has invaded the interstices or discontinuities of earth material units). Hambley (personal communication, Jul, 2001) notes that speciesdetection by means of a chromatograph, from tar samples, generally requires verification by mass spectrography, and that strict proof is a function of the resolution of the test column, and the length given over to the analysis. PAHs are not well separated by the gas chromatographic/mass spectrophotometric (GC/MS) method (SW 846 Method 8270) and High Performance Liquid Chromatography (HPLC; USEPA analytic protocol SW 846, method 8310) separates only a limited number of compounds-the 16 PAHs usually specified plus 2 isomers of methyl naphthalene. Also, several compounds can elute at a given time in a GC and identification by MS signatures is not always straightforward. Finally, long-chain hydrocarbons and multi-ring aromatics tend to travel through the chromatograph in a mass without separation. Caution is the word here and additional sampling and analysis generally will be required.

The benzene, toluene, ethylbenzene and xylene (BTEX) VOC compounds all were generated at FMGPs and are often given attention because of their capacity to dissolve away from their source volumes and to form separate, definable groundwater contamination plumes.

As a means of considering relative threats from various source areas or source volumes, it is sometimes appropriate to consider these three artificial groupings of PAH:

- 1. Total PAH detected and analyzed (TPAH);
- 2. Total carcinogenic PAH (TCPAH), and;
- 3. Total non-carcinogenic PAH (TNPAH).

Heavy metals, especially the carcinogen arsenic, were captured and detained at the purifier boxes and generally pose a major concern when present as dumped box wastes.

Parties to the FMGP and related remediation should feel free to suggest or require (as the case may be) screening or detection of elements or compounds in addition to those that may be required State or Federal regulatory consent orders. Such a selection may be helpful in support of the interpretation of operational or environmental conditions to support the remediation concept preferred either by the responsible party or the regulatory agency.

5. Identifying and predicting generic gas plant wastes

The relationships between various toxic wastes produced by FMGPs, and the various processes of gas manufacture are well known, both in characteristics and in relative quantities per thousand cubic feet of gas produced.

5.1. Predicting FMGP waste types

Knowledge of the character of the expected wastes is essential for planning, performance and interpretation of FMGP site and waste characterization efforts. Much of the character of the wastes to be expected at individual gas works sites can be predicted with the assistance of some of the history of that works (Table 3). In particular, Figs. 6 and 7 show drawings typical of the information traditionally held in utility company archives. Application of the following five-step sequence of logic is useful for guiding initial investigation planning efforts:

- 1. What residuals are to be expected on the basis of the gas manufacturing and treatment processes employed at the plant, by time period?
- 2. What was the overall flow path of gas and liquors, including precipitation points and likely locations of leaks, spills and other discharge, along with locations of typically leaky gas holder pit tanks, tar wells and tar cisterns, and dedicated plant sewerage?
- 3. Where were the wastes, as separated from useful residuals likely discharged?
- 4. How did the geologic setting likely affect the fate and transport of each of the potential gas works wastes and their likely points of discharge?
- 5. How were the wasted residuals likely removed from the site and to where?

The waste-type analysis forms the basis for the site and waste characterization effort. Some workers representing Potential Responsible Parties (PRPs) indulge in the speculation of "risk assessment" as regards the most likely scenario of exposure of gas-house wastes to human, animal and food-chain receptors, though the

Table 3
Predicting FMGP waste types as the basis for site and waste characterization

Residual	Conditions as a waste	Guidelines to quantities per 10,000 cf. gas produced
Coke	Always a candidate for fuel, for sale in the community or for use at the plant	About 60%, by weight of the original quantity of feedstock coal; approximately 2000 lb of coal per 10,000 cf. of coal gas produced yields of about 1200 lb coke.
Tar	Salable under local and regional	When marketable and containing less than 4.0%
	market conditions when produced or	water, sold at the plant and via rail tank cars to the
	treated to have less than 4.0%	many tar distillers, in the range of US\$0.05 to
	water content	US\$0.02 per gallon. Required an effort to capture and
		separate from liquors and its own unsalable sludge. Calculate at 10 to 14 gal per 10,000 cf. gas, depending
Tar-water emulsion	Commonly formed in CWG process	on the feed stock and operating conditions. Generally unsalable whenever untreated
Tai-water enfuision	Commonly formed in CWG process, especially after 1910 and whenever soft	to reduce the water content of tar water emulsions,
	coal was substituted for coke and when	which ran from in excess of 4% market limit to
	heavy or crude oil was used in carburettion	as much as 92%, as noted in the literature.
	in lieu of light petroleum oils or light tar oils	Calculate at 4 to 6 gal per 10,000 cf. gas.
Liquor	Always a contaminant; was the process	Highly dependent on plant design and mode
Enquor	water used to extract tar from the tar	of operation; generally in the range of high
	fog of produced gas.	hundreds to tens of thousands of gallons per day.
	Ammoniacal Liquor with coal gas	Difficult to relate to quantities of liquor per
	and Gas Liquor with CWG	10,000 cf. gas produced.
Tar sludge	Made up of the refractory geologic	Tens to hundreds of gallons per day, depending on
	debris minerals and lithologic fragments	local design and operating conditions.
	from the parent coal or residues from	Difficult to relate to quantities of liquor per 10,000
	parent oil feedstock	cf. gas produced. Sludge was unsalable, unusable,
		and nearly always dumped.
Lampblack	Uncommon to coal-gas	Major amounts produced by Pacific Coast Oil Gas
	Sometimes found in CWG	process; as produced, nearly pure, powered carbon;
	Common to oil gas	easily sorbs toxic PAHs in post-operational deposits
		or in gas works dump environments.
Ammonia	Released mainly from coal-gas production,	Typically wasted in both (post-1875) and smaller coal-
	stemming from feedstock coals	gas plants; required special equipment to capture; after
		1870 some large-city collection as cleaning agent; after
Nanhthalana	Contured at plant and distribution system	1920 sometimes a market as ammonium sulfate fertilizer. Had to be captured and pumped or
Naphthalene	Captured at plant and distribution-system sumps, as pumped from yard and street trips	would cause blockages of transmission and distribution
	on a weekly basis	pipes and clogging of gas lights and stove jet ports.
Naphtha	Chemical term for crystallized naphthalene	AKA "moth balls" in commerce.
Light tar oils	Monocyclic and duocyclic PAHs	Historically, these were sold as commercial solvents
8		and fuels or used as carburetting oils at CWG plants.
Medium tar oils	Another term for medium tars	Miscible and co-soluble with the tar mass; separable
	of the general 3 to 4-benzene-ring tars	through distillation; seldom done on plant site.
Heavy tar oils	5,6,7-benzene-ring tars, includes anthracene	Miscible and co-soluble with the tar mass; separable
	and the "green oils" (tars)	through distillation; seldom done on plant site.
Tar pitch	Heavy ends of any residual tar of	Not encountered on site in absence of a still;
	manufactured gas Common to all processes	the end reside from distillation; favored for use
		as waterproofing and roofing material
Cyanide/Prussian blue	Cyanides formed from C and N released	Most formed in coal gas production; minor amounts
	from coal Captured mainly at purification	to be expected with CWG and lesser amounts
	boxes and found as several compounds	with oil gas.
	depending on plant conditions	Can be released to environment in modern times
		under locally acidic conditions, mainly in the presence
		of box-waste sulfur; comes out as water-soluble or as
		poisonous gas.

328

Table 3 (continued)

Residual	Conditions as a waste	Guidelines to quantities per 10,000 cf. gas produced
Sulphur	Captured in purification boxes	Could be gathered and sold under favorable market conditions, mainly to generate vitriol (sulfuric acid) in urban centers; generally not the case elsewhere.
Ash	Inert refractory mineral residue of coal as a gas-making feedstock or as a plant furnace or boiler fuel	Not expected to contain contaminants above remedial action levels. Should be sampled and tested, however.
Clinker	Partially fused ash	Not expected to contain contaminants above remedial action levels.
Slag	Mineral-fused ash	Forms from retort and boiler furnaces. Not expected to contain contaminants above remedial action levels.
Scurf	Hard carbon deposits formed on interior surfaces of retorts and generators	Removed by manual chipping via iron rods. Not expected to contain contaminants above remedial action levels.
Spent lime ("Blue Billy")	Spent lime cleared from one-time use in purifying boxes; most common before 1875; crushed limestone as well as pulverized sea shells	Generally a toxic waste containing cyanide and heavy metals, possibly sulfides. May be associated, as dumped, with other spent purification media.
Spent wood chips, excelsior ^a or coarse sawdust	Sorbant wood waste brought to the plant for purification medium; Generally from 1870 to end of manufactured gas era	Consider potentially toxic unless shown otherwise. May be associated with other spend purification media. May not display Prussian blue color until exposed to air.
Spent iron Spirals, Spent iron strips, Spent iron oxide, Spent bog iron (ore)	Sulfur-capturing media brought to the plant for purification; generally post-1875 to the end of manufactured gas	Considered toxic unless shown otherwise. Be concerned with sulfur-related pH conditions that can lead to release cyanide to the environment. ^b May be associated with other spent purification media.
Retort and bench fragments	Retorts replaced at 24-month or lesser frequency	Approximately 1 ton per bench per year. Forms a void matrix for dump-sequestering of PAH toxic waste.
Replaced CWG generator shell lining brick	Average brick liner replacement each 6 months	Approximately 3 tons of brick removed and replaced per generator set per year. Forms a void matrix for dump sequestering of PAH toxic waste.

^a Spiral-form wood shavings.

^b "Sulfuric" spelling is consistent with historic usage.

latter two computations generally are neglected. It is recognized, of course, that there are differences in the degrees of potential exposure involving the food chain, between urban and rural areas, with the exception of urban residents who rely on fish and other aquatic life to supplement their diet. Likewise, USEPA has largely abandoned its own regional prosecution of FMGP cleanups in favor of limited special funding to those of the State regulatory agencies that have elected to pursue this highly worthwhile area of environmental remediation.

This paper therefore is presented especially as suggested guidance for the States and Provinces in their deliberations related to defining full disclosure FMGP characterization. Without deliberation as to the likely presence and location of gas-house toxic waste "sources" (a.k.a. "hot spots"), the entire exercise of risk assessment takes on the nature of a ridiculous "drill," conducted with the reality of a charade that bears little or no bearing to actual site conditions.

5.2. Generic forms of manufactured gas plant wastes

Gas-house wastes are herein classified as a series of groups (Table 4) that are useful for site and waste characterization. In this classification presented physiochemically, it is theoretically possible for PAHs to contain more than six rings; however, no such

Fig. 6. Ernest Hexamer's Fire Insurance perspective sketch of the Northern Liberties Gas Works off Canal Street, in Philadelphia, 1875. Hexamer was an innovator with this well-appreciated visual feature in his atlases. The 2.5-story generator house proclaims that this works had already adopted T.S.C. Lowe's carburetted water gas sets, as produced at the Lowe factory at nearby Norristown, PA. The plant boiler supplies steam for pumps, gas holder external heating, and drives exhausters and feedstock elevators. The long farside building was the site of clarification and purification of the gas, and such was stored on the gas yard in two gas holders with subsurface pits ("tanks"). Coal and coke was stored in the sheds on the near side of the plant and the works was surrounded by a low fence. Pipe-fitting and maintenance shops and a stable occupy the uphill Canal Street corner of the works, while pipe-fitting shops fill the far downhill corner (from the author's collection).

compounds have been reliably reported as of this writing.

Though many readers will have significant experience with volatile organic compounds (VOCs) such as halogenated (chlorinated) solvents, gas-house tars are non-chlorinated and are classed as semi-volatile organic compounds (SVOCs). This distinction is important, for much of the knowledge of modern remedial-mitigation technology does not apply to site and waste characterization of FMGPs. USEPA recog-

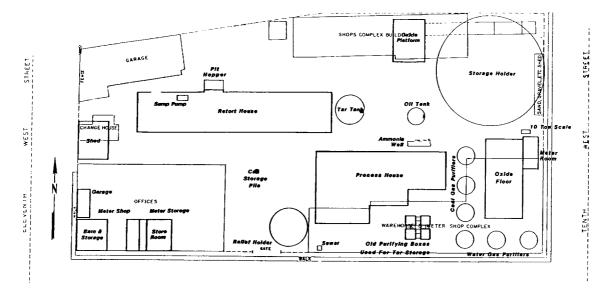


Fig. 7. Salt Lake City's first gas works was established in 1872 at the direction of Mormon Church President Brigham Young. Here is a composite plant layout drawing of the Salt Lake City plant of the Utah Gas and Coke, established in 1907 as an opposition company. This 1924 configuration is as taken from design plans by its holding company owner, American Public Utilities, a subsidiary of the engineers, Kelsey Brewer & Company, of Grand Rapids, MI, also operators of gas and electric properties. Utility company archives were famous for the breadth and detail of their holdings. The FMGP is bordered on the right by 10th West Street and on the left by 11th West Street (after drawing in files of Utah Department of Environmental Quality).

330

Table 4	
Generic forms of manufactured gas plant wastes	

Waste form	Nature	Character as a waste source
Solid waste	Plant operation, maintenance,	Typically inert and dominated by
	expansion, and demolition debris	service-damaged ceramic retort fragments,
	Found both on-site and in near	fractured fire brick, scrap iron and pipe,
	off-site environs	along with scurf, ash, clinker and slag, some
	Every site had at least one gas-yard dump	from gas machines, some from plant boilers.
	Most plants were ringed	Ash and clinker is subject to sorption
	with multiple off-site dumps	of PAH if such later comes into contact.
		Often this inert mass contains dumped
		toxic tarry wastes in its void interstices.
"Box waste"	Potentially toxic solid waste	Media were introduced at about the times shown;
	such as cyanide and heavy metals	Lime (1805), wood chips, excelsior and sawdust (1870
	Found both on-site and in	and iron oxide (1875), as borings, scraps, strips,
	near off-site environs	bog iron ore and various forms of particulate oxide.
		Often used contemporaneously, as layers.
"Gas liquor" (Generic Term)	Combined aqueous condensate	Known as "ammoniacal" if from coal gas,
A.k.a. "Ammoniacal Liquor"	of gas manufacture plus process	other wise and generally known as "gas liquor."
(Coal-Gas Process)	waters applied for gas cooling	This was the plant process water effluent and
A.k.a. "Gas Liquor"	and precipitation of tar	may have been treated to recover tar,
CWG and Oil-Gas Processes)	Includes coke quench waters at the	especially where such documentary evidence exists.
	retort house and at by-product coke ovens	The treated residue always was discharged
	Subject to final, long-term	in some fashion, either through leaking subsurface
	precipitation of PAHs to sediment	vessels or from design-overflow discharge, or directly
	of the receiving area	into plant surface drainage channels
	Tend to be found throughout	or dedicated sewers.
	the site and its subsurface,	It is important to recognize that some gas
	as ubiquitous waste fluids	liquor is BTEX, as "light oils", are LNAPLs,
	and as groundwater contaminants	and the remainder are "medium" to
	and as groundwater containinants	"heavy tar oils" and therefore are DNAPLs.
Tar	Created as a result of all gas-manufacturing	Recover and reuse or sale based entirely
141	from organic feedstock	on philosophy of plant management as well
	Had to be removed from the	as on current market conditions for sale.
	raw gas, at the plant,	Generally unsalable when water content
	to serve the consumer	exceeded 4%; CWG tars typically had a
	Was totally lost to the environment	high-water-content emulsion form after 1910.
	at charcoal plants and "beehive" coke	Usually present at FMGPs as bodies
	ovens	of contaminated soil, in abandoned subsurface
	ovens	vessels such as gas holder tanks and tar wells,
		and as subsurface pockets or "hot spots."
Lampblack	Relatively largest quantities	Typically non-toxic but capable of
Lampolack	to be found at oil-gas plants	sorbing PAHs later, to significant degrees.
DAIL in site anound vustor	6 1	6 6
PAH in site ground water	Released continually, from each	Typically most active during active
	source area, solubilized into	operation of the gas works. Will persist indefinitely
	passing groundwater	afterward, unless physically removed, as the source
	Released from the source in	areas are essentially non-degradable in nature
	relation to their solubility	and have lives measured in geologic time.
	in the passing ground water	"Light oils" do not reflect the totality
		of groundwater contamination.

nizes 16 PAHs as defined toxic compounds (Appendix VIII, 40CFR261), though it is well known that gas feedstocks can produce from 500 to 3000 separate PAH compounds at a single instance of pyrolysis. We used to have considerable reservation toward penetration of sources for the purpose of sampling for laboratory analysis. Site exploration equipment and skills are now established well enough that all FMGP

Table 5
Predictable general geologic influences on gas plant wastes

Geologic condition	General effect	Implication
Vadose zone	Transmits SVOCs to depth	Depth controlled by magnitude and duration of the discharge or leakage.
Groundwater surface	Terminates free downward component of fluid gas waste flow during active addition by source-creating mechanism, unless the waste is DNAPL	Major force in lateral movement, mainly along flow gradient, with some side-spreading.
Hydraulically conductive vadose-zone bottom stratum	Base of toxic source volume sits on or in the waste mass	Common occurrence in disused sand pits in which original borrow pit was terminated at depth of entry of ground water, and that case repeats itself to flush or leach the waste volume to local ground water.
Alternating sequences of vadose-zone soil stratigraphy	Direct relationship on how much lateral flow transport distance will occur for the less-viscous tar fractions	Vertical trace of horizontal migration will have the irregular appearance of a geophysical borehole density signature (i.e. furthest outward in the most conductive strata).
Geomorphic channel-and-fill	Become selective pathways for lighter tar fractions and, especially gas liquors (as PAH-contaminated wastewaters)	Acts as an overwhelming conduit for contaminant migration as long as supply and relative viscosity overcome gravitational effects, along with channel-bottom permeability to the gas liquor or its suspended tar or dissolved PAHs.
Lateral distance to topographic declivity Solubility in ground water	Will significantly alter flow path of contaminated ground water Most soluble tar fractions will strip off the outer rind of each tarry source volumes and contaminate passing ground water	Always be on the lookout for gully-side breakouts. The situation has the potential to yield and transport contamination for thousands of years or more. Often detected by iridescence of floating water-surface sheens or from fish and other aquatic-life kills, particularly fresh-water clams.
pH of vadose-zone host soil	Under acidic conditions can lead to release of box-waste cyanides and heavy metals	Arsenic, a known carcinogen, is the most common of the box-waste heavy metals.
Active cone of depression	Cone of depression touches host earth material holding the contaminant source volume	Active withdrawal from adjacent ground water supply may induce activated flow movement of FMGP toxics.
Pockets, lenses or channels of higher porosity and/or conductivity	Stratigraphic bodies present as anomalies in an otherwise more dense and less porous/less conductive host medium	Become operational-era sumps as natural "hot spots" of accumulated PAHs as leaked spilled or otherwise discharged to the ground.
Top-of-rock	Very important to anticipate and/or recognize this situation as a potential DNAPL trap, especially if at the base of a soil sequence	Traps most of the tar oils, yet lighter or free-phase DNAPLs will likely have penetrated the more open rock discontinuities. May, in some cases, cause PAH migration counter to the recognized saturated-zone groundwater flow gradient.
Psuedo-geologic pathways for PAH transport	Formal (municipal) and informal (plant) sewers	Most gas plant operators chose to keep the gas yard dry for optimization of plant operation
	Gas yard drainage features such as tiles Often leakage occurred along the exterior	Most gas yards were laid out to drain from the entrance to the adjacent stream or lowland. Some of these drains leaked
Fluvial sediments	of the sewer/pipe Generally present in thalwegs and channel inverts of natural drainage and as accumulated in lowland areas formerly known as "swamps," adjacent to the FMGP	wastes before ultimate discharge. Usually has an appreciable content of clay-particle and clay mineral content that was instrumental in local capture of the PAH and other impurities discharged with the plant liquors.

332

Table 5 (continued)

Geologic condition	General effect	Implication
Glacial geologic features	Lodgment (basal) till restricts contaminant transport	Light oils could and did penetrate glacial lodgment till joints however.
	Periglacial and proglacial drainage features	May constitute high-velocity operational-era contaminant-transport pathways.
	Buried channels Geomorphic "holidays" ("windows") in	May constitute high-velocity operational-era contaminant-transport pathways.
	glacial-lacustrine clay horizons	Known to destroy natural restraints to PAH migration downward in the soil sequence.

subsurface structures deserve careful, incremental sampling to their ultimate depths. In most cases, hot spots will require some sort of direct treatment and the imperative of maintaining their integrity during field exploration should not be cited as a deterrent to sampling. Nevertheless, invasive sampling should be planned and conducted so as to only minimally disturb contaminated ground.

5.3. Special nature of "tar"

"Tar," as a technical form, refers strictly to the viscous residue from pyrolytic (in the absence of oxygen) combustion of organic matter. Strictly speaking, use of the term "tar" thus implies an origin from coal. Its counterpart term "asphalt" strictly connotes a petroleum origin. During the manufactured gas era, the tars were also referred to as "oils," and they came in combined degrees of specific gravity, from light through medium to heavy oils. The final high-gravity, high-viscosity residue was known as "pitch," which readers older than age 50 will recall having seen tar as a waterproofing roofing material melted on-site in roaster trailers and applied with hot mops.

Tar oils consist of chains of benzene rings. Those that contain three to six benzene rings are known as polycyclic aromatic hydrocarbons (PAHs) or less commonly as polyaromatic hydrocarbons or, equivalently, polynuclear aromatic hydrocarbons (PNAs). The tar "light oils" properly are one-ring (monocyclic) and two-ring (duo-cyclic) PAHs, but these are light, non-aqueous-phase liquids (LNAPLs). PAHs of three or more benzene rings are dense, non-aqueousphase liquids (DNAPLs). Theoretically, it is possible for PAHs to form in chains of more than six benzene rings, but such has not yet been reliably reported in the literature.

5.4. Typical hot-spot waste locations

In the absence of gas company historic design and layout drawings, the historic Sanborn Maps (Goad Maps in Canada) are the most reliable, generally available indicators of potential FMGP site waste locations. Design and layout drawings, along with equipment inventories and interior and exterior photographs were routinely produced for and by the gas utilities during the era of manufactured gas. Regrettably little of this well-known trove of company archives has been declared as surviving in the traditionally meticulous and comprehensive utility archives. State archives sometimes yield such contributions from the public service commissions. Almost impossible to locate is other such evidence in the hands of collectors, as historic "paper."

As revised aperiodically, it is important to ensure that the Sanborn Map coverage of subsequent editions spans the entire operational period of the plant. In many instances there were process and equipment modifications and replacements, along with other additions that can greatly impact the locations of present-day hot spots.

The author prefers to identify, in prediction, likely locations of hot spots of plant toxic by a series of circled "x" marks with numbers to identify the suspected nature of the wastes and their waste-source form.

Information regarding plant decommissioning and demolition also must be considered. Those FMGPs that were formally decommissioned, most likely in the 1946–1965 time frame, were subject to dumping of on-hand tars left in place at termination of plant activities. Those sites at which derelict tar wastes were brought to the ground surface and spread across the site can greatly alter the resultant contamination. Decommissioning by utilities was typically carried

out under formal bid and work-order documents specifying final site conditions.

I strive to overcome not only subtleties but some outstanding misconceptions that have been applied to FMGP remediation since Federal emphasis was placed on remediating such sites in 1985 by USEPA.

6. Geologic controls

The nature of the location of wastes at an FMGP relate mainly to historic gas works technology. For most FMGP sites, the historic record is cloudy due to the fact that archival records relating to most plants are claimed by RPs to have been destroyed. A diligent search of the relevant gas literature (e.g. American Gas-Light Journal) will provide most of the missing events affecting plant operational history.

It becomes paramount, therefore, that the actual search, discovery and verification of gas works wastes be a geologically intensive field activity, following a competent attempt to predict such wastes. Most gas plant remediation professionals have witnessed cleanup overruns of "unexpected" caches of contaminated soil or hot spots of tar pockets that easily reach the magnitude of several thousand cubic meters. The "surprise" was, of course, generally rooted in an unwillingness of the RP to categorically predict the potential for such wastes and to place explorations in the potential area for such waste. Regulatory officials must also be prepared to make such predictions and argue for, or stipulate, that such ground be investigated to their satisfaction.

Once in the ground, and certainly after termination of plant activity, most gas-house wastes become relatively immobile, either because they are SVOC liquids with typically low solubility in ground water and high viscosity, or that they were solid wastes in the first instance. SVOCs basically come to rest in the vadose zone due to a positional equilibrium between their fluid density and viscosity and the pore or fracture medium of the host earth material, upon which gravitational force has acted as the driving mechanism. The viscous SVOC compounds lack the pressure to overcome interstitial forces and to invade pore or fracture space at that point.

I have discovered some geologic truisms as a result of my own FMGP and other site characterization experience. These are offered in Table 5 as the most likely conditions to be expected in planning for characterizing FMGP sites and can be used to develop the first phase of field explorations and to test the resulting observations. Geologic features of the FMGP site may themselves present the greatest physicochemical control over the fate and transport of plant contaminants that have been leaked, spilled or discharged, and were not the subject of plant dumping during the plant operational period.

6.1. Site and waste characterization planning

Once the historic site layout information has been evaluated and interpreted and the predicted sources and location of wastes have been delimited on the site map, explorations can be allocated to the verification of the expected (pre-exploration) stratigraphy and the discovery of waste sources or other hot spots.

Site exploration costs can be managed in an economically effective way if the general findings of Expedited Site Characterization are followed (Beam et al., 1997); to wit, to produce and evaluate findings on a daily basis while the team is mobilized for field activity, and to apply corrections to the plan on that basis. Corrections are made from evaluation of visual observations and from incoming laboratory determinations. Of course, the exploration team must be on a highly credible level of communication with regulatory officials in order to conduct the work plan within a rapid-response framework. Generally, it is most efficient when the RP arranges with the State or Provincial regulatory agency to pay for the presence of an on-site regulatory oversight official.

6.2. Geological and geophysical exploration techniques

Sensitive FMGP site characterization efforts generally begin with the use of a backhoe. Good photointerpretation skills, followed by field-mapping observation, are primary and essential, as leads to backhoe exploration. Then, on evaluation of site evidence, it is proper to consider some form of pushprobe, capable of sensing the geologic character of the subsurface with minimal disturbance of the ground itself, should waste sources be directly encountered. Direct-push devices are ineffective, however, where gas-house solid wastes have been disposed with retort and generator brick fragments.

Backhoes are particularly useful in locating the outer surface of gas holder tank walls, as well as those of the various forms of tar wells and cisterns (same meaning). For most other applications of site characterization technique (Hatheway, in press (b)), exploration of FMGPs do not differ significantly from the prudent choices available for site exploration and sampling for UHWSs in general.

Where soil-vapor gas analysis collectors are appropriate, the gas-collection port must be pushed to such a depth as to avoid the usual background. By their very nature, however, PAHs are only weakly volatile at

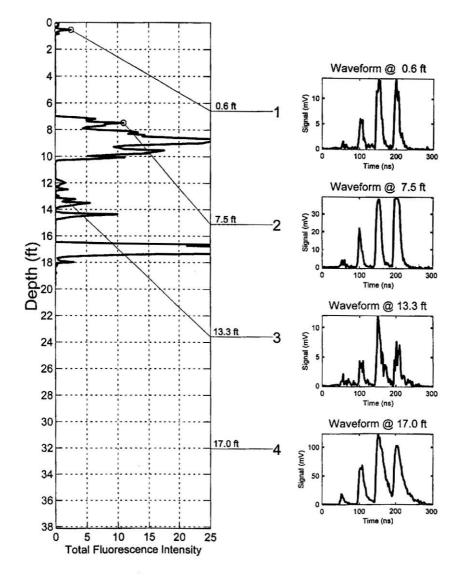


Fig. 8. Composite SCAPS signature from a FMGP site in New York State. The wave form is diagnostic of PAHs with four peaks. The laserinduced fluorescence is tied directly to highly reproducible soil typing by the Unified Soil Classification System (USCS) of the U.S. Army Corps of Engineers (courtesy of Fugro Geosciences, Houston, TX).

ambient temperature. Many probe operators are ultra cautious about incurring damage to their equipment, so that it is prudent to allow extra time for slow advance rates in this ground suspected of having subsurface obstacles.

Of particular use are push devices equipped with fluorescence scanning capability. The original tool in this field is the Site Characterization and Penetration System (SCAPS) developed by the U.S. Army Engineer Waterways Experiment Station, and field-tested in 1990. SCAPS became commercially available in 1994 and is equipped with a fiber-optic laser-induced fluorescence (LIF) device that excites spectral response in soils penetrated outside its sapphire–crystal lens. The collected soil/contamination response is computer-recorded and plotted as a LIF signature opposite the geotechnical push-resistance plot of the stratigraphy being penetrated.

Together, the two vertical plots define the soil types penetrated (in accordance with the Unified Soil Classification System [USCS]) and such contaminant groups as are present, including those groups with compounds and elements typical of gas-house wastes.

Fig. 8 is a segment of an FMGP exploratory boring response signature captured by FUGRO-McClelland consultants, of Houston, TX, who are one of several

Table 6

Criteria for producing a complete and accurate FMGP characterization

Criteria	Scope	Questions to be raised and resolved	
Chronological history	Minimally to include screening and	(1) Fundamental layout of the site,	
of the site	abstraction of dates and time periods,	from establishment to termination.	
	gas-manufacturing process, site ownership	(2) Relate gas manufacturing and	
	and configuration	necessary treatment activity to types	
	(1) Brown's Directory	of gas-house residuals and wastes.	
	(2) Fire Insurance Maps	(3) Estimate, quantitatively, the gross	
	(3) Historic Photographs	amount of site wastes that would likely	
	(4) Local Newspaper Coverage	have been produced for each period	
	(5) Proceedings of Gas Associations	(say, decade) of plant history.	
	(6) Gas Industry Journals		
Definition of gas-production	Provide layout interpretation of the	(1) Location and function of all	
and treatment paths	locations of component steps and	definable components of the gas plant.	
	transport of gas and residuals on the property	(2) Pathway of movement of gas	
		and residuals at the site.	
Predicted locations of wastes	Examine historic evidence;	(1) Most likely present location of waster	
remaining on site today	evaluate such in terms of site as it exists today.	associated with each component device	
		and structure and each gas production	
		and treatment activity.	
		(2) Portions of the gas yard shown as	
		vacant on Sanborn Maps likely	
		are on-site dumps.	
Complete coverage of the	Apply geologic assessment	(1) Ensure that each predicted lead is	
plant site area	to all field data to gain an appropriately	subject to individual field investigation.	
	high-level of confidence that undetected	(2) Leave no portion of the former	
	toxic wastes are not left undetected	gas yard unexplored; To commit such an	
		error is to flaw the entire Remedial	
		Investigation or characterization.	
Possible off-site dumps	Commensurate with access to property and	Presentation of a real question	
	the risk assumption policy of the responsible	of environmental ethics, especially	
	party and the oversight public agency	considering that the adjacent	
		property will likely be	
		owned by interests other than those	
		of the project at hand.	
		May require being addressed by public	
		officials and the regulatory agency.	

geoenvironmental firms that market the technique nationally, as their Rapid Optical Screening Tool (ROST)-LIF services.

6.3. Development of the characterization assessment

Characterization should be terminated only when its scope and findings meet established criteria for completeness. Table 6 is offered as a checklist for conduct of FMGP site and waste characterization.

A guiding philosophy for site and waste characterization of FMGPs should always reflect the fact that these toxic compounds are non-degradable with time and are relatively immobile. Whenever they are in contact with ground water, they transfer their toxicity to the environment. Whenever and wherever there are flaws in the characterization of a FMGP (or other coal-tar site) there will come a day when resultant human or environmental damage will be detected after the fact. Our larger cities are rife with derelict MGP sites (130 in Greater New York City and at least 87 in Greater Chicago). Nearly priceless building sites will be heavily cost-impacted by premium foundation treatments when they occur at an FMGP.

7. Conclusions and recommendations

All parties to the characterization of FMGPs and other related sites should bear in mind that incompleteness or flaws in the characterization may leave the public and/or environment at peril.

Some agents working with these sites prefer to apply the concept of Risk-Based Corrective Action (RBCA), in accordance with the provisions of applicable ASTM standards. Based on his own background and experience, the author is strongly opposed to the application of RBCA to any FMGP, because none of the site wastes are environmentally degradable (as opposed to petroleum-based compounds) and seldom are FMGP sites explored with enough thoroughness to preclude that gasworks waste are not left undiscovered. It is unrealistic to expect or factor in any form of future "natural attenuation" for the medium-to-heavy "oil" associations (three-plus benzene-ring molecular structure) of the tars. This objection is based not only on possible reliance on "natural attenuation" but on fate-and-transport assumptions that are not borne out by comprehensive and competent site and waste characterization exploration, logging, evaluation and interpretation.

This paper constitutes a very brief overview of what the author has attempted to encapsulate in his forthcoming technical book *Remediation of Former Manufactured Gas Plants and Other Coal-Tar Sites*. Unlike nearly all other uncontrolled hazardous waste sites, FMGPs represent the most difficult of characterization sites, mainly because of the largely SVOC nature of much of the toxic wastes and the fact that all waste bodies are intimately united with the subsurface geologic conditions at the individual site. The author invites the reader to visit his web site (www.hatheway.net) and to contact him with suggestions, comments and/or questions.

Acknowledgements

The author acknowledges the helpful reviews of the following manufactured gas remediation workers, but wishes to make clear that their assistance in no way constitutes an endorsement of the content of the paper. In addition to the always helpful editorial commentary of Diane Rydell Hatheway (his wife), the author is grateful for review and commentary by Peter Alvey, P.E. (Roux Associates, Chicago), Thomas Applegate (Wisconsin DNR), James R. Beaver, P.E. (Hart Crowser, Beverly, MA), Lou (Louis) Blanck, P.G. (Cal RWQCB, San Luis Obispo, CA), Dr. Tony B.A. Brink, P.G. (Consultant, Johannesburg, SA), Bryan Bross, P.E., P.G. (Klinger Assoc., Hannibal, MO), John T. Burkart, Cooper Environmental (Charlotte, NC), Dr. Gordon Cobb (Environ Corp, International, Arlington, VA), Steven Croce, P.E. (New Hampshire DEQ), Dr. Judi Ehlen (U.S. Army Engineer Topographic Laboratories, Ft. Beloved, VA), Jack Eslien, P.G. (Wisconsin DNR), Kimberlee Foster (MoDNR), Johanshir Golchin (Iowa State University), Dr. Douglas F. Hambley, P.E., P.G. (Practical Environmental Consultants, Schaumburg, IL), Dr. John R. Jansen, P.G. (Aquifer Science and Technology, Waukesha, WI), Mitch Kannenberg (MAXIM Technologies, Sioux Falls, SD), Liza Jones, P.E. (MA DEP, Springfield), Mick Leat (FMGP Program, Iowa DNR), Joe Lynch (ex-Iowa DNR), Mike Natale, ARM (AIG Global Energy, Washington, DC), Lawrence C. Rosen, P.G. (Shannon & Wilson, St.

Louis, MO), Kathleen Sellers, P.E. (AMEC, formerly Ogden Environmental and Energy Services, Westford, MA), Amy Strehlin (NPN Environmental Engineers, St. Louis, MO), and Larry B. Williams, P.G., P.E. (Harding ESE/MACTEC, Peoria, IL).

References

- Accum, F.C., 1815. Practical Treatise on Gas Light; Exhibiting a Summary Description of the Apparatus and Machinery Best Calculated for Illuminating Streets, Houses, and Manufactories with Carburetted Hydrogen or Coal-Gas; With Remarks on the Utility, Safety, and General Nature of this New Branch of Civil Economy 1st edn.: R. Ackerman, London, 186 pp., +4 pp., ads. with seven color plates, three of which are wood engravings (Author's actual name was Frederich Christian Accum; Several editions were issued up to 1819; Author lived 1769–1838).
- American Gas-Light Journal: One of many historic gas journals of great utility in conduct of background studies toward effective site and waste characterization of FMGPS. This is the only historic American gas journal known to the author to be available on microfilm, in its entirety, from 1859, as offered by University Microfilms, Ann Arbor, MI.

- Beam, P., Benson, R.C., Hatheway, A.W., 1997. Lessons learned; a history and evolution of site characterization. HazWaste World/ SUPERFUND XVIII Conference Proceedings, Washington, D.C., 02–04 Jul 2001, pp. 657–664.
- Brown's Directory of North American Gas Companies; From 1889. Available on microfilm from Advanstar Marketing Services, 7500 Old Oak Blvd., Cleveland, OH 44130 (800), pp. 598– 6008.
- Hambley, D.F., 2001. Personal Communication: Consulting Geologist and Engineer, Des Plaines, IL, July.
- Hatheway, A.W., 2000. Former manufactured gas plants and other coal-tar sites, Chap. 10. In: Poirier, D.A., Feder, K.L. (Eds.), Dangerous Places; Health, Safety, and Archaeology. Greenwood Publishing Group, Westport, CT, pp. 137–156.
- Hatheway, A.W., 2001a. Remediation of Former Manufactured Gas Plants Other Coal-Tar Sites. Marcel Dekker, New York City, NY (in press) ca., 600 pp.
- Hatheway, A.W., 2001b. Site Characterization; The Ultimate Work Product for Engineering Geologists. Engineering Geology, Amsterdam (in press) (Synopsis of the Year 2000 Richard H. Jahns Lecture on Excellence in Engineering Geology).
- Sanborn Fire Insurance Maps: Available for use at most large libraries and from State Archives and State historical Society as the Chadwyck-Healy series of microfilms.

ARD-EHP-17

2006

Manufactured Gas Plant Waste

What is a manufactured gas plant?

Until natural gas was introduced, coal was the primary natural resource used for making the gas used to illuminate street lights and mills, as well as for cooking and heating. By the later half of the 19th century, most of the big cities in America had manufactured gas plants (MGPs) that were operated by utility companies. To manufacture the fuel, coal and other ingredients were heated in large brick ovens. As the coal was heated, it produced a gas. The gas was filtered from the ovens and stored in tanks. The gas was then used as fuel throughout a community.

MGP production declined as a network of natural gas pipelines was built across the country in the 1950s. As natural gas became widely available, MGPs closed. It was cheaper to use natural gas. Many MGPs were abandoned and eventually demolished. However, waste and contamination from MGPs still pose an environmental and public health concern.

Why be concerned about wastes from a MGP?

Manufacturing gas from coal generated a lot of waste. Typically, MGP waste in the form of tars, oils, cinders, coke and ash, was buried or used as fill for construction projects. The wastes contain many chemical constituents that are hazardous to human health. The composition of the waste depends on the type of coal and the gasification process used. Chemicals associated with MGP waste include volatile organic compounds (VOCs) like benzene and toluene, polynuclear aromatic hydrocarbons (PAHs) like naphthalene, tar acids like phenol and cresol, creosote, and coal tar pitch.

Can MGP waste be a health hazard?

Waste from the gas manufacturing processes can be found in soil, surface water, and ground water. Depending on the site, the contamination can be minimal or extensive. Most of the contamination is buried under soil and does not pose a direct health risk. However, if coal tar residues come in contact with skin, it can cause redness or a rash. In some people, the coal tar can cause a sunburn effect on skin. Eye irritation is another hazard if coal tar residues get in the eyes.

Can it affect my drinking water?

In cases where the contamination has spread into groundwater, exposure to drinking water contaminants can be a concern. Tests can be performed to determine if water quality is affected by MGP waste.

What are the health hazards from MGP waste?

The Agency for Toxic Substances and Disease Registry (ATSDR), a branch of the US Department of Health and Human Services, provides information on the health hazards from chemical exposures. Toxicology fact sheets for the specific chemical constituents of MGP waste are available at the ATSDR website: <u>http://www.atsdr.cdc.gov/toxfaq.html</u>.

What are the health concerns of cleaning up former MGP sites?

Cleaning up a MGP waste site may temporarily cause discomfort to a neighborhood. The cleanup problems include odors, noise and the presence of heavy machinery. Odors are the most commonly reported nuisance. The odors that may occur can have either a gasoline or mothball-like smell. People with breathing difficulties, such as asthma, may be affected if the odors reach hazardous levels.

The contractors cleaning up MGP waste are trained to manage the site for safety. They monitor and control vapors from reaching levels of health concern to nearby residents. DES actively works with the site clean up team to ensure that odors and other discomforts minimally affect a community.

For more information

For more information regarding the environment and how it relates to your health or any other topics presented here, please call the NH Department of Environmental Services Environmental Health Program at (603) 271-4664, or toll-free in New Hampshire at (800) 498-6868, Ext. 4664. Information is also available at <u>www.des.nh.gov/ard/ehp/</u>.

NH Department of Environmental Services Environmental Health Program 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095 Health-based Guidelines for Air Management, Public Participation, and Risk Communication During the Excavation of Former Manufactured Gas Plants

Wisconsin Bureau of Environmental and Occupational Health Department of Health and Family Services

PO Box 2659 Madison, WI 53701-2659 (608) 266-1120 or Internet: dhfs.wisconsin.gov/eh

August 24, 2004

Wisconsin DHFS: Manufactured Gas Plant Air Guidance

e

.

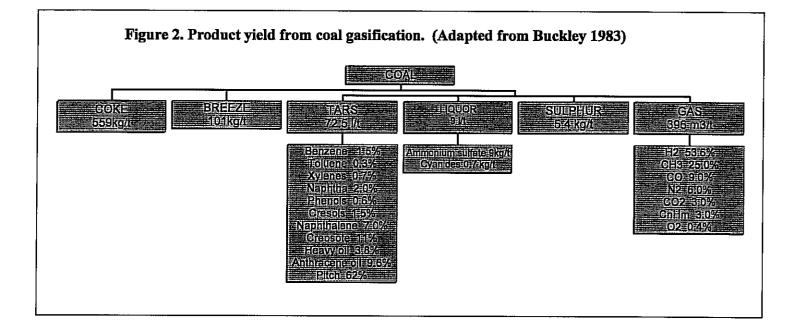
Wisconsin DHFS: MGP Air Guidance

damage from sulfur-containing materials, particularly sulfur dioxide (ATSDR MRL=10ppb), are well known (Kleinman 2003) but have not been well addressed as an air issue during MGP remediations. Sulfides (S^{2^-} ; metal-sulfur compounds), sulfates ($SO_4^{2^-}$; compounds of oxygen and sulphur combined with one or more metals), and sulfites, where present, are predictably dispersed with soil and dust particles during MGP excavations. At this time, DHFS recommends that non-volatile sulfur compounds be managed in the context of NAAQS for particles discussed above.

				Prevalence in air at one example MGP site ^c	
	Toxicity RBC ppb ^a	Odor threshold ppb ^b	Vapor pressure mmHg, 68F	Excavation (total volatiles= 4103 µg/m ³)	Perimeter (total volatiles = 1117 μg/m ³)
Benzene	10	61,000	75	21.7%	7.7%
Naphthalene	0.6	40	0.08	46.3%	6.3%
Xylenes	23	20,000	7	11.5%	56.4%
Toluene	106	1,600	21	8.3%	17%
Styrene	235	140	5	Not reported	Not reported
Ethylbenzene	230	100-600	7	11.9%	12.5%

Table 2. Toxicity, odor, volatility, and relative prevalence of major volatile compounds in air at MGP sites.

^{*}EPA, Integrated Risk Information System, 2004. Reference concentration chronic inhalation. ^bAIHA 1989


Collins et al. 1999

Developing Air Quality Goals and Action Levels

Recommended sentinel compounds. Many different volatile chemicals are present in MGP wastes, but on-site air management decisions are usually based on the monitoring of just a few of these (Collins *et al.* 1999). The choice of representative sentinel compounds in an air management plan should be based both on the risk imparted by a compound's prevalence and toxicity, as well as the analytical ability to detect these compounds. The odor threshold of particular VOCs also factors into their inclusion as a sentinel compound, since tar odors around MGP excavations speaks directly to public risk perception surrounding the remediation work. MGP projects often extrapolate from the fuel spill model, choosing the BTEX group (benzene, toluene, ethylbenzene, xylenes) as representative VOCs. Other candidate sentinel compounds should be considered, based on environmental assessment. For example, groundwater from an MGP test well

Wisconsin DHFS: MGP Air Guidance

techniques. Perhaps most important is anticipating dry, windy conditions that disperse stockpiles. In Wisconsin, occasional problems have occurred around MGP sites where winds have dispersed particles and odors from pretreated stockpiles awaiting thermal desorption. In these cases, irritating odors in nearby buildings were resolved using surfactant controls on stockpiles and closing building openings where necessary. With experience, site managers can anticipate and prevent such problems. For example, at a summer MGP excavation in an urban residential location in Wisconsin, site managers found it prudent to cease excavation work during hot or windy afternoons to avoid potential air releases that would generate complaints from the public.

PAHs. Polycyclic aromatic hydrocarbons are a diverse group of hydrocarbons that comprise a large proportion of MGP wastes (Figure 2). PAHs are also a focal component of the particles targeted in the NAAQS. The PAHs commonly studied in the environmental literature and included in environmental reports from MGP sites are 2-6 ringed, with molecular weights in the range of 128-300 (Boström *et al.* 2002). The actual breadth of PAH structures present in MGP wastes is probably much greater (Hathaway 2002) if included are little-studied larger molecular weight structures, PAHs with side-chain substituents, and PAHs with sulfur- or nitrogen-containing rings. The tendency of PAHs to disperse ranges from semi-volatile (e.g. naphthalene, vapor pressure 0.08 mm Hg;), to non-volatile structures that are dispersed via surface adsorption to particulate matter. A number of PAHs are toxic following their oxidation to a corresponding reactive structure (ATSDR 1995, Boström *et al.* 2002). Activation to a reactive structure can occur through photooxidation in the case of skin contact, or metabolically in the case of ingestion or inhalation. Benzo(a)pyrene (B(a)P) is one of several PAHs that form

Wisconsin DHFS: MGP Air Guidance

Cyanides. Cyanide wastes at MGP sites exist mostly as stable iron cyanide complexes, such as ferric ferrocyanide, which are associated with oxide box wastes common to coal gas sites. A small percentage (< 5%; Luthy *et al.* 1994) of the total cyanide-containing waste is in the form of less stable metallo-cyanides and cyanide salts. The potential for free cyanides to be released from these materials into groundwater is a topic that has received both scientific and regulatory attention (Ghosh, *et al.* 1999a, 1999b; EPA 2003d). The release of cyanide to air at MGP sites is theoretically possible, but because such releases would occur from very slow dissociation of iron cyanides followed by rapid volatilization and dissipation, this is unlikely to be an exposure issue. DHFS has identified no public health concern from cyanide exposure to the general public at the site perimeter. Still, prudent management of worker safety at MGP sites suggests that cyanide should be monitored in air within the work zone when Prussian Blue soils are encountered.

Inorganics	Metals	VOCs	Phenolics	PAHs
Ammonia	Aluminum	Benzene	Phenol	Acenaphthene
Cyanide	Antimony	Ethyl	Methyl	Acenaphthylene
Nitrate	Arsenic	Benzene	phenol	Anthracene
Sulfate	Barium	Toluene	Dimethyl	Benzo(a)anthracene
Sulfide	Cadmium	Xylenes	Phenol	Benzo(a)pyrene
Thiocyanates	Chromium	Styrene		Benzo(b)fluoranthene
-	Copper	-		Benzo(g,h,i)perylene
	Iron			Benzo(k)fluoranthene
	Lead			Chrysene
	Manganese			Dibenzo(a,h)anthracene
	Mercury			Dibenzofuran
	Nickel			Fluoranthene
	Selenium			Fluorene
	Silver			Indeno(1,2,3-cd)pyrene
	Vanadium			Naphthalene
	Zinc			Phenanthrene
				Pyrene
				2-Methylnaphthalene

 Table 1. Composition of MGP wastes (From Gas Research Institute 1996).

 Chemicals in bold have been found to be an environmental or public health concern in soil, sediment, and groundwater at MGP sites in WI.

Sulfur compounds. Sulfur-containing compounds, produced by pyrolysis or combustion of coal, are common in soil and groundwater at MGP sites. This is especially true in oxide box wastes, which may contain 40% sulfur oxides (Luthy *et al.* 1994). Pulmonary

Input Parameters Required to Develop Residential Soil Gas Tier 1 ROs for non-MGP Chemicals without TACO Tier 1 ROs

The soil gas ROs were developed using a combination of default and chemical specific properties.

The development of Tier 1 ROs requires the following parameters:

- i. Target risk
- ii. Exposure factors
- iii. Soil properties
- iv. Building parameters
- v. Physical/chemical properties
- vi. Toxicological information
- vii. Models and equations

Default input parameters (i) through (iv) were obtained from Table M, Appendix C of Section 742 in draft TACO rule. Models and equations (vii) were obtained from Table L, Appendix C in Section 742 of draft TACO rule.

Both physical/chemical and toxicological parameters were obtained from various sources and are discussed below:

Toxicological Information

TACO recommends the use of unit risk factor (URF) and reference concentration (RfC) to calculate carcinogenic and non-carcinogenic ROs protective of indoor inhalation. As per Section 742.505(d) (2), the toxicological information was obtained from various sources and hierarchy presented in Office of Solid Waste and Emergency Response (OSWER) Directive 9285.7-53 (USEPA, 2003). The sources and hierarchy are listed below:

- i. USEPA, Integrated Risk Information System (IRIS)
- ii. California EPA. Office of Environmental Health Hazard Assessment (OEHHA), Toxicity Criteria Database
- iii. Agency for Toxic Substances and Disease Registry (ATSDR), December 2006. Minimal Rik Levels (MRLs).
- iv. USEPA, July 2008. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

Of the 26 chemicals, toxicity information was available for 17 chemicals from the above four sources mentioned in USEPA (2003) and this information is presented in Table 3-4.

Physical/Chemical Properties

As per Section 742.610(a) in the draft TACO rule after contacting the IEPA, the physical/chemical properties were obtained from the agency recommended sources. The sources and their hierarchy are listed below:

- i. Syracuse Research Institute (SRC), June 2008. CHEMFATE Chemical Search
- ii. SRC, PHYPROP Database
- iii. IEPA recommended values for non-TACO chemicals
- iv. USEPA, June 2008. Regional Screening Levels for Chemical Contaminants at Superfund Sites, Chemical Specific Parameters
- v. USEPA, 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings
- vi. Texas Commission on Environmental Quality (TCEQ), June 2007. Table for Risk Reduction Program Rule.

For three chemicals namely 2-propanol, 3-chloropropene, and cyclohexane, two physical/chemical properties (critical temperature and enthalpy of vaporization) that require to calculating dimensionless Henry's law constant at system temperature were not available. Therefore, the Tier 1 ROs for these chemical were calculated using a dimensionless Henry's law constant at 25° C.

The physical/chemical properties are presented in Table 3-5. The sources for these properties have also been mentioned in Table 3-5 designating the values with different fonts.

Potential Sources of 9 Other Non-MGP Chemicals without Non-TACO Tier 1 ROs

Freon 114:

Freon 114 is the constituent of domestic products like foaming agents and refrigerants. These products may be released to the environment through various waste streams.

Source: Hazardous Substances Data Bank (HSDB) http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~OVAmKX:1

Ethanol:

Ethanol has been detected in emissions from animal wastes, plants, insects, forest fires, microbes. Therefore, ethanol may be generated by terrestrial activities.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~7zFfu6:1

Tetrahydrofuran:

This chemical is the constituent of solvents like synthetic resins (e.g., vinyls) and in topcoating solutions. Therefore, this chemical may be released to the environment through various waste streams.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~vKQhXe:1

2,2,4- Trimethylpentane :

This chemical is the constituent of polyethylene pipes used for distribution of drinking water. Hence it may be released from these from these pipes passing through subsurface near residential areas.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~HHh0U6:1

n-Heptane:

This chemical is used as a solvent in petroleum based products. Hence may be released to the environment through various waste streams with the use of these products.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~UhxTsM:1

2-Hexanone:

This chemical is used as a solvent for a wide variety of materials including lacquers, resins, oils, nitrocellulose, acrylates, vinyl, and alkyd coatings. Also, 2-Hexanone has been identified as disinfection by product of ozone treatment in drinking water. Therefore, it may be released to the soil environment through various waste streams.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search

n-propylbenzene:

This is the constituent of asphalt and naphtha and it can be used as a solvent. Hence the use of these products may release this chemical into the soil environment. It also can be released to the environment in leachates and vapor emissions from landfills.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~s4c6tw:1

4-Ethyltoluene:

This chemical is used as an additive in petroleum products and a solvent in a variety of agricultural and domestic products. Hence, it may be released to the soil environment due to the use of these products.

