08-36255

Ameron Services
Environmental, Safety & Health
314.554.2233 (Phone)
314.554.6182 (Facaimile)
Brantin Zijameren.com

RELEASABLE

TP town Haw One Ameren Plaza 1901 Chouteau Avenue PO Box 66149 St. Louis, MO 68166-6149 114.621.3222

0190100008

December 21, 2007

JAN 0 7 2008

REVIEWER JW

Mr. Jason Crompton
Illinois Environmental Protection Agency
Site Remediation Program — Bureau of Land
1021 North Grand Avenue East
Springfield, Illinois 62794-9276

RECEIVED

DEC 2 1 2003

Subject:

Dear Mr. Crompton:

Comprehensive Site Investigation Report Former Manufactured Gas Plant Site

AmerenIP

Champaign, Illinois LPC# 0190100008 IEPA/BOL

AmerenIP is submitting the Comprehensive Site Investigation Report (SIR) for the former Manufactured Gas Plant Site located in Champaign, Illinois. The site is located at 308 North Fifth Street (formerly 502 East Hill Street). The SIR describes activities that were performed on property owned by AmerenIP and adjacent properties.

As an authorized party, Ameren hereby request the Illinois EPA's authorization to provide notice as part of Agency-approved community relations activities pursuant to subsections (a) and (c) of Section 25d-3 of the Environmental Protection Act. We would be pleased to integrate the new Community Right-To-Know (CRTK) Act requirements into our ongoing community relations program.

Ameren has had relationship since 1986 with the City of Champaign and the surrounding neighborhood in regard to this former manufactured gas plant site. Our staff has notified city officials and neighbors of periodic on-site work (including source material removal activities in 1997/1998 and various investigational activities) through informal and written communications. We have been in communication with the City of Champaign and adjacent property owners.

Ameren has prepared a fact sheet describing the findings of the SIR pursuant to CRTK regulations. We will be submitting a draft of the fact sheet to you for review and comment prior to distribution in January 2008.

If you have any questions relating to the SIR or our request to conduct communications activities pursuant to CRTK regulations, you may contact me at (314) 554-2233. Questions concerning the SIR may also be directed to Mr. Peter Sazama with Philip Environmental Services Corporation at (618) 281-1575.

Sincerely,

Brian H. Martin, CHMM

Consulting Environmental Scientist

Enclosure:

Site Investigation Report (Original and 2 copies)

cc:

Philip Environmental Services Corporation (1 copy)

Mable Thomas - City of Champaign (1 copy)

Gina Jackson - City of Champaign (1 copy)

Lori Muller - USEPA (1 copy)

ORIGINAL

Comprehensive Site Investigation Report For AmerenIP Champaign, Illinois Former Manufactured Gas Plant State ID 0190100008

December 2007

Prepared for:

AMERENIP

ST. LOUIS, MISSOURI

Columbia, Illinois

Comprehensive Site Investigation Report for AmerenIP Champaign, Illinois Former Manufactured Gas Plant State ID 0190100008

December 2007

Prepared for:

AMERENIP St. Louis, Missouri

PHILIP ENVIRONMENTAL SERVICES CORP. 210 West Sand Bank Road Columbia, Illinois 62236

Project (62402647)

EXECUTIVE SUMMARY

1	INTRODUCTION1						
	1.1	Site Location					
	1.2	Project Objectives					
	1.3	Report Organization	2				
2	SITE BACKGROUND						
	2.1	Site History	4				
	2.2	Site Description	7				
	2.3	3 Legal Description					
	2.4	6 · · · · · 6 · · · · · 6 · · · · · · ·					
	2.5	Private and Public Drinking Water Wells in Vicinity					
	2.6	Site Geology	11				
		2.6.1 Surficial Fill Layer	11				
		2.6.2 Weathered Till Unit	12				
		2.6.3 Unweathered Till Unit	12				
		2.6.4 Lower Silty Sand Unit	12				
	2.7	Site Hydrogeology	12				
		2.7.1 Shallow Groundwater System	13				
		2.7.2 Deep Groundwater System	14				
	2.8	Geological Summary	14				
	2.9	Preliminary Assessment	15				
	2.10	Previous Investigations	15				
		2.10.1 Phase IA/IB Investigation					
		2.10.2 Phase IC/ID RECON® Investigation	17				
		2.10.3 Phase II Site Investigation	18				
	2.10.3.1 Borehole Drilling and Soil Sampling						
	2.10.3.2 Test Pit Excavation And Sampling						
		2.10.3.3 Surface Soil Sampling					
	2.10.3.4 Storm Sewer Sampling						
		2.10.3.5 Residential Air Sampling	21				
		2.10.3.6 Groundwater Monitoring and Sampling	22				
		2.10.3.7 Site Surveying					
	2.10.3.8 Chemical Analysis						
		2.10.3.9 Phase II SI Summary	26				
		2.10.4 Supplemental Site Investigation	26				
		2.10.5 Interim Remedial Measures	27				
		2.10.6 Groundwater Monitoring	29				
	2.11	Enforcement Actions	31				
3	COMPREHENSIVE SITE INVESTIGATION WORK PLAN						
	3.1	CSI Objectives	33				
	3.2	Test Pit Excavation					
	3.3	On-Site Soil Boring and Sampling	34				
	3.4	Off-Site Soil Boring And Sampling					
		iii					

	3.5	Groundwater Sampling	36	
	3.6	Site Survey		
	3.7	Analytical Program	36	
4	COMPREHENSIVE SITE INVESTIGATION FIELD INVESTIGATION			
	4.1	Test Pit Excavation and Sampling		
	4.2	Soil Boring And Sampling		
	4.3	Groundwater Sampling		
	4.4	CSI Laboratory Analytical Program		
	4.5	Management of Investigation Waste		
	4.6	CSI Quality Assurance Activities	51	
5	CHEMICAL ANALYTICAL RESULTS			
	5.1	Analytical Program Summary		
	5.2	Surface Soil Results		
		5.2.1 BTEX And PAH Results		
		5.2.2 VOC And SVOC Results		
		5.2.3 Metals and Cyanide Results		
	5.3	Shallow Subsurface Soil Results		
		5.3.1 BTEX And PAH Results		
		5.3.2 VOC And SVOC Results		
		5.3.3 Metals Results		
	5.4	Deep Subsurface Soil Results		
		5.4.1 BTEX And PAH Results		
		5.4.2 VOC and SVOC Results		
		5.4.3 Metals Results		
	5.5	Total Petroleum Hydrocarbons		
		5.5.1 Surface Soil Results		
		5.5.2 Shallow Subsurface Soil Results		
	<i>5 (</i>	5.5.3 Deep Subsurface Soil Results		
	5.6	Groundwater Results		
	5.7	QA/QC Analytical Summary	62	
6	ENDANGERMENT ASSESSMENT			
	6.1	Recognized Environmental Conditions		
		6.1.1 Former Tar Wells		
		6.1.2 Former Tar Separator		
		6.1.3 Former Purifiers		
		6.1.4 Former Gas Holder Tank GH-1		
		6.1.5 Former Gas Holder Tank GH-2		
		6.1.6 Former Gas Holder Tank GH-3		
		6.1.7 Former Oil And Diesel Storage Tanks		
		6.1.8 North Property Line		
		6.1.9 East Property Line and Former Gas Experiment Station		
	6.2	6.1.10 Vacated Hill Street Right-Of-Way		
	0.2	6.2.1 Surface Soil Impact Assessment		
		0.2.1 Surface son impact Assessment	,08	

	6.2.		69				
	6.2.	1					
	6.2.						
	6.2.	5 Groundwater Assessment	73				
7	CSI SUMMARY AND CONCLUSIONS						
-		izontal Extent Of Impacts					
		tical Extent of Impacts					
8	ILLINOIS	S LICENSED PROFESSIONAL GEOLOGIST REVIEW	80				
RE	FERENCE	S					
LIS	T OF TAB	LES					
LIS	T OF FIGU	URES					
API	PENDIX A	SANBORN FIRE INSURANCE MAPS					
API	PENDIX B	EDR ILLINOIS WATER WELL REPORT AND EDR RADIUS WITH GEO CHECK	S MAP				
API	PENDIX C	PHASE II SOIL ANALYTICAL RESULTS					
API	PENDIX D	PHASE II SI BORING LOGS					
API	PENDIX E	PHASE II SI WELL CONSTRUCTION DATA					
API	PENDIX F	PHASE II SI GROUNDWATER ANALYTICAL RESULTS					
API	PENDIX G	PHYSICAL TESTING LABORATORY DATA					
API	PENDIX H	SUPPLEMENTAL SI BORING LOGS					
API	PENDIX I	CSI (2004) BORING LOGS					
API	PENDIX J	MONITORING WELL WATER LEVEL DATA					
API	PENDIX K	CSI ANALYTICAL CHAIN-OF-CUSTODY RECORDS					
API	PENDIX L	CSI SOIL ANALYTICAL RESULTS					
API	PENDIX M	CSI GROUNDWATER ANALYTICAL RESULTS					
API	PENDIX N	CSI LABORATORY QA/QC REPORTS					

Executive Summary

AmerenIP is submitting this Comprehensive Site Investigation Report (SIR) to describe the soil and groundwater impact at the former manufactured gas plant (MGP) facility in Champaign, Illinois. The Comprehensive Site Investigation has been prepared in accordance with the Illinois Environmental Protection Agency's (IEPA) Site Remediation Program (SRP) to meet the requirements of Illinois Administrative Code (IAC) Section 740.425. This site has been assigned State I.D. 0190100008.

This Comprehensive SIR is being submitted with the intent of the Remedial Applicant (RA), AmerenIP, to obtain a Comprehensive No Further Remediation (NFR) letter for the remediation site as identified in Figure ES-1. Findings of the previous investigations indicated the presence of soil and groundwater impact exceeding Tier 1 remediation objectives (ROs). Interim remedial measures (IRM) were performed in 1997 and 1998 to address subsurface impact.

The primary objective of the comprehensive site investigation was to define the extent, both vertical and horizontal, of the MGP related impacts on the AmerenIP property. Information collected and evaluated from previous site investigations indicates that some additional investigation may be required to further define the extent off-site. Based upon the data that is currently available, there is minimal potential for exposure to individuals within and outside of the remediation site for the constituents of concern. Where necessary and appropriate, AmerenIP will coordinate with potentially affected property owners to complete off-site evaluations and address impacts. Such off-site data will be incorporated into future reports.

AmerenIP initiated the investigation activities and performed the appropriate actions to address the impact related to the former uses of the property.

Site Description

The remediation site (Figure ES-1) is located at 308 North Fifth Street (formerly 502 East Hill Street), Champaign, Illinois. The site consists of a vacant flat area secured by a chain-link fence, and is owned by AmerenIP.

The site is located in a mixed residential and commercial neighborhood. At this time the future uses of the surrounding properties are anticipated to remain as mixed residential and commercial.

Site History

Historical information indicates that the former Champaign and Urbana Gas Light Company and subsequently AmerenIP, operated a MGP on the remediation site from approximately 1869 through the early 1930s. The plant was placed on standby status from the early 1930's to the mid 1950's and was used for meeting peak demand up until the mid 1950's. The site remained vacant and unused from 1960 until the property was sold to American Legion Post 559 in 1979. The "Booster House" was maintained and used for periodic meetings by the

American Legion from 1979 until 1991. AmerenIP repurchased the property from the American Legion in 1991 and the site has since remained vacant.

Site Investigation Objectives

This Comprehensive SIR is being submitted with the intent of the RA, AmerenIP, to obtain a Comprehensive NFR Letter for the remediation site as identified in ES-1. Findings of the site investigation indicated the presence of soil and groundwater impact exceeding Tier 1 ROs.

Technical Approach

The technical approach for the investigations included reviewing historical data and information to identify potential recognized environmental conditions (RECs). Upon identification of the potential RECs a plan was developed to perform subsurface investigation activities to either confirm or exclude the actual presence of subsurface impact that would be associated with those potential RECs. The approach involved numerous site investigations (from 1986 to 2004) within the remediation site and its surrounding properties. Investigation results indicated the presence of subsurface soil and groundwater impact.

Recognized Environmental Conditions

Historical information representing past uses of the property identifies RECs to most likely be present on most of the remediation site. The former gas plant and associated buildings, three tar wells, two gas holders, and two oil tanks were located on the northern portion of the site. The former booster house, one gas holder, three purifiers, and seven oil tanks were located on the southern portion of the site. No other RECs were identified.

Constituents of Concern

The analytical data set was compared to the Tier 1 RO values, the provisional non-TACO ROs, and accepted background levels as an initial screening. Based on this review and comparison to the Tier1 ROs and background levels, the potential exposure pathways of concern are:

- The *soil ingestion pathway* for residential, industrial/commercial and construction worker settings;
- The soil inhalation pathway for residential, industrial/commercial and construction worker settings;
- The soil component to groundwater ingestion pathway; and
- The groundwater ingestion pathway.

Twenty-five constituents of concern (COC) were identified in soils. Fifteen constituents have been identified in groundwater at levels exceeding Tier 1 ROs. The exposure pathways and constituents of concern that exceed Tier 1 ROs or a background level are summarized in

Table ES-1. Remedial actions have been performed to address significant levels of impact. AmerenIP may incorporate the following measures in order to meet the requirements for NFR:

- remediation through excavation and proper disposal of impacted soil exceeding ROs;
- calculation of Tier 2 and/or Tier 3 ROs using site specific information and data;
- the construction and use of engineered barriers to restrict exposure;
- implementation of Highway Authority Agreements with appropriate highway jurisdictions; and/or
- implementation of institutional controls for property use as industrial/commercial purposes and for requirements of maintaining construction worker protection;

The implementation of these actions in order to meet the comprehensive NFR requirements will be discussed and presented in the Remedial Objectives Report (ROR) and the Remedial Action Completion Report (RACR).

1 INTRODUCTION

This report has been prepared for AmerenIP by Philip Environmental Services Corporation (PSC). PSC was retained by AmerenIP to provide consulting services for the investigation and closure of the former Champaign manufactured gas plant (MGP) site located in Champaign, Illinois. Site investigation activities have been performed in accordance with 35 Illinois Administrative Code (IAC) Section 740 – Site Remediation Program (SRP) and 35 IAC Section 742- Tiered Approach to Corrective Action Objectives (TACO).

Environmental investigation and remediation activities have been performed at the Champaign site since 1986. Therefore, there is a significant amount of site specific data that pre-dates the SRP and TACO guidance. Even though current methodologies were not in place at the time the data was collected, this information is very useful in understanding the current site conditions, including the degree and extent of environmental impacts. This report incorporates these earlier data to the degree practicable and both geological and chemical analytical data are included in this report.

1.1 Site Location

The site is located within the city limits of Champaign, Illinois in Champaign County in the northeast quarter of the southwest quarter of Section 7, Township 19 North, Range 9 East of the Third Principal Meridian. The site address is 308 North Fifth Street (formerly 502 East Hill Street), Champaign, Illinois. The property is currently vacant, is secured by a chain-link fence, and is owned by AmerenIP. Figure 1-1 illustrates the approximate location of the site. The general area around the site consists if both residential and commercial properties. Figure 1-2 depicts the remediation site boundaries. Figure 1-2 also identifies the extents to which AmerenIP is seeking to obtain a No Further Remediation (NFR) letter.

A railroad right-of-way (Norfolk-Southern) borders the site to the north and several residential properties are located north of the single active track within the railroad right-of-way. Vacated Sixth Street right-of-way is adjacent to the east of the site; however, Sixth Street is abandoned between the railroad right-of-way and the alley south of the site. Other property east of the vacated Sixth Street right-of-way is commercial. Residential properties to the south are separated from the site by the chain link fence and an alley. North Fifth Street borders the site to the west and separates the site from residential properties west of Fifth Street. At one time, Hill Street approximately bisected the site in the east-west direction but is now part of the site and owned by AmerenIP.

Prepared by Philip Services Corp.

December 2007

1.2 Project Objectives

The primary objective of the Comprehensive Site Investigation (CSI) was to define the extent, both vertical and horizontal, of the MGP related impacts on the AmerenIP property. Information collected and evaluated from previous site investigations indicates that some additional investigation may be required to further define the extent off-site. Based upon the data that is currently available, there appears to be a minimal potential for exposure to individuals within and outside of the remediation site for the constituents of concern. Where necessary and appropriate, AmerenIP will coordinate with potentially affected property owners to complete off-site evaluations and address impact. Such off-site data will be incorporated into future reports.

The data obtained from the CSI were utilized with the previous existing data for the evaluation of potential actions required to obtain a NFR letter for the site from the Illinois Environmental Protection Agency (IEPA).

Specific objectives of the CSI activities included the following:

- Completely characterize site geological and hydrogeological conditions;
- Assess the existence, condition, and contents of subsurface structures associated with the former MGP and not addressed during the Interim Remedial Measures (IRM) activities completed in 1997;
- Characterize the degree and extent of soil and groundwater impacts with respect to depth and site boundaries; and
- Support the development of remediation objectives for the site.

These objectives were addressed through completion of the following field activities during 2004:

- Excavation and sampling of test pits;
- Completion of surface and subsurface soil sampling using a GeoProbeTM:
- Completion of a site survey;
- Redevelopment of existing groundwater monitoring wells;
- Collection of groundwater samples; and
- Completion of soil and groundwater laboratory analytical program.

1.3 Report Organization

This Comprehensive Site Investigation Report (CSIR) was prepared for submittal to the IEPA to meet the requirements of IAC Section 740.425. This report is organized into eight technical sections and fourteen appendices. Section 1 provides an introduction to the site and objectives of this report.

Section 2 presents information on the background of the site and includes details relative to site history and previous investigation activities. Since information and data from previous investigations is used in the evaluation of current site conditions, Section 2 also includes a presentation of previous data and results of earlier studies. In addition, Section 2 includes a discussion of site physical conditions, including regional and site specific geological and hydrogeological conditions. Section 3 presents a brief overview of the Comprehensive Site Investigation Work Plan and Section 4 presents a discussion of work completed for the investigation. Section 5 presents the investigation chemical analytical program and includes a discussion of the results. Section 6 presents a discussion of the endangerment assessment and includes a discussion of recognized environmental conditions at the site and the results of a comparison to Tier 1 Remediation Objectives (ROs). Section 7 is a summary of the nature and extent of impacts at the site. Section 8 presents the Illinois Licensed Professional Geologist review statement and certification.

This report includes:

- A description of the site;
- A discussion of any enforcement or response activities;
- A sampling plan developed for investigation activities;
- The discussion of site investigation field activities;
- A presentation of the data and results of the analytical testing and the evaluation of the hydrogeological conditions;
- An endangerment assessment;
- A summary and conclusions; and
- Appendices and supporting documentation.

Prepared by Philip Services Corp.

December 2007

2 SITE BACKGROUND

The following sections provide a description and characterization of the site as required under IAC Section 740.425(b)(2). The sections provide site information, a site setting, and legal description. No Phase I Environmental Site Assessment (ESA) report was prepared; however standard Phase I ESA data was collected as outlined in ASTM 1527 and was used to develop the approach for the investigation and a site investigation plan.

2.1 Site History

Historical information was used for evaluating prior property use and to identify potential recognized environmental concerns (RECs). The historical data helped AmerenIP develop a scope and plan for investigation activities and the selection of constituents for analysis. The following limited information relative to MGP history is summarized from Sanborn Fire Insurance Maps (Sanborn Maps), Brown's Directory of American Gas Companies (Brown's Directories), AmerenIP files, and other historical documents.

Historical information suggests that the original MGP at the site began operation circa 1869 and continued through approximately 1933. Figure 2-1 presents a panoramic drawing illustrating the gas plant in 1869 and was taken from a bird's eye view of the city of Champaign originally published by the Chicago Lithograph Co. Records for the site prior to 1887 are extremely limited; however, the first edition of Brown's Directory (1887) indicates that the Champaign and Urbana Gas Light Co. was producing coal gas at the site. Table 2-1 presents a summary of Brown's Directory information for the Champaign site. An 1887 Sanborn Map illustrates the facility layout and included a single gas holder, coal shed, retorts, lime house, two wells, and condensing, purifying, and meter rooms. Figure 2-2 presents a historical map obtained from AmerenIP's records showing approximate locations of MGP structures in 1910. Copies of available Sanborn Maps showing the site are presented in Appendix A.

Between 1890 and 1907, the approximate annual production grew from 6,000,000 cubic feet (c.f.) per year to approximately 30,000,000 c.f. per year. The 1907 Brown's Directory indicates that gas production was a combination of coal gas and oil gas, which continued through 1911. However, the 1902 Sanborn Map suggests that both coal gas and water gas processes were in operation by 1902. During the period 1907 to 1911, gas production increased from 30,000,000 c.f. per year to approximately 58,000,000 c.f. per year.

In the 1910 Brown's Directory, the gas holder capacity was identified as 120,000 c.f. This holder capacity is consistent with the approximate

combined capacity of gas holders GH-1 and GH-2 depicted in the historical drawings (Figure 2-2). The original construction date for these two gas holders is unknown; however, Sanborn Maps for 1897 and 1902 indicate that gas holder GH-2 was constructed sometime during that five year period. The 1902 Sanborn Map indicates the capacity of GH-1 was 23,000 c.f. and the capacity of GH-2 was 49,000 c.f.

The 1909 to 1911 time frame was a period of change and expansion at the facility. A 1910 site layout drawing (Figure 2-2) illustrates the plant facilities, which included both retorts and water gas sets, indicating another change in the gas making processes. This 1910 drawing also shows three tar wells, two oil storage tanks, and an ammonia storage tank. There are two gas holders shown (consistent with GH-1 and GH-2) plus a note that a third, two-lift 340,000 c.f., gas holder (GH-3) was located to the south across Hill Street (Figure 2-2). The 1909 Sanborn Map also indicates that a second lift had been added to holder GH-2, increasing the capacity to 100,699 c.f. The 1911 Brown's Directory indicates that gas holder capacity for the plant was 500,000 c.f., confirming the note on the 1910 drawing. The 1912 Brown's Directory also confirms the installation of water gas equipment during this time period. The 1902 and 1909 Sanborn Maps also confirm the presence of water gas equipment.

Brown's Directories between 1912 and 1918 indicate little change occurred at the plant other than a steady increase in production from approximately 50,000,000 c.f. to approximately 130,800,000 c.f. In 1915 the gas produced was approximately 60% water gas and 40% coal gas. The 1915 Sanborn Map shows the facility layout approximately the same as the 1910 site map and identifies gas holder capacities as follows: GH-1 at 25,440 c.f., GH-2 at 100,700 c.f., and GH-3 at 150,000 c.f. The gas holder capacity for GH-3 conflicts with other site data and is believed to be an error by the Sanborn recorder.

Brown's Directories from 1919 through 1921 indicate total gas holder capacity was 500,000 c.f. In 1922 total capacity had decreased to 440,000 c.f. and by 1923 the capacity was 600,000 c.f. These changes are consistent with the removal of GH-1 from service as a gas holder and eventual conversion to a tar well/separator; and the addition of a third lift to holder GH-3, increasing capacity from 340,000 c.f. to 500,000 c.f. A November 2, 1922 site drawing (Figure 2-3) and the 1922 Brown's Directory confirm these changes as well as the termination of coal gas operations and complete conversion of the facility to water gas production. In addition, this 1922 site drawing (Figure 2-3) shows the relocation of purifiers from inside the building north of Hill Street to a location south of Hill Street and west of the largest gas holder (GH-3). The drawing also shows pipe sizes and location of inlets and outlets for holders GH-2 and GH-3 and distribution lines from the site. There are also seven oil and diesel fuel tanks shown along the southwestern edge of the site.

AmerenIP drawings indicate the conversion of GH-1 to a tar well/separator was completed in late 1924.

Brown's Directories from between 1918 and 1927 indicate that gas production increased during that period from approximately 130,800,000 c.f. to approximately 298,500,000 c.f. There are only two oil tanks along the southwestern edge of the site and the "Gas Experiment Station of the University of Ill." is shown at the east end of the site north of the Hill St. right-of-way. The Gas Experimental Station structures do not appear on any of the Sanborn Maps. The 1924 and 1929 Sanborn Maps (Figure 2-4) are otherwise generally consistent with both the 1926 and 1927 site maps however, the Sanborn Maps indicate that gas holder GH-3 had a capacity of 1,500,000 c.f. Although successive Sanborn Maps for 1941, 1949, 1951 and 1959 also indicate a capacity of 1,500,000 c.f., this is an obvious error, since the holder would have to be more than 200 feet tall and have eight or nine lifts. Based on both Brown's Directory and AmerenIP drawings, gas holder GH-3 had a maximum capacity of approximately 500,000 c.f. and was a threelift, on-slab, above-grade, water-seal tank. A historical site photograph also confirms that GH-3 was an above grade three lift holder.

Brown's Directories for 1933 and 1934 indicate that production of gas on a regular basis was terminated in 1932 or 1933. The 1934 Brown's Directory indicates that natural gas was being purchased from Panhandle Illinois Pipe Line Co. of Kansas City, Mo. Based on the 1941 and 1949 Sanborn Maps, the plant was maintained in standby condition through at least 1949 and a circa 1953 photograph indicates that the plant was still standing. The photograph also shows several high-pressure gas cylinders on the eastern end of the site. These cylinders do not appear on any of the site maps or Sanborn Maps. The 1959 Sanborn Map indicates that all structures north of the Hill Street right-of way had been removed. Based on interviews with AmerenIP employees, demolition of the above ground on-site facilities, with the exception of the booster house, occurred between 1955 and 1960. The site remained vacant and unused from 1960 until the property was sold to American Legion Post 559 in 1979.

The American Legion Post renovated the interior of the "Booster House" structure and used it for periodic meetings. The structure was used and maintained by the American Legion from 1979 until 1991.

An initial site reconnaissance was conducted by AmerenIP and PSC personnel on February 9, 1990. The purpose of this visit was to confirm the location of structures and other site features, assess shallow soil conditions, and inspect the depth and nature of material remaining in GH-1. During the week of February 12, 1990, the American Legion employed a grader operator to excavate a shallow trench at the site to improve surface drainage. While excavating this trench, impacted soil and tar-like odors were encountered and AmerenIP was notified. AmerenIP and PSC personnel conducted a site

inspection to assess the level of risk and to recommend site stabilization activities. A PSC representative remained on site to oversee the stabilization activities, which consisted of the following actions:

- The parking lot for the American Legion Hall was covered with a fresh layer of gravel approximately six inches thick.
- An interior fence was erected around the edge of the parking lot to discourage access to the remaining portions of the site.
- The southern two-thirds of the site were covered with approximately 18 inches of clean fill.
- Weighted 55-gallon drums were placed over the access ports of GH-1.

AmerenIP repurchased the property from the American Legion in 1991 and the site has remained vacant since that time.

In summary, MGP operations had begun by 1869 and continued through the early 1930s at which time operations were converted to storage and distribution of natural gas. During this period two below ground gas holders, one aboveground gas holder, five tar wells, a tar separator, seven oil tanks, and two diesel fuel tanks were present. All aboveground structures, except for the booster house, were demolished in the late 1950s.

2.2 Site Description

The remediation site is located within the city limits of Champaign, Illinois in Champaign County in the northeast quarter of the southwest quarter of Section 7, Township 19 North, Range 9 East of the Third Principal Meridian (Figure 1-1). The site address is 308 North Fifth Street (formerly 502 East Hill Street), Champaign, Illinois. The property is currently vacant and is owned by AmerenIP.

The cities of Champaign and Urbana have a combined population of approximately 94,000. Although the cities were once separate communities, they have merged into a single metropolitan area. The area surrounding the remediation site is generally residential and consists primarily of older homes. The remediation site is currently zoned MF2 (multi-family density 2) due to the previous site use by the American Legion. Light commercial activity is present to the southeast of the site.

Figure 2-5 illustrates the current site layout. The site is approximately 2.4 acres, is currently vacant, and is secured by a chain link fence and three (3) locked gates. The site is generally flat with grassy vegetation. The only surface structure on the site is one that remains from the MGP era (i.e. booster house) and is located near the middle of the site. This building is single story

brick construction with no basement. Due to placement of fill at various times since 1990, there are no visible indications of past MGP activities other than the brick building.

A railroad right-of-way (previously Norfolk-Southern) borders the site to the north and several residential properties are located north of the single active track. The vacated Sixth Street right-of-way is adjacent to the east of the site; however, Sixth Street is abandoned between the railroad right-of-way and the alley south of the site. Other property east of the vacated Sixth Street right-of-way is zoned commercial and consists of vacant land and parking lots. Residential properties to the south are separated from the site by the chain link fence and an alley. North Fifth Street borders the site to the west and separates the site from residential properties. At one time, Hill Street approximately bisected the site in the east-west direction but is now part of the site and lies within the fenced area of the site.

2.3 Legal Description

The legal description for the Champaign remediation site is as follows:

Part of the SW ¼, of Sec. 7 T.19N. R.9E. of the 3rd. PM., City of Champaign, Champaign County, Illinois, more particularly described as follows:

Lots 7, 8, 9, 10, 11, and 12 in block 29 (except railroad right-of-way) of Seminary Addition to Urbana, now a part of the City of Champaign lying south of the railroad right-of-way;

And lots 1, 2, and 3 in block 31 of Seminary Addition to Urbana, now a part of the City of Champaign;

And a strip of land 66 feet in width known as vacated Hill Street lying between blocks 29 and 31;

And lots 1, 2, and 3 of Assessor's Plat of subdivision of lot 8 in M.W. Busey's subdivision of south part of lot 1 of the south west quarter of Section 1, Township 19 North, Range 9 East of the third principal meridian, and lots 4, 5 and 6 in block 31 of Seminary Addition to Urbana, now a part of the City of Champaign, as per plat recorded in deed record 35 a page 66;

All situated in the City Champaign, County of Champaign and the State of Illinois.

2.4 Regional Geological and Hydrological Setting

Champaign County, Illinois is situated within the Bloomington Ridge Plain in the Till Plains section of the Central Lowland Physiographic Province. The landscape is characterized by widely spaced continental glacial moraines with nearly featureless ground moraine plains. The geology beneath Champaign County has been summarized as 100 to 400 feet of Wisconsinan, Illinoian, and Kansan glacial drift deposited on Paleozoic bedrock which dips eastward and southward toward the Illinois Basin.

Six major waterways drain Champaign County. The Middle Fork of the Vermilion River, the Little Vermilion River, the Embarras River, and the Salt Fork empty into the Wabash River and drain the eastern half of the County. The Sangamon River, which discharges into the Illinois River, and the Kaskaskia River, which discharges into the Mississippi River, drains the western half of the Champaign County. Limited areas along these waterways are subjected to periodic temporary flooding.

Potential sites for development of surface water reservoirs in Champaign County have been investigated. However, because of the abundant groundwater resources available, surface water reservoirs have not yet been developed. There are no natural lakes in Champaign County, but there are about 450 acres of man-made recreational lakes.

Groundwater resources in Champaign County come from three aquifers within the Wisconsinan, Illinoian and Kansan glacial deposits. The aquifers were named the Wedron, Glasford and Banner aquifers by Kempton et al (1982), after the glacial formation in which each is encountered. Within Champaign County, however, the aquifers have been simply defined as the upper, middle and lower sand and gravel aquifer. The difference between the two definitions is that the upper aquifer in Champaign County occurs in outwash sands and gravels, whereas Kempton's Wedron Aquifer is defined as the formation's basal sand and gravel unit, the Ashmore Member. The Ashmore aquifer is encountered in scattered locations throughout east-central Illinois and is apparently not laterally continuous beneath Champaign County.

The upper sand and gravel aquifers found in the Wisconsinan Wedron Formation beneath Champaign County occur as isolated pockets or lenses of sand and gravel in the Champaign and Urbana Moraines or outwash sand and gravel near the front of the moraines. The aquifers provide water for about 29 percent of the individual farms and domestic wells in the County (Sanderson and Zewde, 1976). Throughout Champaign County, wells finished in these isolated sands and gravels vary in depth from about 25 to 100 feet BLS. Water table elevations range from 650 feet above MSL in eastern Champaign County to about 750 feet above MSL northwest of Champaign.

The middle sand and gravel aquifers found in the Illinoian Glasford Formation occur as fairly continuous layers in the Radnor and Vandalia Till Members. The middle aquifer serves as a source of water for 55 percent of the farm and domestic wells in the County. The middle aquifer also provides a backup source of water for the cities of Champaign and Urbana. The top of the middle aquifer ranges from about 125 to 175 feet BLS near Champaign/Urbana. The bottom ranges between 175 and 200 feet BLS. The water level of wells finished in the middle aquifer ranges from about 630 feet above MSL around Champaign/Urbana to about 720 feet above MSL in the northwest part of the County. The direction of flow appears to be towards the southwest (Sanderson and Zewde, 1976).

The lower sand and gravel aquifer encountered in the Kansan Banner Formation occurs as thick sand and gravel deposits of the Mahomet bedrock valley. The aquifer within the Mahomet Sand is the most significant aquifer within east-central Illinois, accounting for about 87 percent of municipal groundwater supplies for the County. The groundwater resources of the Mahomet Sand are underdeveloped, especially those overlying the main channel. The lower aquifer can be up to 150 feet thick, depending on proximity to the main channel of the Mahomet bedrock valley. The top of the Mahomet Sand is fairly consistent at 500 feet above MSL. The average width of the valley is about 12 miles in Champaign County. The deposit is composed of clean sand and gravel. However, the deposit becomes more silty towards the valley margins.

The Paleozoic bedrock beneath the glacial deposits provides only small supplies of water from sandstone and limestone beds of the Pennsylvanian formations. The groundwater in Mississippian and older bedrock is too deep and/or too mineralized to be considered a good source of water.

The Illinois American Water Company (IAWC) supplies water from water wells located in the west well field located about three miles west of the site. These wells average about 310 feet in total depth and have between 50 and 100 feet of screen. The wells in the west field produce water from the Mahomet Sand Member. IAWC also has water wells in the north well field located about 1.0 mile northeast of the site. These wells average about 210 feet deep, with screens ranging from 10 to 50 feet in length. The wells produce water from the middle sand and gravel aquifer in the Glasford Formation.

2.5 Private and Public Drinking Water Wells in Vicinity

The "EDR Illinois Water Well Report" provides a summary of known water wells within a one-half mile radius of the site. Federal, State, and Public Water supply databases were searched. Twenty-two (22) wells were identified from the State database. There are no public water supply wells

within the one-half mile radius of the site. A copy of the EDR report is presented in Appendix B.

Champaign/Urbana and the University of Illinois are supplied with water from the IAWC. IAWC supplies water from water wells located in the west well field about three miles west of the MGP site. These wells average about 310 feet in total depth and have between 50 and 100 feet of screen. The wells in the west field produce water from the Mahomet Sand Member.

The IAWC also has water wells in the north well field located about 1.0 mile northeast of the MGP site. These wells average about 210 feet deep, with screens ranging from 10 to 50 feet in length. The wells produce water from the middle sand and gravel aquifer in the Glasford Formation.

2.6 Site Geology

The major geologic units present at the site; in descending order, are the surficial fill layer, the weathered till unit (Wedron), the unweathered till unit (Wedron), and the lower silty sand member of the Glasford Formation. The mappable geologic units found in the shallow subsurface at the site include (in descending order), the Surficial Fill Layer, the Weathered Till Unit (Wedron), the Unweathered Till Unit (Wedron), and a Lower Silty Sand Member of the Glasford Formation.

The geology of the site was interpreted through analysis of the Phase II geologic logs (Appendix D), CSI geologic logs (Appendix I), field notes of the site geologist, grain-size distribution curves and results of physical property testing. Physical property testing was completed during the Phase II investigation and results are summarized in Table 2-2.

2.6.1 Surficial Fill Layer

The surficial fill layer is typically three to four feet thick and covers the entire site. The fill consists of gravelly silt and sand, with cinders, bricks and debris. Much of the fill was placed on the site after demolition of the MGP facilities was completed. Some topsoil encountered may have been classified as fill material based on a dark organic appearance which resembles the known fill on site. Topsoil was also placed over portions of the site where CSI test pits were excavated. The fill is thickest in an isolated area along the northern portion of the site near the railroad tracks.

2.6.2 Weathered Till Unit

The first natural subsurface material encountered is a weathered till unit. The unit is continuous beneath the study area and is believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. The Weathered Till Unit was contacted at various depths beneath the study area. The unit averages 10 to 15 feet thick beneath the site with maximum thickness of 18 feet encountered in borehole UTB-25 drilled near the former Booster House.

The Weathered Till Unit is comprised of brown to gray silty clay with some oxidation evident along clay fractures. MGP residual staining is present along some of these fractures. Numerous minor sand and silty sand layers were encountered; however, the sand layers are laterally discontinuous. Residual impacts are frequently associated with sandy and silty layers; however, units as thick as one foot could not be identified in adjacent borings or probeholes. The distinction between the weathered and unweathered till units was often difficult to distinguish.

2.6.3 Unweathered Till Unit

The Unweathered Till Unit is also believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. The unit is generally differentiated from the Weathered Till Unit by the gray color and lack of weathering along fractures. The Unweathered Till was encountered at depths ranging from 9 to 20.5 feet BLS. Sand and gravel layers were also encountered within the Unweathered Till Unit; however, these layers were not laterally continuous beneath the site.

2.6.4 Lower Silty Sand Unit

Three deep boreholes drilled during the Phase II investigation encountered thick sand, silty sand, and gravel units at depths below 100 feet. These deeper deposits are believed to be the upper units of the Illinoisan Glasford Formation. The actual contact between Wedron and Glasford was not delineated due to the similarities between the units and the rotary wash drilling method used in the deeper boreholes. None of the CSI probeholes encountered this unit.

2.7 Site Hydrogeology

Groundwater hydrology activities completed during the CSI consisted only of sampling wells which had been installed during the Phase II activities.

The following sections describe the two aquifers beneath the site investigated during the Phase II investigation.

2.7.1 Shallow Groundwater System

The shallow groundwater system at the site is an unconfined water-bearing zone with the saturation depth (water table) found in the Surficial Fill Layer or the Weathered Till Unit. This groundwater system extends into the Unweathered Till Unit. Water levels have been recorded a number of times in each of the wells. In addition, water levels were recorded for several piezometers which have subsequently been abandoned. Quarterly groundwater monitoring has been performed at the site since 1996. The configuration of the shallow water table in July 2004 is shown on Figure 2-6. The configuration of the shallow water table in July 2006 is shown on Figure 2-7. Water level measurements taken at other times have been generally consistent with this July 2004 and 2006 monitoring events. Water level data from several sampling events are presented in Appendix J.

During earlier site investigation activities, some piezometers were installed as nests with monitoring intervals screened at depths of about 5-to 10-feet, 20-to 25-feet, and 30-to 35-feet BLS. In general, the deeper piezometers had deeper static water levels, indicating a downward vertical gradient. Infiltration of precipitation from the surface is the main source of recharge to the shallow groundwater system. Recharge may be variable across the site depending on surface and subsurface conditions, including remaining MGP subsurface structures.

Groundwater in the shallow system beneath most of the site generally flows in a north and northwest direction. In the south and southeast part of the site, groundwater flows to the south and southeast, respectively.

Groundwater flow gradients differ considerably between the southern and northern parts of the site. The shallow groundwater system near the southern edge of the site has a hydraulic gradient of about 0.08 foot per foot. The groundwater flow rate is about 7.5 feet/year based on an averaged observed hydraulic conductivity of 9.1 x 10⁻⁵ cm/sec from the slug tests performed in wells UMW-104 and UMW-106 (Table 2-3). Groundwater velocity could be as high as 30 feet/year using an effective porosity of 25 percent. The shallow groundwater system for the remainder of the site has a hydraulic gradient of about 0.01 foot per foot. The resulting groundwater flow rate is about 0.33 foot/year based on an average hydraulic conductivity of 3.2 x 10⁻⁵

cm/sec from the slug tests performed in wells UMW-108 and UMW-102. Groundwater velocity could be as high as 1.3 feet/year using an effective porosity of 25 percent. Calculation methods were presented in the RI report (Burlington, 1994).

2.7.2 Deep Groundwater System

The deep sand zone groundwater system was encountered at about 115 feet BLS in the Glasford Formation and is continuous across the site. Literature references (Sanderson and Zewde, 1976) indicate that this groundwater system is a confined aquifer. This observation was confirmed at the site where water levels in the deep wells stabilized approximately thirty feet above the top of the sand unit. Configuration of the potentiometric surface of this unit in January 1993 is shown on Figure 2-7. Although the flow direction defined by the January, 1993 water levels was to the southeast, other measurements taken between December 1990 and November 1992 have also indicated flow to the northeast, southwest, and northwest. The regional gradient in the Glasford aquifer is to the west-southwest (Sanderson & Zewde, 1976); however, local flow directions in the site vicinity are not well defined and may be influenced by use of the backup well field located about 4000 feet northeast of the site.

The three deep wells installed during the Phase II site investigation were plugged and abandoned in 1999. During the period between 1992 and 1998 when these wells were being monitored, no impacts were detected. Since there is a downward gradient from the shallow groundwater unit to the deeper aquifer, these wells were plugged to prevent them from acting as a potential conduit from shallow impacted soils to the deeper aquifer.

2.8 Geological Summary

In order to facilitate interpretation of site investigation findings, a series of "fence diagrams" (referred to as cross sections) were developed which illustrate some of the site features and characteristics. A total of six sections have been constructed. Figure 2-9 is a site plan which shows locations of these six cross sections. Figures 2-10 through 2-12 are west to east cross sections and Figures 2-13 through 2-15 are south to north sections through the site.

The three west to east cross sections show a fairly uniform distribution of the surficial fill layer, weathered till and the unweathered till units. The lower sand unit was only encountered in the northwestern portion of the site. The surficial fill layer is slightly thicker in the northern portion of the site with thicknesses of approximately 3.5 to 3.9 feet. The weathered till unit averages from 6.25 to 6.5 feet thick. The unweathered till unit averages approximately 19.5 to 20.25 feet thick.

2.9 Preliminary Assessment

Elements of a Phase I ESA have been completed throughout the duration of project activities dating back to 1990. In July 2002 PSC completed Phase I ESA activities through an Environmental Data Resources, Inc. (EDR) data search. The Preliminary Assessment (PA) elements provided by EDR included the following:

- Search of Illinois Water Well Report,
- Search of available environmental records, and
- Search of Sanborn Fire Insurance maps.

Sanborn Fire Insurance Maps covering the site area were examined for the years 1887, 1892, 1897, 1902, 1909, 1915, 1924, and 1951. Observations from examination of these maps were presented previously in Section 2.1. Copies of the maps showing the general site area are presented in Appendix A.

EDR completed a search of available environmental records and produced a report entitled "The EDR Radius Map With GeoCheck". A copy of the complete EDR report is presented in Appendix B. The EDR search revealed the following:

- Search of the RCRIS-SQG list revealed that there are four RCRIS-SQG sites within approximately 0.25 miles of the site.
- Leaking Underground Storage Tank (LUST) incident Reports revealed that there are seven LUST sites within approximately 0.5 miles for the site.
- The Underground Storage Tank (UST) database of registered USTs revealed that there are seven UST sites within approximately 0.25 miles of the site.
- Search of the Illinois Site Remediation Program (SRP) list revealed that there are three SRP site within approximately one mile of the site.

2.10 Previous Investigations

Several phases of investigation have been completed at the site and are summarized briefly below. It is noted that a significant portion of the work completed at the site pre-dates the initiation of the SRP and TACO. It is also noted that field technologies and methodologies have changed and that

analytical laboratory procedures have improved considerably during that period. These investigations began in 1986 and have included both on-site and off-site activities. An interim removal action was also completed in 1997 and 1998 and groundwater sampling activities have been carried out on a quarterly basis from 1997 through 2004. Due to the changes noted above, rationale and objectives have varied considerably during the course of these activities. Beginning in 1990, AmerenIP communicated information through a variety of channels about the various phases of the investigation to the surrounding neighborhood and local, state and federal officials.

The following phases of investigation are discussed in subsequent sections:

- Phase IA/IB Investigation completed by Warzyn Engineering, Inc. (Warzyn) in 1986
- *Phase IC/ID RECON*TM *Investigation* completed by John Mathes & Associates, Inc. (Mathes) in 1990
- Phase II Site Investigation completed by Burlington Environmental, Inc. (Burlington) in 1990
- Supplemental Site Investigation completed by Philip Services Corporation in 1997
- Interim Remedial Measures completed by Philip Services Corporation in 1998
- Quarterly Groundwater Monitoring currently being performed by Kelron Environmental

2.10.1 Phase IA/IB Investigation

Warzyn conducted two phases of investigation during 1986. The objectives of the Phase IA/IB Investigations were to determine the presence or absence of MGP residual products and to identify buried structures associated with the MGP operation. Phase IA consisted of a detailed site inspection and interviews, and was completed October 22 and 23, 1986. Phase IB was conducted November 17 and 18, 1986 and included soil gas sampling and geophysical exploration.

Evidence of both buried structures and MGP residuals was observed on the site. Several circular slabs and numerous foundation walls were visible at grade throughout the site and their locations generally coincided with historical drawings. In addition, soil gas anomalies were noted in areas consistent with the location of historical MGP structures. Site activities subsequent to the Phase IA/IB investigation have resulted in either the removal or covering of historical structures visible at that time.

2.10.2 Phase IC/ID RECON® Investigation

Mathes completed the Phase IC/ID RECON Investigation activities, on-site and off-site, between March 5, 1990 and May 25, 1990. The principal objective of the Phase IC/ID RECON Investigation was to evaluate the nature and extent of impacts of MGP residuals in both shallow soils and groundwater. Results of the Phase IC/ID activities indicated that there were widespread MGP impacts both on-site and off-site. These results were presented in detail in the Phase IC and Phase ID Investigation Reports.

The Phase IC (on-site) and Phase ID (off-site) RECON investigations were performed to obtain subsurface data for AmerenIP to use in a preliminary assessment of the nature and extent of impact to soil and groundwater at the site, and to assess possible off-site movement of MGP residuals. Site activities included using a GeoProbe for collection of both soil and groundwater samples at 34 locations on-site (Phase IC) and 37 locations off-site (Phase ID). Figure 2-16 shows the approximate location of Phase IC/ID probeholes.

During the Phase IC investigation, 34 locations were probed to collect groundwater and soil samples for on-site chemical analysis of headspace vapors.

Headspace analysis of soil and water samples was performed because the formation materials encountered were too impermeable for an appreciable volume of soil-gas to enter the probes. At three locations, probe refusal was encountered at a depth of less than three feet into the surface fill material; therefore, no sampling was performed at these points. At the remaining locations, 20 groundwater or fluid samples and 17 soil samples were collected for headspace analysis. The headspace vapors of these samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents and relative total petroleum hydrocarbon (TPH) concentrations using an on-site gas chromatograph (GC).

During the Phase ID investigation, groundwater and soil samples were collected at 37 off-site locations. A total of 34 soil samples and nine groundwater samples were collected for headspace analysis. The samples were analyzed for BTEX and TPH.

The combined results of the on-site and off-site surveys indicated subsurface impacts from MGP related residuals over much of the site and also off-site primarily to the northeast, north and west. Based on BTEX values, off-site migration of MGP residuals appeared to have occurred along the northern and northwestern boundaries of the site. Along the northern boundary, residual impact appeared to have

migrated north of the active rail line at depths of more than 28 feet below ground surface (bgs). Along the northwestern boundary, residual impact appeared to have migrated across North Fifth Street west of the former gas-plant building.

Two areas identified with BTEX impacts may be due to releases of fuel oil/diesel fuel rather than MGP constituents. One area (former above ground oil tanks) is located in the southern part of the site and appears to extend beneath the alley adjacent to the southern site boundary. The other area is located immediately west of the northwest portion of the property. Historical data indicates that an oil storage facility and gasoline station were once located in that area. No off-site laboratory analysis was performed on samples collected during the Phase IC/ID activities. While notes of subsurface conditions were recorded, no borehole logs were generated for the Phase IC/ID activities. For preparation of the sampling plan, the information obtained from the Phase IC/ID investigations was used for qualitative purposes to aid in selecting boreholes and monitoring well locations. The results of soil and groundwater headspace data were not used for comparisons to Tier 1 ROs, nor will it be used for justification for no further remediation. Table 2-4 summarizes soil-gas results for the Phase 1C/1D investigations.

2.10.3 Phase II Site Investigation

The objective of the Phase II Site Investigation (SI) activities was to assess the horizontal and vertical extent of impact from MGP constituents in the soil and groundwater. In addition, the levels of impacts of these constituents on subsurface soils and the shallow groundwater were evaluated. The investigative methods used to accomplish these objectives were described in the Phase II Work Plan submitted to and approved by the IEPA in 1990. The Work Plan contained sampling, health and safety, quality assurance, and community relations plans.

Phase II SI activities began in November 1990, continued throughout 1991, and were completed in January 1992. Phase II SI activities, both on-site and off-site, included completion of soil borings, installation of piezometers and monitoring wells, excavation of test pits, chemical analysis of soil and groundwater samples, aquifer characteristic tests, and ambient air monitoring. Soil boring locations are illustrated on Figure 2-17 and approximate piezometer and well locations are illustrated on Figure 2-18. Thirty-four soil samples (Table 2-5) were collected for analysis from 28 boring locations (Table 2-6). Three deep borings were drilled with total depths ranging from 170.0 feet to 175.0 feet bgs. The remaining 25 borings were drilled to depths

ranging from 8 feet to 35 feet bgs. A groundwater monitoring program was begun during the Phase II SI activities and has been continued to the present, however, some of the wells and all of the piezometers have been abandoned and, therefore, are no longer included in a monitoring program.

Phase II SI activities also included collection and analysis of five (5) surface soil samples, excavation and sampling of test pits, sampling and analysis of storm sewers, and residential air sampling and analysis (Figure 2-19). In general the results of the Phase II SI confirmed the results of the Phase I studies; however, it did not fully define the degree and extent of MGP impacts. Impacts from MGP constituents were identified both on-site and off-site. In addition, non-aqueous phase liquid (NAPL), potentially related to MGP activities, was identified in two off-site wells; one north of the site and one east of the site. Data developed during the Phase II SI will be used to evaluate remedial objectives to the extent that the data satisfy TACO quality criteria. In addition, Phase II SI information will be used to further refine the site conceptual model. A discussion of the results of the Phase II Investigation is incorporated into Section 7 of this report.

A summary of the techniques used during the Phase II SI is as follows:

- geologic test drilling using hollow-stem augers;
- soil sampling using 1.25- or 2.5- inch inside diameter split-spoon samplers, continuous-tube-system samplers, and three-inch-diameter Shelby Tube samples;
- excavation and sampling of exploratory test pits;
- installation of one-inch-diameter, PVC piezometers;
- installation of two-inch-diameter, stainless steel or PVC groundwater monitoring wells;
- well development using bailers, surge blocks, rod pumps, centrifugal lift pumps, and bladder pumps;
- collection of water or sediment samples from selected underground utilities such as sewers;
- chemical analysis of soil, NAPL, groundwater, surface water, and sewer samples; and,
- physical testing of selected soil samples.

2.10.3.1 Borehole Drilling and Soil Sampling

Boreholes drilled and sampled during the Phase II SI activities were numbered sequentially from UTB-01 through UTB-28 (Figure 2-16). Three deep boreholes were drilled to depths of 170 to 175 feet bgs for the installation of deep monitoring wells. All other sampled boreholes were drilled to depths of 14 to 35 feet bgs. Drilling was performed utilizing 4.25-inch-interiordiameter (I.D.) hollow-stem augers. Samples were collected continuously in all boreholes (with the exception of the three deep boreholes) to the termination depth of the borehole. The three deep boreholes were sampled continuously to a depth of 30 feet. Cuttings were logged for the remainder of the deep boreholes. Soil samples were obtained with either a continuous-tube sampler or a split-spoon sampler. Thirty-four soil samples were collected for chemical analysis. Table 2-5 presents a summary of the Phase II SI laboratory analytical Phase II analytical results for soil samples are presented in Appendix C and have been used subsequently in the Tier 1 evaluation to the extent that the data are applicable. The analytical results are discussed and summarized in Section 5.