Source: Environment Agency <u>http://www.environment-</u> <u>agency.gov.uk/business/444255/446867/255244/substances/1024/?lang=_e&theme=®</u> <u>ion=&subject=&searchfor=toluene&any_all=&choose_order=&exactphrase=&withoutw</u> <u>ords=</u>

1,3-Dichlorobenzene:

This chemical is used as an intermediate in the production of chlorophenols. It can also be used as fumigant and insecticide. Hence it may be released into the soil environment due to the domestic use of these products.

Source: HSDB http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~NJmNjJ:1

HIFRIN & S A E **Environmental Engineers**

December 10, 2008

Mr. Kendall L. Pickett, P.G., Senior Environmental Geologist Risk Assessment & Management (RAM) Group, Inc. 5433 Westheimer Suite 725 Houston, Texas 77056

Re: Evaluation of Soil Gas Data Collected at Residential Properties near Former MGP Site Champaign, Illinois

Dear Mr. Pickett:

We have reviewed the draft of the referenced report. The soil gas data collected have been compared with applicable draft Illinois Environmental Protection Agency ("IEPA") Tiered Approach to Corrective Action ("TACO") Tier 1 soil gas remediation objectives for residential land use. It has been concluded that the concentrations of all chemicals in the samples collected were less than the comparable remediation objectives. Based upon these findings, the report concludes that the residual soil and groundwater impacts from the former MGP are not of concern.

Based upon our review, we agree with the above findings.


If you have any questions or require further information, please contact us at your convenience.

Sincerely yours, SHIFRIN & ASSOCIATES, INC.

The A A

Walter G. Shifrin, P.E., President Illinois Licensed Professional Engineer 062.021317

WGS:mkh

Z:\WS-FILES\A08128.ltr1.wpd

Appendix D

Soil Analytical Data and Chain of Custody Forms

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

May 16, 2008

Derek Ingram Philip Environmental 210 West Sand Bank Road Columbia, IL 62236-0230 TEL: (618) 281-7173 FAX: (618) 281-5120

NELAP Accredited #100226

RE: A831-735002-012901-225/IP Champaign 62403053

WorkOrder: 08050415

Dear Derek Ingram:

TEKLAB, INC received 40 samples on 5/9/2008 5:20:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Hoadhing A. White

Heather A. White Project Manager (618)344-1004 ex.20

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

SAMPLE SUMMARY

Client: Philip Environmental S Project: A831-735002-012901-225/IP Champaign 62403053 Lab Order: 08050415

Report Date: 16-May-08

Lab Sample ID	Client Sample ID	Fractions	Collection Date
08050415-001	B-812 1.0-2.0 ft	4	5/5/2008 4:10:00 PM
08050415-002	B-812 9.0-10.0 ft	4	5/5/2008 4:25:00 PM
08050415-003	B-812 11.0-12.0 ft	4	5/5/2008 4:42:00 PM
08050415-004	B-811 2.0-3.0 ft	4	5/5/2008 5:15:00 PM
08050415-005	B-811 9.0-10.0 ft	4	5/5/2008 5:23:00 PM
08050415-006	B-811 11.0-12.0 ft	4	5/5/2008 5:43:00 PM
08050415-007	B-843 2.0-3.0 ft	4	5/6/2008 9:24:00 AM
08050415-008	B-843 7.0-8.0 ft	4	5/6/2008 9:35:00 AM
08050415-009	B-843 10.0-11.0 ft	4	5/6/2008 9:47:00 AM
08050415-010	B-844 1.0-2.0 ft	4	5/6/2008 12:47:00 PM
08050415-011	B-844 8.0-9.0 ft	4	5/6/2008 1:05:00 PM
08050415-012	B-844 15.0-16.0 ft	4	5/6/2008 1:40:00 PM
08050415-013	B-851 19.0-20.0 ft	4	5/9/2008 10:20:00 AM
08050415-014	B-852 2.0-3.0 ft	4	5/9/2008 11:11:00 AM
08050415-015	B-852 9.0-10.0 ft	4	5/9/2008 11:25:00 AM
08050415-016	B-852 23.0-24.0 ft	4	5/9/2008 11:42:00 AM
08050415-017	B-845 6.0-7.0 ft	4	5/6/2008 2:45:00 PM
08050415-018	B-845 13.0-14.0 ft	4	5/6/2008 3:00:00 PM
08050415-019	B-846 8.5-9.5 ft	4	5/7/2008 8:55:00 AM
08050415-020	B-846 10.0-11.0 ft	4	5/7/2008 9:30:00 AM
08050415-021	B-846 20.0-21.0 ft	4	5/7/2008 9:54:00 AM
08050415-022	B-803 2.0-3.0 ft	4	5/7/2008 10:07:00 AM
08050415-023	B-803 9.0-10.0 ft	4	5/7/2008 10:20:00 AM
08050415-024	B-803 21.0-22.0 ft	4	5/7/2008 10:41:00 AM
08050415-025	B-803 29.0-30.0 ft	4	5/7/2008 10:55:00 AM
08050415-026	B-849 0.0-1.0 ft	4	5/7/2008 11:25:00 AM
08050415-027	B-849 9.0-10.0 ft	4	5/7/2008 11:35:00 AM
08050415-028	B-849 16.0-17.0 ft	4	5/7/2008 11:55:00 AM
08050415-029	B-848 2.0-3.0 ft	4	5/7/2008 3:45:00 PM
08050415-030	B-848 9.0-10.0 ft	4	5/7/2008 3:55:00 PM
08050415-031	B-848 13.0-14.0 ft	4	5/7/2008 4:10:00 PM
08050415-032	B-847 6.0-7.0 ft	4	5/7/2008 4:47:00 PM
08050415-033	B-847 22.0-23.0 ft	4	5/7/2008 5:18:00 PM

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

SAMPLE SUMMARY

Client: Philip Environmental SA Project: A831-735002-012901-225/IP Champaign 62403053 Lab Order: 08050415 Report Date: 16-May-08

Lab Sample ID	Client Sample ID	Fractions	Collection Date
08050415-034	B-809 2.0-3.0 ft	4	5/8/2008 9:45:00 AM
08050415-035	B-809 9.0-10.0 ft	4	5/8/2008 9:58:00 AM
08050415-036	B-809 15.0-16.0 ft	4	5/8/2008 10:15:00 AM
08050415-037	B-847 29.0-30.0 ft	4	5/7/2008 5:30:00 PM
08050415-038	B-850 8.0-9.0 ft	4	5/8/2008 11:30:00 AM
08050415-039	B-850 16.0-17.0 ft	4	5/8/2008 12:05:00 PM
08050415-040	B-850 25.0-26.0 ft	4	5/8/2008 12:55:00 PM

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client:Philip EnvironmentalCASE NARRATIVEProject:A831-735002-012901-225/IP Champaign 62403053LabOrder:08050415Report Date:16-May-08Cooler Receipt Temp:4.6 °C

State accreditations:

KS: NELAP #E-10347 | KY: UST #0073 | MO: DNR #00930 | AR: ADEQ #70-028-0

Qualifiers								
DF - Dilution Factor	${\bf B}$ - Analyte detected in the associated Method Blank	${\bf C}$ - Client requested RL below						
RL - Reporting Limit	J - Analyte detected below reporting limits	D - Diluted out of sample						
ND - Not Detected at the Reporting Limit	R - RPD outside accepted recovery limits	\mathbf{E} - Value above quantitation rang						
Surr - Surrogate Standard added by lab	S - Spike Recovery outside accepted recovery limits	\mathbf{H} - Holding time exceeded						
TNTC - Too numerous to count (> 200 CFU)	X - Value exceeds Maximum Contaminant Level	MI - Matrix interference						
Q - QC criteria failed or noncompliant CCV	# - Unknown hydrocarbon	DNI - Did not ignite						
NELAP - IL ELAP and NELAP Accredited Field	of Testing IDPH - IL Dept. of Public Health							

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environr WorkOrder: 08050415 Lab ID: 08050415-001 Report Date: 16-May-08	nental	02-012901-225/IP Ch 2.0 ft :10:00 PM	amp					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		24.5	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	2540 G							
Total Solids		0.1		75.5	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Acenaphthylene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Anthracene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Benzo(a)anthracene	NELAP	0.005		0.008	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Benzo(a)pyrene	NELAP	0.005		0.008	mg/Kg-dry	1	5/14/2008 10:34:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.005		0.011	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Benzo(g,h,i)perylene	NELAP	0.005		0.007	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Benzo(k)fluoranthene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Chrysene	NELAP	0.005		0.006	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Dibenzo(a,h)anthracene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Fluoranthene	NELAP	0.005		0.007	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Fluorene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	I TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.005		0.005	mg/Kg-dry	1	5/14/2008 10:34:00 AM	TDN
Naphthalene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	TDN
Phenanthrene	NELAP	0.005		ND	mg/Kg-dry	1	5/14/2008 10:34:00 AM	TDN
Pyrene	NELAP	0.005		0.008	mg/Kg-dry	1	5/14/2008 10:34:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		57.7	%REC	1	5/14/2008 10:34:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		61.9	%REC	1	5/14/2008 10:34:00 AM	TDN
Surr: p-Terphenyl-d14	;	30.6-131		66.7	%REC	1	5/14/2008 10:34:00 AM	TDN
SW-846 5035, 8260B, VOLATILE OR	GANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	1.1		ND	µg/Kg-dry	1	5/13/2008 5:30:00 AM	JSA
Ethylbenzene	NELAP	5.7		ND	µg/Kg-dry	1	5/13/2008 5:30:00 AM	JSA
Toluene	NELAP	5.7	J	1.4	µg/Kg-dry	1	5/13/2008 5:30:00 AM	JSA
Xylenes, Total	NELAP	5.7		ND	µg/Kg-dry	1	5/13/2008 5:30:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		87.3	%REC	1	5/13/2008 5:30:00 AM	JSA
Surr: 4-Bromofluorobenzene	-	78.2-117		98.3	%REC	1	5/13/2008 5:30:00 AM	JSA
Surr: Dibromofluoromethane		66.6-130		98.0	%REC	1	5/13/2008 5:30:00 AM	JSA
Surr: Toluene-d8	:	80.1-122		98.3	%REC	1	5/13/2008 5:30:00 AM	JSA

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-002 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-812 9.0-10.0 ft Collection Date: 5/5/2008 4:25:00 PM Matrix: SOLID							
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed An	alyst
ASTM D2974								
Percent Moisture		0.1		12.7	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED. 2	2540 <u>G</u>							
Total Solids		0.1		87.3	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M				
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:10:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		60.7	%REC	1	5/14/2008 11:10:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		61.3	%REC	1	5/14/2008 11:10:00 AM	TDN
Surr: p-Terphenyl-d14		30.6-131		66.7	%REC	1	5/14/2008 11:10:00 AM	TDN
SW-846 5035, 8260B, VOLATILE OF	RGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	1.0		3.0	µg/Kg-dry	1	5/13/2008 5:59:00 AM	JSA
Ethylbenzene	NELAP	4.8	J	2.1	µg/Kg-dry	1	5/13/2008 5:59:00 AM	JSA
Toluene	NELAP	4.8		7.1	µg/Kg-dry	1	5/13/2008 5:59:00 AM	JSA
Xylenes, Total	NELAP	4.8		5.0	µg/Kg-dry	1	5/13/2008 5:59:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		72.0	%REC	1	5/13/2008 5:59:00 AM	JSA
Surr: 4-Bromofluorobenzene		78.2-117		97.6	%REC	1	5/13/2008 5:59:00 AM	JSA
Surr: Dibromofluoromethane		66.6-130		85.6	%REC	1	5/13/2008 5:59:00 AM	JSA
Surr: Toluene-d8		80.1-122		104.7	%REC	1	5/13/2008 5:59:00 AM	JSA

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-003 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-812 11.0-12.0 ft Collection Date: 5/5/2008 4:42:00 PM Matrix: SOLID							
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		15.3	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED.	<u>2540 G</u>							
Total Solids		0.1		84.7	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-	VOLATILE ORG	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:02:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		48.5	%REC	1	5/15/2008 2:02:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		51.9	%REC	1	5/15/2008 2:02:00 PM	TDN
Surr: p-Terphenyl-d14		30.6-131		59.5	%REC	1	5/15/2008 2:02:00 PM	TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	0.9		2.3	µg/Kg-dry	1	5/13/2008 6:28:00 AM	JSA
Ethylbenzene	NELAP	4.6	J	1.6	µg/Kg-dry	1	5/13/2008 6:28:00 AM	JSA
Toluene	NELAP	4.6		4.6	µg/Kg-dry	1	5/13/2008 6:28:00 AM	JSA
Xylenes, Total	NELAP	4.6	J	3.6	µg/Kg-dry	1	5/13/2008 6:28:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		85.1	%REC	1	5/13/2008 6:28:00 AM	JSA
Surr: 4-Bromofluorobenzene		78.2-117		99.2	%REC	1	5/13/2008 6:28:00 AM	JSA
Surr: Dibromofluoromethane		66.6-130		96.8	%REC	1	5/13/2008 6:28:00 AM	JSA
Surr: Toluene-d8		80.1-122		97.7	%REC	1	5/13/2008 6:28:00 AM	JSA

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-811 2.0-3.0 ft Collection Date: 5/5/2008 5:15:00 PM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		21.1	%	1	5/12/2008	TWN
STANDARD METHODS 18TH E	<u>D. 2540 G</u>							
Total Solids		0.1		78.9	%	1	5/12/2008	TWN
SW-846 3050B, 6010B, METALS 1								
Arsenic	NELAP	2.27		2.81	mg/Kg-dry	1	5/14/2008 7:32:30 PM	
Chromium	NELAP	0.91		20.0	mg/Kg-dry	1	5/14/2008 7:32:30 PM	
Lead	NELAP	3.64		16.8	mg/Kg-dry	1	5/15/2008 5:35:14 PM	CRK
SW-846 3550B, 8270C SIMS, SEM			OMPOUN					
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:56:00 AM	
Acenaphthylene	NELAP	0.004		0.012	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Anthracene	NELAP	0.004		0.020	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Benzo(a)anthracene	NELAP	0.004		0.073	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Benzo(a)pyrene	NELAP	0.004		0.083	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Benzo(b)fluoranthene	NELAP	0.004		0.102	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Benzo(g,h,i)perylene	NELAP	0.004		0.047	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Benzo(k)fluoranthene	NELAP	0.004		0.035	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Chrysene	NELAP	0.004		0.080	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Dibenzo(a,h)anthracene	NELAP	0.004		0.014	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Fluoranthene	NELAP	0.004		0.127	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Fluorene	NELAP	0.004		0.005	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.046	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Naphthalene	NELAP	0.004		0.004	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Phenanthrene	NELAP	0.004		0.055	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Pyrene	NELAP	0.004		0.105	mg/Kg-dry	1	5/15/2008 3:56:00 AM	I TDN
Surr: 2-Fluorobiphenyl		10-131		53.5	%REC	1	5/15/2008 3:56:00 AM	I TDN
Surr: Nitrobenzene-d5		10-132		57.1	%REC	1	5/15/2008 3:56:00 AM	I TDN
Surr: p-Terphenyl-d14	:	30.6-131		67.1	%REC	1	5/15/2008 3:56:00 AM	I TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS F	BY GC/M	S				
Benzene	NELAP	1.1		3.6	µg/Kg-dry	1	5/13/2008 8:23:00 PM	I GEK
Ethylbenzene	NELAP	5.5	J	2.2	µg/Kg-dry	1	5/13/2008 8:23:00 PM	
Toluene	NELAP	5.5		7.3	µg/Kg-dry	1	5/13/2008 8:23:00 PM	
Xylenes, Total	NELAP	5.5		7.6	µg/Kg-dry	1	5/13/2008 8:23:00 PM	
Surr: 1,2-Dichloroethane-d4		61-128		115.7	%REC	1	5/13/2008 8:23:00 PM	
Surr: 4-Bromofluorobenzene		78.2-117	S	73.2	%REC	1	5/13/2008 8:23:00 PM	
Surr: Dibromofluoromethane		66.6-130	-	109.3	%REC	1	5/13/2008 8:23:00 PM	
Surr: Toluene-d8		80.1-122		117.4	%REC	1	5/13/2008 8:23:00 PM	
<u>SW-846 9010B, 9014</u>					,	•	<i>3, 13,</i> 2000 0.20.00 1 W	0211
Cyanide	NELAP	0.63	J	0.32	mg/Kg-dry	1	5/13/2008	AET
		0.00	Ū	0.02			0,10,2000	, \ L

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm WorkOrder: 08050415	nental		Client Project: A831-735002-012901-225/IP Cham Client Sample ID: B-811 2.0-3.0 ft					
Lab ID: 08050415-004	Collection Date: 5/5/2008 5:15:00 PM							
Report Date: 16-May-08	Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.63		< 0.63	mg/Kg-dry	1	5/14/2008	AET

Sample Narrative

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to matrix interference.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-00 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-811 9.0-10.0 ft Collection Date: 5/5/2008 5:23:00 PM Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		20.3	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	<u>. 2540 G</u>							
Total Solids		0.1		79.7	%	1	5/12/2008	TW№
SW-846 3050B, 6010B, METALS B								
Arsenic	NELAP	2.50		6.47	mg/Kg-dry	1	5/14/2008 7:39:17 PM	
Chromium	NELAP	1.00		15.1	mg/Kg-dry	1	5/14/2008 7:39:17 PM	
Lead	NELAP	4.00		10.0	mg/Kg-dry	1	5/15/2008 5:39:25 PM	CRK
SW-846 3550B, 8270C SIMS, SEMI			OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		0.008	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Acenaphthylene	NELAP	0.004		0.017	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 2:39:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		35.3	%REC	1	5/15/2008 2:39:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		40.1	%REC	1	5/15/2008 2:39:00 PM	TDN
Surr: p-Terphenyl-d14	:	30.6-131		54.9	%REC	1	5/15/2008 2:39:00 PM	TDN
SW-846 5035, 8260B, VOLATILE (DRGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	0.8		ND	µg/Kg-dry	1	5/13/2008 6:58:00 AM	JSA
Ethylbenzene	NELAP	4.2		ND	µg/Kg-dry	1	5/13/2008 6:58:00 AM	JSA
Toluene	NELAP	4.2		ND	µg/Kg-dry	1	5/13/2008 6:58:00 AM	JSA
Xylenes, Total	NELAP	4.2		ND	µg/Kg-dry	1	5/13/2008 6:58:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		89.2	%REC	1	5/13/2008 6:58:00 AM	
Surr: 4-Bromofluorobenzene		78.2-117		101.7	%REC	1	5/13/2008 6:58:00 AM	
Surr: Dibromofluoromethane		66.6-130		98.6	%REC	1	5/13/2008 6:58:00 AM	
Surr: Toluene-d8		80.1-122		97.7	%REC	1	5/13/2008 6:58:00 AM	
SW-846 9010B, 9014								
Cyanide	NELAP	0.60	J	0.25	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip E	Invironmental	ental Client Project: A831-735002-012901-225/IP Champ						
WorkOrder: 080504	15			Client Sam	ple ID: B-8	11 9.0	-10.0 ft	
Lab ID: 080504	15-005	Collection Date: 5/5/2008 5:23:00 PM						
Report Date: 16-May	-08	Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorina	ation	0.60		Interference	mg/Kg-dry	1	5/14/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-811 11.0-12.0 ft Collection Date: 5/5/2008 5:43:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		12.6	%	1	5/12/2008	TW№
STANDARD METHODS 18TH EI	<u>D. 2540 G</u>	0.4		o= 4	0/		5/40/0000	-
Total Solids		0.1		87.4	%	1	5/12/2008	TW№
<u>SW-846 3050B, 6010B, METALS E</u>		0.40		0.40	man // Car alm i	4	E/4 4/0000 7.40.04 DM	
Arsenic	NELAP	2.40		6.43	mg/Kg-dry	1	5/14/2008 7:46:04 PM	
Chromium	NELAP	0.96		14.4	mg/Kg-dry	1	5/14/2008 7:46:04 PM	
	NELAP	3.85		10.1	mg/Kg-dry	1	5/15/2008 5:43:38 PM	CRK
SW-846 3550B, 8270C SIMS, SEM Acenaphthene	<u>I-VOLATILE OKO</u> NELAP	<u>5ANIC CO</u> 0.004	UMPOUR	<u>NDS BY GC/M</u> ND	<u>s</u> mg/Kg-dry	1	5/14/2008 4:11:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Acenaphinylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Fluoranthene	NELAP	0.004				1	5/14/2008 4:11:00 PM	
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
				ND	mg/Kg-dry			
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Naphthalene Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
	NELAP NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:11:00 PM	
Pyrene	NELAP	0.004		ND	mg/Kg-dry %REC	1	5/14/2008 4:11:00 PM	
Surr: 2-Fluorobiphenyl Surr: Nitrobenzene-d5		10-131 10-132		31.9 48.3	%REC %REC	1 1	5/14/2008 4:11:00 PM 5/14/2008 4:11:00 PM	
Surr: p-Terphenyl-d14		30.6-131		46.3 62.7	%REC %REC	1	5/14/2008 4:11:00 PM	
			NCCM		70REC	I	5/14/2006 4.11.00 FW	IDN
<u>SW-846 5035, 8260B, VOLATILE</u>	NELAP		SY GC/M	<u>5</u> 2.5	µg/Kg-dry	1	5/13/2008 7:27:00 AM	JSA
Benzene Ethylbenzene	NELAP	0.8 4.2	J	2.3 1.4	µg/Kg-dry µg/Kg-dry	1	5/13/2008 7:27:00 AM	
Toluene	NELAP	4.2	5	4.5	µg/Kg-dry µg/Kg-dry	1	5/13/2008 7:27:00 AM	
Xylenes, Total	NELAP	4.2	J	3.2	µg/Kg dry µg/Kg-dry	1	5/13/2008 7:27:00 AM	
Surr: 1,2-Dichloroethane-d4		4.2 61-128	5	88.3	%REC	1	5/13/2008 7:27:00 AM	
Surr: 4-Bromofluorobenzene		78.2-117	S	77.3	%REC	1	5/13/2008 7:27:00 AM	
Surr: Dibromofluoromethane		66.6-130	5	107.2	%REC	1	5/13/2008 7:27:00 AM	
Surr: Toluene-d8		80.1-122		89.1	%REC	1	5/13/2008 7:27:00 AM	
<u>SW-846 9010B, 9014</u>		55.1 IZZ		00.1			5/10/2000 1.21.00 AN	004
<u>SW-840 9010B, 9014</u> Cyanide	NELAP	0.57		< 0.57	mg/Kg-dry	1	5/13/2008	AET
		5.07		- 0.01			0,10,2000	,

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environn	hilip Environmental Client Project: A831-735002-012901-225/IP Cha						Champ	
WorkOrder: 08050415				Client Samj	ole ID: B-8	11 11.0	D-12.0 ft	
Lab ID: 08050415-006	Collection Date: 5/5/2008 5:43:00 PM							
Report Date: 16-May-08	Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.57		Interference	mg/Kg-dry	1	5/14/2008	AET

Sample Narrative

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to matrix interference.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Envir WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Sam Collectior	•	43 2.0- /2008 9		namp		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		19.5	%	1	5/12/2008	TW№
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		80.5	%	1	5/12/2008	TWN
SW-846 3050B, 6010B, METALS								
Arsenic	NELAP	2.50		3.16	mg/Kg-dry	1	5/14/2008 8:06:21 PM	
Chromium	NELAP	1.00		27.0	mg/Kg-dry	1	5/14/2008 8:06:21 PM	
Lead	NELAP	4.00		27.3	mg/Kg-dry	1	5/16/2008 9:05:23 AM	CRK
<u>SW-846 3550B, 8270C SIMS, SEM</u>			OMPOUN		-			TON
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 4:47:00 PM	
Surr: 2-Fluorobiphenyl		10-131		43.5	%REC	1	5/14/2008 4:47:00 PM	
Surr: Nitrobenzene-d5		10-132		54.9	%REC	1	5/14/2008 4:47:00 PM	
Surr: p-Terphenyl-d14		30.6-131		65.9	%REC	1	5/14/2008 4:47:00 PM	TDN
SW-846 5035, 8260B, VOLATILE			SY GC/MS					
Benzene	NELAP	1.1		ND	µg/Kg-dry	1	5/13/2008 7:57:00 AM	
Ethylbenzene	NELAP	5.5		ND	µg/Kg-dry	1	5/13/2008 7:57:00 AM	
Toluene	NELAP	5.5		ND	µg/Kg-dry	1	5/13/2008 7:57:00 AM	
Xylenes, Total	NELAP	5.5		ND	µg/Kg-dry	1	5/13/2008 7:57:00 AM	
Surr: 1,2-Dichloroethane-d4		61-128		89.0	%REC	1	5/13/2008 7:57:00 AM	
Surr: 4-Bromofluorobenzene		78.2-117		103.9	%REC	1	5/13/2008 7:57:00 AM	
Surr: Dibromofluoromethane		6.6-130		101.9	%REC	1	5/13/2008 7:57:00 AM	
Surr: Toluene-d8	8	30.1-122		97.8	%REC	1	5/13/2008 7:57:00 AM	JSA
<u>SW-846 9010B, 9014</u>								
Cyanide	NELAP	0.60		< 0.60	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm	ental			Client P	roject: A83	81-7350	002-012901-225/IP	Champ
WorkOrder: 08050415				Client Sam	ple ID: B-8	43 2.0	-3.0 ft	
Lab ID: 08050415-007				Collection	Date: 5/6/	2008 9	9:24:00 AM	
Report Date: 16-May-08				Ν	Iatrix: SO	_ID		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.60		Interference	mg/Kg-dry	1	5/14/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Sam Collection	•	343 7.0- /2008 9		hamp		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		13.2	%	1	5/12/2008	TW№
STANDARD METHODS 18TH EI	<u>D. 2540 G</u>	0.4			0/		5/40/0000	
Total Solids		0.1		86.8	%	1	5/12/2008	TW№
SW-846 3050B, 6010B, METALS I		2 50		6.40	mallada	4	E/1 4/2000 0.12.20 DM	
Arsenic Chromium	NELAP NELAP	2.50 1.00		6.42 14.0	mg/Kg-dry	1 1	5/14/2008 8:13:28 PM 5/14/2008 8:13:28 PM	
Lead	NELAP	4.00			mg/Kg-dry	1	5/16/2008 9:07:39 AM	
SW-846 3550B, 8270C SIMS, SEM				9.48	mg/Kg-dry	I	5/10/2006 9.07.39 Alv	
Acenaphthene	NELAP	0.004	UMPOU	ND <u>S D I GC/M</u>	mg/Kg-dry	1	5/14/2008 5:22:00 PM	I TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	I TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	I TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	I TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:22:00 PM	I TDN
Surr: 2-Fluorobiphenyl		10-131		28.5	%REC	1	5/14/2008 5:22:00 PM	I TDN
Surr: Nitrobenzene-d5		10-132		41.3	%REC	1	5/14/2008 5:22:00 PM	I TDN
Surr: p-Terphenyl-d14	3	80.6-131		67.9	%REC	1	5/14/2008 5:22:00 PM	I TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMPO	DUNDS B	BY GC/M	S				
Benzene	NELAP	0.8		3.1	µg/Kg-dry	1	5/13/2008 8:25:00 AM	I JSA
Ethylbenzene	NELAP	3.8	J	2.8	µg/Kg-dry	1	5/13/2008 8:25:00 AM	I JSA
Toluene	NELAP	3.8		6.1	µg/Kg-dry	1	5/13/2008 8:25:00 AM	I JSA
Xylenes, Total	NELAP	3.8		4.4	µg/Kg-dry	1	5/13/2008 8:25:00 AM	I JSA
Surr: 1,2-Dichloroethane-d4		61-128		82.2	%REC	1	5/13/2008 8:25:00 AM	I JSA
Surr: 4-Bromofluorobenzene	7	8.2-117		98.4	%REC	1	5/13/2008 8:25:00 AM	I JSA
Surr: Dibromofluoromethane	6	6.6-130		96.0	%REC	1	5/13/2008 8:25:00 AM	I JSA
Surr: Toluene-d8	8	80.1-122		100.3	%REC	1	5/13/2008 8:25:00 AM	I JSA
<u>SW-846 9010B, 9014</u>								
Cyanide	NELAP	0.55		< 0.55	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environn	nental			Client P	roject: A83	31-7350	002-012901-225/IP	Champ	
WorkOrder: 08050415				Client Sam	ple ID: B-8	43 7.0	-8.0 ft		
Lab ID: 08050415-008				Collection	Date: 5/6/	/2008 9	9:35:00 AM		
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.55		Interference	mg/Kg-dry	1	5/14/2008	AET	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-00 Report Date: 16-May-08		Client Sam Collection	•	43 10.0 /2008 9		namp		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		12.5	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED.	<u>2540 G</u>							
Total Solids		0.1		87.5	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-	VOLATILE ORG	ANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		0.004	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Anthracene	NELAP	0.004		0.004	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		0.011	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		0.008	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		0.011	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		0.005	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Chrysene	NELAP	0.004		0.008	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Fluoranthene	NELAP	0.004		0.021	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.004	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Naphthalene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Phenanthrene	NELAP	0.004		0.020	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Pyrene	NELAP	0.004		0.016	mg/Kg-dry	1	5/14/2008 5:58:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		34.9	%REC	1	5/14/2008 5:58:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		49.3	%REC	1	5/14/2008 5:58:00 PM	TDN
Surr: p-Terphenyl-d14	3	30.6-131		64.5	%REC	1	5/14/2008 5:58:00 PM	TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS B	BY GC/M	S				
Benzene	NELAP	0.9		2.6	µg/Kg-dry	1	5/13/2008 8:54:00 AM	JSA
Ethylbenzene	NELAP	4.4	J	1.8	µg/Kg-dry	1	5/13/2008 8:54:00 AM	JSA
Toluene	NELAP	4.4		5.9	µg/Kg-dry	1	5/13/2008 8:54:00 AM	JSA
Xylenes, Total	NELAP	4.4		4.4	µg/Kg-dry	1	5/13/2008 8:54:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		81.8	%REC	1	5/13/2008 8:54:00 AM	JSA
Surr: 4-Bromofluorobenzene	7	78.2-117		91.1	%REC	1	5/13/2008 8:54:00 AM	JSA
Surr: Dibromofluoromethane	e	6.6-130		98.7	%REC	1	5/13/2008 8:54:00 AM	JSA
Surr: Toluene-d8	8	30.1-122		97.8	%REC	1	5/13/2008 8:54:00 AM	JSA

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0' Report Date: 16-May-08				Client Sam Collection	ple ID: B-8	44 1.0- /2008 1		25/IP Champ					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst					
ASTM D2974													
Percent Moisture		0.1		20.8	%	1	5/12/2008	TW№					
STANDARD METHODS 18TH ED	<u>. 2540 G</u>												
Total Solids		0.1		79.2	%	1	5/12/2008	TW№					
SW-846 3050B, 6010B, METALS B													
Arsenic	NELAP	2.31		9.60	mg/Kg-dry	1	5/14/2008 8:20:17 PM	LAL					
Chromium	NELAP	0.93		20.2	mg/Kg-dry	1	5/14/2008 8:20:17 PM	LAL					
Lead	NELAP	3.70		150	mg/Kg-dry	1	5/16/2008 9:09:55 AM	CRK					
SW-846 3550B, 8270C SIMS, SEMI		GANIC CO	OMPOUN	DS BY GC/M	<u>S</u>								
Acenaphthene	NELAP	0.009		ND	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Acenaphthylene	NELAP	0.009		0.035	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Anthracene	NELAP	0.009		0.026	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Benzo(a)anthracene	NELAP	0.009		0.119	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Benzo(a)pyrene	NELAP	0.009		0.135	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Benzo(b)fluoranthene	NELAP	0.009		0.169	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Benzo(g,h,i)perylene	NELAP	0.009		0.084	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Benzo(k)fluoranthene	NELAP	0.009		0.060	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Chrysene	NELAP	0.009		0.144	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Dibenzo(a,h)anthracene	NELAP	0.009		0.023	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Fluoranthene	NELAP	0.009		0.230	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Fluorene	NELAP	0.009		0.012	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Indeno(1,2,3-cd)pyrene	NELAP	0.009		0.077	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Naphthalene	NELAP	0.009		0.011	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Phenanthrene	NELAP	0.009		0.162	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Pyrene	NELAP	0.009		0.232	mg/Kg-dry	2	5/15/2008 8:06:00 PM	TDN					
Surr: 2-Fluorobiphenyl		10-131		47.1	%REC	2	5/15/2008 8:06:00 PM	TDN					
Surr: Nitrobenzene-d5		10-132		50.3	%REC	2	5/15/2008 8:06:00 PM	TDN					
Surr: p-Terphenyl-d14	;	30.6-131		56.7	%REC	2	5/15/2008 8:06:00 PM	TDN					
SW-846 5035, 8260B, VOLATILE (ORGANIC COMP	OUNDS E	BY GC/MS	5									
Benzene	NELAP	1.2		ND	µg/Kg-dry	1	5/13/2008 9:23:00 AM	JSA					
Ethylbenzene	NELAP	6.0		ND	µg/Kg-dry	1	5/13/2008 9:23:00 AM	JSA					
Toluene	NELAP	6.0		ND	µg/Kg-dry	1	5/13/2008 9:23:00 AM	JSA					
Xylenes, Total	NELAP	6.0		ND	µg/Kg-dry	1	5/13/2008 9:23:00 AM	JSA					
Surr: 1,2-Dichloroethane-d4		61-128		92.9	%REC	1	5/13/2008 9:23:00 AM	JSA					
Surr: 4-Bromofluorobenzene	-	78.2-117		96.5	%REC	1	5/13/2008 9:23:00 AM	JSA					
Surr: Dibromofluoromethane		66.6-130		104.9	%REC	1	5/13/2008 9:23:00 AM	JSA					
Surr: Toluene-d8		30.1-122		96.8	%REC	1	5/13/2008 9:23:00 AM	JSA					
SW-846 9010B, 9014				-									
Cyanide	NELAP	0.60	J	0.51	mg/Kg-dry	1	5/13/2008	AET					

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ WorkOrder: 08050415	mental	ental Client Project: A831-735002-012901-225/IP Cham Client Sample ID: B-844 1.0-2.0 ft							
Lab ID: 08050415-010)			-			2:47:00 PM		
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.60		Interference	mg/Kg-dry	1	5/14/2008	AET	

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Sam Collectior	•	844 8.0- /2008 1		namp		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		13.3	%	1	5/12/2008	TW№
STANDARD METHODS 18TH EI	<u>D. 2540 G</u>	0.4			0/		540/0000	
Total Solids		0.1		86.7	%	1	5/12/2008	TW№
SW-846 3050B, 6010B, METALS H		2.50		6.95	ma/Ka day	4	E/1 1/2000 9.20.50 DM	
Arsenic Chromium	NELAP NELAP	2.50 1.00		6.35	mg/Kg-dry	1 1	5/14/2008 8:39:50 PM 5/14/2008 8:39:50 PM	
Lead	NELAP	4.00		14.0	mg/Kg-dry	1	5/16/2008 9:12:12 AM	
SW-846 3550B, 8270C SIMS, SEM				9.77	mg/Kg-dry ទ	1	5/10/2006 9.12.12 AM	UKK
Acenaphthene	NELAP	0.004	OMPOUN	<u>DS D1 GC/M</u> ND	<u>s</u> mg/Kg-dry	1	5/14/2008 6:33:00 PM	TDN
Acenaphthylene	NELAP	0.004		0.014	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Benzo(a)anthracene	NELAP	0.004		0.020	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Benzo(a)pyrene	NELAP	0.004		0.028	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Benzo(b)fluoranthene	NELAP	0.004		0.024	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Benzo(g,h,i)perylene	NELAP	0.004		0.014	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Benzo(k)fluoranthene	NELAP	0.004		0.007	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Chrysene	NELAP	0.004		0.018	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Dibenzo(a,h)anthracene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Fluoranthene	NELAP	0.004	-	0.016	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.011	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Pyrene	NELAP	0.004		0.039	mg/Kg-dry	1	5/14/2008 6:33:00 PM	
Surr: 2-Fluorobiphenyl		10-131		22.0	%REC	1	5/14/2008 6:33:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		37.3	%REC	1	5/14/2008 6:33:00 PM	TDN
Surr: p-Terphenyl-d14	3	30.6-131		66.7	%REC	1	5/14/2008 6:33:00 PM	TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	DUNDS B	BY GC/MS	5				
Benzene	NELAP	0.9		3.1	µg/Kg-dry	1	5/13/2008 9:52:00 AM	JSA
Ethylbenzene	NELAP	4.5		7.9	µg/Kg-dry	1	5/13/2008 9:52:00 AM	
Toluene	NELAP	4.5		5.5	µg/Kg-dry	1	5/13/2008 9:52:00 AM	JSA
Xylenes, Total	NELAP	4.5		11.1	µg/Kg-dry	1	5/13/2008 9:52:00 AM	JSA
Surr: 1,2-Dichloroethane-d4		61-128		91.0	%REC	1	5/13/2008 9:52:00 AM	
Surr: 4-Bromofluorobenzene	7	8.2-117		100.1	%REC	1	5/13/2008 9:52:00 AM	
Surr: Dibromofluoromethane	6	6.6-130		100.8	%REC	1	5/13/2008 9:52:00 AM	JSA
Surr: Toluene-d8	8	30.1-122		98.6	%REC	1	5/13/2008 9:52:00 AM	
<u>SW-846 9010B, 9014</u>								
Cyanide	NELAP	0.56		< 0.56	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environr	nental			Client P	roject: A83	81-7350	002-012901-225/IP	Champ	
WorkOrder: 08050415				Client Sam	ple ID: B-8	44 8.0	-9.0 ft		
Lab ID: 08050415-011				Collection	Date: 5/6/	2008 1	:05:00 PM		
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.56		Interference	mg/Kg-dry	1	5/14/2008	AET	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Sam Collectior	•	44 15.0 /2008 1		namp		
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		11.9	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	0. 2540 G							
Total Solids		0.1		88.1	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI	I-VOLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.039		2.49	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Acenaphthylene	NELAP	0.039		0.684	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Anthracene	NELAP	0.039		1.81	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Benzo(a)anthracene	NELAP	0.039		0.893	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Benzo(a)pyrene	NELAP	0.039		0.847	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Benzo(b)fluoranthene	NELAP	0.039		0.662	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Benzo(g,h,i)perylene	NELAP	0.039		0.325	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Benzo(k)fluoranthene	NELAP	0.039		0.195	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Chrysene	NELAP	0.039		0.913	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.039		0.089	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Fluoranthene	NELAP	0.039		1.88	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Fluorene	NELAP	0.039		1.70	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.039		0.266	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Naphthalene	NELAP	0.039		12.7	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Phenanthrene	NELAP	0.039		6.07	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Pyrene	NELAP	0.039		2.71	mg/Kg-dry	10	5/15/2008 5:10:00 AN	1 TDN
Surr: 2-Fluorobiphenyl		10-131		49.9	%REC	10	5/15/2008 5:10:00 AN	1 TDN
Surr: Nitrobenzene-d5		10-132		49.9	%REC	10	5/15/2008 5:10:00 AN	1 TDN
Surr: p-Terphenyl-d14		30.6-131		61.9	%REC	10	5/15/2008 5:10:00 AN	1 TDN
SW-846 5035, 8260B, VOLATILE (ORGANIC COMP	OUNDS B	BY GC/M	<u>S</u>				
Benzene	NELAP	87.3		640	µg/Kg-dry	50	5/14/2008 8:41:00 PN	1 GEK
Ethylbenzene	NELAP	436		3070	µg/Kg-dry	50	5/14/2008 8:41:00 PN	1 GEK
Toluene	NELAP	436	J	250	µg/Kg-dry	50	5/14/2008 8:41:00 PN	I GEK
Xylenes, Total	NELAP	436		4200	µg/Kg-dry	50	5/14/2008 8:41:00 PN	I GEK
Surr: 1,2-Dichloroethane-d4		61-128		95.8	%REC	50	5/14/2008 8:41:00 PN	I GEK
Surr: 4-Bromofluorobenzene		78.2-117		96.8	%REC	50	5/14/2008 8:41:00 PN	I GEK
Surr: Dibromofluoromethane		66.6-130		103.0	%REC	50	5/14/2008 8:41:00 PM	I GEK
Surr: Toluene-d8		80.1-122		96.5	%REC	50	5/14/2008 8:41:00 PM	I GEK

Sample Narrative

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environr WorkOrder: 08050415 Lab ID: 08050415-013 Report Date: 16-May-08		Client Sam Collection	ple ID: B-8	851 19.0 /2008 1	002-012901-225/IP Ch 0-20.0 ft 10:20:00 AM	amp		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ar	alyst
ASTM D2974								
Percent Moisture		0.1		10.7	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	2540 G							
Total Solids		0.1		89.3	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE ORG	GANIC CO	OMPOUN	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:15:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		25.7	%REC	1	5/15/2008 3:15:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		41.9	%REC	1	5/15/2008 3:15:00 PM	TDN
Surr: p-Terphenyl-d14	:	30.6-131		57.1	%REC	1	5/15/2008 3:15:00 PM	TDN
SW-846 5035, 8260B, VOLATILE OF	RGANIC COMP	OUNDS E	BY GC/M	<u>S</u>				
Benzene	NELAP	0.8		1.4	µg/Kg-dry	1	5/12/2008 11:56:00 PM	GEK
Ethylbenzene	NELAP	3.8		ND	µg/Kg-dry	1	5/12/2008 11:56:00 PM	GEK
Toluene	NELAP	3.8	J	2.1	µg/Kg-dry	1	5/12/2008 11:56:00 PM	GEK
Xylenes, Total	NELAP	3.8	J	2.6	µg/Kg-dry	1	5/12/2008 11:56:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		106.9	%REC	1	5/12/2008 11:56:00 PM	GEK
Surr: 4-Bromofluorobenzene	-	78.2-117		86.2	%REC	1	5/12/2008 11:56:00 PM	GEK
Surr: Dibromofluoromethane	6	66.6-130		107.4	%REC	1	5/12/2008 11:56:00 PM	GEK
Surr: Toluene-d8	8	30.1-122		111.8	%REC	1	5/12/2008 11:56:00 PM	GEK

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

WorkOrder: 08050415 Lab ID: 08050415-01 Report Date: 16-May-08		Client Sam Collectior	ple ID: B-8	352 2.0- /2008 1		5/IP Champ					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	alyst			
ASTM D2974											
Percent Moisture		0.1		21.2	%	1	5/12/2008	TW№			
STANDARD METHODS 18TH ED.	<u>. 2540 G</u>										
Total Solids		0.1		78.8	%	1	5/12/2008	TW№			
SW-846 3050B, 6010B, METALS BY											
Arsenic	NELAP	2.40		4.62	mg/Kg-dry	1	5/14/2008 8:46:38 PM	LAL			
Chromium	NELAP	0.96		23.5	mg/Kg-dry	1	5/14/2008 8:46:38 PM	LAL			
Lead	NELAP	3.85		51.9	mg/Kg-dry	1	5/16/2008 9:14:29 AM	CRK			
SW-846 3550B, 8270C SIMS, SEMI			OMPOUN		-						
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Acenaphthylene	NELAP	0.004		0.005	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Benzo(a)anthracene	NELAP	0.004		0.020	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Benzo(a)pyrene	NELAP	0.004		0.023	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Benzo(b)fluoranthene	NELAP	0.004		0.032	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Benzo(g,h,i)perylene	NELAP	0.004		0.015	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Benzo(k)fluoranthene	NELAP	0.004		0.011	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Chrysene	NELAP	0.004		0.023	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Dibenzo(a,h)anthracene	NELAP	0.004		0.004	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Fluoranthene	NELAP	0.004		0.036	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.014	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Phenanthrene	NELAP	0.004		0.016	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Pyrene	NELAP	0.004		0.032	mg/Kg-dry	1	5/15/2008 5:47:00 AM	TDN			
Surr: 2-Fluorobiphenyl		10-131		37.9	%REC	1	5/15/2008 5:47:00 AM	TDN			
Surr: Nitrobenzene-d5		10-132		49.7	%REC	1	5/15/2008 5:47:00 AM	TDN			
Surr: p-Terphenyl-d14	3	80.6-131		62.1	%REC	1	5/15/2008 5:47:00 AM	TDN			
SW-846 5035, 8260B, VOLATILE C	RGANIC COMPO	DUNDS E	BY GC/M	S							
Benzene	NELAP	1.1			µg/Kg-dry	1	5/13/2008 12:25:00 AM	GEK			
Ethylbenzene	NELAP	5.6		ND	µg/Kg-dry	1	5/13/2008 12:25:00 AM				
Toluene	NELAP	5.6		ND	µg/Kg-dry	1	5/13/2008 12:25:00 AM				
Xylenes, Total	NELAP	5.6	J	1.7	µg/Kg-dry	1	5/13/2008 12:25:00 AM				
Surr: 1,2-Dichloroethane-d4		61-128		115.8	%REC	1	5/13/2008 12:25:00 AM				
Surr: 4-Bromofluorobenzene	7	8.2-117		96.7	%REC	1	5/13/2008 12:25:00 AM				
Surr: Dibromofluoromethane		6.6-130		104.6	%REC	1	5/13/2008 12:25:00 AM				
Surr: Toluene-d8		80.1-122		98.2	%REC	1	5/13/2008 12:25:00 AM				
<u>SW-846 9010B, 9014</u>						-					
Cyanide	NELAP	0.63		< 0.63	mg/Kg-dry	1	5/13/2008	AET			

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environn	nental								
WorkOrder: 08050415				Client Sam	ple ID: B-8	52 2.0 [.]	-3.0 ft		
Lab ID: 08050415-014				Collection	Date: 5/9/	2008 1	1:11:00 AM		
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.63		Interference	mg/Kg-dry	1	5/14/2008	AET	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-852 9.0-10.0 ft Collection Date: 5/9/2008 11:25:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		13.2	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	0. 2540 G							
Total Solids		0.1		86.8	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI	I-VOLATILE ORG	GANIC CO	OMPOU	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 3:52:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		23.0	%REC	1	5/15/2008 3:52:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		34.7	%REC	1	5/15/2008 3:52:00 PM	TDN
Surr: p-Terphenyl-d14	:	30.6-131		65.1	%REC	1	5/15/2008 3:52:00 PM	TDN
SW-846 5035, 8260B, VOLATILE 0	ORGANIC COMP	OUNDS E	BY GC/M	(<u>S</u>				
Benzene	NELAP	0.8		2.5	µg/Kg-dry	1	5/13/2008 12:53:00 AN	1 GEK
Ethylbenzene	NELAP	4.2	J	1.6	µg/Kg-dry	1	5/13/2008 12:53:00 AN	1 GEK
Toluene	NELAP	4.2		5.0	µg/Kg-dry	1	5/13/2008 12:53:00 AN	1 GEK
Xylenes, Total	NELAP	4.2	J	4.0	µg/Kg-dry	1	5/13/2008 12:53:00 AN	1 GEK
Surr: 1,2-Dichloroethane-d4		61-128		110.6	%REC	1	5/13/2008 12:53:00 AN	1 GEK
Surr: 4-Bromofluorobenzene		78.2-117		101.1	%REC	1	5/13/2008 12:53:00 AN	1 GEK
Surr: Dibromofluoromethane		66.6-130		108.5	%REC	1	5/13/2008 12:53:00 AN	1 GEK
Surr: Toluene-d8		80.1-122		98.3	%REC	1	5/13/2008 12:53:00 AN	1 GEK
<u>SW-846 9045C</u>								
pH (1:1)	NELAP	1.00		8.15		1	5/13/2008 1:27:00 PM	KNL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm WorkOrder: 08050415 Lab ID: 08050415-016 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-852 23.0-24.0 ft Collection Date: 5/9/2008 11:42:00 AM Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		11.1	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 25	540 <u>G</u>							
Total Solids		0.1		88.9	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-VO	OLATILE ORG	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PM	I TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 4:28:00 PN	I TDN
Surr: 2-Fluorobiphenyl		10-131		24.4	%REC	1	5/15/2008 4:28:00 PN	I TDN
Surr: Nitrobenzene-d5		10-132		38.9	%REC	1	5/15/2008 4:28:00 PN	I TDN
Surr: p-Terphenyl-d14		30.6-131		56.9	%REC	1	5/15/2008 4:28:00 PN	I TDN
SW-846 5035, 8260B, VOLATILE OR	GANIC COMP	OUNDS E	BY GC/M	<u>S</u>				
Benzene	NELAP	0.9		1.6	µg/Kg-dry	1	5/13/2008 1:22:00 AN	I GEK
Ethylbenzene	NELAP	4.4		ND	µg/Kg-dry	1	5/13/2008 1:22:00 AN	I GEK
Toluene	NELAP	4.4	J	2.5	µg/Kg-dry	1	5/13/2008 1:22:00 AN	I GEK
Xylenes, Total	NELAP	4.4	J	1.8	µg/Kg-dry	1	5/13/2008 1:22:00 AN	I GEK
Surr: 1,2-Dichloroethane-d4		61-128		113.7	%REC	1	5/13/2008 1:22:00 AN	I GEK
Surr: 4-Bromofluorobenzene	-	78.2-117		83.9	%REC	1	5/13/2008 1:22:00 AN	I GEK
Surr: Dibromofluoromethane	(66.6-130		111.2	%REC	1	5/13/2008 1:22:00 AN	I GEK
Surr: Toluene-d8	8	30.1-122		110.2	%REC	1	5/13/2008 1:22:00 AN	I GEK