Some soil sample collection was performed with three-inch-diameter, Shelby-Tube samplers. This type of sampler was used to collect relatively undisturbed samples of fine-grained materials for laboratory geophysical soil testing. Logs for the Phase II SI borings are presented in Appendix D.

2.10.3.2 Test Pit Excavation And Sampling

Test pits were excavated at several locations on-site. Figure 2-19 illustrates the approximate location of test pits. Test pits were excavated in the area of the former purifiers to evaluate potential impacts from inorganic residuals. Test pits were also excavated in the areas of former facility structures to determine if any MGP residuals remained in these underground structures. No analytical samples were collected.

2.10.3.3 Surface Soil Sampling

Five surface (0-6 inch) soil samples were collected from both onsite and off-site locations during the Phase II SI. Figure 2-19 shows the approximate location of surface soil samples. Three samples were collected on-site and two samples were collected off-site. These samples were collected to provide information on potential exposure levels and also to provide background information.

2.10.3.4 Storm Sewer Sampling

Five samples of both liquid and sediment were collected through manholes of storm sewers adjacent to the site (Figure 2-19). Sampling methods included removing the manhole covers and collecting a fluid sample by lowering a bailer through the manhole to obtain the sample. Sediment samples were collected by taping a stainless steel spoon to a wooden handle extension, lowering the spoon through the manhole and scooping up a sample of the sediment at the base of the sewer. The objective of sampling of storm sewers was to determine the potential for these utilities to act as conduits for transport of MGP impact.

2.10.3.5 Residential Air Sampling

Results of Phase IC and ID investigations indicated the potential for off-site impact of volatile compounds. As a result, air samples were obtained from the basements of target residences adjacent to the site in December 1990, March 1991, and December 1991. Samples were also obtained from the basements of homes in the general area of the site but not adjacent to the site. Ambient air samples were obtained from the site and a city park located about 10 blocks north of the site during the March and December 1991 sampling events. All air samples were analyzed for BTEX constituents

Analytical results indicated that the concentrations of BTEX vapors detected in the target houses were comparable to the concentrations detected in the control homes. The concentrations detected in both the target and control houses are somewhat lower than those reported in the literature as typical concentrations of these compounds in the indoor air in most U.S. homes.

Concentrations of toluene, ethylbenzene, and xylenes detected on-site were slightly higher than those detected at the park; however, the concentration of benzene was lower on site. These differences are believed to be a result of variability in atmospheric conditions and sampling and analytical variability. The outdoor concentrations of benzene and toluene observed at Champaign were fairly comparable to concentrations typically observed in remote or rural areas.

2.10.3.6 Groundwater Monitoring and Sampling

Monitoring well locations were selected to evaluate groundwater quality up-gradient and down-gradient of the site and to define the horizontal and vertical extent of MGP-related impact. Piezometer locations were selected to monitor groundwater levels, intersect potential NAPL, and provide groundwater quality data in the potential source areas. Figure 2-18 illustrates approximate locations of piezometers and monitoring wells. Table 2-6 presents well and piezometer construction information, including depth and screened interval, for the 35 wells and piezometers.

Monitoring Well Installation

Initial monitoring wells were constructed with PVC materials; however, based on directions from AmerenIP on December 6, 1990, monitoring wells installed after that date were constructed with two-inch-diameter No. 304 stainless steel screens and risers. Monitoring well UMW-403 was of hybrid construction, with a stainless steel screen and riser from 170 feet bgs to approximately 50 feet bgs and a PVC riser from that point to the ground surface.

Well screens were 0.010-inch slot size, either machine-cut PVC or wire-wrapped stainless steel. Screen lengths were 30 feet for the deep wells (400-series) and 10 feet for all shallow monitoring wells with the exception of UMW-102, which has 15 feet of screen. Rationale for shallow wells was to screen across the water table at an average depth of 10 to 20 feet. The deep wells were screened from approximately 130 to 170 feet bgs. Rationale for deep wells was to screen the deeper confined water bearing unit below 115-feet bgs.

Most monitoring wells were completed with flush-mount well protectors, with the exception of the wells within the property boundary (UMW-113, UMW-114, and UMW-115), which were completed with three-foot stickup well protectors. A WB-40 sand pack was placed around the well screens and brought up to an elevation of approximately two feet above the top of the well screen. A two-foot thick bentonite grout seal was placed above the sand pack. The remainder of the borehole was sealed to the ground surface with a cement-bentonite mixture. Well construction logs and details presented are in Appendix E.

Upon completion, wells were developed to restore the natural hydraulic conductivity of the monitored formation, and remove all drilling-induced sediment to provide turbidity-free groundwater samples. Well development was completed by surging water through the screens using a PVC bailer to loosen the fine-grained material in the sand packs and by pumping the wells with a two-inch-diameter submersible pump. The wells were developed until the discharge was clear and the water quality parameters of pH, temperature, and specific conductance had stabilized.

Piezometer Installation

Piezometers installed during the Phase II SI were constructed using one-inch-diameter Schedule-40 PVC. Screen sections were 0.010-inch machine-cut slot size and were three or five feet in length for all piezometers except for UPZ-108, which had 10 feet of screen. Piezometers were completed with flush-mount well protectors, except those installed within the site boundary which were completed with three-foot stickup well protectors. Some piezometers were installed as clustered nests (Table 2-6). Shallow piezometers are identified as the 100-series and were typically installed with screened intervals between 4 and 10 feet. Intermediate piezometers were the 200-series and are installed with screened interval between 12 and 20 feet, and deep piezometers were the 300-series and are installed with screened intervals of 20 to 30 feet.

Piezometer locations were selected based on assumed potential MGP source areas; therefore, the possibility of fluid NAPL accumulating at the bottom of the piezometers existed at the time of their installation. During normal development procedures, any NAPL present in the piezometer could be contacted with the bailer and then smeared over the screen and riser sections and would make subsequent collection of representative groundwater samples of no value. Therefore, piezometers were not developed, and samples were collected carefully from only the upper portion of the water column.

Groundwater Sampling

Groundwater samples were collected during the Phase II SI from the 16 shallow (UMW-101 through UMW-116) and three deep monitoring wells (UMW-401 through UMW-403). Water samples were also collected from selected on-site and off-site

piezometers. Prior to sample collection, each well was purged by removing a minimum of three casing volumes of water. Removal rates during purging did not exceed well development rates. Water quality parameters were monitored during purging to ensure stabilization and removal of stagnant water. Teflon bailers were used to collect groundwater samples during the earlier sample rounds and low flow purge pumps or peristaltic pumps were used to sample during later events.

Aquifer Testing

In situ permeability tests were performed on four select wells screened in differing soil types as determined during drilling and sampling. The test data were analyzed according to the Bouwer-Rice solution (1976). The test method used in two of the four wells involved the insertion and removal of a solid stainless steel slug, with water level measurements taken with an electronic water level indicator and a stop watch. The other two wells were tested based on Ferris and Knowles studies (1963) by removing a known volume of water and checking water level measurements during recovery with an electronic water level indicator and watch. Table 2-3 presents aquifer test results.

Groundwater Flow Conditions

Phase II study results indicate that flow velocities, based on the apparent gradients, single well permeability tests and an estimated effective porosity of 25 percent are approximately 30 feet/year to the south and 1.3 feet/year to the northwest. Shallow groundwater flow directions and velocities are complicated by localized areas of enhanced permeabilities, e.g., sand lenses and backfill around gas and sewer lines. Groundwater traveling through the granular backfill in sewer trenches may also infiltrate the sewer lines where the vitrified clay pipes have cracked. An inspection with a television camera of the first 100 feet of the storm sewer running south from the corner of N. Fifth Street and Washington Street revealed the line to be in poor condition with cracks and leaks. Migration in the sewer backfill may have facilitated the flow of groundwater towards wells UMW-107 and UMW-103, causing the elevated benzene and cyanide concentrations in these wells.

Groundwater flow is also influenced by observed sand horizons in the till which are not laterally continuous, but appear to provide local pathways of higher permeability for groundwater flow. A higher groundwater velocity is present in the vicinity of well UMW-105. The groundwater velocity is higher than other

portions of the site. MGP constituents have not migrated noticeably greater distances to the south, suggesting the area of higher groundwater velocity is very restricted.

2.10.3.7 Site Surveying

During the Phase II activities a grid coordinate system for the site was established by AmerenIP surveyors. A site-specific datum for horizontal coordinates was established in the southeast corner of the site and was assigned the coordinates of 5,000.0N and 3,000.0E (in feet). The elevation for the site was established from a City of Champaign record of a sewer manhole at the north end of the site. The locations of pertinent site features and a surface topographic map were surveyed with reference to these site data. Survey accuracies were on the order of \pm 1.0 foot horizontally and \pm 0.01 foot vertically. It is noted that during the CSI activities completed in 2004, a site survey was completed by an Illinois registered surveyor and previous data were corrected. The site survey currently ties the site into the Illinois state coordinate system.

2.10.3.8 Chemical Analysis

Chemical analyses were performed by Heritage (EMS) Laboratories of Indianapolis, Indiana on soil, groundwater, and sediment samples obtained during the Phase II SI activities. Groundwater samples obtained subsequent to 1993 were analyzed by TekLab Inc. (TekLab) of Collinsville, Illinois. Analytical parameters included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCS), cyanide, and various metals and other indicator parameters. Table 2-5 is a summary of chemical analyses and methods completed for the subsurface soil samples. Table 2-7 is a summary of chemical analyses and methods of the Phase II SI groundwater analytical program. Laboratory analytical data sheets for soil are presented in Appendix C and groundwater data sheets are presented in Appendix F.

Soil samples representative of different lithological units encountered during the Phase II SI were selectively tested for physical properties. These tests included:

- vertical permeability (four samples, ASTM D 5084);
- natural moisture content (nineteen samples, ASTM D 2216);

- dry unit weight (four samples);
- grain-size distribution (seven samples, ASTM D 422 and D 2240); and
- liquid and plastic limits (seven samples, ASTM D 4318).

Physical testing results are presented on Table 2-2 and laboratory data are presented in Appendix G.

2.10.3.9 Phase II SI Summary

Results of the Phase II SI showed that significant impacts to both surface and subsurface soil and groundwater existed both on-site and off-site. Soil impacts are greater and appear to extend to greater depth on the northern portion of the site and also extend off-site to an area north of the railroad right-of-way. Off-site impacts also extend to the east into the vacated Sixth Street right-of-way. Groundwater impacts also extend off-site. The Phase II SI activities did not completely define the degree and extent of MGP residual impacts.

2.10.4 Supplemental Site Investigation

Based on the results of the Phase I and Phase II investigations, AmerenIP determined that an Interim Removal Action (IRA) was warranted and that additional site information would facilitate completion of Interim Remedial Measures (IRM) at the site. PSC prepared a Supplemental Site Investigation (SSI) work plan to complete this additional site investigation work.

The SSI was completed in March 1997 to further assess extent and impacts of off-site residuals east of the site and to characterize materials within the below grade gas holder (GH-1) with respect to planned source removal. The SSI was also undertaken in response to the observation of increasing impacts from monitoring well UMW-103 located in the vacated Sixth Street right-of-way immediately east of the site. This well showed a trend of decreasing BTEX and naphthalene concentrations from 1990 through the first quarter of 1996; however, dense non-aqueous phase liquid (DNAPL) was discovered in the well in August of 1996.

SSI activities included GeoProbe soil sampling within the vacated Sixth Street right-of-way east of the site, test pit excavations near gas holder GH-1 and on-site immediately west of Sixth Street, and

sampling of liquids from within gas holder GH-1. Figure 2-20 illustrates the approximate locations of the SSI test pit excavations and probeholes. Ten probeholes were completed to depths ranging from six to eighteen feet bgs. Six soil samples from the probeholes were collected and analyzed for BTEX and naphthalene. Four test pits were excavated during the SSI; however, no analytical samples were collected from the test pits. Boring and test pit logs are presented in Appendix H.

Impacts from MGP residuals were observed at several locations within the vacated Sixth Street right-of-way; however, neither a source nor a pathway for these residuals was identified. No obvious NAPL migration pathways were discovered during the SSI activities. The backfill of the east-west sewer line through the site did not appear to be more permeable or more impacted than the adjacent native till materials. However, as a cautionary measure, capping of the sewer was recommended as part of the IRM.

2.10.5 Interim Remedial Measures

As noted in Section 2.10.4, AmerenIP determined that proceeding with IRM activities was warranted based on previous investigations at the remediation site. PSC prepared an IRM Work Plan during mid year 1997 and performed the IRM activities between October 10, 1997 and May 14, 1998.

The primary objective of IRM activities was to remove MGP potential source materials from the belowground gas holder (GH-1), tar wells, a tar separator, and an area of purifier waste. Fluid NAPL and MGP impacted materials from the belowground structures were blended onsite to render the material suitable for off-site thermal treatment. Purifier media was blended with the material from gas holder GH-1. Concrete, wood, metal, and other materials not accepted at the treatment facility were segregated and staged in a covered roll-off box for disposal at an AmerenIP-approved landfill. These objectives were accomplished in general accordance with the Work Plan. Figure 2-21 illustrates the approximate areas of IRM activity.

The three suspected tar wells (TW1, TW2, and TW3) northwest of gas holder GH-1 were located and excavated. All three tar wells were larger than anticipated based on historical maps of the site. Another potential tar well, TW4, northeast of gas holder GH-1, was identified as a concrete foundation pad, possibly from an oil tank. However, the entire area northeast of GH-1 was excavated to insure that no belowground structures were missed. The tar separator located south and southwest of gas holder GH-1 was excavated along with an

adjacent valve pit located to the east containing impacted materials. A test pit was also excavated in the northwest corner of the site at the location of a shallow brick manhole. No MGP residual impacts were observed at this location.

MGP residual material was treated as necessary to meet TCLP benzene limits and to make the material acceptable for shipment and for thermal treatment. The material was blended on site either within the gas holder tank or in two mixing boxes. This "MGP special waste" was shipped off site for treatment at Illinova Resource Recovery's Baldwin Thermal Treatment Facility (BTT) in Baldwin, Illinois. Approximately 8,467 tons of blended material was transported to BTT in 339 truckloads. Concrete debris and steel from gas holder GH-1, the tar wells, tar separator, purifier pads, and miscellaneous excavated foundations were segregated, the concrete was broken with a hydraulic hammer, and either disposed of as construction debris or utilized as backfill at the base of gas holder GH-1.

Approximately 487.5 tons of soil containing purifier media was excavated from an area on the southwest corner of the site, west of the Booster House. Depth of the excavation was 3 feet bgs. The excavated soil and purifier material, which was non-hazardous, was stockpiled east of gas holder GH-1. The stockpiled material was later placed directly into the gas holder GH-1 below grade tank along with clay, coal, and quicklime and blended with other tar-like materials. The purifier area excavation was then backfilled with clean fill.

Approximately 526 tons of heavily MGP impacted material was excavated from gas holder GH-1 from the depth of 7 to 16.5 feet bgs. About 100 cubic yards (CY) of concrete and steel from the cover of GH-1 were separated during the excavation process, stockpiled, broken up with a hammer hoe, and sent off site for disposal. In addition, 85,000 gallons of heavily impacted water and rainwater were pumped from gas holder GH-1 prior to and during excavation. Water was pumped from gas holder GH-1 into storage tanks, treated to meet disposal requirements, and discharged to the sanitary sewer system.

The potential source materials in gas holder GH-1, from 7 feet bgs to 16.5 feet bgs, required on-site treatment as necessary to meet TCLP benzene limits prior to disposal. TCLP benzene analytical results for the blended material were below BTT's acceptance criteria and RCRA characteristic hazardous waste levels. The blended material from gas holder GH-1 was stockpiled for subsequent shipment to BTT.

Approximately 482 tons of source material, demolition debris and impacted soils were excavated from tar wells TW1, TW2 and TW3, the tar separator and adjacent valve pit, and at CHTP-203. Test pit

CHTP-203, northeast of gas holder GH-1, was in the area of a potential fourth tar well, which was determined to be a concrete foundation. The outer walls of TW1 and TW2 were excavated and the bottoms were left intact. The walls and bottoms of TW3, the tar separator, and the valve pit were left intact. All three tar wells and the tar separator contained liquids with debris such as bricks and concrete. Heavily impacted soil, concrete and steel associated with former building foundations and walls were removed during the process of locating and excavating the tar wells. With the exception of concrete and steel debris, the impacted materials from TW1, TW2, TW3, and CHTP-203 were excavated and placed into gas holder GH-1 for treatment. The concrete and steel debris were separated during the excavation process and stockpiled prior to off-site disposal.

The source material and heavily impacted soils placed into gas holder GH-1 from the tar wells, tar separator/valve pit, and CHTP-203 required treatment to render the material acceptable for shipment and treatment at BTT.

Exploratory test trenches CHTP-201 and CHTP-202 were excavated in accordance with the Work Plan, although both trench locations were moved further east. Additional exploratory trenches were also excavated northeast of gas holder GH-1 (CHTP-203) and in the northeastern portion of the site (CHTP-204). The materials excavated from exploratory trenches CHTP-202 and CHTP-203 were heavily impacted with MGP residuals. These impacted materials were placed into gas holder GH-1 for blending and the excavations were backfilled with clean soil.

Other objectives accomplished as part of the IRM included capping the abandoned storm sewer traversing the site at the west and east terminal, and removal for off-site disposal of approximately 105 clean empty drums, two dozen wooden pallets, miscellaneous surface debris, hoses, fencing, trees, and brush.

Following site cleanup, site restoration was completed. Site restoration was conducted in accordance with the Work Plan. Approximately 780 CY of topsoil was spread over the site, final graded, seeded, and covered with straw to restore the site to grass cover.

2.10.6 Groundwater Monitoring

As noted in Section 2.10.3.6, piezometers and groundwater monitoring wells were initially installed during the Phase II Site Investigation activities. Nineteen wells were installed both on-site and off-site,

including three deep wells. Wells have been sampled for chemical analysis numerous times since initial installation in 1990 and have been sampled on a quarterly basis since 1996.

Groundwater samples were initially collected from the off-site wells UMW-101 through UMW-112 (with the exception of UMW-109 which had not yet been installed); UMW-401 through UMW-403; and piezometers UPZ-101, UPZ-301 and UPZ-303 in December 1990 (refer to Figure 2-18 for approximate well locations). A second round of groundwater samples was collected in January 1992 after the on-site wells had been installed and included all wells (UMW-101 through UMW-116) with the exception of UMW-104, which could not be located at that time. A third round of groundwater samples was collected from all wells in January 1993 with the exceptions of UMW-101 (DNAPL accumulation in the well) and UMW-107, which was obstructed at the time by a housing construction project. Piezometers UPZ-104, UPZ-105 and UPZ-106 were also sampled at this time.

Quarterly groundwater sampling at the site commenced in the first guarter of 1996. Samples were collected from selected wells (UMW-102, UMW-107, UMW-108, UMW-109, UMW-111, UMW-112, UMW-114, UMW-115 and UMW-116) and analyzed for BTEX and naphthalene. Samples from wells UMW-107 and UMW-114 were also analyzed for PAHs. Well UMW-103 was sampled until the third quarter of 1996 when DNAPL was identified in the well and sampling was discontinued. This well and wells UMW-101, UMW-401, UMW-402, and UMW-403 were subsequently abandoned in accordance with Illinois Department of Public Health guidelines. During sampling events from 1990 to 1999 no impacts were identified in the deep wells (UMW-401, UMW-402, and UMW-403) and subsequent to identification of DNAPL in wells UMW-101 and UMW-103 all five wells were sealed to prevent any potential hydraulic connection to the deeper aquifer. These five wells were sealed in August of 1999. Well UMW-111 was located in Washington Street and was subject to traffic damage. This well was also abandoned and a replacement well UMW-111R was installed nearby. During site maintenance activities and the IRM, all of the piezometers on the northern half of the site were destroyed.

Table 2-8 presents a summary of groundwater results (BTEX, PAHs, and Metals) for those wells monitored through 1999. The shallow groundwater system at the site has been impacted by MGP residuals over much of the site. The VOCs present in the impacted groundwater include benzene, ethylbenzene, toluene and xylenes. Throughout the duration of sampling activities various SVOCs have been detected in 14 of the 18 shallow monitoring wells and piezometers. Table 2-9

presents a summary of groundwater results (BTEX, PAHs) for wells monitored from 2004 through 2006.

Although the flow direction defined by the January, 1993 water levels was to the southeast, other measurements taken between December 1990 and November 1992 have also indicated flow to the northeast, southwest, and northwest. December 2006 water levels indicated flow to the north.

2.11 Enforcement Actions

No enforcement actions have been taken at the site. AmerenIP entered this site into the IEPA voluntary program known as the Site Remediation Program (formerly the Pre-Notice Program) in 1989. The site identification number is LPC # 0190100008. Since the site was entered into the SRP, plans and reports related to site activities have been reviewed and approved by the IEPA. No enforcement notices from the IEPA or other federal, state, or local agency have been received by AmerenIP.

3 COMPREHENSIVE SITE INVESTIGATION WORK PLAN

This section presents the proposed activities described in the Site Investigation Work Plan (SIWP, August 6, 2002). The investigation activities include the collection of subsurface data necessary to complete the delineation of impact to soil and groundwater and to fully characterize the site. It also includes the development of remedial objectives and the preparation of the Remedial Objectives Report (ROR). It is noted that the Champaign MGP site has had no commercial or industrial use other than the MGP since at least 1869, with the exception of the twelve year period from 1979 through 1991 when the property was used by the American Legion. During this twelve year period the American Legion used the remaining MGP structure for meetings. Based on this fact, and the fact that the surrounding area has been primarily residential over the same period, as permitted in IAC Section 740.420(b)(1) the CSI analytical program can be limited to specific MGP chemicals of concern and satisfy the requirements for a Comprehensive Site Investigation.

The sequence of activities described in the SIWP was developed to insure a dynamic investigation which could be refined throughout the duration of field activities to consider and address field observations. For example observations made during test pit activities resulted in relocating and adding additional test pits as well as adding and relocating borings. The historical information about the remediation site and the data from previous activities was used to help identify features and areas that required further data or delineation. The planned CSI activities included the following:

- Site preparation and mobilization,
- On-site excavation and sampling of test pits,
- On-site soil boring and soil sampling,
- Off-site soil boring and soil sampling,
- Re-development of existing monitoring wells,
- Groundwater sampling,
- Soil and groundwater laboratory analytical program,
- Site survey, and
- Management of investigation derived wastes.

Field activities were managed and completed by PSC and its subcontractors. Kelron Environmental of Champaign, Illinois provided on-site geological oversight for all field work including test pit excavation, GeoProbe borings, survey services, and groundwater sampling. Transhield Underground Services, Inc. of West Chicago, Illinois provided GeoProbe equipment and services. Vegrzyn, Sarver and Associates of Champaign, Illinois provided survey services and Teklab, Inc. of Collinsville, Illinois provided analytical laboratory services.

The site was entered in the SRP in January 1989 by AmerenIP and assigned the site number 0190100008. In the CSI Work Plan, activities within the railroad and street right-of-way are referred to as off-site activities. Figure 3-1 illustrates the SRP boundary and bordering property parcels.

3.1 CSI Objectives

Based on a detailed review of previous investigation results, observations made during the IRM activities, and understanding the time frame within which previous work was completed (i.e. 1986 through 1998), it was concluded that additional site specific data were necessary to fully delineate environmental impacts at the site and to provide the quantity and quality of data necessary to complete a CSIR and ROR under the SRP and TACO. The primary objective of the CSI work was to collect additional data to more completely characterize the site, including off-site areas, (i.e. delineate the degree and extent of site impacts) and to provide data which is complete and of the desired quality to allow subsequent completion of the ROR. Therefore, the primary purpose of the CSIR is to provide the IEPA with an evaluation of the horizontal and vertical extent of environmental impacts on the site.

The components of a Site Investigation (SI) and CSI are set forth in IAC Section 740.415 and Section 740.420 respectively. The CSI work plan did not include all elements set forth in these sections because many of these elements had been satisfied through the previous investigations. For example, since monitoring wells were installed in 1990 and groundwater has been monitored since that time it was not necessary to include the installation of additional wells during the CSI.

3.2 Test Pit Excavation

The objectives of the test pit portion of the CSI were two fold; one objective was to investigate potential MGP below grade structures which were not addressed during the IRM, and the second objective was to identify potential off-site migration pathways to the north and east of the site. Test pit excavation and sampling was the initial activity planned for the CSI field work. Test pits were planned to be excavated with the primary objective to identify specific MGP subsurface structures and the presence or absence of MGP residual impacts. Table 3-1 presents the general rationale for test pit excavation. Test pit activities were planned as the first element of the CSI to be completed so that observations could be considered in refining the GeoProbe program if warranted.

Test pit activities planned to use a track hoe with a minimum reach of fifteen feet. Based on previous investigation activity and current understanding of groundwater conditions, it was anticipated that the desired test pit depths in some areas of the site might not be achievable. MGP structures of interest are primarily the gas holder foundations and intake and outlet structures. Based on observations during the IRM and other historical data, questions remained relative to the date and type of construction for gas holder GH-2. It was believed that this gas holder may have had a below grade water tank, which could contain source material or heavily impacted material and may be twenty-five feet or more deep.

Although an effort was made during the supplemental SI to identify the pathway for residuals east of the site, it was not conclusive that the east-west sewer was the only pathway for off-site migration of residuals into the vacated Sixth Street right-of-way. A test pit was planned to be excavated inside the fence and along the fence in an attempt to identify other potential migration pathways. A similar excavation was to be completed along the inside of the north fence in the general area north of gas holders GH-1 and GH-2, in an attempt to locate the pathway for the NAPL observed in monitoring well UMW-101 (now abandoned) north of the railroad right-of-way.

Any test pits excavated within structures were to be excavated to the base of the structure, if possible, and terminated. At no time would the bottom of a former MGP structure be penetrated. Test pits were to be terminated prior to reaching the target depth in the event that any of the following occurred: excessive readings from air monitoring equipment; excessive odors that could adversely impact off-site properties; buried utilities encountered in the excavation; gross infiltration of groundwater or MGP residuals; significant sidewall failure; or degradation of the integrity of the structure that is being examined. At least one soil sample representative of the excavated material was to be collected for laboratory analysis from each test pit. In addition, if impacted material was encountered, an attempt was to be made to collect a sample of the most heavily impacted material.

Test pit samples were to be analyzed for VOCs or BTEX constituents, and SVOCs or polynuclear aromatic hydrocarbon compounds (PAHs). In addition some select samples would also be analyzed for cyanide (CN), metals, and TPH.

3.3 On-Site Soil Boring and Sampling

Soil borings were to be completed on-site (i.e. the AmerenIP parcel) during the CSI. Table 3-2 presents the general rationale for each location. In general soil borings were to be advanced to a depth of approximately 25 feet bgs using a truck-mounted drilling rig with hollow stem augers. The final boring depth at each location was to be determined in the field based on observations by the site engineer/geologist. The following criteria were to be used to determine final depth:

- Auger refusal indicating a buried structure. If refusal was encountered within five feet of the ground surface, the boring location was to be shifted a few feet and re-drilled.
- Terminate in the un-weathered till after five feet with no apparent MGP impacts.
- If un-weathered till was impacted, terminate five feet below the visually impacted interval.

All borings were to be continuously sampled using split spoon or other comparable methods.

In general, a minimum of three soil samples were to be collected from each boring for laboratory analyses. A surface soil sample was to be collected from the interval from ground surface to three feet bgs at each location based on PID readings. A second sample was to be collected from the three to ten foot bgs interval, also based on PID readings, and a third from the bottom two foot interval at each boring location. In addition, if MGP impacts were observed, at least one sample from the most heavily impacted interval was to be collected. The impacted sample was to be based on PID readings and odor and visual observations. If the observed most heavily impacted interval is not consistent with the highest PID reading, two samples would be collected, one representing each interval. The goal of this sampling rationale was to define the degree and extent of MGP impacts in both horizontal and vertical directions.

3.4 Off-Site Soil Boring And Sampling

Proposed soil borings were to be completed off-site (i.e. within the railroad and Sixth Street rights-of-way). The primary objective of these borings was to define the pathway for MGP residuals identified in off-site wells during previous investigation activities and to define the lateral and horizontal extent of these residuals. Based on previous observations, these borings were to be at least 25-30 feet bgs and were to be drilled using the same methodology as described for the on-site borings in the previous section (Section 3.3). Criteria for depth of termination were to be the same as for the on-site borings.

Borings were to be drilled north of the north property fence in the railroad right-of-way in the N. Sixth Street right-of-way east of the property fence. Exact locations for these borings were to be established in the field after completion of the on-site test pits and borings. Additional off-site borings were anticipated and would be located based on observations of the initial borings.

3.5 Groundwater Sampling

Quarterly groundwater monitoring at the site has been underway since 1997 and has included nine wells on and around the site. Also, groundwater level data has been collected from those nine wells and five additional wells. Existing well locations are illustrated on Figure 2-18.

Fourteen monitoring wells were sampled for chemical analysis. Water level measurements were to be obtained from all wells using an electronic water level indicator and recorded on field logging forms. Depth to the bottom of each well would also be measured and recorded, and presence of NAPL will be noted.

Groundwater sampling activities were initiated approximately two weeks after well installation and development had been completed. After collection of water level data and prior to sampling, each of the fifteen wells would be purged of a minimum of three well casing volumes of water. During purging, field measurements of pH, specific conductivity, temperature, and dissolved oxygen would be measured until these parameters had stabilized to within ten percent of the previous reading. Wells would be slow purged and groundwater samples collected using a peristaltic pump with dedicated disposable tubing.

3.6 Site Survey

As a result of inconsistent survey data from previous investigations, it was determined that a complete site survey and development of a new site base map was warranted. An Illinois licensed surveyor would determine the horizontal location, ground surface elevation, and top of casing elevation for all monitoring wells. The location and ground surface elevation for each test pit and boring would be determined. Elevation data would be referenced to a National Geodetic Vertical Datum (NGVD), or local permanent datum, based on availability. Horizontal coordinates would be referenced to the Illinois State Plane Coordinate system or to a local permanent reference point. In addition, other points of reference identified by the site engineer/geologist, such as fence corners, buildings, sewer manholes, etc. would be surveyed for elevation and coordinates. The data collected by the surveyor would be used to prepare a site base map to be used for the CSI Report.

3.7 Analytical Program

Both soil and water samples were to be collected during CSI activities for chemical analysis at an off-site laboratory. During sample collection, samples were to be placed in laboratory provided containers and labeled according to matrix, sample location, date, and analytical method. Quality control (QC)

samples, which include trip blanks, field blanks, duplicates, and matrix spikes were collected to assess the quality of the data resulting from the field sampling program.

Soil samples were to be collected from test pits, and on-site and off-site soil borings. It was anticipated that in excess of eighty-five soil samples would be sent to the laboratory for analysis. Since analytical data were available from the Phase II investigation and a relatively large number of additional samples were to be collected, complete analyses of all samples for all parameters would not be necessary. The analytical rationale would be to complete a full VOC and SVOC analysis on approximately every fifth sample; the remaining four samples were to be analyzed for only BTEX and PAH constituents.

Soil samples were to include a minimum of one sample from each test pit and three samples from each boring. Surface soil samples were also to be analyzed for RCRA metals and cyanide. Select samples were to be analyzed for TPH constituents based on PID readings and visual observations. In addition, at least one QA/QC sample was to be collected for every ten soil samples.

The analytical methods to have been used for soil samples included the following:

- SW-846; Method 8260 (BTEX & VOC parameters)
- SW-846; Method 8270 SIM (PAH & SVOC parameters)
- SW-846; Method 8015 (TPH constituents)
- SW-846; Method 9010 (total Cyanide)
- SW-846; Methods 6000 & 7000 series (RCRA metals)
- SW-846; Method 9045C (pH)

Soil samples submitted for BTEX and VOC analysis were to be collected in accordance with Method 5035. One of every five soil samples was to be analyzed for the entire IAC Section 740 Appendix A list of VOCs (Table A) and the remaining samples would only report for BTEX parameters. One out of every five soil samples collected for SVOC analysis would be reported for all parameters identified in IAC Section 740 Appendix A (Table B). Arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver were to be the parameters reported for soil samples analyzed for metals.

Groundwater samples would be collected from fourteen pre-existing monitoring wells. In addition, three duplicate samples would be collected for QA/QC purposes. The analytical methods were to include the following:

- SW-846; Method 8260 (BTEX)
- SW-846; Method 8310 (PAHs)

4 COMPREHENSIVE SITE INVESTIGATION FIELD INVESTIGATION

As required in IAC Section 740.425(b)(4), the following sections provide documentation of the field activities that were performed to characterize the site. Investigation activities as defined in IAC Section 740 were performed during June through August 2004. In addition certain activities defined in IAC Section 740 were performed during earlier investigations completed in 1986, 1990, 1997, and 1998. Only those activities completed during 2004 are discussed in this section. Elements applicable to completion of this CSIR that were completed previously are presented in earlier sections of this report. The principal CSI activities completed during 2004 included excavation and sampling of test pits, logging and sampling of probeholes, and groundwater sampling. The following sections address the CSI activities in detail:

- Test pit excavation and sampling;
- GeoProbe completion and sampling;
- Well redevelopment and groundwater sampling;
- Site survey and base map development;
- Investigation waste management and disposal;
- Quality assurance / quality control activities; and
- Deviations from site sampling plan.

4.1 Test Pit Excavation and Sampling

During the week of July 5, 2004 nine (9) test pits (identified as TP-501 through TP-510) were excavated as part of the CSI field activities. The proposed location and rationale for these test excavations is presented in Section 3.2 of this CSIR. The objective of these excavations was to investigate below grade MGP structures and to evaluate potential off-site migration pathways. Figure 4-1 illustrates the actual locations where test -pits were excavated. Each test pit was supervised by the site engineer/geologist, who made a field determination relative to the nature of the material being excavated. Any material deemed to be moderately or heavily impacted, was placed into a roll-off container for subsequent off-site. Soils were classified in accordance with ASTM Standard D 2488-90. Data recorded included field observations, including PID readings, characterization of soils, and indications of impacts such as stained soils or odors. MGP structures were described and photographs taken. The subsequent paragraphs provide brief descriptions of observations made at each test pit location.

Test Pit TP-501: Test Pit TP-501 was excavated on July 8, 2004 and oriented approximately north-south inside the site fence and approximately parallel to the vacated Sixth Street right-of-way. The objective of this excavation was to identify preferential pathways for MGP impact. Test Pit TP-501 was approximately 52 feet long, 5 feet wide, and 5 to 7.5 feet deep. The following four soil horizons (from ground surface down) were observed in the walls of the excavation:

- Horizon A medium brown moist fill (1 to 1.5 feet thick), primarily clay with sand, gravel, brick (PID=2.5 ppm)
- Horizon B black silty clay to clay (2.5 to 3 feet thick) with brick, tile, and cinders, and a tar-like odor (PID=5.7 ppm)
- Horizon C dark gray to black silty clay (1 foot thick) with tar-like odor
- Horizon D gray to olive gray clay to silty clay (greater than 2.5 feet thick), soft and wet, water seeps below 5 foot depth, impacted (PID=289 ppm) with immiscible hydrocarbon oil-like fluid, tar-like odor, some yellow to yellow-orange staining

In addition, a layer of broken brick was observed at a depth of about 3 feet bgs. This may be the remnant of the original surface of Hill Street, which bisected the site between Fifth and Sixth Streets. A 24-inch diameter cast iron gas main was encountered at 6 to 7.5 feet of depth perpendicular to the trench (i.e. parallel to Hill Street) and about 15 feet from the southern end of the test pit. A hydrocarbon-like liquid was observed seeping out of the sidewall of the trench along the contact between Horizon C and Horizon D. A soil sample [TP501(7)] was collected from the 6 to 7 foot depth interval for chemical analysis.

Test Pit TP-503: Test Pit TP-503 was excavated on July 8, 2004 outside and parallel to the north property fence along the railroad right-of-way. This trench was a composite of proposed test pits TP-502 and TP-503 excavated to evaluate potential migration pathways from the site toward former monitoring well UMW-101. Test Pit TP-503 was approximately 97 feet long, 5 feet wide and 4 to 5 feet deep. The upper 4 feet of material was generally a loose black fill composed of ash, cinders, slag, clinker, and gravel. Water seeps with a hydrocarbon sheen were observed at approximately 2.5 feet bgs. Tar-like odors were also observed and PID readings from the 2 to 4 foot depth ranged from 12 ppm to 34.8 ppm. along the entire length of the trench. A gray silty clay was observed below the 4 foot depth. The clay had a tar-like odor and a PID reading of 18 ppm near the west end of the excavation.

There were variations observed along the length of the trench with respect to the rate of water inflow, hydrocarbon-like sheen, tar-like odors and possible NAPL material. However, the inflow rate was sufficient to limit the depth of excavation to 5 feet or less. Two soil samples [P-503(3) and TP-503A(3.5)] were collected from TP-503 for chemical analysis.

Test Pit TP-504: Test Pit TP-504 was excavated on July 8, 2004 along the outside west edge of gas holder tank GH-1 to investigate the inlet/outlet sump and/or valve pit for that gas holder. The contents of GH-1 were excavated and disposed of during the IRM activities in 1997. Test Pit TP-504 was approximately 29 feet in length, 10 to 16 feet wide and 4 to 6 feet deep. The top of gas holder GH-1 wall was encountered at 2 feet bgs. Clean brown sand was encountered inside the gas holder GH-1 tank and the following three soil horizons were identified outside of the tank wall:

- Horizon A one foot of clean sand fill with light brown clay topsoil at the ground surface
- Horizon B fill composed of cinders, clay, ash-like material, brick, and piping all heavily stained with strong tar-like odor (1 to 4 ft. bgs)
- Horizon C gray to olive gray clay with staining and tar-like odor (4 to 6 ft. bgs)

Four pipes were encountered during excavation. Two metal pipes (4 inch-diameter and 1 inch-diameter) were observed above the gas holder wall and parallel to the wall. A 4 inch-diameter clay pipe was observed approximately 3 feet bgs and a 3 inch-diameter metal pipe containing tar-like material was observed at a depth of about 2.5 feet bgs. Both the clay pipe and 3 inch metal pipe were oriented approximately north-south and approximately 4 to 5 feet east of the gas holder wall. Soil sample TP-504(3) was collected for chemical analysis.

Test Pit TP-505: Test Pit TP-505 was excavated on July 6, 2004 along the northwest edge of gas holder GH-3 to investigate the valve vault/pit and outlet piping. The primary objective of the excavation was to locate outlet piping shown on a 1922 site plan and determine the presence or absence of MGP residual impacts. Test pit TP-505 was approximately 39 feet long, 7.5 to 8 feet wide, and 5 to 7 feet deep. The following three soil horizons were observed in the excavation:

- Horizon A dry light brown clay and gravel fill (0.5 to 1 foot thick) with some sand, no odor noted (PID=2.9 ppm)
- Horizon B medium brown moist silty clay (1.5 to 2 feet thick), no odor noted (PID=37 ppm at 2 ft. bgs)
- Horizon C silty clay to clay, black with residual staining of tar-like material, wet below 4 ft., strong tar-like odor (PID=137 ppm)

The brick holder foundation was encountered from 1 foot to 6.5 feet in the southeast wall of the excavation. The concrete top of valve vault/pit was encounter at about 2 feet bgs. The valve pit is approximately 8 by 8 feet,

constructed of concrete, and is tied into the holder foundation. The vault/pit bottom is about 7.5 feet bgs and contained water and 3 to 3.5 feet of tar-like material. Strong tar-like odors were noted when the cover was removed from the valve vault/pit. No sample of the liquid was collected.

Test Pit TP-506: Test Pit TP-506 was excavated on July 6 and 7, 2004 adjacent to the GH-3 gas holder foundation to investigate the holder inlet piping. The excavation was 'L' shaped with one leg excavated to expose the tank holder slab and the second leg approximately parallel to the foundation wall. The leg outside of the slab was oriented east-west and was approximately 18 feet long, 5 feet wide and 8 feet deep. The leg on the holder slab exposed an area approximately 15 feet long and 10 feet wide. The holder slab is approximately 3 feet bgs. The inlet pipe vault/pit was located inside the holder foundation; however, no vault was found outside the foundation. The vault/pit is approximately 8 feet long, 2 feet wide and 5.5 feet deep below the bottom of the slab (i.e. about 8.5 feet bgs). The vault/pit has a concrete cover and approximately 3 feet of water and tar-like material was observed in the bottom of the vault/pit. The following soil horizons were observed in the trench outside of the holder foundation:

- Horizon A light brown clay fill (0 to 1 ft.) with coarse gravel (PID = 4ppm)
- Horizon B black clay with staining, strong tar-like odor

Test Pit TP-507: Test Pit TP-507 was excavated on July 7, 2004 adjacent to the southwest edge of gas holder GH-2. The purpose of this trench was to locate the outlet piping vault/pit and assess potential impacts of residuals. The trench excavation was in excess of 35 feet long approximately perpendicular to the GH-2 holder wall and 15 to 20 along the wall. Several pipes were identified both inside and outside of the wall. The gas holder GH-2 wall is 1 to 1.5 feet wide, constructed of concrete or possibly brick with a concrete veneer and the top is about 1 foot bgs. The concrete wall was impacted with tar-like material and was exposed to a depth of 8.5 feet. Material within the holder consists of fill with brick, clay and wood to a depth of about 2 feet. Below 2 feet the material is primarily clay impacted with tar-like residuals.

In addition, a two-compartment vault was observed inside the wall. The entire vault was not exposed; however, it is about 10 feet long and constructed of brick. The cover is constructed of wood and concrete and was encountered about 2.5 feet bgs. The compartment nearest the wall is filled with viscous tar-like material and the other compartment is filled with what appeared to be water. A soil sample, TP-507(3.5), was collected from north of the vault for chemical analysis.

Test Pit TP-508: Test Pit TP-508 was excavated on July 8, 2004 in the area northwest of gas holder GH-2 and south of the fence. This excavation was oriented approximately northeast southwest and was about 35 feet in length.

The objective of TP-508 was to locate the inlet pipe and valve pit for the 20 inch gas main shown on the 1922 site plan. In addition the excavation was located in the general area where a curved brick wall (assumed to be gas holder GH-2 wall) was observed during the IRM activities. Neither the brick wall nor the pipe and valve pit were encountered. The western portion of the excavation encountered the clean sand backfill from the IRM and the eastern portion encountered moderately to heavily impacted material at 1 foot bgs. The impacted side of the test pit was excavated to depths of 6 to 8 feet. A soil sample, TP-508(4), was collected from a heavily impacted area of the excavation.

Test Pit TP-509: Test Pit TP-509 was excavated on July 7, 2004 to locate the east wall of the holder tank for GH-2. The excavation was oriented approximately east west and was about 30 feet long and 5 to 10 feet wide. The depth was between 3.5 and 4 feet and was limited due to the inflow of water. The material encountered from the surface to about 2 feet was composed of cinders, ash, brick, pipe and concrete and exhibited low levels of MGP residual impacts. Material below 2 feet was similar but was more heavily impacted with tar-like material. The gas holder wall for GH-2 was not encountered. No soil samples were collected from TP-509.

Test Pit TP-510: Test Pit TP-510 was excavated on July 7, 2004 to locate the gas holder wall for GH-2. The excavation was approximately 28 feet long, 5 feet wide, 4.5 feet deep and oriented northwest to southeast. The inflow of perched groundwater limited the depth. The top of a wall, possibly GH-2, was encountered about 1.5 feet bgs and is constructed of brick and approximately 2 feet wide. Tar-like impacts were noted on both the inside and outside of the wall and water seeping into the excavation was heavily impacted with both tar-like and petroleum-like materials. Three 2-inch pipes were encountered and contained tar-like material. The following three soil horizons were encountered:

- Horizon A Fill containing clay, rock and soil from ground surface to about one foot bgs
- Horizon B Clay with brick and cinder fill (1-2.5 ft. bgs), slightly impacted
- Horizon C Dark gray to black clay, highly impacted with tar-like material

Summary: Nine test pits were excavated at the locations identified in Figure 4-1. Test pit depths were less than anticipated due to presence of groundwater, although depth to water and inflow rates varied considerably over relatively short lateral distances. Evidence of impacts from MGP residuals was observed in all test pits and six soil samples were collected for chemical analysis. The objective of locating below grade structures was generally successful; however, the exact location of GH-2 holder wall was not

defined. The encountering of fill within the area of GH-2 and not encountering a slab, indicates that GH-2 was likely a below grade holder instead of a former aboveground structure. Although heavily impacted material and NAPL were identified in both TP-501 and TP-503, due to the relatively shallow depths they are not likely the pathways contributing to DNAPL in the two abandoned off-site wells.

4.2 Soil Boring And Sampling

As noted previously, several phases of soil sampling have been completed at the site since initial investigation activities were initiated by AmerenIP in 1986. Summary details relative to these previous activities were presented in Section 2. This section presents details relative to CSI field activities completed during July 2004. Fourteen onsite and eleven offsite soil boring locations were originally proposed in the Comprehensive Site Investigation Work Plan (CSIWP). Based on data obtained during test trenching and while advancing probeholes, twenty-seven probeholes were completed (Figure 4-2).

A modification was made to the CSIWP and soil sampling was completed using a GeoProbe system instead of with a drill rig. engineer/geologist logged each sample and recorded information on field logging forms. Soil type, recovery, observations relative to odors and impacts were to be recorded. Soil samples were classified in accordance with ASTM Standard D2488-90 (Standard Practice for Description and Identification of soils (Visual-Manual Procedure)). Each sample was field screened for organic vapor concentrations using a PID and the results recorded in the field logs. A 4-foot long, 1 ½-inch diameter MacroCoreTM sampler was advanced using direct-push methods. All probe locations were continuously sampled and samples were recovered in disposable acetate liners. observations made during previous site activities, probeholes were driven to a depth of at least 24 feet with the final termination depth determined in the field by the site geologist. Rationale for termination was based on lack of visual or olfactory impacted material. The maximum depth sampled was 32 feet.

Upon retrieval of the sample the acetate liner was opened and all recovered sample material was scanned for the presence of VOCs using a PID. Representative material was collected from each one-foot interval for determination of volatiles using head-space analysis. These data were logged on the geologic drilling logs and were used in the field to aid in selection of intervals to be sampled for laboratory chemical analysis.

Recovered soil samples were described and logged by the site geologist immediately upon opening the acetate liner. Descriptions included sample recovery; sample interval; stratum thickness; depth of lithology change; color; approximate grain size; indications of contamination; macro-features and

physical characteristics; and soil classification according to the Unified Soil Classification System (ASTM D 2487 and D 2488). "Record Of Subsurface Exploration" logs were completed for each probe location and are presented in Appendix I.

Soil sampling rationale was to collect a minimum of three samples from each probehole location; one sample from ground surface to three-foot of depth, one sample between three feet and ten feet of depth, and one sample below ten feet. Additional samples were to be collected based on head-space PID results and visual observations by the field geologist. In general, at least four samples were collected from each location and five or six samples were collected from several locations. Details relative to the analytical program are presented in a subsequent section of this chapter. Table 4-1 presents a summary of soil properties based on observations and soil sampling and Figure 4-2 shows probehole locations with respect to historic MGP structures. Table 4-2 presents a summary of soil parameters analyzed. The following paragraphs provide brief descriptions of observations made for each sample location.

B-501: Probehole B-501 was completed on July 13, 2004 to a total depth of 24 feet bgs at a location on the west side of the property adjacent to the Hill Street gate. Four soil samples were collected for chemical analysis. Two impacted zones were observed; one between 8 and 10 feet bgs, and a second between 14 and 15 feet bgs. Analytical samples were collected from both impacted zones. Based on field measurements, the interval with the highest PID level was 14 to 15 feet bgs. Soils below 16 feet bgs did not appear to be impacted.

B-502: Probehole B-502 was completed on July 13, 2004 to a total depth of 24 feet bgs at a location approximately 75 feet north of B-501. Four soil samples were collected for chemical analysis. Impacts were observed from a depth of 5 to 12 feet bgs and two analytical samples were collected from that zone. Based on field measurements, the interval with the highest PID level was 11 to 12 feet bgs. Soils below 13 feet bgs did not appear to be impacted.

B-503: Probehole B-503 was completed on July 13, 2004 to a total depth of 28 feet bgs at a location near the north fence line west of 5th Street and approximately 20 to 25 feet from the former tar wells that were excavated during the IRM activities. Five soil samples, including one duplicate, were collected for chemical analysis. Two general zones of impacts were observed; one between 6 and 10 feet bgs, and a second between 12 and 15 feet bgs. Based on field measurements, the interval with the highest PID level was 10 to 11 feet bgs. Soils below 15 feet bgs did not appear to be impacted.

B-504: Probehole B-504 was completed on July 13, 2004 to a total depth of 28 feet bgs at a location north of gas holder GH-2 near the north fence line. This location is between holder tank GH-1 and UMW-101 where tar-like

DNAPL was identified in 1997. Six soil samples, including a duplicate, were collected for chemical analysis. Impacts were observed from about one foot bgs to a depth greater than 20 feet bgs. Based on field measurements, the interval with the highest PID level was 20 to 21 feet bgs. Soils below 24 feet bgs did not appear to be impacted.

B-505: Probehole B-505 was completed on July 14, 2004 to a total depth of 28 feet bgs at a location within the footprint of gas holder GH-2. Five soil samples were collected for chemical analysis. Impacts were generally observed from 3 feet bgs to through 21 feet bgs. Based on field measurements, the interval with the highest PID level was 5 to 6 feet bgs. Soils below 21 feet bgs did not appear to be impacted. No solid bottom was encountered for gas holder GH-2.

B-506: Probehole B-506 was completed on July 22, 2004 to a total depth of 28 feet bgs at a location near the central area of the site in the vacated Hill Street right-of-way. Four soil samples were collected for chemical analysis. Several zones of impacts were observed from 3 feet bgs to 17 feet bgs. Based on field measurements, the interval with the highest PID level was 16 to 17 feet bgs. Soils below 18 feet bgs did not appear to be impacted.

B-507: Probehole B-507 was completed on July 21, 2004 to a total depth of 28 feet bgs at a location approximately 50 feet northeast of B-506. Four soil samples were collected for chemical analysis. Although impacts were observed from 3 feet bgs to 17 feet bgs, two significant zones of impact were noted; one between 5 feet bgs and 8 feet bgs, and a second from 12 feet bgs to 18 feet bgs. Based on field measurements, the interval with the highest PID level was 12 to 18 feet bgs. Soils below 18 feet bgs did not appear to be impacted.

B-508: Probehole B-508 was completed on July 19, 2004 to a total depth of 28 feet bgs at a location near the northeast corner of the site. Four soil samples were collected for chemical analysis. Slight to moderate impacts were noted from 4 feet bgs through 5 feet bgs and heavier impacts were observed at the 11 to 12 foot depth. Based on field measurements, the interval with the highest PID level was 10 to 11 feet bgs. Soils below 12 feet bgs did not appear to be impacted.

B-509: Probehole B-509 was completed on July 21, 2004 to a total depth of 28 feet bgs at a location within the Hill Street right-of-way approximately 65 feet east of the Sixth Street gate. Five soil samples, including one duplicate, were collected for chemical analysis. Impacts were noted at 7 and 9 feet bgs. Based on field measurements, the interval with the highest PID level was 17 to 18 feet bgs. Light staining was observed at that depth, although PID readings below 10 feet bgs were minor.

- *B-510:* Probehole B-510 was completed on July 12, 2004 to a total depth of 28 feet bgs at a location approximately 60 feet from the southeast corner of the site. Four soil samples were collected for chemical analysis. No visible evidence of impacts was observed at this sampling location. All PID readings from this location were minor with the highest reading recorded at 1 to 2 feet bgs.
- *B-511*: Probehole B-511 was completed on July 12, 2004 to a total depth of approximately 3 feet bgs at a location near the center of gas holder GH-3. This probehole confirmed the depth from ground surface to the foundation slab for gas holder GH-3. No soil samples were collected.
- *B-512*: Probehole B-512 was completed on July 12, 2004 to a total depth of 24 feet bgs at a location near the south fence line east of the former fuel tanks. Four soil samples were collected for chemical analysis. Impacts were noted near the surface and in the 6 to 8 foot bgs interval. Based on field measurements, the interval with the highest PID level was 7 to 8 feet bgs. Soils below 9 feet bgs did not appear to be impacted.
- *B-513*: Probehole B-513 was completed on July 12, 2004 to a total depth of 24 feet bgs at a location near the southwest corner of the site. Five soil samples, including one duplicate, were collected for chemical analysis. Hydrocarbon impacts were observed in the 6 to 9 foot bgs interval. Based on field measurements, the interval with the highest PID level was 7 to 8 feet bgs. Soils below 10 feet bgs did not appear to be impacted.
- *B-514:* Probehole B-514 was completed on July 22, 2004 to a total depth of 28 feet bgs within the Hill Street right-of-way approximately 15 feet north of the Booster House. Five soil samples, including one duplicate, were collected for chemical analysis. Several impacted zones were observed between depths of 3 and 16 feet. Heavily impacted zones were noted between depths of 10 and 16 feet. Based on field measurements, the interval with the highest PID level was 16 to 17 feet bgs. Soils below 20 feet bgs did not appear to be impacted.
- *B-515*: Probehole B-515 was completed on July 16, 2004 to a total depth of 32 feet bgs at a location within the footprint of gas holder GH-2. Four soil samples were collected for chemical analysis. Impacts were noted throughout most of the probehole. Based on field measurements, the interval with the highest PID level was 18 to 19 feet bgs. Soil below 24 feet bgs did not appear to be impacted.
- *B-516:* Probehole B-516 was completed on July 22, 2004 to a total depth of 24 feet bgs at a location approximately 75 feet south of B-506. Five soil samples, including one duplicate, were collected for chemical analysis. Impacts were observed at several depths from 3 to 14 feet bgs. Based on

field measurements, the interval with the highest PID level was 5 to 6 feet bgs. Soils below 14 feet did not appear to be impacted.

B-550: Probehole B-550 was completed on July 20, 2004 to a total depth of 28 feet bgs at a location approximately 60 feet north of B-503 in the right-of-way north of the site. Five soil samples were collected for chemical analysis. Impacts were observed at several zones between 2 feet and 17 feet bgs. Based on field measurements, the interval with the highest PID level was 11 to 12 feet bgs. Soils below 18 feet did not appear to be impacted.

B-551: Probehole B-551 was completed on July 15, 2004 to a total depth of 28 feet bgs at a location in the north right-of-way approximately 50 feet east of B-550. Four soil samples were collected for chemical analysis. Impacts were observed between 8 and 12 feet bgs. Based on field measurements, the interval with the highest PID level was 11 to 12 feet bgs. Soils below 12 feet bgs did not appear to be impacted.

B-553: Probehole B-553 was completed on July 14, 2004 to a total depth of 32 feet bgs at a location in the north right-of-way approximately 65 to 70 feet north of gas holder GH-2. Six soil samples, including one duplicate, were collected for chemical analysis. Impacts were noted from between 2 feet and 28 feet bgs. Based on field measurements, the interval with the highest PID level was 23 to 24 feet bgs. Soils below 28 feet bgs did not appear to be impacted.

B-554: Probehole B-554 was completed on July 15, 2004 to a total depth of 32 feet bgs at a location in the north right-of-way approximately 60 feet east of B-553. Five soil samples, including one duplicate, were collected for chemical analysis. Three zones of impacted soils were observed from between 3 feet to 26 feet bgs. Based on field measurements, the interval with the highest PID level was 17 to 18 feet bgs. Soils below 26 feet bgs did not appear to be impacted.

B-556: Probehole B-556 was completed on July 20, 2004 to a total depth of 28 feet bgs at a location along the north edge of the AmerenIP property boundary, approximately 50 feet southeast of B-554. Five soil samples, including one duplicate, were collected for chemical analysis. Several zones of impacts were observed from between 3 feet and 20 feet bgs. Based on field measurements, the interval with the highest PID level was 19 to 20 feet bgs. Soils below 20 feet bgs did not appear to be impacted.

B-557: Probehole B-557 was completed on July 20, 2004 to a total depth of 24 feet bgs at a location in the north right-of-way near the northeast corner of the site. Four soil samples were collected for chemical analysis. Minor impacts were observed from between 6 feet and 13 feet bgs. Based on field measurements, the interval with the highest PID level was 11 to 12 feet bgs. Soils below 13 feet bgs did not appear to be impacted.

B-558: Probehole B-558 was completed on July 19, 2004 to a total depth of 28 feet bgs at a location in the vacated Sixth Street right-of-way approximately 50 feet east of the northeast corner of the site. Five soil samples were collected for chemical analysis. Minor impacts were observed from between 5 feet and 18 feet bgs. Based on field measurements, there were significantly elevated PID levels at this location. Soils below 18 feet bgs did not appear to be impacted.

B-559: Probehole B-559 was completed on July 19, 2004 to a total depth of 28 feet bgs at a location near the south end of the vacated Sixth Street right-of-way. Five soil samples, including one duplicate, were collected for chemical analysis. No impacts were observed at this location and no elevated PID levels were recorded.

B-560: Probehole B-560 was completed on July 15, 2004 to a total depth of 28 feet bgs at a location approximately 50 feet north of B-559 in the vacated Sixth Street right-of-way. Six soil samples, including one duplicate, were collected for chemical analysis. Some residual impacts were observed within a sand unit in the 11 to 13 foot bgs interval. Based on field measurements, the interval with the highest PID level was 12 to 13 feet bgs. Soils below 13 feet bgs did not appear to be impacted.

B-561: Probehole B-561 was completed on July 15, 2004 to a total depth of 32 feet bgs north of the site at a location within the railroad right-of-way. Six soil samples, including one duplicate, were collected for chemical analysis. This probehole location is adjacent to the former location of monitoring well UMW-101 (screened between 14 and 26.5 feet) where tar-like DNAPL was observed in 1997. Residual impacts were observed from depths of 7 to 16 feet bgs. Based on field measurements, the interval with the highest PID level was 12 to 13 feet bgs. Soils below 16 feet bgs did not appear to be impacted.

B-562: Probehole B-562 was completed on July 15, 2004 to a total depth of 32 feet bgs at a location in the railroad right-of-way north of the tracks approximately 35 feet east and south of B-561. Four soil samples were collected for chemical analysis. Residual impacts were observed from 8 to 16 feet bgs, although recovery of soil material from this interval was poor. Based on field measurements, the interval with the highest PID level was 13 to 14 feet bgs. Soils below 16 feet bgs did not appear to be impacted.

Summary: Twenty-seven probeholes were completed (Figure 4-2) to depths ranging from twenty four to thirty two feet. One probehole (B-511) was completed to a depth of only three feet to verify the presence of GH-3 holder foundation slab. Three probeholes (B-558 through B-560) were completed within the vacated Sixth Street right-of-way and seven probeholes (B-550 through B-557 and B-561 & B-562) were completed within the railroad right-of-way. The remaining seventeen probeholes (B-501 through B-516, and B-556) were completed on the AmerenIP owned parcel. At least four soil

samples were collected from each probehole with the exception of B-511. No samples were collected at that location. Evidence of environmental impacts was noted at all probehole locations with the exception of B-510 and B-559. Observed impacts tended to be both greater and deeper in the northern portion of the site, including the railroad right-of-way north of the site.

4.3 Groundwater Sampling

As discussed in Section 2.10.3.6, groundwater monitoring wells were installed during site investigation activities completed in 1990 and 1991. Section 3.5 presents a summary of groundwater activities planned for the CSI, which was completed in 2004. The following paragraphs provide a brief summary of groundwater related activities completed at the site. Since 1990, a total of 19 wells have been installed on and adjacent to the site. During the intervening period, five of those wells have been abandoned. Figure 4-3 shows the location of the sixteen wells currently included in the groundwater monitoring program.

The first groundwater samples were collected during the Phase IIA and IIB investigations (1990 and 1991). These samples were collected from the 16 shallow (UMW-101 through UMW-116) and three deep monitoring wells (UMW-401 through UMW-403). Subsequent rounds or partial rounds of groundwater sampling were performed in January 1993, during 1996 and 1999.

Based on groundwater analytical results and site observations, five of the original 19 wells were abandoned in August 1999. Two wells (UMW-101 and UMW-103) were abandoned as a result of DNAPL accumulations within the wells. It was believed that representative samples of groundwater could not be obtained from these wells. The three deep wells (UMW-401, UMW-402, and UMW-403) were abandoned to eliminate potential pathways for contamination from the shallow soil horizons. Analytical results for samples from these wells prior to August 1999 indicated no impacts from MGP residuals. Abandonment of these five wells was approved by IEPA.

Since 1999, monitoring wells have been sampled on a quarterly basis and analyzed for select MGP constituents (primarily BTEX constituents and naphthalene). Table 2-10 presents a summary of groundwater sample results from all monitoring events.

4.4 CSI Laboratory Analytical Program

The proposed CSI analytical program has been presented in Section 3.7 along with sample handling procedures and sampling rationale. Analytical methods are also presented in Section 3.7 and all analyses were consistent with the

work plan. One hundred eleven soil samples and eleven duplicate samples were collected for laboratory chemical analysis from the CSI probeholes advanced in 2004. Six soil samples were collected for laboratory analysis from CSI test pit excavations. Table 4-2 presents a summary of analyses completed for these samples. Fourteen groundwater samples were collected from both on-site and off-site monitoring wells. Figure 4-4 presents a composite of all CSI sampling locations. In addition samples of investigation derived waste material, both liquid and solid, were collected and analyzed for disposal characteristics. All laboratory analyses were completed by TekLab. Results of laboratory analyses are discussed in detail in Section 5 of this report.

Samples were protected from breakage and shipped in coolers. Coolers were transported and delivered to the lab by PSC field staff. Ice was used to maintain a temperature of 4 degrees C. All soil and water samples were delivered to Teklab. The laboratory provided a data quality objective (DQO) level III data package upon completion of analysis.

4.5 Management of Investigation Waste

All equipment and materials used in drilling, sampling, and monitoring well construction were decontaminated prior to use at the site. In addition, all sampling equipment was decontaminated between samples and all drilling and geoprobe equipment decontaminated between boreholes.

All equipment and material coming into contact with potentially impacted material or the sample medium was decontaminated before, between, and after usage or properly discarded after becoming contaminated. Equipment was washed using a laboratory- grade detergent followed by clean-water and distilled-water rinses.

The following materials generated during CSI activities were containerized and stored on site:

- Test pits impacted soils that could not be replaced into test trenches were deposited in roll-off boxes;
- Geoprobe soils materials not used for analytical samples were placed in roll-off boxes;
- Well development water generated from re-development of monitoring wells was contained in 55-gallon drums;
- Well purging purge water from groundwater sampling was contained in 55-gallon drums;
- Decontamination fluids water and other fluids from equipment decontamination was contained in 55-gallon drums; and

 Disposable protective clothing and equipment – was contained in rolloff boxes.

The drilling- and sampling-generated soil, spoils, fluids, and groundwater were separated as liquid or solids. All containers were clearly marked with indelible marker or paint. Each container was labeled with the type of waste contained, the location generated (when applicable), and the date sealed. Upon completion of CSI field activities all containers, liquids and solids were sampled and analyzed for disposal parameters. Materials were subsequently disposed of at approved off-site facilities.

4.6 CSI Quality Assurance Activities

During CSI field activities certain records were maintained in logbooks and/or on field forms for sampling events and daily activities during the investigations. The following sections describe the major documentation and record keeping activities.

Each sample collected for chemical analysis was assigned a specific identifier based upon the sample location designation. The specific designation for groundwater and soil samples was based upon the monitoring well, test trench, or borehole number.

Each sample submitted for chemical analysis was properly sealed immediately after collection. All sample containers were labeled to prevent misidentification of samples. The label included at a minimum the following information:

- name of collector;
- date and time of collection;
- location;
- sample number; and
- requested analyses.

All groundwater characterization samples were placed on ice immediately following field collection. The intent was to lower the fluid temperature near to (but above) freezing as soon as possible to decrease the rate and minimize the amount of physicochemical change of the sample before submittal to the analytical laboratory. All containers in a groundwater sample set were additionally identified to indicate each as a part of a specific set.

All information pertinent to a field survey or sampling event was recorded in a field logbook (or series of logbooks). The field logbook is a bound book with consecutively numbered pages. Field logbooks were completed in a thorough

manner so that later modifications or additions were not necessary. These logbooks became a part of the permanent file for the investigation.

Entries in the field logbooks detailed three basic categories of information:

- site activities log site visits, site reconnaissance (specific purpose), daily activities, documentation of procedures, and environmental monitoring data;
- photo and survey data log photo descriptions and survey data (well locations and elevations); and
- sampling data log pre-sampling well development/evacuation data (applies to sampling monitoring wells) and sampling data.

Site activity entries were completed on a daily basis to record all relevant site investigation information. The photo/survey log and sampling log were completed on an "as performed" basis.

The field logbook was kept throughout the field sampling operations to document relevant information concerning sample generation, preparation, and field data. All well development/flushing data, sampling activities, and measurement data, were recorded on specified forms (provided weather conditions were dry) and filed in a three-ring binder. When rainy conditions occurred, information was recorded in the field logbook and then transferred at a later time. Specific forms and documentation requirements were contained in the QAPP.

5 CHEMICAL ANALYTICAL RESULTS

Chemical analyses were performed on soil and groundwater samples obtained during CSI activities completed during 2004. Samples were delivered to and analyzed by TekLab. Analytical parameters included VOCs, SVOCs, BTEX, PAHs, cyanide, RCRA metals, and TPH. Analyses specific to each sample are discussed in subsequent sections. Samples of both liquid and solid investigation derived wastes were also collected and analyzed for disposal characteristics. In addition, soil and groundwater samples and samples of other media (i.e. sediment, air, etc.) have been sampled and analyzed during earlier investigation phases completed since 1990.

To establish the documentation necessary to trace sample possession from the time of collection, a chain-of-custody record was filled out and accompanied every sample. Copies of all chain-of-custody records are included in Appendix K. The chain-of-custody contains at a minimum the following information:

- sample number(s);
- signature of sampler(s);
- date and time of collection;
- sample location;
- analyses to be performed;
- preservative;
- signatures of persons involved in the chain of possession;
- inclusive dates of possession; and
- shipping destination, carrier, and shipping bill number.

All samples were transported to the laboratory for chemical analysis and were accompanied by the chain-of-custody record and by sample analysis request sheets. All samples were delivered to the person in the laboratory authorized to receive samples (often referred to as the sample custodian).

The sample containers were placed on sufficient ice inside plastic ice chests with the intent to maintain temperature of the samples equal to or less than 4°C upon receipt by the laboratory. The remaining volume inside the ice chest was filled with packing material of sufficient quantity to absorb all sample material that might leak. The ice chests were taped closed using a chain-of-custody seal. The temperature of the samples was checked by the laboratory upon arrival.

5.1 Analytical Program Summary

The CSI analytical program was developed with several objectives in mind. The primary objective was to provide sufficient analytical data to delineate environmental impacts and to facilitate comparison with Tier 1 ROs. Tier 1 ROs are presented in Tables 5-1 through 5-4. Since the site was known to be significantly impacted by MGP residuals, a secondary objective to the comparison to Tier 1 ROs was to provide sufficient data to allow subsequent development of remedial objectives possibly proceeding through completion of Tier 3 evaluations. A second objective was to analyze a sufficient number of samples for IAC Section 740 Appendix A (Table A (VOC) and Table B (SVOC)) constituents to allow a Comprehensive evaluation of environmental impacts.

Table 4-2 presents a summary of the CSI soil analytical program. The following is a summary of analyses completed for soil samples during the CSI:

- BTEX (SW 846, Method 8260) 100 analyses
- PAHs (SW 846, Method 8270) 99 analyses
- VOCs (SW 846, Method 8260) 29 analyses
- SVOCs (SW 846, Method 8270) 29 analyses
- TPH (SW 846, Method 8015) 33 analyses
- Cyanide (SW 846, Method 9012) 29 analyses
- RCRA Metals (SW 846, 6000 & 7000 Series) 51 analyses

Due to the significant quantity of data collected from the site since 1990, and based on the subsequent objective of evaluation in accordance with TACO guidance, the CSI soil sample analytical data are divided into three general groups. These groups include surface soils (0 to 3 ft. bgs), shallow subsurface (3 to 10 ft. bgs), and deep subsurface (greater than 10 ft. bgs). The following subsections present a discussion of analytical results based on these depth intervals.

5.2 Surface Soil Results

Surface soil samples are defined as soils collected from the ground surface to a depth of three feet bgs. Twenty-eight samples, not including three duplicates, were collected from twenty-six (26) probeholes and two test pits. Twenty samples were analyzed for BTEX, PAHs, RCRA metals and cyanide. Five (5) samples were analyzed for VOCs, SVOCs, RCRA metals and cyanide. Samples from two test pits were analyzed for BTEX, PAHs and TPH. In addition, two probehole samples were analyzed for TPH.

5.2.1 BTEX And PAH Results

Table 5-5 presents a summary of BTEX and PAH results for all surface soil samples collected during CSI activities, including samples analyzed for VOC and SVOC constituents. Laboratory analytical data sheets for all soil samples are presented in Appendix L.

Some BTEX parameters were reported above detection limits in all 28 surface soil samples, including six samples analyzed for VOCs. Benzene was reported in all samples and ranged from 0.7 ug/kg (B-559-3) to 14,500 ug/kg (TP-503). Ethylbenzene was reported above detection limits for twenty-five samples and ranged from 1.1 ug/kg (B-507-1) to 45,600 ug/kg (TP-503). Toluene was reported in twenty-six samples ranging from 3.0 ug/kg (B-515-2) to 6,280 ug/kg (B-503-3). Total xylene was reported in twenty-seven samples ranging from 1.8 ug/kg (B-513-2) to 91,700 ug/kg (TP-504).

PAHs were reported above detection limits for all twenty-eight surface soil samples (Table 5-5), including six samples analyzed for SVOCs. All sixteen PAHs were reported above detection limits for sixteen of the twenty-eight surface soil samples and four samples had fifteen PAHs reported above detection limits. Many of the samples for which PAHs were below detection limits were the result of laboratory dilution. It is noted that for many of the PAH constituents that are reported below detection limits that the detection limits are significantly above the IEPA established background levels. In general PAH levels were reported from the 100 ug/kg range up to 100,000 ug/kg.

5.2.2 VOC And SVOC Results

Full VOC and SVOC analyses were completed for six surface soil samples. In addition, duplicates were analyzed for two of these samples. These results are presented in Table 5-6 (VOCs) and Table 5-7 (SVOCs). BTEX and PAH constituents are discussed in Section 5.2.1 and are not included in these tables. Laboratory analytical data sheets are presented in Appendix L.

Five VOC constituents were reported above detection limits for five of the six surface soil samples analyzed. These five constituents include Acetone (4 samples), Carbon disulfide (2 samples), Methyl ethyl ketone (2 samples), Methylene chloride (2 samples), and Styrene (1 sample). Except for PAHs, SVOC constituents were not reported above detection limits for any of the six samples analyzed.

5.2.3 Metals and Cyanide Results

Table 5-8 presents results for metals and cyanide analyses for surface soil samples. All twenty-six surface soil samples were analyzed for both RCRA metals and cyanide. Laboratory analytical data sheets are presented in Appendix L.

Seven constituents were reported above detection limits for all the surface soil samples analyzed. These seven constituents include arsenic (25 samples), barium (26 samples), cadmium (25 samples), chromium (26 samples), cyanide (26 samples), lead (26 samples), and mercury (26 samples).

5.3 Shallow Subsurface Soil Results

Shallow subsurface soil samples are defined as soils collected from three feet bgs to a depth of ten feet bgs. Thirty samples, not including four duplicates, were collected from twenty-six probeholes and four test pits. Twenty-four samples were analyzed for BTEX and PAH constituents. Six samples were analyzed for all VOC and SVOC constituents. Four test pit samples were analyzed for TPH parameters in addition to BTEX and PAH constituents. Six samples were analyzed for RCRA metals. In addition to four test pit samples, five probehole samples were also analyzed for TPH parameters.

5.3.1 BTEX And PAH Results

Table 5-9 presents a summary of BTEX and PAH results for all shallow subsurface soil samples collected during CSI activities. Laboratory analytical data sheets for all shallow subsurface soil samples are presented in Appendix L.

Some BTEX parameters were reported above detection limits in twenty-nine of the thirty shallow subsurface soil samples, including those samples analyzed for VOCs. Benzene was reported above detection limits in twenty-seven samples and ranged from 4.3 ug/kg (B-510-5) to 20,800 ug/kg (B-504-7). Ethylbenzene was reported above detection limits for twenty-seven samples and ranged from 1.9 ug/kg (B-560-5) to 145,000 ug/kg (B-504-7). Toluene was reported in twenty-four samples ranging from 1.4 ug/kg (B-509-8) to 10,900 ug/kg (B-504-7). Total xylene was reported in twenty-nine samples ranging from 1.3 ug/kg (B-510-5) to 140,000 ug/kg (B-504-7).

PAHs were reported above detection limits for twenty-nine of thirty shallow subsurface soil samples (Table 5-9), including those samples analyzed for SVOCs. All sixteen (16) PAHs were reported above

detection limits for eighteen of the thirty samples and six samples had fifteen PAHs reported above detection limits. In general PAH levels for individual constituents were reported from the 100+ ug/kg range to greater than 100,000+ ug/kg.

5.3.2 VOC And SVOC Results

Full VOC and SVOC analyses were completed for five shallow subsurface soil samples. In addition, duplicates were analyzed for three of these samples. These results are presented in Table 5-10 (VOCs) and Table 5-11 (SVOCs). BTEX and PAH constituents for shallow subsurface samples are discussed in Section 5.3.1 and are not included in these tables. Laboratory analytical data sheets are presented in Appendix L.

Three VOC constituents were reported above detection limits (Table 5-10). Acetone was reported in three of the five samples and methyl ethyl ketone and methylene chloride were reported in one sample each. Detection limits are relatively high for some of the samples, indicating several dilutions of the samples were required by the laboratory.

Three SVOC constituents were reported above detection limits (Table 5-11). Dibenzofuran was reported in four samples, 2-methylnaphthalene was reported in three samples, and bis(2-ethylhexyl)phthalate was reported in one sample. As noted above, detection limits for some samples indicate laboratory dilutions were required.

5.3.3 Metals Results

Table 5-12 presents results of analyses for metals for shallow subsurface soil samples. Five (5) shallow subsurface soil samples were analyzed for RCRA metals. Laboratory analytical data sheets are presented in Appendix L.

Six constituents were reported above the detection limits for all the shallow subsurface soil samples. These six constituents include arsenic (four samples), barium (five samples), cadmium (four samples), chromium (five samples), lead (five samples), and mercury (five samples).

5.4 Deep Subsurface Soil Results

Deep subsurface soil samples are defined as soils collected from a depth of greater than ten feet bgs. Fifty-nine deep subsurface soil samples, not including four duplicates, were collected from twenty-six probeholes. Forty-nine samples were analyzed for BTEX and PAH constituents. Ten samples, plus two duplicates were analyzed for VOC and SVOC constituents. Eleven samples, plus two duplicates were analyzed for RCRA metals. Eighteen probehole samples were analyzed for TPH parameters.

5.4.1 BTEX And PAH Results

Table 5-13 presents a summary of BTEX and PAH results for all deep subsurface soil samples collected during CSI activities. Table 5-13 includes BTEX and PAH constituents for those CSI soil samples analyzed for VOC and SVOC constituents in addition to samples analyzed only for BTEX and PAHs. Laboratory analytical data sheets for all soil samples are presented in Appendix L.

Some BTEX parameters were reported above detection limits in all fifty-nine of the deep subsurface soil samples, including those samples analyzed for full VOCs. Benzene was reported above detection limits for all fifty-nine samples and ranged from 0.7 ug/kg (B-509-28 and B-516-24) to 659,000 ug/kg (B-507-19). Ethylbenzene was reported above detection limits for forty-five samples and ranged from 0.8 ug/kg (B-559-19) to 797,000 ug/kg (B-514-17). Toluene was reported in fifty-eight samples ranging from 1.0 ug/kg (B-513-24) to 1,540,000 ug/kg (B-507-19). Total xylene was reported in fifty-seven samples ranging from 1.0 ug/kg (B-510-12 and B-513-24) to 1,300,000 ug/kg (B-507-19).

PAHs were reported above detection limits for forty-seven of the fifty-eight deep subsurface soil samples (Table 5-13), including those samples analyzed for SVOCs. All sixteen PAHs were reported above detection limits for fifteen of the fifty-eight samples and an additional seven samples had fifteen PAHs reported above detection limits. Some of the samples for which PAHs were not reported above detection limits were the result laboratory dilution.

5.4.2 VOC and SVOC Results

Full VOC and SVOC analyses were completed for ten deep subsurface soil samples. In addition, duplicates were analyzed for two of these samples. These results are presented in Table 5-14 (VOCs) and Table 5-15 (SVOCs). BTEX and PAH constituents for deep

subsurface samples are discussed in Section 5.4.1 and are not included in these tables. Laboratory analytical data sheets are presented in Appendix L.

Three VOC constituents were reported above detection limits (Table 5-14). Acetone was reported in eight of the ten samples. Methylene chloride were reported in five samples and styrene was reported in one sample. Detection limits are high for three of the samples, indicating several laboratory dilutions were required.

Three SVOC constituents were reported above detection limits (Table 5-15). Dibenzofuran, 2-methylnaphthalene, and bis(2-ethylhexyl)phthalate were reported in three samples. As noted above, detection limits for some samples indicate laboratory dilutions were required.

5.4.3 Metals Results

Table 5-16 presents results of analyses for metals for deep subsurface soil samples. Eleven (11) deep subsurface soil samples were analyzed for RCRA metals. Laboratory analytical datasheets are presented in Appendix L.

Six constituents were reported above detection limits. These constituents include arsenic (nine samples), barium (11 samples), cadmium (four samples), chromium (11 samples), lead (11 samples), and mercury (ten samples).

5.5 Total Petroleum Hydrocarbons

Thirty-two soil samples collected from twenty-six probeholes and six test pits were analyzed for TPH. Four analyses were completed for surface soil samples and ten were completed for shallow subsoil samples. Eighteen deep subsurface soil samples were analyzed. Table 5-17 presents the TPH results and laboratory analytical data sheets are included in Appendix L.

5.5.1 Surface Soil Results

Surface soil samples are defined as soils collected from the ground surface to a depth of three feet bgs. The TPH parameters diesel fuel and motor oil were identified above detection limits in all four of the surface soil samples. Diesel range parameters ranged from 50.9 mg/kg (B-510-2) to 21,300 mg/kg (TP-503-3) and motor oil parameters ranged from 97.9 mg/kg (B-510-2) to 13,200 mg/kg (B-504-3). Kerosene and mineral spirit parameters were below detection limits for

all four surface soil samples. The total TPH values for surface soil samples ranged from 148.8, g/kg (B-510-2) to 24,730 mg/kg (TP-503-3).

5.5.2 Shallow Subsurface Soil Results

Shallow subsurface soils are defined as soils collected from three feet bgs to a depth of ten feet bgs. The TPH parameters diesel fuel and motor oil were identified above detection limits in all ten of the shallow subsurface soil samples. Diesel range parameters were identified above detection limits in all ten samples and ranged from 699 mg/kg (B-551-10) to 25,600 mg/kg (B-505-6). Motor oil parameters were identified above detection limits in seven samples and ranged from 75.0 mg/kg (B-512-8) to 5,510 mg/kg (B-505-6). Kerosene and mineral spirit parameters were below detection limits for all ten shallow subsurface soil samples. The total TPH values for shallow subsurface soil samples ranged from 838 mg/kg (B-551-10) to 31,110 mg/kg (B-505-6).

5.5.3 Deep Subsurface Soil Results

Deep subsurface soil samples are defined as soils collected from a depth of greater than ten feet bgs. The TPH parameters diesel fuel, kerosene, and motor oil were identified above detection limits in seventeen of the eighteen deep subsurface soil samples. Diesel range parameters were identified in sixteen samples and ranged from 222mg/kg (B-503-11) to 45,900 mg/kg (B-514-17). Kerosene range parameters were identified above detection limits for one sample (8.58 mg/kg at B-509-18). Mineral spirit range parameters were not identified above detection limits for any samples. Motor oil parameters were identified above detection limits in eight samples and ranged from 87 mg/kg (B-503-11) to 14,800 mg/kg (B-514-17). The total TPH values for the deep subsurface soil samples ranged from 8.58 mg/kg (B-509-18) to 60,700 mg/kg (B-514-17).

5.6 Groundwater Results

Fourteen groundwater monitoring wells were sampled on July 26, 2004. Samples were analyzed for BTEX constituents in accordance with SW-846 Method 8260B and for PAH constituents in accordance with SW-846 Method 8310. Analytical results are presented in Table 2-8, 2-9, and 2-10. Laboratory analytical data sheets are presented in Appendix M.

BTEX constituents were identified above detection limits in five samples. Benzene was detected in five samples, ranging from 5.7 ug/L (UMW-113) to

760 ug/L (UMW-107). Toluene was identified above detection limits in only two samples; 2.3 ug/L (UMW-110) and 120 ug/L (UMW-114). Ethylbenzene was identified above detection limits in four samples ranging from 1.0 ug/L (UMW-113) to 868 ug/L (UMW-114). Total Xylenes were identified above detection limits in four samples and range from 4.8 ug/L (UMW-113) to 425 ug/L (UMW-114).

PAH constituents were identified above detection limits in five samples. Only two samples had more than three constituents identified above detection limits. Acenaphthene was identified in four samples and ranged from 13.5 ug/L (UMW-115) to 214 ug/L (UMW-114). Acenaphthylene was also identified in four samples and ranged from 26.4 ug/L (UMW-115) to 552 ug/L (UMW-114). Anthracene was identified above detection limits in two samples; 1.04 ug/L (UMW-114) and 15.1 ug/L (UMW-110).

Benzo(a)anthracene was identified in only one sample; 0.33 ug/L (UMW-110). Fluoranthene was identified in two samples; 0.99 ug/L (UMW-114) and 12.2 ug/L (UMW-110). Fluorene was identified above detection limits in four samples, ranging from 2.36 ug/L (UMW-113) to 20.6 ug/L (UMW-114). Naphthalene was identified above detection limits in three samples; ranging from 24.7 ug/L (UMW-110) to 3,650 ug/L (UMW-114). Phenanthrene was identified above detection limits in two samples; 7.48 ug/L (UMW-114) and 26.7 ug/L (UMW-110). Pyrene was also identified above detection limits in two samples; 0.64 ug/L (UMW-114) and 5.25 ug/L (UMW-110).

Quarterly groundwater monitoring has also continued on eight of the fourteen groundwater monitoring wells since the July 2004 sampling event. Quarterly groundwater samples were analyzed for BTEX constituents and naphthalene in accordance with SW-846 Method 8260B and for PAH constituents in selected samples in accordance with SW-846 Method 8310. Analytical results for the quarterly results from 1990 through 2007 are also presented in Table 2-8 and 2-9, and laboratory analytical data sheets are presented in Appendix M.

BTEX constituents were identified during the 2004, 2005, and 2006 quarterly groundwater monitoring events above detection limits in five monitoring wells. Benzene and ethylbenzene were detected in two monitoring wells (UMW-107 and UMW-114) during 2004 through 2007. Xylene was detected in two of the monitoring wells (UMW-107 and UMW-114) in 2005. Xylene was detected in three of the monitoring wells (UMW-107, UMW-114, and UMW-115) in 2006.

The highest benzene concentration identified was at UMW-107 during the September 2006 sampling event with a concentration of 1280 ug/L. Benzene was also identified at UMW-114 during the September 2007 sampling event at a concentration of 1150 ug/L. The highest ethylbenzene concentration was identified during the September 2005 sampling event at UMW-114 at a concentration of 1370 ug/L.

The general trend of BTEX constituents in UMW-107 and UMW-114 shows concentrations have remained the same with a slight increase in concentrations in the past year.

5.7 QA/QC Analytical Summary

Duplicate samples were collected for both soil and groundwater samples. Complete laboratory results for all duplicate soil samples are included in Appendix L. It is noted that due to the lack of homogeneity of soil materials, duplication of analytical results is virtually impossible. Laboratory QA/QC reports for all soil analyses are presented in Appendix N.

Table 5-18 presents results for duplicate soil samples analyzed for BTEX and PAH constituents. Duplicate samples were analyzed for five soil samples representing all depth ranges. In general, correlation between the primary sample results and duplicate sample results is good. The BTEX and PAH constituents identified in most samples and the levels identified in the duplicate are consistent with levels identified in the primary sample.

Table 5-19 presents results for duplicate soil samples analyzed for VOCs. Duplicate samples were collected and analyzed for seven soil samples representing all depth ranges. Analytical results for duplicate samples are generally consistent with results for the corresponding primary samples. Six VOCs were identified in duplicate samples, including acetone, carbon disulfide, methyl ethyl ketone, methylene chloride, styrene, and trichloroethene. All of these constituents, with the exception of trichloroethene, were identified above detection limits for other primary samples analyzed for VOC constituents (Tables 5-6, 5-10, & 5-14). Trichloroethene was identified in only one sample (B-509-8D) at a level slightly above the detection limit.

Table 5-20 presents results for duplicate soil samples analyzed for SVOC constituents. Duplicate samples were collected and analyzed for seven soil samples representing all depth ranges. Analytical results for duplicate samples are consistent with results for the corresponding primary samples. Three SVOC constituents were identified above detection limits in duplicate samples, including 2-methylnaphthalene, bis(2-ethylhexyl)phthalate, and dibenzofuran. These same constituents were identified in other primary samples analyzed for SVOC constituents (Tables 5-11 and 5-15).

Table 5-21 presents results for duplicate soil samples analyzed for RCRA metals and cyanide. Duplicate samples were analyzed for eight soil samples representing all depth ranges. Analytical results for the duplicate samples are generally consistent with primary sample results.

This section presents the results of the CSI activities in addition to applicable data from all previous investigation activities as required in IAC Section 740.425(b)(5). Results are presented within the context of the site conceptual model to provide an understanding of the extent of impacts identified at the site. Potential exposure routes are discussed, taking into consideration site conditions and features affecting chemical constituent movement within the environment (i.e. chemical transport). Table 6-1 presents the MGP constituents of concern (COC) that have been identified for the site. Analytical results are compared to the Tier 1 ROs for all potential exposure pathways.

6.1 Recognized Environmental Conditions

Historical information relative to the site indicates that gas was manufactured on the site as early as 1869 and continued through 1933 (i.e. at least 64 years). Initially production was limited to the northwest portion of the site; however, by 1915 the operation had expanded to the southern portion of the site. Gas was produced by coal carbonization, oil gasification, and carbureted water gas methods during various periods of operation. Throughout the operating period modifications and expansion resulted in various forms of MGP activity occurring over the entire site area. These historical activities resulted in construction of a significant number of below grade structures in addition to underground piping; however, the majority of the below grade structures were located on the northern portion of the site. After operations ceased in 1932 or 1933, the plant was maintained for stand-by production purposes until about 1955. Plant facilities were demolished, with the exception of the booster house, between 1955 and 1960. Although the property remained vacant, AmerenIP maintained ownership of the property until 1979 when it was sold to the American Legion. AmerenIP repurchased the property from the American Legion in 1991 after preliminary environmental investigations indicated the presence of MGP related impacts at the site.

Environmental site investigations in the early 1990s resulted in identification of some of the below grade structures and the presence of "source material" within those structures. These structures were generally located in the northwest corner of the site. In addition soil and groundwater impacts were identified both on-site and off-site and subsequently DNAPL was identified in off-site wells north and east of the site. Groundwater impacts have been monitored on a quarterly basis since 1997 and impacts have not changed significantly during that eight year period.

The IRM activities were completed during 1997 and 1998 with the primary objective of removing "source material" from identified below grade structures. The MGP residuals were removed from seven below grade

structures located on the northeast portion of the site and disposed of off-site. These structures included gas holder tank GH-1, tar wells, and tar separator and valve pit. Some MGP impacted soil outside of structures was also removed and disposed of. In addition, shallow soils impacted by purifier residuals were removed from the southern portion of the site and the abandoned sewer along the Hill Street right-of-way was also plugged. In addition approximately one foot of topsoil was placed over the site to mitigate exposures at the site.

Based on observations during IRM activities and the presence of DNAPL at two locations not on the AmerenIP property, additional recognized environmental conditions were identified and the CSI activities were completed to define those conditions. Figure 6-1 illustrates approximate locations of historical MGP structures on the site and CSI results indicate that the following environmental conditions exist at the site relative to some of these structures.

6.1.1 Former Tar Wells

Three tar wells (TW1, TW2, and TW3) have been identified at the site. TW1 and TW2 had diameters of approximately 10.7 feet. The tops of both tar wells were located approximately 2 feet bgs and their bottoms were 10 feet bgs. The walls and floors were constructed of brick and mortar. TW1 was covered with a brick and concrete lid approximately 8-inches thick that was supported by rails. Above the lid was a concrete foundation 12-inches thick with metal rebar.

Tar well TW3 had a diameter of 19.3 feet wide and depth of 10 feet bgs. The walls were constructed of brick and mortar and the bottom was constructed of 6-inches of concrete. The environmental impacts from these tar wells would have been from releases through the sides and bottom. The material from these tar wells has been removed therefore these structures no longer serve as a source for continued releases.

6.1.2 Former Tar Separator

One tar separator was identified at the site. The dimensions of the separator were approximately 10 feet in diameter with separate chamber that ranged in depth of 6 to 10.5 feet bgs. The walls and base were concrete with interior wooden baffles. The upper two feet contained clean fill material with the remainder of the backfill saturated with fluid tar. The valve box was located east of the separator and was approximately 9 feet wide on each side with brick walls extending to 5 feet bgs. The separator did not have a floor other than native clay till. The valve box contained two 10-inch diameter

iron pipes with 5-foot invert depths that ran east-west at the north and south ends. The valve box was covered with a concrete lid and contained clay and brick fill. The walls and floor of the separator and the wall of the valve box were left intact. Environmental impacts related to this structure could have been from releases of source material through the base of the separator, the valve box, or from piping. The contents of the separator were removed in 1997 therefore this structure no longer serves as a source for further releases.

6.1.3 Former Purifiers

Three concrete purifier pads were identified at the site. The purifier pads range in diameters from 20 to 30 feet. The purifier waste consisted mainly of wood shavings, coal, and cinders. The contents and pad structures have been removed. Releases from purifiers would primarily have been cyanide and other inorganic constituents. This would typically have occurred when the purifying material was removed from the purifiers and spread on the ground to regenerate.

6.1.4 Former Gas Holder Tank GH-1

Gas holder tank GH-1 was constructed prior to 1869 and was converted to a tar well in 1924. This below ground structure contained a significant quantity of source material and was the primary focus of the IRM removal actions in 1997. The IRM activities did not address the inlet/outlet valve pit(s) located on the west side of the holder tank. A valve structure was not located during the CSI test pit activities; however, MGP related impacts were observed. The prior release of MGP related material could have occurred through the base or sidewalls of the structure. Additionally, releases could have occurred from piping going into the structure. The contents of this structure were removed in 1997, thus mitigating further releases to the subsurface.

6.1.5 Former Gas Holder Tank GH-2

Gas holder tank GH-2 was constructed prior to 1902 and was the focus of CSI test pit and boring activity. Based on the site history and the period of operation, this gas holder tank may have been used as a relief holder during part of the operation. Evidence from the 2004 CSI appears to indicate that this former gas holder was a belowground structure. A circular brick wall believed to be the outside of this gas holder tank was observed during IRM activities. CSI activities confirmed the presence of structures, including walls, valve pit, and

piping; however, a solid bottom was not encountered. It is possible that the GH-2 gas holder tank was constructed without a brick or concrete bottom due to the relatively impermeable un-weathered till below the structure and the relatively shallow static water table. CSI soil sample analytical results indicate significant levels of MGP impacts within the GH-2 gas holder tank. Environmental impacts related to this structure could be from the bottom, from valve pits, or from piping.

6.1.6 Former Gas Holder Tank GH-3

Gas holder tank GH-3 was constructed between 1909 and 1915 and historical photographs indicate that the water tank was above grade and constructed on a concrete slab. CSI activities focused on identifying the depth to the slab and locating the piping valve pits. The foundation slab and both inlet and outlet valve pits were located. The bottom of the valve pits is about 8.5 feet bgs and both pits contained some tar-like liquid. Environmental impacts related to this structure could be from the valve pits, from piping, or from surface releases.

6.1.7 Former Oil And Diesel Storage Tanks

Seven above ground oil and diesel storage tanks were located along the southwest property line from the early 1920s until plant demolition in the 1950s. In addition, other oil storage tanks on the northern portion of the property were used at various times during the operation of the MGP. Environmental impacts from these structures could be related to piping and accidental spillage and would most likely have been either surface or shallow subsurface releases. The decommissioning and removal of these structures in the late 1950s has served to eliminate any continued releases from the former aboveground tanks. The CSI analytical results confirmed the presence of some minor impacts near the southwest property fence-line.

6.1.8 North Property Line

The north AmerenIP property line from the northeast corner to the east central area of the site is identified as a recognized environmental condition due to the DNAPL identified in monitoring well UMW-101 north of the railroad right-of-way. The DNAPL location is within the boundary of what is currently defined as the remediation site. No MGP activities occurred north of the railroad tracks; however, impact appears to have migrated to that area. CSI test pit and boring activities

focused on locating an environmental pathway from the site MGP operations to UMW-101. While impacts were identified in both test pits and borings, a preferential pathway was not identified.

6.1.9 East Property Line and Former Gas Experiment Station

The east property line along the vacated Hill Street right-of-way is identified as a recognized environmental condition due to the DNAPL identified in monitoring well UMW-103 located in the vacated Sixth Street right-of-way on the current eastern boundary of the AmerenIP property. Historical MGP activities did not occur in this area; however, the "Gas Experiment Station of the University of Illinois" was located near the northeast corner of the AmerenIP property and MGP impact appears to have migrated into the vacated Sixth Street right-of-way. In addition, a sixteen inch diameter gas main is known to exist within the vacated Sixth Street right-of-way. Observations made during early site investigation activities and during IRM activities concluded that the Hill Street sewer was not the migration pathway. CSI activities did not identify a preferential pathway from the AmerenIP property to the right-of way portion of the site.

6.1.10 Vacated Hill Street Right-Of-Way

Although no actual MGP operating activities occurred in the Hill Street right-of-way, gas mains were located within the right-of-way and piping between various operations was buried under the street. Due to significant impacts identified during CSI activities in borings and test pits located within the right-of-way, Hill Street is identified as a recognized environmental condition that will need to be addressed. Impacts observed within the right-of-way could be from piping, incidental spillage, or migration from other MGP structures and operations.

6.2 Nature and Extent Of Impact

This section provides a discussion of the nature and extent of environmental impacts to the site media. IAC Section 740(b)(5)(C) requires definition of the degree and extent of impact as well as evaluation of potential fate and transport. Soil analytical results have been compared to Tier 1 ROs for all pathways and property uses. Groundwater analytical results have been compared to Class I groundwater ROs.

Impacts exceeding the Tier 1 ROs exist at the site for both soil and groundwater. The following subsections describe the degree and extent of the impacts with respect to depth. The first subsection discusses surface soil (i.e.

ground surface to a depth of three feet). The second subsection discusses shallow subsurface soil (i.e. soil from three ft. to ten ft. depth), and the third subsection discusses deep subsurface soil (i.e. soil greater that ten ft. depth). The fourth subsection presents an evaluation of potential source material and the fifth subsection addresses groundwater.

6.2.1 Surface Soil Impact Assessment

Analytical results for BTEX and PAH constituents for surface soil samples are presented in Table 5-5. In addition to samples collected during the CSI field activities, this table also includes surface soil samples collected in 1990. Constituents that exceed the Tier 1 ROs for inhalation, ingestion, and/or the soil to groundwater pathway for all property scenarios are identified. Results for thirty-three samples are presented in Table 5-5 and there is an exceedance for at least one BTEX or PAH constituent in thirty-one of the samples. Twenty-one samples have one or more exceedances for at least two pathways. One sample with no exceedances has high detection limits for PAH constituents and the other sample was collected in 1990 to provide offsite background data. Three figures were developed to illustrate the aerial extent of these Tier 1 RO impacts with respect to BTEX and PAH constituents.

Soil Ingestion

Figure 6-2 shows the location of surface soil samples that exceed the RO for the soil ingestion pathway and identifies the specific constituents and analytical result for each. The general extent of impact is the entire remediation site, including areas along the railroad and Sixth Street rights-of-way. All exceedances are for PAH constituents with the exception of benzene at sample locations B-503 and TP-503; both are located near the AmerenIP north property line. The ROs are exceeded for four or more PAH constituents at twenty-one locations covering all areas of the site. Higher levels of impact, including five or six PAH constituents per location exceeding a Tier 1 RO, occur on the northern portion of the site, along the north fence line and the railroad right-of-way.

Soil Inhalation

Figure 6-3 shows the location of surface soil samples that exceed the RO for the soil inhalation pathway and presents the analytical result. The inhalation RO is exceeded at eleven sample locations. The RO is exceeded at two locations for benzene, naphthalene, and xylene. TP-504, which is located adjacent to GH-1, exceeds Tier 1 ROs for benzene, ethylbenzene, naphthalene, and xylene. The RO is exceeded

at two locations for benzene and naphthalene only. One exceedance is near the AmerenIP north property line, the second is at B-506 near the center of the site. In addition, six locations exceeded the RO for naphthalene only.

Soil Component to Groundwater Ingestion

Figure 6-4 shows the location of surface soil samples that exceed the RO for the soil to groundwater pathway. Specific constituents and analytical results are also shown. The RO are exceeded at twenty-two of thirty-three locations. Benzene and ethylbenzene are the only BTEX parameters that exceed the ROs. Benzene exceeds the RO at twelve locations and ethylbenzene exceeds the RO at two locations (TP-503 and TP-504). Several PAH constituents exceed the RO at twelve different locations. The more highly impacted samples tend to be confined to the northern portion of the site; however, there are also exceedances for samples located near the southern property line and along Hill Street through the middle of the site.

Inorganics

Table 5-8 presents analytical results for metals and cyanide for surface soil samples. In addition to samples collected during CSI activities this table includes samples collected and analyzed in 1990 and 1991 during the Phase II SI activities. Sample dates are included in the table. Tier 1 ROs for the soil to groundwater pathway for some metals were exceeded for twenty-two of the thirty-seven samples analyzed. Most of these samples exceeded the ROs for arsenic, cyanide, chromium, and lead. Twelve samples exceeded the RO for the ingestion pathway for arsenic. Three of these samples also exceeded the RO for the soil to groundwater pathway. The Tier 1 RO for cyanide was exceeded for the soil to groundwater pathway in five samples. Two of these samples also exceeded the RO for the ingestion pathway. Four samples exceeded the RO for the ingestion pathway for lead. In addition, two samples exceeded the RO for chromium for the soil to groundwater pathway.

6.2.2 Shallow Subsurface Soil Assessment

Analytical results for BTEX and PAH constituents for shallow subsurface soil samples are presented in Table 5-9. In addition to samples collected during the CSI field activities, this table also includes shallow subsurface soil samples collected during the 1990 and 1991 Phase II SI activities. Constituents that exceed the Tier 1 ROs for inhalation, ingestion, and/or the soil to groundwater pathway for all property uses are identified. Results for forty-six samples are

presented in Table 5-9 and there is an exceedance for at least one pathway for at least one BTEX or PAH constituent in forty of the samples. Three samples analyzed in 1990 have no exceedance; however, the detection limits exceed some of the RO and indicate laboratory dilutions. Three figures were developed to illustrate the extent of these Tier 1 RO impacts on shallow subsurface soil.

Soil Ingestion

Figure 6-5 shows the location of shallow subsurface soil samples that exceed the RO for the soil ingestion pathway and identifies the specific constituents and analytical result for each. Benzene is the only BTEX parameter that exceeds the RO and is present at six locations above the RO. All benzene RO exceedances are located in the north central part of the AmerenIP property in the general location of gas holder tanks GH-1 and GH-2. The only sample locations with no RO exceedances for BTEX or PAH constituents are either off-site or near the southeast corner of the AmerenIP property (UTB-22 and B-512). Samples with higher analytical results and multiple exceedances tend to be located through the central area of the AmerenIP property (i.e. along Hill Street) and north into the railroad right-of-way portion of the site.

Soil Inhalation

Figure 6-6 shows the location of shallow subsurface soil samples that exceed the RO for the soil inhalation pathway and identifies specific constituents and analytical result. The RO is exceeded at twenty-one locations for xylene across the site. The RO is exceeded at twenty locations for benzene and thirty-two locations for naphthalene. The highest exceedances are located at UTB-23, TP-507, B-504, and B-505 near the former gas holder tanks GH-1 and GH-2. RO exceedances generally occur at locations on the northern portion of the site; however, there are exceedances for naphthalene across the site.

Soil Component to Groundwater Ingestion

Figure 6-7 shows the location of shallow subsurface soil samples that exceed the RO for the soil to groundwater pathway. Specific constituents and analytical results are also shown. The RO is exceeded at thirty-six of forty-six locations. The RO for BTEX parameters are exceeded at thirty-one locations, with the benzene RO exceeded at thirty locations. Four or more PAH ROs are exceeded at nineteen locations. RO exceedances generally occur throughout the AmerenIP property as well as the north and east rights-of-way portions of the remediation site.

Inorganics

Table 5-12 presents analytical results for metals and cyanide for shallow subsurface soil samples. In addition to samples collected during CSI activities this table includes samples collected and analyzed during the Phase II SI activities in 1990 and 1991. Sample dates are included on the table. Tier 1 ROs for the ingestion pathway for arsenic were exceeded for two CSI samples. No other metals were detected in these samples above Tier 1 ROs.

Metals Tier 1 ROs were exceeded at one location where ROs for BTEX and PAH constituents were not exceeded. The ingestion pathway RO for arsenic was exceeded at sample location B-559. The BTEX and PAH detection limits indicate some laboratory dilution; however, detection limits are not greater than the ingestion pathway RO.

6.2.3 Deep Subsurface Soil Assessment

Analytical results for BTEX and PAH constituents for deep subsurface soil samples (greater than ten feet) are presented in Table 5-13. In addition to samples collected during the CSI field activities, this table also includes deep subsurface soil samples collected during the Phase II SI activities in 1990 and 1991. Constituents that exceed the Tier 1 RO for inhalation, ingestion, and/or the soil to groundwater pathway for all property use scenarios are identified. Results for seventy-seven samples are presented in Table 5-13 and there is an exceedance for at least one pathway for at least one BTEX or PAH constituent for thirty-four of the sample locations. Three figures were developed to illustrate the extent of these Tier 1 RO impacts on deep subsurface soil at the site.