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-845 6.0-7.0 ft Collection Date: 5/6/2008 2:45:00 PM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		19.3	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED	<u>). 2540 G</u>							
Total Solids		0.1		80.7	%	1	5/12/2008	TWN
SW-846 3050B, 6010B, METALS B								
Arsenic	NELAP	2.40		6.44	mg/Kg-dry	1	5/14/2008 9:06:55 PM	
Chromium	NELAP	0.96		13.6	mg/Kg-dry	1	5/14/2008 9:06:55 PM	
Lead	NELAP	3.85		9.36	mg/Kg-dry	1	5/16/2008 9:21:21 AM	CRK
SW-846 3550B, 8270C SIMS, SEM			OMPOUN	NDS BY GC/M	-			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Phenanthrene	NELAP	0.004		0.004	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:04:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		25.9	%REC	1	5/15/2008 5:04:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		34.5	%REC	1	5/15/2008 5:04:00 PM	TDN
Surr: p-Terphenyl-d14	3	30.6-131		60.3	%REC	1	5/15/2008 5:04:00 PM	TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	0.9		2.5	µg/Kg-dry	1	5/13/2008 1:51:00 AM	GEK
Ethylbenzene	NELAP	4.7	J	2.2	µg/Kg-dry	1	5/13/2008 1:51:00 AM	
Toluene	NELAP	4.7		7.2	µg/Kg-dry	1	5/13/2008 1:51:00 AM	
Xylenes, Total	NELAP	4.7		4.8	µg/Kg-dry	1	5/13/2008 1:51:00 AM	
Surr: 1,2-Dichloroethane-d4		61-128		113.5	%REC	1	5/13/2008 1:51:00 AM	
Surr: 4-Bromofluorobenzene	7	78.2-117		99.0	%REC	1	5/13/2008 1:51:00 AM	
Surr: Dibromofluoromethane		6.6-130		108.5	%REC	1	5/13/2008 1:51:00 AM	
Surr: Toluene-d8		30.1-122		97.7	%REC	1	5/13/2008 1:51:00 AM	
SW-846 9010B, 9014								
Cyanide	NELAP	0.60	J	0.20	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Er	nvironmental	ntal Client Project: A831-735002-012901-225/IP Champ						
WorkOrder: 0805041	5			Client Sam	ple ID: B-8	45 6.0	-7.0 ft	
Lab ID: 0805047	15-017			Collectior	Date: 5/6/	2008 2	2:45:00 PM	
Report Date: 16-May-	08	Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorinat	ion	0.60		Interference	mg/Kg-dry	1	5/14/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviror WorkOrder: 08050415 Lab ID: 08050415-01 Report Date: 16-May-08				Client Sam Collectior	•	845 13.0 /2008 3		hamp
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		13.8	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED.	<u>2540 G</u>							
Total Solids		0.1		86.2	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-	VOLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PM	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PM	1 TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Pyrene	NELAP	0.004		0.004	mg/Kg-dry	1	5/15/2008 5:40:00 PN	1 TDN
Surr: 2-Fluorobiphenyl		10-131		23.8	%REC	1	5/15/2008 5:40:00 PN	1 TDN
Surr: Nitrobenzene-d5		10-132		34.5	%REC	1	5/15/2008 5:40:00 PN	1 TDN
Surr: p-Terphenyl-d14		30.6-131		58.5	%REC	1	5/15/2008 5:40:00 PN	1 TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS B	BY GC/M	<u>S</u>				
Benzene	NELAP	0.8		2.3	µg/Kg-dry	1	5/13/2008 2:20:00 AN	1 GEK
Ethylbenzene	NELAP	4.0	J	1.4	µg/Kg-dry	1	5/13/2008 2:20:00 AN	1 GEK
Toluene	NELAP	4.0		4.7	µg/Kg-dry	1	5/13/2008 2:20:00 AN	1 GEK
Xylenes, Total	NELAP	4.0	J	3.5	µg/Kg-dry	1	5/13/2008 2:20:00 AN	1 GEK
Surr: 1,2-Dichloroethane-d4		61-128		117.4	%REC	1	5/13/2008 2:20:00 AN	1 GEK
Surr: 4-Bromofluorobenzene		78.2-117		93.3	%REC	1	5/13/2008 2:20:00 AN	1 GEK
Surr: Dibromofluoromethane		66.6-130		107.2	%REC	1	5/13/2008 2:20:00 AN	1 GEK
Surr: Toluene-d8		80.1-122		102.2	%REC	1	5/13/2008 2:20:00 AN	1 GEK

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviror WorkOrder: 08050415 Lab ID: 08050415-01 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-846 8.5-9.5 ft Collection Date: 5/7/2008 8:55:00 AM Matrix: SOLID							
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		24.2	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED.	2540 <u>G</u>							
Total Solids		0.1		75.8	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-	VOLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.023		1.87	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Acenaphthylene	NELAP	0.023		0.312	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Anthracene	NELAP	0.023		0.928	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Benzo(a)anthracene	NELAP	0.023		0.523	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Benzo(a)pyrene	NELAP	0.023		0.469	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Benzo(b)fluoranthene	NELAP	0.023		0.356	mg/Kg-dry	5	5/15/2008 6:24:00 AM	1 TDN
Benzo(g,h,i)perylene	NELAP	0.023		0.173	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Benzo(k)fluoranthene	NELAP	0.023		0.109	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Chrysene	NELAP	0.023		0.518	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.023		0.049	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Fluoranthene	NELAP	0.023		1.08	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Fluorene	NELAP	0.023		0.941	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.023		0.142	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Naphthalene	NELAP	0.023		5.44	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Phenanthrene	NELAP	0.023		2.78	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Pyrene	NELAP	0.023		1.61	mg/Kg-dry	5	5/15/2008 6:24:00 AN	1 TDN
Surr: 2-Fluorobiphenyl		10-131		27.9	%REC	5	5/15/2008 6:24:00 AN	1 TDN
Surr: Nitrobenzene-d5		10-132		31.9	%REC	5	5/15/2008 6:24:00 AN	1 TDN
Surr: p-Terphenyl-d14		30.6-131		63.9	%REC	5	5/15/2008 6:24:00 AN	1 TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	130		438	µg/Kg-dry	50	5/14/2008 7:44:00 PM	1 GEK
Ethylbenzene	NELAP	648		10100	µg/Kg-dry	50	5/14/2008 7:44:00 PM	1 GEK
Toluene	NELAP	648		ND	µg/Kg-dry	50	5/14/2008 7:44:00 PM	1 GEK
Xylenes, Total	NELAP	648		8820	µg/Kg-dry	50	5/14/2008 7:44:00 PM	1 GEK
Surr: 1,2-Dichloroethane-d4		61-128		94.8	%REC	50	5/14/2008 7:44:00 PM	1 GEK
Surr: 4-Bromofluorobenzene		78.2-117		98.3	%REC	50	5/14/2008 7:44:00 PM	1 GEK
Surr: Dibromofluoromethane		66.6-130		104.4	%REC	50	5/14/2008 7:44:00 PM	1 GEK
Surr: Toluene-d8		80.1-122		96.1	%REC	50	5/14/2008 7:44:00 PM	1 GEK

Sample Narrative

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environr WorkOrder: 08050415 Lab ID: 08050415-020 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-846 10.0-11.0 ft Collection Date: 5/7/2008 9:30:00 AM Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		20.0	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	2540 <u>G</u>							
Total Solids		0.1		80.0	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.041		4.19	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Acenaphthylene	NELAP	0.041		0.808	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Anthracene	NELAP	0.041		2.10	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Benzo(a)anthracene	NELAP	0.041		1.30	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Benzo(a)pyrene	NELAP	0.041		1.28	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.041		0.979	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.041		0.471	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.041		0.290	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Chrysene	NELAP	0.041		1.32	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.041		0.133	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Fluoranthene	NELAP	0.041		2.47	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Fluorene	NELAP	0.041		1.91	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.041		0.381	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Naphthalene	NELAP	0.041		12.4	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Phenanthrene	NELAP	0.041		6.29	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Pyrene	NELAP	0.041		3.94	mg/Kg-dry	10	5/15/2008 7:01:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		18.0	%REC	10	5/15/2008 7:01:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		22.0	%REC	10	5/15/2008 7:01:00 AM	TDN
Surr: p-Terphenyl-d14		30.6-131		57.9	%REC	10	5/15/2008 7:01:00 AM	TDN
SW-846 5035, 8260B, VOLATILE OF	RGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	65.2			µg/Kg-dry	25	5/14/2008 6:46:00 PM	GEK
Ethylbenzene	NELAP	326		3420	µg/Kg-dry	25	5/14/2008 6:46:00 PM	GEK
Toluene	NELAP	326	J	84	µg/Kg-dry	25	5/14/2008 6:46:00 PM	GEK
Xylenes, Total	NELAP	326		2900	µg/Kg-dry	25	5/14/2008 6:46:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		102.2	%REC	25	5/14/2008 6:46:00 PM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		101.3	%REC	25	5/14/2008 6:46:00 PM	
Surr: Dibromofluoromethane		66.6-130		113.7	%REC	25	5/14/2008 6:46:00 PM	GEK
Surr: Toluene-d8		80.1-122		98.2	%REC	25	5/14/2008 6:46:00 PM	GEK

Sample Narrative

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-02 Report Date: 16-May-08	Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-846 20.0-21.0 ft Collection Date: 5/7/2008 9:54:00 AM Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		9.7	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	. 2540 <u>G</u>							
Total Solids		0.1		90.3	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI	-VOLATILE ORG	GANIC CO	OMPOU	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		0.004	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PN	1 TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PN	1 TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PN	1 TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Naphthalene	NELAP	0.004		0.013	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Phenanthrene	NELAP	0.004		0.009	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Pyrene	NELAP	0.004		0.005	mg/Kg-dry	1	5/14/2008 7:09:00 PM	1 TDN
Surr: 2-Fluorobiphenyl		10-131		50.3	%REC	1	5/14/2008 7:09:00 PM	1 TDN
Surr: Nitrobenzene-d5		10-132		54.7	%REC	1	5/14/2008 7:09:00 PM	1 TDN
Surr: p-Terphenyl-d14	:	30.6-131		63.7	%REC	1	5/14/2008 7:09:00 PM	1 TDN
SW-846 5035, 8260B, VOLATILE (ORGANIC COMP	OUNDS E	BY GC/M	s				
Benzene	NELAP	19.7		3160	µg/Kg-dry	12.5	5/13/2008 6:28:00 PM	I GEK
Ethylbenzene	NELAP	98.3		ND	µg/Kg-dry	12.5	5/13/2008 6:28:00 PM	I GEK
Toluene	NELAP	98.3		ND	µg/Kg-dry	12.5	5/13/2008 6:28:00 PM	I GEK
Xylenes, Total	NELAP	98.3		ND	µg/Kg-dry	12.5	5/13/2008 6:28:00 PM	I GEK
Surr: 1,2-Dichloroethane-d4		61-128		99.8	%REC	12.5	5/13/2008 6:28:00 PM	I GEK
Surr: 4-Bromofluorobenzene	-	78.2-117		96.1	%REC	12.5	5/13/2008 6:28:00 PM	I GEK
Surr: Dibromofluoromethane	(6.6-130		104.2	%REC	12.5	5/13/2008 6:28:00 PM	I GEK
Surr: Toluene-d8	8	80.1-122		100.6	%REC	12.5	5/13/2008 6:28:00 PM	I GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-803 2.0-3.0 ft Collection Date: 5/7/2008 10:07:00 AM Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst	
<u>ASTM D2974</u>									
Percent Moisture		0.1		19.9	%	1	5/12/2008	TWN	
STANDARD METHODS 18TH ED	<u>). 2540 G</u>						_ / /		
Total Solids		0.1		80.1	%	1	5/12/2008	TWN	
<u>SW-846 3050B, 6010B, METALS B</u>									
Arsenic	NELAP	2.27		5.49	mg/Kg-dry	1	5/14/2008 9:13:44 PM		
Chromium	NELAP	0.91		21.2	mg/Kg-dry	1	5/14/2008 9:13:44 PM		
Lead	NELAP	3.64		145	mg/Kg-dry	1	5/16/2008 9:23:38 AM	CRK	
SW-846 3550B, 8270C SIMS, SEM			OMPOUN						
Acenaphthene	NELAP	0.004		0.008	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Acenaphthylene	NELAP	0.004		0.023	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Anthracene	NELAP	0.004		0.023	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Benzo(a)anthracene	NELAP	0.004		0.086	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Benzo(a)pyrene	NELAP	0.004		0.105	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Benzo(b)fluoranthene	NELAP	0.004		0.131	mg/Kg-dry	1	5/15/2008 7:39:00 AM		
Benzo(g,h,i)perylene	NELAP	0.004		0.066	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Benzo(k)fluoranthene	NELAP	0.004		0.045	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Chrysene	NELAP	0.004		0.096	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Dibenzo(a,h)anthracene	NELAP	0.004		0.017	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Fluoranthene	NELAP	0.004		0.173	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Fluorene	NELAP	0.004		0.007	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.059	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Naphthalene	NELAP	0.004		0.034	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Phenanthrene	NELAP	0.004		0.105	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Pyrene	NELAP	0.004		0.171	mg/Kg-dry	1	5/15/2008 7:39:00 AM	TDN	
Surr: 2-Fluorobiphenyl		10-131		61.7	%REC	1	5/15/2008 7:39:00 AM	TDN	
Surr: Nitrobenzene-d5		10-132		59.9	%REC	1	5/15/2008 7:39:00 AM	TDN	
Surr: p-Terphenyl-d14		30.6-131		64.3	%REC	1	5/15/2008 7:39:00 AM	TDN	
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS E	BY GC/M	<u>S</u>					
Benzene	NELAP	1.2		1.9	µg/Kg-dry	1	5/13/2008 7:54:00 PM	GEK	
Ethylbenzene	NELAP	5.8		6.9	µg/Kg-dry	1	5/13/2008 7:54:00 PM	GEK	
Toluene	NELAP	5.8	J	3.9	µg/Kg-dry	1	5/13/2008 7:54:00 PM	GEK	
Xylenes, Total	NELAP	5.8		10.7	µg/Kg-dry	1	5/13/2008 7:54:00 PM		
Surr: 1,2-Dichloroethane-d4		61-128		119.2	%REC	1	5/13/2008 7:54:00 PM		
Surr: 4-Bromofluorobenzene		78.2-117	S	75.0	%REC	1	5/13/2008 7:54:00 PM		
Surr: Dibromofluoromethane		66.6-130		113.6	%REC	1	5/13/2008 7:54:00 PM		
Surr: Toluene-d8		80.1-122		121.7	%REC	1	5/13/2008 7:54:00 PM		
<u>SW-846 9010B, 9014</u>									
Cyanide	NELAP	0.57	J	0.37	mg/Kg-dry	1	5/13/2008	AET	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	•				Client Project: A831-735002-012901-225/IP Chan					
WorkOrder: 08050415	Client Sample ID: B-803 2.0-3.0 ft									
Lab ID: 08050415-022	2	Collection Date: 5/7/2008 10:07:00 AM								
Report Date: 16-May-08		Matrix: SOLID								
Analyses	Certification	Certification RL Qual Result Units DF Date Analyzed Anal								
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination	0.57 Interference mg/Kg-dry 1 5/14/2008						AET			

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to matrix interference.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

WorkOrder: 08050415	Lab ID: 08050415-023 Report Date: 16-May-08						Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-803 9.0-10.0 ft Collection Date: 5/7/2008 10:20:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst					
ASTM D2974 Percent Moisture		0.1		22.0	%	1	5/12/2008	TW№					
STANDARD METHODS 18TH E	D. 2540 G	0.1		22.0	70	I	5/12/2000						
Total Solids		0.1		78.0	%	1	5/12/2008	TWN					
SW-846 3050B, 6010B, METALS	<u>BY ICP</u>												
Arsenic	NELAP	2.50	J	2.0	mg/Kg-dry	1	5/14/2008 9:20:31 PM	LAL					
Chromium	NELAP	1.00		27.0	mg/Kg-dry	1	5/14/2008 9:20:31 PM	LAL					
Lead	NELAP	4.00		14.2	mg/Kg-dry	1	5/16/2008 9:25:56 AM	CRK					
SW-846 3550B, 8270C SIMS, SEM	II-VOLATILE ORG	ANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>								
Acenaphthene	NELAP	0.004		0.026	mg/Kg-dry	1	5/14/2008 8:56:00 PM						
Acenaphthylene	NELAP	0.004		0.008	mg/Kg-dry	1	5/14/2008 8:56:00 PM						
Anthracene	NELAP	0.004		0.018	mg/Kg-dry	1	5/14/2008 8:56:00 PM						
Benzo(a)anthracene	NELAP	0.004		0.015	mg/Kg-dry	1	5/14/2008 8:56:00 PM						
Benzo(a)pyrene	NELAP	0.004		0.012	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Benzo(b)fluoranthene	NELAP	0.004		0.010	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Benzo(g,h,i)perylene	NELAP	0.004		0.005	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Chrysene	NELAP	0.004		0.014	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Fluoranthene	NELAP	0.004		0.025	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Fluorene	NELAP	0.004		0.015	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Indeno(1,2,3-cd)pyrene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Naphthalene	NELAP	0.004		0.062	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Phenanthrene	NELAP	0.004		0.063	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Pyrene	NELAP	0.004		0.037	mg/Kg-dry	1	5/14/2008 8:56:00 PM	TDN					
Surr: 2-Fluorobiphenyl		10-131		52.1	%REC	1	5/14/2008 8:56:00 PM	TDN					
Surr: Nitrobenzene-d5		10-132		57.7	%REC	1	5/14/2008 8:56:00 PM	TDN					
Surr: p-Terphenyl-d14	3	0.6-131		64.1	%REC	1	5/14/2008 8:56:00 PM	TDN					
SW-846 5035, 8260B, VOLATILE	ORGANIC COMPO	DUNDS B	SY GC/M	<u>s</u>									
Benzene	NELAP	1.0	J	0.8	µg/Kg-dry	1	5/13/2008 7:26:00 PM	GEK					
Ethylbenzene	NELAP	5.2		ND	µg/Kg-dry	1	5/13/2008 7:26:00 PM	GEK					
Toluene	NELAP	5.2		ND	µg/Kg-dry	1	5/13/2008 7:26:00 PM	GEK					
Xylenes, Total	NELAP	5.2		ND	µg/Kg-dry	1	5/13/2008 7:26:00 PM	GEK					
Surr: 1,2-Dichloroethane-d4		61-128		111.9	%REC	1	5/13/2008 7:26:00 PM	GEK					
Surr: 4-Bromofluorobenzene	7	8.2-117		94.5	%REC	1	5/13/2008 7:26:00 PM	GEK					
Surr: Dibromofluoromethane	6	6.6-130		103.3	%REC	1	5/13/2008 7:26:00 PM	GEK					
Surr: Toluene-d8	8	0.1-122		98.1	%REC	1	5/13/2008 7:26:00 PM	GEK					
<u>SW-846 9010B, 9014</u>													
Cyanide	NELAP	0.61		< 0.61	mg/Kg-dry	1	5/13/2008	AET					

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	•				Client Project: A831-735002-012901-225/IP Ch				
WorkOrder: 08050415	Client Sample ID: B-803 9.0-10.0 ft								
Lab ID: 08050415-023	5	Collection Date: 5/7/2008 10:20:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	Certification RL Qual Result Units DF Date Analyzed Ana						Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination	0.61 Interference ma/Ka-dry 1 5/14/2008						AET		

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-02 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Chan Client Sample ID: B-803 21.0-22.0 ft Collection Date: 5/7/2008 10:41:00 AM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed Ar	alyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		12.8	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	<u>2540 G</u>						_ /	
Total Solids		0.1		87.2	%	1	5/12/2008	TW№
<u>SW-846 3050B, 6010B, METALS BY</u>								
Arsenic	NELAP	2.31		5.41	mg/Kg-dry	1	5/14/2008 9:27:19 PM	LAL
Chromium	NELAP	0.93		14.2	mg/Kg-dry	1	5/14/2008 9:27:19 PM	LAL
Lead	NELAP	7.41		8.65	mg/Kg-dry	2	5/16/2008 11:09:13 AM	CRK
SW-846 3550B, 8270C SIMS, SEMI			OMPOUN	IDS BY GC/M				
Acenaphthene	NELAP	0.039		2.96	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Acenaphthylene	NELAP	0.039		3.19	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Anthracene	NELAP	0.039		2.54	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Benzo(a)anthracene	NELAP	0.039		1.33	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Benzo(a)pyrene	NELAP	0.039		1.24	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.039		0.915	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.039		0.425	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.039		0.275	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Chrysene	NELAP	0.039		1.30	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.039		0.119	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Fluoranthene	NELAP	0.039		2.74	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Fluorene	NELAP	0.039		2.61	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.039		0.345	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Naphthalene	NELAP	0.039		13.0	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Phenanthrene	NELAP	0.039		8.16	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Pyrene	NELAP	0.039		4.13	mg/Kg-dry	10	5/15/2008 8:14:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		61.9	%REC	10	5/15/2008 8:14:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		51.9	%REC	10	5/15/2008 8:14:00 AM	TDN
Surr: p-Terphenyl-d14	:	30.6-131		63.9	%REC	10	5/15/2008 8:14:00 AM	TDN
SW-846 5035, 8260B, VOLATILE C	RGANIC COMP	OUNDS H	BY GC/M	S				
Benzene	NELAP	75.8		158	µg/Kg-dry	50	5/14/2008 6:18:00 PM	GEK
Ethylbenzene	NELAP	379		4560	µg/Kg-dry	50	5/14/2008 6:18:00 PM	GEK
Toluene	NELAP	379	J	320	µg/Kg-dry	50	5/14/2008 6:18:00 PM	GEK
Xylenes, Total	NELAP	379		3500	µg/Kg-dry	50	5/14/2008 6:18:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		96.1	%REC	50	5/14/2008 6:18:00 PM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		101.5	%REC	50	5/14/2008 6:18:00 PM	GEK
Surr: Dibromofluoromethane		66.6-130		105.3	%REC	50	5/14/2008 6:18:00 PM	GEK
Surr: Toluene-d8		80.1-122		97.2	%REC	50	5/14/2008 6:18:00 PM	GEK
SW-846 9010B, 9014								
Cyanide	NELAP	0.57		< 0.57	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	mental				Project: A831-735002-012901-225/IP Champ				
WorkOrder: 08050415 Lab ID: 08050415-024	Ļ	Client Sample ID: B-803 21.0-22.0 ft Collection Date: 5/7/2008 10:41:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	Certification RL Qual Result Units DF Date Analyzed Analysis							
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination	0.57 Interference mg/Kg-dry 1 5/14/2008						AET		

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

WorkOrder: 08050415 Lab ID: 08050415-025 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-803 29.0-30.0 ft Collection Date: 5/7/2008 10:55:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		10.3	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 254	40 <u>G</u>							
Total Solids		0.1		89.7	%	1	5/12/2008	TW№
SW-846 3550B, 8270C SIMS, SEMI-VO	DLATILE ORG	ANIC CO	OMPOUN	DS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Benzo(a)anthracene	NELAP	0.004		0.004	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Fluoranthene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Naphthalene	NELAP	0.004		0.010	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Phenanthrene	NELAP	0.004		0.008	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Pyrene	NELAP	0.004		0.005	mg/Kg-dry	1	5/14/2008 9:32:00 PM	1 TDN
Surr: 2-Fluorobiphenyl		10-131		39.9	%REC	1	5/14/2008 9:32:00 PM	1 TDN
Surr: Nitrobenzene-d5		10-132		47.3	%REC	1	5/14/2008 9:32:00 PM	1 TDN
Surr: p-Terphenyl-d14	3	80.6-131		61.7	%REC	1	5/14/2008 9:32:00 PM	1 TDN
SW-846 5035, 8260B, VOLATILE ORG	GANIC COMPO	DUNDS B	BY GC/M	S				
Benzene	NELAP	0.8		- 1.4	µg/Kg-dry	1	5/13/2008 2:49:00 AM	1 GEK
Ethylbenzene	NELAP	3.8		ND	µg/Kg-dry	1	5/13/2008 2:49:00 AM	1 GEK
Toluene	NELAP	3.8	J	2.0	µg/Kg-dry	1	5/13/2008 2:49:00 AM	1 GEK
Xylenes, Total	NELAP	3.8	J	1.3	µg/Kg-dry	1	5/13/2008 2:49:00 AM	1 GEK
Surr: 1,2-Dichloroethane-d4		61-128		116.3	%REC	1	5/13/2008 2:49:00 AM	1 GEK
Surr: 4-Bromofluorobenzene	7	8.2-117		88.7	%REC	1	5/13/2008 2:49:00 AM	1 GEK
Surr: Dibromofluoromethane	6	6.6-130		111.7	%REC	1	5/13/2008 2:49:00 AM	1 GEK
Surr: Toluene-d8	8	80.1-122		108.4	%REC	1	5/13/2008 2:49:00 AM	1 GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-020 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-849 0.0-1.0 ft Collection Date: 5/7/2008 11:25:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
<u>ASTM D2974</u>								
Percent Moisture		0.1		20.0	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED.	<u>2540 G</u>					_	_ / /	
Total Solids		0.1		80.0	%	1	5/12/2008	TW№
<u>SW-846 3050B, 6010B, METALS BY</u>						_		
Arsenic	NELAP	2.40	J	2.0	mg/Kg-dry	1	5/14/2008 9:34:08 PM	LAL
Chromium	NELAP	0.96		27.5	mg/Kg-dry	1	5/14/2008 9:34:08 PM	LAL
Lead	NELAP	38.5		107	mg/Kg-dry	10	5/16/2008 11:11:31 AM	CRK
SW-846 3550B, 8270C SIMS, SEMI-			OMPOUN		-			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Acenaphthylene	NELAP	0.004		0.010	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Anthracene	NELAP	0.004		0.006	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Benzo(a)anthracene	NELAP	0.004		0.033	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Benzo(a)pyrene	NELAP	0.004		0.039	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.004		0.058	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		0.025	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.004		0.020	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Chrysene	NELAP	0.004		0.043	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		0.007	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Fluoranthene	NELAP	0.004		0.062	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		0.024	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Naphthalene	NELAP	0.004		0.006	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Phenanthrene	NELAP	0.004		0.035	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Pyrene	NELAP	0.004		0.064	mg/Kg-dry	1	5/15/2008 8:50:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		51.9	%REC	1	5/15/2008 8:50:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		56.9	%REC	1	5/15/2008 8:50:00 AM	TDN
Surr: p-Terphenyl-d14	;	30.6-131		62.9	%REC	1	5/15/2008 8:50:00 AM	TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	1.1		1.2	µg/Kg-dry	1	5/13/2008 3:18:00 AM	GEK
Ethylbenzene	NELAP	5.3		ND	µg/Kg-dry	1	5/13/2008 3:18:00 AM	GEK
Toluene	NELAP	5.3	J	1.1	µg/Kg-dry	1	5/13/2008 3:18:00 AM	GEK
Xylenes, Total	NELAP	5.3		ND	µg/Kg-dry	1	5/13/2008 3:18:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		117.3	%REC	1	5/13/2008 3:18:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		83.5	%REC	1	5/13/2008 3:18:00 AM	GEK
Surr: Dibromofluoromethane		66.6-130		113.3	%REC	1	5/13/2008 3:18:00 AM	GEK
Surr: Toluene-d8		30.1-122		109.7	%REC	1	5/13/2008 3:18:00 AM	GEK
SW-846 9010B, 9014								
Cyanide	NELAP	0.60	J	0.52	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client:	Philip Environm	hilip Environmental				Client Project: A831-735002-012901-225/IP C				
WorkOrder:	08050415	•					nple ID: B-849 0.0-1.0 ft			
Lab ID:	08050415-026	Collection Date: 5/7/2008 11:25:00 AM								
Report Date:	16-May-08	Matrix: SOLID								
Analyses	5	Certification RL Qual Result Units DF Date Analyzed Ana						Analyst		
<u>SW-846 9014A</u> Cyanide, Amenable t	o Chlorination	0.60 Interference ma/Ka-dry 1 5/14/2008						AET		

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Envir WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-849 9.0-10.0 ft Collection Date: 5/7/2008 11:35:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		14.5	%	1	5/12/2008	TWN
STANDARD METHODS 18TH E	<u>D. 2540 G</u>						_ / /	
Total Solids		0.1		85.5	%	1	5/12/2008	TWN
SW-846 3050B, 6010B, METALS								
Arsenic	NELAP	2.50		5.59	mg/Kg-dry	1	5/14/2008 9:41:15 PM	LAL
Chromium	NELAP	1.00		13.3	mg/Kg-dry	1	5/14/2008 9:41:15 PM	LAL
Lead	NELAP	8.00		12.4	mg/Kg-dry	2	5/16/2008 11:13:47 AN	I CRK
<u>SW-846 3550B, 8270C SIMS, SEM</u>			OMPOUN		-			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:08:00 PN	
Surr: 2-Fluorobiphenyl		10-131		23.4	%REC	1	5/14/2008 10:08:00 PN	
Surr: Nitrobenzene-d5	_	10-132		30.7	%REC	1	5/14/2008 10:08:00 PN	
Surr: p-Terphenyl-d14		30.6-131		63.1	%REC	1	5/14/2008 10:08:00 PN	I TDN
<u>SW-846 5035, 8260B, VOLATILE</u>			BY GC/M					
Benzene	NELAP	0.9		2.6	µg/Kg-dry	1	5/13/2008 3:46:00 AM	
Ethylbenzene	NELAP	4.4	J	2.1	µg/Kg-dry	1	5/13/2008 3:46:00 AM	GEK
Toluene	NELAP	4.4		5.7	µg/Kg-dry	1	5/13/2008 3:46:00 AM	GEK
Xylenes, Total	NELAP	4.4		4.6	µg/Kg-dry	1	5/13/2008 3:46:00 AM	GEK
Surr: 1,2-Dichloroethane-d4	-	61-128		118.7	%REC	1	5/13/2008 3:46:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		98.0	%REC	1	5/13/2008 3:46:00 AM	GEK
Surr: Dibromofluoromethane		6.6-130		109.8	%REC	1	5/13/2008 3:46:00 AM	GEK
Surr: Toluene-d8	8	30.1-122		97.5	%REC	1	5/13/2008 3:46:00 AM	GEK
<u>SW-846 9010B, 9014</u>		0					F 14 0 10 0 0 0	
Cyanide	NELAP	0.56		< 0.56	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	•				Client Project: A831-735002-012901-225/IP Cl				
WorkOrder: 08050415					Client Sample ID: B-849 9.0-10.0 ft				
Lab ID: 08050415-027	7	Collection Date: 5/7/2008 11:35:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	Certification RL Qual Result Units DF Date Analyzed An						Analyst	
SW-846 9014A	0.56 Interference ma/Ka-drv 1 5/14/2008					AET			
Cyanide, Amenable to Chlorination	0 Chlorination 0.56 Interference mg/Kg-dry 1 5/14/2008 A						AET		

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Envir WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-849 16.0-17.0 ft Collection Date: 5/7/2008 11:55:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		9.7	%	1	5/12/2008	TW№
STANDARD METHODS 18TH E	<u>D. 2540 G</u>						- / / 0 / 0 0 0	
Total Solids		0.1		90.3	%	1	5/12/2008	TW№
<u>SW-846 3050B, 6010B, METALS</u>								
Arsenic	NELAP	2.31		5.88	mg/Kg-dry	1	5/14/2008 10:00:49 PM	
Chromium	NELAP	0.93		12.0	mg/Kg-dry	1	5/14/2008 10:00:49 PM	
	NELAP	3.70		6.88	mg/Kg-dry	1	5/16/2008 11:16:03 AM	CRK
<u>SW-846 3550B, 8270C SIMS, SEM</u>	<u>II-VOLATILE ORG</u> NELAP		JMPOUR			10	E/4E/2000 0.27.00 AM	
		0.037		0.665	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Acenaphthylene	NELAP	0.037		1.55	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Anthracene	NELAP	0.037		1.12	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Benzo(a)anthracene	NELAP	0.037		0.670	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Benzo(a)pyrene	NELAP	0.037		0.661	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.037		0.520	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.037		0.227	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.037		0.161	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Chrysene	NELAP	0.037		0.661	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.037		0.065	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Fluoranthene	NELAP	0.037		1.21	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
	NELAP	0.037		1.07	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.037		0.187	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Naphthalene	NELAP	0.037		5.37	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Phenanthrene	NELAP	0.037		3.54	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Pyrene	NELAP	0.037		1.84	mg/Kg-dry	10	5/15/2008 9:27:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		53.9	%REC	10	5/15/2008 9:27:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		53.9	%REC	10	5/15/2008 9:27:00 AM	TDN
Surr: p-Terphenyl-d14		30.6-131		65.9	%REC	10	5/15/2008 9:27:00 AM	TDN
<u>SW-846 5035, 8260B, VOLATILE</u>			SY GC/M			400	5/4 4/0000 5 40 00 DM	054
Benzene	NELAP	179		1210	µg/Kg-dry	100	5/14/2008 5:49:00 PM	
Ethylbenzene	NELAP	896 806		6240	µg/Kg-dry ⊎a/Ka⊦day	100	5/14/2008 5:49:00 PM	GEK
Toluene	NELAP	896	J	890	µg/Kg-dry	100	5/14/2008 5:49:00 PM	GEK
Xylenes, Total	NELAP	896		5640 101 0	µg/Kg-dry	100	5/14/2008 5:49:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	-	61-128		101.0	%REC	100	5/14/2008 5:49:00 PM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		100.4	%REC	100	5/14/2008 5:49:00 PM	GEK
Surr: Dibromofluoromethane		6.6-130		103.7	%REC	100	5/14/2008 5:49:00 PM	GEK
Surr: Toluene-d8	8	80.1-122		95.9	%REC	100	5/14/2008 5:49:00 PM	GEK
<u>SW-846 9010B, 9014</u>		0 5 4		- 0 54	malkadri	4	E/10/0000	
Cyanide	NELAP	0.54		< 0.54	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	•				Client Project: A831-735002-012901-225/IP Cha					
WorkOrder: 08050415	Client Sample ID: B-849 16.0-17.0 ft									
Lab ID: 08050415-028	3	Collection Date: 5/7/2008 11:55:00 AM								
Report Date: 16-May-08		Matrix: SOLID								
Analyses	Certification	Certification RL Qual Result Units DF Date Analyzed Ana								
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination	0.54 Interference mg/Kg-dry 1 5/14/2008						AET			

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environr WorkOrder: 08050415 Lab ID: 08050415-029 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-848 2.0-3.0 ft Collection Date: 5/7/2008 3:45:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		20.1	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	2540 G							
Total Solids		0.1		79.9	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.008		ND	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Acenaphthylene	NELAP	0.008		0.024	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Anthracene	NELAP	0.008		0.011	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Benzo(a)anthracene	NELAP	0.008		0.067	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Benzo(a)pyrene	NELAP	0.008		0.089	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Benzo(b)fluoranthene	NELAP	0.008		0.103	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Benzo(g,h,i)perylene	NELAP	0.008		0.050	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Benzo(k)fluoranthene	NELAP	0.008		0.032	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Chrysene	NELAP	0.008		0.075	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Dibenzo(a,h)anthracene	NELAP	0.008		0.013	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Fluoranthene	NELAP	0.008		0.091	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Fluorene	NELAP	0.008		ND	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.008		0.042	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Naphthalene	NELAP	0.008		0.014	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Phenanthrene	NELAP	0.008		0.053	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Pyrene	NELAP	0.008		0.111	mg/Kg-dry	2	5/15/2008 10:04:00 A	M TDN
Surr: 2-Fluorobiphenyl		10-131		39.5	%REC	2	5/15/2008 10:04:00 A	M TDN
Surr: Nitrobenzene-d5		10-132		47.5	%REC	2	5/15/2008 10:04:00 A	M TDN
Surr: p-Terphenyl-d14		30.6-131		57.1	%REC	2	5/15/2008 10:04:00 A	M TDN
SW-846 5035, 8260B, VOLATILE OR	RGANIC COMP	OUNDS B	BY GC/M	S				
Benzene	NELAP	1.1		1.3	µg/Kg-dry	1	5/13/2008 4:15:00 Al	M GEK
Ethylbenzene	NELAP	5.7		ND	µg/Kg-dry	1	5/13/2008 4:15:00 Al	M GEK
Toluene	NELAP	5.7		ND	µg/Kg-dry	1	5/13/2008 4:15:00 Al	M GEK
Xylenes, Total	NELAP	5.7		ND	µg/Kg-dry	1	5/13/2008 4:15:00 Al	M GEK
Surr: 1,2-Dichloroethane-d4		61-128		118.6	%REC	1	5/13/2008 4:15:00 A	M GEK
Surr: 4-Bromofluorobenzene		78.2-117		88.6	%REC	1	5/13/2008 4:15:00 Al	M GEK
Surr: Dibromofluoromethane		66.6-130		110.9	%REC	1	5/13/2008 4:15:00 Al	M GEK
Surr: Toluene-d8		80.1-122		106.0	%REC	1	5/13/2008 4:15:00 AI	M GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

Elevated reporting limit due to high levels of target and/or non-target analytes.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm WorkOrder: 08050415 Lab ID: 08050415-030 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-848 9.0-10.0 ft Collection Date: 5/7/2008 3:55:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed Ar	alyst
ASTM D2974								
Percent Moisture		0.1		24.2	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	540 G							
Total Solids		0.1		75.8	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 10:46:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		42.3	%REC	1	5/14/2008 10:46:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		45.3	%REC	1	5/14/2008 10:46:00 PM	TDN
Surr: p-Terphenyl-d14		30.6-131		67.9	%REC	1	5/14/2008 10:46:00 PM	TDN
SW-846 5035, 8260B, VOLATILE OR	GANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	1.0		5.8	µg/Kg-dry	1	5/13/2008 4:44:00 AM	GEK
Ethylbenzene	NELAP	5.1	J	3.9	µg/Kg-dry	1	5/13/2008 4:44:00 AM	GEK
Toluene	NELAP	5.1		11.7	µg/Kg-dry	1	5/13/2008 4:44:00 AM	GEK
Xylenes, Total	NELAP	5.1		7.2	µg/Kg-dry	1	5/13/2008 4:44:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		116.7	%REC	1	5/13/2008 4:44:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		99.5	%REC	1	5/13/2008 4:44:00 AM	GEK
Surr: Dibromofluoromethane		66.6-130		110.0	%REC	1	5/13/2008 4:44:00 AM	GEK
Surr: Toluene-d8		80.1-122		97.9	%REC	1	5/13/2008 4:44:00 AM	GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-03 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-848 13.0-14.0 ft Collection Date: 5/7/2008 4:10:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed An	alyst
ASTM D2974								
Percent Moisture		0.1		21.5	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED.	2540 G							
Total Solids		0.1		78.5	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-	VOLATILE OR	GANIC CO	OMPOU	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/14/2008 11:23:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		25.7	%REC	1	5/14/2008 11:23:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		35.7	%REC	1	5/14/2008 11:23:00 PM	TDN
Surr: p-Terphenyl-d14		30.6-131		67.3	%REC	1	5/14/2008 11:23:00 PM	TDN
SW-846 5035, 8260B, VOLATILE O	RGANIC COMP	OUNDS B	Y GC/M	S				
Benzene	NELAP	0.9		3.0	µg/Kg-dry	1	5/13/2008 5:13:00 AM	GEK
Ethylbenzene	NELAP	4.6	J	1.9	µg/Kg-dry	1	5/13/2008 5:13:00 AM	GEK
Toluene	NELAP	4.6		6.0	µg/Kg-dry	1	5/13/2008 5:13:00 AM	GEK
Xylenes, Total	NELAP	4.6	J	3.8	µg/Kg-dry	1	5/13/2008 5:13:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		114.6	%REC	1	5/13/2008 5:13:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		96.6	%REC	1	5/13/2008 5:13:00 AM	GEK
Surr: Dibromofluoromethane		66.6-130		111.8	%REC	1	5/13/2008 5:13:00 AM	GEK
Surr: Toluene-d8		80.1-122		96.1	%REC	1	5/13/2008 5:13:00 AM	GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm WorkOrder: 08050415 Lab ID: 08050415-032 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-847 6.0-7.0 ft Collection Date: 5/7/2008 4:47:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		21.1	%	1	5/12/2008	TWN
STANDARD METHODS 18TH ED. 2	540 G							
Total Solids		0.1		78.9	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Benzo(a)anthracene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Fluoranthene	NELAP	0.004		0.005	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Phenanthrene	NELAP	0.004		0.011	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Pyrene	NELAP	0.004		0.006	mg/Kg-dry	1	5/15/2008 6:17:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		25.1	%REC	1	5/15/2008 6:17:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		41.1	%REC	1	5/15/2008 6:17:00 PM	TDN
Surr: p-Terphenyl-d14		30.6-131		64.1	%REC	1	5/15/2008 6:17:00 PM	TDN
SW-846 5035, 8260B, VOLATILE OR	GANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	1.0		2.7	µg/Kg-dry	1	5/13/2008 5:42:00 AM	GEK
Ethylbenzene	NELAP	5.2	J	3.0	µg/Kg-dry	1	5/13/2008 5:42:00 AM	GEK
Toluene	NELAP	5.2		6.8	µg/Kg-dry	1	5/13/2008 5:42:00 AM	GEK
Xylenes, Total	NELAP	5.2		5.7	µg/Kg-dry	1	5/13/2008 5:42:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		119.9	%REC	1	5/13/2008 5:42:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		101.9	%REC	1	5/13/2008 5:42:00 AM	GEK
Surr: Dibromofluoromethane		66.6-130		109.3	%REC	1	5/13/2008 5:42:00 AM	GEK
Surr: Toluene-d8		80.1-122		97.3	%REC	1	5/13/2008 5:42:00 AM	GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Environ WorkOrder: 08050415 Lab ID: 08050415-03 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-847 22.0-23.0 ft Collection Date: 5/7/2008 5:18:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	Analyst
ASTM D2974 Percent Moisture		0.1		12.4	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED	2540 G	0.1		12.4	70		5/12/2008	
Total Solids	20-10 0	0.1		87.6	%	1	5/12/2008	TWN
SW-846 3550B, 8015B, TOTAL PET	ROLEUM HYD	ROCARB	ONS (OA	-2) BY GC/FII)			
Diesel	NELAP	139	SR#	562	_ mg/Kg-dry	25	5/15/2008 4:01:00 P	M DMH
Kerosene	NELAP	139		ND	mg/Kg-dry	25	5/15/2008 4:01:00 P	M DMH
Mineral Spirits	NELAP	139		ND	mg/Kg-dry	25	5/15/2008 4:01:00 P	M DMH
Motor Oil	NELAP	139		ND	mg/Kg-dry	25	5/15/2008 4:01:00 P	M DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	44.7	%REC	25	5/15/2008 4:01:00 P	M DMH
SW-846 3550B, 8270C SIMS, SEMI	-VOLATILE OR	GANIC CO	OMPOUN	NDS BY GC/M	<u>S</u>			
Acenaphthene	NELAP	0.190		0.950	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Acenaphthylene	NELAP	0.190		4.73	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Anthracene	NELAP	0.190		2.36	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Benzo(a)anthracene	NELAP	0.190		1.29	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Benzo(a)pyrene	NELAP	0.190		1.15	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Benzo(b)fluoranthene	NELAP	0.190		0.905	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Benzo(g,h,i)perylene	NELAP	0.190		0.356	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Benzo(k)fluoranthene	NELAP	0.190		0.258	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Chrysene	NELAP	0.190		1.27	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Dibenzo(a,h)anthracene	NELAP	0.190		ND	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Fluoranthene	NELAP	0.190		2.53	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Fluorene	NELAP	0.190		2.50	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.190		0.300	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Naphthalene	NELAP	0.190		13.8	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Phenanthrene	NELAP	0.190		8.04	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Pyrene	NELAP	0.190		3.79	mg/Kg-dry	50	5/15/2008 10:39:00 A	M TDN
Surr: 2-Fluorobiphenyl		10-131		49.9	%REC	50	5/15/2008 10:39:00 A	M TDN
Surr: Nitrobenzene-d5		10-132		49.9	%REC	50	5/15/2008 10:39:00 A	M TDN
Surr: p-Terphenyl-d14		30.6-131		59.9	%REC	50	5/15/2008 10:39:00 A	M TDN
SW-846 5035, 8260B, VOLATILE C	RGANIC COM	POUNDS E	BY GC/M					
Benzene	NELAP	548		1440	µg/Kg-dry	500	5/14/2008 11:32:00 A	M GEK
Ethylbenzene	NELAP	2740		62800	µg/Kg-dry	500	5/14/2008 11:32:00 A	M GEK
Toluene	NELAP	2740		12400	µg/Kg-dry	500	5/14/2008 11:32:00 A	M GEK
Xylenes, Total	NELAP	2740		75600	µg/Kg-dry	500	5/14/2008 11:32:00 A	M GEK
Surr: 1,2-Dichloroethane-d4		61-128		109.7	%REC	500	5/14/2008 11:32:00 A	M GEK
Surr: 4-Bromofluorobenzene		78.2-117		104.6	%REC	500	5/14/2008 11:32:00 A	
Surr: Dibromofluoromethane		66.6-130		105.8	%REC	500	5/14/2008 11:32:00 A	
Surr: Toluene-d8		80.1-122		93.6	%REC	500	5/14/2008 11:32:00 A	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client:	Philip Environmental Clie					oject:	A831-7350	02-012901-225/IP	Champ
WorkOrder:	08050415				Client Sampl	e ID:	B-847 22.0	-23.0 ft	
Lab ID:	08050415-033	Collection Date: 5/7/2008 5:18:00 PM							
Report Date:	16-May-08				Ma	atrix:	SOLID		
Analyses	5	Certification	RL	Qual	Result	Unit	s DF	Date Analyzed	Analyst

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

Elevated reporting limit due to high levels of target and/or non-target analytes.

SW-846 3550B, 8015B, Total Petroleum Hydrocarbons (OA-2) by GC/FID

Surrogate recovery was outside QC limits due to matrix interference.

Matrix spike and RPD did not recover within control limits because of sample composition.

Elevated reporting limit due to high levels of target and/or non-target analytes.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Cham Client Sample ID: B-809 2.0-3.0 ft Collection Date: 5/8/2008 9:45:00 AM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
ASTM D2974								
Percent Moisture		0.1		19.7	%	1	5/12/2008	TW№
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		80.3	%	1	5/12/2008	TW№
SW-846 3050B, 6010B, METALS I								
Arsenic	NELAP	2.36		4.34	mg/Kg-dry	1	5/14/2008 10:07:39 PM	
Chromium	NELAP	0.94		7.08	mg/Kg-dry	1	5/14/2008 10:07:39 PM	
Lead	NELAP	37.7		48.5	mg/Kg-dry	10	5/16/2008 11:18:19 AM	CRK
SW-846 3550B, 8270C SIMS, SEM			OMPOUN					
Acenaphthene	NELAP	0.042		0.153	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Acenaphthylene	NELAP	0.042		0.061	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Anthracene	NELAP	0.042		0.157	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Benzo(a)anthracene	NELAP	0.042		1.11	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Benzo(a)pyrene	NELAP	0.042		2.84	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.042		2.78	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.042		2.26	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.042		0.907	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Chrysene	NELAP	0.042		1.24	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.042		0.551	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Fluoranthene	NELAP	0.042		1.40	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Fluorene	NELAP	0.042		0.049	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.042		2.03	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Naphthalene	NELAP	0.042		0.136	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Phenanthrene	NELAP	0.042		0.716	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Pyrene	NELAP	0.042		1.34	mg/Kg-dry	10	5/15/2008 8:41:00 PM	TDN
Surr: 2-Fluorobiphenyl		10-131		45.9	%REC	10	5/15/2008 8:41:00 PM	TDN
Surr: Nitrobenzene-d5		10-132		47.9	%REC	10	5/15/2008 8:41:00 PM	TDN
Surr: p-Terphenyl-d14		30.6-131		53.9	%REC	10	5/15/2008 8:41:00 PM	TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS F	BY GC/M	s				
Benzene	NELAP	1.5		1.6	µg/Kg-dry	1	5/13/2008 9:50:00 PM	GEK
Ethylbenzene	NELAP	7.5		ND	µg/Kg-dry	1	5/13/2008 9:50:00 PM	GEK
Toluene	NELAP	7.5	J	2.8	µg/Kg-dry	1	5/13/2008 9:50:00 PM	GEK
Xylenes, Total	NELAP	7.5	J	6.2	µg/Kg-dry	1	5/13/2008 9:50:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		61-128	S	140.0	%REC	1	5/13/2008 9:50:00 PM	GEK
Surr: 4-Bromofluorobenzene		78.2-117	S	63.5	%REC	1	5/13/2008 9:50:00 PM	GEK
Surr: Dibromofluoromethane		66.6-130	S	142.3	%REC	1	5/13/2008 9:50:00 PM	GEK
Surr: Toluene-d8		80.1-122	S	158.5	%REC	1	5/13/2008 9:50:00 PM	GEK
<u>SW-846 9010B, 9014</u>			Ũ		,	•	5, 10, 2000 0.00100 T W	221
Cyanide	NELAP	0.61		1.23	mg/Kg-dry	1	5/13/2008	AET
		0.01		1.23	inging ury		0,10/2000	/ \L I

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	nilip Environmental					31-735	002-012901-225/IP Cha	amp	
WorkOrder: 08050415			Client Sample ID: B-809 2.0-3.0 ft						
Lab ID: 08050415-034	Ļ	Collection Date: 5/8/2008 9:45:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ana	alyst	
<u>SW-846 9014A</u>									
Cyanide, Amenable to Chlorination		0.61		Interference	mg/Kg-dry	1	5/14/2008	AET	
<u>SW-846 9045C</u> pH (1:1)	NELAP	1.00		7.25		1	5/13/2008 1:32:00 PM	KNL	

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Marginal Exceedance for Naphthalene, LCS is verified per NELAC Appendix D 1.1.2

SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to matrix interference.

Results verified by re-analysis.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-809 9.0-10.0 ft Collection Date: 5/8/2008 9:58:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974					0 (5/40/0000	-
Percent Moisture		0.1		17.7	%	1	5/12/2008	TWN
STANDARD METHODS 18TH EI Total Solids	<u>D. 2540 G</u>	0.1		00.0	%	1	5/12/2008	TWM
		0.1		82.3	70	I	5/12/2008	
<u>SW-846 3050B, 6010B, METALS I</u> Arsenic	NELAP	2.36		3.08	mg/Kg-dry	1	5/14/2008 10:14:13 PN	1 LAL
Chromium	NELAP	2.30 0.94		3.08 16.1	mg/Kg-dry	1	5/14/2008 10:14:13 PN	
Lead	NELAP	7.55		10.1	mg/Kg-dry	2	5/16/2008 11:20:35 AN	
SW-846 3550B, 8270C SIMS, SEM			OMPOLIN			2	3/10/2000 11.20.03 AN	
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Benzo(a)anthracene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Benzo(a)pyrene	NELAP	0.004	-	ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Naphthalene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 12:37:00 AN	1 TDN
Surr: 2-Fluorobiphenyl		10-131		26.3	%REC	1	5/15/2008 12:37:00 AN	1 TDN
Surr: Nitrobenzene-d5		10-132		38.7	%REC	1	5/15/2008 12:37:00 AN	1 TDN
Surr: p-Terphenyl-d14	(30.6-131		65.3	%REC	1	5/15/2008 12:37:00 AN	1 TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS B	BY GC/M	<u>S</u>				
Benzene	NELAP	0.9		1.6	µg/Kg-dry	1	5/13/2008 6:39:00 AM	GEK
Ethylbenzene	NELAP	4.3		ND	µg/Kg-dry	1	5/13/2008 6:39:00 AM	GEK
Toluene	NELAP	4.3	J	1.4	µg/Kg-dry	1	5/13/2008 6:39:00 AM	GEK
Xylenes, Total	NELAP	4.3		ND	µg/Kg-dry	1	5/13/2008 6:39:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		117.9	%REC	1	5/13/2008 6:39:00 AM	GEK
Surr: 4-Bromofluorobenzene	7	78.2-117		97.9	%REC	1	5/13/2008 6:39:00 AM	GEK
Surr: Dibromofluoromethane	e	6.6-130		109.2	%REC	1	5/13/2008 6:39:00 AM	GEK
Surr: Toluene-d8	٤	30.1-122		96.1	%REC	1	5/13/2008 6:39:00 AM	GEK
<u>SW-846 9010B, 9014</u>								
Cyanide	NELAP	0.59		< 0.59	mg/Kg-dry	1	5/13/2008	AET

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environ	nental		Client Project: A831-735002-012901-225/IP C						
WorkOrder: 08050415				Client Sample ID: B-809 9.0-10.0 ft					
Lab ID: 08050415-035	i	Collection Date: 5/8/2008 9:58:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ana	alyst	
<u>SW-846 9014A</u>									
Cyanide, Amenable to Chlorination		0.59		Interference	mg/Kg-dry	1	5/14/2008	AET	
<u>SW-846 9045C</u> pH (1:1)	NELAP	1.00		7.22		1	5/13/2008 1:39:00 PM	KNL	

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Enviro WorkOrder: 08050415 Lab ID: 08050415-0 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Char Client Sample ID: B-809 15.0-16.0 ft Collection Date: 5/8/2008 10:15:00 AM Matrix: SOLID						
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	alyst
ASTM D2974								
Percent Moisture		0.1		13.3	%	1	5/12/2008	TW№
STANDARD METHODS 18TH E	<u>D. 2540 G</u>							
Total Solids		0.1		86.7	%	1	5/12/2008	TW№
SW-846 3050B, 6010B, METALS I								
Arsenic	NELAP	2.50		4.69	mg/Kg-dry	1	5/14/2008 10:21:02 PM	
Chromium	NELAP	1.00		15.3	mg/Kg-dry	1	5/14/2008 10:21:02 PM	
Lead	NELAP	4.00		8.68	mg/Kg-dry	1	5/16/2008 11:22:52 AM	CRK
SW-846 3550B, 8270C SIMS, SEM			OMPOUN	NDS BY GC/M				
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Naphthalene	NELAP	0.004	J	0.004	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Phenanthrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:15:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		46.5	%REC	1	5/15/2008 1:15:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		47.9	%REC	1	5/15/2008 1:15:00 AM	TDN
Surr: p-Terphenyl-d14	:	30.6-131		62.9	%REC	1	5/15/2008 1:15:00 AM	TDN
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS B	BY GC/M	s				
Benzene	NELAP	0.9		<u> </u>	µg/Kg-dry	1	5/13/2008 7:08:00 AM	GEK
Ethylbenzene	NELAP	4.5		ND	µg/Kg-dry	1	5/13/2008 7:08:00 AM	GEK
Toluene	NELAP	4.5	J	2.9	µg/Kg-dry	1	5/13/2008 7:08:00 AM	GEK
Xylenes, Total	NELAP	4.5		ND	µg/Kg-dry	1	5/13/2008 7:08:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		122.8	%REC	1	5/13/2008 7:08:00 AM	GEK
Surr: 4-Bromofluorobenzene	-	78.2-117		88.5	%REC	1	5/13/2008 7:08:00 AM	GEK
Surr: Dibromofluoromethane		56.6-130		115.0	%REC	1	5/13/2008 7:08:00 AM	GEK
Surr: Toluene-d8		30.1-122		107.5	%REC	1	5/13/2008 7:08:00 AM	GEK
<u>SW-846 9010B, 9014</u>	· · · · · · · · · · · · · · · · · · ·				, E O		<i>a, 10,</i> 2000 1.00.00 / W	551
Cyanide	NELAP	0.55		< 0.55	mg/Kg-dry	1	5/13/2008	AET
		0.00		< 0.00	ing/itg-ury		0/10/2000	/ \ L

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Enviror	•				Client Project: A831-735002-012901-225/IP Cha				
WorkOrder: 08050415					Client Sample ID: B-809 15.0-16.0 ft				
Lab ID: 08050415-03	6	Collection Date: 5/8/2008 10:15:00 AM							
Report Date: 16-May-08		Matrix: SOLID							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst	
<u>SW-846 9014A</u> Cyanide, Amenable to Chlorination		0.55		Interference	mg/Kg-dry	1	5/14/2008	AET	

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: Philip Environm WorkOrder: 08050415 Lab ID: 08050415-037 Report Date: 16-May-08		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: B-847 29.0-30.0 ft Collection Date: 5/7/2008 5:30:00 PM Matrix: SOLID						
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
ASTM D2974								
Percent Moisture		0.1		11.5	%	1	5/12/2008	TW№
STANDARD METHODS 18TH ED. 24	540 <u>G</u>							
Total Solids		0.1		88.5	%	1	5/12/2008	TWN
SW-846 3550B, 8270C SIMS, SEMI-V	OLATILE ORG	GANIC CO	OMPOUN	NDS BY GC/M	S			
Acenaphthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Acenaphthylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Benzo(a)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Benzo(a)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Benzo(b)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Benzo(g,h,i)perylene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Benzo(k)fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Chrysene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Dibenzo(a,h)anthracene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Fluoranthene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Fluorene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Naphthalene	NELAP	0.004		0.012	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Phenanthrene	NELAP	0.004		0.006	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Pyrene	NELAP	0.004		ND	mg/Kg-dry	1	5/15/2008 1:52:00 AM	TDN
Surr: 2-Fluorobiphenyl		10-131		26.1	%REC	1	5/15/2008 1:52:00 AM	TDN
Surr: Nitrobenzene-d5		10-132		32.3	%REC	1	5/15/2008 1:52:00 AM	TDN
Surr: p-Terphenyl-d14		30.6-131		61.5	%REC	1	5/15/2008 1:52:00 AM	TDN
SW-846 5035, 8260B, VOLATILE OR	GANIC COMP	OUNDS E	BY GC/M	S				
Benzene	NELAP	0.8			µg/Kg-dry	1	5/13/2008 7:37:00 AM	GEK
Ethylbenzene	NELAP	3.8		ND	µg/Kg-dry	1	5/13/2008 7:37:00 AM	GEK
Toluene	NELAP	3.8	J	1.8	µg/Kg-dry	1	5/13/2008 7:37:00 AM	GEK
Xylenes, Total	NELAP	3.8		ND	µg/Kg-dry	1	5/13/2008 7:37:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		61-128		121.1	%REC	1	5/13/2008 7:37:00 AM	GEK
Surr: 4-Bromofluorobenzene		78.2-117		82.3	%REC	1	5/13/2008 7:37:00 AM	GEK
Surr: Dibromofluoromethane		66.6-130		115.5	%REC	1	5/13/2008 7:37:00 AM	GEK
Surr: Toluene-d8		80.1-122		113.1	%REC	1	5/13/2008 7:37:00 AM	GEK

Sample Narrative

SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

GC/MS 5/12/2008 08050415-002A B-812 9.0-10.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 08050415-002D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/13/2008 08050415-002D SW-846 3050, 8260B, Volatile Organic Compounds by 5/12/2008 5/12/2008 08050415-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by 5/12/2008 5/13/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 08050	Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
8W346 3550B, 8270C SIMS, Semi-Volutile Organic 5/12/2008 5/14/2008 88050115-001D SW-846 3053, 8260B, Volutile Organic Compounds by GC/MS 5/12/2008 5/12/2008 88050115-002A B-812 9.0-10.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-002A B-812 9.0-10.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-002D SW-846 3053, 8260B, Volutile Organic 5/12/2008 5/12/2008 80050115-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-003A B-812 0.3.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-003A B-511 2.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 80050115-003A B-511 2.0-3.0 ft ASTM D2974 5/13/2008 5/13/2008 80050115-004A B-511 2.0-3.0 ft ASTM D2974 5/13/2008 5/13/2008 804504 0500B, 6010B, Metals by ICP <td< td=""><td>08050415-001A</td><td>B-812 1.0-2.0 ft</td><td>5/5/2008</td><td>Solid</td><td>ASTM D2974</td><td></td><td>5/12/2008</td></td<>	08050415-001A	B-812 1.0-2.0 ft	5/5/2008	Solid	ASTM D2974		5/12/2008
08050415-001D GW.346 5035, 8260B, Volatile Organic Compounds by 5/12/2008 5/12/2008 08050415-002A B-812 9.0-10.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 08050415-002A B-812 9.0-10.0 ft Standard Methods 18th Ed. 2540 G 5/12/2008 08050415-002D Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 08050415-002D SW.546 50508, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 08050415-002A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-003A B-812 11.0-12.0 ft Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 08050415-003D Standard Methods 18th Ed. 2540 G 5/12/2008 5/13/2008 08050415-003A B-811 2.0-3.0 ft SW.546 5053, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 08050415-004A B-811 2.0-3.0 ft SW.446 3550B, 6010B, Metals by ICP 5/13/2008 5/13/2008 08050415-004A B-811 2.0-3.0 ft SW.546 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 08050415-004A <					Standard Methods 18th Ed. 2540 G		5/12/2008
GC/MS 5/12/2008 08050415-002A B-812 9.0-10.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 08050415-002D SW-846 53508, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 08050415-002D SW-846 5035, 8260B, Volatile Organic Compounds by 5/12/2008 5/12/2008 08050415-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-003D Standard Methods 18th Ed. 2540 G 5/12/2008 5/15/2008 08050415-003D SW-846 53508, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 08050415-003D SW-846 5305, 8260B, Volatile Organic Compounds by 5/12/2008 5/13/2008 08050415-003A B-811 2.0-3.0 ft ASTM D2974 5/13/2008 5/13/2008 08050415-004A						5/12/2008	5/14/2008
Standard Methods 18th Ed. 2540 G 5/12/2008 NSW-546 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/14/2008 O8050415-002D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/AS 5/12/2008 5/13/2008 08050415-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/13/2008 5/14/2008 08050415-004D SW-846 3050B, 6010B, Metals by ICP 5/13/2008	08050415-001D					5/12/2008	5/13/2008
SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/14/2008 08050415-002D SW-846 5035, 8260B, Volatile Organic Compounds by 5/12/2008 5/13/2008 08050415-003A B-812 11.0-12.0 ft ASTM D2974 5/12/2008 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 5/15/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/13/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by 5/12/2008 5/13/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by 5/12/2008 5/13/2008 08050415-003D SW-846 3050B, 6010B, Volatile Organic Compounds by 5/12/2008 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 Standard Methods 18th Ed. 2540 G SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/12/2008 08050415-004D SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 SW-846 9010B, 9014 S/12/2008 5/13/2008 5/13/2008 08050415-004D SW-846 5035,	08050415-002A	B-812 9.0-10.0 ft			ASTM D2974		5/12/2008
Compounds by GC/MS S/12/2008 \$/13/2008 08050415-003A B-812 11.0-12.0 ft ASTM D2974 \$/12/2008 8050415-003A B-812 11.0-12.0 ft \$/12/2008 \$/12/2008 8050415-003D Standard Methods 18th Ed. 2540 G \$/12/2008 \$/15/2008 08050415-003D \$/12/2008 \$/12/2008 \$/12/2008 \$/12/2008 08050415-004A B-811 2.0-3.0 ft \$/12/2008 \$/12/2008 \$/12/2008 08050415-004D \$/13/2008 \$/12/2008 \$/12/2008 \$/12/2008 08050415-004D \$/13/2008 \$/13/2008 \$/13/2008 \$/13/2008 08050415-004D \$/13/2008 \$/13/2008 \$/13/2008 \$/13/2008 08050415-004D \$/13/2008 \$/13/2008 \$/13/2008 \$/13/2008 08050415-004D \$/13/2008					Standard Methods 18th Ed. 2540 G		5/12/2008
GC/MS ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 08050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 Standard Methods 18th Ed. 2540 G 5/12/2008 5/12/2008 Standard Methods 18th Ed. 2540 G 5/13/2008 5/12/2008 Stw-846 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 9010B, 9014 5/12/2008 5/15/2008 SW-846 9010B, 9014 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by						5/12/2008	5/14/2008
Standard Methods 18th Ed. 2540 G 5/12/2008 8050415-003D SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 8046 3050B, 6010B, Metals by ICP 5/13/2008 5/12/2008 8046 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 8050415-004D SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 8050415-004D SW-846 3050B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS 5/12/2008 5/13/2008 8050415-004D SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 8050415-004D SW-846 3050B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 8050415-004D SW-846 3010B, Metals by ICP 5/13/2008 5/13/2008 8050415-004D SW-846 9010B, 9014 5/13/2008 5/13/2008 8050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by SC/MS 5/13/2008 5/13/2008	08050415-002D				• • •	5/12/2008	5/13/2008
8W-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 08050415-003D 6W-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS 5/12/2008 5/13/2008 08050415-004A B-8112.0-3.0 ft ASTM D2974 5/12/2008 5/12/2008 Standard Methods 18th Ed. 2540 G 5/13/2008 5/14/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 SW-846 3050B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 9010B, 9014 5/12/2008 5/15/2008 SW-846 9010B, 9014 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008	08050415-003A B-812 11.0-12.0 ft			ASTM D2974		5/12/2008	
Compounds by GC/MS SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/12/2008 5/13/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/13/2008 5/12/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/12/2008 5/15/2008 SW-846 9010B, 9014 5/12/2008 5/13/2008 SW-846 9010B, 9014 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008					Standard Methods 18th Ed. 2540 G		5/12/2008
GC/MS 5/12/2008 08050415-004A B-811 2.0-3.0 ft ASTM D2974 5/12/2008 Standard Methods 18th Ed. 2540 G 5/13/2008 5/12/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/12/2008 5/15/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 9010B, 9014 5/12/2008 5/13/2008 SW-846 9014A 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008						5/12/2008	5/15/2008
Standard Methods 18th Ed. 2540 G 5/12/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3050B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS 5/12/2008 5/15/2008 SW-846 9010B, 9014 5/12/2008 5/13/2008 5/13/2008 SW-846 9014A 5/13/2008 5/14/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 5/13/2008	08050415-003D				• • •	5/12/2008	5/13/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/14/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 SW-846 3010B, 9014 5/12/2008 5/13/2008 SW-846 9010B, 9014 5/13/2008 5/13/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008	08050415-004A	B-811 2.0-3.0 ft			ASTM D2974		5/12/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/15/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 Compounds by GC/MS SW-846 9010B, 9014 5/12/2008 5/13/2008 SW-846 9010B, 9014 5/13/2008 5/13/2008 5/14/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS S/13/2008 5/13/2008 5/13/2008					Standard Methods 18th Ed. 2540 G		5/12/2008
SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/15/2008 Compounds by GC/MS SW-846 9010B, 9014 5/12/2008 5/13/2008 SW-846 9014A 5/13/2008 5/14/2008 5/14/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
Compounds by GC/MS SW-846 9010B, 9014 5/12/2008 5/13/2008 SW-846 9014A 5/13/2008 5/14/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
SW-846 9014A 5/13/2008 5/14/2008 08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008						5/12/2008	5/15/2008
08050415-004D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5/13/2008					SW-846 9010B, 9014	5/12/2008	5/13/2008
GC/MS SW-846 5035, 8260B, Volatile Organic Compounds by 5/13/2008 5/13/2008 GC/MS					SW-846 9014A	5/13/2008	5/14/2008
GC/MS	08050415-004D					5/13/2008	5/13/2008
08050415-005A B-811 9.0-10.0 ft ASTM D2974 5/12/2008						5/13/2008	5/13/2008
	08050415-005A	B-811 9.0-10.0 ft			ASTM D2974		5/12/2008

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

Sample ID (Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-005A H	B-811 9.0-10.0 ft	5/5/2008	Solid	Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-005D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-006A H	B-811 11.0-12.0 ft			ASTM D2974		5/12/2008
			Standard Methods 18th Ed. 2540 G		5/12/2008	
			SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008	
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-006D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-007A I	B-843 2.0-3.0 ft	5/6/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-007A	B-843 2.0-3.0 ft	5/6/2008	Solid	SW-846 9014A	5/13/2008	5/14/2008
08050415-007D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-008A	B-843 7.0-8.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
			SW-846 9010B, 9014	5/12/2008	5/13/2008	
			SW-846 9014A	5/13/2008	5/14/2008	
08050415-008D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-009A	B-843 10.0-11.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
08050415-009D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-010A	B-844 1.0-2.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-010A	B-844 1.0-2.0 ft	5/6/2008	Solid	SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-010D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-011A	B-844 8.0-9.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
			SW-846 9010B, 9014	5/12/2008	5/13/2008	
				SW-846 9014A	5/13/2008	5/14/2008
08050415-011D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-012A	B-844 15.0-16.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-012D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-013A	B-851 19.0-20.0 ft	5/9/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-013D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/12/2008
08050415-014A	B-852 2.0-3.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-014A	B-852 2.0-3.0 ft	5/9/2008	Solid	SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-014D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-015A	8050415-015A B-852 9.0-10.0 ft			ASTM D2974		5/12/2008
			Standard Methods 18th Ed. 2540 G		5/12/2008	
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9045C		5/13/2008
08050415-015D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-016A	B-852 23.0-24.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-016D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-017A	B-845 6.0-7.0 ft	5/6/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-017A	B-845 6.0-7.0 ft	5/6/2008	Solid	SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-017D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-018A	050415-018A B-845 13.0-14.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-018D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-019A	B-846 8.5-9.5 ft	5/7/2008		ASTM D2974		5/12/2008
			Standard Methods 18th Ed. 2540 G		5/12/2008	
			SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008	
08050415-019D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-020A	B-846 10.0-11.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-020D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-021A	B-846 20.0-21.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
08050415-021D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/13/2008	5/13/2008
08050415-022A	B-803 2.0-3.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-022A	B-803 2.0-3.0 ft	5/7/2008	Solid	SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-022D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/13/2008	5/13/2008
08050415-023A B-803 9.0-10.0 ft	B-803 9.0-10.0 ft			ASTM D2974		5/12/2008
			Standard Methods 18th Ed. 2540 G		5/12/2008	
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-023D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/13/2008	5/13/2008
08050415-024A	B-803 21.0-22.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-024A	B-803 21.0-22.0 ft	5/7/2008	Solid	SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-024D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-025A B-803 29.0-30.0 ft			ASTM D2974		5/12/2008	
				Standard Methods 18th Ed. 2540 G		5/12/2008
	N050415 035D			SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
08050415-025D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-026A B-849 0.0-1.0 ft			ASTM D2974		5/12/2008	
			Standard Methods 18th Ed. 2540 G		5/12/2008	
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-026D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-027A	B-849 9.0-10.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-027A	B-849 9.0-10.0 ft	5/7/2008	Solid	SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-027D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-028A	B-849 16.0-17.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-028D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-029A	B-848 2.0-3.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-029D	B-848 2.0-3.0 ft	5/7/2008	Solid	SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-030A	B-848 9.0-10.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
08050415-030D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-031A	B-848 13.0-14.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
			SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008	
08050415-031D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-032A B-847 6.0-7.0	B-847 6.0-7.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/14/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-032D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-033A	B-847 22.0-23.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8015B, Total Petroleum Hydrocarbons (OA-2) by GC/FID	5/12/2008	5/14/2008
				SW-846 3550B, 8015B, Total Petroleum Hydrocarbons (OA-2) by GC/FID	5/14/2008	5/15/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-033D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/14/2008	5/14/2008
08050415-034A	B-809 2.0-3.0 ft	5/8/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-034A	B-809 2.0-3.0 ft	5/8/2008	Solid	SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
				SW-846 9045C		5/13/2008
08050415-034D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/13/2008	5/13/2008
08050415-035A	B-809 9.0-10.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

DATES REPORT

Client: Philip Environmental Project: A831-735002-012901-225/IP Champaign 62403053 Lab Order: 08050415 Report Date: 16-May-08

Sample ID C	lient Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-035A B	-809 9.0-10.0 ft	5/8/2008	Solid	SW-846 9045C		5/13/2008
08050415-035D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-036A B	-809 15.0-16.0 ft			ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
				SW-846 9010B, 9014	5/12/2008	5/13/2008
				SW-846 9014A	5/13/2008	5/14/2008
08050415-036D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-037A B	-847 29.0-30.0 ft	5/7/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-037D				SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/12/2008	5/13/2008
08050415-038A B	-850 8.0-9.0 ft	5/8/2008		ASTM D2974		5/12/2008
				Standard Methods 18th Ed. 2540 G		5/12/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
				SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Environmental Project: A831-735002-012901-225/IP Champaign 62403053 Lab Order: 08050415 Report Date: 16-May-08

SW-846 3050B, 6010B, Metals by ICP S/13/2008 S/13/2008 SW-846 3050B, 6010B, S2P0C SIMS, Semi-Volatile Organic S/12/2008 S/12/2008 SW-846 9010B, 9014 S/12/2008 S/13/2008 SW-846 9010B, 9014 S/12/2008 S/13/2008 SW-846 9010B, 9014 S/13/2008 S/13/2008 SW-846 9010B, Volatile Organic Compounds by S/13/2008 S/13/2008 O8050415-039A B-850 16.0-17.0 fr ASTIM D2974 S/13/2008 SW-846 3050B, 6010B, Metals by ICP S/13/2008 S/13/2008 SW-846 3050B, 8010B, Total Petroleum Hydrocarbons S/12/2008 S/12/2008 SW-846 3050B, 8010B, Stroal Petroleum Hydrocarbons S/12/2008 S/12/2008 SW-846 3050B, 8010B, Stroal Petroleum Hydrocarbons S/12/2008 S/12/2008 SW-846 3050B, 9010B, 9014 S/12/2008 S/12/2008	Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 5/13/2008 SW-846 9035, 8260B, Volatile Organic Compounds by 5/13/2008 GC/MS Standard Methods 18th Ed. 2540 G SW-846 3050B, 6010B, Metals by ICP 5/13/2008 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B,	08050415-038A	B-850 8.0-9.0 ft	5/8/2008	Solid	SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
Compounds by GC/MS 5/12/2008 5 SW-846 9010B, 9014 5/13/2008 5 08050415-038D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5 08050415-039A B-850 16.0-17.0 ft ASTM D2974 5 Standard Methods 18th Ed. 2540 G 5/13/2008 5 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3050B, 8010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/20					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
8W-846 9014A 5/13/2008 5/13/2008 08050415-038D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/13/2008 5 08050415-039A B-850 16.0-17.0 ft ASTM D2974 5 Sw-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 5 SW-846 9010B, 9014 5/12/2008 5 5 SW-846 9010B, 9014 5/12/2008 <td></td> <td></td> <td></td> <td></td> <td></td> <td>5/12/2008</td> <td>5/15/2008</td>						5/12/2008	5/15/2008
08050415-038D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS \$713/2008 \$ 08050415-039A B-850 16.0-17.0 ft ASTM D2974 \$ Standard Methods 18th Ed. 2540 G \$ \$ SW-846 3050B, 6010B, Metals by ICP \$ \$ SW-846 3550B, 8015B, Total Petroleum Hydrocarbons \$ \$ SW-846 3550B, 8015B, Total Petroleum Hydrocarbons \$ \$ SW-846 3550B, 8070C SIMS, Semi-Volatile Organic \$ \$ SW-846 3550B, 8070C SIMS, Semi-Volatile Organic \$ \$ SW-846 300B, 0014A \$ \$ \$ SW-846 300B, 9014A \$ \$ \$ SW-846 901B, 9014 \$ \$ \$ \$ SW-846 901B, 9014 \$ \$ \$ \$ <t< td=""><td></td><td></td><td></td><td></td><td>SW-846 9010B, 9014</td><td>5/12/2008</td><td>5/13/2008</td></t<>					SW-846 9010B, 9014	5/12/2008	5/13/2008
GC/MS ASTM D2974 5 08050415-039A B-850 16.0-17.0 ft ASTM D2974 5 Stundard Methods 18th Ed. 2540 G 5 5 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3050B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 </td <td></td> <td></td> <td></td> <td></td> <td>SW-846 9014A</td> <td>5/13/2008</td> <td>5/14/2008</td>					SW-846 9014A	5/13/2008	5/14/2008
Standard Methods 18th Ed. 2540 G 5/13/2008 5 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8070S ISMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3050B, 6010B, 9014 5/12/2008 5 SW-846 9014A S/13/2008 5 SW-846 9014A S/13/2008 5 08050415-030D SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ATM D274 5	08050415-038D				• • •	5/13/2008	5/13/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 5 SW-846 9010B, 9014 5/13/2008 5 5 SW-846 9010A, Se35, 8260B, Volatile Organic Compounds by	08050415-039A	B-850 16.0-17.0 ft			ASTM D2974		5/12/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 SW-846 9010B, 9014 5/13/2008 5 O8050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5 5					Standard Methods 18th Ed. 2540 G		5/12/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 SW-846 9010B, 9014 5/13/2008 5 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 <					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/14/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/13/2008 SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5/12/2008 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5/14/2008 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 SW-846 9010B, 9014 5/12/2008 5/13/2008 5/13/2008 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 5/14/2008 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5/14/2008 5/14/2008					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/15/2008
SW-846 3050B, 6010B, Metals by ICP 5/13/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 5 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 SW-846 9014A 5/13/2008 5 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 (OA-2) by GC/FID SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 9010B, 9014 5/12/2008 SW-846 9010B, 9014 SW-846 9014A 5/13/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 08050415-040A B-850 25.0-26.0 ft ASTM D2974 STM D2974 STM D2974					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
(OA-2) by GC/FID SW-846 3550B, 8015B, Total Petroleum Hydrocarbons 5/14/2008 (OA-2) by GC/FID SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 Compounds by GC/MS SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 9010B, 9014 5/12/2008 5 SW-846 9014A 5/13/2008 5 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5					SW-846 3050B, 6010B, Metals by ICP	5/13/2008	5/16/2008
(OA-2) by GC/FID SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 Compounds by GC/MS SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5/12/2008 SW-846 9010B, 9014 5/12/2008 5/12/2008 SW-846 9014A 5/13/2008 5/13/2008 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5/14/2008						5/12/2008	5/14/2008
Compounds by GC/MS SW-846 3550B, 8270C SIMS, Semi-Volatile Organic 5/12/2008 5 SW-846 3550B, 9010B, 9014 5/12/2008 5 5 SW-846 9010B, 9014 5/13/2008 5 5 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5						5/14/2008	5/15/2008
Compounds by GC/MS SW-846 9010B, 9014 5/12/2008 5 SW-846 9010B, 9014 S/13/2008 5/13/2008 5 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5						5/12/2008	5/15/2008
SW-846 9014A 5/13/2008 5 08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5						5/12/2008	5/15/2008
08050415-039D SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS 5/14/2008 5 08050415-040A B-850 25.0-26.0 ft ASTM D2974 5					SW-846 9010B, 9014	5/12/2008	5/13/2008
GC/MS 08050415-040A B-850 25.0-26.0 ft ASTM D2974 S					SW-846 9014A	5/13/2008	5/14/2008
	08050415-039D					5/14/2008	5/14/2008
	08050415-040A	B-850 25.0-26.0 ft			ASTM D2974		5/12/2008
Standard Methods 18th Ed. 2540 G					Standard Methods 18th Ed. 2540 G		5/12/2008

DATES REPORT

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client: Philip Environmental Project: A831-735002-012901-225/IP Champaign 62403053 Lab Order: 08050415 Report Date: 16-May-08

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Prep Date	Analysis Date
08050415-040A	B-850 25.0-26.0 ft	5/8/2008	Solid	SW-846 3550B, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS	5/12/2008	5/15/2008
08050415-040E)			SW-846 5035, 8260B, Volatile Organic Compounds by GC/MS	5/13/2008	5/13/2008

ANALYTICAL QC SUMMARY REPORT

Key QC concepts:

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- **DF** Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- **DUP** Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot. (NELAC)
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. (NELAC) The acceptable recovery range is listed in this report.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in this report.
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in this report.
- MDL Method detection limit or limit of detection (LOD) means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MB/LCB Method blank or lab control blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. (NELAC)
 - PQL Practical quantitation limit or limit of quantitation (LOQ) means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in this report.
 - **RL** The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in this report.
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes. (NELAC)
 - Surr Surrogates are an organic compound which is similar to the analytes of interest in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples.

	Qualifiers		
DF - Dilution Factor	${\bf B}$ - Analyte detected in the associated Method Blank	C - Client requested RL below PQL	MI - Matrix interference
RL - Reporting Limit	J - Analyte detected below reporting limits	D - Diluted out of sample	DNI - Did not ignite
ND - Not Detected at the Reporting Limit	R - RPD outside accepted recovery limits	IDPH - IL Dept. of Public Health	\mathbf{E} - Value above quantitation range
Surr - Surrogate Standard added by lab	S - Spike Recovery outside accepted recovery limits	Q - QC criteria failed	H - Holding time exceeded
TNTC - Too numerous to count ($> 200 \text{ CFU}$)	X - Value exceeds Maximum Contaminant Level	# - Unknown hydrocarbon	NELAP - IL ELAP and NELAP Accredited

Project: A831-735002-012901-225/IP Champaign 62403053

 Lab Order:
 08050415
 Report Date:
 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: I_ACN_S_MT

Sample ID: MB-R108131 Client ID: ZZZZZZ	SampType: MBLK Batch ID: 44827			Units: mg/Kg SOP2092		Prep Date: Analysis Date:	5/13/2008 5/14/2008	RunNo: 108131 SeqNo: 1947206	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Amenable to Chlorinatic	on < 0.01	0.01							
Sample ID: LCS-R108131 Client ID: ZZZZZZ	SampType: LCS Batch ID: 44827			Units: mg/Kg SOP2092		Prep Date: Analysis Date:	5/13/2008 5/14/2008	RunNo: 108131 SeqNo: 1947207	
		PQL	SPK value	00	%REC	Analysis Date:			Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TCN_S_MT

Sample ID:	: MB-R108067	SampType: MBLK			Units: mg/Kg		Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	ZZZZZZ	Batch ID: 44810			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5237	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide		< 0.01	0.01									
Sample ID:	: LCS-R108067	SampType: LCS			Units: mg/Kg		Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	ZZZZZZ	Batch ID: 44810			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5238	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide		0.20	0.01	0.2000	0	100.8	85	115				
Sample ID:	: LCSD-R108067	SampType: LCSD			Units: mg/Kg		Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	ZZZZZZ	Batch ID: 44810			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5239	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide		0.19	0.01	0.2000	0	93.2	85	115	0.2016	7.85	15	
Sample ID:	: 08050415-005AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	B-811 9.0-10.0 ftMS	Batch ID: 44810			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5242	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide		5.97	0.62	6.205	0.2479	92.2	80	120				
Sample ID:	: 08050415-005AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	B-811 9.0-10.0 ftMS	Batch ID: 44810			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5243	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide		6.23	0.62	6.198	0.2479	96.5	80	120	5.971	4.27	20	
Sample ID:	: MB-R108067	SampType: MBLK			Units: mg/Kg		Prep Date:	5/12/200	8	RunNo: 108	067	
Client ID:	777777	Batch ID: 44826			SW9010		Analysis Date:	5/13/200	8	SeqNo: 194	5262	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TCN_S_MT

Sample ID: MB-R108067 Client ID: ZZZZZZ	SampType: MBLK Batch ID: 44826			Units: mg/Kg SW9010		Prep Da Analysis Da	te: 5/12/20 te: 5/13/20		RunNo: 108 SeqNo: 19 4		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide	< 0.01	0.01									
Sample ID: LCS-R108067 Client ID: ZZZZZZ	SampType: LCS Batch ID: 44826			Units: mg/Kg SW9010		Prep Da Analysis Da	te: 5/12/20 te: 5/13/20		RunNo: 108 SeqNo: 194		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide	0.19	0.01	0.2000	0	94.1	85	115				
Sample ID: LCSD-R108067 Client ID: ZZZZZZ	SampType: LCSD Batch ID: 44826			Units: mg/Kg SW9010		Prep Da Analysis Da	te: 5/12/20 te: 5/13/20		RunNo: 108 SeqNo: 194		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cyanide	0.20	0.01	0.2000	0	99.7	85	115	0.1881	5.84	15	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TS_M_MT

Sample ID: LCS-R108052 Client ID: ZZZZZZ	SampType: LCS Batch ID: R108052			Units: %		Prep Da Analysis Da		008	RunNo: 108 SeqNo: 194		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Solids	1.0	0.1	1.000	0	99.0	90	110				
Sample ID: LCSQC Client ID: ZZZZZZ	SampType: LCSQC Batch ID: R108052			Units: %		Prep Da Analysis Da		008	RunNo: 108 SeqNo: 194		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Solids	1.0	0.1	1.000	0	100	90	110				
Sample ID: 08050415-004ADUP	SampType: DUP			Units: %		Prep Dat	te:		RunNo: 10	8052	
Sample ID: 08050415-004ADUP Client ID: B-811 2.0-3.0 ftDUP	SampType: DUP Batch ID: R108052			Units: %		Prep Da Analysis Da		008	RunNo: 108 SeqNo: 194		
	1 31	PQL	SPK value	Units: %	%REC	Analysis Da	te: 5/12/20	008 RPD Ref Val			Qual
Client ID: B-811 2.0-3.0 ftDUP	Batch ID: R108052	PQL 0.1	SPK value			Analysis Da	te: 5/12/20		SeqNo: 194	44689	Qual
Client ID: B-811 2.0-3.0 ftDUP	Batch ID: R108052 Result		SPK value		%REC	Analysis Da	te: 5/12/20 HighLimit te:	RPD Ref Val 78.94	SeqNo: 19/ %RPD 0.341 RunNo: 10/	44689 RPDLimit 15 8052	Qual
Client ID: B-811 2.0-3.0 ftDUP Analyte Total Solids Sample ID: 08050415-022ADUP	Batch ID: R108052 Result 79.2 SampType: DUP			SPK Ref Val	%REC	Analysis Da LowLimit Prep Da	te: 5/12/20 HighLimit te: te: 5/12/20	RPD Ref Val 78.94	SeqNo: 194 %RPD 0.341	44689 RPDLimit 15 8052	Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415 Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: L_PH_S_M

Sample ID: 08050415-015ADUP Client ID: B-852 9.0-10.0 ftDUF				Units:		Prep Dat Analysis Dat		08	RunNo: 10 SeqNo: 19		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
pH (1:1)	8.18	1.00						8.150	0.367	10	
Sample ID: LCS-R108062 Client ID: ZZZZZZ	SampType: LCS Batch ID: R108062			Units:		Prep Dat Analysis Dat		008	RunNo: 10 SeqNo: 19		
		PQL	SPK value		%REC	Analysis Dat	te: 5/13/20	108 RPD Ref Val	-		Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: MB-44809		SampType: MBLK			Units: mg	/Ka-drv	Prep Dat	e: 5/13/20	108	RunNo: 10	8118	
Client ID: ZZZZZZ		Batch ID: 44809			SOP 3032	, ng ui y	Analysis Dat			SeqNo: 19		
		Result	PQL		SPK Ref Val	%REC	-			%RPD	RPDLimit	Qual
Analyte		Result	PQL	SPK value	SPK Rei Vai	%REC	LOWLIMI	HighLimit	RPD Ref Val	%RPD	RPDLIMI	Quai
Arsenic		< 2.50	2.50	2.500	0	0	-100	100				
Chromium		< 1.00	1.00	1.000	0	0	-100	100				
Lead		< 4.00	4.00	4.000	0	0	-100	100				
Sample ID: LCS-44809)	SampType: LCS			Units: mg	/Kg-dry	Prep Dat	e: 5/13/20	008	RunNo: 10	8118	
Client ID: ZZZZZZ		Batch ID: 44809			SOP 3032		Analysis Dat	e: 5/14/20	008	SeqNo: 194	47271	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		196	2.50	200.0	0	97.8	85	115				
Chromium		19.5	1.00	20.00	0	97.6	85	115				
Sample ID: 08050415-0	006AMS	SampType: MS			Units: mg	/Kg-dry	Prep Dat	e: 5/13/20	008	RunNo: 10	8118	
Client ID: B-811 11.0-	-12.0 ftMS	Batch ID: 44809			SOP 3032		Analysis Dat	e: 5/14/20	008	SeqNo: 194	47276	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		176	2.40	192.3	6.433	88.1	75	125				
Chromium		31.2	0.96	19.23	14.38	87.7	75	125				
Sample ID: 08050415-0	006AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Dat	e: 5/13/20	008	RunNo: 10	8118	
Client ID: B-811 11.0-	-12.0 ftMS	Batch ID: 44809			SOP 3032		Analysis Dat	e: 5/14/20	008	SeqNo: 194	47277	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		177	2.40	192.3	6.433	88.9	75	125	175.8	0.871	20	
Chromium		30.4	0.96	19.23	14.38	83.4	75	125	31.25	2.71	20	
	014AMS	SampType: MS			Units: mg	/Kg-dry	Prep Dat	e: 5/13/20	008	RunNo: 10	8118	
Sample ID: 08050415-0												
Client ID: B-852 2.0-3		Batch ID: 44809			SOP 3032		Analysis Dat	e: 5/14/20	800	SeqNo: 194	47285	
		Batch ID: 44809 Result	PQL	SPK value	SOP 3032 SPK Ref Val	%REC			008 RPD Ref Val	SeqNo: 19 4 %RPD	47285 RPDLimit	Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 0805041	5-014AMS	SampType:	MS			Units: mg	/Kg-dry	Prep Date	e: 5/13/200	8	RunNo: 108	8118	
Client ID: B-852 2.0	0-3.0 ftMS	Batch ID:	44809			SOP 3032		Analysis Date	e: 5/14/200	8	SeqNo: 194	7285	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium			40.6	0.96	19.23	23.50	89.2	75	125				
Sample ID: 0805041	5-014AMSD	SampType:	MSD			Units: mg	/Kg-dry	Prep Date	e: 5/13/200	8	RunNo: 108	3118	
Client ID: B-852 2.	0-3.0 ftMSD	Batch ID:	44809			SOP 3032		Analysis Date	e: 5/14/200	8	SeqNo: 194	7286	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			179	2.40	192.3	4.615	90.7	75	125	177.3	0.971	20	
Chromium			41.6	0.96	19.23	23.50	94.2	75	125	40.64	2.36	20	
Sample ID: MB-4480	9	SampType:	MBLK			Units: mg	/Kg-dry	Prep Date	e: 5/13/200	8	RunNo: 108	3133	
Client ID: ZZZZZZ		Batch ID:	44809			SOP 3032		Analysis Date	e: 5/15/200	8	SeqNo: 194	9076	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			< 4.00	4.00	4.000	0	0	-100	100				
Sample ID: LCS-448	09	SampType:	LCS			Units: mg	/Kg-dry	Prep Date	e: 5/13/200	8	RunNo: 108	3133	
Client ID: ZZZZZZ		Batch ID:	44809			SOP 3032		Analysis Date	e: 5/15/200	8	SeqNo: 194	9077	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			52.7	4.00	50.00	0	105.3	85	115				
Sample ID: 0805041	5-006AMS	SampType:	MS			Units: mg	/Kg-dry	Prep Date	e: 5/13/200	8	RunNo: 108	3133	
Client ID: B-811 11	.0-12.0 ftMS	Batch ID:	44809			SOP 3032		Analysis Date	e: 5/15/200	8	SeqNo: 194	9084	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead			50.6	3.85	48.08	10.14	84.1	75	125				

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 08050415-006AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Dat	te: 5/13/20	008	RunNo: 108	3133	
Client ID: B-811 11.0-12.0 ftMS	Batch ID: 44809			SOP 3032		Analysis Da	te: 5/15/20	800	SeqNo: 194	19085	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	49.7	3.85	48.08	10.14	82.3	75	125	50.56	1.71	20	
Sample ID: 08050415-014AMS	SampType: MS			Units: mg	/Kg-dry	Prep Dat	te: 5/13/20	008	RunNo: 108	3207	
Client ID: B-852 2.0-3.0 ftMS	Batch ID: 44809			SOP 3032		Analysis Da	te: 5/16/20	008	SeqNo: 194	19511	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	99.8	3.85	48.08	51.90	99.6	75	125				
Sample ID: 08050415-014AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Dat	te: 5/13/20	008	RunNo: 108	3207	
Client ID: B-852 2.0-3.0 ftMSD	Batch ID: 44809			SOP 3032		Analysis Da	te: 5/16/20	008	SeqNo: 194	19512	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	94.3	3.85	48.08	51.90	88.1	75	125	99.81	5.71	20	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-44799 Client ID: ZZZZZZ	SampType: MBLK Batch ID: 44799			Units: mg/Kg SW3550B		Prep Da Analysis Da	te: 5/12/20 te: 5/14/20		RunNo: 108 SeqNo: 19 4		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.003									
Acenaphthylene	ND	0.003									
Anthracene	ND	0.003									
Benzo(a)anthracene	ND	0.003									
Benzo(a)pyrene	ND	0.003									
Benzo(b)fluoranthene	ND	0.003									
Benzo(g,h,i)perylene	ND	0.003									
Benzo(k)fluoranthene	ND	0.003									
Chrysene	ND	0.003									
Dibenzo(a,h)anthracene	ND	0.003									
Fluoranthene	ND	0.003									
Fluorene	ND	0.003									
Indeno(1,2,3-cd)pyrene	ND	0.003									
Naphthalene	ND	0.003									
Phenanthrene	ND	0.003									
Pyrene	ND	0.003									
Surr: 2-Fluorobiphenyl	0.120		0.1670		72.1	17.5	123				
Surr: Nitrobenzene-d5	0.112		0.1670		67.3	35	105				
Surr: p-Terphenyl-d14	0.137		0.1670		81.8	53.6	122				
Sample ID: LCS-44799	SampType: LCS			Units: mg/Kg		Prep Dat	te: 5/12/2	008	RunNo: 108	3117	
Client ID: ZZZZZZ	Batch ID: 44799			SW3550B		Analysis Da	te: 5/14/2	008	SeqNo: 194	6848	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.103	0.003	0.1670	0	61.6	56.3	115				
Acenaphthylene	0.137	0.003	0.1670	0	81.8	60.3	143				
Anthracene	0.099	0.003	0.1670	0	59.0	52.1	109				
Benzo(a)anthracene	0.100	0.003	0.1670	0	59.8	52.8	112				
Benzo(a)pyrene	0.105	0.003	0.1670	0	63.0	40.8	127				
Benzo(b)fluoranthene	0.118	0.003	0.1670	0	70.8	50.1	150				
Benzo(g,h,i)perylene	0.118	0.003	0.1670	0	70.5	52.8	145				

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-44799	SampType: LCS			Units: mg/Kg		Prep Da	te: 5/12/20	008	RunNo: 108	3117	
Client ID: ZZZZZZ	Batch ID: 44799			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	16848	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	0.115	0.003	0.1670	0	68.7	52	153				
Chrysene	0.110	0.003	0.1670	0	65.8	60.8	128				
Dibenzo(a,h)anthracene	0.118	0.003	0.1670	0	70.6	54.9	150				
Fluoranthene	0.105	0.003	0.1670	0	62.7	58.7	125				
Fluorene	0.109	0.003	0.1670	0	65.4	57.8	125				
Indeno(1,2,3-cd)pyrene	0.116	0.003	0.1670	0	69.2	52	147				
Naphthalene	0.093	0.003	0.1670	0	55.6	54.8	113				
Phenanthrene	0.109	0.003	0.1670	0	65.2	60.4	121				
Pyrene	0.109	0.003	0.1670	0	65.1	57.9	129				
Surr: 2-Fluorobiphenyl	0.109		0.1670		65.5	35.3	113				
Surr: Nitrobenzene-d5	0.100		0.1670		59.7	33.9	108				
Surr: p-Terphenyl-d14	0.111		0.1670		66.5	58.4	122				
Sample ID: 08050415-002AMS	SampType: MS			Units: mg/Kg-	dry	Prep Da	te: 5/12/20	008	RunNo: 108	8117	
Client ID: B-812 9.0-10.0 ftMS	Batch ID: 44799			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	46862	
Client ID: B-812 9.0-10.0 ftMS Analyte	Batch ID: 44799 Result	PQL	SPK value	SW3550B SPK Ref Val	%REC	-		008 RPD Ref Val	SeqNo: 194 %RPD	16862 RPDLimit	Qual
		PQL 0.004	SPK value 0.1863			-					Qual
Analyte Acenaphthene	Result			SPK Ref Val	%REC	LowLimit	HighLimit				Qual
Analyte Acenaphthene	Result 0.116	0.004	0.1863	SPK Ref Val	%REC 62.3	LowLimit 36	HighLimit 135				Qual
Analyte Acenaphthene Acenaphthylene	Result 0.116 0.150	0.004 0.004	0.1863 0.1863	SPK Ref Val 0 0	%REC 62.3 80.5	LowLimit 36 17.2	HighLimit 135 167				Qual
Analyte Acenaphthene Acenaphthylene Anthracene	Result 0.116 0.150 0.111	0.004 0.004 0.004	0.1863 0.1863 0.1863	SPK Ref Val 0 0 0	%REC 62.3 80.5 59.6	LowLimit 36 17.2 39.3	HighLimit 135 167 124				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Result 0.116 0.150 0.111 0.116	0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0	%REC 62.3 80.5 59.6 62.5	LowLimit 36 17.2 39.3 10	HighLimit 135 167 124 183				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Result 0.116 0.150 0.111 0.116 0.129	0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3	LowLimit 36 17.2 39.3 10 10	HighLimit 135 167 124 183 204				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Result 0.116 0.150 0.111 0.116 0.129 0.132	0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0	LowLimit 36 17.2 39.3 10 10 10.6	HighLimit 135 167 124 183 204 178				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Result 0.116 0.150 0.111 0.116 0.129 0.132 0.130	0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0 69.5	LowLimit 36 17.2 39.3 10 10 10.6 10	HighLimit 135 167 124 183 204 178 168				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Result 0.116 0.150 0.111 0.116 0.129 0.132 0.130 0.130	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0 69.5 69.7	LowLimit 36 17.2 39.3 10 10 10.6 10 27.6	HighLimit 135 167 124 183 204 178 168 181				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Result 0.116 0.150 0.111 0.116 0.129 0.132 0.130 0.130 0.130 0.126	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0 69.5 69.7 67.6	LowLimit 36 17.2 39.3 10 10 10.6 10 27.6 10	HighLimit 135 167 124 183 204 178 168 181 176				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	Result 0.116 0.150 0.111 0.116 0.129 0.132 0.130 0.130 0.130 0.126 0.136	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0 69.5 69.7 67.6 72.9	LowLimit 36 17.2 39.3 10 10 10.6 10 27.6 10 12.2	HighLimit 135 167 124 183 204 178 168 181 176 156				Qual
Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	Result 0.116 0.150 0.111 0.116 0.129 0.132 0.130 0.130 0.130 0.126 0.136 0.121	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863 0.1863	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 62.3 80.5 59.6 62.5 69.3 71.0 69.5 69.7 67.6 72.9 64.7	LowLimit 36 17.2 39.3 10 10 10.6 10 27.6 10 12.2 10	HighLimit 135 167 124 183 204 178 168 181 176 156 227				Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: 08050415-002AMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 5/12/20	800	RunNo: 108	8117	
Client ID: B-812 9.0-10.0 ftMS	Batch ID: 44799			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	46862	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	0.121	0.004	0.1863	0	64.7	32.8	143				
Pyrene	0.122	0.004	0.1863	0	65.7	10	180				
Surr: 2-Fluorobiphenyl	0.124		0.1863		66.5	10	131				
Surr: Nitrobenzene-d5	0.116		0.1863		62.5	10	132				
Surr: p-Terphenyl-d14	0.131		0.1863		70.3	30.6	131				
Sample ID: 08050415-002AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 5/12/20	008	RunNo: 108	8117	
Client ID: B-812 9.0-10.0 ftMS	Batch ID: 44799			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	46863	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.118	0.004	0.1879	0	62.8	36	135	0.1161	1.71	49.7	
Acenaphthylene	0.146	0.004	0.1879	0	77.5	17.2	167	0.1499	2.91	33.3	
Anthracene	0.110	0.004	0.1879	0	58.3	39.3	124	0.1110	1.25	51.1	
Benzo(a)anthracene	0.117	0.004	0.1879	0	62.2	10	183	0.1163	0.464	40.6	
Benzo(a)pyrene	0.122	0.004	0.1879	0	65.1	10	204	0.1291	5.36	56.4	
Benzo(b)fluoranthene	0.130	0.004	0.1879	0	69.2	10.6	178	0.1323	1.68	49.7	
Benzo(g,h,i)perylene	0.131	0.004	0.1879	0	69.8	10	168	0.1295	1.25	36.5	
Benzo(k)fluoranthene	0.130	0.004	0.1879	0	69.3	27.6	181	0.1298	0.305	42.6	
Chrysene	0.129	0.004	0.1879	0	68.9	10	176	0.1260	2.72	45.1	
Dibenzo(a,h)anthracene	0.134	0.004	0.1879	0	71.5	12.2	156	0.1358	1.03	39.9	
Fluoranthene	0.122	0.004	0.1879	0	64.8	10	227	0.1205	1.03	66.2	
Fluorene	0.121	0.004	0.1879	0	64.4	35.2	148	0.1195	1.22	65.6	
Indeno(1,2,3-cd)pyrene	0.131	0.004	0.1879	0	69.6	10	164	0.1326	1.45	36.5	
Naphthalene	0.100	0.004	0.1879	0	53.0	14.7	128	0.09943	0.129	39.6	
Phenanthrene	0.119	0.004	0.1879	0	63.5	32.8	143	0.1205	0.957	35.4	
Pyrene	0.122	0.004	0.1879	0	65.1	10	180	0.1224	0.0969	60.1	
Surr: 2-Fluorobiphenyl	0.114		0.1879		60.9	10	131		0	40	
Surr: Nitrobenzene-d5	0.108		0.1879		57.7	10	132		0	40	
Surr: p-Terphenyl-d14	0.121		0.1879		64.5	30.6	131		0	40	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: MB-44801 Client ID: ZZZZZZ	SampType: MBLK Batch ID: 44801			Units: mg/Kg SW3550B		Prep Dat Analysis Dat	te: 5/12/20 te: 5/14/20		RunNo: 108 SeqNo: 194		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.003									
Acenaphthylene	ND	0.003									
Anthracene	ND	0.003									
Benzo(a)anthracene	ND	0.003									
Benzo(a)pyrene	ND	0.003									
Benzo(b)fluoranthene	ND	0.003									
Benzo(g,h,i)perylene	ND	0.003									
Benzo(k)fluoranthene	ND	0.003									
Chrysene	ND	0.003									
Dibenzo(a,h)anthracene	ND	0.003									
Fluoranthene	ND	0.003									
Fluorene	ND	0.003									
Indeno(1,2,3-cd)pyrene	ND	0.003									
Naphthalene	ND	0.003									
Phenanthrene	ND	0.003									
Pyrene	ND	0.003									
Surr: 2-Fluorobiphenyl	0.104		0.1670		62.3	17.5	123				
Surr: Nitrobenzene-d5	0.097		0.1670		57.9	35	105				
Surr: p-Terphenyl-d14	0.121		0.1670		72.7	53.6	122				
Sample ID: LCS-44801	SampType: LCS			Units: mg/Kg		Prep Dat	te: 5/12/20	008	RunNo: 108	147	
Client ID: ZZZZZZ	Batch ID: 44801			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	7689	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.100	0.003	0.1670	0	59.8	56.3	115				
Acenaphthylene	0.128	0.003	0.1670	0	76.4	60.3	143				
Anthracene	0.103	0.003	0.1670	0	61.6	52.1	109				
Benzo(a)anthracene	0.097	0.003	0.1670	0	58.2	52.8	112				
Benzo(a)pyrene	0.106	0.003	0.1670	0	63.7	40.8	127				
Benzo(b)fluoranthene	0.112	0.003	0.1670	0	67.0	50.1	150				
Benzo(g,h,i)perylene	0.109	0.003	0.1670	0	65.2	52.8	145				