Soil Ingestion

Figure 6-8 shows the location of deep subsurface soil samples that exceed the RO for the soil ingestion pathway and identifies the specific constituents and analytical result for each exceedance. BTEX or PAH RO are exceeded at twenty-eight sample locations and three of those locations have ROs exceeded at multiple depths. Benzene is the only BTEX constituent that exceeds the RO. The PAH ROs are exceeded for more than three PAH constituents at twenty-one sample depths representing nineteen different locations.

Soil Inhalation

Figure 6-9 shows the location of deep subsurface soil samples that exceed the RO for the soil inhalation pathway and identifies specific constituents and analytical result. The RO is exceeded for three or more constituents at sixteen sample locations. The RO is exceeded at twenty-one locations for benzene and twenty-three locations for naphthalene. In addition the RO is exceeded for toluene, ethylbenzene, and xylenes at three locations (B-507, B-506, and B-514) and for ethylbenzene at one location (B-562). RO exceedances generally occur at locations on the northern portion of the AmerenIP property and railroad right-of-way portion of the remediation site; however, there are two exceedances for naphthalene on the vacated Sixth Street right-of-way (B-558 and B-560).

Soil Component to Groundwater Ingestion

Figure 6-10 shows the location of deep subsurface soil samples that exceed the RO for the soil to groundwater pathway. Specific constituents and analytical results are also shown. The RO is exceeded for thirty samples at twenty-five locations. The ROs for BTEX parameters are exceeded for thirty samples, with the benzene RO exceeded at all thirty locations. Other BTEX constituents exceed the RO for twelve sample locations. Four or more PAH ROs are exceeded for sixteen samples at fourteen locations. RO exceedances generally occur on the northern portion of the AmerenIP property and the railroad right-of-way portion of the site.

Inorganics

Table 5-16 presents analytical results for metals and cyanide for deep subsurface soil samples. In addition to samples collected during CSI activities this table includes samples collected and analyzed during the Phase II SI activities completed in 1990 and 1991. Sample dates are included on the table. Tier 1 ROs for metals were not exceeded for any CSI samples.

6.2.4 Potential Source Determination

IAC Section 740.420(b)(2) requires characterization of source and potential sources of recognized environmental conditions. This section presents an evaluation of CSI analytical data with respect to IAC Section 742.305 for contaminant source and free product determination.

IAC Section 742.215 requires determination of soil attenuation capacity by evaluation of natural organic carbon fraction data, TPH

data and/or total organic carbon concentration (OCC). During 1996 twelve soil samples were collected from four probeholes completed at the site. Probeholes were located near the four corners of the AmerenIP property. Three samples were collected from each location; one sample from the surface soil, one from the three foot to ten foot interval, and one from below ten feet. All samples were analyzed for total organic carbon using Method 415.1. Table 6-2 presents analytical results for total organic carbon (TOC).

Table 6-2 also presents information on soil type for the various depth intervals. All samples collected from the one foot interval were described as fill material containing coal, cinders, etc.; therefore the default value of 6,000 mg/kg was used to evaluate potential source materials from the surface soil interval (i.e. 0-3'). Sample groups for the three to ten foot and greater than ten foot interval each included one sample with TOC result considerably higher than the remaining samples. The conservative assumption to exclude these samples was made. The TOC average for the three to ten foot interval is 2,370 mg/kg, compared to the default value of 2,000 mg/kg. The TOC average for greater than ten foot interval is 4,293 mg/kg, compared to the default value of 2,000 mg/kg.

TPH results and total organic carbon concentration for CSI samples were compared to these TOC values. Table 6-3 presents a summary of those samples and includes location, depth, and TPH results. Based on the results presented in Table 6-3, potential source materials are present on the site at depths ranging from two feet to twenty-four feet bgs. These samples tend to represent the central and north central area of the AmerenIP property and the area of the railroad right-of-way where DNAPL was present in UMW-101. Three samples from one location (B-504) represent potential source material at depths of three feet, seven feet, and twenty-one feet. Samples from B-553 represent depths of five to six feet and twenty-four feet.

IAC Section 742.305(b) also requires evaluation of source and free product determination by comparison of analytical results to soil saturation limits. This comparison resulted in no additional sample locations being identified as potential source material.

6.2.5 Groundwater Assessment

July 2004 Data

Groundwater impact has been identified in three of the on-site monitoring wells and two of the off-site monitoring wells. Six constituents have been identified that exceed the Tier 1 ROs or the Groundwater Quality Standards for Class I Groundwater. Analytical results for the most recent CSI groundwater sampling event are presented in Table 6-4. As noted previously, groundwater samples were analyzed only for BTEX and PAH constituents. These results were compared to the Class I groundwater standards and exceedances are highlighted on Table 6-4. Historical groundwater samples were also analyzed for metals and are also presented in Table 6-4. A groundwater concentration map showing the constituents that exceeded a Tier 1 RO is presented in Figure 6-11.

Benzene was detected in five wells (UMW-107, UMW-110, UMW-113, UMW-114, and UMW-115) at concentrations that exceed the Class I RO: Three wells on the south portion of the AmerenIP property, one well in the vacated Sixth Street right-of-way at the northeast corner of the site, and one well in Hill Street west of the site.

Toluene was detected in UMW-114 at a concentration that exceeded the Class I RO.

Naphthalene was detected in two wells (UMW-113 and UMW-114 at concentrations that exceed the Class I RO.

Phenanthrene and pyrene was detected in UMW-113 at concentrations that exceed their respective Class I RO.

Acenaphthylene was also detected in UMW-114 at a concentration above the Class I RO.

September 2007 Data

Groundwater impact has been identified in two of the on-site monitoring wells and one of the off-site monitoring wells.

Four constituents have been identified that exceed the Tier 1 ROs or the Groundwater Quality Standards for Class I Groundwater. Analytical results for the most recent CSI groundwater sampling event are presented in Table 6-4. As noted previously, groundwater samples were analyzed only for BTEX and PAH constituents. These results were compared to the Class I groundwater standards and exceedances are highlighted on Table 6-4. A groundwater concentration map showing the constituents that exceeded a Tier 1 RO is presented in Figure 6-11.

Benzene was detected in two wells (UMW-107, UMW-114, and UMW-115) at concentrations that exceed the Class I RO.

Ethylbenzene was detected in well (UMW-114) at a concentration that exceeds the Class I RO.

Naphthalene was detected in UMW-107 AND UMW-114 at a concentration that exceeds the Class I RO. Benzo(a)anthracene was also in UMW-114 at a concentration that exceeds the Class I RO.

The general trend of benzene shows a slight increase in concentration from December 2004 through September 2007.

The ethylbenzene and naphthalene concentrations stay relatively consistent showing slight increases and decreases between sampling events.

7 CSI SUMMARY AND CONCLUSIONS

Numerous phases of investigation and remediation have been completed at the AmerenIP Champaign MGP site in Champaign, Illinois. This site was the location of manufactured gas production for more than sixty years. Sufficient data has been collected to show that impacted soils exceeding Tier 1 ROs are present on the remediation site that includes both the AmerenIP property and the adjacent railroad. This section provides a summary of degree and extent of impacts and provides several figures to illustrate the extent of MGP residuals present at the site. The figures also incorporate observations made during the various phases of investigation and some interpretation relative to observations.

The extent of impact is based primarily upon a comparison of BTEX and PAH results to Tier 1 ROs. While these constituents are present within MGP residual materials, their presence may also be derived from other non-MGP sources. No attempt has been made to differentiate or determine the possible sources for these constituents.

7.1 Horizontal Extent of Impacts

Figure 7-1 illustrates the results of the Tier 1 ROs comparison for BTEX and PAH constituents for shallow soils at the site. Groundwater Class I exceedances are shown on Figure 6-11. This figure illustrates the wide spread nature of surface soil impacts. Although at least a foot of clean fill has been placed over most of the site and several areas of shallow soil were removed during the IRM activities, the zero to three foot interval remains significantly impacted. Samples from three locations representing potential source material are located in areas proximate to where impacted soils were removed during the IRM. One sample from TP-504 was collected from the inlet/outlet structure of former gas holder GH-1. The other two samples were collected from areas directly between MGP structures known to contain impacted materials and the previous location of monitoring well UMW-101 where DNAPL was observed.

Figure 7-2 illustrates the results of the Tier 1 ROs comparison for BTEX and PAH constituents for the shallow subsurface soils at the site. Potential source material impacts are also shown. This figure shows that the extent of impacts to the three to ten foot interval are well bounded to the south and east of the site; however, the northerly extent is less well defined. Potential source materials within this depth interval are primarily associated with former gas holder GH-2. The potential source sample at location B-516 is most likely localized because the MGP structures previously located south of Hill Street would generally not be associated with tar-like materials. However, observations of materials in the former gas holder GH-3 valve pit structures indicated the presence of MGP residuals. Comparison of Figure 7-2 with

Figure 7-1 shows fewer impacts in the southern area of the site at this depth interval.

Figure 7-3 illustrates the results of the Tier 1 ROs comparison for BTEX and PAH constituents for the deep subsurface soil ten to twenty foot depth interval. This interval is relatively well bounded by non-impacted samples to the south, the east and the northwest. The location of potential source material samples appears to indicate possible lateral migration of impact upon reaching this depth interval. None of these samples are located near MGP structures that would be expected to contain source materials. Three of the samples, B-506, B-507, and B-514, are located within the vacated Hill Street and may potentially represent impacts along the gas main. These three samples may also represent the source of dissolved phase impacts moving laterally toward four of the five impacted monitoring wells; however, the shallow groundwater gradient is not well defined in south, southeast, and east directions. The potential source samples in the railroad right-of-way may represent the approximate pathway from the site structures to the DNAPL observed at UMW-101.

Figure 7-4 illustrates the results of the Tier 1 ROs comparison for BTEX and PAH constituents for the deep subsurface soils at depths greater than twenty feet at the site. Although several impacted samples are identified within this depth interval, the figure illustrates that impacts diminish in the unweathered till material at greater depths. The potential source material samples are relatively close together and are in the shallower portion of the depth interval. These samples are also located in the general pathway between former MGP structures and former monitoring well UMW-101. Well UMW-101 was screened from fourteen to twenty-six feet. Monitoring wells are generally screened into the upper portion to this depth interval.

7.2 Vertical Extent of Impacts

Figures 7-5 through 7-10 are sections through the site and illustrate the vertical and horizontal extent of impact above Tier 1 ROs for BTEX and PAH constituents. These figures show sample depths and CSI probehole and Phase II SI boring locations. Monitoring wells with screened intervals are illustrated. Field PID readings are presented for one-foot intervals for CSI probeholes. The general extent of BTEX and PAH impacts is shown based on comparisons with Tier 1 ROs, field observations, and interpretation of boring log information.

Figures 7-5 through 7-7 are west-east sections with Figure 7-5 representing the northern site area and Figure 7-7 presenting the southern most section. Figure 7-5 shows that the western edge of impact is bounded by two borings west of Fifth Street. It is likely that impacts extend under Fifth Street considering the close proximity of UTB-11 to the corner of the site. Field

observations and analytical results indicate that impacts are shallower to the west and increase toward the east to depths greater than twenty-five feet. Although the east is not bounded by soil sample analytical data for UTB-02, groundwater samples from this well are not impacted and no impact was noted during drilling of the boreholes. Potential source material is present at B-553 at both shallow and deep intervals. Higher levels of impacts were identified in samples collected from sandy soils. Attempts to correlate sand lenses in the clayey till unit were unsuccessful.

Figure 7-6 represents the central portion of the site along the north side of vacated Hill Street. As noted for the previous section, impacts appear to extend under Fifth Street and, based on impacted groundwater at UMW-107, impacts may extend into Hill Street west of Sixth Street. Based on site observations and analytical results, impacts along this section are deeper through the middle of the site; however, only one sample (B-507) was identified as potential source material. The eastern extent of impact along this section is not well defined, although analytical results for samples from B-558 indicate concentrations decrease in that direction.

Figure 7-7 represents a section along the southern edge of the AmerenIP property. Although no sample data is present, both the east and west end of this section show that impacts are bounded by monitoring wells with no Class I impacts. Although analytical samples were not collected during installation of these wells (UMW-104 and UMW-106), there were no observations of impacts recorded during drilling activities. Analytical results and observed impacts along this section are generally minor; however, groundwater impacts have been consistent at wells UMW-114 and UMW-115. The depth of impact is limited to about twelve feet bgs.

Figure 7-8 is a south-north cross-section and represents the approximate west edge of the AmerenIP property. Two of four soil samples at the southern end of the section (B-513) are impacted; however, impacts are minor and relatively shallow, indicating that impacts likely do not extend far off-site to the south. The extent of impacts is bounded at the north end of the section by boring UTB-09 and groundwater samples from UMW-109. Both analytical and observed impacts at the middle of the section are relatively shallow and appear to be associated with the former MGP structures located in that area of the site.

Figure 7-9 is a south-north cross section and shows impacts through the approximate center of the site. The extent of impacts is bounded on both the north and south; however, the data points to the north (UTB-01 and UTB-17) are separated by a significant distance. This section illustrates the significant impacts which exist in the north central area of the site, including the impacts under the railroad right-of-way. Six samples identified as potential source materials occur along this section. In addition, some of the deepest impacts identified (approximately twenty-eight feet bgs) are shown on this section.

Boring UTB-01 represents the location of previous well UMW-101, which was abandoned in 1997 due to the presence of DNAPL in the well. This well was screened from fourteen to twenty-six feet, indicating the presence of DNAPL within that interval. Since probehole B-561 was located within a few feet of UTB-01 and did not have significant impacts below nineteen feet, it is likely that DNAPL was entering the well from above nineteen feet bgs.

Figure 7-10 is a south-north cross section and illustrates the extent of impacts on the east edge of the site. Extent of impacts is bounded at the north end of the section by boring UTB-02 and groundwater samples from UMW-102. The extent of impacts is also bounded to the south end of the section by boring UTB-04 and groundwater samples from UMW-104. Both of these monitoring wells have no Class I impacts. Three of the four samples in the center of the section are impacted (B-559, B-560, and B-558). Impacts in boring B-559 and B-558 are relatively minor and shallow. Boring B-560 appears to have impact to the total depth of the boring (27-feet bgs).

For those portions of the work performed before my involvement:

I have reviewed documentation of the prior investigation and interim remedial measure activities and believed the documentation is suitable for compliance with 35 Ill. Adm. Code 740 developed in conjunction with the use of accepted engineering and geological standards, and the information presented is accurate and complete.

LICENS

MICHAEL RAY CRUTCHER

196-000860

Signature:

Michael R. Crutcher, P.G.

Licensed Professional Geologist

Date: _____/2-20.2007

License Expiration Date: 3-31-2009

References

- Environmental Solutions, Inc., 1991. *Indoor Air Quality Monitoring In Homes near Former Manufactured Gas Plant Site*, Champaign, Illinois. November
- Environmental Solutions, Inc., 1992. Addendum #1 to Indoor Air Quality Monitoring In Homes Near Former Manufactured Gas Plant Site, Champaign, Illinois. February
- Kempton, John, Walter J. Morse, and Adrian Visocky, 1982. *Hydrogeologic Evaluation of Sand and Gravel Aquifers for Municipal Groundwater Supplies in East-Central Illinois*. Cooperative Groundwater/Resources Report, Illinois State Water Survey.
- Leighton, M.M., G.E. Ekldaw and Leland Hosberg, 1948. *Physiographic Divisions of Illinois. Report of Investigation 129. Illinois State Geological Survey.*
- John Mathes and Associates, 1990a. Phase IC Preliminary On-Site Assessment, Champaign Former Manufactured Gas Plant Site, Champaign, Illinois.
- John Mathes and Associates, 1990b. Phase ID Preliminary Off-Site Assessment, Champaign Former Manufactured Gas Plant Site, Champaign, Illinois.
- Radian Corporation, August 1984. Survey of Tar Waste Disposal and Locations of Town Gas Producers (Draft). U.S. Environmental Protection Agency.
- Sanderson, Ellis and Elias Zewde, 1976. *Groundwater Availability in Champaign County. Circular 124*. Illinois State Water Survey.
- Visocky, Adrian and Richard Schicht, 1969. *Groundwater Resources of the Buried Mahomet Bedrock Valley. Report of Investigation 62.* Illinois State Water Survey.
- Warzyn Engineering Inc., 1987. Draft Step 1 Environmental Assessment, Potential Former Manufactured Gas Facilities, Champaign Site, Champaign, Illinois April.
- Willman, H.B. and J.C. Frye, 1970. *Pleistocene Stratigraphy of Illinois. Bulletin 94*. Illinois State Geological Survey.
- Wickham, Jerry T. 1979. *Glacial Geology of North-Central and Western Champaign County, Illinois. Circular 506.* Illinois State Geological Survey.

List of Abbreviations and Acronyms

BGS – Below Ground Surface

BLS - Below Land Surface

BTEX – Benzene, Toluene, Ethylbenzene, and Xylenes

CN – Cyanide

COC - Constituents of Concern

CSI – Comprehensive Site Investigation

CSIR – Comprehensive Site Investigation Report

CSIWP - Comprehensive Site Investigation Work Plan

DNAPL - Dense Non-Aqueous Phase Liquid

DQO - Data Quality Objective

EDR – Environmental Data Resources

GC – Gas Chromatograph

IAC – Illinois Administrative Code

IEPA - Illinois Environmental Protection Agency

IRA – Interim Removal Action

IRM – Interim Remedial Measures

LUST – Leaking Underground Storage Tank

MGP - Manufactured Gas Plant

NAPL - Non-aqueous Phase Liquid

NFR - No Further Remediation

NGVD - National Geodetic Vertical Datum

NIWC – Northern Illinois Water Company

OCC – Organic Carbon Concentration

PA – Preliminary Assessment

PAH – Polycyclic Aromatic Hydrocarbon

QAPP - Quality Assurance Project Plan

RA – Remedial Applicant

RACR – Remedial Action Completion Report

RCRA – Resource Conservation and Recovery Act

RECs – Recognized Environmental Conditions

ROs – Remediation Objectives

ROR - Remedial Objectives Report

RECs – Recognized Environmental Conditions

SIR – Site Investigation Report

SIWP – Site Investigation Work Plan

SI – Site Investigation

SRP – Site Remediation Program

SSI – Supplemental Site Investigation

SVOCs – Semi-Volatile Organic Compounds

TACO – Tiered Approach to Corrective Action Objectives

TCLP - Toxicity Characteristic Leaching Procedure

TOC - Total Organic Carbon

TPH – Total Petroleum Hydrocarbons

UST – Underground Storage Tank

VOCs – Volatile Organic Compounds

List of Tables

Table Number	Table Name
ES-1	Exposure Pathways and Constituents of Concern
2-1	Brown's Directory Summary
2-2	Summary of Soil Sample Physical Property Laboratory Test Results
2-3	Single Well hydraulic Conductivity Test Results
2-4	Phase 1C and 1D Soil-Gas Survey Results
2-5	Phase II Soil Analytical Summary
2-6	Phase II Monitoring Well and Piezometer Construction Data
2-7	Phase II Groundwater Analytical Summary
2-8	Groundwater Results Summary: BTEX, PAHs, and Metals (Through 1999)
2-9	Groundwater Results Summary: BTEX, PAHs, and Metals (2004-2006)
2-10	Quarterly Groundwater Analytical Results: BTEX and Naphthalene
3-1	CSI Test Pit Location Rationale
3-2	CSI On Site Boring Location Rationale
4-1	CSI Soil Properties Summary
4-2	Site Investigation Soil Analytical Summary
5-1	Tier 1 Remedial Objectives: BTEX, PAHs
5-2	Tier 1 Remedial Objectives: VOCs
5-3	Tier 1 Remedial Objectives: SVOCs
5-4	Tier 1 Remedial Objectives: Metals and Cyanide
5-5	Tier 1 ROs – BTEX and PAH Results for 0 to 3 Feet Depth
5-6	Tier 1 ROs – VOC Results for 0 to 3 Feet Depth
5-7	Tier 1 ROs – SVOC Results for 0 to 3 Feet Depth

5-8	Tier 1 ROs – Metals and Cyanide Results for 0 to 3 Feet Depth
5-9	Tier 1 ROs – BTEX and PAH Results for 0 to 3 Feet Depth
5-10	Tier 1 ROs – VOC Results for 3 to 10 Feet Depth
5-11	Tier 1 ROs – SVOC Results for 3 to 10 Feet Depth
5-12	Tier 1 ROs – Metals and Cyanide Results for 3 to 10 Feet Depth
5-13	Tier 1 ROs – BTEX and PAH Results for Greater Than 10 Feet Depth
5-14	Tier 1 ROs – VOC Results for Greater Than 10 Feet Depth
5-15	Tier 1 ROs – SVOC Results for Greater Than 10 Feet Depth
5-16	Tier 1 ROs – Metals and Cyanide Results for Greater than 10 Feet Depth
5-17	All Soil TPH Results
5-18	Duplicate Results for BTEX and PAHs
5-19	Duplicate Results for VOCs
5-20	Duplicate Results for SVOCs
5-21	Duplicate Results for Metals and Cyanide
6-1	Manufactured Gas Plant-Related Constituents of Concern
6-2	TOC Sample Summary
6-3	Soil Attenuation Source Evaluation
6-4	Groundwater BTEX, PAH, and Metal Results – 2004 Data

TABLE ES-1 MANUFACTURED GAS PLANT RELATED CONSTITUENTS OF CONCERN COMPREHENSIVE SITE INVESTIGATION REPORT CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

<u>SOIL</u> <u>GROUNDWATER</u>

InorganicsCyanide

Metals

Chromium Lead Arsenic

Volatile Aromatics Volatile Aromatics

Benzene Benzene Ethylbenzene Toluene Toluene

Total Xylenes Styrene Acetone

Methylene Chloride

Polycylic Aromatic Hydrocarbons Polycylic Aromatic Hydrocarbons

Acenaphthene

Acenaphthylene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene

Chrysene

Dibenzo (a,h,)anthracene

Dibenzofuran Fluorene

Indeno(1,2,3,cd)pyrene

Naphthalene Phenanthrene

2-methylnaphthalene

Acenaphthene
Acenaphthylene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene

Chrysene Fluoranthene Fluorene

Indeno(1,2,3,cd)pyrene

Naphthalene Phenanthrene

Pyrene

TABLE 2-1 BROWNS DIRECTORY SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

			Annual	Gas Holder	Gas	Tar	Tar	Coke	Coke	Coke	Gas Oil	
Year	Company Name	Process	Production	Capacity	Unaccounted	Produced	Sold	Produced	Sold	Used	Used	Notes
i cai	Company Name	Type/Name	(cubic feet)	(cubic feet)	For	(gals)	(gals)	(tons)	(tons)	(tons)	(gals)	140163
		туре/папте	(cubic reet)	(cubic reet)	1 01	(gais)	(gais)	(10113)	(10113)	(10113)	(gais)	
1887	Champaign & Urbana Gas Light Co.											
1888	Champaigh a Crbana Cas Light Co.											
1889	Champaign & Urbana Gas Light Co.	Coal										
1890		Coal	6,000,000									
1891		Coal	6,000,000									
1892		Coal	0,000,000									
1893		Coal	6,000,000									
1894		Coal	6,000,000									
1895	Champaigh & Orbana Gas Light & Coke Co.	Cuai	6,000,000									
1896											_	
1897												
1898												
1899	Urbana & Champaign Gas & Elec. Co.	Coal	15,000,000								_	
1900		Coal	22,000,000									
1900		Coal	26,000,000								_	
	. 0										+	
1902		Coal	26,000,000									
1903		Coal	26,000,000								+	
1904		Coal	26,000,000								+	
1905		Coal	26,000,000									
1906	5 7	Coal	35,000,000									
1907	Urbana & Champaing Railway, Gas & Elec. Co.		30,000,000									
1908	Urbana & Champaign Railway, Gas & Elec. Co.		40,000,000									
1909	Urbana & Champaign Railway, Gas & Elec. Co.		40,000,000									
1910	Urbana & Champaingn Railway, Gas & Elec. Co		63,000,000	120,000	12.00%							1
1911	Urbana & Champaign Railway, Gas & Elec. Co.		50,000,000	500,000	15.00%							
1912	Urbana & Champaign Railway, Gas & Elec. Co.		65,000,000	500,000	11.00%							
1913	Urbana & Champaign Railway, Gas & Elec. Co.		76,016,000	500,000	10.00%							1
1914	Urbana & Champaign Railway, Gas & Elec. Co.		76,016,000	500,000	10.00%							
1915	Urbana & Champaign Railway, Gas & Elec. Co.		90,000,000	500,000	10.00%							1,2
1916	Urbana & Champaign Railway, Gas & Elec. Co.		90,000,000	500,000	10.00%							1,2
1917	Urbana & Champaign Railway, Gas & Elec. Co.		107,787,300	500,000	10.50%	34,864	34,864	2,074	2,074			1,2,3
1918	Urbana & Champaign Railway, Gas & Elec. Co.		107,787,300	500,000	10.50%	34,864	34,864	2,074	2,074			1,2,3
1919	Urbana & Champaign Railway, Gas & Elec. Co.		128,000,000	440,000	8.00%	75,000	75,000	2,060	2,060			1,2,4
1920	Urbana & Champaign Railway, Gas & Elec. Co.		125,089,460	440,000		110,394	110,394	920	920			1,5,6
1921	Urbana & Champaign Railway, Gas & Elec. Co.		181,990,000	440,000	10.80%							5
1922	Urbana & Champaign Railway, Gas & Elec. Co.		194,652,800	440,000	6.90%		78,240				668,998	5
1923	Urbana & Champaign Railway, Gas & Elec. Co.		218,306,200	600,000	11.10%		40,000	-			668,998	5
1924	Urbana & Champaign Railway, Gas & Elec. Co.		218,306,200	600,000	11.10%		40,000	1		1	668,998	7
1925		Water gas	230,366,600	630,000	11.10%		73,000	-		4,847	734,534	8
1926	ŭ i	Water gas	258,387,500	600,000	11.30%	122,703	100,000	1		4,847	734,534	
1927		Water gas	298,543,000	600,000	18.31%	95,000		1		5,139	949,992	9,10
1928		Water gas	301,745,000	600,000	18.33%	191,400		1		5,139	945,918	9,10
1929		Water gas	397,465,000	600,000	13.45%	399,402				4,870	976,778	9,11
1930		CWG	338,722,000	600,000	14.89%	229,453		1		5,250	1,122,986	9,12
1931		CWG	336,360,00	600,000	15,94%	244,305		1		5,655	1,097,384	9,15,16
1932		CWG	338,769,000	600,000	15.10%	171,497		1		5,676	1,052,314	9,13,14
1933	<u> </u>	CWG	58,841,000	600,000	13.80%	8,473		1		1,131	73,052	9, 16,17,18
1934	No Listing										1	
1935	No Listing									1	1	1

- 1. Annual Production is reported as sales; therefore, actual production estimated to be 12% higher
- 2. Controlled by Illinois Traction Co.
 3. Annual production: Coal gas, 30,232,500 c.f.; oil gas, 100,687,000 c.f.
 4. Annual production; Coal gas, 40,020,000 c.f.; oil gas, 102,800,000 c.f.
- 5. controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Traction Co.
- 5. controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Traction Co.
 6. Annual production; Coal gas, 14,818,500 c.f.; Water gas, 152,287,900 c.f.
 7. Controlled by Danville, Champaign & Decatur Ry. & Lt. Co., which is controlled by the Illinois Power & Light Co.
 8. Formerly Urbana and Champaign Railway Gas & Electric Co.
 9. Gas holder capacity, 500,000 c.f.; relief, 100,000 c.f.
 10. "Coke Used" is reported as "coal "used; water gas generator fuel, 6,034 tons
 11. Gas purchased, 5,320,000 c.f. from Coal Gas Experimental Plant
 12. Boiler fuel used; 2,787 tons Indiana screenings; 74,313 gals. Tar
 13. Bituminous coal used as water gas generator fuel, 5,676 tons
 14. Boiler fuel used; 1,628 tons coal; tar, 170,820 gal.
 15. Bituminous coal used as water gas generator fuel

- Bituminous coal used as water gas generator fuel
 Subsidiary of North American Light & Power Co.
- 17. Carbureted water gas plant now shut down, serving natural gas 18. Gas purchased, 185,199,000 c.f. natural gas from Panhandle Illinois Pipe Line Co.

TABLE 2-2 SUMMARY OF SOIL SAMPLE PHYSICAL PROPERTY LABORATORY TEST RESULTS PHASE II SI CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Boring	Sample	Natural	Dry Unit			Particle	Verticle	Hydraulic	
Number	Depth (ft)	Moisture Content (%)	Weight (pcf)	Liquid Limit	Plastic Limit	Plastic Index	Size Curve Number	Permeability (cm/sec)	Gradient
UTB-02	3.5-8.5	15.4							
UTB-02	8.5-13.5	15.0							
UTB-02	13.5-15.5	11.0		21	12	9	1		
UTB-03	3.5-8.5	21.5							
UTB-03	8.5-13.5	26.3			-			-	
UTB-03	13.5-19.5	19.6							
UTB-03	18.5-23.5	4.0							
UTB-04	0.0-3.5	26.1				-		-	
UTB-04	3.5-8.5	18.1				-		-	
UTB-04	8.5-13.5	14.7				-		-	
UTB-04	15.5-18.5	14.0				-		-	
UTB-04	18.5-23.5	11.5							
UTB-06	20.0-20.5	11.6	127.8	21	12	9	2	1.8x10 ⁻⁸	45.5
UTB-07	2.5-5.0	25.2	98.0		-			4.6x10 ⁻⁸	34.6
UTB-07	14.0-14.5	11.5		22	11	11	3	-	
UTB-11	150.0-151.5	18.6		Nonplastic	-	-	4	-	
UTB-12	174.5-176.5	14.3		Nonplastic			5		
UTB-13	3.5-4.0	18.5	103.7	50	19	31	6	1.1x10 ⁻⁷	35.9
UTB-19	14.0-14.5	11.5	128.8	24	13	11	7	5.3x10 ⁻⁸	32.1

ft - Feet.

% - Percent.

pcf - Pounds per cubic foot.

cm/sec - Centimeters per second.

-- Test not performed.

See Appendix I for Particle Curves

TABLE 2-3 SINGLE WELL HYDRAULIC CONDUCTIVITY TEST RESULTS PHASE II SI

CHAMPAIGN MGP SITE CHAMPAIGN, ILINOIS AMERENIP

Well No.	Depth Interval Monitored (feet bgs)	Monitored Zone Thickness (ft)	Hydraulic Conductivity (cm/sec)
UMW-102	7-22	15	5.93x10 ⁻⁵
UMW-104	10-20	10	1.80x10 ⁻⁴
UMW-106	10-20	10	1.21x10 ⁻⁶
UMW-108	5-15	10	5.23x10 ⁻⁶

bgs - below ground surface

TABLE 2-4 PHASE 1C and 1D SOIL-GAS SURVEY RESULTS FORMER MANUFACTURED GAS FACILITY CHAMPAIGN, ILLINOIS ILLINOIS POWER COMPANY 1990

			Concent	tration (mi	crograms p	ner liter)			
	-	Sample	Concent	iration (iiii	orograms p	Meta &			
Sample	Date	Depth			Ethyl	Para-	Ortho-	Total	
-	Sampled	(feet)	Benzene	Toluene	Benzene	Xylene	Xylene	BTEX	TPH
PH-1	Mar-90	24	289	179	49	178	89	784	
PH-3	Mar-90	18	96	114	81	109	115	515	
PH-3	Mar-90	10	543	540	1,106	604	956	3,749	
PH-4	Mar-90	27	2,841	614	2,180	714	705	7,054	
PH-4	Mar-90	18	3,668	810	2,973	859	858	9,168	
PH-4	Mar-90	10	1,560	422	1,932	573	587	5,074	
PH-4	Mar-90	3	3,718	1,083	3,603	1,166	1,143	10,713	
PH-5	Mar-90	23.5	132	85	526	256	252	1,251	
PH-6	Mar-90	23	98	108	339	225	151	921	
PH-7	Mar-90	15	801	8	32	9	6	856	
PH-14	Mar-90	18	4,660	1,572	2,164	1,476	1,289	11,161	
PH-16	Mar-90	22	3,023	457	195	187	151	4,013	
PH-17	Mar-90	10	114	34	627	246	281	1,302	
PH-23	Mar-90	10	2,112	563	1,352	948	505	5,480	
PH-24	Mar-90	10	9,531	481	4,774	3,011	1,760	19,557	
PH-27	Mar-90	11	4,279	1,241	6,259	2,617	1,645	16,041	
PH-31	Mar-90	15	ND	ND	95	84	ND	179	
PH-33	Mar-90	16	653	690	1,190	861	562	3,956	
PH-34	Mar-90	16	127	60	844	116	261	1,408	
PH-35	Mar-90	12	23	ND	118	77	ND	218	
PH-36	Mar-90	10	59	ND	281	ND	158	498	
PH-8	Mar-90	19	5	1	2	2	ND	10	
PH-9	Mar-90	21	1	1	ND	ND	ND	2	
PH-10	Mar-90	29	1	1	1	2	ND	5	
PH-11	Mar-90	15	1	2	2	3	2	10	
PH-12	Mar-90	15	427	183	694	366	272	1,942	
PH-15	Mar-90	10	925	1,309	1,099	741	377	4,451	
PH-18	Mar-90	10	374	279	1,294	774	529	3,250	
PH-19	Mar-90	17	42	57	215	138	159	611	
PH-21	Mar-90	15	7,869	7,784	5,963	5,374	2,577	29,567	
PH-22	Mar-90	23	1,510	255	237	720	406	3,128	
PH-25	Mar-90	17	593	73	1,317	268	491	2,742	
PH-26	Mar-90	11	59	ND	231	151	103	544	
PH-28	Mar-90	11	59	80	393	210	150	892	
PH-29	Mar-90	10	3,579	2,651	2,548	1,669	860	11,307	
PH-30	Mar-90	15	371	194	522	454	363	1,904	
PH-32	Mar-90	18	5,187	2,680	2,082	1,811	1,245	13,005	
PH-101	May-90	20	11	ND	ND	2	ND	13	49
PH-103	May-90	10	108	5	26	18	21	178	347
PH-104	May-90	17	ND	ND	ND	ND	ND	ND	10
PH-105	May-90	25	ND	ND	ND	ND	ND	ND	5
PH-106	May-90	16	ND	ND	ND	ND	ND	ND	11
PH-107	May-90	20	ND	ND	ND	ND	ND	ND	8
PH-109	May-90	25	23	11	31	17	16	98	166
PH-110	May-90	17	90	34	100	81	60	365	437
PH-111	May-90	28	3	ND	2	ND	ND	5	24

TABLE 2-4 PHASE 1C and 1D SOIL-GAS SURVEY RESULTS FORMER MANUFACTURED GAS FACILITY CHAMPAIGN, ILLINOIS ILLINOIS POWER COMPANY 1990

-			Concent	tration (mi	crograms p	per liter)			
		Sample			от о <u>д</u> тапто р	Meta &			
Sample	Date	Depth			Ethyl	Para-	Ortho-	Total	
Location	Sampled	(feet)	Benzene	Toluene	Benzene	Xylene	Xylene	BTEX	TPH
PH-112	May-90	23	ND	ND	ND	ND	ND	ND	6
PH-113	May-90	25	272	272	134	271	155	1,104	1,541
PH-115	May-90	17.5	ND	ND	ND	ND	ND	ND	13
PH-117	May-90	17.5	ND	ND	ND	ND	ND	ND	8
PH-117	May-90	17.5	ND	ND	ND	ND	ND	ND	12
PH-118	May-90	25	15	49	6	17	7	94	140
PH-119	May-90	12	284	920	86	580	232	2,102	2,318
PH-120	May-90	12	20	56	35	122	65	298	471
PH-121	May-90	25	ND	ND	ND	ND	ND	ND	9
PH-122	May-90	25	ND	ND	ND	ND	ND	ND	7
PH-123	May-90	22	ND	ND	ND	ND	ND	ND	6
PH-124	May-90	12	ND	ND	ND	ND	ND	ND	17
PH-126	May-90	12	264	409	604	864	583	2,724	3,365
PH-127	May-90	12	31	21	38	105	105	300	347
PH-129	May-90	12	ND	ND	ND	ND	ND	ND	20
PH-130	May-90	12	ND	ND	ND	ND	ND	ND	7
PH-132	May-90	12	ND	ND	ND	ND	ND	ND	13
PH-133	May-90	17	ND	ND	ND	ND	ND	ND	21
PH-134	May-90	12	ND	ND	ND	ND	ND	ND	10
PH-135	May-90	15	ND	ND	ND	ND	ND	ND	16
PH-136	May-90	12	3	1	5	3	9	21	47
PH-137	May-90	15	ND	ND	ND	ND	ND	ND	9
PH-137	May-90	15	ND	ND	ND	ND	ND	ND	15
PH-139	May-90	25	3	ND	2	ND	ND	5	52
PH-140	May-90	12	ND	ND	23	37	ND	60	1,463
PH-141	May-90	12	ND	ND	10	ND	ND	10	40
PH-142	May-90	12	ND	ND	ND	ND	ND	ND	9
PH-100	May-90	38	15	ND	ND	6	ND	21	516
PH-102	May-90	5	18	ND	ND	17	ND	35	175
PH-108	May-90	27	ND	ND	ND	ND	ND	ND	75
PH-108	May-90	27	ND	ND	ND	ND	ND	ND	79
PH-114	May-90	25	155	139	193	139	87	713	5,879
PH-116	May-90	17.5	ND	ND	8	ND	3	11	19
PH-125	May-90	36	2	ND	ND	ND	ND	2	174
PH-125	May-90	36	1	ND	ND	ND	ND	1	138
PH-128	May-90	12	ND	ND	ND	ND	ND	ND	23
PH-131	May-90	12	48	3	10	5	7	73	661
PH-138	May-90	14	1	ND	ND	ND	ND	1	144

ND - Not Detected above method detection limit

TABLE 2-5 PHASE II SI SOIL ANALYTICAL SUMMARY **CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP**

		SOIL SAMPL	E				CHE	MICAL PA	ARAMETE	RS			
	FIELD	LAB	DEPTH			SW-846	LABORATOR	RY ANALY	TICAL ME	THOD (DILUT	ION)		
	NUMBER	NUMBER	INTERVAL (feet)	VOCs	SVOCs	PAH	TPH	Phenols	Metals	As	Hg	CN	COD
1	UTB-01-01	A219787	21 - 23	8240 (1:63)	8270			9066	6010	7060	7471		
2	UTB-01-02	A219792	27 - 28	8240	8270			9066					
3	UTB-03-01	A219237	11 - 13.5	8240	8270		8015 MOD	9066				9012	410.4
4	UTB-03-02	A219238	18.5 - 23.5	8240	8270		8015 MOD	9066				9012	410.4
5	UTB-08-01	A219235	04 - 09	8240	8270		8015 MOD	9066				9012	410.4
6	UTB-08-02	A219236	09 - 13	8240	8270		8015 MOD	9066				9012	410.4
7	UTB-10-01	A219239	09 - 10	8240 (1:63)	8270 (1:50)		8015 MOD	9066				9012	410.4
8	UTB-10-02	A219240	14 - 19	8240	8270		8015 MOD	9066				9012	410.4
9	UTB-11-01	A219786	08 - 13	8240 (1:630)	8270 (1:25)			9066	6010	7060	7471		
10	UTB-11-02	A219791	21 - 22	8240 (1:63)	8270			9066					
11	UTB-14-01	A219788	04 - 05	8240 (1:63)	8270 (1:10)			9066	6010	7060	7471		
12	UTB-14-02	A219793	32 - 33	8240	8270			9066					
13	UTB-15-S01	A244475	09 - 11	8240 (1:63)	8270	8310 (1:200)	SM 503E	9066	6010	7060 (1:5)	7471 MOD	9012	410.4 (1:100)
14	UTB-15-S02	A244476	33 - 35	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
15	UTB-16-01	A219789	08 - 10	8240	8270 (1:20)			9066	6010	7060	7471		
16	UTB-16-02	A219794	16.5 - 18	8240	8270			9066					
17	UTB-18-01	A219790	4.5 - 05	8240	8270			9066	6010	7060	7471		
18	UTB-18-02	A219795	17 - 18	8240 (1:63)	8270			9066					
19	UTB-20-S01	A244469	07 - 09	8240 (1:63)	8270	8310	SM 503E	9066	6010	7060 (1:5)	7471 MOD	9012	410.4 (1:100)
20	UTB-20-S02	A244470	17 - 18	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
21	UTB-21-S01	A244471	03 - 08	8240 (1:630)	8270 (1:2)	8310 (1:200)	SM 503E	9066	6010	7060 (1:5)	7471 MOD	9012	410.4 (1:100)
22	UTB-21-S02	A244472	20 - 23	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
23	UTB-22-S01	A244473	06 - 08	8240 (1:63)	8270 (1:4)	8310 (1:20)	SM 503E	9066	6010	7060 (1:2)	7471 MOD	9012	410.4 (1:100)
24	UTB-22-S02	A244474	20 - 23	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
25	UTB-23-S01	A244479	06 - 08	8240 (1:25000)	8270 (1:250)	8310 (1:500)	SM 503E	9066	6010	7060 (1:5)	7471 MOD	9012 (1:150)	410.4 (1:100)
26	UTB-23-S02	A244480	26 - 28	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
27	UTB-24-S01	A244481	06 - 08	8240 (1:630)	8270	8310 (1:200)	SM 503E	9066	6010	7060 (1:4)	7471 MOD	9012 (1:150)	410.4 (1:100)
28	UTB-24-S02	A244482	21 - 23	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
29	UTB-25-S01	A244477	09 - 11	8240 (1:630)	8270	8310 (1:200)	SM 503E	9066	6010	7060 (1:5)	7471 MOD	9012 (1:150)	410.4 (1:100)
30	UTB-25-S02	A244478	26 - 28	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
31	UTB-26-S01	A244483	06 - 08	8240 (1:63)	8270 (1:630)	8310 (1:200)	SM 503E	9066	6010	7060 (1:4)	7471 MOD	9012 (1:150)	410.4 (1:100)
32	UTB-26-S02	A244484	21 - 23	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)
33	UTB-27-S01	A244485	06 - 08	8240 (1:630)	8270 (1:2)	8310 (1:200)	SM 503E	9066	6010	7060 (1:4)	7471 MOD	9012 (1:150)	410.4 (1:100)
34	UTB-27-S02	A244486	21 - 23	8240 (1:63)	8270	8310	SM 503E	9066				9012	410.4 (1:100)

(1:20) = Dilution factor

Chemical Parameters:

VOCs - Volatile Organic Compounds.

SVOCs - Semi-Volatile Organic Compounds.

PAH - Polycyclic Aromatic Hydrocarbons.

TPH - Total Petroleum Hydrocarbons. As - Arsenic. Hg - Mercury.

CN - Cyanide.
COD - Chemical Oxygen Demand.

Table 2-6

MONITORING WELL AND PIEZOMETER CONSTRUCTION DATA CHAMPAIGN MGP SITE CHAMPAIGN, ILINOIS

MW / PZ NUMBER	DATE INSTALLED	TOTAL DEPTH FEET (BGS)	CONSTRUCTION TYPE	SCREEN INTERVAL FEET (BGS)	SURFACE ELEVATION
UMW-101	12/04/90	26.5	PVC-2"	14.0 - 26.5	736.4
UMW-102	11/28/90	22.4	PVC-2"	6.0 - 22.4	737.8
UMW-103	11/30/90	21.0	PVC-2"	7.0 - 21.0	736.5
UMW-104	11/27/90	23.5	PVC-2"	7.8 - 23.5	736.5
UMW-105	12/05/90	19.7	PVC-2"	7.7 - 19.7	737.8
UMW-106	11/29/90	21.0	PVC-2"	7.0 - 21.0	737.7
UMW-107	12/05/90	19.7	PVC-2"	7.5 - 19.7	737.3
UMW-108	11/29/90	16.0	PVC-2"	3.8 - 16.0	737.2
UMW-109	12/17/91	20.0	SS-2"	9.0 - 20.0	735.7
UMW-110	12/04/90	21.0	PVC-2"	8.3 - 21.0	737.4
UMW-111	12/07/90	19.8	SS-2"	7.5 - 19.8	736.1
UMW-112	12/07/90	20.0	SS-2"	7.0 - 20.0	737.9
UMW-113	12/11/91	20.5	SS-2"	8.0 - 20.5	738.0
UMW-114	12/12/91	21.0	SS-2"	8.0 - 21.0	738.2
UMW-115	12/12/91	21.0	SS-2"	8.0 - 21.0	738.1
UMW-116	12/11/91	20.0	SS-2"	8.0 - 20.0	737.2
UMW-401	12/05/90	175.0	PVC-2"	138.5 - 175.0	738.7
UMW-402	12/03/90	176.5	PVC-2"	134.0 - 170.0	737.6
UMW-403	12/07/90	170.0	PVC/SS-2"	128.0 - 170.0	737.5
UPZ-101	12/06/90	8.0	PVC-1"	4.0 - 8.0	738.2
UPZ-201	12/06/90	16.0	PVC-1"	12.0 - 16.0	738.2
UPZ-301	12/06/90	25.0	PVC-1"	21.0 - 25.0	738.2
UPZ-102	12/13/91	10.5	PVC-1"	4.0 - 10.5	738.0
UPZ-202	12/13/91	25.5	PVC-1"	19.5 - 25.5	738.0
UPZ-302	12/13/91	35.0	PVC-1"	29.0 - 35.0	738.0
UPZ-103	12/06/90	9.5	PVC-1"	4.5 - 9.5	737.4
UPZ-203	12/06/90	15.0	PVC-1"	11.5 - 15.0	737.4
UPZ-104	12/14/91	11.0	PVC-1"	4.0 - 11.0	738.7
UPZ-204	12/14/90	24.0	PVC-1"	17.0 - 24.0	738.7
UPZ-105	12/15/91	10.5	PVC-1"	4.0 - 10.5	738.6
UPZ-205	12/15/91	20.5	PVC-1"	14.0 - 20.5	738.6
UPZ-106	12/14/91	13.5	PVC-1"	7.0 - 13.5	738.4
UPZ-206	12/14/91	23.5	PVC-1"	17.0 - 23.5	738.4
UPZ-107	12/15/91	12.5	PVC-1"	3.0 - 12.5	737.9
UPZ-108	12/16/91	15.5	PVC-1"	4.0 - 15.5	739.3

PVC - Polyvinyl Chloride.

SS - Stainless Steel.

BLS - Below Land Surface.

TABLE 2-7 PHASE II GROUNDWATER ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

MONITORING	GROUND	WATER SA	MPLE	CHEMICAL PARAMETERS													
WELL	FIELD	LAB						SW-846	LABORA	ATORY	ANAL	YTICAL	METHOD	(DILUTION)			ļ
NUMBER	NUMBER	NUMBER	DATE	VOCs	SVOCs	PAH	TPH	Phenols	Metals	As	Hg	CN	COD	Am Nitr	Nit Nitr	Sulfate	Sulfide
UMW - 101	UMW-101-1290	A220595	17-Dec-90	8240 (1:10)	8270 (1:10)		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 101	UMW-101-0192	A246331	24-Jan-92	8240 (1:2500)	8270 (1:20)												
UMW - 102	UMW-102-1290	A220507	17-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 102	UMW-102-0192	A246292	24-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:25)	9030
UMW - 102	UMW-102-0193	A270516	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:20)	9030
UMW - 103	UMW-103-1290	A220499	16-Dec-90	8240 (1:10)	8270 (1:50)		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 103	UMW-103-0192	A246293	24-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030
UMW - 103	UMW-153-0192	A246294	24-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:10)	353.2	9038 (1:5)	9030
UMW - 103	UMW-103-0193	A270514	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:10)	9030
UMW - 104	UMW-104-1290	A220502	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 104	UMW-104-0193	A270392	06-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UMW - 105	UMW-105-1290	A220503	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 105	UMW-155-1290	A220504	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 105	UMW-105-0192	A246071	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030
UMW - 105	UMW-105-0193	A270872	05-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:100)	9030
UMW - 106	UMW-106-1290	A220501	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 106	UMW-106-0192	A246069	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:25)	9030
UMW - 106	UMW-106-0193	A270522	08-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:10)	353.2	375.4 (1:20)	9030
UMW - 107	UMW-107-1290	A220500	16-Dec-90	8240 (1:50)	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 107	UMW-107-0192	A246295	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:10)	353.2	9038	9030
UMW - 108	UMW-108-1290	A220596	17-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:5)	353.2	375.4	9030
UMW - 108	UMW-108-0192	A246066	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:5)	9030 (1:2)
UMW - 108	UMW-108-0193	A270519	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UMW - 109	UMW-109-0192	A246067	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:25)	9030 (1:2)
UMW - 109	UMW-109-0193	A270394	05-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 110	UMW-110-1290	A220498	16-Dec-90	8240	8270 (1:5)		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:25)	353.2	375.4	9030
UMW - 110	UMW-110-0192	A246319	25-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:5)	353.2	9038 (1:25)	9030
UMW - 110	UMW-110-0193	A270876	06-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:100)	9030
UMW - 111	UMW-111-1290	A220597	17-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030

TABLE 2-7 PHASE II GROUNDWATER ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

MONITORING	GROUND	WATER SA	MPLE	CHEMICAL PARAMETERS										-			
WELL	FIELD	LAB						SW-846	LABOR	ATORY	ANAL	TICAL	METHOD	(DILUTION)			ļ
NUMBER	NUMBER	NUMBER	DATE	VOCs	SVOCs	PAH	TPH	Phenols	Metals	As	Hg	CN	COD	Am Nitr	Nit Nitr	Sulfate	Sulfide
UMW - 111	UMW-111-0192	A246070	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:5)	9030
UMW - 111	UMW-111-0193	A270398	05-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:10)	9030
UMW - 112	UMW-112-1290	A220504	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 112	UMW-112-0192	A246072	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030
UMW - 112	UMW-162-0192	A246065	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030 (1:2)
UMW - 112	UMW-112-0193	A270517	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UMW - 112	UMW-162-0193	A270518	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UMW - 113	UMW-113-0192	A246296	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030
UMW - 113	UMW-163-0192	A246298	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:10)	9030
UMW - 113	UMW-113-0193	A270521	08-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:10)	9030
UMW - 114	UMW-114-0192	A246300	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:10)	353.2	9038 (1:5)	9030
UMW - 114	UMW-114-0193	A270520	08-Jan-93	8240	8270	8310 (1:10)	8015 MOD	9066	6010	7060	7470	9012	410.4 (1:5)	350.3	353.2	375.4 (1:5)	9030
UMW - 115	UMW-115-0192	A246299	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3 (1:10)	353.2	9038 (1:50)	9030 (1:2)
UMW - 115	UMW-115-0193	A270513	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4 (1:5)	350.3 (1:5)	353.2	375.4 (1:50)	9030
UMW - 116	UMW-116-0192	A246064	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038 (1:25)	9030 (1:2)
UMW - 116	UMW-116-0193	A270873	05-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:100)	9030
UMW - 401	UMW-401-1290	A220598	17-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 401	UMW-451-1290	A220599	17-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 401	UMW-401-0192	A246297	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038	9030
UMW - 401	UMW-401-0193	A270515	07-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 402	UMW-402-1290	A220506	16-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 402	UMW-402-0193	A270396	06-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 403	UMW-403-1290	A220739	19-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UMW - 403	UMW-403-0193	A270395	06-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UMW - 403	UMW-453-0193	A270397	06-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4 (1:5)	9030
UPZ - 101	UPZ-101-1290	A220737	19-Dec-90	8240	8270 (1:10)		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UPZ - 301	UPZ-301-1290	A220738	19-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UPZ - 303	UPZ-303-1290	A220740	19-Dec-90	8240	8270		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	375.4	9030
UPZ - 104	UPZ-104-0193	A270874	04-Jan-93	8240	8270 (1:2)	8310 (1:5)	8015 MOD	9066	6010	7060	7470	9012	410.4 (1:5)	350.3 (1:25)	353.2	375.4 (1:100)	9030
UPZ - 105	UPZ-105-0193	A270393	04-Jan-93	8240	8270	8310	8015 MOD	9066	6010	7060	7470	9012	410.4 (1:5)	350.3 (1:5)	353.2	375.4 (1:5)	9030
UPZ - 106	UPZ-106-0193	A270875	04-Jan-93	8240	8270 (1:2)	8310 (1:5)	8015 MOD	9066	6010	7060	7470	9012	410.4 (1:5)	350.3 (1:5)	353.2	375.4 (1:100)	9030

TABLE 2-7 PHASE II GROUNDWATER ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

MONITORING	GROUND	WATER SA	MPLE		CHEMICAL PARAMETERS												
WELL	FIELD	LAB						SW-846	LABORA	ATORY	ANAL	TICAL	METHOD	(DILUTION)			
NUMBER	NUMBER	NUMBER	DATE	VOCs	SVOCs	PAH	TPH	Phenols	Metals	As	Hg	CN	COD	Am Nitr	Nit Nitr	Sulfate	Sulfide
QA SAMPLES																	
UMW - 001	UMW-001-1290	A220509	17-Dec-90	8240													
UMW - 002	UMW-002-1290	A220601	17-Dec-90	8240													
UMW - 701	UMW-701-1290	A220508	17-Dec-90	8240													
UMW - 702	UMW-702-1290	A220602	17-Dec-90	8240													
UMW - 001	UMW-001-0192	A246068	21-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038	9030
UMW - 002	UMW-002-0192	A246291	23-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038	9030
UMW - 003	UMW-003-0192	A246318	24-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038	9030
UMW - 004	UMW-004-0192	A246322	25-Jan-92	624	625		8015 MOD	9066	6010	7060	7470	9012	410.4	350.3	353.2	9038	9030
UMW - 501	UMW-501-0192	A246073	21-Jan-92	624													
UMW - 503	UMW-503-0192	A246302	23-Jan-92		625		8015 MOD										
UMW - 504	UMW-504-0192	A246301	24-Jan-92	624													
UMW - 505	UMW-505-0192	A246323	25-Jan-92	624													
UPZ - 501	UPZ-501-0193	A270923	04-Jan-93	8240													
UMW - 501	UMW-501-0193	A270399	05-Jan-93	8240													
UMW - 502	UMW-502-0193	A270924	06-Jan-93	8240				_					_	_			
UMW - 503	UMW-503-0193	A270524	08-Jan-93	8240													
UMW - 504	UMW-504-0193	A270523	08-Jan-93	8240													

(1:20) = Dilution factor

Chemical Parameters:

VOCs - Volatile Organic Compounds.

SVOCs - Semi-Volatile Organic Compounds.

PAH - Polycyclic Aromatic Hydrocarbons.

TPH - Total Petroleum Hydrocarbons.

As - Arsenic.

Hg - Mercury.

CN - Cyanide.

COD - Chemical Oxygen Demand.

Am Nitr - Amonia Nitrogen.

Nit Nitr - Nitrate Nitrogen.

DO - Dissolved Oxygen.

SC - Specific Conductance.

		CLASS I GROUNDWATER		UMW-101	UMW-101	UMW-101	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102
CONSTITUENT	UNITS	STANDARD		12/17/1990	1/24/1992	2/15/1996	12/17/1990	1/24/1992	1/7/1993	2/13/1996	5/7/1996	8/6/96	11/4/1996	2/3/1997	5/7/1997	8/4/1997	11/3/1997	2/2/1998
BTEX Constituents		_																
Benzene	(ug/l)	5	10	1100	14000 430000	2060 1440	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<2.0
Ethylbenzene Toluene	(ug/l)	1000 700	<1.0 3	790 470	61000	820	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0 <2.0
Xylene (total)	(ug/l) (ug/l)	10000		850	590000	1510	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2.0
Aylerie (total)	(ug/i)	10000		050	330000	1310	\ 3.0	\\ 0.0	\0.0	\\ 0.0	\3.0	\3.0	\3.0	\3.0	\3.0	<5.0	\ 3.0	\2.0
PNA Constituents																		
Acenaphthene	(ug/l)	420																
Acenaphthylene	(ug/l)	210																
Anthracene	(ug/l)	2100																
Benzo(a)anthracene	(ug/l)	1.3																
Benzo(a)pyrene	(ug/l)	0.2																
Benzo(b)fluoranthene	(ug/l)	0.18																
Benzo(ghi)perylene	(ug/l)	0.47																
Benzo(k)fluoranthene	(ug/l)	0.17 1.5																
Chrysene Dibenzo(a,h)anthracene	(ug/l)	0.3																
Fluoranthene	(ug/l) (ug/l)	280																
Fluorene	(ug/l)	280																
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43																
Naphthalene	(ug/l)	140							<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenanthrene	(ug/l)	210																
Pyrene	(ug/l)	210																
•	(3)																	
Metal Constituents			_															
Arsenic	(mg/l)	0.05	<0.0020	0.058														
Barium	(mg/l)	2.0	0.018	1.8			0.18	0.28	0.13									
Cadmium	(mg/l)	0.005	<0.0020	<1.0														
Chromium	(mg/l)	0.1		0.86														
Copper Cyanide	(mg/l)	0.65 0.2	0.008	0.79			0.00											
Iron	(mg/l)	5.0	1.8	0.07 1200			0.02 5.6		13									
Lead	(mg/l)	0.0075	0.0067	0.65			5.0											
Manganese	(mg/l) (mg/l)	0.0075	0.0007	20			2	5.8	7.4									
Mercury	(mg/l)	0.002	0.11					J.0 										
Nickel	(mg/l)	0.1	<0.00005	1.2			0.02	0.12										
Silver	(mg/l)	0.05	< 0.006															
Zinc	(mg/l)	5.0	0.15	2.8			0.1	0.48										
	(3- /																	

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater Standard

		CLASS I	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102
CONSTITUENT	UNITS	GROUNDWATER STANDARD	5/4/1998	8/5/1998	11/10/1998	3/22/1999	6/16/1999	9/14/1999	12/9/1999	3/2/2000	6/15/2000	9/26/2000	12/27/2000	3/8/2001	6/25/2001	9/6/2001
BTEX Constituents	OIIIIO	OTANDAND	0/-// 1000	0,0,1000	11/10/1000	0/22/1000	0/10/1000	0/1-//1000	12/0/1000	0/2/2000	0/10/2000	3/20/2000	12/21/2000	0/0/2001	0/20/2001	0/0/2001
Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ethylbenzene	(ug/l)	1000	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Toluene	(ug/l)	700	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Xylene (total)	(ug/l)	10000	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
PNA Constituents																
Acenaphthene	(ug/l)	420														
Acenaphthylene	(ug/l)	210														
Anthracene	(ug/l)	2100														
Benzo(a)anthracene	(ug/l)	1.3														
Benzo(a)pyrene	(ug/l)	0.2														
Benzo(b)fluoranthene	(ug/l)	0.18														
Benzo(ghi)perylene	(ug/l)															
Benzo(k)fluoranthene	(ug/l)	0.17														
Chrysene	(ug/l)	1.5														
Dibenzo(a,h)anthracene	(ug/l)	0.3														
Fluoranthene	(ug/l)	280														
Fluorene	(ug/l)	280														
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43														
Naphthalene	(ug/l)	140	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<6.0	<10	<10	<10	<10	<10	<10	<10
Phenanthrene	(ug/l)	210														
Pyrene	(ug/l)	210														
Metal Constituents																
Arsenic	(mg/l)	0.05														
Barium	(mg/l)	2.0							0.075							
Cadmium	(mg/l)	0.005							< 0.002							
Chromium	(mg/l)	0.1							< 0.030							
Copper	(mg/l)	0.65														
Cyanide	(mg/l)	0.2														
Iron	(mg/l)	5.0														
Lead	(mg/l)	0.0075							< 0.0002							
Manganese	(mg/l)	0.15														
Mercury	(mg/l)	0.002							< 0.0002							
Nickel	(mg/l)	0.1														
Silver	(mg/l)	0.05							<0.10							
Zinc	(mg/l)	5.0														

ug/l - micrograms per liter
<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

		CLASS I	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-103	UMW-103	UMW-103	UMW-103
CONSTITUENT U	UNITS	GROUNDWATER STANDARD	12/6/2001	3/6/2002	6/4/2002	9/4/2002	12/5/2002	3/12/2003	6/12/2003	9/23/2003	42/2/2002	2/2/2004	E/2E/2004	12/6/2004	7/26/2004	12/16/1990	1/24/1002	1/7/2002	2/42/4006
	UNITS	STANDARD	12/6/2001	3/6/2002	0/4/2002	9/4/2002	12/5/2002	3/12/2003	6/12/2003	9/23/2003	12/2/2003	3/2/2004	3/23/2004	12/0/2004	7/20/2004	12/16/1990	1/24/1992	1///2003	2/13/1996
BTEX Constituents Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	<2.0	2.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	120	88	130	12
	(ug/I) (ug/I)	1000	<5.0	<5.0	<5.0	<5.0	<5.0	2.3 5.9	<5.0	<5.0	<2.0 <5.0	<2.0 <5.0	<5.0	<5.0	<2.0 <5.0	440	250	290	151
	(ug/I) (ug/I)	700	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	22	13	17	<5.0
	(ug/l)	10000	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	4.1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	400		150	87.7
Aylerie (total)	(ug/i)	10000	\\ 0.0	\0.0	\3.0	\3.0	\3.0	4.1	\3.0	\3.0	\3.0	\0.0	\0.0	₹3.0	\3.0	400		130	07.7
PNA Constituents																			
	(ug/l)	420													<3.00				
	(ug/l)	210													<1.50				
	(ug/l)	2100													< 0.30				
	(ug/l)	1.3													< 0.09				
	(ug/l)	0.2													< 0.12				
	(ug/l)	0.18													< 0.15				
* *	(ug/l)														< 0.30				
· · · · · · · · · · · · · · · · · · ·	(ug/l)	0.17													< 0.15				
* *	(ug/l)	1.5													< 0.45				
	(ug/l)	0.3													< 0.18				
	(ug/l)	280													< 0.90				
	(ug/l)	280													< 0.30				
	(ug/l)	0.43													< 0.30				
	(ug/l)	140	<10	<10	<10	<10	<10	18.1	<10	<10	<10	<10	<10	<10	< 3.00				
	(ug/l)	210													< 0.60				
	(ug/l)	210													< 0.30				
Metal Constituents																			
	(mg/l)	0.05														0.019			
	(mg/l)	2.0														0.36	0.22	0.17	
	(mg/l)	0.005																	
	(mg/l)	0.1														0.06			
	(mg/l)	0.65														0.067			
	(mg/l)	0.2														0.35	0.27	0.39	
	(mg/l)	5.0														58	1.6	3.1	
	(mg/l)	0.0075														0.054			
	(mg/l)	0.15														1.9	1.6	1.3	
	(mg/l)	0.002																	
	(mg/l)	0.1														0.08			
	(mg/l)	0.05																	
Zinc ((mg/l)	5.0														0.25	0.035		

Notes:

ug/l - micrograms per liter
<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

		CLASS I	UMW-103	UMW-103	UMW-104	UMW-104	UMW-104	UMW-104	UMW-104	UMW-105	UMW-105	UMW-105	UMW-105	UMW-105	UMW-105	UMW-106	UMW-106	UMW-106	UMW-106	UMW-106	UMW-106	UMW-107	UMW-107
CONSTITUENT	UNITS	GROUNDWATER STANDARD	5/8/1996	8/6/1996	12/16/1990	1/6/1993	2/13/1996	12/9/1999	7/26/2004	12/16/1990	1/21/1992	1/5/1993	2/13/1996	12/9/1999	7/26/2004	12/16/1990	1/21/1992	1/8/1993	2/12/1996	12/8/1999	7/26/2004	12/16/1990	1/23/1992
BTEX Constituents	011110	OTARDARD	0/0/1000	0/0/1000	12/10/1000	17071000	2/10/1000	12/0/1000	1/20/2004	12/10/1000	1/21/1002	17071000	2/10/1000	12/0/1000	1720/2004	12/10/1000	1/21/1002	17071000	2/12/1000	12/0/1000	1720/2004	12/10/1000	1720/1002
Benzene	(ug/l)	5	26.4	82.2	<5.0	<5.0	<1.0	<2.0	<2.0	<5.0	<5.0	<5.0	<1.0	<2.0	<2.0	<5.0	<5.0	<5.0	<1.0	<2.0	<2.0	36000	4800
Ethylbenzene	(ug/l)	1000	173	550	<5.0	<5.0	<1.0	<2.0	<5.0	<5.0	<5.0	<5.0	<1.0	<2.0	<5.0	<5.0	<5.0	<5.0	<1.0	<2.0	<5.0	56	60
Toluene	(ug/l)	700	5.7	<50.0	<5.0	<5.0	<1.0	<2.0	<5.0	<5.0	<5.0	<5.0	<1.0	<2.0	<5.0	<5.0	<5.0	<5.0	<1.0	<2.0	<5.0	27	30
Xylene (total)	(ug/l)	10000	85.2	410	<5.0	<5.0		<5.0	<5.0	<5.0		<5.0		<5.0	<5.0	<5.0		<5.0		<5.0	<5.0	80	
PNA Constituents																							
Acenaphthene	(ug/l)	420							<3.00						<3.00						<3.00		
Acenaphthylene	(ug/l)	210							<1.50						<1.50						<1.50		
Anthracene	(ug/l)	2100							< 0.30						< 0.30						< 0.30		
Benzo(a)anthracene	(ug/l)	1.3							< 0.09						<0.09						<0.09		
Benzo(a)pyrene	(ug/l)	0.2							<0.12						<0.12						<0.12		
Benzo(b)fluoranthene	(ug/l)	0.18							<0.15						<0.15						<0.15		
Benzo(ghi)perylene	(ug/l)								< 0.30						< 0.30						< 0.30		
Benzo(k)fluoranthene	(ug/l)	0.17							<0.15						< 0.15						<0.15		
Chrysene	(ug/l)	1.5							< 0.45						< 0.45						< 0.45		
Dibenzo(a,h)anthracene	(ug/l)	0.3							<0.18						<0.18						<0.18		
Fluoranthene	(ug/l)	280							< 0.90						< 0.90						< 0.90		
Fluorene	(ug/l)	280							< 0.30						< 0.30						< 0.30		
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43							< 0.30						< 0.30						< 0.30		
Naphthalene	(ug/l)	140							< 3.00						<3.00						< 3.00		
Phenanthrene	(ug/l)	210							< 0.60						< 0.60						< 0.60		
Pyrene	(ug/l)	210							< 0.30						< 0.30						< 0.30		
Metal Constituents																							
Arsenic	(mg/l)	0.05																					
Barium	(mg/l)	2.0			0.088	0.17		0.142		0.12	0.059	0.072		0.052		0.14	0.06	0.063		0.051		0.27	0.32
Cadmium	(mg/l)	0.005						<.002						<.002						<.002			
Chromium	(mg/l)	0.1						<.030						<.030						<.030			
Copper	(mg/l)	0.65																					
Cyanide	(mg/l)	0.2			0.03	0.01				0.1	0.06	0.06				0.22	0.29	0.11				0.97	1.1
Iron	(mg/l)	5.0			0.37	0.027				0.63	0.054	0.028				0.64	0.15	0.09				2.1	0.45
Lead	(mg/l)	0.0075						<.002						<.002						<.002			
Manganese	(mg/l)	0.15			0.37	0.19				0.12		0.028				0.067	0.36	0.037				0.19	0.66
Mercury	(mg/l)	0.002						<.002						<.0002		0.00097				<.0002		0.00052	
Nickel	(mg/l)	0.1			0.013					0.014												0.013	
Silver	(mg/l)	0.05						<.010						<.010						<.010			
Zinc	(mg/l)	5.0			0.073	0.082				0.087	0.045					0.069	0.09					0.087	0.042

ug/l - micrograms per liter
<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

CLASS I UMW-107 UMW-10 **GROUNDWATER CONSTITUENT UNITS** STANDARD 2/14/1996 5/8/1996 8/6/1996 11/4/1996 2/4/1997 5/7/1997 8/5/1997 11/4/1997 2/2/1998 5/4/1998 8/6/1998 11/10/1998 3/25/1999 6/16/1999 9/14/1999 12/8/1999 3/2/2000 6/15/2000 9/26/2000 12/27/2000 3/8/2001 **BTEX Constituents** 3860 3150 2820 2460 3430 2130 2260 4110 1220 1480 3160 1810 4840 2040 329 Benzene (ug/l) 5 1630 1710 2050 2910 2320 652 1000 74.6 <50.0 67.3 72.8 47 136 236 Ethylbenzene 61.4 54.6 79.5 79.8 131 106 60.7 146 66.2 <100 80.8 115 89.5 <125 (ug/l) 16.2 < 50.0 11 15.4 < 50.0 <50.0 < 50.0 <20.0 < 50.0 15.4 <125 11.5 <125 700 12.9 <125 14.2 22.7 19.6 < 50.0 <100 <20.0 Toluene (ug/l) 53.5 10000 93.8 98.3 114 114 111 193 164 220 134 77.2 209 178 370 166 68 Xylene (total) (ug/l) 114 160 120 144 87.1 **PNA Constituents** Acenaphthene (ug/l) 420 Acenaphthylene (ug/l) 210 Anthracene (ug/l) 2100 Benzo(a)anthracene (ug/l) 1.3 Benzo(a)pyrene (ug/l) 0.2 Benzo(b)fluoranthene (ug/l) 0.18 Benzo(ghi)perylene (ug/l) Benzo(k)fluoranthene (ug/l) 0.17 1.5 Chrysene (ug/l) 0.3 Dibenzo(a,h)anthracene (ug/l) --------280 Fluoranthene (ug/l) Fluorene 280 (ug/l) -------------------0.43 Indeno(1,2,3-cd)pyrene (ug/l) Naphthalene (ug/l) 140 75.3 92 130 75.5 85 <5.0 239 <250 30 265 152 212 207 38.1 90.6 164 702 210 Phenanthrene (ug/l) ---------210 Pyrene (ug/l) **Metal Constituents** (mg/l) 0.05 Arsenic Barium 2.0 (mg/l) 0.214 Cadmium (mg/l) 0.005 <.002 Chromium (mg/l) 0.1 <.030 Copper (mg/l) 0.65 Cyanide (mg/l) 0.2 Iron (mg/l) 5.0 Lead 0.0075 (mg/l) <.002 Manganese 0.15 (mg/l) Mercury (mg/l) 0.002 <.0002 Nickel (mg/l) 0.1 Silver 0.05 (mg/l) <.010 Zinc (mg/l) 5.0

Notes:

ug/I - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

CLASS I UMW-107 UMW-108 UMW-10 **GROUNDWATER** CONSTITUENT UNITS STANDARD 6/25/2001 9/6/2001 12/6/2001 3/6/2002 6/4/2002 9/4/2002 12/5/2002 3/12/2003 6/12/2003 9/23/2003 12/3/2003 3/2/2004 5/25/2004 12/7/2004 12/7/2004 12/17/1990 1/21/1992 1/7/1993 2/12/1996 5/7/1996 8/6/1996 **BTEX Constituents** Benzene 1170 3440 704 452 < 5.0 < 5.0 < 5.0 (ug/l) 5 2110 800 2290 2190 2000 678 356 986 694 760 416 < 5.0 < 5.0 < 5.0 1000 58.9 127 52.9 <125 < 5.0 <5.0 70 41.9 110 98 150 34 <125 <125 < 50 18 <250 < 5.0 < 5.0 < 5.0 < 5.0 Ethylbenzene (ug/l) 7.6 5.4 <200 <200 <125 <125 < 50 <50 <125 < 5.0 < 5.0 < 5.0 700 <125 <125 5 < 500 <125 <250 < 5.0 < 5.0 < 5.0 Toluene (ug/l) 57 59.4 10000 134 120 119 170 150 74 75 77 49 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Xylene (total) (ug/l) 173 103 290 62 < 5.0 PNA Constituents Acenaphthene (ug/l) 420 <3.00 Acenaphthylene (ug/l) 210 <1.50 Anthracene (ug/l) 2100 < 0.30 Benzo(a)anthracene (ug/l) 1.3 < 0.09 Benzo(a)pyrene (ug/l) 0.2 < 0.12 Benzo(b)fluoranthene (ug/l) 0.18 < 0.15 Benzo(ghi)perylene < 0.30 (ug/l) Benzo(k)fluoranthene (ug/l) 0.17 < 0.15 Chrysene (ug/l) 1.5 < 0.45 Dibenzo(a,h)anthracene (ug/l) 0.3 < 0.18 ------------------------280 Fluoranthene (ug/l) < 0.90 (ug/l) 280 < 0.30 Fluorene ---------------------------------0.43 < 0.30 Indeno(1,2,3-cd)pyrene (ug/l) Naphthalene (ug/l) 140 70.4 172 167 35.2 86.6 123 181 174 80.1 39.3 83.7 52.4 87.7 59.7 35.9 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 210 Phenanthrene (ug/l) < 0.60 ---------210 Pyrene (ug/l) < 0.30 **Metal Constituents** 0.05 Arsenic (mg/l) Barium 2.0 (mg/l) 0.23 0.26 Cadmium (mg/l) 0.005 Chromium (mg/l) 0.1 Copper (mg/l) 0.65 Cyanide (mg/I)0.2 80.0 0.07 Iron (mg/I)5.0 7.2 0.054 Lead 0.0075 (mg/I)Manganese 0.15 (mg/I)0.89 1.6 Mercury (mg/I)0.002 Nickel 0.021 (mg/I)0.1 0.05 Silver (mg/l) Zinc 5.0 0.13 0.046 (mg/I)

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

CLASS I UMW-108 UMW-10 **GROUNDWATER CONSTITUENT** UNITS STANDARD 11/4/1996 2/3/1997 5/7/1997 8/4/1997 11/3/1997 3/25/1999 6/16/1999 9/14/1999 12/9/1999 3/2/2000 9/26/2000 12/27/2000 6/15/2000 3/8/2001 6/25/2001 9/6/2001 12/6/2001 3/6/2002 6/4/2002 9/4/2002 12/5/2002 **BTEX Constituents** Benzene <2.0 <2.0 < 2.0 <2.0 <2.0 (ug/l) 5 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 0.8 <2.0 < 2.0 <2.0 < 2.0 1000 < 5.0 < 5.0 <2.0 <2.0 <2.0 < 2.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 2.0 < 2.0 < 2.0 < 2.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Ethylbenzene (ug/l) < 5.0 < 5.0 <2.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 700 < 5.0 < 5.0 < 5.0 <2.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Toluene (ug/l) 10000 < 5.0 < 5.0 < 5.0 <2.0 <2.0 < 5.0 < 5.0 <5.0 < 5.0 < 5.0 < 5.0 Xylene (total) (ug/l) < 5.0 < 5.0 < 2.0 < 5.0 < 5.0 <4.0 < 5.0 < 5.0 < 5.0 < 5.0 PNA Constituents Acenaphthene (ug/l) 420 Acenaphthylene (ug/l) 210 Anthracene (ug/l) 2100 Benzo(a)anthracene (ug/l) 1.3 Benzo(a)pyrene (ug/l) 0.2 Benzo(b)fluoranthene (ug/l) 0.18 Benzo(ghi)perylene (ug/l) Benzo(k)fluoranthene (ug/l) 0.17 Chrysene (ug/l) 1.5 Dibenzo(a,h)anthracene (ug/l) 0.3 ------------------280 Fluoranthene (ug/l) (ug/l) 280 Fluorene ---0.43 Indeno(1,2,3-cd)pyrene (ug/l) Naphthalene (ug/l) 140 <5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <6.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 < 5.0 < 5.0 <10.0 <10.0 210 Phenanthrene (ug/l) 210 Pyrene (ug/l) **Metal Constituents** 0.05 Arsenic (mg/l) 2.0 Barium (mg/l) 0.203 Cadmium (mg/l) 0.005 <.002 Chromium (mg/l) 0.1 <.030 Copper (mg/l) 0.65 Cyanide (mg/I)0.2 Iron (mg/I)5.0 Lead 0.0075 0.002 (mg/I)Manganese 0.15 (mg/I)Mercury (mg/I)0.002 <.0002 Nickel (mg/I)0.1 0.05 Silver (mg/l) <.010

Notes:

Zinc

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

(mg/I)

5.0

CLASS I UMW-108 UMW-108 UMW-108 UMW-108 UMW-108 UMW-108 UMW-108 UMW-108 UMW-109 UMW-10

		GROUNDWATE																					
CONSTITUENT	UNITS	STANDARD	3/12/2003	6/12/2003	9/23/2003	12/2/2003	3/2/2004	5/25/2004	12/6/2004	7/26/2004	1/21/1992	1/5/1993	2/14/1996	3/25/1999	6/16/1999	9/14/1999	12/9/1999	3/2/2000	6/15/2000	7/26/2004	12/16/1990	1/25/1992	1/6/1993
BTEX Constituents																							
Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	< 5.0	< 5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	83	120	53
Ethylbenzene	(ug/l)	1000	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	< 5.0	150	210	210
Toluene	(ug/l)	700	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<2.0	<2.0	<2.0	<2.0	<2.0	< 5.0	< 5.0	< 5.0	< 5.0	8	< 5.0
Xylene (total)	(ug/l)	10000	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0	<5.0	< 5.0	<10.0	<2.0	<2.0	<2.0	<5.0	<5.0	< 5.0	<5.0	120		180
,	() /																						
PNA Constituents																							
Acenaphthene	(ug/l)	420								< 3.00										<3.00			
Acenaphthylene	(ug/l)	210								<1.50										<1.50			
Anthracene	(ug/l)	2100								< 0.30										< 0.30			
Benzo(a)anthracene	(ug/l)	1.3								< 0.09										< 0.09			
Benzo(a)pyrene	(ug/l)	0.2								<0.12										<0.12			
Benzo(b)fluoranthene	(ug/l)	0.18								<0.15										<0.15			
Benzo(ghi)perylene	(ug/l)									< 0.30										< 0.30			
Benzo(k)fluoranthene	(ug/l)	0.17								<0.15										<0.15			
Chrysene	(ug/l)	1.5								<0.45										<0.45			
Dibenzo(a.h)anthracene	(ug/l)	0.3								<0.18										<0.18			
Fluoranthene	(ug/l)	280								<0.10										<0.90			
Fluorene	(ug/l)	280								<0.30										<0.30			
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43								<0.30										< 0.30			
Naphthalene	,	140	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<3.00	<5.0	<5.0		<5.0	<5.0	<5.0			<5.0	<3.00			
Phenanthrene	(ug/l)	210								< 0.60			<1.0				<6.0	<5.0		< 0.60			
	(ug/l)																						
Pyrene	(ug/l)	210								< 0.30										< 0.30			
Metal Constituents																							
Arsenic	(ma/l)	0.05																					
	(mg/l)	2.0									0.40	0.46					0.4.44				0.40	0.40	0.40
Barium	(mg/l)										0.13	0.16					0.141				0.18	0.12	0.12
Cadmium	(mg/l)	0.005															<.002						
Chromium	(mg/l)	0.1															0.03						
Copper	(mg/l)	0.65									0.40	0.05											
Cyanide	(mg/l)	0.2									0.16	0.05									0.86	0.62	1
Iron	(mg/l)	5.0									0.11	0.035									1.5	0.77	1.5
Lead	(mg/l)	0.0075															<.002						
Manganese	(mg/l)	0.15										0.019									3.7	4.4	4.5
Mercury	(mg/l)	0.002															<.0002						
Nickel	(mg/l)	0.1																					
Silver	(mg/l)	0.05															<.010						
Zinc	(mg/l)	5.0									0.096	0.028									0.093	0.05	0.021

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

CLASS I UMW-110 UMW-110 UMW-111 UMW-111 UMW-111 UMW-111 UMW-111 UMW-111A UMW-11A **GROUNDWATER** CONSTITUENT UNITS STANDARD 2/15/1996 12/9/1999 7/26/2004 12/17/1990 1/21/1992 1/5/1993 2/14/1996 9/14/1999 12/9/1999 6/15/2000 9/26/2000 12/27/2000 3/8/2001 6/25/2001 9/6/2001 12/6/2001 3/6/2002 6/4/2002 9/4/2002 **BTEX Constituents** 15.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 Benzene (ug/l) 5 27.1 13.4 < 5.0 < 5.0 < 5.0 <1.0 <2.0 <2.0 <2.0 71.2 2.3 < 5.0 < 5.0 < 5.0 1000 50.7 < 5.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Ethylbenzene (ug/l) <1.0 2.5 2.2 67.5 < 5.0 700 7 < 5.0 <2.0 <2.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 Toluene (ug/l) <1.0 < 5.0 < 5.0 < 5.0 < 5.0 10000 50.9 37.3 < 5.0 < 5.0 <2.0 < 5.0 < 5.0 < 5.0 Xylene (total) (ug/l) < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 **PNA Constituents** Acenaphthene (ug/l) 420 87.6 Acenaphthylene (ug/l) 210 92.6 Anthracene (ug/l) 2100 15.1 Benzo(a)anthracene 1.3 0.33 (ug/l) Benzo(a)pyrene (ug/l) 0.2 < 0.12 Benzo(b)fluoranthene (ug/l) 0.18 < 0.15 ----Benzo(ghi)perylene (ug/l) < 0.30 Benzo(k)fluoranthene (ug/l) 0.17 < 0.15 ----------Chrysene (ug/l) 1.5 < 0.45 Dibenzo(a,h)anthracene 0.3 < 0.18 (ug/l) ---------------------------------280 Fluoranthene 12.1 (ug/l) ------------------280 7.66 Fluorene (ug/l) ---0.43 < 0.30 Indeno(1,2,3-cd)pyrene (ug/l) -----Naphthalene 140 24.6 <6.0 <10.0 (ug/l) < 5.0 < 5.0 <1.0 < 5.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 ----------<10.0 210 26.7 Phenanthrene (ug/l) 210 5.25 Pyrene (ug/l) Metal Constituents 0.05 (mg/l) 0.015 Arsenic ---------2.0 Barium (mg/l) 0.106 0.36 0.099 0.14 0.116 Cadmium (mg/l) 0.005 <.002 <.002 Chromium (mg/l) 0.1 <.030 0.11 <.030 Copper (mg/l) 0.65 0.068 Cyanide (mg/I)0.2 5.0 93 0.023 Iron (mg/I)0.0075 <.002 0.083 0.005 Lead (mg/l) 0.15 1.7 0.046 Manganese (mg/l) 0.06 Mercury (mg/I)0.002 <.0002 0.0022 <.0002 0.017 Nickel (mg/I)0.1 0.12 0.05 Silver (mg/l) <.010 <.010 Zinc (mg/l) 5.0 0.28 0.059 0.036

Notes:

ug/I - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1 Groundwater S

UMW-102 UMW-102 UMW-102 UMW-104 UMW-105 UMW-106 UMW-107 UMW-10

CONSTITUENT																		
	Groundwater ROs		7/26/2004	6/14/2007	9/21/2007	7/26/2004	7/26/2004	7/26/2004	3/2/2004	5/25/2004	7/26/2004	7/26/2004	12/7/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	12/27/2005
	(Class I)	UNITS																
Benzene	5	(ug/L)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	986	694	760	786	416	589	549	344	859	998
Ethylbenzene	700	(ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50.0	18	<250	<250	<125	36	27.8	17.1	46.5	45.8
Toluene	1,000	(ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50.0	<50	<250	<250	<125	4	<25.0	2.6	5.4	5.7
Xylene (total)	10,000	(ug/L)	<5.0	<5.0	<5.0	1.4	<5.0	<5.0	57	59.4	77	52	49	64.1	49.2	32.1	54.4	54.6
Acenaphthene	420	(ug/L)	<3.00			<3.00	<3.00	<3.00	<5.0	<5.0	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Acenaphthylene	210	(ug/L)	<1.50			<1.50	<1.50	<1.50	47	<5.0	<1.50	<1.50	<1.50	<7.50	44.5	<1.50	<1.50	<1.50
Anthracene	2100	(ug/L)	< 0.30			< 0.30	< 0.30	< 0.30	<5.0	< 5.0	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Benzo(a)anthracene	0.13	(ug/L)	< 0.09			< 0.09	< 0.09	< 0.09	< 0.10	< 0.10	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Benzo(a)pyrene	0.20	(ug/L)	< 0.12			< 0.12	< 0.12	< 0.12	< 0.20	< 0.20	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12
Benzo(b)fluoranthene	0.18	(ug/L)	< 0.15			< 0.15	< 0.15	< 0.15	<0.18	<0.18	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Benzo(ghi)perylene		(ug/L)	< 0.30			< 0.30	< 0.30	< 0.30	< 0.50	< 0.50	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Benzo(k)fluoranthene	0.17	(ug/L)	< 0.15			< 0.15	< 0.15	< 0.15	< 0.17	< 0.17	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Chrysene	1.5	(ug/L)	< 0.45			< 0.45	< 0.45	< 0.45	< 0.80	< 0.80	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Dibenzo(a,h)anthracene	0.30	(ug/L)	<0.18			<0.18	<0.18	<0.18	< 0.30	< 0.30	< 0.18	< 0.18	<0.18	<0.18	<0.18	<0.18	<0.18	< 0.18
Fluoranthene	280	(ug/L)	< 0.90			< 0.90	< 0.90	< 0.90	<2.0	<2.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Fluorene	280	(ug/L)	< 0.30			< 0.30	< 0.30	< 0.30	<1.0	<1.0	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Indeno(1,2,3-cd)pyrene	0.43	(ug/L)	< 0.30			< 0.30	< 0.30	< 0.30	< 0.40	< 0.40	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Naphthalene	140	(ug/L)	<3.00			<3.00	<3.00	<3.00	83.7	52.4	87.7	147	59.7	53.2	59.4	58	130	140
Phenanthrene	210	(ug/L)	< 0.60			< 0.60	< 0.60	< 0.60	<5.0	< 5.0	< 0.60	< 0.60	<0.60	< 0.60	< 0.60	< 0.60	< 0.60	<0.60
Pyrene	210	(ug/L)	< 0.30			< 0.30	< 0.30	< 0.30	<2.0	<2.0	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1
Groundwater Standard

			UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-108	UMW-108B	UMW-108	UMW-108	UMW-109	UMW-110	UMW-111	UMW-111	UMW-111
CONSTITUENT																	
	Groundwater ROs		3/30/2006	6/22/2006	9/19/2006	12/13/2006	6/14/2007	9/21/2007	7/26/2004	7/26/2004	6/14/2007	9/21/2007	7/26/2004	7/26/2004	7/26/2004	6/14/2007	9/21/2007
	(Class I)	UNITS															
Benzene	5	(ug/L)	231	289	1280	812	798	1020	<2.0	<2.0	<2.0	<2.0	<2.0	15.6	<2.0	<2.0	<2.0
Ethylbenzene	700	(ug/L)	18.6	18.2	69.1	44.1	32.0	55.7	<5.0	<5.0	<5.0	<5.0	<5.0	67.5	<5.0	<5.0	<5.0
Toluene	1,000	(ug/L)	<5.0	2.4	11.0	7.1	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0	2.3	<5.0	< 5.0	< 5.0
Xylene (total)	10,000	(ug/L)	28.6	30.7	81.2	55.2	43.0	71.5	< 5.0	<5.0	<5.0	< 5.0	< 5.0	37.3	<5.0	< 5.0	< 5.0
Acenaphthene	420	(ug/L)	<3.00	<3.00	<3.00	<0.10	<1.0	<5.0	<3.00	<3.00			<3.00	87.6	<3.00		
Acenaphthylene	210	(ug/L)	<1.50	<1.50	5.38	0.2	<1.0	0.19	<1.50	<1.50			<1.50	92.6	<1.50		
Anthracene	2100	(ug/L)	< 0.30	< 0.30	< 0.30	0.14	<1.0	0.13	< 0.30	< 0.30			< 0.30	15.1	< 0.30		
Benzo(a)anthracene	0.13	(ug/L)	< 0.09	< 0.09	< 0.09	< 0.10	< 0.10	< 0.13	< 0.09	0.19			< 0.09	0.33	< 0.09		
Benzo(a)pyrene	0.20	(ug/L)	< 0.12	< 0.12	< 0.12	< 0.10	< 0.10	< 0.20	< 0.12	0.29			< 0.12	< 0.12	<0.12		
Benzo(b)fluoranthene	0.18	(ug/L)	< 0.15	< 0.15	< 0.15	< 0.10	< 0.10	<0.18	< 0.15	< 0.15			< 0.15	< 0.15	< 0.15		
Benzo(ghi)perylene		(ug/L)	< 0.30	< 0.30	< 0.30	< 0.10	1.1	< 0.50	< 0.30	< 0.30			< 0.30	< 0.30	< 0.30		
Benzo(k)fluoranthene	0.17	(ug/L)	< 0.15	< 0.15	< 0.15	<0.10	<1.0	< 0.17	< 0.15	< 0.15			< 0.15	< 0.15	< 0.15		
Chrysene	1.5	(ug/L)	< 0.45	< 0.45	< 0.45	< 0.10	<1.0	< 0.15	< 0.45	< 0.45			< 0.45	< 0.45	< 0.45		
Dibenzo(a,h)anthracene	0.30	(ug/L)	<0.18	<0.18	<0.18	< 0.10	<1.0	< 0.30	<0.18	<0.18			<0.18	<0.18	<0.18		
Fluoranthene	280	(ug/L)	< 0.90	< 0.90	< 0.90	< 0.10	<1.0	<2.0	< 0.90	< 0.90			< 0.90	12.1	< 0.90		
Fluorene	280	(ug/L)	< 0.30	< 0.30	< 0.30	< 0.10	<1.0	<1.0	< 0.30	< 0.30			< 0.30	7.66	< 0.30		
Indeno(1,2,3-cd)pyrene	0.43	(ug/L)	< 0.30	< 0.30	< 0.30	< 0.10	<1.0	< 0.43	< 0.30	< 0.30			< 0.30	< 0.30	< 0.30		
Naphthalene	140	(ug/L)	57.8		180	47.7	170	194	<3.00	<3.00			<3.00	24.6	<3.00		
Phenanthrene	210	(ug/L)	< 0.60	< 0.60	<0.60	<0.10	<1.0	<0.10	< 0.60	< 0.60			< 0.60	26.7	< 0.60		
Pyrene	210	(ug/L)	<0.30	< 0.30	< 0.30	<0.10	<1.0	<2.0	<0.30	< 0.30			<0.30	5.25	< 0.30		

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1

Groundwater Standard

UMW-112 UMW-112 UMW-112 UMW-113 UMW-114 UMW-11

CONSTITUENT	Groundwater ROs		7/26/2004	6/14/2007	9/21/2007	7/26/2004	3/2/2004	5/25/2004	7/26/2004	12/7/2004	3/15/2005	3/15/2005	6/9/2005	9/27/2005	12/27/2005	3/30/2006	6/22/2006	9/19/2006
	(Class I)	UNITS	172072004	0/14/2001	3/2 1/2001	1720/2004	0/2/2004	0/20/2004	17207200-	12/1/2004	0/10/2000	0/10/2000	0/0/2000	3/21/2000	12/2//2000	0/00/2000	0/22/2000	3/13/2000
Benzene	5	(ug/L)	<2.0	<2.0	<2.0	5.7	754	760	628	796	736	726	867	1130	939	875	936	938
Ethylbenzene	700	(ug/L)	< 5.0	< 5.0	< 5.0	1.0	1040	1230	868	1130	1250	1240	1260	1370	1150	1220	1140	1220
Toluene	1,000	(ug/L)	< 5.0	< 5.0	< 5.0	< 5.0	<250	153	120	164	164	163	152	190	133	123	131	150
Xylene (total)	10,000	(ug/L)	<5.0	<5.0	<5.0	4.8	481	861	425	848	899	920	932	1010	891	958	1020	924
Acenaphthene	420	(ug/L)	<3.00			33.9	260	167	214	43.6	115	101	222	208	236	99.1	159	111
Acenaphthylene	210	(ug/L)	<1.50			70.7	840	737	552	432	<1.50	<1.50	<7.5	<1.50	<150	<1.50	868	<15.0
Anthracene	2100	(ug/L)	< 0.30			< 0.30	<50.6	<5.0	1.04	0.62	< 0.30	< 0.30	< 0.30	0.82	< 0.30	< 0.30	1.8	< 0.30
Benzo(a)anthracene	0.13	(ug/L)	< 0.09			< 0.09	0.77	0.33	< 0.09	0.17	< 0.09	0.2	< 0.09	< 0.09	1.11	0.41	0.91	0.2
Benzo(a)pyrene	0.20	(ug/L)	<0.12			<0.12	0.68	0.34	<0.12	<0.12	<0.12	0.14	<0.12	<0.12	1.07	0.27	0.97	<0.12
Benzo(b)fluoranthene	0.18	(ug/L)	< 0.15			<0.15	<0.18	0.17	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.49	<0.15	0.3	<0.15
Benzo(ghi)perylene		(ug/L)	< 0.30			< 0.30	<0.51	< 0.50	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.44	< 0.30	0.68	< 0.30
Benzo(k)fluoranthene	0.17	(ug/L)	< 0.15			<0.15	<0.17	< 0.17	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Chrysene	1.5	(ug/L)	< 0.45			< 0.45	<0.81	<0.80	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	1.22	< 0.45	0.93	< 0.45
Dibenzo(a,h)anthracene	0.30	(ug/L)	<0.18			<0.18	< 0.30	< 0.30	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Fluoranthene	280	(ug/L)	< 0.90			< 0.90	<20.2	<2.0	0.99	1.22	< 0.90	0.94	1.07	1.09	4.66	1.81	3.38	< 0.90
Fluorene	280	(ug/L)	< 0.30			2.36	43.1	41.5	20.6	29.9	62.8	48.4	64.1	44.4	68.6	49.4	42.8	< 0.30
Indeno(1,2,3-cd)pyrene	0.43	(ug/L)	< 0.30			< 0.30	< 0.40	< 0.40	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.31	< 0.30	0.3	< 0.30
Naphthalene	140	(ug/L)	<3.00			580	4480	3660	3650	3510	5580	4550	5120	11500	5980	6000		7880
Phenanthrene	210	(ug/L)	< 0.60			5990	<50.6	8.98	7.48	9.68	11.6	11	10.2	9.87	12.8	11.3	14	11.1
Pyrene	210	(ug/L)	< 0.30			6020	<20.2	<2.0	0.64	0.69	0.4	0.66	0.65	0.4	2.29	1.36	2.74	0.55

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1

Groundwater Standard

UMW-114 UMW-114B UMW-114 UMW-114 UMW-115 UMW-115 UMW-115 UMW-116 UMW-1

CONSTITUENT													
	Groundwater ROs (Class I)	UNITS	12/13/2006	12/13/2006	6/14/2007	9/21/2007	7/26/2004	6/14/2007	9/21/2007	7/26/2004	6/14/2007	6/14/2007	9/21/2007
Benzene	5		1080	1130	1150	1120	12.9	9	12.3	<2.0	<2.0	<2.0	<2.0
	700	(ug/L)		1170		1060	1.2	<5.0	1.8	<2.0 <5.0	<2.0 <5.0	<2.0 <5.0	<5.0
Ethylbenzene		(ug/L)	1110		1160								
Toluene	1,000	(ug/L)	170	150	170	130	<5.0	< 5.0	1.2	<5.0	<5.0	<5.0	<5.0
Xylene (total)	10,000	(ug/L)	1020	984	963	861	<5.0	<5.0	1.3	<5.0	<5.0	<5.0	<5.0
Acenaphthene	420	(ug/L)	122	140	85.9	86	13.5			<3.00			
Acenaphthylene	210	(ug/L)	20.9	22	21.3	19.7	26.4			<1.50			
Anthracene	2100	(ug/L)	1.4	1.17	1.6	1.3	< 0.30			< 0.30			
Benzo(a)anthracene	0.13	(ug/L)	0.23	0.16	< 0.50	0.25	< 0.09			< 0.09			
Benzo(a)pyrene	0.20	(ug/L)	0.11	< 0.10	< 0.50	0.13	<0.12			< 0.12			
Benzo(b)fluoranthene	0.18	(ug/L)	< 0.10	< 0.10	< 0.50	< 0.18	< 0.15			< 0.15			
Benzo(ghi)perylene		(ug/L)	< 0.10	< 0.10	< 0.50	< 0.50	< 0.30			< 0.30			
Benzo(k)fluoranthene	0.17	(ug/L)	< 0.10	< 0.10	< 0.50	< 0.17	< 0.15			< 0.15			
Chrysene	1.5	(ug/L)	0.12	< 0.10	< 0.50	0.17	< 0.45			< 0.45			
Dibenzo(a,h)anthracene	0.30	(ug/L)	< 0.140	< 0.10	< 0.50	< 0.30	<0.18			< 0.18			
Fluoranthene	280	(ug/L)	0.76	0.56	0.7	0.85	< 0.90			< 0.90			
Fluorene	280	(ug/L)	15.6	17.4	18.1	17.8	8.46			< 0.30			
Indeno(1,2,3-cd)pyrene	0.43	(ug/L)	< 0.10	< 0.10	<0.50	< 0.43	< 0.30			< 0.30			
Naphthalene	140	(ug/L)	5260	5980	6440	5560	<3.00			<3.00			
Phenanthrene	210	(ug/L)	5.51	5.84	6	6.18	< 0.60			< 0.60			
Pyrene	210	(ug/L)	1.03	0.83	0.95	1.4	<0.30			< 0.30			
Pyrene	210	(ug/L)	1.03	0.63	0.95	1.4	<0.30			<0.30			

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

Exceeds the Class 1
Groundwater Standard

Monitoring	Sampling	_	·	Conce	ntration ug/L		
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (Total)	Total BTEX	Naphthalene
er 1 Remedial	Objective	5	700	1,000	10,000		140
UMW-102	02/03/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
014144-102	05/07/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	08/04/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
		\ /	\ /	()		0.0	
	11/03/97	ND(5)	ND(5)	ND(5)	ND(5)		ND(5)
	02/02/98	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	05/04/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(8.7)
	08/05/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	08/05/98 Is	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	11/10/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	03/25/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(10)
	06/16/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	09/14/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	12/09/99	ND(2)	ND(2)	ND(2)	ND(5)	0.0	ND(6)
	03/02/00	ND(2)	ND(2)	ND(2)	ND(4)	0.0	ND(5)
	06/15/00	ND(2)	ND(2)	ND(5)	ND(5)	0.0	ND(10)
	09/26/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/08/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/25/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/06/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/05/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/12/03	2.3	5.9	ND(5)		J 12.3	18.1
	06/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/02/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	05/25/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
		\ /	\ /	()	(/	0.0	` '
	07/26/04	ND(2)	ND(5)	ND(5)	ND(5)		ND(3)
	12/06/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/15/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/09/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/30/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/22/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/19/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/13/06	ND(2)	ND(5)	ND(5)	1.1	1.1	ND(10)
	03/26/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	0.00013
	06/14/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/21/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
UMW-104	07/26/04	ND(2)	ND(5)	ND(5)	1.4	1.40	ND(3)
	03/27/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(3)
UMW-105	07/26/04	ND(2)	ND(5)	ND(5)	ND(5)	0.00	ND(3)
-103	03/27/07	ND(2)	ND(5)	ND(5)	ND(5)	0.00	ND(3)
LIMIN 400	07/06/04	ND(0)	ND(E)	ND(E)	ND/E)	0.00	ND(2)
UMW-106	07/26/04	ND(2)	ND(5)	ND(5)	ND(5)	0.00	ND(3)
	03/26/07	ND(2)	ND(5)	ND(5)	ND(5)	0.00	ND(3)

d Duplicate sample for QA/QC.

J Estimated concentration below method detection limit.

ls Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

^{- -} Not Applicable.

^{*} Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

^{** 3,210/5,810} are analytical results using Methods 8260/or 8310

UMW-111A Replacement well for UMW-111.

Monitoring	Sampling					Conc	entra	ation ug/L				
Well	Date		Benzene	Ethylbenzene		Toluene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Xylenes (Total)		Total BTEX	Naphthalene	
Tier 1 Remedial	Objective		5	700		1,000		10,000			140	
UMW-107	02/04/97		2,820	79.5	J	ND(125)		114	J	3014	75.3	
	02/04/97	d	3,060	84.8	J	ND(125)		120	J	3265	82.1	
	05/07/97		2,050	67.3		14.2		114		2246	90.6	
	08/05/97		2,460	79.8		15.4		111	J	2666	92.0	
	11/04/97		3,430	131		22.7	J	193		3777	130	
	02/02/98		2,910	106		19.6		160		3196	75.5	
	05/04/98		2,130	72.8		ND(50)		164		2367	85	
	05/04/98	d	1,870	61.6		ND(50)		139		2071	78	
	08/06/98		2,260	60.7		ND(50)		120		2441	ND(5)	
	11/10/98		4,110	146		ND(50)		220		4476	239	
	03/25/99		2,320	66.2		ND(50)		134		2520	ND(250)	
	06/16/99		1,220	ND(100)		ND(100)		144		1364	30	
	09/14/99		1,480	47		ND(20)		77.2		1604	265	
	12/08/99		3,160	136		ND(50)		209		3505	164	
	03/02/00		1,810	8.08		ND(20)		87.1		1978	152	
	06/15/00		652	115		15.4		178		960	212	
	09/26/00		4,840	236		ND(125)		370		5446	702	
	12/27/00		2,040	89.5		11.5		166		2307	207	E
	12/27/00	d	2,100	87.4		11.9		169		2368	198	
	03/08/01		329	ND(125)		ND(125)		68		397	38.1	
	06/25/01		1,170	58.9		7.6		134		1371	70.4	
	09/06/01		3,440	127		ND(125)		173		3740	172	
bailer	12/06/01		2,110	70	J	ND(125)		120	J	2300	167	
peristaltic	12/06/01	d	1,630	103		11.1		190		1934	154	
	03/06/02		800	52.9		5.4		119		977	35.2	
	06/04/02		704	41.9		5.0		103		854	86.6	
	09/04/02		2,290	110		ND(200)		170		2570	123	
	12/05/02		2,190	98	J	ND(200)		150	J	2438	181	
	03/12/03		2,000	150	J	ND(500)		290	J	2440	174	
	06/12/03		678	34	J	ND(125)		74	J	786	80.1	
	03/02/04		986	ND(50)		ND(50)		57		1043	83.7	
	05/25/04		694	18		ND(50)		59.4		753	52.4	
	07/26/04		760	ND(250		ND(250)		77		837	87.7	
	12/07/04		416	ND(250		ND(125)		49		465	59.7	
	03/15/05		589	36		4.0		64.1		653	53.2	
	06/09/05		549	27.8		ND(25)		49.2		598	59.4	
	09/27/05		344	17.1		2.6		32.1		376	58	
	12/27/05		859	46.5		5.4		54.4		913	130	
	03/30/06		231	18.6		<5		28.6		260	57.8	
	06/22/06		289	18.2		2.4		30.7		320	106	
	09/19/06		1,280	69.1		11.0		81.2		1361	180	
	12/13/06		812	44.1		7.1		55.2		867	47.7	
	03/27/07		0.308	0.015	J	ND(50)		0.024	J	0.332	0.0684	S
	06/14/07		798	32		ND(50)		43.0		841	170	
	09/21/07		544	31	J	ND(50)		42.0	J	586	118	
	09/21/07		1,020	55.7		ND(50)		71.5		1092	194	

d Duplicate sample for QA/QC.