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-44801	SampType: LCS			Units: mg/Kg		Prep Da			RunNo: 108		
Client ID: ZZZZZZ	Batch ID: 44801			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	7689	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	0.110	0.003	0.1670	0	65.8	52	153				
Chrysene	0.109	0.003	0.1670	0	65.2	60.8	128				
Dibenzo(a,h)anthracene	0.111	0.003	0.1670	0	66.2	54.9	150				
Fluoranthene	0.103	0.003	0.1670	0	61.5	58.7	125				
Fluorene	0.106	0.003	0.1670	0	63.5	57.8	125				
Indeno(1,2,3-cd)pyrene	0.107	0.003	0.1670	0	64.3	52	147				
Naphthalene	0.090	0.003	0.1670	0	54.1	54.8	113				S
Phenanthrene	0.103	0.003	0.1670	0	61.4	60.4	121				
Pyrene	0.106	0.003	0.1670	0	63.4	57.9	129				
Surr: 2-Fluorobiphenyl	0.096		0.1670		57.7	35.3	113				
Surr: Nitrobenzene-d5	0.087		0.1670		51.9	33.9	108				
Surr: p-Terphenyl-d14	0.109		0.1670		65.5	58.4	122				
Sample ID: 08050415-021AMS	SampType: MS			Units: mg/Kg-	dry	Prep Da	te: 5/12/20	008	RunNo: 108	3147	
Sample ID: 08050415-021AMS Client ID: B-846 20.0-21.0 ftMS	SampType: MS Batch ID: 44801			Units: mg/Kg- SW3550B	-	•					
Client ID: B-846 20.0-21.0 ftMS	Batch ID: 44801			SW3550B	-	Analysis Da	te: 5/14/20	008	SeqNo: 194	7696	
Client ID: B-846 20.0-21.0 ftMS		PQL	SPK value		-	•	te: 5/14/20				Qual
	Batch ID: 44801	PQL 0.004	SPK value 0.1841	SW3550B	-	Analysis Da	te: 5/14/20 HighLimit 135	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS	Batch ID: 44801 Result			SW3550B SPK Ref Val	%REC	Analysis Da LowLimit	te: 5/14/20 HighLimit	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene	Batch ID: 44801 Result 0.107	0.004	0.1841	SW3550B SPK Ref Val 0.003893	%REC 56.1	Analysis Da LowLimit 36	te: 5/14/20 HighLimit 135	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene	Batch ID: 44801 Result 0.107 0.134	0.004 0.004	0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0	%REC 56.1 73.0	Analysis Da LowLimit 36 17.2	te: 5/14/20 HighLimit 135 167	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene	Batch ID: 44801 Result 0.107 0.134 0.117	0.004 0.004 0.004	0.1841 0.1841 0.1841	SPK Ref Val 0.003893 0 0	%REC 56.1 73.0 63.6	Analysis Da LowLimit 36 17.2 39.3	te: 5/14/20 HighLimit 135 167 124	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113	0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841	SPK Ref Val 0.003893 0 0 0 0	%REC 56.1 73.0 63.6 61.5	Analysis Da LowLimit 36 17.2 39.3 10	te: 5/14/20 HighLimit 135 167 124 183	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122	0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3	Analysis Da LowLimit 36 17.2 39.3 10 10	te: 5/14/20 HighLimit 135 167 124 183 204	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128	0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5	Analysis Da LowLimit 36 17.2 39.3 10 10 10.6	te: 5/14/20 HighLimit 135 167 124 183 204 178	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128 0.124	0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SPK Ref Val 0.003893 0 0 0 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5 67.3	Analysis Da LowLimit 36 17.2 39.3 10 10 10.6 10	te: 5/14/20 HighLimit 135 167 124 183 204 178 168	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128 0.124 0.120	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5 67.3 65.3	Analysis Da LowLimit 36 17.2 39.3 10 10 10.6 10 27.6	te: 5/14/20 HighLimit 135 167 124 183 204 178 168 181	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128 0.124 0.120 0.122	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5 67.3 65.3 65.3 66.4	Analysis Da LowLimit 36 17.2 39.3 10 10 10.6 10 27.6 10	te: 5/14/20 HighLimit 135 167 124 183 204 178 168 181 176	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128 0.124 0.120 0.122 0.122 0.123	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5 67.3 65.3 65.3 66.4 66.9	Analysis Da LowLimit 36 17.2 39.3 10 10 10.6 10 27.6 10 12.2	te: 5/14/20 HighLimit 135 167 124 183 204 178 168 181 176 156	008	SeqNo: 194	7696	Qual
Client ID: B-846 20.0-21.0 ftMS Analyte Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	Batch ID: 44801 Result 0.107 0.134 0.117 0.113 0.122 0.128 0.124 0.120 0.122 0.123 0.122	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841 0.1841	SW3550B SPK Ref Val 0.003893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 56.1 73.0 63.6 61.5 66.3 69.5 67.3 65.3 65.3 66.4 66.9 66.3	Analysis Da LowLimit 36 17.2 39.3 10 10 10 10.6 10 27.6 10 12.2 10	te: 5/14/20 HighLimit 135 167 124 183 204 178 168 181 176 156 227	008	SeqNo: 194	7696	Qual

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: 08050415-021AMS	SampType: MS			Units: mg/k	(g-dry	Prep Dat	te: 5/12/20	800	RunNo: 108	3147	
Client ID: B-846 20.0-21.0 ftMS	S Batch ID: 44801			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	47696	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	0.124	0.004	0.1841	0.008913	62.5	32.8	143				
Pyrene	0.124	0.004	0.1841	0.004766	64.9	10	180				
Surr: 2-Fluorobiphenyl	0.104		0.1841		56.3	10	131				
Surr: Nitrobenzene-d5	0.108		0.1841		58.7	10	132				
Surr: p-Terphenyl-d14	0.118		0.1841		63.9	30.6	131				
Sample ID: 08050415-021AMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Dat	te: 5/12/20	008	RunNo: 108	3147	
Client ID: B-846 20.0-21.0 ftMS	S Batch ID: 44801			SW3550B		Analysis Da	te: 5/14/20	008	SeqNo: 194	47697	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.107	0.004	0.1794	0.003893	57.6	36	135	0.1072	0.0509	49.7	
Acenaphthylene	0.137	0.004	0.1794	0	76.5	17.2	167	0.1343	2.19	33.3	
Anthracene	0.106	0.004	0.1794	0	59.2	39.3	124	0.1171	9.80	51.1	
Benzo(a)anthracene	0.105	0.004	0.1794	0	58.3	10	183	0.1132	7.88	40.6	
Benzo(a)pyrene	0.112	0.004	0.1794	0	62.3	10	204	0.1221	8.82	56.4	
Benzo(b)fluoranthene	0.117	0.004	0.1794	0	65.3	10.6	178	0.1280	8.81	49.7	
Benzo(g,h,i)perylene	0.113	0.004	0.1794	0	63.0	10	168	0.1240	9.20	36.5	
Benzo(k)fluoranthene	0.116	0.004	0.1794	0	64.4	27.6	181	0.1202	3.94	42.6	
Chrysene	0.117	0.004	0.1794	0	65.0	10	176	0.1222	4.69	45.1	
Dibenzo(a,h)anthracene	0.117	0.004	0.1794	0	65.5	12.2	156	0.1232	4.76	39.9	
Fluoranthene	0.111	0.004	0.1794	0	62.1	10	227	0.1220	9.09	66.2	
Fluorene	0.112	0.004	0.1794	0	62.3	35.2	148	0.1102	1.40	65.6	
Indeno(1,2,3-cd)pyrene	0.114	0.004	0.1794	0	63.4	10	164	0.1220	7.06	36.5	
Naphthalene	0.096	0.004	0.1794	0.01291	46.4	14.7	128	0.09652	0.325	39.6	
Phenanthrene	0.117	0.004	0.1794	0.008913	60.3	32.8	143	0.1240	5.78	35.4	
Pyrene	0.116	0.004	0.1794	0.004766	62.0	10	180	0.1242	6.85	60.1	
Surr: 2-Fluorobiphenyl	0.112		0.1794		62.7	10	131		0	40	
Surr: Nitrobenzene-d5	0.110		0.1794		61.5	10	132		0	40	
Surr: p-Terphenyl-d14	0.122		0.1794		68.3	30.6	131		0	40	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_OA2_S

Sample ID: LCS-44861	SampType: LCS			Units: mg/Kg	J		e: 5/14/20		RunNo: 108		
Client ID: ZZZZZZ	Batch ID: 44861			SW3550B		Analysis Dat	te: 5/15/20	08	SeqNo: 194	18905	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	19.3	5.00	16.70	0	115.4	45.8	131				
Surr: n-Tetracontane	0.60		0.6700		89.0	58	130				
Sample ID: MB-44861	SampType: MBLK			Units: mg/Kg	J	Prep Dat	e: 5/14/20	008	RunNo: 108	3200	
Client ID: ZZZZZZ	Batch ID: 44861			SW3550B		Analysis Dat	te: 5/15/20	800	SeqNo: 194	18906	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	ND	5.00									
Kerosene	ND	5.00									
Mineral Spirits	ND	5.00									
Motor Oil	ND	5.00									
Surr: n-Tetracontane	0.63		0.6700		94.3	59.5	122				
Sample ID: 08050415-033AMS	SampType: MS			Units: mg/Kg	j-dry	Prep Dat	e: 5/14/20	08	RunNo: 108	3200	
Client ID: B-847 22.0-23.0 ftM	S Batch ID: 44861			SW3550B		Analysis Dat	te: 5/15/20	008	SeqNo: 194	18908	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	656	144	19.25	562.1	487.0	20.3	167				S#
Surr: n-Tetracontane	0.40		0.7724		52.0	53.9	153				S
Sample ID: 08050415-033AMSE	SampType: MSD			Units: mg/Kg	j-dry	Prep Dat	:e: 5/14/20	08	RunNo: 108	3200	
Client ID: B-847 22.0-23.0 ftM	S Batch ID: 44861			SW3550B		Analysis Dat	te: 5/15/20	008	SeqNo: 194	18909	
Analyta	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Analyte											
Diesel	976	142	18.98	562.1	2181	20.3	167	655.9	39.2	34	SR#

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-G080512-2	SampType: LCS			Units: µg/Kg		Prep Date	e: 5/12/20	08	RunNo: 108	3042	
Client ID: ZZZZZZ	Batch ID: 44816			SW5035		Analysis Date	e: 5/12/20	08	SeqNo: 194	14539	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	51.4	1.0	50.00	0	102.8	75	123				
Toluene	50.2	5.0	50.00	0	100.3	77.3	117				
Ethylbenzene	46.8	5.0	50.00	0	93.5	80.8	118				
Xylenes, Total	92.8	5.0	100.0	0	92.8	78.5	121				
Surr: 1,2-Dichloroethane-d4	40.9		50.00		81.8	61	128				
Surr: 4-Bromofluorobenzene	50.6		50.00		101.3	78.2	117				
Surr: Dibromofluoromethane	49.5		50.00		99.0	66.6	130				
Surr: Toluene-d8	49.4		50.00		98.9	80.1	122				
Sample ID: LCSD-G080512-2	SampType: LCSD			Units: µg/Kg		Prep Date	e: 5/12/20	08	RunNo: 108	3042	
Client ID: ZZZZZZ	Batch ID: 44816			SW5035		Analysis Date	e: 5/13/20	08	SeqNo: 194	44540	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	50.6	1.0	50.00	0	101.3	75	123	51.42	1.53	20	
Toluene	49.3	5.0	50.00	0	98.6	77.3	117	50.16	1.69	20	
Ethylbenzene	46.4	5.0	50.00	0	92.8	80.8	118	46.75	0.708	20	
Xylenes, Total	91.2	5.0	100.0	0	91.2	78.5	121	92.81	1.76	20	
Surr: 1,2-Dichloroethane-d4	39.7		50.00		79.3	61	128		0	0	
Surr: 4-Bromofluorobenzene	50.4		50.00		100.9	78.2	117		0	0	
Surr: Dibromofluoromethane	49.1		50.00		98.2	66.6	130		0	0	
Surr: Toluene-d8	48.8		50.00		97.6	80.1	122		0	0	
Sample ID: MBLK-G080512-2	SampType: MBLK			Units: µg/Kg		Prep Date	e: 5/12/20	08	RunNo: 108	3042	
Client ID: ZZZZZZ	Batch ID: 44816			SW5035		Analysis Date	e: 5/13/20	08	SeqNo: 194	14542	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	1.0									
Toluene	ND	5.0									
Ethylbenzene	ND	5.0									
Xylenes, Total	ND	5.0									

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: MBLK-G080512-2	SampType: MBLK			Units: µg/Kg		Prep Date	e: 5/12/20	008	RunNo: 108	3042	
Client ID: ZZZZZZ	Batch ID: 44816			SW5035		Analysis Dat	e: 5/13/20	008	SeqNo: 194	14542	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	40.0		50.00		80.0	61	128				
Surr: 4-Bromofluorobenzene	51.1		50.00		102.1	78.2	117				
Surr: Dibromofluoromethane	48.5		50.00		97.0	66.6	130				
Surr: Toluene-d8	49.1		50.00		98.2	80.1	122				
Sample ID: LCS-F080512-2	SampType: LCS			Units: µg/Kg		Prep Date	e: 5/12/20	008	RunNo: 108	3043	
Client ID: ZZZZZZ	Batch ID: 44818			SW5035		Analysis Dat	e: 5/12/20	008	SeqNo: 194	44551	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	49.4	1.0	50.00	0	98.9	75	123				
Toluene	48.5	5.0	50.00	0	97.0	77.3	117				
Ethylbenzene	51.5	5.0	50.00	0	103.0	80.8	118				
Xylenes, Total	106	5.0	100.0	0	106.0	78.5	121				
Surr: 1,2-Dichloroethane-d4	48.3		50.00		96.6	61	128				
Surr: 4-Bromofluorobenzene	49.3		50.00		98.5	78.2	117				
Surr: Dibromofluoromethane	49.5		50.00		99.0	66.6	130				
Surr: Toluene-d8	48.9		50.00		97.8	80.1	122				
Sample ID: LCSD-F080512-2	SampType: LCSD			Units: µg/Kg		Prep Date	e: 5/12/20	008	RunNo: 108	3043	
Client ID: ZZZZZZ	Batch ID: 44818			SW5035		Analysis Dat	e: 5/12/20	008	SeqNo: 194	14552	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	50.6	1.0	50.00	0	101.2	75	123	49.44	2.36	20	
Toluene	49.3	5.0	50.00	0	98.7	77.3	117	48.52	1.68	20	
Ethylbenzene	52.4	5.0	50.00	0	104.8	80.8	118	51.51	1.71	20	
Xylenes, Total	109	5.0	100.0	0	108.7	78.5	121	106.0	2.45	20	
Surr: 1,2-Dichloroethane-d4	49.2		50.00		98.4	61	128		0	0	
Surr: 4-Bromofluorobenzene	49.4		50.00		98.8	78.2	117		0	0	
Surr: Dibromofluoromethane	49.8		50.00		99.5	66.6	130		0	0	
Surr: Toluene-d8	48.6		50.00		97.3	80.1	122		0	0	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: MBLK-F080512-2	SampType: MBLK			Units: µg/Kg		Prep Date	e: 5/12/20	08	RunNo: 108	8043	
Client ID: ZZZZZZ	Batch ID: 44818			SW5035		Analysis Date	e: 5/12/20	08	SeqNo: 194	4554	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.0									
Toluene	ND	5.0									
Ethylbenzene	ND	5.0									
Xylenes, Total	ND	5.0									
Surr: 1,2-Dichloroethane-d4	51.4		50.00		102.7	61	128				
Surr: 4-Bromofluorobenzene	48.6		50.00		97.2	78.2	117				
Surr: Dibromofluoromethane	51.3		50.00		102.6	66.6	130				
Surr: Toluene-d8	48.4		50.00		96.8	80.1	122				
Sample ID: LCS-F080513-1	SampType: LCS			Units: µg/Kg		Prep Date	e: 5/13/20	08	RunNo: 108	8092	
Client ID: ZZZZZZ	Batch ID: 44849			SW5035		Analysis Date	e: 5/13/20	08	SeqNo: 194	6113	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	48.8	1.0	50.00	0	97.7	75	123				
Toluene	48.1	5.0	50.00	0	96.3	77.3	117				
Ethylbenzene	51.9	5.0	50.00	0	103.8	80.8	118				
Xylenes, Total	107	5.0	100.0	0	106.6	78.5	121				
Surr: 1,2-Dichloroethane-d4	49.2		50.00		98.4	61	128				
Surr: 4-Bromofluorobenzene	48.9		50.00		97.8	78.2	117				
Surr: Dibromofluoromethane	50.4		50.00		100.8	66.6	130				
Surr: Toluene-d8	48.9		50.00		97.9	80.1	122				
Sample ID: LCSD-F080513-1	SampType: LCSD			Units: µg/Kg		Prep Date	e: 5/13/20	08	RunNo: 108	8092	
Client ID: ZZZZZZ	Batch ID: 44849			SW5035		Analysis Date	e: 5/13/20	08	SeqNo: 194	6114	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	46.0	1.0	50.00	0	92.0	75	123	48.83	5.95	20	
Toluene	44.8	5.0	50.00	0	89.7	77.3	117	48.13	7.10	20	
Ethylbenzene	48.4	5.0	50.00	0	96.9	80.8	118	51.89	6.90	20	
Xylenes, Total	98.7	5.0	100.0	0	98.7	78.5	121	106.6	7.73	20	

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCSD-F080513-1	SampType: LCSD			Units: µg/Kg		Prep Dat	e: 5/13/20	08	RunNo: 108	3092	
Client ID: ZZZZZZ	Batch ID: 44849			SW5035		Analysis Dat	e: 5/13/20	08	SeqNo: 194	16114	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	51.2		50.00		102.5	61	128		0	0	
Surr: 4-Bromofluorobenzene	49.1		50.00		98.2	78.2	117		0	0	
Surr: Dibromofluoromethane	50.5		50.00		100.9	66.6	130		0	0	
Surr: Toluene-d8	48.4		50.00		96.9	80.1	122		0	0	
Sample ID: MBLK-F080513-1	SampType: MBLK			Units: µg/Kg		Prep Dat	e: 5/13/20	08	RunNo: 108	3092	
Client ID: ZZZZZZ	Batch ID: 44849			SW5035		Analysis Dat	e: 5/13/20	08	SeqNo: 194	46115	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.0									
Toluene	ND	5.0									
Ethylbenzene	ND	5.0									
Xylenes, Total	ND	5.0									
Surr: 1,2-Dichloroethane-d4	50.1		50.00		100.2	61	128				
Surr: 4-Bromofluorobenzene	49.2		50.00		98.3	78.2	117				
Surr: Dibromofluoromethane	50.6		50.00		101.2	66.6	130				
Surr: Toluene-d8	48.9		50.00		97.8	80.1	122				
Sample ID: LCS-F080514-1	SampType: LCS			Units: µg/Kg		Prep Dat	e: 5/14/20	08	RunNo: 108	3135	
Client ID: ZZZZZZ	Batch ID: 44866			SW5035		Analysis Dat	e: 5/14/20	08	SeqNo: 194	17428	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	45.9	1.0	50.00	0	91.8	75	123				
Toluene	45.4	5.0	50.00	0	90.7	77.3	117				
Ethylbenzene	49.4	5.0	50.00	0	98.9	80.8	118				
Xylenes, Total	101	5.0	100.0	0	101.0	78.5	121				
Surr: 1,2-Dichloroethane-d4	54.1		50.00		108.1	61	128				
Surr: 4-Bromofluorobenzene	50.2		50.00		100.3	78.2	117				
Surr: Dibromofluoromethane	52.6		50.00		105.1	66.6	130				
Surr: Toluene-d8	48.2		50.00		96.4	80.1	122				

Project: A831-735002-012901-225/IP Champaign 62403053

Lab Order: 08050415

Report Date: 16-May-08

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCSD-F080514-1	SampType: LCSD			Units: µg/Kg		Prep Date:	5/14/20	08	RunNo: 108	3135	
Client ID: ZZZZZZ	Batch ID: 44866			SW5035		Analysis Date:	5/14/20	08	SeqNo: 194	7429	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	47.2	1.0	50.00	0	94.4	75	123	45.90	2.77	20	
Toluene	46.4	5.0	50.00	0	92.7	77.3	117	45.36	2.16	20	
Ethylbenzene	49.9	5.0	50.00	0	99.7	80.8	118	49.44	0.866	20	
Xylenes, Total	104	5.0	100.0	0	103.6	78.5	121	101.0	2.49	20	
Surr: 1,2-Dichloroethane-d4	54.6		50.00		109.2	61	128		0	0	
Surr: 4-Bromofluorobenzene	50.6		50.00		101.2	78.2	117		0	0	
Surr: Dibromofluoromethane	53.7		50.00		107.4	66.6	130		0	0	
Surr: Toluene-d8	47.7		50.00		95.3	80.1	122		0	0	
Sample ID: MBLK-F080514-1	SampType: MBLK			Units: µg/Kg		Prep Date:	5/14/20	08	RunNo: 108	3135	
Sample ID: MBLK-F080514-1 Client ID: ZZZZZZ	SampType: MBLK Batch ID: 44866			Units: µg/Kg SW5035		Prep Date: Analysis Date:			RunNo: 108 SeqNo: 194		
		PQL	SPK value		%REC	Analysis Date:	5/14/20				Qual
Client ID: ZZZZZZ	Batch ID: 44866	PQL 1.0	SPK value	SW5035	%REC	Analysis Date:	5/14/20	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte	Batch ID: 44866 Result		SPK value	SW5035	%REC	Analysis Date:	5/14/20	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte Benzene	Batch ID: 44866 Result ND	1.0	SPK value	SW5035	%REC	Analysis Date:	5/14/20	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte Benzene Toluene	Batch ID: 44866 Result ND ND	1.0 5.0	SPK value	SW5035	%REC	Analysis Date:	5/14/20	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte Benzene Toluene Ethylbenzene	Batch ID: 44866 Result ND ND ND	1.0 5.0 5.0	SPK value	SW5035	%REC 113.0	Analysis Date:	5/14/20	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Batch ID: 44866 Result ND ND ND ND	1.0 5.0 5.0		SW5035		Analysis Date: LowLimit H	5/14/20 lighLimit	08	SeqNo: 194	17431	Qual
Client ID: ZZZZZZ Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 1,2-Dichloroethane-d4	Batch ID: 44866 Result ND ND ND ND ND 56.5	1.0 5.0 5.0	50.00	SW5035	113.0	Analysis Date: LowLimit H	5/14/20 lighLimit 128	08	SeqNo: 194	17431	Qual

ENVIRONMENTAL TESTING LABORATORY

Ċ,

TEL: 618-344-1004 FAX: 618-344-1005

RECEIVING CHECK L	IST
--------------------------	------------

Client: Philip Environmental		RECEIVING CHECK LIST
Project: A831-735002-012901-225/IP	Champaign 6240305	53
Lab Order: 08050415		
Report Date: 16-May-08		
Carrier: Leslie Hoosier	Received By:	EAH
Completed by: Elizabeth & Hurley On: 09-May-08 Elizabeth A. Hurley	Reviewed by On: 12-May-08	: Marin L. Darling II Marvin L. Darling
Pages to follow: Chain of custody 6	Extra pages included 0	
Shipping container/cooler in good condition?	Yes 🗹 No	Not Present Temp °C 4.6
Custody seals intact on shippping container/cooler?	Yes 🗌 No 🛛	Not Present 🗹
Custody seals intact on sample bottles?	Yes 🗌 No 🛛	Not Present 🗹
Type of thermal preservation?	None 🗌 🛛 Ice [Blue Ice Dry Ice
Chain of custody present?	Yes 🗹 No	
Chain of custody signed when relinquished and received?	Yes 🗹 No	
Chain of custody agrees with sample labels?	Yes 🗹 No	
Samples in proper container/bottle?	Yes 🗹 No	
Sample containers intact?	Yes 🗹 No	
Sufficient sample volume for indicated test?	Yes 🗹 No	
All samples received within holding time?	Yes 🗹 No	
Reported field parameters measured:	Field Lab	
Container/Temp Blank temperature in compliance?	Yes 🗹 No	
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam		1
Water - VOA vials have zero headspace?	Yes No	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗹 No	
Any No responses i	must be detailed below or on t	the COC.

One B-847 6.0-7.0 ft jar was labeled "B-847 6.0-8.0 ft." All other containers were labeled correctly. EAH 5/9/08

	Chain of	Custo	Chain of Custody Record	-		08050415
	210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230	ank Road 16-0230	(618) 281-7173 Pho (800) 733-7173 (618) 281-5120 Fax	Phone Fax	COC Serial No. B	0864
	Project Mgr.:	Darek Ingraun	Analys	Analyses by Method Name and Number	ne and Number	Laboratory Temperature upon
Project Number: 6 2412 2000 Sampler(s): 1. throcied / 2 thison	abon ison	rix 🖊	*	6		Receipt
Name: Tekla		, * Si Ji	×3	nno		1060
		Soil Wate Air Air BqiW PediV	1911 1911 1911	-		
	Date Time)	/ 7	7 / /	Comment	Comments (Field PID) Lab ID #'s
B-812 1.0-2.0'	515 1610) X	6 x x		t Arsail,	* Arsail, Chemin, 10800416,001
-			б Х Х Х		tal ead	
11.0-12.0			XXX			003
TAT	5/5 1715		ら X X X X X			hul
90-	2		X X			000
4	n	X	5 X X X X			000
Par Lealie Harrier a	dd motels a	md cuen	Let b BS/A (all deotho).	BRII (all deathe)	B843 (1-3 A and
1-9 CH) BS45 (10-74)	3	ġ	d 21-23-Ft)	BRID 10-11	(HTL)-91 HO16 H	B844 (1-24 and
689	<u>г</u> ,			Ad bla	+ BRN (2-3ft	2-34 and 9-10 H) and
852 (9-10 ft).	5/12/08			· ·		
						-
Samples Iced: XYes	oN 🗌 👘 se				ctive	
Vater 5	les)		Requested TAT:	Requested TAT: 🗆 Rush 🔤 5 Days	U = 5 Days	□ Other
□ Volatile Organics	Hydrochloric acid (H(Sodium Bisulfate/Methanol	(HCI) thanol	Send Invoice to:		(Malan)	
	Hydrochloric acid and/or Sulfuric acid	Vor Sulfuric acid	QC Deliverable Requested:		🗆 Fuli QC & Limits 🛛 CLP-LIKE	EDD Other
Cyanide	Nitric acia Sodium hydroxide	(HNO ₃) (NaOH)	Reporting Limits:	les.		
□ Other (Specify)			* Special:			
Shipping:	Relinc	Relinquished by:			Received by:	
Carrier / Airbill No.		Signature		Date Time	Signature	1 Date Time
	- Ke	alie The	kir S	Q221 6	Elizabeth B.	Mully 5/9/18 1720
				v		
Distribution: WHITE to Lab CANARY to PM	PINK to QA/QC GREEN to Sampler	o Sampler				Shaded Areas to be Completed by Lab

PE-179 (6/03)

Project Name: Inno. Project Name: Inno. <th>(618) 281-5120 Fax COC S (618) 281-5120 Fax Analyses by Method Name and Number</th> <th></th> <th>>></th>	(618) 281-5120 Fax COC S (618) 281-5120 Fax Analyses by Method Name and Number		>>
Amnual P Champaugne Project Mar: Durue Ingram Tr: $[b2403053$ Cost code: $O24501$ Matrix Matrix Matrix Matrix Matrix Matrix Model Cost code: $O24501$ Matrix Matrix Matrix Matrix Matrix Matrix Monopole Cost code: $O24501$ Matrix Matrix Matrix Matrix Matrix Matrix <t< td=""><td>umber of Containers</td><td></td><td></td></t<>	umber of Containers		
If ∂_{i} Cost Code: ∂_{i} Matrix Internation: Tet L Line Matrix Internation: Col (MS VI) (E Matrix Matrix Internation: Col (MS VI) (E Matrix Matrix Operation: Col (MS VI) (E Matrix Matrix Internation: Col (MS VI) (E Matrix Matrix Operation: Col (MS VI) (E Matrix Matrix Operation: Col (MS VI) (E Col (MS VI) (E Matrix Operation: Col (MS VI) (E Col (MS VI) (E Matrix Matrix Operation: Col (MS VI) (E Col (MS VI) (E Matrix Matrix Quarter Solution (Metals: Solution (Metals: Matrix (MC) Matrix (MC) Matrix Matrix Matrix Matrix (MS VI) (MS MATRix Matrix (MS MATRix Matrix (MS MATRix Matrix Matrix Matrix Matr	umber of Conta	ne and Number	Z
A Kes Mater Samples	umber of (upon
Lab lab lab lo ¹ lo ² lo ² l		4.6	\dot{o}
ol Insville 0 ' depth) 5 0 ' 5 0 ' 5 0 ' 5 0 ' 5 1 2 1 0 ' 5 1 10 ' 5 1		10	B
(depth) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0			
0' 5 10' 5 10' 5 20' 5 20' 5 20' 5 20' 5 20' 7 7 20' 7 7 20' 7 20' 7 20' 7 20' 7 20' 7 20' 7 20' 5 20' 5 5 20' 5 5 20' 5 5 20' 5 5 20' 5 5 20' 5 5 20' 5 5 5 20' 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	⊉ \00\ ≩	Comments (Field PID) Lab I	Lab ID #'s
0'0' 0'5 0'0' 5 22' 0'0' 5 22' 0'0' 1'2' 5 20' 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5XXXX	08/2014	1915-10-21-1020
0-11.0' 5 + 10-2.0' 5 - 2.0' 8.6 9.0 5 - 16.0 51 - 16.0 51 2.0-10,0' 5 1.0-10,0' 5 2.0-224,0' 5 1.0-10,0' 5 1.0	K X X X		ODS
- 2.0' 5' 5' 5' - 16.0 5' - 16.0 5' 20-10'0' 8' (0-10'0' 8' (0-10'0' 8' 23.6 - 214.0' 8' 23.6 - 214.0' 8' 23.6 - 214.0' 8' NLY for Water Samples Organics	5××		6009
40-7 8, 6 9, 0 5 - 16.0 5 - 20.0 5 - 20	5 X X X X		010
- 16.0 51 - 20.0 51 - 20.0 5 - 20.0 5			NI NI
	UXX VXX		012
2.6-72.1 5 2.6-70.0' 5 2.6-214.0' 5 NLY for Water Samples Organics	X X V		013
(いー10,0 ¹ 5 2,0-214,0 ¹ 5 7 23,0-214,0 ¹ 5 7 X Yes NLY for Water Samples Organics	5X X X X		110
2,6-214,0 ⁶ Z Yes NLY for Water Samples Organics	5 X X X X X		016
NLY for Water Samples Organics	5XX SAMSINIOS		016
NLY for Water Samples Organics			
XL Tes NLY for Water Samples Organics		l ah Diractivae -	ſ
es (ONLY for Water Samples) folatile Organics	Decritested TAT: Dish	ĸ –	
Soll (5035)	. Res	X alo	
	QC Deliverable Requested:	Full QC & Limits CLP-LIKE EDD Other	
	special guidelines: Reporting Limits:		
Other (Specify)	* Special:		
Relinquished by:		Received by:	
Carrier / Airbill No. Sighat	hature Date Time	CIA Signature // Date	Time
Oldu Ha	Due 5/9 1720	Climptet Utheling 5/9/18	120
		Sharler Araas to be Commisted by Lab	oted by Lab

÷

	Chain of Custody Record	odv Record	An ACA ILIG
	210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230	(618) 281-7173 Phone (800) 733-7173 (618) 281-5120 Fax	UNUTION OSESTINO. DOBEST
Project Name: MMMM/PC/HOM/Augu-Project Mgr. DOPL/Kg/10m- Project Number: 12402053 Cost Code: 02450 1	Mu Project Mgr. Dord May Curu Cost Code: 024 50 1	Analyses by Method Name	e and Number Laboratory Temperature upon
Sampler(s): L. HOSSIEr K. Husun	LS UN Matrix		2. C.
	se se I	əqun	
Location: COI MSVILLE	ologi Nata Vata Viba Vipa Vipa		
Sample Number and (depth)	Date Time	юТ —	Comments (Field PID) Lab ID #'s
1 0.2 6.0'-7.0'	5/6 1445 X	SXXXX	L10~91/06080
	5/6 1500 ×		018
846 8	2	5 X X	0/0
	12	5t×X	130 130
	5	b X X	031
508	5/7 10 07 X	$5 \times \times \times \times$	033
-BS03 9.0-10.0	X 0201 -15	× × × × X	033
- 15803 ZI.0-ZZ.0	1	SXX X X	420
-6 805 29.0-30.0	17	5 X &	960
Samples Iced:	Yes		Lab Directives:
NLY for Water San Organics	ples) Hydrochloric acid (HCl)	Requested TAT: Rush 5 Days Fax and/or Mail Results to: Cond Invition to:	15 Days 15TD Other
	sultate/Metha ic acid and/or	QC Deliverable Requested:	Full QC & Limits CLP-LIKE EDD Other
Cyanide	Nitric acid (HNO ₃) Sodium hydroxide (NaOH)	Special Guidelines: Reporting Limits:	
		* Special:	
Shipping:	Relinquished by:		Received by:
Carrier / Airbill No.		Ure Date Time	Signature Date Time
	MA WYNW A		(Kingdet U Muley 5/9/10 1130
Distribution: WHITE to Lab CANARY to PM	PINK to QA/QC GREEN to Sampler		Shaded Areas to be Completed by Lab
PE-179 (6/03)			

	Chain of C	f Cust	ody	ň	ustody Record	ġ				RNGNUNS
	210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230	tank Road 36-0230	(61 (61 (61	8) 281 0) 733 8) 281	(618) 281-7173 (800) 733-7173 (618) 281-5120	Phone Fax		COC Serial No. B	B 08653	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		-	sı		Ana	vd sesi	Method Nam	Analyses by Method Name and Number		
Project Name: HMC/24/7 ('Val) Day on Project Mgr.: Do CL 1 Mgr am	gh Project Mgr.: Dec	K Ingram	əuj						ļ	i ahoratoru
Project Number: 10240203	Cost Code: 024501	501	stno	_		_				Temperature upon
10	HICAN	Matrix	oł C							0.77
i	- ADC MI		per		<u> </u>	וקן' כ				110
Laboratory Name: Tellop	-	oil Air Nir Pes Ier *	muN	3	4 74	WY				(m)
3	╞	!M / ?M	leto	Iz	N	b				
Sample Number and (depth)	Date Time		ગ	7	7	-		Com	Comments (Field PID)	Lab ID #'s
B849 0.0-1.0'	5/7 1125	×	5	$\frac{1}{2}$	X	<u>र</u>	-			08090415-024
a	517 1135	X	5	X	X	×				120
R 849 110.0-17.0'	5/7 1155	×	5	×	×	×				Nag Nag
										<u>,</u>
										-
			_	_						
						_				
			╢					l ah Diractivae:		
Samples Iced:	(es			200	Doguostod TAT-				□ Other	
Vate	ples) Utraticoblario acid			Fax	and/or M	Resi	s to: Derck	Inaran		
	······································	(חטרו) ethanol		Seno	Send Invoice to:	to:		0.		
TPH		d/or Sulfuric ac	p		Deliverat	QC Deliverable Requested:		🗆 Full QC & Limits 🛛 CLP-LIKE		
Cyanide	Nitric acid	(HNO3) (NaOH)		Hep.	Reporting Limits:	cintes.				
Uther (Specify)				ਕੂ *	* Special:					
snipping:		ĔΙ					ľ	Heceived by:	-	
Carrier / Airbill No.		, // Signature	ture			3	Time	A Signature	0 11 N	Date Time
	X	Ule He	R	5		6/6	<i>R</i> 21	Zluncheth la	1 thankey 5	19/18 1720
								0	0	
							1			4- 1-4 L-4-1
Distribution: WHITE to Lab CANAHY to PM PE-179 (6/03)		GHEEN to Sampler							oliadeu Aleas Ir	Snaded Areas to be completed by Lab

	Chain of C		ustody Record		NONGNULIS
	210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230		(618) 281-7173 Phone (800) 733-7173 (618) 281-5120 Fax	COC Serial No. B	08654
Project Name: Jungran IP Champaigmoject Mgr.: Darch Im Project Number: 10240305.3 cost code: 024501	prightoject Mgr.: Drick H cost code: 024/50/	Children Children Containers	Analyses by	Analyses by Method Name and Number	Laboratory Temperature upon
1 T	Husen	Aatrix			1,6°C
Name: Teklab		، * St Jt	STY ZHOX		1060
Location	(Soi Wate ViA Mipe 90170	V V V V	John Mr.	
_	Date Time	>	2	Comments (Field PID)	(Field PID) Lab ID #'s
BB48 20-30'	5/7 1SUS	× اح	XX		08090415-029
10.848 9.0'-10.0'	5/7 1555	X 5.	オオ		030
18048 13,0-14,0'	5/7 1610	X	××		031
× + B47 6.0-7.0'	5/7 1647	X 6	XX	-	032
0,62-0-22 LH89	81L1 LIG	x x	XXX		033
B BO9 20-30'	518 0945	x L	×××	X	034
306		20	X X X	X	036
	578 1015	X	X X X		136
$\left \right $	φ	ك *	on XXX	Sample man ded - DOI	610
B-847 29.0-30.01	5/7 1730	X V	××	•	1 031
Samples Iced:	Vres DNO		TAT Later T	Lab Directives:	
rvati	mples) Hydrochloric acid	(HCI)	Fax and/or Mail Results to:	Denek tragram	
VOC Soil (5035) TPH	Sodium Bisulfate/Methanol	hanol for Sulfuric acid	GC Deliverable Requested:		EDD 🗆 Other
□ Metals	Nitric acid	(HNO ₃) (NaOH)	Special Guidelines: Reporting Limits:		
□ Other (Specify)			* Special:		
Shipping:	Relinquish	uished by:		Received by:	
Carrier / Airbill No.		Signature	Date	Time Signature	Z Date Time
	Sled	li Holi	n 5/9	1720 Hundlighe Uth	uley 5/968 1730
	<u> </u>				
Distribution: WHITE to Lab CANARY to PM	PINK to QA/QC GREEN to Sample	Sampler		S	Shaded Areas to be Completed by Lab
F L-119 (0.00)					

• ,

i M

	Chain of Custody Record	dy Record		NONGALLE
	210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230	(618) 281-7173 Phone (800) 733-7173 (618) 281-5120 Fax	coc serial No. B 08655	U202040
Contract of the second second second second	Protoct Nars, Do as V The Rid	Analyses by Method Name and Number	e and Number	
Project Number: (2740306.3	Cost Code: 02450		Temi	aboratory perature upon
P.H.Z	Matrix		7	16°C
Laboratory Name: Teklab	Soil Soil Aiter Vater Vater Vater			1620
Sample Number and (depth)	Date Time S	1 Ka/28/ 0/	Comments (Field PID)	Lab ID #'s
	1130 X	5X X S X K		08060415-038
) 1/2-0-11,0'		5XXXXX		120
25.0'-26.0'	1255 X	5×1		0+0
Samples Iced: X/Ves	ss 🛛 No		Lab Directives:	
Preservatives (ONLY for Water Samples)	(ater Samples)	Results to:	EXEL TUG TON LOTTER	
	Metha and/or	Send Invoice to: QC Deliverable Requested:	□ Full QC & Limits □ CLP-LIKE □ EDD □ Other	
Metals	Nutric acid (HNO ₃) Sodium hydroxide (NaOH)	Special Guidelines:		
Chination (Specify)	notice and the second	* Special:		
				╞
Carrier / Airbill No.	XaNú Har	$\frac{1}{2}$	Flinder Mullen Stall	OLA MAD
			a 1 A and the loss	
Distribution: WHITE to Lab CANARY to PM P	PINK to QA/QC GREEN to Sampler		Shaded Areas to be Completed by Lab	Completed by Lab
PE-179 (6/03)				

Appendix E

Groundwater Analytical Data and Chain of Custody Forms

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: PSC Industr WorkOrder: 09030701 Lab ID: 09030701-0 Report Date: 31-Mar-09		9, LP		Client Samp Collection	le ID: UN	1W-119 7/2009	02-012901-225/IP Ch 2:50:00 PM 'ATER	amp
Analyses	Certificati	ion RL	Qual	Result	Units	DF	Date Analyzed Ar	nalyst
SW-846 9012A (TOTAL) MODIF	IED							
Cyanide		0.007		0.035	mg/L	1	3/24/2009	RCE
SW-846 3005A, 6010B, METALS E	BY ICP (TOTAL	<u>.)</u>						
lron	NELAP	0.0200		3.30	mg/L	1	3/24/2009 5:38:17 PM	LAL
Manganese	NELAP	0.0050		0.320	mg/L	1	3/24/2009 5:38:17 PM	LAL
Nickel	NELAP	0.0100	J	0.0043	mg/L	1	3/24/2009 5:38:17 PM	LAL
SW-846 3020A, METALS BY GFA	A (TOTAL)							
Lead 7421	NELAP	0.0020	J	0.0016	mg/L	1	3/25/2009 1:01:58 PM	MEK
SW-846 3510C, 8270C SIMS, SEM	I-VOLATILE O	RGANIC C	OMPOUN	NDS BY GC/MS	8			
2-Methylnaphthalene	NELAP	0.00010		0.00034	mg/L	1	3/24/2009 6:32:00 AM	MAN
Acenaphthene	NELAP	0.00010		0.00026	mg/L	1	3/24/2009 6:32:00 AM	MAN
Acenaphthylene	NELAP	0.00010		0.00042	mg/L	1	3/24/2009 6:32:00 AM	MAN
Anthracene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Bis(2-ethylhexyl)phthalate	NELAP	0.00200		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Chrysene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAM
Dibenzofuran	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Diethyl phthalate	NELAP	0.00100		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Dimethyl phthalate	NELAP	0.00100		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Di-n-butyl phthalate	NELAP	0.00100		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Fluoranthene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Fluorene	NELAP	0.00010		0.00010	mg/L	1	3/24/2009 6:32:00 AM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
m,p-Cresol	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Naphthalene	NELAP	0.00010		0.00021	mg/L	1	3/24/2009 6:32:00 AM	
o-Cresol	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Phenanthrene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Pyrene	NELAP	0.00010		ND	mg/L	1	3/24/2009 6:32:00 AM	MAN
Total PNAs except Naphthalene		0.00010		0.00078	mg/L	1	3/24/2009 6:32:00 AM	MAN
Surr: 2-Fluorobiphenyl		41.1-108		62.0	%REC	1	3/24/2009 6:32:00 AM	MAN
Surr: 2-Fluorophenol		16.8-65.9		36.3	%REC	1	3/24/2009 6:32:00 AM	MAN
Surr: Nitrobenzene-d5		37.6-105		50.5 64.2	%REC	1	3/24/2009 6:32:00 AM	MAN
Surr: Phenol-d5		11-42.8		23.5	%REC %REC	1	3/24/2009 6:32:00 AM	MAN
Surr: p-Terphenyl-d14		49-113		64.2	%REC	1	3/24/2009 6:32:00 AM	MAN

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

3/23/2009

MEK

LABORATORY RESULTS

Client: PSC Industri WorkOrder: 09030701 Lab ID: 09030701-0 Report Date: 31-Mar-09	U	•		Client Samp Collection	le ID: UN	/W-119 7/2009	02-012901-225/IP 2:50:00 PM ATER	Champ
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS E	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	3/20/2009 10:04:00	PM CCF
Ethylbenzene	NELAP	5.0		ND	µg/L	1	3/20/2009 10:04:00	PM CCF
Toluene	NELAP	5.0		ND	µg/L	1	3/20/2009 10:04:00	PM CCF
Xylenes, Total	NELAP	5.0		ND	µg/L	1	3/20/2009 10:04:00	PM CCF
Surr: 1,2-Dichloroethane-d4	74	.7-129		106.7	%REC	1	3/20/2009 10:04:00	PM CCF
Surr: 4-Bromofluorobenzene	1	86-119		107.4	%REC	1	3/20/2009 10:04:00	PM CCF
Surr: Dibromofluoromethane	81	.7-123		104.5	%REC	1	3/20/2009 10:04:00	PM CCF
Surr: Toluene-d8	84	.3-114		102.0	%REC	1	3/20/2009 10:04:00	PM CCF

< 0.00020

mg/L

1

Sample Narrative

Mercury

SW-846 7470A (TOTAL)

SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Laboratory control sample duplicate did not recover within QC limits. Batch verified by MS/MSD recoveries.

0.00020

NELAP

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: PSC Industr WorkOrder: 09060507 Lab ID: 09060507-0 Report Date: 18-Jun-09	-	, LP		Client Samp Collection	ole ID: UN	/W-119 0/2009	02-012901-225/IP C 3:47:00 PM ⁄ATER	hamp
Analyses	Certificati	on RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 9012A (TOTAL) MODIFI	ED							
Cyanide		0.007		0.030	mg/L	1	6/16/2009 4:10:15 PM	I RCE
<u>SW-846 3510C, 8270C SIMS, SEM</u>			OMPOUN		-			
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	
Acenaphthene	NELAP	0.00010		0.00020	mg/L	1	6/16/2009 6:43:00 AN	
Acenaphthylene	NELAP	0.00010		0.00041	mg/L	1	6/16/2009 6:43:00 AN	
Anthracene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.00200		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Chrysene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Dibenzofuran	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AM	1 DMH
Diethyl phthalate	NELAP	0.00100		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Dimethyl phthalate	NELAP	0.00100		ND	mg/L	1	6/16/2009 6:43:00 AN	1 DMH
Di-n-butyl phthalate	NELAP	0.00100		ND	mg/L	1	6/16/2009 6:43:00 AN	
Fluoranthene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	
Fluorene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AN	
m,p-Cresol	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AM	
Naphthalene	NELAP	0.00010		0.00013	mg/L	1	6/16/2009 6:43:00 AM	
o-Cresol	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AM	
Phenanthrene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AM	
Pyrene	NELAP	0.00010		ND	mg/L	1	6/16/2009 6:43:00 AM	
Total PNAs except Naphthalene	NELAF	0.00010			mg/L	1	6/16/2009 6:43:00 AM	
Surr: 2-Fluorobiphenyl		41.1-108		0.00060 67.2	%REC	1	6/16/2009 6:43:00 AM	
		16.8-65.9			%REC	1		
Surr: 2-Fluorophenol				36.5			6/16/2009 6:43:00 AN	
Surr: Nitrobenzene-d5		37.6-105		67.4	%REC	1	6/16/2009 6:43:00 AN	
Surr: Phenol-d5		11-42.8		24.7	%REC	1	6/16/2009 6:43:00 AM	
Surr: p-Terphenyl-d14 SW-846 5030, 8260B, VOLATILE		49-113	SV CC/M	74.0 S	%REC	1	6/16/2009 6:43:00 AN	1 DMH
Benzene	NELAP	<u>1100NDS 1</u> 2.0		<u>s</u> ND	µg/L	1	6/13/2009 2:33:00 AN	1 TAL
Ethylbenzene	NELAP	5.0		ND	µg/∟ µg/L	1	6/13/2009 2:33:00 AM	
Toluene	NELAP	5.0		ND	µg/∟ µg/L	1	6/13/2009 2:33:00 AM	
Xylenes, Total	NELAP	5.0		ND		1	6/13/2009 2:33:00 AM	
Surr: 1.2-Dichloroethane-d4	INELAP	5.0 74.7-129			µg/L ∞ REC			
Suff. 1,2-Dichioroethane-04		14.1-129		99.6	%REC	1	6/13/2009 2:33:00 AM	1 TAL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

6/13/2009 2:33:00 AM

TAL

LABORATORY RESULTS

Client:	PSC Industrial C	Dutsourcing, LP			Client Pr	oject: A8	31-7350	02-012901-225/IP Cha	amp
WorkOrder:	09060507				Client Samp	le ID: UN	/W-119		
Lab ID:	09060507-017				Collection	Date: 6/1	0/2009	3:47:00 PM	
Report Date:	18-Jun-09				Μ	atrix: GR	ROUNDW	ATER	
Analyses Certification RI			RL	Qual	Result	Units	DF	Date Analyzed An	alyst
<u>SW-846 5030, 8260B</u>	, VOLATILE OR	GANIC COMPO	UNDS E	BY GC/MS	<u>s</u>				
Surr: 4-Bromofluoro	obenzene	8	6-119		99.4	%REC	1	6/13/2009 2:33:00 AM	TAL
Surr: Dibromofluoro	omethane	81	.7-123		101.5	%REC	1	6/13/2009 2:33:00 AM	TAL

101.0

%REC

1

84.3-114

Surr: Toluene-d8

Sample Narrative

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

WorkOrder: 09090407	Lab ID: 09090407-017 Report Date: 21-Sep-09					Client Project: A831-735002-012901-225/IP Champ Client Sample ID: UMW119 Collection Date: 9/9/2009 3:25:00 PM Matrix: GROUNDWATER					
Analyses	Certificatio	on RL	Qual	Result	Units	DF	Date Analyzed A	nalyst			
SW-846 9012A (TOTAL) MODIFI	ED										
Cyanide		0.007		0.031	mg/L	1	9/16/2009 9:45:45 AN	/ RCE			
<u>SW-846 3510C, 8270C SIMS, SEM</u>			<u>OMPOUN</u>		_						
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Acenaphthene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Acenaphthylene	NELAP	0.00010		0.00025	mg/L	1	9/15/2009 4:24:00 AN				
Anthracene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Bis(2-ethylhexyl)phthalate	NELAP	0.00200		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Chrysene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN MAN			
Dibenzofuran	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN NAN			
Diethyl phthalate	NELAP	0.00100		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN NAN			
Dimethyl phthalate	NELAP	0.00100		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN			
Di-n-butyl phthalate	NELAP	0.00100		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN			
Fluoranthene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN			
Fluorene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN			
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN	MAN			
m,p-Cresol	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Naphthalene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
o-Cresol	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Phenanthrene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Pyrene	NELAP	0.00010		ND	mg/L	1	9/15/2009 4:24:00 AN				
Total PNAs except Naphthalene		0.00013		0.00025	mg/L	1	9/15/2009 4:24:00 AN				
Surr: 2-Fluorobiphenyl		41.1-108		74.4	%REC	1	9/15/2009 4:24:00 AN				
Surr: 2-Fluorophenol		16.8-65.9		41.4	%REC	1	9/15/2009 4:24:00 AN				
Surr: Nitrobenzene-d5		37.6-105		73.2	%REC	1	9/15/2009 4:24:00 AN				
Surr: Phenol-d5		11-42.8		25.4	%REC	1	9/15/2009 4:24:00 AN				
Surr: p-Terphenyl-d14		49-113		79.0	%REC	1	9/15/2009 4:24:00 AN				
SW-846 5030, 8260B, VOLATILE (DV CC/M		/orceo		9/13/2009 4.24.00 AN				
Benzene	NELAP	<u>2.0</u>	DI GU/M	<u>s</u> ND	µg/L	1	9/11/2009 8:33:00 PN	/ CCF			
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/11/2009 8:33:00 PM				
Toluene	NELAP	5.0		ND	μg/L	1	9/11/2009 8:33:00 PM				
Xylenes, Total	NELAP	5.0				1	9/11/2009 8:33:00 PN				
Surr: 1,2-Dichloroethane-d4	NELAF			ND	µg/L %REC						
		74.7-129		100.7	%REC	1	9/11/2009 8:33:00 PN	/ CCF			

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

9/11/2009 8:33:00 PM CCF

LABORATORY RESULTS

Client: PSC Indu	ustrial Outsourcing, LP			Client Project: A831-735002-012901-225/IP Ch					
WorkOrder: 09090407	7		Client Sample ID: UMW119						
Lab ID: 0909040	Lab ID: 09090407-017 Report Date: 21-Sep-09			Collection Date: 9/9/2009 3:25:00 PM					
Report Date: 21-Sep-0	9			Μ	latrix: GR	OUNDW	/ATER		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ana	alyst	
<u>SW-846 5030, 8260B, VOLATII</u>	LE ORGANIC COMPO	UNDS E	BY GC/MS						
Surr: 4-Bromofluorobenzene	8	36-119		100.8	%REC	1	9/11/2009 8:33:00 PM	CCF	