UMW-111A Replacement well for UMW-111.

J Estimated concentration below method detection limit.

Is Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

Not Applicable.

^{*} Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

^{3,210/5,810} are analytical results using Methods 8260/or 8310

West Date Date September September Toluene Xylenés (Total) Total BTEX Maphitalene Tuter 1 Remedial objective September Toluene 1,000 1,00	Monitoring	Sampling			Conce	entration ug/L		
UMW-108			Benzene	Ethylbenzene			Total BTEX	Naphthalene
0507/97	Tier 1 Remedial	Objective	5	700	1,000	10,000		140
0507/97	118884 400	00/00/07	ND(E)	ND/E)	ND(E)	ND(E)	0.0	ND(E)
0507/97 d ND(5) ND(5) ND(5) ND(5) 0.0 ND(5)	UWW-108		٠,,	, ,	` '	, ,		, ,
08/04/97 ND(5) ND(5) ND(5) ND(5) 0.0 ND(5)				* *	. ,	* *		
11/03/97 ND(6) ND(6) ND(6) ND(6) O.0 ND(6)			٠,,	, ,	` '	, ,		, ,
020298					` '			, ,
050498 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5)								
08/05/98 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5)					` '			, ,
08/05/98 d ND/2 ND/2 ND/2 ND/2 ND/2 O.0 ND/6 ND/6 ND/2 ND/2 ND/2 ND/2 ND/2 ND/2 O.0 ND/6			٠,,		` '			, ,
11/10/88 ND(2) ND(2) ND(2) ND(2) ND(2) O.0 ND(6)				* *	. ,	* *		
03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) O.0 ND(10)			٠,,		` '	, ,		, ,
06/16/98			٠,,	, ,		, ,		, ,
09/14/99								
12/09/99			٠,,	, ,	` '	, ,		, ,
03/02/00								
06/15/00 0.8 J ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/28/00 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/00 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/08/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/25/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/06/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/06/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/09 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/09 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/09 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/09 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/09 ND(2) ND(5) N			٠,,	, ,	` '	, ,		, ,
09/28/00 ND/2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/00 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/08/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/06/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/06/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/06/01 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/05 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/05 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/05 ND(2) ND(5) N				, ,	. ,	, ,		, ,
12/27/00		06/15/00	0.8	J ND(2)	ND(5)	ND(4)		ND(10)
030901			ND(2)		ND(5)	ND(5)		
06/25/01			ND(2)	ND(5)	ND(5)	ND(5)		ND(10)
09/06/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10)		03/08/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
1206/01 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10)		06/25/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
03/06/02 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 05/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/27/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/27/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/27/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 04/29/06 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 04/49/9 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) N		09/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
06/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10)		12/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
09/04/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 04/29/06 ND(2) ND(2) ND		03/06/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
12/05/02 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10)		06/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
03/12/03 ND(2) ND(5) ND(5) ND(5) O.0 ND(10)		09/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
06/12/03		12/05/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
03/02/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/06/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(3) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) ND(5) 0.0 ND(6) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) ND(5) 0.0 ND(3)		03/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) <td< th=""><td></td><td>06/12/03</td><td>ND(2)</td><td>ND(5)</td><td>ND(5)</td><td>ND(5)</td><td>0.0</td><td>ND(10)</td></td<>		06/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(3) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(3) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(3) 09/14/99 ND(2) ND(2) ND(2) ND(3) ND(5) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(3) ND(3) 09/14/99 ND(2) ND(2) ND(2) ND(03/02/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
12/06/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10)		05/25/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
12/06/04 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10)		07/26/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(3)
03/15/05 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/21/07 ND(2) ND(2) ND(5) ND(5) ND(5) O.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) O.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2) ND(2) ND(5) ND(5) O.0 ND(3) 03/26/07 ND(2) ND(2)		12/06/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	
ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) ND(10)		03/15/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	
09/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) ND(5) O.0 ND(10) 09/21/07 ND(2) ND(2) ND(2) ND(2) ND(2) O.0 ND(10) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) O.0 ND(5) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) O.0 ND(6) 07/26/04 ND(2) ND(2) ND(5) ND(5) O.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6		06/09/05				ND(5)	0.0	
12/27/05			٠,,	, ,	` '	, ,	0.0	, ,
03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) <td></td> <td></td> <td></td> <td>, ,</td> <td>` '</td> <td>, ,</td> <td></td> <td>, ,</td>				, ,	` '	, ,		, ,
06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) 06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) <td< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td></td></td<>							0.0	
09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(2)					` '		0.0	, ,
12/13/06				` '				, ,
03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(4) 0.0 ND(5)			٠,,	, ,	` '	, ,		, ,
06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(3) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5)				, ,	` '	, ,		
UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(3) 0.0 ND(10) UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6								
UMW-109 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6			٠,,	, ,	` '	, ,		, ,
06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6		00/21/01	(=)	(0)	(0)	(0)	0.0	
06/16/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6	UMW-109	03/25/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(10)
09/14/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6			٠,,	, ,	` '			, ,
09/14/99 d ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 12/09/99 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6								
12/09/99 ND(2) ND(2) ND(2) ND(5) 0.0 ND(6) 03/02/00 ND(2) ND(2) ND(2) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6								
03/02/00 ND(2) ND(2) ND(2) ND(2) ND(3) ND(4) 0.0 ND(5) 06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6								
06/15/00 ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6						, ,		
07/26/04 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) 03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6								
03/26/07 ND(2) ND(2) ND(5) ND(5) 0.0 ND(3) UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6			٠,,	, ,				, ,
UMW-110 07/26/04 15.6 67.5 2.3 37.3 122.7 24.6						· /		
		03/20/07	ND(Z)	IND(Z)	(כ) שוו	IND(9)	0.0	(ס) שאו
	IIMW-110	07/26/04	15.6	67.5	2.2	27.2	122.7	24.6
03/21/01 0.0016 0.0211 0.0014 J 0.0236 0.0347 0.005/1	CIVIVY-110							
		03/21/01	0.0076	0.0217	0.0014	J 0.0230	0.0547	0.00371

Duplicate sample for QA/QC.

J Estimated concentration below method detection limit.

ls Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

Not Applicable.

Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

^{3,210/5,810} are analytical results using Methods 8260/or 8310

UMW-111A Replacement well for UMW-111.

-	Sampling				ntration ug/L		
Well ier 1 Remedial	Date I Objective	Benzene 5	Ethylbenzene 700	Toluene 1,000	Xylenes (Total) 10,000	Total BTEX	Naphthalen 140
JMW-111	09/14/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	12/09/99	ND(2)	ND(2)	ND(2)	ND(5)	0.0	ND(6)
	06/15/00	ND(2)	ND(2)	ND(5)	ND(5)	0.0	ND(10)
	09/26/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/08/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/25/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/06/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/04/02		ND(5)			0.0	
		ND(2)		ND(5)	ND(5)		ND(10)
	09/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/05/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/02/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	05/25/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	07/26/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(3)
	12/06/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/15/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/09/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
			. ,	. ,	' '		
	09/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/30/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/22/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/19/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/13/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/26/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/14/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/21/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
JMW-112	02/03/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	05/07/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
			. ,		, ,		
	08/04/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	11/03/97	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	02/02/98	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	05/04/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(22.5)
	08/05/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	08/05/98 Is	ND(5)	ND(5)	ND(5)	ND(5)	0.0	ND(5)
	11/10/98	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	03/25/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(10)
	06/16/99	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	06/16/99 d	ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	09/14/99						
		ND(2)	ND(2)	ND(2)	ND(2)	0.0	ND(5)
	12/08/99	ND(2)	ND(2)	ND(2)	ND(5)	0.0	ND(6)
	03/02/00	ND(2)	ND(2)	ND(2)	ND(4)	0.0	ND(5)
	06/15/00	ND(2)	ND(2)	ND(5)	ND(5)	0.0	ND(10)
	09/26/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/00	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/08/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/25/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/06/01	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
							, ,
	03/06/02	ND(2)	1.1 J	, ,	ND(5)	1.1	3.3
	06/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/04/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/05/02	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/12/03	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/02/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	JU, UZ, UT	110(2)	140(0)	145(0)	1,0(0)	0.0	140(10)

Duplicate sample for QA/QC.

J Estimated concentration below method detection limit.

Laboratory split to second laboratory for quality assurance and quality control. ls

ND Not Detected (Detection Limit).

Not Applicable.

Suspected laboratory error; carryover in capillary column from other samples.

Monitoring Sampling			Conce	ntration ug/L		
Well Date	Benzene	Ethylbenzene	Toluene	Xylenes (Total)	Total BTEX	Naphthalene
Tier 1 Remedial Objective	5	700	1,000	10,000		140
	** 3,210/5,810 are a	nalytical results using Metho	ds 8260/or 8310			
UMW-111	A Replacement well	for UMW-111.				
	Analyte detected	above Tier 1 Remedial Object	ctive.			

Monitoring	Sampling			Conce	entration ug/L		
Well	Date	Benzene	Ethylbenzene	Toluene	Xylenes (Total)	Total BTEX	Naphthalene
Tier 1 Remedial		5	700	1,000	10,000	TOTAL BIEX	140
110004 440	05/05/04	ND(0)	ND(5)	ND(5)	ND(5)	0.0	ND(40)
UMW-112	05/25/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
(continued)	07/26/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(3)
	12/06/04	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/15/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/09/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/27/05	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/30/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/22/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/19/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	12/13/06	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	03/26/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	06/14/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
	09/21/07	ND(2)	ND(5)	ND(5)	ND(5)	0.0	ND(10)
UMW-113	07/26/04	5.7	1	ND(5)	4.8	11.5	ND(3)
	03/27/07	0.0104	0.0022	J ND(5)	0.0023	J 0.0149	0.00017
UMW-114	02/03/97	1,430	1,330	47.3	J 622	3429	1,700
	05/08/97	1,410	1,170	27.4	586	3193	2,620
	08/05/97	1,220	1,240	33.0	573	3066	1,800
	11/04/97	1,400	1,310	52.6	627	3390	2,300
	02/03/98	1,220	1,100	117	645	3082	2,280
	02/03/98 d	1,200	1,060	118	618	2996	2,210
	05/05/98	1,170	1,280	107.0	759	3316	3,210/5,810**
	08/06/98	1,060	1,290	ND(50)	2.140	4490	4,000
	11/11/98	998	769	ND(100)	709	2476	3,050
	03/25/99	911	888	116.0	675	2590	4,190
	06/16/99	1,180	1,260	J 166.0	780	J 3386	2,180
	09/14/99	1,270	1,330	201.0	834	3635	3,350
	12/08/99	1,140	1,280	242.0	862	3524	3,170
	03/02/00	930	811	186.0	572	2499	3,400
	06/15/00	1,080	ND(50)	ND(50)	ND(50)	1080	5,740
	09/26/00	886	1,080	169.0	669	2804	3,750
	12/27/00	858	983	171.0	728	2740	2,800
	03/08/01	841	1,220	212.0	766	3039	2,370
	06/25/01	974	1,180	119.0	666	2939	2,410
	09/06/01	764	818	98.0	J 526	2206	765
	12/06/01	910	1,190	196.0	733	3029	3,200
	03/06/02	810	1,160	197.0	849	3016	2,270
	06/04/02	804	1,250	215.0	844	3113	4,400
	09/04/02	557	843	110.0	522	2032	3,960
	12/05/02	832	1,220	190.0	J 526	2768	3,250
	03/12/03	703	1,160	150.0	J 727	2740	2,860
	06/12/03	826	1160	173	772	2931	3540
	06/12/03 d	786	1080	160	728	2754	3.54
	03/02/04	754	1040	<250	481	2275	4480
	05/02/04	760	1230	153	861	2851	3660
	07/26/04	628	868	120	425	2041	3650
	12/07/04	796	1130	164	848	2938	3510
	03/15/05	736	1250	164	899	3049	5580
	06/09/05	867	1260	152	932	3049	5120
	09/27/05	1130	1370	190	1010	3700	11500
	12/27/05	939	1150	133	891	3113	5980
	03/30/06	875	1220	123	958	3176	6000
	06/22/06 09/19/06	936 938	1140 1220	131 150	1020 924	3227 3232	7510 7880
	12/31/06 03/27/07	1080	1110	170	1020	3380	5260
		1.020	1.230	0.140	J 0.974	3.36	3.61
			1460	470	1 060	2//2	6440
	06/14/07 09/21/07	1150 1120	1160 1060	170 130	J 963 J 861	3443 3171.00	6440 5560

d Duplicate sample for QA/QC.

J Estimated concentration below method detection limit.

Is Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

^{- -} Not Applicable.

^{*} Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

** 3 210/5 810 ar

^{** 3,210/5,810} are analytical results using Methods 8260/or 8310

UMW-111A Replacement well for UMW-111.

Monitoring								ion ug/L				
Well Fier 1 Remedial	Date Objective		Benzene 5	Ethylbenzene 700		Toluene 1,000		Xylenes (Total) 10,000	Tota	IBTEX	Naphthalene 140	е
						<u> </u>		•				
UMW-115	02/03/97		30.8	3.6	J	ND(5)		ND(5)		34.4	ND(5)	
	05/08/97		6.1	6.1		ND(5)		ND(5)		2.2	ND(5)	
	08/04/97		10.5	2.2	J	ND(5)		ND(5)		2.7	ND(5)	
	08/04/97	d	10.3	2.1	J	ND(5)		ND(5)		2.4	2.5	
	11/04/97		10.1	2.5	J	ND(5)		ND(5)		2.6	ND(5)	
	02/03/98			J 2	J	ND(5)		ND(5)		6.4	ND(5)	
	05/05/98		5.6	6.6		ND(2)		ND(2)		2.2	ND(5)	
	08/06/98		9.5	ND(2)		ND(2)		ND(2)		9.5	ND(5)	
	11/11/98		ND(2)	ND(2)		ND(2)		ND(2)		0.0	ND(5)	
		d	ND(2)	ND(2)		ND(2)		ND(2)		0.0	ND(5)	
	03/25/99		ND(2)	4.4		ND(2)		4.3		8.7	13.2	
	06/16/99		523	ND(20)		ND(20)		34		57.0	83.8	
	09/14/99		56.5	ND(2)		ND(2)		2.7	5	9.2	ND(5)	
	12/09/99		31.2	ND(2)		ND(2)		ND(5)	3	31.2	ND(6)	
	03/02/00		46.3	ND(2)		ND(2)		ND(4)	4	6.3	ND(5)	
	06/15/00		46.3	J 2.4	J	1.5	J	1.1	J 5	51.3	27.8	
	09/26/00		27.2	1.1	J	1.4	J	ND(5.0)	2	9.7	ND(10)	
	12/27/00		14	ND(5)		ND(5)		ND(5)	1	4.0	ND(10)	
	03/08/01		20.2	ND(5)		ND(5)		ND(5)	2	20.2	ND(10)	
	06/25/01		31	1.1	J	1.5	J	ND(5)	3	3.6	3.8	
	09/06/01		34.4	2.0	J	1.7	J	ND(5)	3	88.1	6.1	
	12/06/01		14.7	1.6		ND(5)		ND(5)	1	6.3	46.0	
	12/06/01	d	12.1	1.2	J	ND(5)		ND(5)	1	3.3	7.3	
	03/06/02		24.8	1.2	J	ND(5.0)		1.4	J 2	27.4	5.5	
	06/04/02		14.3	ND(5)		ND(5)		ND(5)	1	4.3	20.9	
	09/04/02		756	1030.0		150		581	25	17.0	3130	
	10/07/02		7.0	1.3	J	ND(5)		1.5	J	9.8	ND(10)	
	12/05/02		6.4	1.2	J	ND(5)		ND(5)		7.6	ND(10)	
	03/12/03		4.4	ND(5)		ND(5)		ND(5)		4.4	ND(10)	
	06/12/03		13.4	ND(5)		ND(5)		ND(5)		3.4	6.4	
	03/02/04		ND(2)	ND(5)		ND(5)		ND(5)		0.0	ND(10)	
	05/25/04		12.2	ND(5)		ND(5)		ND(5)		2.2	ND(10)	
	07/26/04		12.9	1.2		ND(5)		ND(5)		4.1	ND(3)	
	12/07/04		5.9	ND(5)		ND(5)		ND(5)		5.9	ND(10)	
	03/15/05		5.2	ND(5)		ND(5)		ND(5)		5.2	ND(10)	
	06/09/05		8.3	ND(5)		1.1		ND(5)		9.4	ND(10)	
	09/27/05		12.5	1.9		1.1		ND(5)		5.5	ND(10)	
	12/27/05		4.1	ND(5)		ND(5)		ND(5)		4.1	ND(10)	
	03/30/06		2.7	ND(5)		ND(5)		ND(5)		2.7	ND(10)	
	06/22/06		11.7	ND(5)		1.4		1		4.1	ND(10)	
	09/19/06		7.0	1.4		ND(5)		1.2		9.6	ND(10)	
	12/13/06		4.4	ND(5)		ND(5)		1.2		5.6	ND(10)	
	03/27/07		0.0021	ND(5)		ND(5)		ND(5)		0021	0.00018	
	06/14/07		9.0	ND(5)		ND(5)		ND(5)		9.0	3.9	
			12.3		1					6.6		
	09/21/07		12.3	1.8	J	1.2	J	1.3	J 1	0.0	ND(10)	

d Duplicate sample for QA/QC.

UMW-111A Replacement well for UMW-111.

J Estimated concentration below method detection limit.

Is Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

Not Applicable.

^{*} Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

^{3,210/5,810} are analytical results using Methods 8260/or 8310

Well Date Benzene Ethylbenzene Toluene Xylenes (Total) Total BTEX Naphthalene 140 UMW-116 02/03/97 ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 08/05/97 ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 d ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 08/05/98 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 11/10/98 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) 11/10/98 ND(2) ND(2) ND(2) ND(2) ND(2) ND(2) ND(5) ND(5) ND(5	Monitoring	Sampling			Conce	ntration ug/L		
Time Remedial Objective 5			Benzene	Ethylbenzene			Total BTEX	Naphthalene
05/07/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) ND(Tier 1 Remedial	Objective	5	•		, ,		•
05/07/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) ND(
08/05/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 02/02/98 ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 08/05/98 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/05/98 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/05/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/05/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/05/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 08/05/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/14/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/14/99 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(5) 08/14/99 ND(2) ND(2) ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 08/05/00 ND(2) ND(2) ND(2) ND(2) ND(5) ND(5) 0.0 ND(10) 08/26/00 ND(2) ND(2) ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 08/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 08/26/00 ND(2) ND(2) ND(5) ND(5) ND(5)	UMW-116	02/03/97	ND(5)	ND(5)	ND(5)		0.0	ND(5)
11/03/97 d ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 11/03/97 d ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 02/02/98 ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(5) 05/04/98 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 08/05/98 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 11/10/98 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 11/10/98 ND(2) ND(2) ND(2) ND(2) 0.0 ND(5) 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(6) 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 03/25/99 ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(10) 06/16/99 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(6) 09/14/99 2.4 4.0 ND(2) ND(2) ND(2) 0.0 ND(5) 09/14/99 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(7) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(7) 03/02/00 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(7) 09/26/00 ND(2) ND(2) ND(2) ND(2) ND(5) 0.0 ND(7) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) ND(5) 0.0 ND(10) 09/26/00 ND(2) ND(5) ND(5) ND(5) ND(5) ND(5) ND(` '	` '	` '			٠,
11/03/97 d ND(5) ND(5) ND(5) ND(5) ND(5) O.0 ND(5) O.0 ND(5) O.0 O.0 O.0 ND(5) O.0 O.0 ND(5) O.0					ND(5)	ND(5)		
0200298					ND(5)			
05004/98					, ,			
08/05/98 ND(2) ND(2) ND(2) ND(2) ND(2) 0.0 ND(5)			ND(5)		ND(5)			ND(5)
11/10/98					\ /			
03/25/99			. ,		٠,	* /		
03/25/99 0 ND/2 ND/2 ND/2 ND/2 ND/2 O.0 ND/10 06/16/99 ND/2 ND/2 ND/2 ND/2 O.0 ND/5 09/14/99 2.4 4.0 ND/2 ND/2 ND/5 O.0 ND/5 11.4 12/09/99 ND/2 ND/2 ND/2 ND/2 ND/5 O.0 ND/7 03/02/00 ND/2 ND/2 ND/2 ND/2 ND/4 O.0 ND/5 06/15/00 ND/2 ND/2 ND/5 ND/5 ND/6 O.0 ND/10 09/26/00 ND/2 ND/5 ND/5 ND/5 O.0 ND/10 09/26/00 ND/2 ND/5 ND/5 ND/5 ND/6 O.0 ND/10 09/26/00 ND/2 ND/5 ND/5 ND/5 ND/6 O.0 ND/10 09/26/00 ND/2 ND/6 ND/6 ND/6 O.0 ND/10 09/26/01 ND/2 ND/6 ND/6 ND/6 O.0 ND/10 09/26/02 ND/2 ND/6 ND/6 ND/6 O.0 ND/10 09/26/02 ND/2 ND/6 ND/6 ND/6 O.0 ND/10 09/26/04 ND/2 ND/6 ND/6 ND/6 ND/6					\ /			٠,
06/16/99								
09/14/99				, ,	, ,			. ,
12/09/99					\ /			
03/02/00					٠,			
06/15/00 ND(2) ND(2) ND(5) ND(5) ND(5) O.0 ND(10)			` '	\ /	\ /	\ /		\ /
09/26/00								٠,
09/26/00 d ND(2) ND(5) ND(5) ND(5) O.0 2.4 J			, ,	, ,	, ,	` '		. ,
12/27/00			` '	\ /	\ /	\ /		
03/08/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 06/25/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/03/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 12/06/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/04/02			, ,	, ,	, ,	` '		
06/25/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/03/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 12/06/01 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) O.0 ND(10) 05/25/04			, ,	, ,	, ,	` '		` '
09/03/01 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/06/01 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04								
12/06/01 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/06/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04			, ,		, ,	` '		
03/06/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05			, ,	` '	` '	` '		` '
06/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 8.6 J 03/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/			, ,		, ,	` '		` '
09/04/02 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 8.6 J 03/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27			, ,	` '	, ,	` '		` '
12/05/02 ND(2) ND(5) ND(5) ND(5) 0.0 8.6 J 03/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05								
03/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06			, ,	, ,	, ,	` '		
06/12/03 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06			, ,		, ,	` '		
03/02/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06			, ,	, ,	, ,	` '		` '
05/25/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 07/26/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07			` '	\ /	` '	` '		` '
07/26/04 ND(2) ND(5) ND(5) 0.0 ND(3) 12/06/04 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2)			, ,	, ,	, ,	` '		` '
12/06/04 ND(2) ND(5) ND(5) 0.0 ND(10) 03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			, ,		` '	` '		\ /
03/15/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			` '	\ /	` '	\ /		()
06/09/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			. ,	, ,	٠,	* *		. ,
09/27/05 ND(2) ND(5) ND(5) 0.0 ND(10) 12/27/05 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			` '	\ /	` '	` '		` '
12/27/05 ND(2) ND(5) ND(5) 0.0 ND(10) 03/30/06 ND(2) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)								
03/30/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/22/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			. ,	, ,	٠,	* *		. ,
06/22/06 ND(2) ND(5) ND(5) 0.0 ND(10) 09/19/06 ND(2) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			` '	\ /	` '	` '		` '
09/19/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			. ,	. ,	٠,	* *		. ,
12/13/06 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			` '	\ /	` '	` '		` '
03/26/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10) 06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)					, ,			
06/14/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(10)			. ,	, ,	٠,			. ,
			` '	\ /	` '	` '		` '
09/21/07 ND(2) ND(5) ND(5) ND(5) 0.0 ND(40)		09/21/07	ND(2) ND(2)	ND(5)	ND(5) ND(5)	ND(5)	0.0	ND(10) ND(10)
55/21/67 ND(0) ND(0) 0.0 ND(10)		03/21/01	ND(Z)	ND(J)	ND(J)	ND(3)	0.0	ND(10)

d Duplicate sample for QA/QC.

J Estimated concentration below method detection limit.

ls Laboratory split to second laboratory for quality assurance and quality control.

ND Not Detected (Detection Limit).

^{- -} Not Applicable.

^{*} Suspected laboratory error; carryover in capillary column from other samples.

NA Not analyzed

^{3,210/5,810} are analytical results using Methods 8260/or 8310

UMW-111A Replacement well for UMW-111.

TABLE 3-1 CSI TEST PIT LOCATION RATIONALE CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

TEST PIT NUMBER	LOCATION RATIONALE
TP-501	Investigate potential pathways for MGP residuals observed in well UMW - 103 and geoprobe sampling completed in the Sixth St. right-of-way during SSI (1997).
TP-502 TP-503	Investigate potential pathways from plant area sources to tar observed in UMW-101 north of railroad right-of-way. These test pits may be merged into a single test pit based on presence or absence of groundwater in flow. Observations may result in location changes for off-site borings.
TP-504	Investigate inlet - outlet sump / value box for holder tank GH-1. Location identified form 1922 site plan. Not investigated at time of 1997 IRM.
TP-505	Investigate outlet piping from gas holder GH-3, location identified from 1922 site plan.
TP-506	Investigate inlet piping for gas holder GH-3.
TP-507	Investigate outlet piping from gas holder GH-2. The 1922 site plan shows two 10" diameter outlet pipes. Investigate the possible presence of sump / value box which may be source of MGP residuals.
TP-508	Investigate 20" inlet pipe sump / value box for gas holder GH-2 as shown of 1922 site plan. May have been partially removed during 1997 IRM. This is the general area where a large value / pipe was removed and where a curved brick wall was encountered.
TP-509	Investigate curved brick wall encountered during IRM. Determine exact location and condition as well as presence or absence of residuals outside of the wall.
TP-510	Investigate foundation of holder GH-2 and possible presence of a below grade brick holder tank. GH-2 was used as a relief holder and if it is a below grade tank, may be an additional source of MGP residuals not removed during 1997 IRM.

TABLE 3-2 CSI ON SITE BORING LOCATION RATIONALE CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

BORING NUMBER	LOCATION RATIONALE *
B-501	Located near central west property line adjacent to Phase 1 probe locations where visible and odor impacts were noted and where elevated levels of BETX were measured in soil gas. Also near boring UTB-26 where both BETX and PAH's were noted in analytical samples.
B-502	Located near northwest corner within area where gas plant process buildings were located near the offsite probe locations where visible impacts and soil gas impacts were noted. West of IRM tar well and GH-1 removal area and UTB-26 boring where BETX and PAH's were noted between 6 and 23 ft. bgs.
B-503	Located along fence north of tar well removal area. Between probe holes PH-6 and PH-114 which were unimpacted and off-site probe (PH-103 & PH-113) and boring (UTB-11) locations which were impacted at shallow (8'-13') depths.
B-504	Located along north property line between IRM removal area (GH-1) and off-site well (UMW-101) where NAPL was observed. Final location for B-504 will be based on field observations in test pits TP-502 and TP-503. Also located north of possible tar well which could not be located during IRM.
B-505	Located within footprint of former gas holder GH-2 to characterize holder tank contents and depth if test pits determine the presence of a below grade structure. If no below grade structure exists, this boring will help characterize vertical and lateral extent and determine if impacts are present under GH-2 foundation.
B-506	Located within an area between several probe holes and a boring (UTB-28) that have odor, visual and laboratory evidence or MGP impacts.
B-507	Located between historical tar tanks and the "Gas Experiment Station" at northeast corner of the site. Also located in an area between several probe locations have impacts. Investigate source and /or pathway for residuals observed off-site to the east.
B-508	Located within the structure area o the "Gas Experiment Station". There have been no probe holes or borings in this area during previous investigations.
B-509	Located in area along potential off-site pathway where minimal investigation done during previous phases. Areas north and west tend to be impacted and the area south and east are either not impacted or have only minor impacts.
B-510	Located near southeast corner, an area similar to B-509, but possible down gradient of heavily impacted well UMW-114.
B-511	Located on slab for former gas holder GH-3 to confirm presence or absence of residuals under the slab.
B-512	Located along southern property line near former above ground fuel tanks and between two impacted monitoring wells (UMW-114 & UMW-115). Within an area where probe holes had no or minor impacts.
B-513	Located at southwest corner of site, area where several above ground tanks were located.
B-514	Located in area between both probe holes and borings where significant impacts were observed. Also in area where IRM removal activities occurred. Located near middle of site to aid in general aerial coverage of site.

^{*} General objective of the rationale is to provide complete aerial coverage of the site.

TABLE 4-1 **CSI SOIL PROPERTIES SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP**

Boring	Date	Depth,	Soil	PID,	%	%	рН	Penetrometer
Number	Completed	Feet	Type*	ppm	Moisture	Solids		
B - 501	7/13/04	1-2	FL	30.6	19.9	80.1	7.76	
		7-8	CL	29.6	19.7	80.3		
		14-15	SC	238	11.3	88.7		
		23-24	CH	1.4	10.4	89.6	8.00	3.0
B - 502	7/13/04	2-3	FL	10.6	9.0	91.0	8.09	2.25
		6-7	CH	217	18.8	81.2		2.25
		11-12	CH	468	19.6	80.4		0.75
	7/21/04	23-24	CH	10.2	10.1	89.9		4.5
B - 503	7/13/04	2-3	FL	100	19.4	80.6	7.68	0.75
		2-3 (D)	FL	100	47.8	52.2	7.56	
		9-10	CH	143	25.6	74.4		1.0
		10-11	CH	156	26.6	73.4		1.75
		18-19	MH	13.9	11.8	88.2		3.5
B - 504	7/13/04	2-3	FL	15.9	26.0	74.0	7.61	
		6-7	FL	530	29.9	70.1	7.74	1.25
		6-7 (D)	FL	530	28.7	71.3	7.52	
		13-14	CH	860	12.2	87.8		3.75
		20-21	CH	1101	9.0	91.0		
		27-28	CH	8.2	8.5	91.5		
B - 505	7/14/04	2-3	FL	46.2	15.2	84.8	7.75	
		5-6	FL	393	25	75.0		
		10-11	CH	202	21.9	78.1	7.76	1.0
		21-22	CH	2.7	10	90.0		2.75
		27-28	CH	5.8	10.3	89.7		3.25
B - 506	7/22/04	2-3	FL	3.6	20.2	79.8	7.37	1.25
		6-7	CH	431	22.9	77.1		1.0
		16-17	SP/SC	1865	9.9	90.1		
		27-28	CH	2.0	9.1	90.9	8.16	4.0
B - 507	7/21/04	0-1	FL	1.8	14.5	85.5	7.62	2.5
		7-8	CH	243	21.7	78.3		1.5
		18-19	SC/SM	2163	18.0	82.0	7.92	
		27-28	CH	4.5	9.6	90.4		3.5
B - 508	7/19/04	2-3	FL	6.3	20.7	79.3	7.60	1.25
		8-9	CH	294	20.1	79.9	7.60	1.25
		10-11	CH/SC	361	21.9	78.1		1.5
		27-28	SM	2.5	10.0	90.0		2.5
B - 509	7/21/04	2-3	FL	0.9	18.6	81.4	7.69	<0.5
		7-8	CH	13.1	22.2	77.8	7.33	1.0
		7-8(D)	CH	13.1	23.9	76.1	7.12	
		17-18	CH/SM	42.6	10.3	89.7	=	
		27-28	CH	0.5	10.7	89.3		4.0
B - 510	7/12/04	1-2	FL	21	24.5	75.5	7.69	2.25
		4-5	CH	5.9	21.2	78.8		2.5
		11-12	SC	10.2	12.0	88.0		10.2
		27-28	CH	5.5	13.8	86.2		0.75
B - 512	7/12/04	2-3		27	10.9	89.1	7.44	3.0
		7-8		494	20.2	79.8	7.56	1.25
		10-11		265	15.2	84.8		2.25
		23-24		6.2	10.5	89.5		2.75
	!	20-27		0.2	10.0	00.0		2.10

Soil Type*

FL = FILL, silty CLAY with gravel, cinders, coal

SP = gravely SAND, poorly sorted SM = silty SAND

SC = clayey SAND

CL = sandy CLAY, low to medium plasticity

CH = CLAY, high plasticity

TABLE 4-1 **CSI SOIL PROPERTIES SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP**

Boring	Date	Depth,	Soil	PID,	%	%	рН	Penetrometer
Number	Completed	Feet	Type*	ppm	Moisture	Solids		
B - 513	7/12/04	1-2		4.4	19.6	80.4	6.83	1.75
		1-2(D)		4.4	20.3	79.7	5.91	1.75
		7-8		420	14.5	85.5		0.75
		11-12		31.5	10.9	89.1	7.97	2.75
		23-24		5.0	10.5	89.5		3.0
B - 514	7/22/04	2-3		19.7	12.4	87.6	7.83	0.5
		2-3(D)		19.7	16.2	83.8	7.81	
		7-8		251	22.7	77.3		1.75
		16-17		1021	9.9	90.1		0.75
		27-28			10.1	89.9		2.5
B - 515	7/16/04	1-2	FL	7.7	15.3	84.7	7.91	1.5
		6-7	FL	333	32.1	67.9		
		18-19	CH/SC	1404	7.0	93.0		3.5
		31-32	CH	0.8	8.7	91.3	7.89	2.5
B - 516	7/22/04	2-3		3.6	20.4	79.6	7.53	1.25
		4-5		200	20.9	79.1		1.0
		4-5(D)		200	21.8	78.2		
		13-14		168	12.1	87.9		3.75
		23-24		2.8	10.4	89.6		4.0
B - 550	7/20/04	2-3	FL/CH	53.8	29.0	71.0	5.26	1.0
		8-9	CH/FL	105	25.2	74.8		
		10-11	FL	164	23.7	76.3		1.0
		15-16	SC	2.4	12.1	87.9		3.25
		27-28	SC	0.4	10.6	89.4		3.0
B - 551	7/8/04	2-3	FL	16.4	22.5	77.5	7.72	2.25
		9-10	CL	146	27.1	72.9		1.5
		15-16	CH	11.8	10.0	90.0		
		27-28	CH	3.9	9.5	90.5		4.0
B - 553	7/14/04	2-3	FL	20.3	20.2	79.8	7.26	2.75
		5-6	FL/CL	364	28.7	71.3		3.75
		14-15	CH	545	11.0	89.0		
		23-24	MG/CH	2241	6.6	93.4		
		31-32	CH	3.4	9.1	90.9	8.11	
		31-32(D)	CH	3.4	8.4	91.6	8.25	
B - 554	7/8/04	2-3	FL	13.2	22.0	78.0	7.62	
		2-3(D)	FL	13.2	23.3	76.7		
		9-10	CL	156	33.1	66.9		1.25
		17-18	SC/SP	892	10.4	89.6		3.75
		31-32	CH	1.2	9.8	90.2		2.25
B - 556	7/20/04	2-3	FL	6.4	25.5	74.5	5.26	2.5
		5-6	CH	295	22.9	77.1		1.75
		19-20	CH	518	11.9	88.1		4.0
		27-28	CH	2.3	9.1	90.9	8.15	
	7/00:00	27-28(D)	CH	2.3	9.2	90.8	8.23	
B - 557	7/20/04	0-1	FL	3.4	18.8	81.2	7.95	1.25
		9-10	CH	12.4	21.7	78.3		1.25
		11-12	CH	55.1	18.5	81.5	7.80	1.5
		23-24	CH	3.0	11.2	88.8		

Soil Type*

FL = FILL, silty CLAY with gravel, cinders, coal SP = gravely SAND, poorly sorted

SM = silty SAND

SC = clayey SAND

CL = sandy CLAY, low to medium plasticity

CH = CLAY, high plasticity

TABLE 4-1 CSI SOIL PROPERTIES SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Boring	Date	Depth,	Soil	PID,	%	%	рН	Penetrometer
Number	Completed	Feet	Type*	ppm	Moisture	Solids	-	
B - 558	7/19/04	1-2	FL	4.2	21.9	78.1	6.65	2.0
		6-7	CH	31.6	22.0	78.0		2.0
		11-12	SC	23.2	22.0	78.0		<0.5
		17-18	CH	7.0	9.9	90.1		4.0
		27-28	CH	0.8	7.5	92.5		
B - 559	7/19/04	2-3	CH	1.7	20.5	79.5	7.12	1.75
		7-8	CH	3.7	21.5	78.5	7.20	1.25
		7-8(D)	CH	3.7	20.2	79.8	7.28	
		18-19	CH	4.4	9.8	90.2		
		27-28	CH	3.7	11.7	88.3		4.00
B - 560	7/15/04	2-3	FL	9.0	19.2	8.08	7.62	
		4-5	FL/CL	1.3	20.0	80.0		1.5
		12-13	SP	333	16.8	83.2		1.75
		19-20	CH	5.4	10.7	89.3		
		19-20(D)	CH	5.4	12.2	87.8		
		27-28	CH	8.8	8.6	91.4		
B - 561	7/15/04	0-1	FL	3	21.7	78.3	7.32	
		9-10	CH	214	17.8	82.2	7.78	4
		12-13	SC/SP	356	10.3	89.7		4
		18-19	CH	6.2	8.5	91.5		
		31-32	CH	0.3	11.2	88.8		1.75
		31-32(D)	CH	0.3	10.5	89.5		
B - 562	7/15/04	0-1	FL	5.9	23.7	76.3	7.56	
		9-10	CH	46.7	21.4	78.6		0.5
		13-14	SC	509	10.9	89.1	8.15	
		27-28	CH	0.4	8.9	91.1		4.0

Soil Type*

FL = FILL, silty CLAY with gravel, cinders, coal

SP = gravely SAND, poorly sorted

SM = silty SAND

SC = clayey SAND

CL = sandy CLAY, low to medium plasticity

CH = CLAY, high plasticity

TABLE 4-2 SITE INVESTIGATION SOIL ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Boring	Date	Depth,			Analy	tical Peram	eters*		
Number	Completed	Feet(bgs)	BTEX	PAHs	VOCs	SVOCs	TPH	Metals	CN
B - 558	7/19/04	1-2			Х	Х		Х	Х
		6-7	Х	Х			X		
		11-12	X	Х					
		17-18	X	Х					
		27-28	X	Х					
B - 559	7/19/04	2-3	Х	Х				Х	Х
		7-8			Х	X		X	
		7-8(D)			Х	X		X	
		18-19	Х	Х			Χ		
		27-28	Х	Х					
B - 560	7/15/04	2-3	Х	Х				Х	Х
		4-5	Х	Х					
		12-13	X	Х			Х		
		19-20	X	Х					
		19-20(D)	X	Х					
		27-28	Х	Х					
B - 561	7/15/04	0-1	Х	Х				Х	X
		9-10			Х	X		Х	
		12-13	X	X			Х		
		18-19	Х	Х					
		31-32	Х	Х					
		31-32(D)	Х	Х					
B - 562	7/15/04	0-1	Х	Х				Х	Х
		9-10	Х	Х					
		13-14			Х	X	Х	X	
		27-28	Х	Х					
TP - 501	7/8/04	7'	X	Х			Х		
TP - 503	7/8/04	3'	Х	Х			Χ		
TP - 503A	7/8/04	3.5'	Χ	Х			Χ		
TP - 504	7/8/04	3'	Х	Х			X		
TP - 507	7/7/04	3.5'	Χ	Х			Χ		
TP - 508	7/8/04	4'	Χ	X			Χ		

*USEPA SW-846 Analytical Methods

BTEX & VOCs - Method 8260 PAHs & SVOCs - Method 8270

TPH - Method 8015

Metals - Series 6000/7000 Methods

Cyanide - Method 9010

TABLE 4-2 SITE INVESTIGATION SOIL ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Boring	Date	Depth,			Analy	tical Peram	eters*		
Number	Completed	Feet(bgs)	BTEX	PAHs	VOCs	SVOCs	TPH	Metals	CN
B - 513	7/12/04	1-2	Х	Х				Х	Х
		1-2(D)	X	Х				Х	X
		7-8	X	Х			Х		
		11-12			Х	Х		Х	
		23-24	X	X					
B - 514	7/22/04	2-3			Х	Х		Х	X
		2-3(D)			Х	Х		X	X
		7-8	X	Х					
		16-17	X	X			Х		
		27-28	X	Х					
B - 515	7/16/04	1-2	X	X				Х	Х
		6-7	X	X					
		18-19	X	X			Х		
		31-32			Х	Х		Х	
B - 516	7/22/04	2-3	Х	X				Х	X
		4-5	X	X			Х		
		4-5(D)	X	X			X		
		13-14	X	X					
	- /2 0 /2 /	23-24	Х	Х	.,				
B - 550	7/20/04	2-3		.,	Х	Х		Х	X
		8-9	X	X			.,		
		10-11	X	X			X		
		15-16	X	X					
D 554	7/0/04	27-28	X	X					
B - 551	7/8/04	2-3	X	X			v	Х	X
		9-10 15-16	X X	X X			X		
		27-28	X	x					
B - 553	7/14/04	27-20	X	X				Х	Х
D - 333	7/14/04	2-3 5-6	X	x				^	^
		14-15	x	x					
		23-24	X	x			Х		
		31-32	^	^	х	х	^	x	
		31-32(D)			x	X		X	
B - 554	7/8/04	2-3			X	X		X	Х
2 00-	1,3,04	2-3(D)	X	Х	<u> </u>			^	^
		9-10	X	X					
		17-18	X	X			X		
		31-32	X	X					
B - 556	7/20/04	2-3	X	X				Х	Х
		5-6	X	X					· =
		19-20	X	X			X		
		27-28			Х	Х		Х	
		27-28(D)			Х	Х		Х	
B - 557	7/20/04	0-1	Х	Х				Х	Х
		9-10	X	Х					
		11-12			Х	X	X	Х	
		23-24	X	Х					

*USEPA SW-846 Analytical Methods

BTEX & VOCs - Method 8260 PAHs & SVOCs - Method 8270

TPH - Method 8015

Metals - Series 6000/7000 Methods

Cyanide - Method 9010

TABLE 4-2 SITE INVESTIGATION SOIL ANALYTICAL SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Boring	Date	Depth,			Analy	tical Peram	eters*		
Number	Completed	Feet(bgs)	BTEX	PAHs	VOCs	SVOCs	TPH	Metals	CN
B - 501	7/13/04	1-2	Х	Х				Х	Х
		7-8	Χ	Х					
		14-15	Χ	Х			X		
		23-24			Х	X		X	
B - 502	7/13/04	2-3	Х	Х				Х	Х
		6-7	Χ	Х					
		11-12	Χ	X				X	
	7/21/04	23-24	Χ	Х					
B - 503	7/13/04	2-3			Х	Х		Χ	Х
		2-3 (D)			Х	X		X	Х
		9-10	Х	X					
		10-11	Х	Х			Х		
		18-19	Х	Х					
B - 504	7/13/04	2-3	Х	Х			Χ	Х	Χ
		6-7			Х	Х		X	
		6-7 (D)			Х	Х		X	
		13-14	Х	Х					
		20-21	Х	Х			Х		
		27-28	Х	Х					
B - 505	7/14/04	2-3	Х	Х				X	Х
		5-6	Х	Х			Х		
		10-11			Х	Х		X	
		21-22	Х	Х					
		27-28	Х	Х					
B - 506	7/22/04	2-3	Х	Х				Х	X
		6-7	X	Х					
		16-17	X	Х			Х		
		27-28			Х	Х		X	
B - 507	7/21/04	0-1	Х	Х				X	X
		7-8	X	Х					
		18-19			Х	Х	X	X	
		27-28	X						
B - 508	7/19/04	2-3	X	Х				Х	Х
		8-9			Х	Х		X	
		10-11	X	X			X		
D 500	7/04/04	27-28	X	X					
B - 509	7/21/04	2-3	X	Х		, l		X	X
		7-8			X	X		X	
		7-8(D)	v	v	Х	X	v	X	
		17-18	X	X			X		
D 540	7/40/04	27-28	X	Х	V	V .	v	V	v
B - 510	7/12/04	1-2	v	v	Х	X	X	Х	X
		4-5	X	X X					
		11-12	X						
D 510	7/12/04	27-28	X	X				_	
B - 512	7/12/04	2-3 7-8	٨	^	_		v	X	Х
		7-8 10-11	v	v	Х	Х	Х	Ä	
			X	X X					
		23-24	Х	X	L				

*USEPA SW-846 Analytical Methods

BTEX & VOCs - Method 8260 PAHs & SVOCs - Method 8270

TPH - Method 8015

Metals - Series 6000/7000 Methods

Cyanide - Method 9010

TABLE 5-1 TIER I REMEDIAL OBJECTIVES BTEX AND PAHs

							Soil Component		
		<u>Ingestion</u>			<u>Inhalation</u>		to Groundwater	MSA Background	
CONSTITUENT	Residential	Commercial	Construction	Residential	Commercial	Construction	(Class I)	Metropolitan Areas	UNITS
Benzene	12,000	100,000	2,300,000	800	1,600	2,200	30		(ug/kg)
Ethylbenzene	7,800,000	200,000,000	20,000,000	400,000	4,000,000	58,000	13,000		(ug/kg)
Toluene	16,000,000	410,000,000	410,000,000	650,000	650,000	42,000	12,000		(ug/kg)
Xylene (total)	16,000,000	410,000,000	41,000,000	410,000	320,000	5,600	150,000		(ug/kg)
Acenaphthene	4,700,000	120,000,000	120,000,000				570,000	130	(ug/kg)
Acenaphthylene								70	(ug/kg)
Anthracene	23,000,000	610,000,000	610,000,000				12,000,000	400	(ug/kg)
Benzo(a)anthracene	900	8,000	170,000				2,000	1800	(ug/kg)
Benzo(a)pyrene	90	800	17,000				8,000	2100	(ug/kg)
Benzo(b)fluoranthene	900	8,000	170,000				5,000	2100	(ug/kg)
Benzo(ghi)perylene								1700	(ug/kg)
Benzo(k)fluoranthene	9,000	78,000	1,700,000				49,000	1700	(ug/kg)
Chrysene	88,000	780,000	17,000,000				160,000	2700	(ug/kg)
Dibenzo(a,h)anthracene	90	800	17,000				2,000	420	(ug/kg)
Fluoranthene	3,100,000	82,000,000	82,000,000				4,300,000	4100	(ug/kg)
Fluorene	3,100,000	82,000,000	82,000,000				560,000	180	(ug/kg)
Indeno(1,2,3-cd)pyrene	900	8,000	170,000				14,000	1600	(ug/kg)
Naphthalene	1,600,000	41,000,000	4,100,000	170,000	270,000	1,800	12,000	200	(ug/kg)
Phenanthrene								2500	(ug/kg)
Pyrene	2,300,000	61,000,000	61,000,000				4,200,000	3000	(ug/kg)

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

---- No remediation objective has been established by the IEPA for this constituent for this exposure route

TABLE 5-2 TIER I REMEDIAL OBJECTIVES VOCs

			So	il			Soil Componen	t
		<u>Ingestion</u>			<u>Inhalation</u>		to Groundwater	•
CONSTITUENT	Residential	Commercial	Construction	Residential	Commercial	Construction	(Class I)	UNITS
1,1,1-Trichloroethane				1,200,000	1,200,000	1,200,000	2,000	(ug/kg)
1,1,2,2-Tetrachloroethane	2,300,000	61,000,000	6,100,000	1,000,000	1,000,000	1,000,000	2,000	(ug/kg)
1,1,2-Trichloroethane	310,000	8,200,000	8,200,000	1,800,000	1,800,000	1,800,000	20	(ug/kg)
1,1-Dichloroethane	7,800,000	200,000,000	200,000,000	1,300,000	1,700,000	130,000	23,000	(ug/kg)
1,1-Dichloroethylene	700,000	18,000,000	1,800,000	1,500,000	1,500,000	300,000	60	(ug/kg)
1,2-Dichloroethane	7,000	63,000	1,400,000	400	700	990	20	(ug/kg)
1,2-Dichloropropane	9,000	84,000	1,800,000	15,000	23,000	500	30	(ug/kg)
2-Hexanone								(ug/kg)
Acetone	7,800,000	200,000,000	200,000,000	100,000,000	100,000,000	10,000,000	16,000	(ug/kg)
Bromodichloromethane	10,000	92,000	2,000,000	3,000,000	3,000,000	3,000,000	600	(ug/kg)
Bromoform	81,000	720,000	16,000,000	53,000	100,000	140,000	800	(ug/kg)
Carbon Disulfide	7,800,000	200,000,000	20,000,000	720,000	720,000	9,000	32,000	(ug/kg)
Carbon tetrachloride	5,000	44,000	410,000	300	640	900	70	(ug/kg)
Chlorobenzene	1,600,000	41,000,000	4,100,000	130,000	210,000	1,300	1,000	(ug/kg)
Chloroethane								(ug/kg)
Chloroform	100,000	940,000	2,000,000	300	540	760	600	(ug/kg)
cis-1,2-Dichloroethylene	780,000	20,000,000	20,000,000	1,200,000	1,200,000	1,200,000	400	(ug/kg)
cis-1,3-Dichloropropene	6,400	57,000	1,200,000	1,100	2,100	390	4	(ug/kg)
Dibromochloromethane	1,600,000	41,000,000	41,000,000	1,300,000	1,300,000	1,300,000	400	(ug/kg)
Diesel fuel no. 2								(mg/kg)
Ethene, 1,2-dichloro-, (E)-	1,600,000	41,000,000	41,000,000	3,100,000	3,100,000	3,100,000	700	(ug/kg)
Gasoline								(mg/kg)
Methyl bromide	110,000	2,900,000	1,000,000	10,000	15,000	3,900	200	(ug/kg)
Methyl chloride (Chloromethane)								(ug/kg)
Methyl ethyl ketone	47,000,000	1,000,000,000	410,000,000	140,000,000	22,000,000	140,000	17,000	(ug/kg)
Methyl isobutyl ketone (MIBK)								(ug/kg)
Methyl tert-butyl ether	780,000	20,000,000	140,000	8,800,000	8,800,000	140,000	320	(ug/kg)
Methylene chloride	85,000	760,000	12,000,000	13,000	24,000	34,000	20	(ug/kg)
Styrene	16,000,000	410,000,000	41,000,000	1,500,000	1,500,000	430,000	4,000	(ug/kg)
Tetrachloroethylene	12,000	110,000	2,400,000	11,000	1,500,000	430,000	60	(ug/kg)
trans-1,3-Dichloropropene	6,400	57,000	1,200,000	1,100	2,100	390	4	(ug/kg)
Trichloroethylene	58,000	520,000	1,200,000	5,000	8,900	12,000	60	(ug/kg)
Triphenylene								(mg/kg)
Vinyl chloride	300	7,900	170,000	30	1,100	1,100	10	(ug/kg)
								- - -

Notes: ug/kg Micrograms per kilogram

⁽¹⁾ Provisional remediation objective provided by IEPA

⁻⁻⁻⁻ No remediation objective has been established by the IEPA for this constituent for this exposure route