96.5

%REC

1

84.3-114

Surr: Toluene-d8

Sample Narrative

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: PSC Industri WorkOrder: 09120458 Lab ID: 09120458-00 Report Date: 21-Dec-09	Ū.	LP		Client Project: A831-735002-012901-225/IP Champ Client Sample ID: UMW-119 Collection Date: 12/7/2009 3:15:00 PM Matrix: GROUNDWATER					
Analyses	Certificatio	on RL	Qual	Result	Units	DF	Date Analyzed	Ana	alyst
SW-846 9012A (TOTAL) MODIFI	<u>ED</u>								
Cyanide		0.007		0.027	mg/L	1	12/15/2009 4:56:16	РМ	RCE
<u>SW-846 3510C, 8270C SIMS, SEMI</u>			<u>OMPOUN</u>		-				
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Acenaphthene	NELAP	0.00010		0.00016	mg/L	1	12/11/2009 6:35:00		MAN
Acenaphthylene	NELAP	0.00010		0.00042	mg/L	1	12/11/2009 6:35:00		MAN
Anthracene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00		MAN
Bis(2-ethylhexyl)phthalate	NELAP	0.00200		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Chrysene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Dibenzofuran	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	ΡM	MAN
Diethyl phthalate	NELAP	0.00100		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Dimethyl phthalate	NELAP	0.00100		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Di-n-butyl phthalate	NELAP	0.00100		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Fluoranthene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РМ	MAN
Fluorene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
m,p-Cresol	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Naphthalene	NELAP	0.00010		0.00013	mg/L	1	12/11/2009 6:35:00	РM	MAN
o-Cresol	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РM	MAN
Phenanthrene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РМ	MAN
Pyrene	NELAP	0.00010		ND	mg/L	1	12/11/2009 6:35:00	РМ	MAN
Total PNAs except Naphthalene		0.00013		0.00058	mg/L	1	12/11/2009 6:35:00		MAN
Surr: 2-Fluorobiphenyl		41.1-108		63.2	%REC	1	12/11/2009 6:35:00		MAN
Surr: 2-Fluorophenol		16.8-65.9		36.7	%REC	1	12/11/2009 6:35:00		MAN
Surr: Nitrobenzene-d5		37.6-105		61.4	%REC	1	12/11/2009 6:35:00		MAN
Surr: Phenol-d5		11-42.8		23.0	%REC	1	12/11/2009 6:35:00		MAN
Surr: p-Terphenyl-d14		49-113		68.6	%REC	1	12/11/2009 6:35:00		MAN
SW-846 5030, 8260B, VOLATILE (DRCANIC COM				,01 CEO	ı	12, 11, 2000 0.00.00		111/7110
Benzene	NELAP	<u>2.0</u>	DI GU/M	<u>s</u> ND	µg/L	1	12/11/2009 2:51:00	ΔM	CCF
Ethylbenzene	NELAP	5.0		ND	µg/∟ µg/L	1	12/11/2009 2:51:00		CCF
Toluene	NELAP	5.0				1	12/11/2009 2:51:00		CCF
				ND	µg/L	1	12/11/2009 2:51:00		
Xylenes, Total	NELAP	5.0 74.7-129		ND	µg/L ∞ REC				CCF
Surr: 1,2-Dichloroethane-d4		14.1-129		103.0	%REC	1	12/11/2009 2:51:00	AIVI	CCF

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: PSC Industri	al Outsourcing, LP			Client Pr	oject: A8	31-7350)02-012901-225/IP Cha	mp
WorkOrder: 09120458				Client Samp	le ID: UN	1W-119		
Lab ID: 09120458-00	08			Collection	Date: 12	7/2009	3:15:00 PM	
Report Date: 21-Dec-09		Matrix: GROUNDWATER						
								_
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ana	alyst
Analyses <u>SW-846 5030, 8260B, VOLATILE (</u>			<u>с</u>		Units	DF	Date Analyzed Ana	alyst
<i>.</i>	ORGANIC COMPO		<u>с</u>		Units %REC	DF	Date Analyzed Ana 12/11/2009 2:51:00 AM	
<u>SW-846 5030, 8260B, VOLATILE (</u>	DRGANIC COMPO 8	UNDS H	<u>с</u>	<u> </u>		DF 1 1	v	

Sample Narrative

Client Project: A831-735002-012901-225/IP Champ

Client Sample ID: UMW-119

ENVIRONMENTAL TESTING LABORATORY

WorkOrder: 10030463

Client: PSC Industrial Outsourcing, LP

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

	04	Collection Date: 3/8/2010 2:30:00 PM						
Lab ID: 10030463-00	01						::30:00 PM	
Report Date: 01-Apr-10				Μ	latrix: AQ	UEOUS		
Analyses	Certificatio	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
<u>SW-846 3510C, 8270C SIMS, SEMI</u>	I-VOLATILE OR	GANIC C	<u>OMPOUN</u>	DS BY GC/MS	<u>8</u>			
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Acenaphthene	NELAP	0.00010		0.00012	mg/L	1	3/12/2010 12:13:00 PM	MAN
Acenaphthylene	NELAP	0.00010		0.00024	mg/L	1	3/12/2010 12:13:00 PM	MAN
Anthracene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Bis(2-ethylhexyl)phthalate	NELAP	0.00200		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Chrysene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Dibenzofuran	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Diethyl phthalate	NELAP	0.00100		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Dimethyl phthalate	NELAP	0.00100		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Di-n-butyl phthalate	NELAP	0.00100		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Fluoranthene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Fluorene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
m,p-Cresol	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Naphthalene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
o-Cresol	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Phenanthrene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Pyrene	NELAP	0.00010		ND	mg/L	1	3/12/2010 12:13:00 PM	MAN
Total PNAs except Naphthalene		0.00013		0.00036	mg/L	1	3/12/2010 12:13:00 PM	I MAN
Surr: 2-Fluorobiphenyl		41.1-108		68.2	%REC	1	3/12/2010 12:13:00 PM	I MAN
Surr: 2-Fluorophenol		16.8-65.9		34.6	%REC	1	3/12/2010 12:13:00 PM	MAN
Surr: Nitrobenzene-d5		37.6-105		73.8	%REC	1	3/12/2010 12:13:00 PM	MAN
Surr: Phenol-d5		11-42.8		23.2	%REC	1	3/12/2010 12:13:00 PM	MAN
Surr: p-Terphenyl-d14		49-113		85.6	%REC	1	3/12/2010 12:13:00 PM	MAN
<u>SW-846 5030, 8260B, VOLATILE (</u>	ORGANIC COM	POUNDS E	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	3/13/2010 1:00:00 AM	CCF
Ethylbenzene	NELAP	5.0		ND	µg/L	1	3/13/2010 1:00:00 AM	CCF
Toluene	NELAP	5.0		ND	µg/L	1	3/13/2010 1:00:00 AM	CCF
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/13/2010 1:00:00 AM	CCF
Surr: 1,2-Dichloroethane-d4		74.7-129		109.9	%REC	1	3/13/2010 1:00:00 AM	CCF
Surr: 4-Bromofluorobenzene		86-119		104.6	%REC	1	3/13/2010 1:00:00 AM	CCF
Surr: Dibromofluoromethane		81.7-123		101.3	%REC	1	3/13/2010 1:00:00 AM	CCF

IL ELAP and NELAP Accredited - Accreditation #100226

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client: PSC r	ndustrial Outsourcing, LF)	Client P	roject: A8	31-7350	02-012901-225/IP Cha	amp
WorkOrder: 100304	463		Client Sam	ple ID: UN	1W-119		
Lab ID: 100304	463-001		Collection	Date: 3/8	8/2010 2	2:30:00 PM	
Report Date: 01-Apr	-10		Ν	1atrix: AQ	UEOUS		
Analyses	Certification	RL Q	ual Result	Units	DF	Date Analyzed An	alyst
<u>SW-846 5030, 8260B, VOLA</u>	TILE ORGANIC COMPO	UNDS BY C	GC/MS				
Surr: Toluene-d8	84	.3-114	103.1	%REC	1	3/13/2010 1:00:00 AM	CCF
<u>SW-846 9012A (TOTAL)</u> Cyanide	NELAP	0.007	0.031	mg/L	1	3/18/2010 11:09:43 AM	RCE

Sample Narrative

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Client:	PSC Industrial Outsourcing, LP	Client Project:	A831-735002-012901-225/IP Champ
WorkOrder:	10060735	Client Sample ID:	UMW-119
Lab ID:	10060735-023	Collection Date:	6/16/2010 11:05:00 AM
Report Date:	01-Jul-10	Matrix:	GROUNDWATER

Analyses	Certificatio	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8270C SIMS, SEM	I-VOLATILE OF	RGANIC C	OMPOUN	DS BY GC/MS	8			
2-Methylnaphthalene	NELAP	0.00010		ND	- mg/L	1	6/18/2010 2:15:00 PM	MAN
Acenaphthene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Acenaphthylene	NELAP	0.00010		0.00017	mg/L	1	6/18/2010 2:15:00 PM	MAN
Anthracene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Chrysene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Fluoranthene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Fluorene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Naphthalene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Phenanthrene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Pyrene	NELAP	0.00010		ND	mg/L	1	6/18/2010 2:15:00 PM	MAN
Total PNAs except Naphthalene		0.00013		0.00017	mg/L	1	6/18/2010 2:15:00 PM	MAN
Surr: 2-Fluorobiphenyl		41.1-108		73.9	%REC	1	6/18/2010 2:15:00 PM	MAN
Surr: 2-Fluorophenol		16.8-65.9		44.8	%REC	1	6/18/2010 2:15:00 PM	MAN
Surr: Nitrobenzene-d5		37.6-105		71.0	%REC	1	6/18/2010 2:15:00 PM	MAN
Surr: Phenol-d5		11-42.8		29.4	%REC	1	6/18/2010 2:15:00 PM	MAN
Surr: p-Terphenyl-d14		49-113		72.0	%REC	1	6/18/2010 2:15:00 PM	MAN
SW-846 5030, 8260B, VOLATILE	ORGANIC COM	POUNDS E	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	6/21/2010 4:47:00 PM	CCF
Ethylbenzene	NELAP	5.0		ND	µg/L	1	6/21/2010 4:47:00 PM	CCF
Toluene	NELAP	5.0		ND	µg/L	1	6/21/2010 4:47:00 PM	CCF
Xylenes, Total	NELAP	5.0		ND	µg/L	1	6/21/2010 4:47:00 PM	CCF
Surr: 1,2-Dichloroethane-d4		74.7-129		107.3	%REC	1	6/21/2010 4:47:00 PM	CCF
Surr: 4-Bromofluorobenzene		86-119		105.0	%REC	1	6/21/2010 4:47:00 PM	CCF
Surr: Dibromofluoromethane		81.7-123		104.9	%REC	1	6/21/2010 4:47:00 PM	CCF
Surr: Toluene-d8		84.3-114		95.7	%REC	1	6/21/2010 4:47:00 PM	CCF
<u>SW-846 9012A (TOTAL)</u>								
Cyanide	NELAP	0.007		0.020	mg/L	1	6/29/2010 1:27:51 PM	MVS
					-			

Sample Narrative

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Report Date: 09-Oct-10	Analyses Certification RL Quies 46 3005A, 6010B, METALS BY ICP (TOTAL)				Client Project: A831-735002-012901-225/Ameren C Client Sample ID: UMW119 Collection Date: 9/29/2010 8:05:00 AM Matrix: GROUNDWATER					
Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed An	alyst		
<u>SW-846 3005A, 6010B, METALS B</u>	<u>Y ICP (TOTAL)</u>									
Copper	NELAP	0.0100	J	0.0094	mg/L	1	10/1/2010 1:47:41 PM	JMW		
SW-846 3020A, METALS BY GFAA										
Lead 7421	NELAP	0.0020	J	0.0011	mg/L	1	10/1/2010 3:09:36 PM	MEK		
<u>SW-846 3510C, 8270C SIMS, SEMI</u>			OMPOU		-					
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Acenaphthene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Acenaphthylene	NELAP	0.00010		0.00019	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Anthracene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Chrysene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Fluoranthene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Fluorene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Naphthalene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Phenanthrene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Pyrene	NELAP	0.00010		ND	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Total PNAs except Naphthalene		0.00013		0.00019	mg/L	1	10/5/2010 1:05:00 PM	MAN		
Surr: 2-Fluorobiphenyl		41.1-108		76.7	%REC	1	10/5/2010 1:05:00 PM	MAN		
Surr: 2-Fluorophenol		16.8-65.9		44.2	%REC	1	10/5/2010 1:05:00 PM	MAN		
Surr: Nitrobenzene-d5		37.6-105		72.3	%REC	1	10/5/2010 1:05:00 PM	MAN		
Surr: Phenol-d5		11-42.8		23.9	%REC	1	10/5/2010 1:05:00 PM	MAN		
Surr: p-Terphenyl-d14		49-113		75.2	%REC	1	10/5/2010 1:05:00 PM	MAN		
SW-846 5030, 8260B, VOLATILE O	DRGANIC COM	OUNDS E	BY GC/M	S						
Benzene	NELAP	2.0		ND	µg/L	1	10/1/2010 5:04:00 PM	CCF		
Ethylbenzene	NELAP	5.0		ND	µg/L	1	10/1/2010 5:04:00 PM	CCF		
Toluene	NELAP	5.0		ND	µg/L	1	10/1/2010 5:04:00 PM	CCF		
Xylenes, Total	NELAP	5.0		ND	μg/L	1	10/1/2010 5:04:00 PM	CCF		
Surr: 1,2-Dichloroethane-d4		74.7-129		101.9	%REC	1	10/1/2010 5:04:00 PM	CCF		
Surr: 4-Bromofluorobenzene		86-119		102.7	%REC	1	10/1/2010 5:04:00 PM	CCF		
Surr: Dibromofluoromethane		81.7-123		102.8	%REC	1	10/1/2010 5:04:00 PM	CCF		
Surr: Toluene-d8		84.3-114		95.2	%REC	1	10/1/2010 5:04:00 PM	CCF		
<u>SW-846 9012A (TOTAL)</u>					-					
Cyanide	NELAP	0.007		0.028	mg/L	1	10/1/2010 10:20:00 AM	KNS		

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

LABORATORY RESULTS

Analyse	s	Certification	RL	Qual	Result Ur	nits	DF	Date Analyzed	Analyst
Report Date:	12-Jan-11				Matrix	: GR	ROUNDWA	ATER	
Lab ID:	10121047-006				Collection Date	: 12	/28/2010	2:55:00 PM	
WorkOrder:	10121047				Client Sample ID	: UN	/IW-119		
Client:	PSC Industrial (Outsourcing, LP			Client Project	: A8	31-73500)2-012901-225Am	eren Ch

2-Methylnaphthalene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAM
Acenaphthene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAI
Acenaphthylene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Anthracene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Benzo(a)anthracene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Benzo(a)pyrene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Chrysene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAM
Fluoranthene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Fluorene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Naphthalene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Phenanthrene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Pyrene	NELAP	0.00010	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Total PNAs except Naphthalene		0.00013	ND	mg/L	1	1/4/2011 3:25:00 PM	MAN
Surr: 2-Fluorobiphenyl		41.1-108	69.7	%REC	1	1/4/2011 3:25:00 PM	MAN
Surr: 2-Fluorophenol		16.8-65.9	44.4	%REC	1	1/4/2011 3:25:00 PM	MAN
Surr: Nitrobenzene-d5		37.6-105	76.9	%REC	1	1/4/2011 3:25:00 PM	MAN
Surr: Phenol-d5		11-42.8	28.9	%REC	1	1/4/2011 3:25:00 PM	MAN
Surr: p-Terphenyl-d14		49-113	71.4	%REC	1	1/4/2011 3:25:00 PM	MAN
<u>SW-846 5030, 8260B, VOLATILE C</u>	RGANIC CON	POUNDS BY GC/I	<u>MS</u>				
Benzene	NELAP	2.0	ND	µg/L	1	12/31/2010 4:19:00 AM	CCF
Ethylbenzene	NELAP	5.0	ND	µg/L	1	12/31/2010 4:19:00 AM	CCF
Toluene	NELAP	5.0	ND	µg/L	1	12/31/2010 4:19:00 AM	CCF
Xylenes, Total	NELAP	5.0	ND	µg/L	1	12/31/2010 4:19:00 AM	CCF
Surr: 1,2-Dichloroethane-d4		74.7-129	114.5	%REC	1	12/31/2010 4:19:00 AM	CCF
Surr: 4-Bromofluorobenzene		86-119	101.3	%REC	1	12/31/2010 4:19:00 AM	CCF
Surr: Dibromofluoromethane		81.7-123	109.6	%REC	1	12/31/2010 4:19:00 AM	CCF
Surr: Toluene-d8		84.3-114	94.5	%REC	1	12/31/2010 4:19:00 AM	CCF
<u>SW-846 9012A (TOTAL)</u>							
Cyanide	NELAP	0.007	0.028	mg/L	1	1/3/2011 10:21:00 AM	KNS

Sample Narrative

SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Laboratory control sample duplicate did not recover within QC limits. Batch verified on MS recovery.

Report Date: 24-Mar-11

Client Project: A831-735002-012901-225/IP Champaign

Client: PSC Industrial Outsourcing, LP

Lab ID: 11030761-004

Matrix: GROUNDWATER

Client Sample ID: UMW-119

Collection Date: 03/16/2011 9:15

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.008		< 0.008	mg/L	1	03/21/2011 10:03	R147057
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE OR	GANIC CON	IPOUNDS	BY GC/MS				
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Acenaphthene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Anthracene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Chrysene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Fluoranthene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Fluorene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Naphthalene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Phenanthrene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Pyrene	NELAP	0.00010		ND	mg/L	1	03/22/2011 22:45	66757
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	03/22/2011 22:45	66757
Surr: 2-Fluorobiphenyl		41.1-108		74.8	%REC	1	03/22/2011 22:45	66757
Surr: 2-Fluorophenol		16.8-65.9		40.1	%REC	1	03/22/2011 22:45	66757
Surr: Nitrobenzene-d5		37.6-105		86.6	%REC	1	03/22/2011 22:45	66757
Surr: Phenol-d5		11-42.8		26.7	%REC	1	03/22/2011 22:45	66757
Surr: p-Terphenyl-d14		49-113		58.6	%REC	1	03/22/2011 22:45	66757
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	03/18/2011 19:41	66717
Ethylbenzene	NELAP	5.0		ND	µg/L	1	03/18/2011 19:41	66717
Toluene	NELAP	5.0		ND	µg/L	1	03/18/2011 19:41	66717
Xylenes, Total	NELAP	5.0		ND	µg/L	1	03/18/2011 19:41	66717
Surr: 1,2-Dichloroethane-d4		74.7-129		94.4	%REC	1	03/18/2011 19:41	66717
Surr: 4-Bromofluorobenzene		86-119		101.2	%REC	1	03/18/2011 19:41	66717
Surr: Dibromofluoromethane		81.7-123		98.0	%REC	1	03/18/2011 19:41	66717
Surr: Toluene-d8		84.3-114		98.8	%REC	1	03/18/2011 19:41	66717

http://www.teklabinc.com/

Work Order: 11060800

Report Date: 22-Jun-11

Client Project: A831-735002-012901-225/IP Champaign Lab ID: 11060800-016

Client: PSC Industrial Outsourcing, LP

Client Sample ID: VMW-119

Matrix: GROUNDWATER

-CONCCUONDALC, COUNT/ZONN 14.20	Collection Date:	06/14/2011	14:25
---------------------------------	-------------------------	------------	-------

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.026	mg/L	1	06/20/2011 9:18	R150994
SW-846 3510C, 8270C SIMS, S	SEMI-VOLATILE OF	RGANIC CON	IPOUNDS	BY GC/MS				
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Acenaphthene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Anthracene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Chrysene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Fluoranthene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Fluorene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Naphthalene	NELAP	0.00010		0.00039	mg/L	1	06/20/2011 20:26	69023
Phenanthrene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Pyrene	NELAP	0.00010		ND	mg/L	1	06/20/2011 20:26	69023
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	06/20/2011 20:26	69023
Surr: 2-Fluorobiphenyl		34.3-105		85.0	%REC	1	06/20/2011 20:26	69023
Surr: 2-Fluorophenol		19.9-55.7		35.8	%REC	1	06/20/2011 20:26	69023
Surr: Nitrobenzene-d5		36.4-127		73.2	%REC	1	06/20/2011 20:26	69023
Surr: Phenol-d5		8.95-38.5		21.1	%REC	1	06/20/2011 20:26	69023
Surr: p-Terphenyl-d14		6.05-133		81.8	%REC	1	06/20/2011 20:26	69023
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	06/17/2011 18:05	69068
Ethylbenzene	NELAP	5.0		ND	µg/L	1	06/17/2011 18:05	69068
Toluene	NELAP	5.0		ND	µg/L	1	06/17/2011 18:05	69068
Xylenes, Total	NELAP	5.0		ND	µg/L	1	06/17/2011 18:05	69068
Surr: 1,2-Dichloroethane-d4		74.7-129		106.1	%REC	1	06/17/2011 18:05	69068
Surr: 4-Bromofluorobenzene		86-119		102.2	%REC	1	06/17/2011 18:05	69068
Surr: Dibromofluoromethane		81.7-123		101.7	%REC	1	06/17/2011 18:05	69068
Surr: Toluene-d8		84.3-114		97.9	%REC	1	06/17/2011 18:05	69068

Laboratory Results

http://www.teklabinc.com/

Client: PSC Industrial Outsourcing, LP

Client Project: A831-735002-012901-225Ameren Champaign 62408080120

Lab ID: 11090642-019

Client Sample ID: UMW-119

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9012A (TOTAL)										
Cyanide	NELAP	0.007		0.026	mg/L	1	09/20/2011 18:37	71355		
SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS										
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Acenaphthene	NELAP	0.00010		0.00010	mg/L	1	09/19/2011 19:40	71336		
Acenaphthylene	NELAP	0.00010		0.00012	mg/L	1	09/19/2011 19:40	71336		
Anthracene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Chrysene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Fluoranthene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Fluorene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Naphthalene	NELAP	0.00010		0.00013	mg/L	1	09/19/2011 19:40	71336		
Phenanthrene	NELAP	0.00010		0.00011	mg/L	1	09/19/2011 19:40	71336		
Pyrene	NELAP	0.00010		ND	mg/L	1	09/19/2011 19:40	71336		
Total PNAs except Naphthalene		0.00013		0.00033	mg/L	1	09/19/2011 19:40	71336		
Surr: 2-Fluorobiphenyl		34.3-105		68.0	%REC	1	09/19/2011 19:40	71336		
Surr: 2-Fluorophenol		19.9-55.7		37.0	%REC	1	09/19/2011 19:40	71336		
Surr: Nitrobenzene-d5		36.4-127		84.4	%REC	1	09/19/2011 19:40	71336		
Surr: Phenol-d5		8.95-38.5		22.5	%REC	1	09/19/2011 19:40	71336		
Surr: p-Terphenyl-d14		6.05-133		99.2	%REC	1	09/19/2011 19:40	71336		
SW-846 5030, 8260B, VOLAT	TILE ORGANIC COM	POUNDS BY	GC/MS							
Benzene	NELAP	2.0		ND	µg/L	1	09/16/2011 2:52	71326		
Ethylbenzene	NELAP	5.0		ND	µg/L	1	09/16/2011 2:52	71326		
Toluene	NELAP	5.0		ND	µg/L	1	09/16/2011 2:52	71326		
Xylenes, Total	NELAP	5.0		ND	µg/L	1	09/16/2011 2:52	71326		
Surr: 1,2-Dichloroethane-d4		74.7-129		105.7	%REC	1	09/16/2011 2:52	71326		
Surr: 4-Bromofluorobenzene		86-119		102.6	%REC	1	09/16/2011 2:52	71326		
Surr: Dibromofluoromethane		81.7-123		96.4	%REC	1	09/16/2011 2:52	71326		
Surr: Toluene-d8		84.3-114		101.6	%REC	1	09/16/2011 2:52	71326		

Work Order: 11090642

Report Date: 22-Sep-11

Report Date: 08-Dec-11

Client: PSC Industrial Outsourcing, LP

Client Project: A831-735002-012901-225/IP Champaign

Lab ID: 11120083-013

Matrix: AQUEOUS

Client Sample ID: UMW-119

Collection Date: 11/30/2011 13:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9012A (TOTAL)										
Cyanide	NELAP	0.007		0.018	mg/L	1	12/06/2011 9:39	73382		
SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS										
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Acenaphthene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Anthracene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Chrysene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Fluoranthene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Fluorene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Naphthalene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Phenanthrene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Pyrene	NELAP	0.00010		ND	mg/L	1	12/05/2011 0:18	73330		
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	12/05/2011 0:18	73330		
Surr: 2-Fluorobiphenyl		34.3-105		75.2	%REC	1	12/05/2011 0:18	73330		
Surr: 2-Fluorophenol		19.9-55.7		38.0	%REC	1	12/05/2011 0:18	73330		
Surr: Nitrobenzene-d5		36.4-127		77.9	%REC	1	12/05/2011 0:18	73330		
Surr: Phenol-d5		8.95-38.5		18.6	%REC	1	12/05/2011 0:18	73330		
Surr: p-Terphenyl-d14		6.05-133		86.2	%REC	1	12/05/2011 0:18	73330		
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS							
Benzene	NELAP	2.0		ND	µg/L	1	12/03/2011 7:05	73375		
Ethylbenzene	NELAP	5.0		ND	µg/L	1	12/03/2011 7:05	73375		
Toluene	NELAP	5.0		ND	µg/L	1	12/03/2011 7:05	73375		
Xylenes, Total	NELAP	5.0		ND	µg/L	1	12/03/2011 7:05	73375		
Surr: 1,2-Dichloroethane-d4		74.7-129		93.0	%REC	1	12/03/2011 7:05	73375		
Surr: 4-Bromofluorobenzene		86-119		100.8	%REC	1	12/03/2011 7:05	73375		
Surr: Dibromofluoromethane		81.7-123		101.6	%REC	1	12/03/2011 7:05	73375		
Surr: Toluene-d8		84.3-114		97.9	%REC	1	12/03/2011 7:05	73375		

Laboratory Results

http://www.teklabinc.com/

Work Order: 12031334

Client: PSC Industrial Outsourcing, LP

Client Project: A831-735002-012901-225/Ameren Champaign62412010008

Lab ID: 12031334-010

Report Date:04-Apr-12Client Sample ID:UMW-119

Matrix: GROUNDWATER

Collection Date: 03/27/2012 10:40

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9012A (TOTAL)										
Cyanide	NELAP	0.007		0.024	mg/L	1	04/03/2012 11:22	76773		
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE OF		POUND	BY GC/MS						
Acenaphthene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Anthracene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Chrysene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Fluoranthene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Fluorene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Naphthalene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Phenanthrene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Pyrene	NELAP	0.00010		ND	mg/L	1	03/31/2012 1:55	76574		
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	03/31/2012 1:55	76574		
Surr: 2-Fluorobiphenyl		34.3-105		70.4	%REC	1	03/31/2012 1:55	76574		
Surr: 2-Fluorophenol		19.9-55.7		40.3	%REC	1	03/31/2012 1:55	76574		
Surr: Nitrobenzene-d5		36.4-127		70.5	%REC	1	03/31/2012 1:55	76574		
Surr: Phenol-d5		8.95-38.5		25.4	%REC	1	03/31/2012 1:55	76574		
Surr: p-Terphenyl-d14		6.05-133		79.8	%REC	1	03/31/2012 1:55	76574		
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS							
Benzene	NELAP	2.0		ND	µg/L	1	03/29/2012 21:20	76659		
Ethylbenzene	NELAP	5.0		ND	µg/L	1	03/29/2012 21:20	76659		
Toluene	NELAP	5.0		ND	µg/L	1	03/29/2012 21:20	76659		
Xylenes, Total	NELAP	5.0		ND	µg/L	1	03/29/2012 21:20	76659		
Surr: 1,2-Dichloroethane-d4		74.7-129		107.4	%REC	1	03/29/2012 21:20	76659		
Surr: 4-Bromofluorobenzene		86-119		101.2	%REC	1	03/29/2012 21:20	76659		
Surr: Dibromofluoromethane		81.7-123		99.8	%REC	1	03/29/2012 21:20	76659		
Surr: Toluene-d8		84.3-114		99.1	%REC	1	03/29/2012 21:20	76659		

Client: PSC Industrial Outsourcing, LP

Client Project: Ameren Champaign 624-1201-0008-J0002

Lab ID: 12060913-016

Matrix: GROUNDWATER

Work Order: 12060913

Report Date: 27-Jun-12

Client Sample ID: UMW-119

Collection Date: 06/20/2012 8:24

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch			
SW-846 9012A (TOTAL)										
Cyanide	NELAP	0.007		0.029	mg/L	1	06/22/2012 12:11 79204			
SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS										
Acenaphthene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Anthracene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Chrysene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Fluoranthene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Fluorene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Naphthalene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Phenanthrene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Pyrene	NELAP	0.00010		ND	mg/L	1	06/26/2012 14:47 79146			
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	06/26/2012 14:47 79146			
Surr: 2-Fluorobiphenyl		34.3-105		69.0	%REC	1	06/26/2012 14:47 79146			
Surr: 2-Fluorophenol		19.9-55.7		48.2	%REC	1	06/26/2012 14:47 79146			
Surr: Nitrobenzene-d5		36.4-127		82.6	%REC	1	06/26/2012 14:47 79146			
Surr: Phenol-d5		8.95-38.5		33.7	%REC	1	06/26/2012 14:47 79146			
Surr: p-Terphenyl-d14		6.05-133		70.6	%REC	1	06/26/2012 14:47 79146			
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS							
Benzene	NELAP	2.0		ND	µg/L	1	06/22/2012 15:35 79234			
Ethylbenzene	NELAP	5.0		ND	µg/L	1	06/22/2012 15:35 79234			
Toluene	NELAP	5.0		ND	µg/L	1	06/22/2012 15:35 79234			
Xylenes, Total	NELAP	5.0		ND	µg/L	1	06/22/2012 15:35 79234			
Surr: 1,2-Dichloroethane-d4		74.7-129		84.7	%REC	1	06/22/2012 15:35 79234			
Surr: 4-Bromofluorobenzene		86-119		101.7	%REC	1	06/22/2012 15:35 79234			
Surr: Dibromofluoromethane		81.7-123		96.5	%REC	1	06/22/2012 15:35 79234			
Surr: Toluene-d8		84.3-114		99.5	%REC	1	06/22/2012 15:35 79234			

Client: PSC Industrial Outsourcing, LP

Client Project: Ameren Champaign MGP

Lab ID: 12091310-020

Matrix: AQUEOUS

Work Order: 12091310

Report Date: 03-Oct-12

Client Sample ID: UMW-119

Collection Date: 09/24/2012 16:05

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
SW-846 9012A (TOTAL)										
Cyanide	NELAP	0.007		0.029	mg/L	1	10/01/2012 14:11	82047		
SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS										
2-Methylnaphthalene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Acenaphthene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Anthracene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Chrysene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Fluoranthene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Fluorene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Naphthalene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Phenanthrene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Pyrene	NELAP	0.00010		ND	mg/L	1	10/01/2012 14:43	81985		
Total PNAs except Naphthalene		0.00013		ND	mg/L	1	10/01/2012 14:43	81985		
Surr: 2-Fluorobiphenyl		34.3-105		71.4	%REC	1	10/01/2012 14:43	81985		
Surr: 2-Fluorophenol		19.9-55.7		46.4	%REC	1	10/01/2012 14:43	81985		
Surr: Nitrobenzene-d5		36.4-127		76.7	%REC	1	10/01/2012 14:43	81985		
Surr: Phenol-d5		8.95-38.5		25.2	%REC	1	10/01/2012 14:43	81985		
Surr: p-Terphenyl-d14		6.05-133		87.2	%REC	1	10/01/2012 14:43	81985		
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	POUNDS BY	GC/MS							
Benzene	NELAP	2.0		ND	µg/L	1	09/28/2012 15:55	82069		
Ethylbenzene	NELAP	5.0		ND	µg/L	1	09/28/2012 15:55	82069		
Toluene	NELAP	5.0		ND	µg/L	1	09/28/2012 15:55	82069		
Xylenes, Total	NELAP	5.0		ND	µg/L	1	09/28/2012 15:55	82069		
Surr: 1,2-Dichloroethane-d4		74.7-129		95.5	%REC	1	09/28/2012 15:55	82069		
Surr: 4-Bromofluorobenzene		86-119		100.7	%REC	1	09/28/2012 15:55	82069		
Surr: Dibromofluoromethane		81.7-123		99.9	%REC	1	09/28/2012 15:55	82069		
Surr: Toluene-d8		84.3-114		99.2	%REC	1	09/28/2012 15:55	82069		

Report Date: 21-Dec-12

Client: PSC Industrial Outsourcing, LP

Client Project: Champaign FMGP Q4 Groundwater

Lab ID: 12120735-023

Matrix: GROUNDWATER

Client Sample ID:	UMW	119	
-------------------	-----	-----	--

Collection Date: 12/13/2012 10:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch			
SW-846 9012A (TOTAL)											
Cyanide	NELAP	0.007		0.037	mg/L	1	12/19/2012 15:46	84355			
SW-846 3510C, 8270C SIMS,	SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS										
Acenaphthene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Chrysene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Fluorene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Naphthalene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Phenanthrene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2012 13:23	84292			
Surr: 2-Fluorobiphenyl		34.3-105		80.8	%REC	1	12/18/2012 13:23	84292			
Surr: Nitrobenzene-d5		36.4-127		77.3	%REC	1	12/18/2012 13:23	84292			
Surr: p-Terphenyl-d14		6.05-133		87.3	%REC	1	12/18/2012 13:23	84292			
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS								
Benzene	NELAP	2.0		ND	µg/L	1	12/19/2012 6:19	84369			
Ethylbenzene	NELAP	5.0		ND	µg/L	1	12/19/2012 6:19	84369			
Toluene	NELAP	5.0		ND	µg/L	1	12/19/2012 6:19	84369			
Xylenes, Total	NELAP	5.0		ND	µg/L	1	12/19/2012 6:19	84369			
Surr: 1,2-Dichloroethane-d4		74.7-129		107.5	%REC	1	12/19/2012 6:19	84369			
Surr: 4-Bromofluorobenzene		86-119		100.5	%REC	1	12/19/2012 6:19	84369			
Surr: Dibromofluoromethane		81.7-123		102.7	%REC	1	12/19/2012 6:19	84369			
Surr: Toluene-d8		84.3-114		101.0	%REC	1	12/19/2012 6:19	84369			

Report Date: 04-Apr-13

Client: PSC Industrial Outsourcing, LP

Client Project: Champaign FMGP Q1 2013 Groundwater

Lab ID: 13031416-024

Matrix: GROUNDWATER

Client Sample ID: UMW-119

Collection Date: 03/26/2013 13:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.033	mg/L	1	04/01/2013 18:10	86903
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE OF	RGANIC CON	IPOUNDS	BY GC/MS				
Acenaphthene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Acenaphthylene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Anthracene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Chrysene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Fluoranthene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Fluorene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Naphthalene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Phenanthrene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Pyrene	NELAP	0.00010		ND	mg/L	1	04/02/2013 1:41	86881
Surr: 2-Fluorobiphenyl		34.3-105		79.6	%REC	1	04/02/2013 1:41	86881
Surr: Nitrobenzene-d5		36.4-127		53.1	%REC	1	04/02/2013 1:41	86881
Surr: p-Terphenyl-d14		6.05-133		64.5	%REC	1	04/02/2013 1:41	86881
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	04/02/2013 4:28	86958
Ethylbenzene	NELAP	5.0		ND	µg/L	1	04/02/2013 4:28	86958
Toluene	NELAP	5.0		ND	µg/L	1	04/02/2013 4:28	86958
Xylenes, Total	NELAP	5.0		ND	µg/L	1	04/02/2013 4:28	86958
Surr: 1,2-Dichloroethane-d4		74.7-129		101.1	%REC	1	04/02/2013 4:28	86958
Surr: 4-Bromofluorobenzene		86-119		101.5	%REC	1	04/02/2013 4:28	86958
Surr: Dibromofluoromethane		81.7-123		101.6	%REC	1	04/02/2013 4:28	86958
Surr: Toluene-d8		84.3-114		97.7	%REC	1	04/02/2013 4:28	86958

Report Date: 20-Jun-13

Client: PSC Industrial Outsourcing, LP

Client Project: Champaign FMGP Q2 2013 Groundwater

Lab ID: 13060706-011

Matrix: AQUEOUS

Client Sample ID: UMW-119

Collection Date: 06/12/2013 9:24

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch					
SW-846 9012A (TOTAL)												
Cyanide	NELAP	0.007		0.037	mg/L	1	06/17/2013 14:05 89266					
SW-846 3510C, 8270C SIMS,	SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS											
Acenaphthene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Acenaphthylene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Anthracene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Benzo(a)anthracene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Benzo(a)pyrene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Benzo(b)fluoranthene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Benzo(g,h,i)perylene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Benzo(k)fluoranthene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Chrysene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Dibenzo(a,h)anthracene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Fluoranthene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Fluorene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Indeno(1,2,3-cd)pyrene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Naphthalene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Phenanthrene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Pyrene	NELAP	0.0001		ND	mg/L	1	06/17/2013 17:54 89247					
Surr: 2-Fluorobiphenyl		34.3-105		67.1	%REC	1	06/17/2013 17:54 89247					
Surr: Nitrobenzene-d5		36.4-127		55.8	%REC	1	06/17/2013 17:54 89247					
Surr: p-Terphenyl-d14		6.05-133		74.7	%REC	1	06/17/2013 17:54 89247					
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COMI	POUNDS BY	GC/MS									
Benzene	NELAP	2		ND	µg/L	1	06/14/2013 20:44 89264					
Ethylbenzene	NELAP	5		ND	µg/L	1	06/14/2013 20:44 89264					
Toluene	NELAP	5		ND	µg/L	1	06/14/2013 20:44 89264					
Xylenes, Total	NELAP	5		ND	µg/L	1	06/14/2013 20:44 89264					
Surr: 1,2-Dichloroethane-d4		74.7-129		97.9	%REC	1	06/14/2013 20:44 89264					
Surr: 4-Bromofluorobenzene		86-119		101.4	%REC	1	06/14/2013 20:44 89264					
Surr: Dibromofluoromethane		81.7-123		100	%REC	1	06/14/2013 20:44 89264					
Surr: Toluene-d8		84.3-114		96.5	%REC	1	06/14/2013 20:44 89264					

http://www.teklabinc.com/

Work Order: 13091363

Report Date: 03-Oct-13

Client Project: Champaign FMGP Q3 2013 Groundwater

Client: PSC Industrial Outsourcing, LP

Lab ID: 13091363-029

Matrix: GROUNDWATER

Client Sample ID: UMW-119

Collection Date: 09/25/2013 10:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.028	mg/L	1	10/01/2013 16:30	92418
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE O	RGANIC CON	IPOUNDS	BY GC/MS				
Acenaphthene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Acenaphthylene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Anthracene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Benzo(a)anthracene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Benzo(a)pyrene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Benzo(b)fluoranthene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Benzo(g,h,i)perylene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Benzo(k)fluoranthene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Chrysene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Dibenzo(a,h)anthracene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Fluoranthene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Fluorene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Indeno(1,2,3-cd)pyrene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Naphthalene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Phenanthrene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Pyrene	NELAP	0.0001		ND	mg/L	1	09/30/2013 16:02	92309
Surr: 2-Fluorobiphenyl		34.3-105		67	%REC	1	09/30/2013 16:02	92309
Surr: Nitrobenzene-d5		36.4-127		62.5	%REC	1	09/30/2013 16:02	92309
Surr: p-Terphenyl-d14		6.05-133		73.3	%REC	1	09/30/2013 16:02	92309
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	2		ND	µg/L	1	09/27/2013 22:43	92363
Ethylbenzene	NELAP	5		ND	µg/L	1	09/27/2013 22:43	92363
Toluene	NELAP	5		ND	µg/L	1	09/27/2013 22:43	92363
Xylenes, Total	NELAP	5		ND	µg/L	1	09/27/2013 22:43	92363
Surr: 1,2-Dichloroethane-d4		74.7-129		108.7	%REC	1	09/27/2013 22:43	92363
Surr: 4-Bromofluorobenzene		86-119		103.2	%REC	1	09/27/2013 22:43	92363
Surr: Dibromofluoromethane		81.7-123		103.4	%REC	1	09/27/2013 22:43	92363
Surr: Toluene-d8		84.3-114		97	%REC	1	09/27/2013 22:43	92363

Report Date: 31-Dec-13

Client: PSC Industrial Outsourcing, LP

Client Project: Champaign FMGP Q4 2013 Groundwater

Lab ID: 13121150-023

Matrix: GROUNDWATER

Client Sample ID: UMW-119

Collection Date: 12/18/2013 15:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.024	mg/L	1	12/24/2013 11:25	94908
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE OF	RGANIC CON	IPOUNDS	BY GC/MS				
Acenaphthene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Acenaphthylene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Anthracene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Benzo(a)anthracene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Benzo(a)pyrene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Benzo(b)fluoranthene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Benzo(g,h,i)perylene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Benzo(k)fluoranthene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Chrysene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Dibenzo(a,h)anthracene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Fluoranthene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Fluorene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Indeno(1,2,3-cd)pyrene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Naphthalene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Phenanthrene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Pyrene	NELAP	0.0001		ND	mg/L	1	12/23/2013 18:09	94806
Surr: 2-Fluorobiphenyl		34.3-105		71.5	%REC	1	12/23/2013 18:09	94806
Surr: Nitrobenzene-d5		36.4-127		63.1	%REC	1	12/23/2013 18:09	94806
Surr: p-Terphenyl-d14		6.05-133		73.2	%REC	1	12/23/2013 18:09	94806
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	2		ND	µg/L	1	12/24/2013 2:42	94919
Ethylbenzene	NELAP	5		ND	µg/L	1	12/24/2013 2:42	94919
Toluene	NELAP	5		ND	µg/L	1	12/24/2013 2:42	94919
Xylenes, Total	NELAP	5		ND	µg/L	1	12/24/2013 2:42	94919
Surr: 1,2-Dichloroethane-d4		74.7-129		93.6	%REC	1	12/24/2013 2:42	94919
Surr: 4-Bromofluorobenzene		86-119		93.8	%REC	1	12/24/2013 2:42	94919
Surr: Dibromofluoromethane		81.7-123		99.3	%REC	1	12/24/2013 2:42	94919
Surr: Toluene-d8		84.3-114		97	%REC	1	12/24/2013 2:42	94919

Client: PSC Industrial Outsourcing, LP

Client Project: Champaign FMGP Q1 2014 Groundwater

Lab ID: 14031097-005

Matrix: AQUEOUS

Work Order: 14031097

Report Date: 09-Apr-14

Client Sample ID: UMW-119

Collection Date: 03/18/2014 10:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.034	mg/L	1	03/21/2014 15:01	97088
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE O	RGANIC CON	IPOUNDS	BY GC/MS				
Acenaphthene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Acenaphthylene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Anthracene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Benzo(a)anthracene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Benzo(a)pyrene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Benzo(b)fluoranthene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Benzo(g,h,i)perylene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Benzo(k)fluoranthene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Chrysene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Dibenzo(a,h)anthracene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Fluoranthene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Fluorene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Indeno(1,2,3-cd)pyrene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Naphthalene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Phenanthrene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Pyrene	NELAP	0.0001		ND	mg/L	1	03/21/2014 14:41	97060
Surr: 2-Fluorobiphenyl		34.3-105		75.4	%REC	1	03/21/2014 14:41	97060
Surr: Nitrobenzene-d5		36.4-127		65.8	%REC	1	03/21/2014 14:41	97060
Surr: p-Terphenyl-d14		6.05-133		77	%REC	1	03/21/2014 14:41	97060
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	IPOUNDS BY	GC/MS					
Benzene	NELAP	2		ND	µg/L	1	03/21/2014 11:44	97084
Ethylbenzene	NELAP	5		ND	µg/L	1	03/21/2014 11:44	97084
Toluene	NELAP	5		ND	µg/L	1	03/21/2014 11:44	97084
Xylenes, Total	NELAP	5		ND	µg/L	1	03/21/2014 11:44	97084
Surr: 1,2-Dichloroethane-d4		74.7-129		101.6	%REC	1	03/21/2014 11:44	97084
Surr: 4-Bromofluorobenzene		86-119		97.8	%REC	1	03/21/2014 11:44	97084
Surr: Dibromofluoromethane		81.7-123		100.5	%REC	1	03/21/2014 11:44	97084
Surr: Toluene-d8		84.3-114		99.5	%REC	1	03/21/2014 11:44	97084

Client: PSC Industrial Outsourcing, LP

Client Project: Ameren Champaign MGP 624-1201-0008

Lab ID: 14061507-014

Matrix: GROUNDWATER

Work Order: 14061507

Report Date: 07-Jul-14

Client Sample ID: UMW-119

Collection Date: 06/24/2014 14:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.007		0.041	mg/L	1	06/30/2014 13:32	100069
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE OR	GANIC CON	IPOUNDS	BY GC/MS				
Acenaphthene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Acenaphthylene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Anthracene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Benzo(a)anthracene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Benzo(a)pyrene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Benzo(b)fluoranthene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Benzo(g,h,i)perylene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Benzo(k)fluoranthene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Chrysene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Dibenzo(a,h)anthracene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Fluoranthene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Fluorene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Indeno(1,2,3-cd)pyrene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Naphthalene	NELAP	0.0001		0.00036	mg/L	1	06/28/2014 2:31	100023
Phenanthrene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Pyrene	NELAP	0.0001		ND	mg/L	1	06/28/2014 2:31	100023
Surr: 2-Fluorobiphenyl		34.3-105		73.2	%REC	1	06/28/2014 2:31	100023
Surr: Nitrobenzene-d5		36.4-127		55.4	%REC	1	06/28/2014 2:31	100023
Surr: p-Terphenyl-d14		6.05-133		68	%REC	1	06/28/2014 2:31	100023
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COMP	OUNDS BY	GC/MS					
Benzene	NELAP	2		ND	µg/L	1	06/27/2014 21:04	100062
Ethylbenzene	NELAP	5		ND	µg/L	1	06/27/2014 21:04	100062
Toluene	NELAP	5		ND	µg/L	1	06/27/2014 21:04	100062
Xylenes, Total	NELAP	5		ND	µg/L	1	06/27/2014 21:04	100062
Surr: 1,2-Dichloroethane-d4		74.7-129		90.4	%REC	1	06/27/2014 21:04	100062
Surr: 4-Bromofluorobenzene		86-119		100.5	%REC	1	06/27/2014 21:04	100062
Surr: Dibromofluoromethane		81.7-123		100.2	%REC	1	06/27/2014 21:04	100062
Surr: Toluene-d8		84.3-114		100.3	%REC	1	06/27/2014 21:04	100062

Client: ERM

Client Project: Champaign GW 0466251

Lab ID: 18061924-011

Report Date: 11-Jul-18

Client Sample ID: UMW-119-WG-20180626

Matrix: GROUNDWATER

Collection Date: 06/26/2018 10:10

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.036	mg/L	1	07/03/2018 14:27	143469
Results of the matrix spike have le	ess certainty because v	alue exceeds u	pper quan	titation limits.				
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)						
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	07/02/2018 18:47	143423
Barium	NELAP	0.0025		0.0890	mg/L	1	07/02/2018 18:47	143423
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	07/02/2018 18:47	143423
Chromium	NELAP	0.0050	В	< 0.0050	mg/L	1	07/02/2018 18:47	143423
Lead	NELAP	0.0150		< 0.0150	mg/L	1	07/02/2018 18:47	143423
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	07/02/2018 18:47	143423
Silver	NELAP	0.0070		< 0.0070	mg/L	1	07/02/2018 18:47	143423
Contamination present in the MBL	K for Cr. Sample result.	s below the rep	orting limit	are reportable	per the TNI	Standard.		
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020	В	< 0.00020	mg/L	1	07/03/2018 8:26	143472
Contamination present in the MBL	K for Hg. Sample resul	ts below the rep	orting limi	t are reportable	per the TNI	Standard.		
SW-846 3510C,8270C, SEMI-	VOLATILE ORGANI	C COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Anthracene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Benzo(g,h,i)perylene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Chrysene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Fluoranthene	NELAP	0.000200		ND	mg/L	1	07/09/2018 11:38	143474
Fluorene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Naphthalene	NELAP	0.000200		ND	mg/L	1	07/09/2018 11:38	143474
Phenanthrene	NELAP	0.000400		ND	mg/L	1	07/09/2018 11:38	143474
Pyrene	NELAP	0.000100		ND	mg/L	1	07/09/2018 11:38	143474
Surr: 2-Fluorobiphenyl	*	10-164		87.6	%REC	1	07/09/2018 11:38	143474
Surr: Nitrobenzene-d5	*	10.3-142		82.3	%REC	1	07/09/2018 11:38	143474
Surr: p-Terphenyl-d14	*	47.1-148		120.5	%REC	1	07/09/2018 11:38	143474
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	06/30/2018 4:00	143457
Ethylbenzene	NELAP	2.0		ND	µg/L	1	06/30/2018 4:00	143457
Toluene	NELAP	2.0		ND	µg/L	1	06/30/2018 4:00	143457
Xylenes, Total	NELAP	2.0		ND	µg/L	1	06/30/2018 4:00	143457
Surr: 1,2-Dichloroethane-d4	*	79.6-118		100.6	%REC	1	06/30/2018 4:00	143457
Surr: 4-Bromofluorobenzene	*	83.9-115		103.4	%REC	1	06/30/2018 4:00	143457
Surr: Dibromofluoromethane	*	84.9-113		100.5	%REC	1	06/30/2018 4:00	143457
Surr: Toluene-d8	*	86.7-112		100.1	%REC	1	06/30/2018 4:00	143457

http://www.teklabinc.com/

Client: ERM

Client Project: Champaign GW

Lab ID: 18091324-011

Matrix: GROUNDWATER

Work Order: 18091324

Report Date: 26-Sep-18

Client Sample ID: UMW-119-WG-20180917

Collection Date: 09/17/2018 15:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.033	mg/L	1	09/25/2018 16:12	146037
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	09/21/2018 16:02	145952
Barium	NELAP	0.0025		0.102	mg/L	1	09/21/2018 16:02	145952
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	09/21/2018 16:02	145952
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	09/21/2018 16:02	145952
Lead	NELAP	0.0075		< 0.0075	mg/L	1	09/21/2018 16:02	145952
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	09/21/2018 16:02	145952
Silver	NELAP	0.0070		< 0.0070	mg/L	1	09/21/2018 16:02	145952
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	09/21/2018 8:40	145939
SW-846 3510C,8270C, SEMI-\	OLATILE ORGANIC	COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Anthracene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Benzo(g,h,i)perylene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Chrysene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Fluoranthene	NELAP	0.000200		ND	mg/L	1	09/22/2018 12:11	145965
Fluorene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Naphthalene	NELAP	0.000200	В	ND	mg/L	1	09/22/2018 12:11	145965
Phenanthrene	NELAP	0.000400		ND	mg/L	1	09/22/2018 12:11	145965
Pyrene	NELAP	0.000100		ND	mg/L	1	09/22/2018 12:11	145965
Surr: 2-Fluorobiphenyl	*	10-164		64.4	%REC	1	09/22/2018 12:11	145965
Surr: Nitrobenzene-d5	*	10.3-142		63.6	%REC	1	09/22/2018 12:11	145965
Surr: p-Terphenyl-d14	*	47.1-148		80.5	%REC	1	09/22/2018 12:11	145965
Contamination present in the MBL	< for Naphthalene. Sam	ple results be	low the re	porting limit are	reportable p	er the TNI	Standard.	
SW-846 5030, 8260B, VOLAT			GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	09/21/2018 14:46	
Ethylbenzene	NELAP	2.0		ND	µg/L	1	09/21/2018 14:46	
Toluene	NELAP	2.0		ND	µg/L	1	09/21/2018 14:46	
Xylenes, Total	NELAP	2.0		ND	µg/L	1	09/21/2018 14:46	
Surr: 1,2-Dichloroethane-d4	*	79.6-118		100.8	%REC	1	09/21/2018 14:46	
Surr: 4-Bromofluorobenzene	*	83.9-115		100.9	%REC	1	09/21/2018 14:46	
Surr: Dibromofluoromethane	*	84.9-113		100.5	%REC	1	09/21/2018 14:46	
Surr: Toluene-d8	*	86.7-112		97.6	%REC	1	09/21/2018 14:46	146010

Client: ERM

Client Project: Champaign GW

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

*

*

*

79.6-118

83.9-115

84.9-113

86.7-112

101.2

104.3

101.1

102.4

%REC

%REC

%REC

%REC

1

1

1

1

Lab ID: 18120405-011

Matrix: GROUNDWATER

Work Order: 18120405

Report Date: 17-Dec-2018

Client Sample ID: UMW-119-WG-20181203

Collection Date: 12/03/2018 14:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.026	mg/L	1	12/07/2018 15:48	148442
SW-846 3005A, 6010B, MET	TALS BY ICP (TOTAL	.)						
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	12/07/2018 16:59	148436
Barium	NELAP	0.0025		0.0993	mg/L	1	12/07/2018 16:59	148436
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	12/07/2018 16:59	148436
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	12/07/2018 16:59	148436
Lead	NELAP	0.0075		< 0.0075	mg/L	1	12/07/2018 16:59	148436
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	12/07/2018 16:59	148436
Silver	NELAP	0.0070		< 0.0070	mg/L	1	12/07/2018 16:59	148436
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	12/07/2018 9:38	148445
SW-846 3510C,8270C, SEM	II-VOLATILE ORGAN		IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Anthracene	NELAP	0.000100	В	ND	mg/L	1	12/07/2018 15:34	
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Benzo(g,h,i)perylene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Chrysene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Fluoranthene	NELAP	0.000200	В	ND	mg/L	1	12/07/2018 15:34	148411
Fluorene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	12/07/2018 15:34	148411
Naphthalene	NELAP	0.000200		ND	mg/L	1	12/07/2018 15:34	148411
Phenanthrene	NELAP	0.000400		ND	mg/L	1	12/07/2018 15:34	148411
Pyrene	NELAP	0.000200	В	ND	mg/L	1	12/07/2018 15:34	148411
Surr: 2-Fluorobiphenyl	*	10-164		82.4	%REC	1	12/07/2018 15:34	148411
Surr: Nitrobenzene-d5	*	10.3-142		67.8	%REC	1	12/07/2018 15:34	148411
Surr: p-Terphenyl-d14	*	47.1-148		96.5	%REC	1	12/07/2018 15:34	148411
Contamination present in the ME Standard.	BLK for Anthracene, Pyre	ene and Fluoran	thene. Sai	mple results be	low the repor	ting limit a	re reportable per the TI	VI
SW-846 5030, 8260B, VOLA	ATILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	12/08/2018 15:08	148501
Ethylbenzene	NELAP	2.0		ND	μg/L	1	12/08/2018 15:08	148501
Toluene	NELAP	2.0		ND	μg/L	1	12/08/2018 15:08	148501
Xylenes, Total	NELAP	2.0		ND	μg/L	1	12/08/2018 15:08	148501

12/08/2018 15:08 148501

12/08/2018 15:08 148501

12/08/2018 15:08 148501

12/08/2018 15:08 148501

http://www.teklabinc.com/

Client: ERM

Client Project: Champaign GW

Lab ID: 19030404-011

Matrix: GROUNDWATER

Work Order: 19030404

Report Date: 14-Mar-2019

Client Sample ID: UMW-119-WG-20190305

Collection Date: 03/05/2019 9:20

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)							
Cyanide	NELAP	0.005	0.031	mg/L	1	03/11/2019 13:21	151002
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)						
Arsenic	NELAP	0.0250	< 0.0250	mg/L	1	03/08/2019 20:15	151000
Barium	NELAP	0.0025	0.0950	mg/L	1	03/08/2019 20:15	151000
Cadmium	NELAP	0.0020	< 0.0020	mg/L	1	03/08/2019 20:15	151000
Chromium	NELAP	0.0050	< 0.0050	mg/L	1	03/08/2019 20:15	151000
Lead	NELAP	0.0075	< 0.0075	mg/L	1	03/08/2019 20:15	151000
Selenium	NELAP	0.0400	< 0.0400	mg/L	1	03/08/2019 20:15	151000
Silver	NELAP	0.0070	< 0.0070	mg/L	1	03/08/2019 20:15	151000
SW-846 7470A (TOTAL)							
Mercury	NELAP	0.00020	< 0.00020	mg/L	1	03/08/2019 9:31	151001
SW-846 3510C,8270C, SEMI-V	OLATILE ORGANI		IDS				
Acenaphthene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Acenaphthylene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Anthracene	NELAP	0.000100	0.000144	mg/L	1	03/12/2019 15:28	151034
Benzo(a)anthracene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Benzo(a)pyrene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Benzo(b)fluoranthene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Benzo(g,h,i)perylene	NELAP	0.000200	ND	mg/L	1	03/12/2019 15:28	151034
Benzo(k)fluoranthene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Chrysene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Dibenzo(a,h)anthracene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Fluoranthene	NELAP	0.000200	ND	mg/L	1	03/12/2019 15:28	151034
Fluorene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Indeno(1,2,3-cd)pyrene	NELAP	0.000100	ND	mg/L	1	03/12/2019 15:28	151034
Naphthalene	NELAP	0.000200	ND	mg/L	1	03/12/2019 15:28	151034
Phenanthrene	NELAP	0.000400	ND	mg/L	1	03/12/2019 15:28	151034
Pyrene	NELAP	0.000200	ND	mg/L	1	03/12/2019 15:28	151034
Surr: 2-Fluorobiphenyl	*	10-164	78.8	%REC	1	03/12/2019 15:28	151034
Surr: Nitrobenzene-d5	*	10.3-142	82.4	%REC	1	03/12/2019 15:28	151034
Surr: p-Terphenyl-d14	*	47.1-148	69.2	%REC	1	03/12/2019 15:28	151034
Allowable Marginal Exceedance of	Fluoranthene and Pyre	ne in the LCSI	D is verified per the TNI	Standard.			
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS				
Benzene	NELAP	0.5	ND	µg/L	1	03/08/2019 18:12	151025
Ethylbenzene	NELAP	2.0	ND	µg/L	1	03/08/2019 18:12	151025
Toluene	NELAP	2.0	ND	µg/L	1	03/08/2019 18:12	151025
Xylenes, Total	NELAP	2.0	ND	µg/L	1	03/08/2019 18:12	151025
Surr: 1,2-Dichloroethane-d4	*	79.6-118	105.3	%REC	1	03/08/2019 18:12	151025
Surr: 4-Bromofluorobenzene	*	83.9-115	89.7	%REC	1	03/08/2019 18:12	151025
Surr: Dibromofluoromethane	*	84.9-113	101.9	%REC	1	03/08/2019 18:12	151025
Surr: Toluene-d8	*	86.7-112	93.4	%REC	1	03/08/2019 18:12	151025

Client: ERM

Client Project: Champaign GW

Lab ID: 19051182-011

Matrix: GROUNDWATER

Work Order: 19051182

Report Date: 29-May-2019

Client Sample ID: UMW-119-WG-20190513

Collection Date: 05/13/2019 15:45

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.027	mg/L	1	05/20/2019 16:33	153413
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	05/20/2019 21:51	153394
Barium	NELAP	0.0025		0.0882	mg/L	1	05/20/2019 21:51	153394
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	05/20/2019 21:51	153394
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	05/20/2019 21:51	153394
Lead	NELAP	0.0075		< 0.0075	mg/L	1	05/20/2019 21:51	153394
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	05/20/2019 21:51	153394
Silver	NELAP	0.0070		< 0.0070	mg/L	1	05/20/2019 21:51	153394
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	05/20/2019 10:27	153408
SW-846 3510C,8270C, SEMI-	VOLATILE ORGANI	COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Anthracene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Benzo(g,h,i)perylene	NELAP	0.000200		ND	mg/L	1	05/20/2019 18:05	153437
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Chrysene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Fluoranthene	NELAP	0.000200		ND	mg/L	1	05/20/2019 18:05	153437
Fluorene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	05/20/2019 18:05	153437
Naphthalene	NELAP	0.000200		ND	mg/L	1	05/20/2019 18:05	153437
Phenanthrene	NELAP	0.000400		ND	mg/L	1	05/20/2019 18:05	153437
Pyrene	NELAP	0.000200		ND	mg/L	1	05/20/2019 18:05	153437
Surr: 2-Fluorobiphenyl	*	21.4-142		76.5	%REC	1	05/20/2019 18:05	153437
Surr: Nitrobenzene-d5	*	15-163		81.5	%REC	1	05/20/2019 18:05	153437
Surr: p-Terphenyl-d14	*	10-173		110.0	%REC	1	05/20/2019 18:05	153437
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	05/21/2019 0:30	153489
Ethylbenzene	NELAP	2.0		ND	µg/L	1	05/21/2019 0:30	153489
Toluene	NELAP	2.0		ND	µg/L	1	05/21/2019 0:30	153489
Xylenes, Total	NELAP	4.0		ND	µg/L	1	05/21/2019 0:30	153489
Surr: 1,2-Dichloroethane-d4	*	79.6-118		97.1	%REC	1	05/21/2019 0:30	
Surr: 4-Bromofluorobenzene	*	83.9-115		103.4	%REC	1	05/21/2019 0:30	
Surr: Dibromofluoromethane	*	84.9-113		99.7	%REC	1	05/21/2019 0:30	
Surr: Toluene-d8	*	86.7-112		96.0	%REC	1	05/21/2019 0:30	153489

Laboratory Results

http://www.teklabinc.com/

Client: ERM

Client Project: Champaign GW

Lab ID: 19081552-011

Matrix: GROUNDWATER

Work Order: 19081552

Report Date: 29-Aug-2019

Client Sample ID: UMW-119-WG-20190819

Collection Date: 08/19/2019 18:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.035	mg/L	1	08/26/2019 14:18	156687
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	08/26/2019 19:18	156700
Barium	NELAP	0.0025		0.0927	mg/L	1	08/26/2019 19:18	156700
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	08/26/2019 19:18	156700
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	08/26/2019 19:18	156700
Lead	NELAP	0.0075		< 0.0075	mg/L	1	08/26/2019 19:18	156700
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	08/26/2019 19:18	156700
Silver	NELAP	0.0070		< 0.0070	mg/L	1	08/26/2019 19:18	156700
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	08/25/2019 17:28	156677
SW-846 3510C,8270C, SEMI-\	OLATILE ORGANIC	COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Anthracene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Benzo(g,h,i)perylene	NELAP	0.000200		ND	mg/L	1	08/26/2019 20:28	156710
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Chrysene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Fluoranthene	NELAP	0.000200		ND	mg/L	1	08/26/2019 20:28	156710
Fluorene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	08/26/2019 20:28	156710
Naphthalene	NELAP	0.000200		ND	mg/L	1	08/26/2019 20:28	156710
Phenanthrene	NELAP	0.000400		ND	mg/L	1	08/26/2019 20:28	156710
Pyrene	NELAP	0.000200		ND	mg/L	1	08/26/2019 20:28	156710
Surr: 2-Fluorobiphenyl	*	21.4-142		78.6	%REC	1	08/26/2019 20:28	156710
Surr: Nitrobenzene-d5	*	15-163		76.9	%REC	1	08/26/2019 20:28	156710
Surr: p-Terphenyl-d14	*	10-173		114.1	%REC	1	08/26/2019 20:28	156710
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COMP	OUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	08/23/2019 20:17	156712
Ethylbenzene	NELAP	2.0		ND	µg/L	1	08/23/2019 20:17	156712
Toluene	NELAP	2.0		ND	µg/L	1	08/23/2019 20:17	156712
Xylenes, Total	NELAP	4.0		ND	µg/L	1	08/23/2019 20:17	156712
Surr: 1,2-Dichloroethane-d4	*	79.6-118		102.1	%REC	1	08/23/2019 20:17	156712
Surr: 4-Bromofluorobenzene	*	83.9-115		101.8	%REC	1	08/23/2019 20:17	156712
Surr: Dibromofluoromethane	*	84.9-113		97.2	%REC	1	08/23/2019 20:17	156712
Surr: Toluene-d8	*	86.7-112		102.3	%REC	1	08/23/2019 20:17	156712

Client: ERM

Client Project: Champaign GW

Lab ID: 19110533-011

Matrix: GROUNDWATER

Work Order: 19110533

Report Date: 15-Nov-2019

Client Sample ID: UMW-119-WG-20191104

Collection Date: 11/04/2019 15:50

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.033	mg/L	1	11/11/2019 18:17	159194
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)							
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	11/11/2019 22:55	159165
Barium	NELAP	0.0025		0.0855	mg/L	1	11/11/2019 22:55	159165
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	11/11/2019 22:55	159165
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	11/11/2019 22:55	159165
Lead	NELAP	0.0075		< 0.0075	mg/L	1	11/11/2019 22:55	159165
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	11/11/2019 22:55	159165
Silver	NELAP	0.0070		< 0.0070	mg/L	1	11/11/2019 22:55	159165
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	11/11/2019 13:26	159178
SW-846 3510C,8270C, SEMI-\	OLATILE ORGANIC	COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Anthracene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Benzo(g,h,i)perylene	NELAP	0.000200		ND	mg/L	1	11/12/2019 1:27	159229
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Chrysene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Fluoranthene	NELAP	0.000200		ND	mg/L	1	11/12/2019 1:27	159229
Fluorene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	11/12/2019 1:27	159229
Naphthalene	NELAP	0.000200		ND	mg/L	1	11/12/2019 1:27	159229
Phenanthrene	NELAP	0.000400		ND	mg/L	1	11/12/2019 1:27	159229
Pyrene	NELAP	0.000200		ND	mg/L	1	11/12/2019 1:27	159229
Surr: 2-Fluorobiphenyl	*	21.4-142		100.0	%REC	1	11/12/2019 1:27	159229
Surr: Nitrobenzene-d5	*	15-163		99.4	%REC	1	11/12/2019 1:27	
Surr: p-Terphenyl-d14	*	10-173		122.3	%REC	1	11/12/2019 1:27	159229
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COMP	POUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	11/08/2019 18:32	159224
Ethylbenzene	NELAP	2.0		ND	µg/L	1	11/08/2019 18:32	159224
Toluene	NELAP	2.0		ND	µg/L	1	11/08/2019 18:32	159224
Xylenes, Total	NELAP	4.0		ND	µg/L	1	11/08/2019 18:32	159224
Surr: 1,2-Dichloroethane-d4	*	79.6-118		89.8	%REC	1	11/08/2019 18:32	159224
Surr: 4-Bromofluorobenzene	*	83.9-115		94.3	%REC	1	11/08/2019 18:32	159224
Surr: Dibromofluoromethane	*	84.9-113		103.2	%REC	1	11/08/2019 18:32	
Surr: Toluene-d8	*	86.7-112		93.4	%REC	1	11/08/2019 18:32	159224

Laboratory Results

http://www.teklabinc.com/

Client: ERM

Client Project: Champaign GW

Lab ID: 20020836-011

Matrix: GROUNDWATER

Work Order: 20020836

Report Date: 25-Feb-2020

Client Sample ID: UMW-119-WG-20200211

Collection Date: 02/11/2020 8:35

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)								
Cyanide	NELAP	0.005		0.033	mg/L	1	02/17/2020 14:44	162247
SW-846 3005A, 6010B, META	ALS BY ICP (TOTAL)							
Arsenic	NELAP	0.0250		< 0.0250	mg/L	1	02/15/2020 2:42	162216
Barium	NELAP	0.0025		0.0844	mg/L	1	02/15/2020 2:42	162216
Cadmium	NELAP	0.0020		< 0.0020	mg/L	1	02/15/2020 2:42	162216
Chromium	NELAP	0.0050		< 0.0050	mg/L	1	02/15/2020 2:42	162216
Lead	NELAP	0.0075		< 0.0075	mg/L	1	02/15/2020 2:42	162216
Selenium	NELAP	0.0400		< 0.0400	mg/L	1	02/15/2020 2:42	162216
Silver	NELAP	0.0070		< 0.0070	mg/L	1	02/15/2020 2:42	162216
SW-846 7470A (TOTAL)								
Mercury	NELAP	0.00020		< 0.00020	mg/L	1	02/14/2020 13:03	162224
SW-846 3510C,8270C, SEMI-	VOLATILE ORGANI	COMPOUN	IDS					
Acenaphthene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Acenaphthylene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Anthracene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Benzo(a)anthracene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Benzo(a)pyrene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Benzo(b)fluoranthene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Benzo(g,h,i)perylene	NELAP	0.000200		ND	mg/L	1	02/18/2020 13:32	162284
Benzo(k)fluoranthene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Chrysene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Dibenzo(a,h)anthracene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Fluoranthene	NELAP	0.000200		ND	mg/L	1	02/18/2020 13:32	162284
Fluorene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Indeno(1,2,3-cd)pyrene	NELAP	0.000100		ND	mg/L	1	02/18/2020 13:32	162284
Naphthalene	NELAP	0.000200		ND	mg/L	1	02/18/2020 13:32	162284
Phenanthrene	NELAP	0.000400		ND	mg/L	1	02/18/2020 13:32	162284
Pyrene	NELAP	0.000200		ND	mg/L	1	02/18/2020 13:32	162284
Surr: 2-Fluorobiphenyl	*	21.4-142		82.1	%REC	1	02/18/2020 13:32	162284
Surr: Nitrobenzene-d5	*	15-163		80.6	%REC	1	02/18/2020 13:32	162284
Surr: p-Terphenyl-d14	*	10-173		109.2	%REC	1	02/18/2020 13:32	162284
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Benzene	NELAP	0.5		ND	µg/L	1	02/14/2020 15:04	162244
Ethylbenzene	NELAP	2.0		ND	µg/L	1	02/14/2020 15:04	
Toluene	NELAP	2.0		ND	µg/L	1	02/14/2020 15:04	162244
Xylenes, Total	NELAP	4.0		ND	µg/L	1	02/14/2020 15:04	162244
Surr: 1,2-Dichloroethane-d4	*	80.9-113		100.5	%REC	1	02/14/2020 15:04	162244
Surr: 4-Bromofluorobenzene	*	88.3-109		101.8	%REC	1	02/14/2020 15:04	162244
Surr: Dibromofluoromethane	*	87.4-111		99.7	%REC	1	02/14/2020 15:04	162244
Surr: Toluene-d8	*	86.1-110		98.7	%REC	1	02/14/2020 15:04	162244

Laboratory Results

http://www.teklabinc.com/

Client: ERM

Client Project: Champaign GW

Lab ID: 20041763-011

Matrix: GROUNDWATER

Work Order: 20041763

Report Date: 07-May-2020

Client Sample ID: UMW-119-WG-20200428

Collection Date: 04/28/2020 8:30

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
SW-846 9012A (TOTAL)							
Cyanide	NELAP	0.005	0.032	mg/L	1	05/04/2020 14:32	164773
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL	.)					
Arsenic	NELAP	0.0250	< 0.0250	mg/L	1	05/01/2020 16:30	164740
Barium	NELAP	0.0025	0.0853	mg/L	1	05/01/2020 16:30	164740
Cadmium	NELAP	0.0020	< 0.0020	mg/L	1	05/01/2020 16:30	164740
Chromium	NELAP	0.0050	< 0.0050	mg/L	1	05/01/2020 16:30	164740
Lead	NELAP	0.0075	< 0.0075	mg/L	1	05/01/2020 16:30	164740
Selenium	NELAP	0.0400	< 0.0400	mg/L	1	05/01/2020 16:30	164740
Silver	NELAP	0.0070	< 0.0070	mg/L	1	05/01/2020 16:30	164740
SW-846 7470A (TOTAL)							
Mercury	NELAP	0.00020	< 0.00020	mg/L	1	05/04/2020 9:11	164747
SW-846 3510C,8270C, SEMI-	VOLATILE ORGAN	IC COMPOUN	IDS				
Acenaphthene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Acenaphthylene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Anthracene	NELAP	0.000300	ND	mg/L	1	05/04/2020 11:01	164770
Benzo(a)anthracene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Benzo(a)pyrene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Benzo(b)fluoranthene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Benzo(g,h,i)perylene	NELAP	0.000200	ND	mg/L	1	05/04/2020 11:01	164770
Benzo(k)fluoranthene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Chrysene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Dibenzo(a,h)anthracene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Fluoranthene	NELAP	0.000300	ND	mg/L	1	05/04/2020 11:01	164770
Fluorene	NELAP	0.000200	ND	mg/L	1	05/04/2020 11:01	164770
Indeno(1,2,3-cd)pyrene	NELAP	0.000100	ND	mg/L	1	05/04/2020 11:01	164770
Naphthalene	NELAP	0.000400	ND	mg/L	1	05/04/2020 11:01	164770
Phenanthrene	NELAP	0.000600	ND	mg/L	1	05/04/2020 11:01	164770
Pyrene	NELAP	0.000200	ND	mg/L	1	05/04/2020 11:01	164770
Surr: 2-Fluorobiphenyl	*	21.4-142	87.3	%REC	1	05/04/2020 11:01	164770
Surr: Nitrobenzene-d5	*	15-163	81.2	%REC	1	05/04/2020 11:01	164770
Surr: p-Terphenyl-d14	*	10-173	94.0	%REC	1	05/04/2020 11:01	164770
LCS recovered outside upper cont	rol limits. Sample resul	Its are below the	e reporting limit. Data is	s reportable per	the TNI S	tandard.	
SW-846 5030, 8260B, VOLAT	ILE ORGANIC CON	IPOUNDS BY	GC/MS				
Benzene	NELAP	0.5	ND	µg/L	1	05/01/2020 0:19	164754
Ethylbenzene	NELAP	2.0	ND	µg/L	1	05/01/2020 0:19	164754
Toluene	NELAP	2.0	ND	µg/L	1	05/01/2020 0:19	164754
Xylenes, Total	NELAP	4.0	ND	µg/L	1	05/01/2020 0:19	164754
Surr: 1,2-Dichloroethane-d4	*	80.9-113	94.1	%REC	1	05/01/2020 0:19	164754
Surr: 4-Bromofluorobenzene	*	88.3-109	98.7	%REC	1	05/01/2020 0:19	164754
Surr: Dibromofluoromethane	*	87.4-111	101.3	%REC	1	05/01/2020 0:19	164754
Surr: Toluene-d8	*	86.1-110	94.9	%REC	1	05/01/2020 0:19	164754

Appendix F

Tier 2 Evaluation Supporting Documents

Tier 2 Calculation Input Parameters

507 East Washington Street Champaign, Illinois

Parameter	Value	Units	Source
Fraction organic carbon f_{oc}	0.005	gm/gm	(3 to 10 feet) Site specific value from B-814 (7.0-8.0). Approved by IEPA in letter dated October 6, 2014.
Fraction organic carbon f_{oc}	0.0104	gm/gm	(>10 feet) Site specific value (Project Status Report).
Soil bulk density ρ_b	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B for clay)
Soil particle density $ ho_s$	2.65	gm/cm ⁴	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity θ_a	0.13	unitless	Default Value (TACO 742 Appendix C, Table B for soil below 1 meter)
Water-filled porosity θ_w	0.3	unitless	Default Value (TACO 742 Appendix C, Table B for soil below 1 meter)
Total soil porosity η	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Saturated hydraulic conductivity K_s	8	m/yr	(TACO parameter from Appendix C Table K, silty clay)
Exponential parameter 1/(2b=3)	0.042	unitless	(TACO parameter from Appendix C Table K, silty clay)
Infiltration Rate	0.3	m/yr	Default Value (TACO 742 Appendix C, Table B)
Total porosity θ _τ	0.36	unitless	Default Value (TACO 742 Appendix C, Table D for clay)
Organic Carbon Partition Coefficient K_{oc}	(1)	cm ³ /g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant H'	(1)	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility <i>S</i>	(1)	mg/l	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air D ⁱ	(1)	cm²/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water D _w	(1)	cm ² /sec	Default Value (TACO 742 Appendix C, Table E)
Degradation Constant	(1)	day⁻¹	Default Value (TACO 742 Appendix C, Table E)
Inhalation Unit Risk Factor	(2)	(ug/m ³) ⁻¹	Integrated Risk Information System (IRIS) EPA Database
Inhalation Reference Concentration	(3)	mg/m ³	Integrated Risk Information System (IRIS) EPA Database

Notes:

'(1) Compound specific value from 35 IAC Part 742 Appendix C, Table E.

'(2) Compund specific value from the Integrated Risk Information System (IRIS) for carcinogenic compounds.

'(3) Compund specific value from the Integrated Risk Information System (IRIS) for non-carcinogenic compounds.

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S10 WORKSHEET - APPARENT DIFFUSIVITY BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON CHAMPAGN, ILLINOIS RESIDENTIAL

						(4))	(4))					PG	
					density)	sity (equation S2	sity (equation S2				Soil-Water	Partition	Å
					and soil particle	sity and soil den	sity and soil den				Water-Filled	Soil Porosity	θ
$\Theta_{w} + (\Theta_{a}^{*}H^{*}))]$					unitless (calculated value based on site-specific bulk density and soil particle density)	unitless (calculated value based on calculated total soil porosity and soil density (equation S24))	unitless (calculated value based on calculated total soil porosity and soil density (equation S24))	(C; Table B)	unitless (calculated value using default total soil porosity η)	unitless (calculated value using default total soil porosity $\eta)$	Air-Filled Soil	Porosity	θ_{a}
$= \ [[(\theta_a^{\ 3.33*}D_i^{\ *}H') \ + \ (\theta_w^{\ 3.33*}D_w)]/\eta^2] \ * \ [1/((\rho_b^{\ *} \ K_d) + \theta_w + (\theta_a^{\ *}H'))]$	alue)			cific)	d value based on s	d value based on c	d value based on c	unitless (default value from Appendix C; Table B)	ed value using defa	d value using defa	Interim	Calci	β ₃
+ $(\theta_{w}^{3.33} D_{w})]/\eta^{2}$	unitless (default value)	cm ² /sec	cm ² /sec	gm/cm ³ (site specific)	unitless (calculate	unitless (calculate	unitless (calculate	unitless (default va	unitless (calculate	unitless (calculate	Interim	Calculated Value Calculated Value	β2
$[[(\theta_a^{3.33*}D_i^*H')$	0.23	0.088	0.0000102	1.7	0.358	0.312	0.046	0.43	0.300	0.130	Interim	Calculated Value	β,
П		Ш	Ш	Ш	П	Ш	Ш	Ш	П	Ш	_		
D_A	Ţ.	Ö	Dw	ρь	և	θ	$\theta_{\rm a}$	$\eta_{(default)}$	θ	$\theta_{\rm a}$	Annarent	Diffusivity	DA
	Henry's constant	Diffusivity in Air	Diffusivity in Water	soil bulk density	total soil porosity	water filled soil porosity	air filled soil porosity	default total soil porosity	default water filled soil porosity	default air filled soil porosity			

Apparent	Interim	Interim	Interim	Air-Filled Soil	Water-Filled	Soil-Water	Soil	Soil Bulk	Diffusivity	Henry's	Diffusivity
Diffusivity	Calculated Value	Calculated Value Calculated Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	in Air	Constant	in Water
DA	β1	β2	β ₃	θ_{a}	θ	Å	۲	ρ _b	D,	Ť	D
(cm ² /s)	$= (\theta_a^{3.33*}D_i^*H)$	$= (\theta_{w}^{3,33*}D_{w})$	$1/[(\rho_b^*K_d)+\theta_w+(\theta_a^*H'$	(unitless)	(unitless)	(cm ³ /g)	(unitless)	(gm/cm ³)	(cm ² /sec)	(unitiess)	(cm ² /sec)
Ī											
0.000163812	2.26799E-05	1.85103E-07	1.324678765	0.130	0.300	0.250	0.430	1.700	0.088	0.23	0.0000102
							-				

Constituent Site Name Site Location		BENZENE 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS		
Constituent based parameters				
Organic-carbon partition coefficient	۲ ۵	50	cm³/g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	<u> </u>	0.23	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	1800	l/gm	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	ā	0.088	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	D	1.02E-05	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Unit Risk Factor	URF	7.80E-06	(μg/m ³) ⁻¹	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S6, S7, S8, S10, S19, S20, S21, and S24 Site Specific Data	20, S21, and S2 <u>4</u>			
Site Setting - Residential/Commercial/Construction Worker	tion Worker	÷	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
Fraction organic carbon content	f	0.005	dm/am	Site Specific f_{oc} from B-814
Soil bulk density	P _b	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	Ps d	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ _a	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil porosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity ⁽²⁾	F.	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions ⁽²⁾ :	Use equation	Use equation S24 for calculating total soil porosity?	oorosity?	2
Soil Type Specific				1 = YES 2 = NO
Saturated hydraulic conductivity	K	8	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)

TIER 2 EVALUATION SOIL INHALATION, RESIDENTIAL PROPERTY

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S6 AND S7 WORKSHEET - REMEDIATION OBJECTIVES BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS RESIDENTIAL

= TR * AT_c * 365 / [URF * 1000 * EF * ED * (1/VF))] ВŐ

(residential=1; commercial=2; construction worker=3) $(\mu g/m^3)^{-1}$ 1 0.0000078 Ш Site Setting Code URF

RO	Interim Calculated Value	Interim Calculated Value	Target Cancer Risk	Average Time	Exposure Frequent	Exposure Duration	Inhalation Unit Risk Factor	Volatilization Factor for Construction Worker	Volatilization Factor
Remediation Objective	Ę	β2	TR	AT_{c}	. LI	ED	URF	ΛĿ.	VF
(mg/kg)	=TR*AT _c *365	=URF*EF*ED*1000*(1/VF)	(unitless)	(year)	(day/year)	(year)	₁₋ (_e m/gμ)	(m [°] /kg)	(m [°] /kg)
2 6042	0 0355500	0 000483256	0.00001	70	350	30	0.000078	863 627	8636.277
7500.2	0000070.0	0070040000	- 00000	2	000	0	0	120.000	F 12.0000

Benzene Inhalation, Residential Property 507 East Washington

EQUATION FOR AIR-FILLED POROSITY (0,), WATER-FILLED SOIL POROSITY (0,,), PARTITION COEFFICIENT (K,) EQUATION S19, S20, S21, AND S24 WORKSHEET - SOIL PROPERTIES BENZENE 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS RESIDENTIAL

= $1-(\rho_b)/(\rho_s)$

= η - θ_w θ_a

 $= \eta * (I/K_s)^{(1/(2b+3))}$ $= K_{\infty} * f_{\infty}$ ₩θ Md

 $K_s = 1/(2b+3) =$ П

8 0.042 2.65 0.005 1.7 1.7 0.43 0.43 0.43 0.43 0.43 0.3 0.3 П Ш Ш Ш ρ_s f_{oc} د ⊕ ⊕ ∡ ∞ β

Ш

П Ш

_

meters/year (default value) gm/cm³ (default value) gm/gm (site specific) gm/cm³ (site specific) unitless (by soil type) unitless (by soil type) unitless (by soil type) unitless (by soil type) m/yr (by soil type) cm³/g

water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate saturated hydraulic conductivity fraction organic carbon content soil bulk density air-filled soil porosity (default) total soil porosity (default) exponential parameter soil particle density

-					1	_	 _	_
ps			ρ	(gm/cm ³)		2.65		
ρь			ρ₀	(gm/cm ³)		1.7		
Calculated	Soil	Porosity	۲			0.358		
Default	Porosity	Soil	η (default)	(unitless) (unitless)			0.43	
Fraction	Organic	Carbon	f_{oc}	(gm/gm)		0.005		
Infiltration Soil-Water Organic Carbon Fraction Default Calculated	Partition Organic Porosity	Coefficient	K	(cm ³ /g)		50		
Soil-Water	Partition		К	(cm ³ /g)		0.25		
Infiltration	Rate		_	(m/yr)		0.3		
Saturated	Hydraulic	Conductivity	Ř	(m/yr)		8		
Constant	Value		1/(2b+3)	(unitless)		0.042		
Default	Air-Filled	Soil Porosity	θ_{a}	unitless			0.130	
Default	Water-Filled	Soil Porosity	θ_w	unitless			0.300	
Calculated	Air-Filled	Soil Porosity	θ_{a}	unitless		0.046		
Calculated	Water-Filled	Soil Porosity	θ_w	unitless		0.312		
		Use Equation	S24 for total	soil porosity (η)		YES	ON	

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS RESIDENTIAL VF = $Q/C * [(3.14*D_A*T)^{1/2}/(2*\rho_b*D_A)]^*10^{-4}$

Site Setting Code

(gm/m²-s)/(kg/m³)

68.810

II

Pb Db

1 (residential=1; commercial=2; construction worker=3)

Apparent Exposure E) Diffusivity Interval D	Exposure Soil Bulk Duration Density
D _A T (cm ² /s) (sec)	ED p _b (year) (gm/cm ³)
	0.000163812 95000000

Benzene Inhalation, Residential Property 507 East Washington

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S10 WORKSHEET - APPARENT DIFFUSIVITY BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL

			()			Pore	1 (unit	0.4
		: densitv)	sity (equation S2 ⁴ sity (equation S2 ⁴	-		Soil-Water Partition	K _d (cm ³ /g)	0.250
		and soil particle	sity and soil den sity and soil den			W ater-Filled Soil Porosity	θ _w (unitless)	0.300
$\Theta_{w}+(\Theta_{a}^{*}H^{*}))]$		cm ² /sec gm/cm ³ (site specific) unitless (calculated value based on site-specific bulk density and soil particle density)	unitless (calculated value based on calculated total soil porosity and soil density (equation S24)) unitiess (calculated value based on calculated total soil porosity and soil density (equation S24))	<pre>< C; Table B)</pre>	unitless (calculated value using default total soil porosity η) unitless (calculated value using default total soil porosity η)	Air-Filled Soil Porosity	θ _a (unitless)	0.130
$= [[(\theta_a^{3:33*}D_i^*H') + (\theta_w^{3:33*}D_w)]/\eta^2] * [1/((\rho_b^* K_d) + \theta_w + (\theta_a^*H'))]$	alue)	cific) ed value based on s	ed value based on c ed value based on c	unitless (default value from Appendix C; Table B)	ed value using defa ed value using defa	Interim Calculated Value	$\beta_3 \\ 1/[(\rho_b^*K_d)+\theta_w+(\theta_a^*H'$	1.324678765
+ $(\theta_w^{3.33*}D_w)]/\eta_i^{4}$	unitless (default value) cm ² /sec	cm ² /sec gm/cm ³ (site specific) lunitless (calculated va	unitless (calculate unitless (calculate	unitless (default v	unitless (calculate unitless (calculate	Interim Calculated Value	$\beta_2 = (\theta_w^{3.33*}D_w)$	1.85103E-07
[[($\theta_a^{3.33*}D_i^*H'$)	0.23 0.088	0.0000102 1.7 0.358	0.312 0.046	J	0.130	Interim Calculated Value	β_1 = ($\theta_a^{3.33*}D_i^*H$)	2.26799E-05
II	II			Ш				
DA	ΤÖ	_ ද ∈	θ θ a	ຖ(default) ດີ	Θ_a	Apparent Diffusivity	D _A (cm ² /s)	0.000163812
	Henry's constant Diffusiwity in Air	Diffusivity in Water soil bulk density total soil porosity	water filled soil porosity air filled soil porosity	default total soil porosity	default water filled soil porosity default air filled soil porosity			

Apparent	Interim	Interim	Interim	Air-Filled Soil	Water-Filled	Soil-Water	Soil	Soil Bulk	Diffusivity	Henry's	Diffusivity
Diffusivity	Calculated Value	Calculated Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	in Air	Constant	in Water
DA	β,	β2	β3	θ_{a}	θ	Å	٤	β	Ū	Ť	D
(cm ² /s)	$= (\theta_a^{3.33*}D_i^*H)$	$= (\theta_{w}^{3,33*} D_{w})$	$1/[(\rho_b{}^*K_d)+\theta_w+(\theta_a{}^*H'$	(unitless)	(unitless)	(cm ³ /g)	(unitess)	(gm/cm ³)	(cm ² /sec)	(unitess)	(cm ² /sec)
					000 0	0100	0000				
0.000163812	2.26799E-05	1.85103E-07	1.324678765	0.130	0.300	0.250	0.430	1.700	0.088	0.23	0.0000102
				-		_					

DATA INPUT PARAMETERS			UNITS	SOURCE
Constituent Site Name Site Location	507 E	BENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS		
Constituent based parameters				
Organic-carbon partition coefficient	K _{oc}	50	cm³/g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	Ξ	0.23	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	1800	mg/l	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	Ö	0.088	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	Dw	1.02E-05	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Unit Risk Factor	URF	7.80E-06	(μg/m ³) ⁻¹	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S6, S7, S8, S10, S19, S20, S21, and S24	<u>S24</u>			
Site Specific Data				
Site Setting - Residential/Commercial/Construction Worker		2	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
				Site Specific f_{α} from B-814
Fraction organic carbon content	t_{oc}	0.005	gm/gm	-
Soil bulk density	$\rho_{\rm b}$	1.7	gm/cm [°]	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	$\rho_{\rm s}$	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ_{a}	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil norosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity ⁽²⁾	ے م	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions ⁽²⁾ :	se equation S	Use equation S24 for calculating total soil porosity?	sitv?	2
				1 = YES
Coll Turo Considio				2 = NO
		c		
Saturated hydraulic conductivity	¥°	×	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)
Industrial/Commarcial Pronactiv				

Benzene Inhalation, Industrial/Commercial Property 507 East Washington

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S6 AND S7 WORKSHEET - REMEDIATION OBJECTIVES BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL

= TR * AT_c * 365 / [URF * 1000 * EF * ED * (1/VF))] ВŐ

Site Setting Code URF	= 0.0000078	(residential=1; commercial=2; construction worker=3) $(\mu g/m^3)^{-1}$	al=2; construction	worker=3)					
RO	Interim Calculated Value	Interim Calculated Value	Target Cancer Risk	Average Time	Exposure Frequent	Exposure Duration	Inhalation Unit Risk Factor	Volatilization Factor for Construction Worker	Volatilization Factor
Remediation Objective (mg/kg)	β ₁ =TR*AT _c *365	β2 =URF*EF*ED*1000*(1/VF)	TR (unitless)	AT _c (year)	EF (day/year)	ED (year)	URF (µg/m ^{°)-1}	VF' (m ³ /kg)	VF (m ^{3/k} g)
5.1473	0.0255500	0.004963752	0.00001	20	250	25	0.000078	982.120	9821.199

EQUATION FOR AIR-FILLED POROSITY (0,), WATER-FILLED SOIL POROSITY (0,), PARTITION COEFFICIENT (K_) EQUATION S19, S20, S21, AND S24 WORKSHEET - SOIL PROPERTIES BENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL

- $= 1 (\rho_b)/(\rho_s)$
- $= \eta \theta_w$ τθ^aθ Kd
- $= \eta * (I/K_s)^{(1/(2b+3))}$
 - $= K_{\infty} * f_{\infty}$

Intiltration rate	meters/year (detault value)	0.3	-	-
Organic Carbo	cm³/g	50	Ш	¥
water-filled soi	unitless (by soil type)	0.3	П	θ
air-filled soil po	unitless (by soil type)	0.13	П	$\theta_{\rm a}$
total soil poros	unitless (by soil type)	0.43	П	۲
soil bulk densit	gm/cm ³ (site specific)	1.7	11	$\rho_{\rm b}$
fraction organi	gm/gm (site specific)	0.005	П	f_{∞}
soil particle de	gm/cm ³ (default value)	2.65	11	$\rho_{\rm s}$
exponential pa	unitless (by soil type)	0.042	3) =	1/(2b+3)
saturated hydr	m/yr (by soil type)	œ	Ш	Ř
		1	1	

	Calculated	Calculated	Default	Default	Constant	Saturated	Infiltration	Soil-Water	Infiltration Soil-Water Organic Carbon Fraction Default Calculated	Fraction	Default	Calculated	βb	ρ
	Water-Filled	Air-Filled	Water-Filled	Air-Filled	Value	Hydraulic	Rate	Partition	Partition Organic Porosity Soil	Organic	Porosity	Soil		
Use Equation	Soil Porosity	Soil Porosity	Soil Porosity	Soil Porosity		Conductivity			Coefficient	Carbon	Soil	Porosity		
S24 for total	θ_w	θ_{a}	θ_w	θ_{a}	1/(2b+3)	Ř	_	К	Koc	f_{oc}	η (default)	۴	βρ	ρ
soil porosity (η)	unitless	unitless	unitless	unitless	(unitless)	(m/yr)	(m/yr)	(cm ³ /g)	(cm ³ /g)	(mg/mg)	(unitless)	(gm/gm) (unitless) (unitless) (.) (gm/cm ³) ((gm/cm ³)
YES	0.312	0.046			0.042	8	0.3	0.25	50	0.005		0.358	1.7	2.65
ON			0.300	0.130							0.43			

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR **507 EAST WASHINGTON STREET** COMMERCIAL/INDUSTRIAL **CHAMPAIGN, ILLINOIS** BENZENE

 $= Q/C * [(3.14*D_A*T)^{1/2}/(2*p_b*D_A)]*10^{-4}$ 2 Site Setting Code Щ >

(gm/m²-s)/(kg/m³)

85.810

||

Q/Q $\rho_{\rm b}$

(residential=1; commercial=2; construction worker=3)

1.7	gm/cm ³ (site specific)	(;					
Volatilization	Interim	Interim		Apparent	Exposure	Exposure	Soil Bulk
Factor	Calculated Value	Calculated Value		Diffusivity	Interval	Duration	Density
VF	β,	β2	Q/C	DA	F	ED	βb
(mg ³ /kg)	=(3.14*D _A *T) ^{1/2}	$=(2^*p_b^*D_A)$	(unitless)	(cm ^z /s)	(sec)	(year)	(gm/cm ³)
9821.199307	637.4574481	0.000556961	85.81	0.000163812	0.000163812 790000000	25	1.700

Benzene Inhalation, Industrial/Commercial Property 507 East Washington

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S10 WORKSHEET - APPARENT DIFFUSIVITY BENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON CHAMPAGN, ILLINOIS CONSTRUCTION WORKER

						4))	()					Å,		1.1.1
					density)	sity (equation S2	sity (equation S24				Soil-Water	Partition	Å,	(cm ³ /c)
					and soil particle	sity and soil den	sity and soil den				Water-Filled	Soil Porosity	θ	(initlace)
$\theta_{w} + (\theta_{a}^{*}H^{*}))]$					unitless (calculated value based on site-specific bulk density and soil particle density)	unitless (calculated value based on calculated total soil porosity and soil density (equation S24))	unitless (calculated value based on calculated total soil porosity and soil density (equation S24))	(C; Table B)	unitless (calculated value using default total soil porosity η)	unitless (calculated value using default total soil porosity $\boldsymbol{\eta})$	Air-Filled Soil	Porosity	θ	(innitlace)
$= \ [[(\theta_a^{3,33*}D_i^*H') + (\theta_w^{3,33*}D_w)]/\eta^2] * [1/((\rho_b^* K_d) + \theta_w + (\theta_a^*H'))]$	alue)			ific)	d value based on s	d value based on c	d value based on c	unitless (default value from Appendix C; Table B)	d value using defa	d value using defa	Interim	Calculated Value	β3	- / A 333*D \ 11/// *K.\
+ $(\theta_{w}^{3.33} D_{w})]/\eta^{2}$	unitless (default value)	cm ² /sec	cm ² /sec	gm/cm ³ (site specific)	unitless (calculate	unitless (calculate	unitless (calculate	unitless (default va	unitless (calculate	unitless (calculate	Interim	Calculated Value Calculated Value	β2	(U*corp 0/ -
[[(θ _a ^{3.33} *D _i *H') .	0.23	0.088	0.0000102	1.7	0.358	0.312	0.046	0.43	0.300	0.130	Interim	Calculated Value	β1	(H*'U*00'0 U/ -
П		II	П	Ш	Ш	П	Ш	11	Ш	П				
D_A	Ţ	Ö	D	β	μ	θ	$\theta_{\rm a}$	$\eta_{(default)}$	θ	θ_{a}	Apparent	Diffusivity	DA	(0m ² /c)
	Henry's constant	Diffusivity in Air	Diffusivity in Water	soil bulk density	total soil porosity	water filled soil porosity	air filled soil porosity	default total soil porosity	default water filled soil porosity	default air filled soil porosity				

Apparent	Interim	Interim	Interim	Air-Filled Soil	Water-Filled	Soil-Water	Soil	Soil Bulk	Diffusivity	Henry's	Diffusivity
Diffusivity	Calculated Value	Calculated Value Calculated Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	in Air	Constant	in Water
ſ	¢	¢	,		(:			ſ	:	ſ
UA	þ1	þ2	þ3	$\theta_{\rm a}$	θ	¥	٤	β	'n	Ì	٦
(cm ² /s)	$= (\theta_a^{3.33*}D_i^*H)$	$= (\theta_w^{3.33*}D_w)$	$1/[(\rho_b^*K_d)+\theta_w+(\theta_a^*H)$	(unitless)	(unitless)	(cm ³ /g)	(unitess)	(gm/cm ³)	(cm ² /sec)	(unitess)	(cm ² /sec)
0.000163812	2.26799E-05	1.85103E-07	1.324678765	0.130	0.300	0.250	0.430	1.700	0.088	0.23	0.0000102

Constituent Site Name Site Location		BENZENE 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS		
Constituent based parameters				
Organic-carbon partition coefficient	¥ م	50	cm³/g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	1 3	0.23	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	1800	mg/l	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	Ō	0.088	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	Ď	1.02E-05	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Unit Risk Factor	URF	7.80E-06	(µg/m ³) ⁻¹	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S6, S7, S8, S10, S19, S2(20, S21, and S24			
Site Specific Data				
Site Setting - Residential/Commercial/Construction Worker	tion Worker	m	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
Fraction organic carbon content	foo	0.005	am/am	Site Specific f_{ac} from B-814
Soil bulk density	P q	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	s d	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ _a	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil porosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity ⁽²⁾	:	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions ⁽²⁾ :	Use equation	Use equation S24 for calculating total soil porosity?	rositv?	0
	-			1 = YES 2 = NO
<u>Soil Type Specific</u>				
Saturated hydraulic conductivity	Ϋ́s	8	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)

TIER 2 EVALUATION SOIL INHALATION, CONSTRUCTION WORKER

> Benzene Soil Inhalation, Construction Worker Exposure 507 East Washington

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS EQUATION S6 AND S7 WORKSHEET - REMEDIATION OBJECTIVES BENZENE

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER

= TR * AT_c * 365 / [URF * 1000 * EF * ED * (1/VF))] ВŐ

Site Setting Code

(residential=1; commercial=2; construction worker=3)

Volatilization Factor 662.983 (m³/kg) ۲F Volatilization Factor for Construction Worker VF' (m^{°/kg)} 66.298 Inhalation Unit Risk Factor URF (µg/m³⁾⁻¹ 0.0000078 Exposure Duration ED (year) Exposure Frequent (day/year) Ш 30 Average Time AT_c (year) 2 Target Cancer Risk TR (unitless) 0.000001 =URF*EF*ED*1000*(1/VF) Calculated Value 0.003529504 (μg/m³)⁻¹ Interim β2 Calculated Value 3 0.0000078 =TR*AT_c*365 0.0255500 Interim β. Ш Remediation Objective (mg/kg) 7.2390 URF RO

EQUATION FOR AIR-FILLED POROSITY (0,), WATER-FILLED SOIL POROSITY (0,,), PARTITION COEFFICIENT (K,) EQUATION S19, S20, S21, AND S24 WORKSHEET - SOIL PROPERTIES BENZENE 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER

- $= 1 (\rho_b)/(\rho_s)$
- = η θ_w η θa
- $= \eta * (I/K_s)^{(1/(2b+3))}$ θw βd
 - $= K_{\infty} * f_{\infty}$ П
- gm/cm³ (default value) gm/gm (site specific) gm/cm³ (site specific) unitless (by soil type) unitless (by soil type) unitless (by soil type) 8 0.042 2.65 0.005 1.7 1.7 0.43 0.43 0.43 0.43 0.43 0.3 0.3 $K_{s} = 1/(2b+3) =$ Ш П Ш Ш Ш ρ_s f_{oc} ۲ ⊕ ⊕ ۲ ∞ $\boldsymbol{\rho}_{\mathrm{p}}$

Ш

_

- meters/year (default value) unitless (by soil type) m/yr (by soil type) cm³/g
- water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate saturated hydraulic conductivity fraction organic carbon content soil bulk density air-filled soil porosity (default) total soil porosity (default) exponential parameter soil particle density

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS EQUATION FOR REMEDIATION OBJECTIVE - CARCINOGENICS **EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR CONSTRUCTION WORKER 507 EAST WASHINGTON CHAMPAIGN, ILLINOIS** BENZENE

 $= Q/C * [(3.14*D_A*T)^{1/2}/(2*p_b*D_A)]*10^{-4}$ ო Site Setting Code Щ >

(gm/m²-s)/(kg/m³)

85.810

11

Q/Q $\rho_{\rm b}$

(residential=1; commercial=2; construction worker=3)

1.7	gm/cm ³ (site specific)						
Volatilization Factor	Interim Calculated Value	Interim Calculated Value		Apparent Diffusivity	Exposure Interval	Exposure Duration	Soil Bulk Density
vF (mg³/kg)	β ₁ =(3.14*D _A *T) ^{1/2}	β ₂ =(2*ρ _b *D _A)	Q/C (unitless)	D _A (cm [∠] /s)	T (sec)	ED (year)	ρ _b (gm/cm³)
662.9827508	43.03173973	0.000556961	85.81	0.000163812	360000	+	1.700

Benzene Soil Inhalation, Construction Worker Exposure 507 East Washington

DATA INPUT PARAMETERS		INPUT VALUES BELOW	UNITS	SOURCE
Constituent Site Name Site Location Sample Location Sample Depth	507	ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS	F	
Constituent based parameters				
Organic-carbon partition coefficient	K	320	cm ³ /g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	Ť	0.324	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	170	//gm	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	Ö	0.075	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	D	7.80E-06	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Reference Concentration	RfC	1.00E+00	mg/m3	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S4, S5, S8, S10, S19, S20, S21, and S24 Site Specific Data	ld S24			
Site Setting - Residential/Commercial/Construction Worker	er	÷	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
Fraction organic carbon content	foc	0.005	gm/gm	Site Specific f_{oc} from B-814
Soil bulk density	β ^ρ	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	βs	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ_{a}	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil porosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity	۴	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions:	Use equation	Use equation S24 for calculating total soil porosity?	orosity?	2
				1 = YES 2 = NO
Soil Type Specific				
Saturated hydraulic conductivity	Ks	œ	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)

Ethylbenzene Inhalation, Residential Property 507 East Washington

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S4 AND S5 WORKSHEET - REMEDIATION OBJECTIVES ETHYLBENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS RESIDENTIAL

= THQ * AT * 365 / [EF * ED * ((1/RfC) * (1/VF))] В0 В0

Inhalation Reference Concentration (residential=1; commercial=2; construction worker=3) mg/m³ T Site Setting Code = П R/C

		RO	Target Hazard	Average	Exposure	Exposure	Inhalation	Volatilization Factor	Volatilization
Borehole	Depth		Quotient	Time	Frequent	Duration	Reference Concentration	for Construction Worker	Factor
Location	Interval								
		Remediation Objective	THQ	AT	ΕF	ED	RfC	VF'	VF
	(feet)	(mg/kg)	(unitless)	(year)	(day/year)	(year)	(mg/m³)	(m ³ /kg)	(m ³ /kg)
0	0	16579.0229	-	30	350	30	1.000	1589.769	15897.693

Ethylbenzene Inhalation, Residential Property 507 East Washington

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS RESIDENTIAL

DA	Ē	Ö	D	ρь	Ľ	θ_{w}	$\theta_{\rm a}$	$\eta_{(default)}$	Θ_w	θ_{a}
	Henry's constant	Diffusivity in Air	Diffusivity in Water	soil bulk density	total soil porosity	water filled soil porosity	air filled soil porosity	default total soil porosity	default water filled soil porosity	default air filled soil porosity