TABLE 5-3
TIER 1 REMEDIAL OBJECTIVES
SVOCs

				SVOCs			Soil Component		
		Ingestion			Inhalation		to Groundwater	MSA Background	
CONSTITUENT	Residential		Construction	Residential		Construction	(Class I)	Metropolitan Areas	UNITS/DEPTH
1,2,4-Trichlorobenzene	780	20,000	35	3,200	3,200	920	5	•	(mg/kg)
2,4,5-Trichlorophenol	7,800	200,000	200,000				270		(mg/kg)
2,4,6-Trichlorophenol	58	520	11,000	200	390	540	0.2		(mg/kg)
2,4-Dichlorophenol	230	6,100	610				1		(mg/kg)
2,4-Dimethylphenol	1,600	41,000	41,000				9		(mg/kg)
2,4-Dinitrophenol	160	4,100	410				0.2		(mg/kg)
2,4-Dinitrotoluene	0.9						0.0008		(mg/kg)
2,6-Dinitrotoluene	0.9	8.4	180.0				0.0007		(mg/kg)
2-Chloronaphthalene	6,300	160,000	160,000				240		(mg/kg)
2-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	4		(mg/kg)
2-Methylnaphthalene	2,300	61,000	61,000				29	0.14	(mg/kg)
3,3-Dichlorobenzidine	1	13	280				0.007		(mg/kg)
4,6-Dinitro-o-cresol									(mg/kg)
4-Bromophenyl phenyl ether									(mg/kg)
4-Chlorophenyl phenyl ether									(mg/kg)
Bis(2-chloroethoxy)methane									(mg/kg)
Bis(2-chloroethyl)ether	0.6	5.0	75.0	0.2	0.5	0.7	0.0004		(mg/kg)
Bis(2-chloroisopropyl)ether	3,100	82,000	8,200	1,300	1,300	1,300	2.4		(mg/kg)
Bis(2-ethylhexyl)phthalate (BEHP)	46	410	4,100	31,000	31,000	31,000	3,600		(mg/kg)
Butyl benzyl phthalate	16,000	410,000	410,000	930	930	930	930		(mg/kg)
Carbazole	32	290	6,200				0.60		(mg/kg)
Dibenzofuran	310	8,200	820				15		(mg/kg)
Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000	470		(mg/kg)
Dimethyl phthalate									(mg/kg)
Di-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300	0.0004		(mg/kg)
Di-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000	10,000		(mg/kg)
Hexachlorobenzene	0.4	4.0	78.0	1	1.8	2.6	2		(mg/kg)
Hexachlorobutadiene	16	410	41	1,000	1,000	180	2.9		(mg/kg)
Hexachlorocyclopentadiene	550	14,000	14,000	10	16	1.1	400		(mg/kg)
Hexachloroethane	78	2,000	2,000				0.5		(mg/kg)
Isophorone	15,600	410,000	410,000	4,600	4,600	4,600	8		(mg/kg)
m & p-Cresol(s)									(mg/kg)
m-Dichlorobenzene									(mg/kg)
m-Nitroaniline									(mg/kg)
Nitrobenzene	39	1,000	1,000	92	140	9.4	0.1		(mg/kg)
N-Nitrosodiphenylamine	130	1,200	25,000				1		(mg/kg)
N-Nitrosodipropylamine									(mg/kg)
o-Cresol	3,900	100,000	100,000				15		(mg/kg)
o-Dichlorobenzene	7,000	180,000	560	560	18,000	310	17		(mg/kg)
o-Nitroaniline									(mg/kg)
o-Nitrophenol									(mg/kg)
p-Chloroaniline	310	8,200			820		0.7		(mg/kg)
p-Chloro-m-cresol									(mg/kg)
PCP	3	24	52				0.03		(mg/kg)
p-Dichlorobenzene			17,000	11,000		340	2		(mg/kg)
Phenol	47,000	1,000,000	120,000				100		(mg/kg)
p-Nitroaniline									(mg/kg)
p-Nitrophenol									(mg/kg)
L 2 k									(···ə···ə/

Notes: mg/kg Milligrams per kilogram

⁽¹⁾ Provisional remediation objective provided by IEPA

No remediation objective has been established by the IEPA for this constituent for this exposure route

TABLE 5-4 TIER 1 REMEDIAL OBJECTIVES METALS AND CYANIDE

							Soil Component	
		<u>Ingestion</u>			<u>Inhalation</u>		to Groundwater	
CONSTITUENT I	Residential	Commercial	Construction	Residential	Commercial	Construction	(Class I)*	UNITS/DEPTH
Arsenic	13.0	13.0	61.0	750	1,200	25,000	30	(mg/kg)
Barium	5,500	140,000	14,000	690,000	910,000	870,000	1,800	(mg/kg)
Cadmium	78	2,000	200	1,800	2,800	59,000	59	(mg/kg)
Chromium	230	6,100	4,100	270	420	690	32	(mg/kg)
COD								(mg/kg)
Copper	2,900	82,000	8,200				330,000	(mg/kg)
Cyanide	1,600	41,000	4,100				40	(mg/kg)
Iron								(mg/kg)
Lead	400	800	700				107	(mg/kg)
Manganese	1,600	41,000	4,100	69,000	91,000	8,700		(mg/kg)
Mercury	23	610	61	10	16	0.10	6.4	(mg/kg)
Nickel	1,600	41,000	4,100	13,000	21,000	440,000	700	(mg/kg)
Selenium	390	10,000	1,000				3.3	(mg/kg)
Silver	390	10,000	1,000				39	(mg/kg)
Zinc	23,000	610,000	61,000				16,000	(mg/kg)

Notes:	mg/kg	Milligrams per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA
		for this constituent for this exposure route
	*	Based on an average pH of 7.50 for the site

TABLE 5-5
TIER 1 COMPARISON - BTEX AND PAH RESULTS FOR 0 TO 3 FT DEPTH
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

CONSTITUENT	UNITS	B-501 B-501-2 7/13/2004 1'-2'	B-502 B-502-3 7/13/2004 2'-3'	B-503 B-503-3 7/13/2004 2'-3'	B-504 B-504-3 7/13/2004 2'-3'	B-505 B-505-3 7/14/2004 2'-3'	B-506 B-506-3 7/22/2004 2'-3'	B-507 B-507-1 7/21/2004 0-1'	B-508 B-508-3 7/19/2004 2'-3'	B-509 B-509-3 7/21/2004 2'-3'	B-510 B-510-2 7/12/2004 1'-2'	B-512 B-512-3 7/12/2004 2'-3'
Benzene	(ug/kg)	1.9	3.4	13900	87.7	47.7	3820	5	28.2	14.2	31.2	8.3
Ethylbenzene	(ug/kg)	<1.1	2.1	4240	32.1	149	1390	1.1	1.8	4	2.2	1.3
Toluene	(ug/kg)	<1.1	5.5	6280	38.3	31.3	3320	3.9	7.1	11.2	7.6	4.9
Xylene (total)	(ug/kg)	<1.1	6.5	9920	65.3	139	5480	3.2	6.3	11.2	8.1	3.8
		40		44000			4000	440		400		222
Acenaphthene	(ug/kg)	<12	<29	<44000	610	6900	1300	110	390	<120	<2300	330
Acenaphthylene	(ug/kg)	78	34	<49000	150	70000	18000	1000	5400	1200	<2500	1230
Anthracene	(ug/kg)	41	<29	51000	460	15000	4500	510	1700	330	<2200	1740
Benzo(a)anthracene	(ug/kg)	270	110	69000	250	45000	18000	950	5900	1500	2900	2870
Benzo(a)pyrene	(ug/kg)	360	160	67000	190	140000	49000	2000	23000	3300	3200	2940
Benzo(b)fluoranthene	(ug/kg)	490	230	76000	210	120000	56000	1700	19000	3500	4500	4310
Benzo(ghi)perylene	(ug/kg)	210	120	<41000	64	38000	17000	650	7400	1600	<2200	1340
Benzo(k)fluoranthene	(ug/kg)	190	84	<36000	86	33000	16000	530	4500	1000	<1800	1500
Chrysene	(ug/kg)	320	120	62000	240	47000	23000	1100	8100	2000	3600	3230
Dibenzo(a,h)anthracene	(ug/kg)	61	<29	<36000	25	13000	5200	170	1800	410	<1900	430
Fluoranthene	(ug/kg)	440	110	120000	680	37000	18000	1500	8200	2000	3700	7830
Fluorene	(ug/kg)	<12	<29	<43000	430	9900	2800	250	750	120	<2200	1070
Indeno(1,2,3-cd)pyrene	(ug/kg)	240	84	<39000	81	41000	17000	610	6300	1400	<2000	1620
Naphthalene	(ug/kg)	33	120	71000	6800	21000	11000	600	1200	290	<2700	580
Phenanthrene	(ug/kg)	170	78	130000	1100	18000	10000	1800	2900	820	2000	5990
Pyrene	(ug/kg)	440	140	110000	520	96000	30000	2300	16000	3100	5800	6020

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO.

TABLE 5-5
TIER 1 COMPARISON - BTEX AND PAH RESULTS FOR 0 TO 3 FT DEPTH
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

CONSTITUENT	UNITS	B-513 B-513-2 7/12/2004 1'-2'	B-514 B-514-3 7/22/2004 2'-3'	B-515 B-515-2 7/16/2004 1'-2'	B-516 B-516-3 7/22/2004 2'-3'	B-550 B-550-3 7/20/2004 2'-3'	B-551 B-551-3 7/15/2004 2'-3'	B-553 B-553-3 7/14/2004 2'-3'	B-554 B-554-3 7/15/2004 2'-3'	B-556 B-556-3 7/20/2004 2'-3'	B-557 B-557-1 7/20/2004 0-1'	B-558 B-558-2 7/19/2004 1'-2'
Benzene	(ug/kg)	7.6	32.6	4.3	5.1	5.8	972	195	180	10.3	5.3	2.3
Ethylbenzene	(ug/kg)	<1.1	17.4	21.3	5.4	13.6	282	200	256	11.5	2.1	4.5
Toluene	(ug/kg)	3.2	10.3	3	4.5	3.8	244	370	211	26.2	3.6	7.2
Xylene (total)	(ug/kg)	1.8	25.4	26.4	6.5	25.9	276	456	624	41.6	5.2	11.8
Acenaphthene	(ug/kg)	52	<1900	1100	<1800	<12000	3700	8500	<3000	1400	170	<450
Acenaphthylene	(ug/kg)	100	2600	1900	40000	<13000	14000	26000	9200	5900	880	<500
Anthracene	(ug/kg)	220	2400	1000	9700	<11000	20000	8400	<2800	4400	620	<420
Benzo(a)anthracene	(ug/kg)	800	4600	2200	42000	<9400	52000	10000	<2400	6400	3600	450
Benzo(a)pyrene	(ug/kg)	820	5900	4000	120000	<8600	68000	55000	8500	18000	5200	500
Benzo(b)fluoranthene	(ug/kg)	1300	7600	4400	130000	<8800	83000	50000	8200	13000	6000	610
Benzo(ghi)perylene	(ug/kg)	310	3800	1300	50000	<11000	28000	26000	8500	6100	2700	<420
Benzo(k)fluoranthene	(ug/kg)	490	2700	1300	36000	<9300	25000	12000	<2400	3700	1900	<360
Chrysene	(ug/kg)	930	4900	2800	62000	<9900	51000	18000	4300	7900	3800	450
Dibenzo(a,h)anthracene	(ug/kg)	120	<1500	350	14000	<9500	9000	5000	<2500	1500	720	<370
Fluoranthene	(ug/kg)	1700	6300	3300	27000	19000	93000	17000	4600	9200	6300	690
Fluorene	(ug/kg)	51	1900	720	4000	12000	7100	7800	<2900	3900	110	<440
Indeno(1,2,3-cd)pyrene	(ug/kg)	400	3400	1200	47000	<10000	33000	21000	4400	5300	2500	<400
Naphthalene	(ug/kg)	52	<2200	1800	10000	<14000	8400	2200	<3500	5300	980	<530
Phenanthrene	(ug/kg)	840	6500	3300	8700	14000	47000	9400	3300	9900	2800	<380
Pyrene	(ug/kg)	1300	8500	5700	67000	21000	76000	27000	8500	18000	6000	650

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

---- No remediation objective has been established by the IEPA for this constitiuent for this exposure route

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO.

TABLE 5-5
TIER 1 COMPARISON - BTEX AND PAH RESULTS FOR 0 TO 3 FT DEPTH
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

		B-559 B-559-3	B-560 B-560-3	B-561 B-561-1	B-562 B-562-1	CSS-1	CSS-2	CSS-3	CSS-4	CSS-5	TP-503 TP-503-3	TP-504 TP-504-3
		7/19/2004	7/16/2004	7/15/2004	7/15/2004	12/18/1990	12/18/1990	12/18/1990	12/18/1990	12/19/1990	7/8/2004	7/8/2004
CONSTITUENT	UNITS	2'-3'	2'-3'	0-1'	0-1'	0-6"	0-6"	0-6"	0-6"	0-6"	3'	3'
Benzene	(ug/kg)	0.7	61.9	4.6	8.7						14500	10500
Ethylbenzene	(ug/kg)	<1.0	2.3	3.2	3.7						45600	74000
Toluene	(ug/kg)	<1.0	12.6	4.4	8.6	<310	<310	<310	410	<310	1430	3870
Xylene (total)	(ug/kg)	2	6.7	8.6	9.9	<310	<310	<310	660	<310	42400	91700
Acenaphthene	(ug/kg)	<24	180	<320	76	<5	63	5200	470	<5	150000	15000
Acenaphthylene	(ug/kg)	<24	8400	1000	510	<8	320	1900	3300	<8	130000	28000
Anthracene	(ug/kg)	<24	1300	570	260	59	870	1000	2200	9	90000	14000
Benzo(a)anthracene	(ug/kg)	140	8600	2300	1400	450	3700	3600	9700	99	40000	9600
Benzo(a)pyrene	(ug/kg)	190	36000	4100	2300	390	2900	2800	10000	39	37000	10000
Benzo(b)fluoranthene	(ug/kg)	270	27000	5500	3700	770	3500	4400	13000	150	21000	4800
Benzo(ghi)perylene	(ug/kg)	110	13000	2100	540	400	1900	6300	9900	100	11000	2800
Benzo(k)fluoranthene	(ug/kg)	88	7900	2000	1400	390	1200	1600	4200	140	13000	2500
Chrysene	(ug/kg)	150	11000	3400	1700	480	2900	3200	8100	160	48000	11000
Dibenzo(a,h)anthracene	(ug/kg)	42	4200	610	180	69	580	530	2600	17	8500	2100
Fluoranthene	(ug/kg)	190	11000	4700	2400	820	4700	3300	9900	240	220000	50000
Fluorene	(ug/kg)	<24	980	340	93	44	360	300	400	<0.6	130000	22000
Indeno(1,2,3-cd)pyrene	(ug/kg)	110	12000	2200	640	410	2000	2900	9900	130	11000	2700
Naphthalene	(ug/kg)	37	1900	450	230	<5	110	330	470	<5	590000	83000
Phenanthrene	(ug/kg)	67	3000	2100	860	390	3100	2200	3700	83	340000	72000
Pyrene	(ug/kg)	170	32000	4200	2200	570	4700	5300	15000	250	120000	32000

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

---- No remediation objective has been established by the IEPA for this constitiuent for this exposure route

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO.

TABLE 5-6 TIER 1 COMPARISON VOC RESULTS FOR 0 TO 3 FT DEPTH CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	UNITS	B-503 B-503-3 7/13/2004 2'-3'	B-510 B-510-2 7/12/2004 1'-2'	B-514 B-514-3 7/22/2004 2'-3'	B-550 B-550-3 7/20/2004 2'-3'	B-554 B-554-3 7/15/2004 2'-3'	B-558 B-558-2 7/19/2004 1'-2'
1,1,1-Trichloroethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,1,2,2-Tetrachloroethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,1,2-Trichloroethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,1-Dichloroethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,1-Dichloroethylene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,2-Dichloroethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
1,2-Dichloropropane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
2-Hexanone	(ug/kg)	<1730	<12.2	<11.8	<15.5	<360	<14.0
Acetone	(ug/kg)	<1730	38	126	212	<360	91.6
Bromodichloromethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Bromoform	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Carbon Disulfide	(ug/kg)	<520	<3.6	10.9	11.1	<108	<4.2
Carbon tetrachloride	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Chlorobenzene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Chloroethane	(ug/kg)	<347	<2.4	<2.4	<3.1	<72.0	<2.8
Chloroform	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
cis-1,2-Dichloroethylene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
cis-1,3-Dichloropropene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Dibromochloromethane	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Ethene, 1,2-dichloro-, (E)-	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Methyl bromide	(ug/kg)	<347	<2.4	<2.4	<3.1	<72.0	<2.8
Methyl chloride (Chloromethane)	(ug/kg)	<347	<2.4	<2.4	<3.1	<72.0	<2.8
Methyl ethyl ketone	(ug/kg)	<1730	<12.2	<11.8	30	720	<14.0
Methyl isobutyl ketone (MIBK)	(ug/kg)	<1730	<12.2	<11.8	<15.5	<360	<14.0
Methyl tert-butyl ether	(ug/kg)	<86.6	<0.6	<0.6	<0.8	<18.0	<0.7
Methylene chloride	(ug/kg)	<173	<1.2	1.6	<1.6	<36.0	1.5
Styrene	(ug/kg)	<173	<1.2	3.2	<1.6	<36.0	<1.4
Tetrachloroethylene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
trans-1,3-Dichloropropene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Trichloroethylene	(ug/kg)	<173	<1.2	<1.2	<1.6	<36.0	<1.4
Vinyl chloride	(ug/kg)	<86.6	<0.6	<0.6	<0.8	<18.0	<0.7

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

----- No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO

TABLE 5-7 SURFACE SOIL SVOC RESULTS CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUTION		B-503 B-503-3 7/13/2004	B-510 B-510-2 7/12/2004	B-514 B-514-3 7/22/2004	B-550 B-550-3 7/20/2004	B-554 B-554-3 7/15/2004	B-558 B-558-2 7/19/2004
CONSTITUENT	UNITS/DEPTH	2'-3'	1'-2'	2'-3'	2'-3'	2'-3'	1'-2'
1,2,4-Trichlorobenzene	(mg/kg)	<50.3	<2.62	<2.12	<13.1	<3.43	< 0.515
2,4,5-Trichlorophenol	(mg/kg)	<35.9	<1.87	<1.52	<9.37	<2.45	<0.368
2,4,6-Trichlorophenol	(mg/kg)	<47.7	<2.48	<2.01	<12.4	<3.25	<0.488
2,4-Dichlorophenol	(mg/kg)	<45.8	<2.38	<1.93	<11.9	<3.12	<0.469
2,4-Dimethylphenol	(mg/kg)	<48.0	<2.50	<2.03	<12.5	<3.27	<0.492
2,4-Dinitrophenol	(mg/kg)	<40.5	<2.11	<1.71	<10.6	<2.76	<0.414
2,4-Dinitrotoluene	(mg/kg)	<39.3	<2.05	<1.66	<10.3	< 2.68	<0.403
2,6-Dinitrotoluene	(mg/kg)	<40.9	<2.13	<1.72	<10.7	<2.78	<0.418
2-Chloronaphthalene	(mg/kg)	<45.4	<2.36	<1.91	<11.8	< 3.09	<0.465
2-Chlorophenol	(mg/kg)	<48.0	<2.50	<2.03	<12.5	<3.27	<0.492
2-Methylnaphthalene	(mg/kg)	<45.0	<2.30	<1.90	<12.0	<3.10	<0.460
3,3-Dichlorobenzidine	(mg/kg)	<32.5	<1.69	<1.37	<8.48	<2.22	<0.333
4,6-Dinitro-o-cresol	(mg/kg)	<40.9	<2.13	<1.72	<10.7	<2.78	<0.418
4-Bromophenyl phenyl ether	(mg/kg)	<34.8	<1.81	<1.47	<9.07	<2.37	<0.356
4-Chlorophenyl phenyl ether	(mg/kg)	<37.4	<1.95	<1.58	<9.76	<2.55	< 0.383
Bis(2-chloroethoxy)methane	(mg/kg)	<44.3	<2.30	<1.87	<11.5	<3.02	<0.453
Bis(2-chloroethyl)ether	(mg/kg)	<53.7	<2.80	<2.27	<14.0	< 3.66	< 0.550
Bis(2-chloroisopropyl)ether	(mg/kg)	<43.1	<2.24	<1.82	<11.2 <12.0	<2.94	<0.441
Bis(2-ethylhexyl)phthalate (BEHP)	(mg/kg)	<44.0 <38.2	<2.30 <1.99	<1.90 <1.61	<12.0 <9.96	<3.00 <2.60	<0.450
Butyl benzyl phthalate	(mg/kg)	<36.2 <46.0	<2.40	<2.00	<9.96 <12.0	<2.00 <3.10	<0.391
Carbazole	(mg/kg)						<0.470
Dibenzofuran	(mg/kg)	<48.0 <36.3	<2.50 <1.89	<2.00 <1.53	<12.0 <9.47	<3.20 <2.47	<0.490
Diethyl phthalate	(mg/kg)	<34.4				<2.47 <2.35	<0.372
Dimethyl phthalate	(mg/kg)	<34.4 <39.0	<1.79 <2.03	<1.45 <1.64	<8.98 <10.2	<2.35 <2.66	<0.352 <0.399
Di-n-butyl phthalate	(mg/kg)	<39.0 <39.3	<2.05 <2.05	<1.66	<10.2	<2.68	<0.399
Di-n-octyl phthalate Hexachlorobenzene	(mg/kg)	<39.3 <37.1	<2.05 <1.93	<1.56	< 10.3 < 9.67	<2.56 <2.53	<0.403
Hexachlorobutadiene	(mg/kg)	<58.6	< 1.93 < 3.05	<1.50 <2.47	<9.67 <15.3	<4.00	<0.600
Hexachlorocyclopentadiene	(mg/kg)	<38.6	<3.05 <2.01	<1.63	<10.1	<2.63	<0.395
Hexachloroethane	(mg/kg)	<63.2	<3.29	< 2.67	<16.5	<4.31	<0.393
Isophorone	(mg/kg)	<03.2 <44.6	<3.29 <2.32	<1.88	<11.6	<3.04	<0.047 <0.457
m & p-Cresol(s)	(mg/kg) (mg/kg)	<47.7	<2.32 <2.48	<2.01	<12.4	<3.04 <3.25	<0.437
m-Dichlorobenzene	(mg/kg)	<63.5	<3.31	<2.68	<16.6	<4.33	<0.466
m-Nitroaniline		<31.0	<1.61	<1.31	<8.09	<2.11	<0.031
Nitrobenzene	(mg/kg) (mg/kg)	<47.3	<2.46	<1.31 <1.99	<0.09 <12.3	<3.22	<0.316
N-Nitrosodiphenylamine	(mg/kg)	<34.8	<1.81	<1.99	<9.07	<2.37	<0.356
N-Nitrosodipropylamine	(mg/kg)	<41.6	<2.17	<1.76	<10.8	<2.84	<0.426
o-Cresol	(mg/kg)	<44.6	<2.17	<1.70	<11.6	<3.04	<0.420
o-Dichlorobenzene	(mg/kg)	<60.1	<3.13	<2.54	<15.7	<4.10	<0.437
o-Nitroaniline	(mg/kg)	<34.4	<3.13 <1.79	<1.45	<8.98	<2.35	<0.352
	(mg/kg)	<42.4	<2.21	<1.79	<0.90 <11.0	<2.89	<0.434
o-Nitrophenol p-Chloroaniline	(mg/kg)	<45.8		<1.79	<11.0	<3.12	<0.454
p-Chloro-m-cresol	(mg/kg)	<45.6 <41.6	<2.38 <2.17	<1.93 <1.76	<10.8	<3.12 <2.84	<0.469
PCP	(mg/kg)	<250	<13.0	<10.5	<65.1	<17.0	<2.56
p-Dichlorobenzene	(mg/kg)	<60.1	<3.13	< 2.54	<05.1 <15.7	<4.10	<0.616
Phenol	(mg/kg)	<43.9	<2.28	<1.85	<11.4	<2.99	<0.449
p-Nitroaniline	(mg/kg)	<34.4	<1.79	<1.65	<8.98	<2.35	<0.449
p-Nitrophenol	(mg/kg)	<37.1	<1.79	<1.45 <1.56	< 9.67	<2.53	< 0.379
p radiophichol	(mg/kg)	707.1	1.55	-1.00	-0.07	٠٤.٥٥	-0.010

Notes:	mg/kg	Milligrams per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA for this constituent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO

TABLE 5-8 TIER 1 COMPARISON - METALS and CYANIDE RESULTS FOR 0 TO 3 FT DEPTH CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Tier 1	Remediation	Objectives
--------	-------------	------------

CONSTITUENT	, UNITS/DEPTH	B-501 B-501-2 7/13/2004 1'-2'	B-502 B-502-3 7/13/2004 2'-3'	B-503 B-503-3 7/13/2004 2'-3'	B-504 B-504-3 7/13/2004 2'-3'	B-505 B-505-3 7/14/2004 2'-3'	B-506 B-506-3 7/22/2004 2'-3'	B-507 B-507-1 7/21/2004 0-1'	B-508 B-508-3 7/19/2004 2'-3'	B-509 B-509-3 7/21/2004 2'-3'	B-510 B-510-2 7/12/2004 1'-2'	B-512 B-512-3 7/12/2004 2'-3'	B-513 B-513-2 7/12/2004 1'-2'	B-514 B-514-3 7/22/2004 2'-3'	B-515 B-515-2 7/16/2004 1'-2'
Arsenic	(mg/kg)	9.28	58.5	8.31	15.4	4.5	14.7	10.1	22.5	13	10.8	21.6	13.6	11.3	11.5
Barium	(mg/kg)	143	58.3	99.6	152	27.1	113	141	96.4	184	84.6	98	129	128	136
Cadmium	(mg/kg)	0.28	0.5	0.3	1.68	0.58	0.14	0.22	0.55	1.03	0.58	1.01	0.36	0.29	0.36
Chromium	(mg/kg)	19.6	8.81	18.1	13.6	12.6	15.7	16	13.2	18.3	16	26.7	22.4	15.7	14
COD	(mg/kg)														
Copper	(mg/kg)														
Cyanide	(mg/kg)	1.38	1.02	11.7	55.5	25.2	2.31	2.15	2.51	2.74	6.43	68.4	17	16.6	3.68
Iron	(mg/kg)														
Lead	(mg/kg)	58	21.7	202	221	552	177	60.8	49.8	164	128	158	470	113	36.1
Manganese	(mg/kg)														
Mercury	(mg/kg)	0.215	0.037	0.167	0.338	0.061	0.695	0.084	0.174	0.252	0.432	0.291	0.352	4.2	0.091
Nickel	(mg/kg)														
Selenium	(mg/kg)	<4.00	<3.85	<4.00	<3.92	<4.00	<3.85	<3.85	<3.85	<4.00	<3.85	<3.92	<4.00	<3.85	<3.77
Silver	(mg/kg)	<1.00	< 0.96	<1.00	<0.98	<1.00	< 0.96	< 0.96	< 0.96	<1.00	< 0.96	< 0.98	<1.00	< 0.96	< 0.94
Zinc	(mg/kg)														

Notes:	
mg/kg	Milligrams per kilogram
-1	Provisional remediation objective provided by IEPA
	No remediation objective has been established by the IEPA for this constituent for this exposure route
<12	Not detected at the level identified
*	Based on an average pH of 7.50 for the site
	Analytical result exceeds one or more Tier 1 RO
< 0.05	Detection limit greater than BO due to dilution

TABLE 5-8 TIER 1 COMPARISON - METALS and CYANIDE RESULTS FOR 0 TO 3 FT DEPTH CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Tier 1 Remediation Objectives

		B-516	B-550	B-551	B-553	B-554	B-556	B-557	B-558	B-559	B-560	B-561	B-562	CSS-1	CSS-2	CSS-3	CSS-4
		B-516-3	B-550-3	B-551-3	B-553-3	B-554-3	B-556-3	B-557-1	B-558-2	B-559-3	B-560-3	B-561-1	B-562-1				
CONSTITUENT		7/22/2004	7/20/2004	7/15/2004	7/14/2004	7/15/2004	7/20/2004	7/20/2004	7/19/2004	7/19/2004	7/16/2004	7/15/2004	7/15/2004	12/18/1990	12/18/1990	12/18/1990	12/18/1990
	UNITS/DEPTH	2'-3'	2'-3'	2'-3'	2'-3'	2'-3'	2'-3'	0-1'	1'-2'	2'-3'	2'-3'	0-1'	0-1'	0-6"	0-6''	0-6''	0-6''
Arsenic	(mg/kg)	28.7	11.6	10.7	<2.40	19.3	2.2	9.68	12.6	9.93	12.5	37.2	31.7	6	5	3	5
Barium	(mg/kg)	134	45.6	60.5	20.1	207	59.8	102	164	139	177	135	212	93	89	82	69
Cadmium	(mg/kg)	1.36	2.04	0.39	< 0.19	0.97	0.13	0.59	0.64	0.15	1.38	1.59	2	1	< 0.5	1	1
Chromium	(mg/kg)	40.3	22.3	10.3	7.23	16.3	9.54	15.6	16.9	16	16.7	19.4	19.1	9	9	6	7
COD	(mg/kg)													52000	47000	47000	46000
Copper	(mg/kg)													18	20	17	19
Cyanide	(mg/kg)	41.6	9.82	3	1.81	3.01	2.98	1.01	1.37	0.46	2.47	0.64	0.81	1	< 0.25	7	2
Iron	(mg/kg)													12000	12000	14000	12000
Lead	(mg/kg)	165	32.1	50.6	8.5	252	55.7	184	48.6	56.7	110	358	390	130	59	80	200
Manganese	(mg/kg)													390	380	830	630
Mercury	(mg/kg)	0.491	0.076	0.281	0.005	0.076	0.075	0.133	0.082	0.058	0.21	0.344	0.227	0.14	< 0.13		3
Nickel	(mg/kg)													13	12	12	10
Selenium	(mg/kg)	<4.00	<4.00	<3.92	<3.85	<3.64	<3.85	<3.85	<3.92	<3.64	<3.85	<3.92	<4.00				
Silver	(mg/kg)	<1.00	<1.00	< 0.98	< 0.96	< 0.91	< 0.96	< 0.96	< 0.98	< 0.91	< 0.96	< 0.98	<1.00				
Zinc	(mg/kg)													110	74	74	95

Notes:		
mg/kg	Milligrams pe	Milligrams per kilogram
-1	Provisional re	Provisional remediation objective provided by IEPA
	No remediation	No remediation objective has been established by the IEPA for this constituent for this exposure route
<12	Not detected	Not detected at the level identified
*	Based on an	Based on an average pH of 7.50 for the site
	Analytical res	Analytical result exceeds one or more Tier 1 RO
<0.05	Detection lim	Detection limit greater than RO due to dilution

TABLE 5-8 TIER 1 COMPARISON - METALS and CYANIDE RESULTS FOR 0 TO 3 FT DEPTH CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Tier 1 Remediatio	n Objectives							
	-	CSS-5	UTP-01	UTP-02	UTP-03	UTP-04	UTP-08	UTP-09
CONSTITUENT	UNITS/DEPTH	12/19/1990 0-6"	12/17/1991 1	12/17/1991 1.25	12/17/1991 1.42	12/17/1991 1	12/17/1991 1	12/17/1991 0.83
Arsenic	(mg/kg)	5	6	9	9	15	4	21
Barium	(mg/kg)	91	100	110	99	61	120	120
Cadmium	(mg/kg)	< 0.5	1	1	1	1	< 0.5	< 0.5
Chromium	(mg/kg)	13	15	37	13	19	30	26
COD	(mg/kg)	23000						
Copper	(mg/kg)	10	10	92	41	18	260	38
Cyanide	(mg/kg)	< 0.25	2	33	33	2900	620	3800
Iron	(mg/kg)	15000	13000	16000	9500	46000	100000	110000
Lead	(mg/kg)	20	18	130	47	300	11000	1800
Manganese	(mg/kg)	530	730	71	340	170	430	330
Mercury	(mg/kg)	< 0.4	< 0.13	1		1	3	1
Nickel	(mg/kg)	14	15	8	11	8	12	10
Selenium	(mg/kg)							
Silver	(mg/kg)							
Zinc	(mg/kg)	47	41	64	89	46	230	110
Notes:								
mg/kg	Milligrams pe		Milligrams per					
-1	Provisional re		Provisional re	mediation obj	ective provide	d by IEPA		
	No remediation		No remediation	on objective ha	as been estab	lished by the	IEPA for this c	onstitiuent for
<12	Not detected		Not detected					
*	Based on an			average pH of				
	Analytical res		Analytical res	ult exceeds or	ne or more Tie	er 1 RO		
<0.05	Detection lim		Detection limi	t greater than	RO due to dil	ution		

CONSTITUENT	UNITS/ DEPTH	B-501 B-501-8 7/13/2004 7'-8'	B-502 B-502-7 7/13/2004 6'-7'	B-503 B-503-10 7/13/2004 9'-10'	B-504 B-504-7 7/13/2004 6'-7'	B-505 B-505-6 7/14/2004 5'-6'	B-506 B-506-7 7/22/2004 6'-7'	B-507 B-507-8 7/21/2004 7'-8'	B-508 B-508-9 7/19/2004 8'-9'	B-509 B-509-8 7/21/2004 7'-8'	B-510 B-510-5 7/12/2004 4'-5'	B-512 B-512-8 7/12/2004 7'-8'	B-513 B-513-8 7/12/2004 7'-8'	B-514 B-514-8 7/22/2004 7'-8'	B-515 B-515-7 7/16/2004 6'-7'	B-516 B-516-5 7/22/2004 4'-5'	B-550 B-550-9 7/20/2004 8'-9'	B-551 B-551-10 7/15/2004 9'-10'
Benzene	(ug/kg)	183	10900	534	20800	14500	11200	3510	2080	4.6	4.3	<12.2	<10.1	3100	9030	656	610	1260
Ethylbenzene	(ug/kg)	41	5660	523	145000	79800	46200	22200	33100	3.8	<1.0	<24.4	36	23500	59100	4720	1260	13600
Toluene	(ug/kg)	<24.6	220	300	10900	3800	740	280	575	1.4	1.7	<24.4	<20.2	446	2450	289	55	69
Xylene (total)	(ug/kg)	41	11000	837	140000	69900	33700	16600	24300	12	1.3	<24.4	44	19800	40700	1480	623	5720
Acenaphthene Acenaphthylene Anthracene	(ug/kg) (ug/kg) (ug/kg)	50 240 180	16000 2700 12000	1600 320 1400	590000 71000 300000	540000 81000 280000	170000 12000 71000	53000 3600 24000	51000 5800 22000	9800 4700 7200	<31 150 67	0.3 <0.163 0.15	1600 2000 2800	48000 8800 19000	270000 34000 100000	7500 5000 3800	5300 790 2600	23000 3000 13000
Benzo(a)anthracene	(ug/kg)	180	8700	630	170000	140000	33000	9500	12000	9400	500	<0.120	1200	11000	65000	7200	1600	9600
Benzo(a)pyrene	(ug/kg)	270	4100	520	130000	140000	35000	12000	10000	8700	510	<0.110	950	13000	88000	16000	1800	12000
Benzo(b)fluoranthene	(ug/kg)	250	18000	630	110000	130000	29000	7900	7900	6800	710	<0.112	820	8900	66000	13000	1400	11000
Benzo(ghi)perylene	(ug/kg)	63	4000	110	<50000	31000	7200	2400	4500	2800	280	<0.138	420	2800	26000	5000	410	3500
Benzo(k)fluoranthene	(ug/kg)	97	5600	240	<43000	45000	7400	2300	3100	2500	220	<0.119	280	2600	25000	4200	410	4200
Chrysene	(ug/kg)	170	19000	650	150000	140000	33000	8800	11000	9000	590	<0.126	1100	11000	74000	8400	1600	10000
Dibenzo(a,h)anthracene	(ug/kg)	<30	1900	45	<44000	10000	2300	720	<3000	<620	74	<0.121	110	850	11000	1300	160	1000
Fluoranthene	(ug/kg)	340	17000	1800	320000	290000	78000	26000	23000	18000	650	<0.120	2100	24000	150000	7600	2600	20000
Fluorene	(ug/kg)	330	20000	1200	410000	400000	90000	35000	30000	13000	48	0.31	4200	36000	150000	5500	4400	15000
Indeno(1,2,3-cd)pyrene	(ug/kg)	64	4700	130	<47000	35000	6000	2300	3500	2400	230	<0.131	430	2700	27000	4500	370	3700
Naphthalene	(ug/kg)	<30	59000	16000	2000000	2300000	790000	170000	140000	<880	33	<0.173	<66	100000	510000	24000	2700	46000
Phenanthrene	(ug/kg)	38	50000	3500	1100000	920000	250000	77000	64000	37000	210	0.644	9300	72000	340000	12000	9600	41000
Pyrene	(ug/kg)	500	25000	1500	440000	400000	110000	37000	33000	25000	1000	0.15	3200	33000	190000	14000	3800	21000

<12 Not detected at the level identified

CONSTITUENT	UNITS/ DEPTH	B-553 B-553-6 7/14/2004 5'-6'	B-554 B-554-10 7/15/2004 9'-10'	B-556 B-556-6 7/20/2004 5'-6'	B-557 B-557-10 7/20/2004 9'-10'	B-558 B-558-7 7/19/2004 6'-7'	B-559 B-559-8 7/19/2004 7'-8'	B-560 B-560-5 7/16/2004 4'-5'	B-561 B-561-10 7/15/2004 9'-10'	B-562 B-562-10 7/15/2004 9'-10'	TP-501 TP-501-7 7/8/2004 7'	TP-503A TP-503A-3.5 7/8/2004 3.5'	TP-507 TP-507-3.5 7/7/2004 3.5'	TP-508 TP-508-4 7/8/2004 4'	UTB-08B UTB-08-01 11/28/1990 4'-9'	UTB-08 UTB-08-02 11/28/1990 9'-13'	UTB-10 UTB-10-01 11/30/1990 9'-10'	UTB-11 UTB-11-01 12/3/1990 8'-13'
Benzene	(ug/kg)	4050	765	2770	7.1	52.5	<12.8	12	1250	286	438	12800	13200	6400	<310	<310	<310	7900
Ethylbenzene	(ug/kg)	20800	3910	19900	7.4	66	<25.6	1.9	1380	1590	30600	14600	64100	57000	<310	<310	3200	4300
Toluene	(ug/kg)	811	2700	<206	2	134	<25.6	3.9	110	726	<220	2560	3750	7340	<310	<310	<310	22000
Xylene (total)	(ug/kg)	19300	6120	12200	13.4	221	46	3.9	3540	1660	16600	14900	92600	76000	<310	<310	3100	20000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	(ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg)	280000 27000 170000 120000 120000 130000 29000 50000	77000 7300 29000 13000 14000 13000 2200 4700	64000 4200 28000 12000 12000 8700 5000 2400	320 130 180 140 160 130 54	8100 2400 6800 3200 3500 2800 930 820	<150 <160 <140 <120 <110 <110 <140 <120	380 6100 1200 7200 25000 20000 6700 7500	9100 1600 4800 2500 2000 1400 840 590	28000 3500 14000 6100 6100 4500 1600 1500	18000 6800 8100 4700 5200 2300 1300 1600	3000 780 870 1500 2900 1500 1300 750	55000 57000 30000 23000 21000 12000 7900 6900	330000 240000 110000 64000 50000 56000 13000 13000	<330 <330 <330 <330 <330 <330 <330 <330	<330 <330 <330 <330 <330 <330 <330 <330	16000 5100 18000 9900 5500 5000 2900 1600	3500 12000 14000 8400 4300 8200 <1600 <1600
Chrysene	(ug/kg)	120000	14000	13000	140	3100	<130	9000	2400	6000	5700	1700	27000	66000	<330	<330	10000	7100
Dibenzo(a,h)anthracene Fluoranthene	(ug/kg)	9700 300000	790 32000	1300 27000	20 330	360 7300	<120 <120	1700 7500	<570 5000	<630 14000	1200 20000	<110 2900	<93 89000	9100 300000	<330 <330	<330 <330	580 17000	<1600 18000
Fluoranthene Fluorene	(ug/kg)	180000	32000 42000	27000 26000	200	7300 8900	<120 <140	7500 550	6300	18000	13000	2900 750	49000	210000	<330 <330	<330 <330	20000	14000
Indeno(1,2,3-cd)pyrene	(ug/kg)	34000	1900	4300	48	860	<130	6000	<620	1500	1500	1400	7200	14000	<330 <330	<330	2900	<1600
Naphthalene	(ug/kg)	880000	1800	200000	40 14	<130	<180 <180	2600	23000	39000	18000	9200	240000	710000	<330 <330	<330 <330	87000	100000
•	(ug/kg)																	
Phenanthrene	(ug/kg)	540000	91000	90000	1100	22000	<120	3200	14000	45000	32000	2900	140000	500000	<330	<330	56000	39000
Pyrene	(ug/kg)	340000	42000	40000	500	12000	<120	23000	7400	20000	14000	2700	63000	180000	<330	<330	32000	12000

Notes: ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

CONSTITUENT	UNITS/ DEPTH	UTB-14 UTB-14-01 12/5/1990 4'-5'	UTB-15 UTB-15-S01 12/13/1991 9'-11'	UTB-16 UTB-16-01 12/6/1990 8'-10'	UTB-18 UTB-18-01 12/7/1990 4.5'-5'	UTB-20 UTB-20-S01 12/11/1991 7'-8'	UTB-21 UTB-21-S01 12/12/1991 3'-8'	UTB-22 UTB-22-S01 12/12/1991 6'-8'	UTB-23 UTB-23-S01 12/14/1991 6'-8'	UTB-24 UTB-24-S01 12/15/1991 6'-8'	UTB-25 UTB-25-S01 12/14/1991 9'-11'	UTB-26 UTB-26-S01 12/15/1991 6'-8'	UTB-27 UTB-27-S01 12/16/1991 6'-8
Benzene	(ug/kg)	<310	360	5600	<310	<310	<3100	<310	56000	<3100	2700	580	12000
Ethylbenzene	(ug/kg)	<310	1800	20000	<310	<310	20000	<310	82000	8200	9500	20000	7400
Toluene	(ug/kg)	<310	<310	7200	<310	<310	8800	<310	54000	<3100	4000	<310	22000
Xylene (total)	(ug/kg)	330	1700	60000	<310	<310	<3100	<310	100000	5600	12000	2300	35000
Acenaphthene	(ug/kg)	38000	32000	110000	<490	120	46000	<100	390000	100000	53000	17000	29000
Acenaphthylene	(ug/kg)	<19000	3300	<39000	<490	160	1300	<160	<4000	35000	13000	<1600	11000
Anthracene	(ug/kg)	34000	15000	67000	<490	<0.7	18000	<14	230000	42000	37000	8100	34000
Benzo(a)anthracene	(ug/kg)	24000	8700	48000	<490	66	17000	<86	160000	29000	13000	4300	21000
Benzo(a)pyrene	(ug/kg)	20000	7400	28000	<490	<7.7	12000	<150	250000	640000	6800	4300	14000
Benzo(b)fluoranthene	(ug/kg)	22000	7300	28000	<490	<1	12000	<20	180000	15000	5200	4500	13000
Benzo(ghi)perylene	(ug/kg)	<19000	4800	<39000	<490	<4.7	10000	<94	160000	17000	5600	12000	11000
Benzo(k)fluoranthene	(ug/kg)	<19000	2300	<39000	<490	<0.4	<80	<8	170000	3600	2000	3400	4800
Chrysene	(ug/kg)	26000	9000	44000	<490	<1	11000	<20	250000	18000	8100	4100	17000
Dibenzo(a,h)anthracene	(ug/kg)	<19000	1100	59000	<490	<2.8	<560	<56	<1400	4900	1300	<560	2300
Fluoranthene	(ug/kg)	46000	16000	120000	<490	100	23000	<14	360000	68000	51000	9500	48000
Fluorene	(ug/kg)	38000	18000	100000	<490	<0.6	22000	690	370000	57000	38000	8800	35000
Indeno(1,2,3-cd)pyrene	(ug/kg)	<19000	5100	<39000	<490	<1	8500	<20	50000	17000	5400	3400	15000
Naphthalene	(ug/kg)	22000	120000	590000	<490	<5	190000	<100	2600000	490000	380000	45000	95000
Phenanthrene	(ug/kg)	96000	54000	230000	<490	<5	64000	1500	1000000	56000	68000	27000	110000
Pyrene	(ug/kg)	48000	23000	100000	<490	140	41000	<50	630000	110000	34000	17000	59000

TABLE 5-10 TIER 1 COMPARISON VOC RESULTS 3 TO 10 FT DEPTH **CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP**

CONSTITUENT	UNITS	B-504 B-504-7 7/13/2004 6'-7'	B-508 B-508-9 7/19/2004 8'-9'	B-509 B-509-8 7/21/2004 7'-8'	B-559 B-559-8 7/19/2004 7'-8'	B-561 B-561-10 7/15/2004 9'-10'
1,1,1-Trichloroethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,1,2,2-Tetrachloroethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,1,2-Trichloroethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,1-Dichloroethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,1-Dichloroethylene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,2-Dichloroethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
1,2-Dichloropropane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
2-Hexanone	(ug/kg)	<8830	<1040	<10.3	<256	<841
Acetone	(ug/kg)	<8830	2500	31	460	<841
Bromodichloromethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Bromoform	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Carbon Disulfide	(ug/kg)	<2650	<312	<3.1	<76.7	<252
Carbon tetrachloride	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Chlorobenzene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Chloroethane	(ug/kg)	<1770	<208	<2.1	<51.1	<168
Chloroform	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
cis-1,2-Dichloroethylene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
cis-1,3-Dichloropropene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Dibromochloromethane	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Ethene, 1,2-dichloro-, (E)-	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Methyl bromide	(ug/kg)	<1770	<208	<2.1	<51.1	<168
Methyl chloride	(ug/kg)	<1770	<208	<2.1	<51.1	<168
Methyl ethyl ketone	(ug/kg)	<8830	<1040	<10.3	460	<841
Methyl isobutyl ketone (MIBK)	(ug/kg)	<8830	<1040	<10.3	<256	<841
Methyl tert-butyl ether	(ug/kg)	<441	<52.0	< 0.5	<12.8	<42.1
Methylene chloride	(ug/kg)	<883	200	<1.0	<25.6	<84.1
Styrene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Tetrachloroethylene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
trans-1,3-Dichloropropene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Trichloroethylene	(ug/kg)	<883	<104	<1.0	<25.6	<84.1
Vinyl chloride	(ug/kg)	<441	<52.0	<0.5	<12.8	<42.1
Notes	:	ug/kg	Micrograms per			
		(1) 	No remediation	objective has be	e provided by IEF en established by	
		40	tor this constitiu	ent for this expos	sure route	

Not detected at the level identified <12 Analytical result exceeds one or more Tier 1 RO

TABLE 5-11 TIER 1 COMPARISON SVOC RESULTS FOR 3 TO 10 FT DEPTH CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	B-504 B-504-7 7/13/2004 6'-7'	B-508 B-508-9 7/19/2004 8'-9'	B-509 B-509-8 7/21/2004 7'-8'	B-559 B-559-8 7/19/2004 7'-8'	B-561 B-561-10 7/15/2004 9'-10'
1,2,4-Trichlorobenzene	<60.7	<4.22	<0.856	<0.170	<0.795
2,4,5-Trichlorophenol	<43.3	<3.02	< 0.611	<0.122	<0.568
2,4,6-Trichlorophenol	<57.5	<4.00	< 0.811	< 0.161	< 0.753
2,4-Dichlorophenol	<55.2	<3.84	<0.778	< 0.155	< 0.723
2,4-Dimethylphenol	<58.0	<4.00	< 0.820	< 0.160	< 0.760
2,4-Dinitrophenol	<48.8	<3.40	< 0.688	< 0.137	< 0.640
2,4-Dinitrotoluene	<47.4	<3.30	< 0.669	< 0.133	< 0.622
2,6-Dinitrotoluene	<49.3	<3.43	< 0.695	<0.138	< 0.646
2-Chloronaphthalene	<54.7	<3.81	< 0.772	< 0.153	< 0.717
2-Chlorophenol	<57.9	<4.03	< 0.817	< 0.162	< 0.759
2-Methylnaphthalene	1200	76	<0.770	< 0.150	<6.70
3,3-Dichlorobenzidine	<39.2	<2.73	<0.553	< 0.110	< 0.514
4,6-Dinitro-o-cresol	<49.3	<3.43	< 0.695	<0.138	< 0.646
4-Bromophenyl phenyl ether	<42.0	<2.92	< 0.592	<0.118	< 0.550
4-Chlorophenyl phenyl ether	<45.2	<3.14	< 0.637	< 0.127	< 0.592
Bis(2-chloroethoxy)methane	<53.4	<3.72	< 0.753	< 0.150	< 0.700
Bis(2-chloroethyl)ether	<64.8	<4.51	< 0.914	< 0.182	< 0.849
Bis(2-chloroisopropyl)ether	<52.0	<3.62	< 0.733	< 0.146	< 0.682
Bis(2-ethylhexyl)phthalate (BEHP)	<53.4	<3.72	< 0.753	0.43	1.71
Butyl benzyl phthalate	<46.1	<3.21	< 0.650	< 0.129	< 0.604
Carbazole	<56.0	< 3.90	< 0.780	< 0.160	< 0.730
Dibenzofuran	69	4.1	1.6	< 0.160	< 0.770
Diethyl phthalate	<43.8	<3.05	< 0.618	< 0.123	< 0.574
Dimethyl phthalate	<41.5	<2.89	< 0.585	< 0.116	< 0.544
Di-n-butyl phthalate	<47.0	<3.27	< 0.663	< 0.132	< 0.616
Di-n-octyl phthalate	<47.4	<3.30	< 0.669	< 0.133	< 0.622
Hexachlorobenzene	<44.7	<3.11	< 0.630	< 0.125	< 0.586
Hexachlorobutadiene	<70.7	<4.92	< 0.997	<0.198	< 0.927
Hexachlorocyclopentadiene	<46.5	<3.24	< 0.656	< 0.130	< 0.610
Hexachloroethane	<76.2	<5.30	<1.07	<0.214	< 0.999
Isophorone	<53.8	<3.75	< 0.759	<0.151	< 0.706
m & p-Cresol(s)	<57.5	<4.00	<0.811	<0.161	<0.753
m-Dichlorobenzene	<76.6	<5.33	<1.08	<0.215	<1.00
m-Nitroaniline	<37.4	<2.60	<0.528	<0.105	< 0.490
Nitrobenzene	<57.0	<3.97	< 0.804	<0.160	<0.747
N-Nitrosodiphenylamine	<42.0	<2.92	<0.592	<0.118	< 0.550
N-Nitrosodipropylamine	<50.2	<3.49	<0.708	<0.141	<0.658
o-Cresol	<54.0	<3.80	< 0.760	<0.150	<0.710
o-Dichlorobenzene	<72.5	<5.05	<1.02	<0.203	< 0.951
o-Nitroaniline	<41.5	<2.89	<0.585	<0.116	<0.544
o-Nitrophenol	<51.1	<3.56	<0.721	<0.143	<0.670
p-Chloroaniline	<55.2	<3.84	<0.778	<0.155	<0.723
p-Chloro-m-cresol	<50.2	<3.49	<0.708	<0.141	<0.658
PCP	<301	<21.0	<4.25	<0.844	<3.95
p-Dichlorobenzene	<72.5	<5.05	<1.02	<0.203	<0.951
Phenol	<53.0	<3.70	<0.750	< 0.150	< 0.690
p-Nitroaniline	<41.5	<2.89	<0.585	<0.116	<0.544
p-Nitrophenol	<44.7	<3.11	< 0.630	<0.125	<0.586
	//	Micrograma			