[((.H
$v^+(\theta_a^*)$
К _d)+0,
$^{*}(\rho_{b}$
,)]/η ²] * [1/((ρ _b
³³ *D _w)]/
+ (θw ^{3.3}
*D _i *H') +
[[(θ _{a^{3.33}*[}
)]] =

unitless (default value)	cm ² /sec
0.324	0.075
11	II

		gm/cm ³ (site spec	
	0.00000	1.7	0 358
	Ш	II	I
-	Ď	$\rho_{\rm b}$	Ę

specific) sulated value based on site-specific bulk density and soil particle density)

ss (ca 5 0.312

unitless (calculated value based on calculated total soil porosity (equation S24))

unitless (calculated value based on calculated total soil porosity (equation S24)) unitless (default value from Appendix C; Table B) 0.046

unitless (calculated value using default total soil porosity $\eta)$ 0.430 0.300 0.130

unitless (calculated value using default total soil porosity $\eta)$

ſ

Apparent	Interim	Interim	Interim	Air-Filled Soil Water-Filled	Water-Filled	Soil-Water	Soil	Soil Bulk	Diffusivity	Henry's	Diffusivity
Diffusivity	Calculated Value	Calculated Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	in Air	Constant	in Water
Ď	ß.	ŝ	3,	Đ,	θ	, X	Ę	40	Ö	Ţ	D
(cm ² /s)	= (θ _{.^{3.33}*D_i*H)}	$= (\theta_{m}^{3.33*}D_{m})$	= $1/[(\rho_h^*K_h) + \theta_w + (\theta_a^*H')]$	م (unitless)	(unitless)	(cm ³ /g)	unitless)	(am/cm ³)	(cm ² /sec)	(unitless)	(cm ² /sec)
	5										
4.83426E-05	2.72294E-05	1.4155E-07	0.326571134	0.130	0.300	1.600	0.430	1.700	0.075	0.324	0.0000078

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR ETHYLBENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

VF = $Q/C * [(3.14*D_A*T)^{1/2}/(2*p_b*D_A)]*10^{-4}$

RESIDENTIAL

Inverse mean concentration @ center of square source (residential=1; commercial=2; construction worker=3) soil bulk density gm/cm³ (site specific) $(gm/m^2-s)/(kg/m^3)$ 68.810 1.7 -|| Ш Site Setting Code 0 O β

		Exposale	Exposure	Soil Bulk
	Diffusivity	Interval	Duration	Density
Q/C	DA	Т	ED	βb
(unitless)	(cm²/s)	(sec)	(year)	(gm/cm ³)
68.81	4.83426E-05	950000000	30	1.700
	68.81		4.83426E-05	4.83426E-05

Ethylbenzene Inhalation, Residential Property 507 East Washington

ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS RESIDENTIAL

$1-(\rho_b)/(\rho_s)$	η - θ _w	$\eta * (I/K_s)^{(1/(2b+3))}$	$K_{\infty} * f_{\infty}$
Ш	Ш	Ш	Ш
۲	$\theta_{\rm a}$	θ	Кd

	m/yr (by soil type)	unitless (by soil type)	gm/cm ³ (default value)	gm/gm (site specific)	gm/cm ³ (site specific)	unitless (by soil type)	unitless (by soil type)	unitless (by soil type)	cm³/g	meters/year (default value)
8	ø	0.042	2.65	0.005	1.7	0.43	0.13	0.3	320	0.3
Kd = $K_{\infty} * f_{\infty}$	₹ =	1/(2b+3) =	ps =	$f_{oc} =$	$p_b =$	= L	$\theta_a =$	$\theta_w =$	K _{ac} =	"

antimation lindum lindum linte	exponential parameter	soil particle density	fraction organic carbon content	soil bulk density	total soil porosity (default)	air-filled soil porosity (default)
		exponential parameter	exponential parameter soil particle density	exponential parameter soil particle density fraction organic carbon content	exponential parameter soil particle density fraction organic carbon content soil bulk density	exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default)
saturated inyurature conductivity exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default)	soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default)	fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default)	soil bulk density total soil porosity (default) air-filled soil porosity (default)	total soil porosity (default) air-filled soil porosity (default)	air-filled soil porosity (default)	
saturated inyurature conductivity exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default)	soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default)	fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default)	soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default)	total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default)	air-filled soil porosity (default) water-filled soil porosity (default)	water-filled soil porosity (default)
saturated inyoraulo conductivity exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient	soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient	fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Paritition Coefficient	soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Paritition Coefficient	total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Paritition Coefficient	air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient	water-filled soil porosity (default) Organic Carbon Partition Coefficient
saturated inyuratic conductivity exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default) water-filled soil porosity (default) organic Carbon Partition Coefficient infiltration rate	soil particle density fraction organic carbon content fraction organic carbon content total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate
saturated riyor auto conductivity exponential parameter soil particle density fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	soil particle density fraction organic carbon content soil bulk density sult data soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	fraction organic carbon content soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	soil bulk density total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	total soil porosity (default) air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	air-filled soil porosity (default) water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate	water-filled soil porosity (default) Organic Carbon Partition Coefficient infiltration rate

Coil Dorooth
IVILY
CONDUCTION
sity
USE EQUATION

DATA INPUT PARAMETERS		INPUT VALUES BELOW	UNITS	SOURCE
Constituent Site Name Site Location Sample Location Sample Depth	20	ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS	t.	
Constituent based parameters				
Organic-carbon partition coefficient	K	320	cm ³ /g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	Ţ	0.324	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	170	/bm	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	Ö	0.075	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	D	7.80E-06	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Reference Concentration	RfC	1.00E+00	mg/m3	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S4, S5, S8, S10, S19, S20, S21, and S24	and S24			
Site Specific Data				
Site Setting - Residential/Commercial/Construction Worker	rker	7	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
Fraction organic carbon content	f_{oc}	0.005	mp/mp	Site Specific f_{oc} from B-814
Soil bulk density	q	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	ρs	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ_{a}	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil porosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity	۳	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions:	Use equatic	Use equation S24 for calculating total soil porosity?	orosity?	2
				1 = YES 2 = NO
Soil Type Specific				
Saturated hydraulic conductivity	Ϋ́	8	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)

Ethylbenzene Inhalation, Industrial/Commercial Property 507 East Washington

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S4 AND S5 WORKSHEET - REMEDIATION OBJECTIVES ETHYLBENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL **RO** = THQ * AT * 365 / [EF * ED * ((1/RfC) * (1/VF))]

Site Setting Code2(residential=1; commercial=2; construction worker=3)RfC=1 mg/m^3 Inhalation Reference Concentration

		ç	Target Hazard	Average	Exposure	Exposure	Inhalation	Volatilization Factor	Volatilization
Borehole	Depth		Quotient	Time	Frequent	Duration	Reference Concentration	for Construction Worker	Factor
Location	nterval								
		Remediation Objective	THQ	AT	ΕF	ED	RfC	VF'	VF
	(feet)	(mg/kg)	(unitless)	(year)	(day/year)	(year)	("m/ma)	(m ³ /kg)	(m ³ /kg)
0	0	26395.2059	+	25	250	25	1.000	1807.891	18078.908

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL

	D_A	=	[(θ _a ^{3.33} *D _i *H')	$= [[(\theta_a^{3,33*}D_i^*H') + (\theta_w^{3,33*}D_w)]/\eta^2] * [1/((p_b^* K_d) + \theta_w + (\theta_a^*H'))]$
Henry's constant	Ţ	II	0.324	unitless (default value)
Diffusivity in Air	Ö	Ш	0.075	cm ² /sec
Diffusivity in Water	D	Ш	0.0000078	cm ² /sec
soil bulk density	βb	П	1.7	gm/cm ³ (site specific)
total soil porosity	ե	П	0.358	unitless (calculated value based on site-specific bulk
water filled soil porosity	θ	Ш	0.312	unitless (calculated value based on calculated total s
air filled soil porosity	$\theta_{\rm a}$	Ш	0.046	unitless (calculated value based on calculated total s
default total soil porosity	$\eta_{(default)}$	Ш	0.430	unitless (default value from Appendix C; Table B)
default water filled soil porosity	θ	Ш	0.300	unitless (calculated value using default total soil porc
default air filled soil porosity	θ_{a}	П	0.130	unitless (calculated value using default total soil porc

unitless (default value)	cm ² /sec	r8 cm²/sec	gm/cm ³ (site specific)	unitless (calculated value based on site-specific bulk density and soil particle density)	unitless (calculated value based on calculated total soil porosity (equation S24))	unitless (calculated value based on calculated total soil porosity (equation S24))	unitless (default value from Appendix C; Table B)	unitless (calculated value using default total soil porosity ŋ)	unitless (calculated value using default total soil porosity η)
0.324	0.075	0.0000078	1.7	0.358	0.312	0.046	0.430	0.300	0.130
П	II	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
Ē	Ō	D	ρь	Ľ	Θ_w	$\theta_{\rm a}$	$\eta_{(default)}$	θ	$\theta_{\rm a}$

Apparent	Interim	Interim	Interim	Air-Filled Soil	Water-Filled	Soil-Water	Soil	Soil Bulk	Diffusivity	Henry's	Diffusivity
Diffusivity	Calculated Value	Calculated Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	in Air	Constant	in Water
										_	
DA	β1	β_2	β ₃	$\theta_{\rm a}$	θ	۲	Ľ	ρ _b	Ö	Ì	Dw
(cm ² /s)	$= (\theta_a^{3.33*} D_i^* H)$	$= (\theta_{w}^{3.33*}D_{w})$	$= 1/[(\rho_b^*K_d) + \theta_w + (\theta_a^*H')]$	(unitless)	(unitless)	(cm ³ /g)	(unitless)	(gm/cm ³)	(cm ² /sec)	(unitless)	(cm ² /sec)
4.83426E-05	2.72294E-05	1.4155E-07	0.326571134	0.130	0.300	1.600	0.430	1.700	0.075	0.324	0.000078

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR ETHYLBENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET

507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL VF = $Q/C * [(3.14*D_A*T)^{1/2}/(2*p_b*D_A)]*10^{-4}$

Inverse mean concentration @ center of square source (residential=1; commercial=2; construction worker=3) soil bulk density gm/cm³ (site specific) $(gm/m^2-s)/(kg/m^3)$ 85.810 1.7 2 || || Site Setting Code 0 O β

Volatilization	Interim	Interim		Apparent	Exposure	Exposure	Soil Bulk
Factor	Calculated Value	Calculated Value		Diffusivity	Interval	Duration	Density
VF	β,	β_2	Q/C	DA	F	ED	βp
(mg³/kg)	=(3.14*D _A *T) ^{1/2}	$=(2^*\rho_b^*D_A)$	(unitless)	(cm ² /s)	(sec)	(year)	(gm/cm ³)
18078.90813	346.2928515	0.000164365	85.81	4.83426E-05	000000062	25	1.700

Ethylbenzene Inhalation, Industrial/Commercial Property 507 East Washington

EQUATION FOR AIR-FILLED POROSITY (0.), WATER-FILLED SOIL POROSITY (0.,), PARTITION COEFFICIENT (K.) EQUATION S19, S20, S21, AND S24 WORKSHEET - SOIL PROPERTIES ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS COMMERCIAL/INDUSTRIAL

- $= 1 (\rho_b)/(\rho_s)$
- = η θ_w η θa
- $= \eta * (I/K_s)^{(1/(2b+3))}$
- $= K_{\infty} * f_{\infty}$ θw βd
- gm/cm³ (default value) gm/gm (site specific) gm/cm³ (site specific) unitless (by soil type) unitless (by soil type) unitless (by soil type) unitless (by soil type) m/yr (by soil type) 8 0.042 2.65 0.005 1.7 1.7 0.43 0.43 0.43 0.43 0.13 0.3 П П Ш Ш Ш Ш 1/(2b+3) = $\overset{\theta}{\overset{}{\overset{}}{\overset{}}} \overset{\times}{\overset{}{\overset{}}{\overset{}}}$ $\rho_{\rm s}$ Ř f_{∞} $\boldsymbol{\rho}_{\mathrm{p}}$ $\boldsymbol{\theta}_a$ ۲

meters/year (default value)

cm³/g

П Ш

_

- saturated hydraulic conductivity total soil porosity (default) exponential parameter soil particle density
- water-filled soil porosity (default) Organic Carbon Partition Coefficient fraction organic carbon content soil bulk density air-filled soil porosity (default) infiltration rate

	Calculated	Calculated	Default	Default	Constant	Saturated	Infiltration	Soil-Water	Infiltration Soil-Water Organic Carbon Fraction Default Calculated	Fraction	Default	Calculated	ρ _b	ρs
	Water-Filled	Air-Filled	Water-Filled	Air-Filled	Value	Hydraulic	Rate	Partition	Partition	Organic Porosity	Porosity	Soil		
Use Equation	Soil Porosity	Soil Porosity	Soil Porosity	Soil Porosity		Conductivity			Coefficient	Carbon	Soil Porosity	Porosity		
S24 for total	θ_w	θ_{a}	θ_w	θ_{a}	1/(2b+3)	Ř	_	Ŕ	Koc	$f_{\rm oc}$	η (default)	Ľ	ρ	ρs
soil porosity (η)	unitless	unitless	unitless	unitless	(unitless)	(m/yr)	(m/yr)	(cm ³ /g)	(cm ³ /g)	(gm/gm)	(gm/gm) (unitless)	(unitless)	gm/cm ³) (gm/cm ³)
YES	0.312	0.046			0.042	8	0.3	1.6	320	0.005		0.358	1.7	2.65
ON			0.300	0.130							0.43			

DATA INPUT PARAMETERS		INPUT VALUES BELOW	UNITS	SOURCE
Constituent Site Name Site Location Sample Location Sample Depth	20	ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS	E.	
Constituent based parameters				
Organic-carbon partition coefficient	ہ %	320	cm³/g	Default Value (TACO 742 Appendix C, Table E)
Henry's Constant	Ť	0.324	l/gm	Default Value (TACO 742 Appendix C, Table E)
Solubility	S	170	l/gm	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Air	Ō	0.075	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Diffusivity in Water	Ď	7.80E-06	cm2/sec	Default Value (TACO 742 Appendix C, Table E)
Inhalation Reference Concentration	RfC	1.00E+00	mg/m3	Integrated Risk Information System (IRIS) EPA Database
FOR SSL EQUATIONS - S4, S5, S8, S10, S19, S20, S21, and S24	ld S24			
Site Specific Data				
Site Setting - Residential/Commercial/Construction Worker	er	e	Enter 1 for re	Enter 1 for residential, 2 for commercial, 3 for construction worker
Fraction organic carbon content	f	0.005	gm/gm	Site Specific f_{oc} from B-814
Soil bulk density	d P	1.7	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Soil particle density	βs	2.65	gm/cm ³	Default Value (TACO 742 Appendix C, Table B)
Air-filled soil porosity	θ_{a}	0.13	unitless	Default Value (TACO 742 Appendix C, Table B)
Water-filled soil porosity	θ	0.3	unitless	Default Value (TACO 742 Appendix C, Table B)
Total porosity	٦	0.43	unitless	Default Value (TACO 742 Appendix C, Table B)
Conditions:	Use equatio	Use equation S24 for calculating total soil porosity?	orosity?	7
				1 = YES 2 = NO
Soil Type Specific				
Saturated hydraulic conductivity	ہد ا	8	m/yr	Default Value (TACO 742 Appendix C, Table K)
Exponential parameter	1/(2b+3)	0.042	unitless	Default Value (TACO 742 Appendix C, Table K)

Ethylbenzene Inhalation, Construction Worker Exposure 507 East Washington

Page 1

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S4 AND S5 WORKSHEET - REMEDIATION OBJECTIVES ETHYLBENZENE

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER

= THQ * AT * 365 / [EF * ED * ((1/RfC) * (1/VF))] ВŐ

Inhalation Reference Concentration (residential=1; commercial=2; construction worker=3) mg/m³ ო ÷ Site Setting Code = П R/C

		RO	Target Hazard	Average	Exposure	Exposure	Inhalation	Volatilization Factor	Volatilization
3orehole	Depth		Quotient	Time	Frequent	Duration	Reference Concentration	for Construction Worker	Factor
-ocation	Interval								
_		Remediation Objective	THQ	AT	ΕF	ED	RfC	VF'	VF
	(feet)	(mg/kg)	(unitless)	(year)	(day/year)	(year)	(mg/m³)	(m ³ /kg)	(m ³ /kg)
0	0	170.7573	+	0.115	30	-	1.000	122.042	1220.422

ETHYLBENZENE 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER

$1-(\rho_b)/(\rho_s)$	η - θ _w	$\eta * (I/K_s)^{(1/(2b+3))}$	$K_{\infty} * f_{\infty}$
Ш	Ш	Ш	Ш
۲	$\boldsymbol{\theta}_a$	θ	Кd

	m/yr (by soil type)	unitless (by soil type)	gm/cm ³ (default value)	gm/gm (site specific)	gm/cm ³ (site specific)	unitless (by soil type)	unitless (by soil type)	unitless (by soil type)	cm³/g	meters/year (default value)	
œ	8	0.042	2.65	0.005	1.7	0.43	0.13	0.3	320	0.3	
Kd = $K_{\infty} * f_{\infty}$	K =	1/(2b+3) =	$\rho_s =$	$f_{oc} =$	$\rho_{\rm b} =$	= L	$\theta_a =$	$\theta_w =$	K _{oc} =	"	

stivity			ntent			ult)	efault)	Coefficient		Infiltratio
saturated hydraulic conductivity	parameter	density	fraction organic carbon content	nsity	total soil porosity (default)	air-filled soil porosity (default)	water-filled soil porosity (default)	Organic Carbon Partition Coefficient	ate	Constant Caturated
saturated hi	exponential parameter	soil particle density	fraction org	soil bulk density	total soil po	air-filled soi	water-filled	Organic Ca	infiltration rate	Constant

Calculated Default
Air-Filled Water-Filled
Soil Porosity Soil Porosity
$\theta_a = \theta_w$
unitless
0.046
0.300

SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER

 $= \ [[(\theta_{a}^{3.33} D_{i}^{*} H') + (\theta_{w}^{3.33} D_{w})]/\eta^{2}] * [1/((\rho_{b} * K_{d}) + \theta_{w} + (\theta_{a} * H'))]$

unitless (default value)

cm²/sec cm²/sec

0.075

0.324

П

ď Diffusivity in Water Henry's constant soil bulk density Diffusivity in Air

0.0000078 П П П П Ш П П Ш $\eta_{(default)}$ default water filled soil porosity default air filled soil porosity default total soil porosity water filled soil porosity air filled soil porosity total soil porosity

unitless (calculated value based on site-specific bulk density and soil particle density) unitless (calculated value based on calculated total soil porosity (equation S24)) unitless (calculated value based on calculated total soil porosity (equation S24))

gm/cm³ (site specific)

0.358 0.312 0.046

1.7

Diffusivity in Water Henry's Diffusivity in Air Soil Bulk Daneity Soil Soil-Water Air-Filled Soil Water-Filled unitless (calculated value using default total soil porosity $\boldsymbol{\eta})$ unitless (calculated value using default total soil porosity $\eta)$ unitless (default value from Appendix C; Table B) Interim Interim Interim 0.430 0.300 0.130 П Apparent $\overset{\theta}{_{a}}_{w}$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DITTUSIVITY	Calculated Value	d Value Calculated Value	Calculated Value	Porosity	Soil Porosity	Partition	Porosity	Density	In Air	Constant	in Water
$ = (\theta_{a}^{3.3*} \text{D}, \text{H}) = (\theta_{a}^{3.3*} \text{D}, \text{H}) = 1/[(\rho_{a}^{*} \text{K}_{a}) + \theta_{a}^{*} + (\theta_{a}^{*} + \text{H})] (\text{unitless}) (\text{unitless}) (\text{unitless}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) = 1/[(\rho_{a}^{*} \text{K}_{a}) + \theta_{a}^{*} + (\theta_{a}^{*} + \text{H})] (\text{unitless}) (\text{gm/cm}^{3}) = 1/[(\rho_{a}^{*} \text{K}_{a}) + \theta_{a}^{*} + (\theta_{a}^{*} + \text{H})] (\text{unitless}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) = 1/[(\rho_{a}^{*} \text{K}_{a}) + \theta_{a}^{*} + (\theta_{a}^{*} + \text{H})] (\text{unitless}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) (\text{gm/cm}^{3}) = 1/[(\rho_{a}^{*} \text{K}_{a}) + \theta_{a}^{*} + (\theta_{a}^{*} + \text{H})] (\text{unitless}) (\text{gm/cm}^{3}) (\text{gm/cm}$	DA	β1	β2	β3	$\theta_{\rm a}$	θ	K	F	β	Ö	ŗ	Dw
5 2.72294E-05 1.4155E-07 0.326571134 0.130 0.300 1.600 0.430 1.700 0.075 0.324 0 1	(cm ² /s)	$= (\theta_a^{3.33*}D_i^*H)$	$= (\theta_{w}^{3.33*}D_{w})$	1/[(p _b *ŀ	(unitless)	(unitless)	(cm ³ /g)	(unitless)	(gm/cm ³)	(cm ² /sec)	(unitless)	(cm ² /sec)
5 2.72294E-05 1.4155E-07 0.326571134 0.130 0.300 1.600 0.430 1.700 0.075 0.324 0												
	4.83426E-05	2.72294E-05	1.4155E-07	0.326571134	0.130	0.300	1.600	0.430	1.700	0.075	0.324	8200000.0
		_										
		_										

EQUATION FOR REMEDIATION OBJECTIVE - NONCARCINOGENICS EQUATION S8 WORKSHEET - VOLATILIZATION FACTOR ETHYLBENZENE SOIL INHALATION EXPOSURE ROUTE - ORGANIC CONSTITUENTS 507 EAST WASHINGTON STREET

CHAMPAIGN, ILLINOIS CONSTRUCTION WORKER VF = $Q/C * [(3.14*D_A*T)^{1/2}/(2*\rho_b*D_A)]*10^{-4}$

Inverse mean concentration @ center of square source (residential=1; commercial=2; construction worker=3) soil bulk density gm/cm³ (site specific) $(gm/m^2-s)/(kg/m^3)$ 85.810 1.7 ო || || Site Setting Code 0 O β

Volatilization	Interim	Interim		Apparent	Exposure	Exposure	Soil Bulk
Factor	Calculated Value	Calculated Value		Diffusivity	Interval	Duration	Density
VF	β,	β2	Q/C	DA	Т	ED	βb
(mg³/kg)	=(3.14*D _A *T) ^{1/2}	$=(2^*\rho_b^*D_A)$	(unitless)	(cm ² /s)	(sec)	(year)	(gm/cm ³)
1220.421648	23.37659384	0.000164365	85.81	4.83426E-05	360000		1.700

Ethylbenzene Inhalation, Construction Worker Exposure 507 East Washington

TABLE AA CALCULATION OF THE DISTANCE TO MEET TIER 1 ROS FOR THE SOIL COMPONENT OF THE GROUND WATER INGESTION EXPOSURE PATHWAY 507 E WASHINGTON STREET CHAMPAIGN, ILLINOIS

				Source Width	Source Width		Class II	Distance	
				(Parallel to	(Perpendicular	Distance	GW RO	from Source	Calculated
				GW flow in	to GW flow in	from Source	for	to Meet	Ground Water
		Maximum		horizontal	horizontal	to Compliance	SCGW	Tier 1	Concentration
Parameter	CAS #	Concentration	Location	plane)	plane)	Point ¹	Pathway	GWRO ²	at Distance X
		(mg/kg)		(feet)	(feet)	(feet)	(<i>mg/</i> L)	(feet)	(<i>mg/</i> L)
Benzene	71-43-2	3.16	B-846 (20-21')	90	66	100	0.025	86	2.45E-02
Ethyl benzene	100-41-4	62.8	B-847 (22-23')	90	66	100	1.0	13	9.48E-01

Key:

GW = Ground water

NA = Not applicable; the ground water concentration at the source is below the Tier 1 Class I GW RO (see Appendix Table X-2).

RO = Remediation objective

SCGW = Soil component of ground water

¹ TACO compounds ROs are from IEPA's TACO of July 15, 2013.

² Distance was varied until the Class I ground water RO for the SCGW pathway was met.

TABLE BB CALCULATION OF THE DISTANCE TO MEET SURFACE WATER QUALITY CRITERIA FOR THE SOIL COMPONENT OF THE GROUND WATER INGESTION PATHWAY 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

			Source Width	Source Width			Distance		Calculated
			(Parallel to	(Perpendicular	Distance	Surface	from Source	Ground Water	Ground Water
	Maximum		GW flow in	to GW flow in	from Source	Water	to Meet	Concentration	Concentration
	Soil		horizontal	horizontal	to Surface	Quality	Surface Water	at the Source ²	at Distance X
Parameter	Concentration	Location	plane)	plane)	Water	Criteria ¹	Quality Criteria ²	Csource	to Meet Criteria
	(mg/kg)		(feet)	(feet)	(feet)	(<i>mg/</i> L)	(feet)	(<i>mg/</i> L)	(<i>mg/</i> L)
Benzene	3.16	B-846 (20-21')	90	60	1700	3.10E-01	23	7.00E-01	3.08E-01
Ethyl benzene	62.8	B-847 (22-23')	90	60	1700	1.40E-02	63	4.05E+00	1.36E-02

Key:

GW = Ground water

IEPA = Illinois Environmental Protection Agency

NE = IEPA has not developed a Surface Water Quality Criterion for this compound

NA = Not applicable

RO = Remediation objective

SCGWI = Soil component of ground water

¹ Surface Water Quality Criteria are from 35 IAC 302 or the IEPA Derived Water Quality Standards list.

² ERM varied the distance until the Surface Water Quality Criteria was met.

APPENDIX F, TABLE F-1 CALCULATION OF STEADY-STATE ATTENUATION ALONG THE CENTERLINE OF A DISSOLVED PLUME DISTANCE TO TIER 1 RO CALCULATION 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

							Organic	Organic							Source Width	Source Width	First			Steady-State
		Distance from				First Order	Carbon-Water	Carbon	Soil-Water	Total	Soil	Aquifer			(perpendicular	(perpendicular	Term	Second	Third	Attenuation Along
		Downgradient	Longitudinal	Transverse	Vertical	Degradation	Partition	Content	Partition	Soil	Bulk	Hydraulic	Hydraulic	Specific	to flow in	to flow in	Dispersion	Term	Term	Centerline of
		Edge of Plume	Dispersivity	Dispersivity	Dispersivity	Constant	Coefficient	of Soil	Coefficient	Porosity	Density	Conductivity	Gradient	Discharge	horizontal plane)	vertical plane)	and	Transverse	Vertical	Dissolved Plume
Analyte	CAS #	х	α _x	α_{y}	α_z	λ	k _{oc}	foc	k _s	θ_t	$\rho_{\rm s}$	К	i	U	S_w	S _d	Decay	Dispersion	Dispersion	C[x]/C[source]
		(cm)	(cm)	(cm)	(cm)	(day-1)	(cm3 water/g carbon)	(g carbon/g soil)	(cm3 water/g soil)	(cm3 air/cm3 soil)	(g soil/cm3 soil)	(<i>cm/s</i>)	(cm/cm)	(cm/day)	(<i>cm</i>)	(<i>cm</i>)				
Benzene	71-43-2	2,621.3	2.62E+02	8.74E+01	1.31E+01	9.00E-04	5.00E+01	2.00E-03	1.00E-01	0.36	1.7	4.26E-05	0.070	7.16E-01	2.01E+03	2.00E+02	7.33E-02	8.63E-01	5.55E-01	3.51E-02
Ethyl benzene	100-41-4	396.24	3.96E+01	1.32E+01	1.98E+00	3.00E-03	3.20E+02	2.00E-03	6.40E-01	0.36	1.7	4.26E-05	0.070	7.16E-01	2.01E+03	2.00E+02	2.34E-01	1.00E+00	1.00E+00	2.34E-01

Key:

GW = Ground water

NA = Not applicable

RO = Remediation objective

SCGWI = Soil component of the ground water ingestion pathway

Data Sources:

- X = Distance at which the detected concentrations would meet the Tier 1 RO for Class I ground water, varied until the Tier 1 RO for the Class I ground water ingestion exposure route was met
- K = Slug testing data from 2011
- i = Estimated maximum site gradient
- foc = Default subsurface concentration
- Sw = Source width for waste area where analyte was detected at the highest concentration
- $\lambda =$ From TACO's Appendix C, Table E

All other = Default values in Tiered Approach to Corrective Action Objectives (July 15, 2013)

APPENDIX F - TABLE F-2 CALCULATION OF CONCENTRATION AT THE DISTANCE TO MEET THE TIER 1 RO SOIL COMPONENT OF THE CLASS I GROUND WATER INGESTION PATHWAY 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

Analyte	CAS #	C[x]/C[source] Steady-State Attenuation Along Centerline of Dissolved Plume ¹	Dilution Factor DF (unitless)	Henry's Law Constant H (unitless)	Organic Carbon-Water Partition Coefficient k _{OC} (cm ³ /g)	Soil-Water Partition Coefficient K _d (cm ³ /g)	Solubility S (mg/L)	Concentration in Soil at the Source (mg/kg)	Soil Leachate Concentration C _w (mg/L)	Ground Water Concentration at the Source ² C _{source} (mg/L)	Ground Water Concentration at Calculated Distance (mg/L)
Benzene	71-43-2	3.51E-02	20	2.30E-01	5.00E+01	1.00E-01	1.80E+03	3.16E+00	1.40E+01	0.70	0.0245
Ethyl benzene	100-41-4	2.34E-01	20	3.24E-01	3.20E+02	6.40E-01	1.70E+02	6.28E+01	8.09E+01	4.05	0.948

Key:

NA = Not applicable

RO = Remediation objective

SCGWI = Soil component of the ground water ingestion pathway

¹ See Table X-1 for the calculations.

² This calculation uses the minimum of the calculated target soil leachate concentration and the solubility to calculate the ground water concentration.

Table F-3 Variables

		Pick from this list
Site Name:	507 East Washington Street	Default Geology
Location:	Champaign, IL	Surficial soil (default)
Date:	1/16/2021	Subsurface soil (default)
		Gravel
		Sand
		Silt
Soil Type:	Clay	Clay
		Site Specific
Do you wish to consider retardation (Y/N)	Ν	

Do you wish to consider retardation (Y/N) N Do you wish to use the Domenico equation (Y/N) Y

<u>Variable</u>	Description	<u>Units</u>	Value	
θ_a	Volumetric Air Content in Vadose Zone Soils	cm3 air/cm3 total volume	0.19	
$\theta_{\mathbf{w}}$	Volumetric Water Content in Vadose Zone Soils	cm3 water/cm3 total volum	0.17	
η/θ_T	Total Soil Porosity	cm3 air/cm3 soil	0.36	
$ ho_b/ ho_s$	Soil Bulk Density	g soil/cm3 soil	1.7	
f _{oc}	Fraction of Organic Carbon in Soil	g Carbon/g soil	0.002	
d	Ground Water Mixing Zone Thickness	cm	200	
Ι	Infiltration Rate	cm/yr	30	
K	Saturated Hydraulic Conductivity	cm/s	4.26E-05	Highest geometric mean from 2011 test results around the site
i	Ground Water Gradient	cm/cm	0.0700	Highest estimated gradient in top 25 feet from ground surface, Class II ground water
S _d	Source Width (perpendicular to flow in vertical plane)	cm	200	

APPENDIX G, TABLE G-1 CALCULATION OF STEADY-STATE ATTENUATION ALONG THE CENTERLINE OF A DISSOLVED PLUME DISTANCE TO MEET SURFACE WATER QUALITY CRITERIA CALCULATION 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

							Organic	Organic							Source Width	Source Width	First			Steady-State
		Distance from				First Order	Carbon-Water	Carbon	Soil-Water	Total	Soil	Aquifer			(perpendicular	(perpendicular	Term	Second	Third	Attenuation Along
		Downgradient	Longitudinal	Transverse	Vertical	Degradation	Partition	Content	Partition	Soil	Bulk	Hydraulic	Hydraulic	Specific	to flow in	to flow in	Dispersion	Term	Term	Centerline of
		Edge of Plume	Dispersivity	Dispersivity	Dispersivity	Constant	Coefficient	of Soil	Coefficient	Porosity	Density	Conductivity	Gradient	Discharge	horizontal plane)	vertical plane)	and	Transverse	Vertical	Dissolved Plume
Analyte	CAS #	X	α _x	α _y	α_z	λ	k _{oc}	foc	k _s	θ_t	$\rho_{\rm s}$	К	i	U	S _w	S _d	Decay	Dispersion	Dispersion	C[x]/C[source]
		(<i>cm</i>)	(cm)	(cm)	(cm)	(day-1)	(cm3 water/g carbon)	(g carbon/g soil)	(cm3 water/g soil)	(cm3 air/cm3 soil)	(g soil/cm3 soil)	(cm/s)	(cm/cm)	(cm/day)	(<i>cm</i>)	(cm)				
Benzene	71-43-2	701.0	7.01E+01	2.34E+01	3.51E+00	9.00E-04	5.00E+01	2.00E-03	1.00E-01	0.36	1.7	4.26E-05	0.070	7.16E-01	1.83E+03	2.00E+02	4.43E-01	1.00E+00	9.96E-01	4.41E-01
Ethyl benzene	100-41-4	1,920.2	1.92E+02	6.40E+01	9.60E+00	3.00E-03	3.20E+02	2.00E-03	6.40E-01	0.36	1.7	4.26E-05	0.070	7.16E-01	1.83E+03	2.00E+02	5.14E-03	9.35E-01	7.02E-01	3.37E-03

Data Sources:

X = Distance at which the detected concentrations would meet the Surface Water Quality Criteria, varied until the Surface Water Quality Criteria was met

K = Slug testing data from 2011

i = Estimated maximum site gradient

foc = Default subsurface concentration

Sw = Source width for waste area where analyte was detected at the highest concentration

 λ = From TACO's Appendix C, Table E

All other = Default values in Tiered Approach to Corrective Action Objectives (July 15, 2013)

APPENDIX G, TABLE G-2 CALCULATION OF CONCENTRATION AT THE DISTANCE TO MEET THE SURFACE WATER QUALITY CRITERIA SOIL COMPONENT OF THE GROUND WATER INGESTION PATHWAY 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

Analyte	CAS #	C[x]/C[source] Steady-State Attenuation Along Centerline of Dissolved Plume ¹	Dilution Factor DF	Henry's Law Constant H	Organic Carbon-Water Partition Coefficient k _{OC}	Soil-Water Partition Coefficient K _d	Solubility S	Concentration in Soil at the Source	Soil Leachate Concentration C _w	Ground Water Concentration at the Source ² C _{source}	Calculated Ground Water Concentration at Distance X to Meet Criteria
			(unitless)	(unitless)	(cm ³ /g)	(cm ³ /g)	(<i>mg/</i> L)	(mg/kg)	(<i>mg/</i> L)	(<i>mg/</i> L)	(mg/L)
Benzene	71-43-2	4.41E-01	20	2.30E-01	5.00E+01	1.00E-01	1.80E+03	3.16E+00	1.40E+01	7.00E-01	3.08E-01
Ethyl benzene	100-41-4	3.37E-03	20	3.24E-01	3.20E+02	6.40E-01	1.70E+02	6.28E+01	8.09E+01	4.05E+00	1.36E-02

Key:

NA = Not applicable

RO = Remediation objective

¹ See Table X-3 for the calculations.

² This calculation uses the minimum of the calculated target soil leachate concentration and the solubility to calculate the ground water concentration.

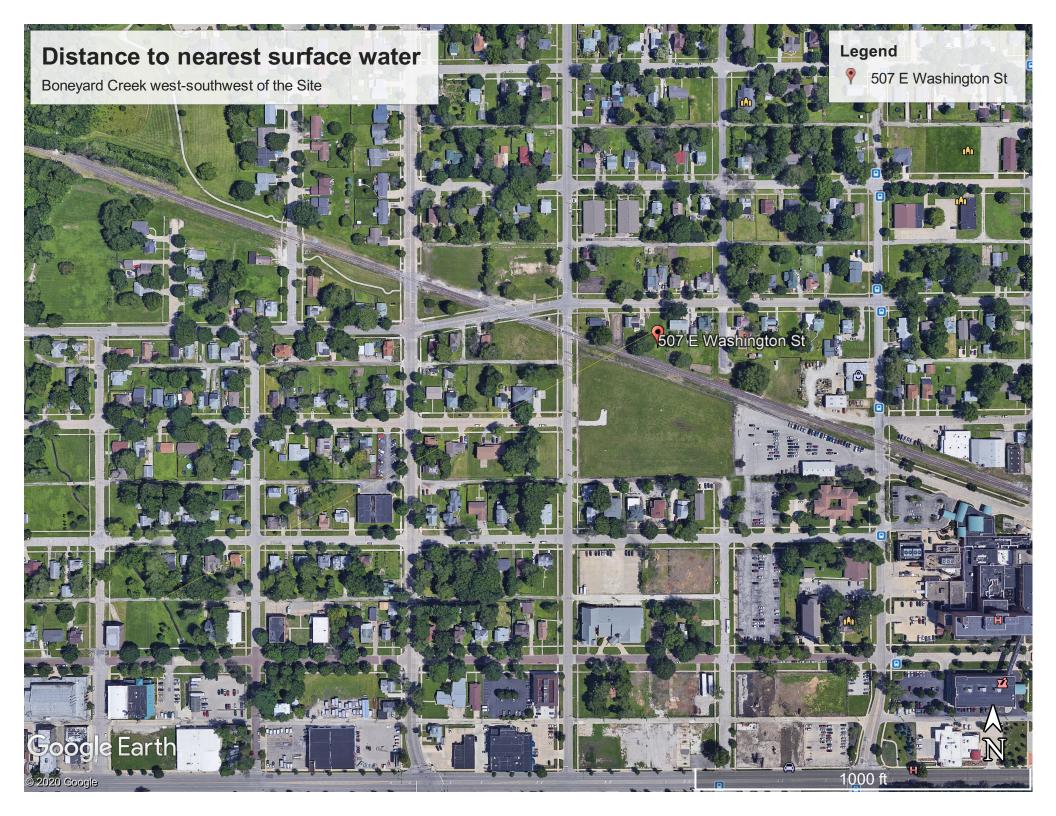

APPENDIX G, TABLE G-2 CALCULATION OF CONCENTRATION AT THE DISTANCE TO MEET THE SURFACE WATER QUALITY CRITERIA SOIL COMPONENT OF THE GROUND WATER INGESTION PATHWAY 507 EAST WASHINGTON STREET CHAMPAIGN, ILLINOIS

Table G-3 Variables

		Pick from this list
Site Name:	507 East Washington Street	Default Geology
Location:	Champaign, IL	Surficial soil (default)
Date:	1/16/2021	Subsurface soil (default)
		Gravel
		Sand
		Silt
Soil Type:	Clay	Clay
		Site Specific
Do you wish to consider retardation (Y/N)	Ν	

Do you wish to consider retardation (Y/N) N Do you wish to use the Domenico equation (Y/N) Y

<u>Variable</u>	Description	<u>Units</u>	Value	
θ_{a}	Volumetric Air Content in Vadose Zone Soils	cm3 air/cm3 total volume	0.19	
$\theta_{\mathbf{w}}$	Volumetric Water Content in Vadose Zone Soils	cm3 water/cm3 total volum	0.17	
η/θ_{T}	Total Soil Porosity	cm3 air/cm3 soil	0.36	
$ ho_b/ ho_s$	Soil Bulk Density	g soil/cm3 soil	1.7	
f _{oc}	Fraction of Organic Carbon in Soil	g Carbon/g soil	0.002	
d	Ground Water Mixing Zone Thickness	cm	200	
Ι	Infiltration Rate	cm/yr	30	
K	Saturated Hydraulic Conductivity	cm/s	4.26E-05	Highest geometric mean from 2011 test results around the site
i	Ground Water Gradient	cm/cm	0.0700	Highest estimated gradient in top 25 feet from ground surface, Class II ground water
S _d	Source Width (perpendicular to flow in vertical plane)	cm	200	

Appendix G

Environmental Land Use Control to be Applied to the Site

Environmental Land Use Control

PREPARED BY:				
Name:				
Address:				
RETURN TO:				
Name:				
Address:				

THE ABOVE SPACE FOR RECORDER'S OFFICE

Environmental Land Use Control

THIS ENVIRONMENTAL LAND USE CONTROL ("ELUC"), is made this ______ day of ______, 20___, by Ameren Services, ("Property Owner") of the real property located at the common address 507 East Washington Street, Champaign, IL 61820 ("Property").

WHEREAS, 415 ILCS 5/58.17 and 35 Ill. Adm. Code 742 provide for the use of an ELUC as an institutional control in order to impose land use limitations or requirements related to environmental contamination so that persons conducting remediation can obtain a No Further Remediation determination from the Illinois Environmental Protection Agency ("IEPA"). The reason for an ELUC is to ensure protection of human health and the environment. The limitations and requirements contained herein are necessary in order to protect against exposure to contaminated soil, groundwater, or soil gas that may be present on the property as a result of previous manufactured gas plant activities. Under 35 Ill. Adm. Code 742, the use of risk-based, site-specific remediation objectives may require the use of an ELUC on real property, and the ELUC may apply to certain physical features (e.g., engineered barriers, indoor inhalation building control technologies, monitoring wells, caps, etc.).

WHEREAS, Ameren Services intends to request risk-based, site specific soil, groundwater, or soil gas remediation objectives from IEPAunder 35 Ill. Adm. Code 742 to obtain risk-based closure of the site, identified by Bureau of Land 0190100008, utilizing an ELUC.

NOW, THEREFORE, the recitals set forth above are incorporated by reference as if fully set forth herein, and the Property Owner agrees as follows:

Section One. Property Owner does hereby establish an ELUC on the real estate, situated in the County of Champaign, State of Illinois and further described in Exhibit A attached hereto and incorporated herein by reference (the "Property").

Attached as Exhibit B are site maps that show the legal boundary of the Property, any physical features to which the ELUC applies, the horizontal and vertical extent of the contaminants of concern above the applicable remediation objectives for soil, groundwater, or soil gas, and the nature, location of the source, and direction of movement of the contaminants of concern, as required under 35 Ill. Adm. Code 742.

Section Two. Property Owner represents and warrants it is the current owner of the Property and has the authority to record this ELUC on the chain of title for the Property with the Office of the Recorder or Registrar of Titles in Champaign County, Illinois.

Section Three. The Property Owner hereby agrees, for itself, and its heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessoror user of the Property or the holder of any portion thereof or interest therein, that

Parcel 46-21-07-332-018 in its entirety:

- 1. Construction worker notification is required for any surface or subsurface excavation or work. Construction workers must be notified of conditions at the Property exceeding worker protection ROs, and any future constructions activities shall be conducted in accordance with applicable OSHA HAZWOPER regulations pursuant to 29 CFR 1910.120; and
- 2. The groundwater under the Property shall not be used as a potable supply of water, installation of groundwater supply wells is prohibited, and any contaminated groundwater that is removed or disturbed from the Property described in Exhibit A must be handled in accordance with all applicable laws and regulations;

Section Four. This ELUC is binding on the Property Owner, its heirs, grantees, successors, assigns, transferees and any other owner, occupant, lessee, possessor or user of the Property or the holder of any portion thereof or interest therein. This ELUC shall apply in perpetuity against the Property and shall not be released until the IEPA determines there is no longer a need for this ELUC as an institutional control; until the IEPA, upon written request, issues to the site that received the no further remediation determination a new no further remediation determination (s) or requirement(s); the new no further remediation determination is filed on the chain of title of the site subject to the no further remediation; and until a release or modification of the land use limitation or requirement is filed on the chain of title for the Property.

Section Five. Information regarding the remediation performed on the Property may be obtained from the IEPA through a request under the Freedom of Information Act (5 ILCS 140) and rules promulgated thereunder by providing the IEPA with the 0190100008 identification number listed above.

Section Six. The effective date of this ELUC shall be the date that it is officially recorded in the chain of title for the Property to which the ELUC applies.

WITNESS the following signatures:

Property Owner(s)			
By:			
Its:			
Date:			_
STATE OF ILLINOIS)		
COUNTY OF) SS:)		
Ι,		_the undersigned, a Notary Public for said	•
		and ty Owner(s) of	

personally known to me to be the Property Owner(s) of ______, and personally known to me to be the same persons whose names are subscribed to the foregoing instrument, appeared before me this day in person and severally acknowledged that in said capacities they signed and delivered the said instrument as their free and voluntary act for the uses and purposes therein set forth.

Given under my hand and official seal, this _____ day of _____, 20_.

Notary Public

 STATE OF
)

)
)

)
 S.S.

)
)

I,_____, a notary public, do hereby certify that before me this day in person appeared ______, personally known to me to be the Property Owner(s), of ______, each severally acknowledged that they signed and delivered the foregoing instrument as the Property Owner(s) herein set forth, and as their own free and voluntary act, for the uses and purposes herein set forth.

Given under my hand and seal this _____ day of _____, 20_.

Notary Public

PIN NO. 46-21-07-332-018 (Parcel Index Number)

Exhibit A

The subject property is located in the City of Champaign, Champaign County, State of Illinois, commonly known as 308 North Fifth Street, Champaign, Illinois and moreparticularly described as:

COMMON ADDRESS:

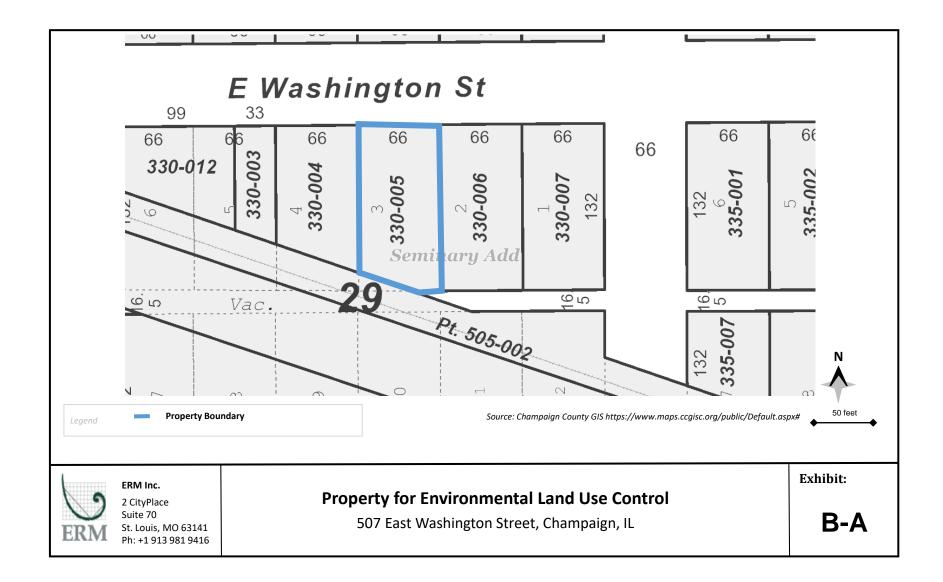
507 East Washington Street, Champaign, IL 61820

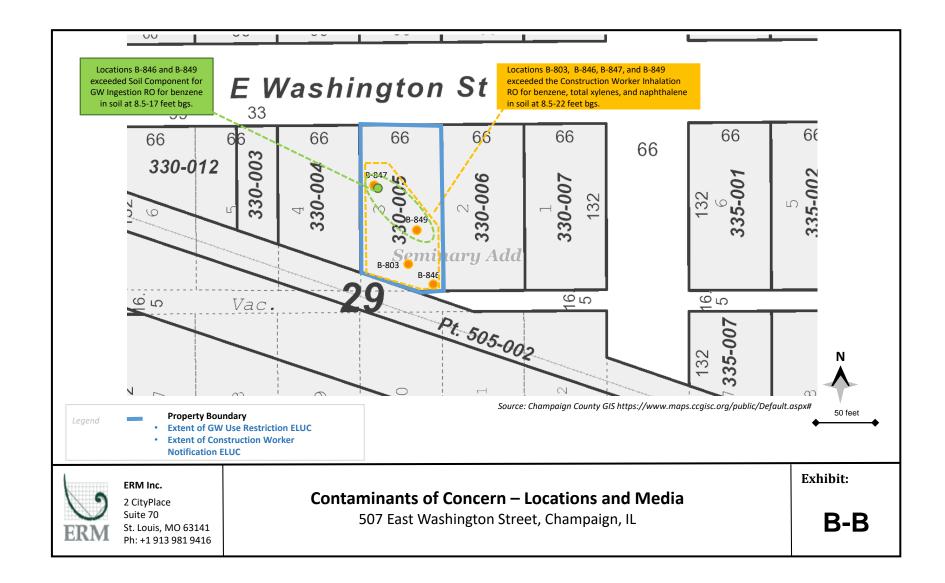
LEGAL DESCRIPTION:

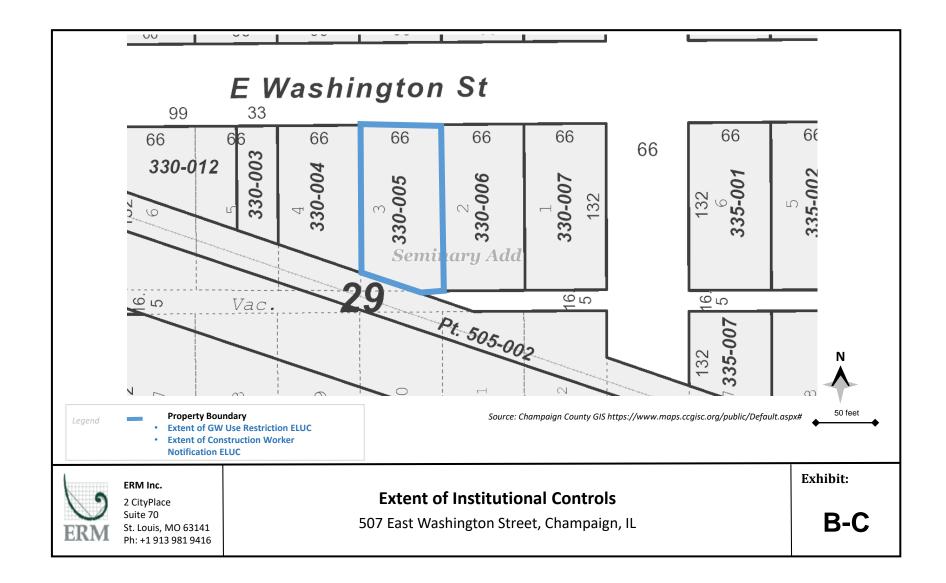
Lot 3 in Block 29 of Seminary Addition to Urbana, now part of the City of Champaign, less the railroad right-of-way through said Lot, as per plat recorded in Deed Record "T" at Page 30, situated in Champaign County, Illinois

REAL ESTATE TAX INDEX OR PARCEL # (PURSUANT TO SECTION 742. 1010(d)(2)):

Parcel # 46-21-07-330-005


PIN NO. 46-21-07-332-018


Exhibit B


IN ACCORDANCE WITH SECTION 742.1010(d)(8)(A) through (D), PROVIDE ALL THE FOLLOWING ELEMENTS. ATTACH SEPARATE SHEETS, LABELED AS EXHIBIT B, WHERE NECESSARY.

- (A) A scaled map showing the legal boundary of the property to which the ELUC applies.
- (B) Scaled maps showing the horizontal and vertical extent of contaminants of concern above the applicable remediation objectives for soil, groundwater, and soil gas to which the ELUC applies.
- (C) Scaled maps showing the physical features to which an ELUC applies (e.g., engineered barriers, indoor inhalation building control technologies, monitoring wells, caps, etc.).
- (D) Scaled maps showing the nature, location of the source, and direction of movement of the contaminants of concern.

(Source: Amended at 37 Ill. Reg. 7506, effective July 15