TABLE 5-12 TIER 1 COMPARISON - RCRA METALS AND CYANIDE RESULTS FOR 3 TO 10 FT CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	B-504 B-504-7 7/13/2004 6'-7'	B-508 B-508-9 7/19/2004 8'-9'	B-509 B-509-8 7/21/2004 7'-8'	B-559 B-559-8 7/19/2004 7'-8'	B-561 B-561-10 7/15/2004 9'-10'	UTB-08B UTB-08B-01 11/28/1990 4'-9'	UTB-08B UTB-08B-02 11/28/1990 9'-13'	UTB-10 UTB-10-02 11/30/1990 9'-10'	UTB-15 UTB-15-S01 12/13/1991 9'-11'
Arsenic	<2.31	13	12.7	14.5	15.2				
Barium	63.8	126	117	226	55.2				
Cadmium	0.31	<0.19	0.1	0.54	0.45				
Chromium	14.7	21.9	16.8	23.5	15.3				
Cyanide						< 0.25	< 0.25	< 0.25	0.35
Lead	16.4	17.9	13.8	18.7	14.1				
Mercury	0.026	0.036	0.028	0.049	0.018				
Selenium	<3.70	<3.85	<3.92	<4.00	<3.85				
Silver	< 0.93	<0.96	<0.98	<1.00	<0.96				

Notes:	ug/kg	Micrograms per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA
		for this constitiuent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO
	<0.05	Detection limit greater than RO due to dilution

TABLE 5-12 TIER 1 COMPARISON - RCRA METALS AND CYANIDE RESULTS FOR 3 TO 10 FT CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	UTB-20 UTB-20-S01 12/11/1991 7'-8'	UTB-21 UTB-21-S01 12/12/1991 3'-8'	UTB-22 UTB-22-S01 12/12/1991 6'-8'	UTB-23 UTB-23-S01 12/14/1991 6'-8'	UTB-24 UTB 24-S01 12/15/1991 6'-8'	UTB-25 UTB-25-S01 12/14/1991 9'-11'	UTB-26 UTB-26-S02 12/15/1991 6'-8'	UTB-27 UTB-27-S01 12/16/1991 6'-8'
Arsenic								
Barium								
Cadmium								
Chromium								
Cyanide	2	5	< 0.25	14	11	1	< 0.25	5
Lead								
Mercury								
Selenium								
Silver								
Notes:	ug/kg	Micrograms per ki	logram					

otes:	ug/kg	Micrograms per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA
		for this constitiuent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO
	<0.05	Detection limit greater than RO due to dilution

CONSTITUENT	UNITS/ DEPTH	B-501 B-501-15 7/13/2004 14'-15'	B-501 B-501-24 7/13/2004 23'-24'	B-502 B-502-12 7/13/2004 11'-12'	B-502 B-502-24 7/21/2004 23'-24'	B-503 B-503-11 7/13/2004 10'-11'	B-503 B-503-19 7/13/2004 18'-19'	B-504 B-504-14 7/13/2004 13'-14'	B-504 B-504-21 7/14/2004 20'-21'	B-504 B-504-28 7/14/2004 27'-28'	B-505 B-505-11 7/14/2004 10'-11'	B-505 B-505-22 7/14/2004 21'-22'	B-505 B-505-28 7/14/2004 27'-28'	B-506 B-506-17 7/22/2004 16'-17'	B-506 B-506-28 7/22/2004 27'-28'
Benzene	(ug/kg)	16400	1.6	30300	423	223	3000	15100	33100	9.1	5040	1.6	3	444000	2.3
Ethylbenzene	(ug/kg)	2420	<0.7	25300	<19.2	372	<106	28500	1100	2	17700	1.5	2.3	122000	1.3
Toluene	(ug/kg)	6900	1.6	108000	<19.2	120	835	8240	8760	3.7	720	4.3	2.5	676000	3.6
Xylene (total)	(ug/kg)	16900	2	226000	<19.2	458	<106	24000	3460	3.4	11200	4.2	4	549000	4
Acenaphthene	(ug/kg)	39000	<130	36000	<11	<42	5400	49000	22000	13	13000	<11	20	55000	<130
Acenaphthylene	(ug/kg)	58000	<140	50000	<11	<42	47000	20000	150000	14	14000	12	30	390000	<140
Anthracene	(ug/kg)	130000	<120	64000	<11	<42	12000	34000	110000	22	11000	<11	37	160000	<120
Benzo(a)anthracene	(ug/kg)	67000	<100	54000	<11	<42	31000	17000	59000	19	7500	<11	29	79000	<100
Benzo(a)pyrene	(ug/kg)	68000	<96	48000	<11	<42	82000	16000	66000	19	7000	<11	25	92000	<96
Benzo(b)fluoranthene	(ug/kg)	72000	<99	56000	<11	<42	88000	12000	50000	15	5400	<11	20	73000	<98
Benzo(ghi)perylene	(ug/kg)	22000	<120	13000	<11	<42	23000	4900	15000	<11	<3500	<11	<11	18000	<120
Benzo(k)fluoranthene	(ug/kg)	21000	<100	17000	<11	<42	25000	4000	16000	<11	<3000	<11	<11	22000	<100
Chrysene	(ug/kg)	64000	<110	56000	<11	<42	34000	16000	62000	21	6700	<11	26	72000	<110
Dibenzo(a,h)anthracene	(ug/kg)	7300	<110	5500	<11	<42	5800	1400	4600	<11	<3100	<11	<11	5600	<110
Fluoranthene	(ug/kg)	160000	<100	140000	<11	<42	37000	36000	120000	33	12000	<11	51	170000	<100
Fluorene	(ug/kg)	120000	<120	120000	<11	<42	13000	48000	120000	22	15000	<11	44	200000	<120
Indeno(1,2,3-cd)pyrene	(ug/kg)	24000	<120	17000	<11	<42	21000	4700	15000	<11	<3400	<11	<11	17000	<120
Naphthalene	(ug/kg)	920000	<150	680000	26	<42	7700	230000	330000	160	110000	160	180	2200000	<150
Phenanthrene	(ug/kg)	350000	<110	270000	<11	<42	18000	120000	320000	72	39000	20	130	610000	<110
Pyrene	(ug/kg)	160000	<110	110000	<11	<42	60000	54000	190000	51	20000	11	78	240000	<110

CONSTITUENT	UNITS/ DEPTH	B-507 B-507-19 7/21/2004 18'-19'	B-507 B-507-28 7/21/2004 27'-28'	B-508 B-508-11 7/19/2004 10'-11'	B-508 B-508-28 7/19/2004 27'-28'	B-509 B-509-18 7/21/2004 17'-18'	B-509 B-509-28 7/21/2004 27'-28'	B-510 B-510-12 7/12/2004 11'-12'	B-510 B-510-28 7/12/2004 27'-28'	B-512 B-512-11 7/12/2004 10'-11'	B-512 B-512-24 7/12/2004 23'-24'	B-513 B-513-12 7/12/2004 11'-12'	B-513 B-513-24 7/12/2004 23'-24'	B-514 B-514-17 7/22/2004 16'-17'	B-514 B-514-28 7/22/2004 27'-28'
Benzene	(ug/kg)	659000	6.1	2580	1.4	6250	0.7	1.3	1	0.9	1.2	1.8	1	333000	0.8
Ethylbenzene	(ug/kg)	141000	3.4	37100	1	11400	<0.8	<0.8	<0.8	< 0.9	<0.8	1.5	<0.8	797000	0.9
Toluene	(ug/kg)	1540000	14.3	220	1.7	550	2	1.8	1.2	1.1	1.2	3.7	1	266000	1.4
Xylene (total)	(ug/kg)	1300000	9.1	19000	1.7	6630	2.7	1	1.4	1.8	1.2	3.5	1	721000	1.8
Acenaphthene	(ug/kg)	120000		48000	<11	86	22	<10	<10	180	<10	<130	<31	1500000	<11
Acenaphthylene	(ug/kg)	700000		8100	<11	260	110	<10	10	<58	<10	<140	<31	400000	<11
Anthracene	(ug/kg) (ug/kg)	410000		24000	<11	91	98	<10	<10	83	<10	<120	<31	600000	<11
Benzo(a)anthracene	(ug/kg)	260000		13000	<11	66	72	<10	<10	<58	<10	<110	<31	250000	<11
Benzo(a)pyrene	(ug/kg)	240000		13000	<11	74	7 <u>2</u> 79	<10	<10	<58	<10	<97	<31	290000	<11
Benzo(b)fluoranthene	(ug/kg)	170000		11000	<11	53	58	<10	<10	<58	<10	<99	<31	200000	<11
Benzo(ghi)perylene	(ug/kg)	80000		4900	<11	36	39	<10	<10	<58	<10	<120	<31	100000	<11
Benzo(k)fluoranthene	(ug/kg)	70000		3300	<11	16	17	<10	<10	<58	<10	<100	<31	59000	<11
Chrysene	(ug/kg)	240000		12000	<11	66	72	<10	<10	<58	<10	<110	<31	260000	<11
Dibenzo(a,h)anthracene	(ug/kg)	<15000		<2500	<11	<11	<11	<10	<10	<58	<10	<110	<31	26000	<11
Fluoranthene	(ug/kg)	480000		27000	<11	120	140	<10	<10	66	<10	<110	<31	660000	<11
Fluorene	(ug/kg)	550000		35000	<11	110	90	<10	<10	164	<10	<130	<31	840000	<11
Indeno(1,2,3-cd)pyrene	(ug/kg)	64000		4300	<11	27	28	<10	<10	<58	<10	<120	<31	84000	<11
Naphthalene	(ug/kg)	4600000		190000	30	7900	470	<10	<10	104	<10	<150	<31	7700000	85
Phenanthrene	(ug/kg)	940000	ı	78000	19	300	310	<10	<10	317	<10	<110	<31	2400000	<11
Pyrene	(ug/kg)	710000		39000	<11	190	220	<10	<10	87	<10	<110	<31	1000000	<11

ug/kg Micrograms per kilogram

(1) Provisional remediation objective provided by IEPA

----- No remediation objective has been established by the IEPA
for this constitiuent for this exposure route

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO

Notes:

CONSTITUENT	UNITS/ DEPTH	B-515 B-515-19 7/16/2004 18'-19'	B-515 B-515-32 7/16/2004 31'-32'	B-516 B-516-14 7/22/2004 13'-14'	B-516 B-516-24 7/22/2004 23'-24'	B-550 B-550-11 7/20/2004 10'-11'	B-550 B-550-16 7/20/2004 15'-16'	B-550 B-550-28 7/20/2004 27'-28'	B-551 B-551-16 7/15/2004 15'-16'	B-551 B-551-28 7/15/2004 27'-28'	B-553 B-553-15 7/14/2004 14'-15'	B-553 B-553-24 7/14/2004 23'-24'	B-553 B-553-32 7/14/2004 31'-32'	B-554 B-554-18 7/15/2004 17'-18'	B-554 B-554-32 7/15/2004 31'-32'
Benzene	(ug/kg)	29300	2	5450	0.7	1240	5810	1.1	14.8	2.6	3030	97300	3.5	5620	3.7
Ethylbenzene	(ug/kg)	5730	1.4	11400	<0.8	4020	1440	<0.8	42	3.3	10100	32900	1.5	9020	4.8
Toluene	(ug/kg)	35100	2.2	1180	1.1	150	798	1.8	73.6	3.4	16100	164000	4.5	7780	9.5
Xylene (total)	(ug/kg)	27600	2.4	25300	1.5	1930	1430	1.4	128	5.6	37300	155000	3.6	13000	17.8
Acenaphthene Acenaphthylene	(ug/kg)	3000 26000	<120 <140	1900 2800	<11 <11	36000 4700	50 20	<11 <11	13 80	38 <11	16000 36000	100000 660000	<130 <140	99000 230000	<11
Acenaphinylene Anthracene	(ug/kg)	26000 11000	<140 <120	2800 6000	<11 <11	4700 18000	20 54	<11 <11	80 21	<11 37	78000 78000	370000	<140 <120	230000 170000	<11
Benzo(a)anthracene	(ug/kg)	5800	<120 <100	3000	<11 <11	6700	40	<11	21 27	37 32	51000	190000	<120 <100	78000	<11 <11
Benzo(a)pyrene	(ug/kg) (ug/kg)	6500	<100 <93	3600	<11	7500	34	<11	23	32 29	53000	190000	<100 <95	86000	<11 <11
Benzo(b)fluoranthene	(ug/kg) (ug/kg)	4500	<95	2500	<11	4900	32	<11	20	2 3 27	56000	150000	<97	74000	<11
Benzo(ghi)perylene	(ug/kg) (ug/kg)	2100	<120	1200	<11	2000	11	<11	<11	13	12000	58000	<120	13000	<11
Benzo(k)fluoranthene	(ug/kg) (ug/kg)	1600	<100	850	<11	1400	<11	<11	<11	<11	20000	49000	<100	26000	<11
Chrysene	(ug/kg) (ug/kg)	5900	<110	2800	<11	6500	40	<11	26	31	47000	200000	<110	79000	<11
Dibenzo(a,h)anthracene	(ug/kg)	570	<100	400	<11	610	<11	<11	<11	<11	4000	17000	<100	<5100	<11
Fluoranthene	(ug/kg)	13000	<100	7300	<11	16000	77	<11	40	58	130000	420000	<100	170000	<11
Fluorene	(ug/kg)	16000	<120	6800	<11	24000	50	<11	19	36	65000	560000	<120	240000	<11
Indeno(1,2,3-cd)pyrene	(ug/kg)	1900	<110	1100	<11	1800	<11	<11	<11	<11	14000	52000	<110	14000	<11
Naphthalene	(ug/kg)	86000	<150	130000	57	35000	260	61	1500	82	520000	2600000	<150	1100000	57
Phenanthrene	(ug/kg)	38000	<100	18000	18	49000	170	21	66	120	220000	980000	<110	590000	25
Pyrene	(ug/kg)	20000	<100	9500	12	20000	100	<11	58	76	140000	590000	<110	240000	11

CONSTITUENT	UNITS/ DEPTH	B-556 B-556-20 7/20/2004 19'-20'	B-556 B-556-28 7/20/2004 27'-28'	B-557 B-557-12 7/20/2004 11'-12'	B-557 B-557-24 7/20/2004 23'-24'	B-558 B-558-12 7/19/2004 11'-12'	B-558 B-558-18 7/19/2004 17'-18'	B-558 B-558-28 7/19/2004 27'-28'	B-559 B-559-19 7/19/2004 18'-19'	B-559 B-559-28 7/19/2004 27'-28'	B-560 B-560-13 7/16/2004 12'-13'	B-560 B-560-20 7/16/2004 19'-20'	B-560 B-560-28 7/16/2004 27'-28'	B-561 B-561-13 7/15/2004 12'-13'	B-561 B-561-19 7/15/2004 18'-19'
Benzene	(ug/kg)	3350	2.1	30.8	0.9	9.5	90.5	1.6	1.4	0.9	86.8	10.4	2.3	204	3.3
Ethylbenzene	(ug/kg)	4510	2.3	1030	< 0.9	5	20.9	1	0.8	< 0.7	18600	2.1	2.2	1600	3.9
Toluene	(ug/kg)	10400	5	9.9	1.1	2.5	71.3	2.2	2.1	1.3	150	6.1	2.8	<86.6	2.8
Xylene (total)	(ug/kg)	13900	4.6	532	1.2	52.1	82.1	2.8	2.2	1.3	19100	4.5	3.9	2060	5.6
Acenaphthene	(ug/kg)	12000	<120	6200	23	820	42	12	<11	25	72000	14	65	27000	20
Acenaphthylene	(ug/kg)	52000	<140	1500	<11	320	400	<10	<11	29	6300	<11	11	3300	<11
Anthracene	(ug/kg)	28000	<120	4200	23	190	19	<10	<11	<11	37000	14	65	11000	16
Benzo(a)anthracene	(ug/kg)	13000	<100	2300	17	140	17	<10	<11	<11	17000	19	68	5300	12
Benzo(a)pyrene	(ug/kg)	17000	<93	1900	14	130	15	<10	<11	<11	22000	18	55	5500	<11
Benzo(b)fluoranthene	(ug/kg)	11000	<96	1600	12	100	<11	<10	<11	<11	16000	15	51	3900	<11
Benzo(ghi)perylene	(ug/kg)	3000	<120	500	<11	47	<11	<10	<11	<11	4800	<11	24	1500	<11
Benzo(k)fluoranthene	(ug/kg)	3300	<100	450	<11	32	<11	<10	<11	<11	5100	<11	12	1200	<11
Chrysene	(ug/kg)	14000	<110	2100	16	140	17	<10	<11	<11	18000	19	48	5900	13
Dibenzo(a,h)anthracene	(ug/kg)	960	<100	<240	<11	15	<11	<10	<11	<11	1300	<11	<11	430	<11
Fluoranthene	(ug/kg)	30000	<100	4200	27	430	29	15	<11	<11	41000	29	91	9400	20
Fluorene	(ug/kg)	31000	<120	5300	20	320	62	<10	<11	<11	44000	<11	59	15000	18
Indeno(1,2,3-cd)pyrene	(ug/kg)	2800	<110	410	<11	39	<11	<10	<11	<11	4400	<11	16	1300	<11
Naphthalene	(ug/kg)	240000	<150	450	53	28	2500	31	13	16	290000	57	200	29000	110
Phenanthrene	(ug/kg)	90000	<100	12000	70	2100	69	33	<11	<11	120000	50	200	37000	51
Pyrene	(ug/kg)	47000	<100	6400	40	630	44	22	<11	<11	63000	44	140	14000	29

CONSTITUENT	UNITS/ DEPTH	B-561 B-561-32 7/15/2004 31'-32'	B-562 B-562-14 7/15/2004 13'-14'	B-562 B-562-28 7/15/2004 27'-28'	UTB-01 UTB-01-01 12/4/1990 21'-23'	UTB-01 UTB-01-02 12/4/1990 27'-28'	UTB-03 UTB-03-01 11/29/1990 11'-3.5'	UTB-03 UTB-03-02 11/29/1990 18.5'-23.5'	UTB-10 UTB-10-02 11/28/1990 14'-19'	UTB-11 UTB-11-02 12/3/1990 21'-22'	UTB-14 UTB-14-02 12/6/1990 32'-33'	UTB-15 UTB-15-S02 12/13/1991 33'-35'	UTB-16 UTB-16-02 12/6/1990 16.5'-18'	UTB-18 UTB-18-02 12/7/1990 17'-18'	UTB-20 UTB-20-S01 12/11/1991 17'-18'
Benzene	(ug/kg)	1.5	6260	2	680	<310	<310	<310	<310	<310	<310	<310	<310	<310	<310
Ethylbenzene	(ug/kg)	<0.8	58500	1.1	5600	<310	<310	<310	<310	<310	<310	<310	<310	<310	<310
Toluene	(ug/kg)	1.7	499	4.1	1200	<310	450	<310	<310	<310	<310	<310	<310	<310	<310
Xylene (total)	(ug/kg)	1.7	54300	3.6	6300	<310	<310	<310	<310	<310	<310	<310	<310	<310	<310
Acenaphthene	(ug/kg)	<11	93000	14	78000	<330	940	<330	<330	<330	<330	2700	<330	<490	<5
Acenaphthylene	(ug/kg)	<11	12000	<11	34000	<330	390	<330	<330	<330	<330	<8	<330	<490	<8
Anthracene	(ug/kg)	<11	52000	<11	56000	<330	<330	<330	<330	<330	<330	120	<330	<490	< 0.7
Benzo(a)anthracene	(ug/kg)	<11	26000	<11	30000	<330	<330	<330	<330	<330	<330	110	<330	<490	<43
Benzo(a)pyrene	(ug/kg)	<11	22000	<11	24000	<330	<330	<330	<330	<330	<330	290	<330	520	<7.7
Benzo(b)fluoranthene	(ug/kg)	<11	18000	<11	20000	<330	<330	<330	<330	<330	<330	<1	<330	850	<1
Benzo(ghi)perylene	(ug/kg)	<11	6200	<11	<19000	<330	<330	<330	<330	<330	<330	65	<330	<490	<4.7
Benzo(k)fluoranthene	(ug/kg)	<11	6000	<11	<19000	<330	<6600	<330	<330	<330	<330	< 0.4	<330	<490	< 0.4
Chrysene	(ug/kg)	<11	26000	<11	34000	<330	<330	<330	<330	<330	<330	170	<330	430	<1
Dibenzo(a,h)anthracene	(ug/kg)	<11	<3000	<11	<19000	<330	<330	<330	<330	<330	<330	<2.8	<330	<490	<2.8
Fluoranthene	(ug/kg)	<11	54000	12	60000	<330	<330	<330	<330	<330	<330	500	<330	400	< 0.7
Fluorene	(ug/kg)	<11	66000	<11	70000	<330	530	<330	<330	<330	<330	170	<330	<490	< 0.6
Indeno(1,2,3-cd)pyrene	(ug/kg)	<11	5200	<11	<19000	<330	<330	<330	<330	<330	<330	55	<330	<490	<1
Naphthalene	(ug/kg)	<11	320000	41	320000	<330	<330	<330	<330	<330	<330	1300	<330	<490	<5
Phenanthrene	(ug/kg)	<11	170000	37	160000	<330	1200	<330	<330	<330	<330	390	<330	<490	14
Pyrene	(ug/kg)	<11	78000	19	74000	<330	<330	<330	<330	<330	<330	400	<330	350	<2.5

CONSTITUENT	UNITS/ DEPTH	UTB-21 UTB-21-S02 12/12/1991 20'-23'	UTB-22 UTB-22-S02 12/12/1991 20'-23'	UTB-23 UTB-23-S02 12/14/1991 26'-28'	UTB-24 UTB-24-S02 12/15/1991 21'-23'	UTB-25 UTB-25-S02 12/14/1991 26'-28'	UTB-26 UTB-26-S02 12/15/1991 21'-23'	UTB-27 UTB-27-S02 12/16/1991 21'-23'
Benzene	(ug/kg)	<310	<310	730	610	<310	<310	2600
Ethylbenzene	(ug/kg)	<310	<310	<310	<310	<310	<310	<310
Toluene	(ug/kg)	<310	<310	<310	<310	<310	<310	<310
Xylene (total)	(ug/kg)	<310	<310	<310	<310	<310	<310	<310
Acenaphthene	(ug/kg)	130	<5	28	84	34	<5	<11
Acenaphthylene	(ug/kg)	<8	<8	<8	47	<8	<8	18
Anthracene	(ug/kg)	< 0.7	< 0.7	16	74	23	2	<1.4
Benzo(a)anthracene	(ug/kg)	<4.3	<4.3	35	100	<4.3	<4.3	<29
Benzo(a)pyrene	(ug/kg)	<7.7	<7.7	120	200	270	<7.7	<20
Benzo(b)fluoranthene	(ug/kg)	<1	<1	<1	<1	<1	<1	<1.9
Benzo(ghi)perylene	(ug/kg)	<4.7	<4.7	<4.7	150	47	<4.7	<9.3
Benzo(k)fluoranthene	(ug/kg)	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.9
Chrysene	(ug/kg)	<1	<1	<35	73	<1	22	8
Dibenzo(a,h)anthracene	(ug/kg)	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8	<5.7
Fluoranthene	(ug/kg)	< 0.7	< 0.7	160	340	220	< 0.7	<1.4
Fluorene	(ug/kg)	<0.6	<0.6	< 0.6	89	590	<0.6	10
Indeno(1,2,3-cd)pyrene	(ug/kg)	<1	<1	<1	63	<1	<1	<1.9
Naphthalene	(ug/kg)	70	<330	130	460	350	15	91
Phenanthrene	(ug/kg)	47	140	77	270	97	22	30
Pyrene	(ug/kg)	<2.5	<2.5	110	350	190	220	180
Notes:		ug/kg	Micrograms per k	ilogram				

TABLE 5-14
TIER 1 COMPARISON VOC RESULTS FOR GREATER THAN 10 FT DEPTH
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

CONSTITUENT	B-501 B-501-24 7/13/2004 23'-24'	B-505 B-505-11 7/14/2004 10'-11'	B-506 B-506-28 7/22/2004 27'-28'	B-507 B-507-19 7/21/2004 18'-19'	B-513 B-513-12 7/12/2004 11'-12'	B-515 B-515-32 7/16/2004 31'-32'	B-553 B-553-32 7/14/2004 31'-32'	B-556 B-556-28 7/20/2004 27'-28'	B-557 B-557-12 7/20/2004 11'-12'	B-562 B-562-14 7/15/2004 13'-14'
1,1,1-Trichloroethane	<0.7	<211	<0.9	<1040	<0.8	<0.7	<0.7	<0.8	<1.8	<166
1,1,2,2-Tetrachloroethane	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
1,1,2-Trichloroethane	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
1,1-Dichloroethane	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
1,1-Dichloroethylene	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
1,2-Dichloroethane	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
1,2-Dichloropropane	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
2-Hexanone	<7.4	<2110	<9.2	<10400	<8.1	<7.2	<7.3	<7.8	<18.0	<1660
Acetone	8.3	<2110	57.5	20000	19	32	37.1	31	67	<1660
Bromodichloromethane	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Bromoform	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Carbon Disulfide	<2.2	<633	<2.8	<3130	<2.4	<2.2	<2.2	<2.3	< 5.4	<499
Carbon tetrachloride	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Chlorobenzene	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Chloroethane	<1.5	<422	<1.8	<2090	<1.6	<1.4	<1.4	<1.6	<3.6	<333
Chloroform	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
cis-1,2-Dichloroethylene	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
cis-1,3-Dichloropropene	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Dibromochloromethane	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Ethene, 1,2-dichloro-, (E)-	<0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Methyl bromide	<1.5	<422	<1.8	<2090	<1.6	<1.4	<1.4	<1.6	<3.6	<333
Methyl chloride	<1.5	<422	<1.8	<2090	<1.6	<1.4	<1.4	<1.6	<3.6	<333
Methyl ethyl ketone	<7.4	<2110	<9.2	<10400	<8.1	<7.2	<7.3	<7.8	<18.0	<1660
Methyl isobutyl ketone (MIBK)	<7.4	<2110	<9.2	<10400	<8.1	<7.2	<7.3	<7.8	<18.0	<1660
Methyl tert-butyl ether	< 0.4	<105	<0.5	<522	< 0.4	< 0.4	< 0.4	< 0.4	< 0.9	<83.1
Methylene chloride	< 0.7	<211	1.6	1300	1	< 0.7	0.8	1.1	<1.8	<166
Styrene	<0.7	<211	< 0.9	938000	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Tetrachloroethylene	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
trans-1,3-Dichloropropene	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Trichloroethylene	< 0.7	<211	< 0.9	<1040	<0.8	< 0.7	< 0.7	<0.8	<1.8	<166
Vinyl chloride	<0.4	<105	<0.5	<522	<0.4	<0.4	<0.4	<0.4	<0.9	<83.1

Notes:	ug/kg	Micrograms per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA
		for this constitiuent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO

CONSTITUENT	UNITS/DEPTH	B-501 B501-15 (14-15) 7/13/2004 15	B-501 B-501-24 (23-24) 7/13/2004 23'-24'	B-505 B-505-11 (10-11) 7/14/2004 10'-11'	B-506 B-506-28 (27-28) 7/22/2004 27'-28'	B-507 B-507-19 (18-19) 7/21/2004 18'-19'	B-513 B-513-12 (11-12) 7/12/2004 11'-12'	B-515 B-515-32 (31-32) 7/16/2004 31'-32'	B-553 B-553-32 (31-32) 7/14/2004 31'-32'	B-556 B-556-28 (27-28) 7/20/2004 27'-28'	B-557 B-557-12 (11-12) 7/20/2004 11'-12'	B-562 B-562-14 (13-14) 7/15/2004 13'-14'
1,2,4-Trichlorobenzene	(mg/kg)		<0.148	<4.29	<0.147	<20.6	<0.148	<0.142	<0.145	<0.143	<0.329	<4.13
2,4,5-Trichlorophenol	(mg/kg)		<0.105	<3.07	<0.105	<14.7	<0.106	<0.101	<0.104	<0.102	<0.235	<2.95
2,4,6-Trichlorophenol	(mg/kg)		<0.140	<4.07	<0.139	<19.5	<0.140	<0.134	<0.137	<0.135	<0.311	<3.91
2,4-Dichlorophenol	(mg/kg)		<0.134	<3.91	<0.134	<18.8	<0.135	<0.129	<0.132	<0.130	<0.299	<3.75
2,4-Dimethylphenol	(mg/kg)		<0.140	<4.10	<0.140	<20.0	<0.140	< 0.140	<0.140	<0.140	< 0.310	<3.90
2,4-Dinitrophenol	(mg/kg)		<0.119	<3.45	<0.118	<16.6	<0.119	<0.114	<0.117	<0.115	<0.264	<3.32
2,4-Dinitrotoluene	(mg/kg)		<0.115	<3.36	<0.115	<16.1	<0.116	<0.111	<0.113	<0.112	<0.257	<3.23
2,6-Dinitrotoluene	(mg/kg)		<0.120	<3.49	<0.120	<16.7	<0.120	<0.115	<0.118	<0.116	<0.267	<3.35
2-Chloronaphthalene	(mg/kg)		<0.133	<3.87	<0.133	<18.6	<0.134	<0.128	<0.131	<0.129	<0.296	<3.72
2-Chlorophenol	(mg/kg)		<0.141	<4.10	<0.141	<19.7	<0.141	<0.135	<0.138	<0.136	<0.314	<3.94
2-Methylnaphthalene	(mg/kg)		<0.130	8	<0.130	1400	<0.130	< 0.130	<0.130	<0.130	<0.290	190
3,3-Dichlorobenzidine	(mg/kg)		<0.095	<2.78	< 0.095	<13.3	<0.096	< 0.092	< 0.094	< 0.092	<0.212	<2.67
4,6-Dinitro-o-cresol	(mg/kg)		<0.120	<3.49	<0.120	<16.7	<0.120	<0.115	<0.118	<0.116	<0.267	<3.35
4-Bromophenyl phenyl ether	(mg/kg)		<0.102	<2.97	<0.102	<14.3	<0.102	< 0.098	<0.100	< 0.099	<0.227	<2.85
4-Chlorophenyl phenyl ether	(mg/kg)		<0.110	<3.20	<0.110	<15.3	<0.110	<0.106	<0.108	<0.106	<0.245	<3.07
Bis(2-chloroethoxy)methane	(mg/kg)		<0.130	<3.78	<0.129	<18.1	<0.130	<0.125	<0.128	<0.125	<0.289	<3.63
Bis(2-chloroethyl)ether	(mg/kg)		<0.157	<4.58	<0.157	<22.0	<0.158	<0.151	<0.155	<0.152	< 0.351	<4.41
Bis(2-chloroisopropyl)ether	(mg/kg)		<0.126	<3.68	<0.126	<17.7	<0.127	<0.122	<0.124	<0.122	<0.282	<3.54
Bis(2-ethylhexyl)phthalate (BEHP)	(mg/kg)		0.836	<3.78	<0.129	<18.1	<0.130	0.667	0.3	0.25	<0.289	<3.63
Butyl benzyl phthalate	(mg/kg)		<0.112	<3.26	<0.112	<15.7	<0.112	<0.108	<0.110	<0.108	<0.250	<3.13
Carbazole	(mg/kg)		<0.140	<3.90	<0.140	<19.0	<0.140	< 0.130	<0.130	<0.130	< 0.300	<3.80
Dibenzofuran	(mg/kg)		<0.140	<4.10	<0.140	860	<0.140	< 0.130	<0.140	<0.140	0.54	8.8
Diethyl phthalate	(mg/kg)		<0.106	<3.10	<0.106	<14.9	<0.107	< 0.102	<0.105	<0.103	<0.237	<2.98
Dimethyl phthalate	(mg/kg)		<0.101	<2.94	<0.101	<14.1	<0.101	< 0.097	< 0.099	<0.098	<0.225	<2.82
Di-n-butyl phthalate	(mg/kg)		<0.114	<3.32	<0.114	<16.0	<0.115	<0.110	<0.112	<0.110	<0.254	<3.20
Di-n-octyl phthalate	(mg/kg)		<0.115	<3.36	<0.115	<16.1	<0.116	<0.111	<0.113	<0.112	<0.257	<3.23
Hexachlorobenzene	(mg/kg)		<0.109	<3.16	<0.108	<15.2	<0.109	< 0.105	<0.107	<0.105	<0.242	<3.04
Hexachlorobutadiene	(mg/kg)		<0.172	<5.00	<0.172	<24.0	<0.173	< 0.165	< 0.169	<0.166	<0.383	<4.81
Hexachlorocyclopentadiene	(mg/kg)		<0.113	<3.29	<0.113	<15.8	<0.114	< 0.109	<0.111	<0.109	<0.252	<3.17
Hexachloroethane	(mg/kg)		<0.185	<5.39	<0.185	<25.9	<0.186	<0.178	<0.182	<0.179	< 0.413	<5.18
Isophorone	(mg/kg)		<0.131	<3.81	<0.131	<18.3	<0.131	<0.126	<0.129	<0.127	<0.292	<3.66
m & p-Cresol(s)	(mg/kg)		<0.140	<4.07	<0.139	<19.5	<0.140	<0.134	<0.137	<0.135	<0.311	<3.91
m-Dichlorobenzene	(mg/kg)		<0.186	<5.42	<0.186	<26.0	<0.187	<0.179	<0.183	<0.180	< 0.415	<5.21
m-Nitroaniline	(mg/kg)		<0.091	<2.65	<0.091	<12.7	<0.091	< 0.088	< 0.089	<0.088	<0.203	<2.54
Nitrobenzene	(mg/kg)		<0.139	<4.03	<0.138	<19.4	<0.139	<0.133	<0.136	<0.134	<0.309	<3.88
N-Nitrosodiphenylamine	(mg/kg)		<0.102	<2.97	<0.102	<14.3	<0.102	< 0.098	<0.100	< 0.099	<0.227	<2.85
N-Nitrosodipropylamine	(mg/kg)		<0.122	<3.55	<0.122	<17.1	<0.122	<0.117	< 0.120	<0.118	<0.272	<3.41
o-Cresol	(mg/kg)		<0.130	<3.80	<0.130	<18.0	<0.130	< 0.130	<0.130	<0.130	<0.290	<3.70
o-Dichlorobenzene	(mg/kg)		<0.176	<5.13	<0.176	<24.6	<0.177	<0.170	<0.173	<0.171	<0.393	<4.93
o-Nitroaniline	(mg/kg)		<0.101	<2.94	<0.101	<14.1	<0.101	< 0.097	< 0.099	< 0.098	<0.225	<2.82
o-Nitrophenol	(mg/kg)		<0.124	<3.62	<0.124	<17.4	<0.125	<0.119	<0.122	<0.120	<0.277	<3.48
p-Chloroaniline	(mg/kg)		< 0.134	<3.91	<0.134	<18.8	< 0.135	< 0.129	< 0.132	<0.130	<0.299	<3.75
p-Chloro-m-cresol	(mg/kg)		<0.122	<3.55	<0.122	<17.1	<0.122	<0.117	< 0.120	<0.118	<0.272	<3.41
PCP	(mg/kg)		< 0.732	<21.3	< 0.730	<102	< 0.735	< 0.704	< 0.720	<0.708	<1.63	<20.5
p-Dichlorobenzene	(mg/kg)		<0.176	<5.13	< 0.176	<24.6	<0.177	< 0.170	< 0.173	<0.171	<0.393	<4.93
Phenol	(mg/kg)		< 0.130	<3.70	< 0.130	<18.0	< 0.130	< 0.120	< 0.130	<0.120	<0.290	<3.60
p-Nitroaniline	(mg/kg)		<0.101	<2.94	<0.101	<14.1	<0.101	< 0.097	< 0.099	<0.098	<0.225	<2.82
p-Nitrophenol	(mg/kg)		<0.109	<3.16	<0.108	<15.2	<0.109	< 0.105	<0.107	<0.105	<0.242	<3.04

Notes:	mg/kg	Milligrams per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA for this constituent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 BO

CONSTITUENT	UNITS/DEPTH	B-501 B-501-24 7/13/2004 23'-24'	B-502 B-502-12 7/13/2004 11'-12'	B-505 B-505-11 7/14/2004 10'-11'	B-506 B-506-28 7/22/2004 27'-28'	B-507 B-507-19 7/21/2004 18'-19'	B-513 B-513-12 7/12/2004 11'-12'	B-515 B-515-32 7/16/2004 31-'32'	B-553 B-553-32 7/14/2004 31'-32'	B-556 B-556-28 7/20/2004 27'-28'	B-557 B-557-12 7/20/2004 11'-12'	B-562 B-562-14 7/15/2004 13'-14'	UTB-01 UTB-01-01 12/4/1990 21'-23'
Arsenic	(mg/kg)	3.46	7.47	10.1	4.57	<2.36	4.07	7.64	5.46	3.69	12.4	<2.50	
Barium	(mg/kg)	14.7	52	77.2	20.1	4.88	33.1	13.3	14.6	17.2	109	18.8	
Cadmium	(mg/kg)	0.1	0.17	0.16	< 0.20	<0.19	< 0.20	0.23	< 0.20	< 0.19	< 0.20	< 0.20	
Chromium	(mg/kg)	13.6	11.8	22.3	11.5	2.49	18.2	9.04	10.1	11.4	23.3	7.18	
Cyanide	(mg/kg)												
Lead	(mg/kg)	8.07	12.3	14.9	9.98	3.2	10.9	8.93	8.62	9.94	19.1	7.92	
Mercury	(mg/kg)	0.009	0.05	0.043	0.008	< 0.012	0.006	0.007	0.009	0.008	0.009	0.007	
Selenium	(mg/kg)	<3.77	<3.85	<3.85	<4.00	<3.77	<4.00	<3.85	<4.00	<3.77	<4.00	<4.00	
Silver	(mg/kg)	< 0.94	< 0.96	< 0.96	<1.00	< 0.94	<1.00	< 0.96	<1.00	< 0.94	<1.00	<1.00	

Notes:	mg/kg	Milligrams per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA for this constituent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO
	<0.05	Detection limit greater than RO due to dilution

CONSTITUENT	UNITS/DEPTH	UTB-03 UTB-0301 11/29/1990 11'-13'	UTB-03 UTB-03-02 11/29/1990 18.5'-23.5'	UTB-10 UTB-10-02 11/30/1990 14'-19'	UTB-15 UTB-15-S02 12/13/1991 33'-35'	UTB-20 UTB-20-S02 12/11/1991 17'-18'	UTB-21 UTB-21-S02 12/12/1991 20'-23'	UTB-22 UTB-22-S02 12/12/1991 20'-23'	UTB-23 UTB-23-S02 12/14/1991 26'-28'	UTB-24 UTB-24-S02 12/15/1991 21'-23'	UTB-25 UTB-25-S02 12/14/1991 26'-28'	UTB-26 UTB-26-S02 12/15/1991 21'-23'
Arsenic	(mg/kg)											
Barium	(mg/kg)											
Cadmium	(mg/kg)											
Chromium	(mg/kg)											
Cyanide	(mg/kg)	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Lead	(mg/kg)											
Mercury	(mg/kg)											
Selenium	(mg/kg)											
Silver	(mg/kg)											

Notes:	mg/kg	Milligrams per kilogram
	(1)	Provisional remediation objective provided by IEPA
		No remediation objective has been established by the IEPA for this constituent for this exposure route
	<12	Not detected at the level identified
		Analytical result exceeds one or more Tier 1 RO
	<0.05	Detection limit greater than RO due to dilution

TABLE 5-17
ALL SOIL TPH RESULTS
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

		B-504 B-504-3 (2-3) 7/13/2004	B-510 B-510-2 (1-2) 7/12/2004	TP-503 TP-503 (3') 7/8/2004	TP-504 TP-504 (3') 7/8/2004	B-505 B-505-6 (5-6) 7/14/2004	B-512 B-512-8 (7-8)	B-513 B-513-8 (7-8) 7/12/2004
CONSTITUENT	UNITS	3'	2'	3'	3'	6'	8'	8'
Diesel	(mg/kg)	6720	50.9	21300	5410	25600	830	884
Kerosene	(mg/kg)	<663	<6.57	<1270	<227	<993	<62.3	<144
Mineral spirits	(mg/kg)	<663	<6.57	<1270	<227	<993	<62.3	<144
n-Butyl alcohol	(mg/kg)		<6.6					
TPH (as motor oil)	(mg/kg)	13200	97.9	3430	1280	5510	75	<144
Total TPH	(mg/kg)	19920	148.8	24730	6690	31110	905	884

CONSTITUENT	UNITS	B-516 B-516-5 (4-5') 7/22/2004 5'	B-551 B-551-10 (9-10) 7/15/2004 10'	B-558 B-558-7 (6-7') 7/19/2004 7'	TP-501 TP-501 (7') 7/8/2004 7'	TP-503A TP-503A (3.5') 7/8/2004 3.5'	TP-507 TP-507 (3.5') 7/7/2004 3.5'	TP-508 TP-508 (4') 7/8/2004 4'
Diesel	(mg/kg)	5410	699	946	1880	1210	9530	23500
Kerosene	(mg/kg)	<634	<68.0	<65.5	<155	<165	<414	<1070
Mineral spirits	(mg/kg)	<634	<68.0	<65.5	<155	<165	<414	<1070
n-Butyl alcohol	(mg/kg)							
TPH (as motor oil)	(mg/kg)	<634	139	<65.5	305	235	2980	5130
Total TPH	(mg/kg)	5410	838	946	2185	1445	12510	28630

CONSTITUENT	UNITS	B-501 B-501-15 (14-15) 7/13/2004 15'	B-503 B-503-11 (10-11) 7/13/2004 11'	B-504 B-504-21 (20-21) 7/14/2004 21'	B-506 B-506-17 (16-17) 7/22/2004 17'	B-507 B-507-19 (18-19) 7/21/2004 19'	B-508 B-508-11 (10-11) 7/19/2004 11'	B-509 B-509-18 (17-18) 7/21/2004 18'
Diesel	(mg/kg)	1050	222	8550	12900	23200	1510	<5.44
Kerosene	(mg/kg)	<141	<6.78	<539	<554	<3620	<64.7	8.58
Mineral spirits	(mg/kg)	<141	<6.78	<539	<554	<3620	<64.7	<5.44
n-Butyl alcohol	(mg/kg)					15		
TPH (as motor oil)	(mg/kg)	388	87	2490	<554	<3620	<64.7	<5.44
Total TPH	(mg/kg)	1438	309	11040	12900	23215	1510	8.58

Notes: mg/kg Milligrams per kilogram

<12 Not detected at the level identified</p>
Analytical result exceeds one or more Tier 1 RO

ND = TPH constituents not detected.

TABLE 5-17
ALL SOIL TPH RESULTS
CHAMPAIGN MGP SITE
CHAMPAIGN, ILLINOIS
AMERENIP

CONSTITUENT	UNITS	B-514 B-514-17 (16-17) 7/22/2004 17'	B-515 B515-19 (18-19) 7/16/2004 19'	B-550 B-550-11 (10-11) 7/20/2004 11'	B-553 B-553-24 (23-24) 7/14/2004 24'	B-554 B-554-18 (17-18) 7/15/2004 18'	B-556 B-556-20 (19-20) 7/20/2004 20'	B-557 B-557-12 (11-12) 7/20/2004 12'
Diesel	(mg/kg)	45900	811	1540	40400	5480	1010	467
Kerosene	(mg/kg)	<1690	<134	<63.9	<1320	<279	<56.8	<62.0
Mineral spirits	(mg/kg)	<1690	<134	<63.9	<1320	<279	<56.8	<62.0
n-Butyl alcohol	(mg/kg)							<6.1
TPH (as motor oil)	(mg/kg)	14800	<134	<63.9	8910	1190	<56.8	<62.0
Total TPH	(mg/kg)	60700	811	1540	49310	6670	1010	467

CONSTITUENT	UNITS	B-559 B-559-19 (18-19) 7/19/2004 19'	B-560 B-560-13 (12-13) 7/16/2004 13'	B-561 B561-10 (9-10) 7/15/2004 10'	B-562 B-562-14 (13-14) 7/15/2004 14'
Diesel	(mg/kg)	<5.44	2560		5190
Kerosene	(mg/kg)	<5.44	<174		<281
Mineral spirits	(mg/kg)	<5.44	<174		<281
n-Butyl alcohol	(mg/kg)			<6.1	<5.6
TPH (as motor oil)	(mg/kg)	<5.44	633		1030
Total TPH	(mg/kg)	ND	3193	ND	6220

Notes: mg/kg Milligrams per kilogram

<12 Not detected at the level identified

Analytical result exceeds one or more Tier 1 RO

ND = TPH constituents not detected.

TABLE 5-18 DUPLICATE RESULTS FOR BTEX and PAHS CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

		B-513	B-513	B-516	B-516	B-554	B-554	B-560	B-560	B-561	B-561
		B-513-2	B-513-2D	B-516-5	B-516-5D	B-554-3	B-554-3D	B-560-20	B-560-20D	B-561-32	B-561-32D
		7/12/2004 1'-2'	7/12/2004	7/22/2004	7/22/2004	7/15/2004	7/15/2004	7/16/2004	7/16/2004	7/15/2004	7/15/2004
CONSTITUENT	UNITS	ı -2 Primary	1'-2'	4'-5' Primary	4'-5'	2'-3' Primary	2'-3'	19'-20'	19'-20'	31'-32' Primary	31'-32'
			Duplicate		Duplicate		Duplicate	Primary	Duplicate		Duplicate
Acenaphthene	(mg/kg)	0.052	<0.063	7.5	3.27	<3.02	0.62	0.014	0.028	<0.011	<0.011
Acenaphthylene	(mg/kg)	0.1	< 0.063	4.97	3.69	9.15	11.7	<0.011	< 0.012	<0.011	<0.011
Anthracene	(mg/kg)	0.221	< 0.063	3.75	2.67	<2.81	3.1	0.014	0.027	<0.011	<0.011
Benzo(a)anthracene	(mg/kg)	0.803	0.18	7.19	7.73	<2.45	11.1	0.019	0.028	< 0.011	<0.011
Benzo(a)pyrene	(mg/kg)	0.821	0.19	15.5	15.4	8.5	20.9	0.018	0.03	< 0.011	<0.011
Benzo(b)fluoranthene	(mg/kg)	1.33	0.37	13.3	14.3	8.2	22.4	0.015	0.023	< 0.011	<0.011
Benzo(ghi)perylene	(mg/kg)	0.307	0.11	4.98	5.61	8.5	7.15	< 0.011	0.015	< 0.011	< 0.011
Benzo(k)fluoranthene	(mg/kg)	0.492	0.13	4.25	4.07	<2.42	7.71	< 0.011	< 0.012	< 0.011	< 0.011
Chrysene	(mg/kg)	0.934	0.26	8.45	8.08	4.3	16.7	0.019	0.026	< 0.011	< 0.011
Dibenzo(a,h)anthracene	(mg/kg)	0.12	< 0.063	1.3	1.5	<2.47	1.6	< 0.011	< 0.012	< 0.011	< 0.011
Fluoranthene	(mg/kg)	1.7	0.33	7.63	7.11	4.6	18.5	0.029	0.043	< 0.011	< 0.011
Fluorene	(mg/kg)	0.051	< 0.063	5.51	3.25	<2.91	2.3	< 0.011	0.017	< 0.011	< 0.011
Indeno(1,2,3-cd)pyrene	(mg/kg)	0.404	0.1	4.47	4.99	4.4	6.22	< 0.011	< 0.012	< 0.011	< 0.011
Naphthalene	(mg/kg)	0.052	0.096	23.9	9.25	<3.53	3.1	0.057	0.1	< 0.011	0.02
Phenanthrene	(mg/kg)	0.837	0.14	11.6	7.08	3.3	10.7	0.05	0.085	< 0.011	< 0.011
Pyrene	(mg/kg)	1.34	0.34	14.5	14.2	8.5	33.1	0.044	0.067	< 0.011	< 0.011
Toluene	(ug/kg)	3.2	2.7	289	199	211	261	6.1	2	1.7	1.8
Xylene (total)	(ug/kg)	1.8	1.2	1480	1670	624	668	4.5	1.6	1.7	1.8
Ethylbenzene	(ug/kg)	<1.1	<1.1	4720	8490	256	247	2.1	1	<0.8	<0.8
Benzene	(ug/kg)	7.6	3.9	656	752	180	147	10.4	2.6	1.5	1.4
	(5 9)										

TABLE 5-19 DUPLICATE RESULTS FOR VOCS CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS **AMERENIP**

		B-503 B503-3 (2-3) 7/13/2004	B-503 B503-3D (2-3) 7/13/2004	B-504 B504-7 (6-7) 7/13/2004	B-504 B504-7D (6-7) 7/13/2004	B-509 B509-8 (7-8') 7/21/2004	B-509 B509-8D (7-8') 7/21/2004	B-514 B514-3 (2-3') 7/22/2004	B-514 B514-3D (2-3') 7/22/2004	B-553 B553-32 (31-32) 7/14/2004	B-553 B553-32D (31-32 7/14/2004	B-556 B556-28 (27-28' 7/20/2004	B-556 B556-28D (27-28 7/20/2004	B-559 B559-8 (7-8') 7/19/2004	B-559 B559-8D (7-8') 7/19/2004
CONSTITUENT	UNITS	3 Primary	3 Duplicate 1	7 Primary	/ Duplicate 1	8 Primary	8 Duplicate 1	3 Primary	3 Duplicate 1	32 Primary	32 Duplicate 1	28 Primary	28 Duplicate 1	8 Primary	8 Duplicate 1
1,1,1-Trichloroethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
1,1,2,2-Tetrachloroethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
1,1,2-Trichloroethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	< 0.7	<25.6	<1.0
1,1-Dichloroethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	<0.7	<0.8	< 0.7	<25.6	<1.0
1,1-Dichloroethylene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	< 0.7	<25.6	<1.0
1,2-Dichloroethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	< 0.7	<25.6	<1.0
1,2-Dichloropropane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	< 0.7	<25.6	<1.0
2-Hexanone	(ug/kg)	<1730	<2330	<8830	<9820	<10.3	<9.6	<11.8	<11.9	<7.3	<7.0	<7.8	<7.3	<256	<9.5
Acetone	(ug/kg)	<1730	<2330	<8830	<9820	31	43	126	120	37.1	19	31	26	460	129
Benzene	(ug/kg)	13900	11100	20800	26300	4.6	4.7	32.6	19.2	3.5	2.1	2.1	1.1	<12.8	2.2
Bromodichloromethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	< 0.7	<25.6	<1.0
Bromoform	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	< 0.7	<25.6	<1.0
Carbon Disulfide	(ug/kg)	<520	<699	<2650	<2950	<3.1	4.7	10.9	5.9	<2.2	<2.1	<2.3	<2.2	<76.7	<2.9
Carbon tetrachloride	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	<0.7	<25.6	<1.0
Chlorobenzene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Chloroethane	(ug/kg)	<347	<466	<1770	<1960	<2.1	<1.9	<2.4	<2.4	<1.4	<1.4	<1.6	<1.5	<51.1	<1.9
Chloroform	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
cis-1,2-Dichloroethylene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
cis-1,3-Dichloropropene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Dibromochloromethane	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	< 0.7	< 0.7	<0.8	<0.7	<25.6	<1.0
Ethene,1,2-dichloro-,(E)-	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Ethylbenzene	(ug/kg)	4240	4030	145000	203000	3.8	3.5	17.4	8	1.5	0.9	2.3	8.0	<25.6	1.7
Methyl bromide	(ug/kg)	<347	<466	<1770	<1960	<2.1	<1.9	<2.4	<2.4	<1.4	<1.4	<1.6	<1.5	<51.1	<1.9
Methyl chloride	(ug/kg)	<347	<466	<1770	<1960	<2.1	<1.9	<2.4	<2.4	<1.4	<1.4	<1.6	<1.5	<51.1	<1.9
Methyl ethyl ketone	(ug/kg)	<1730	<2330	<8830	<9820	<10.3	<9.6	<11.8	<11.9	<7.3	<7.0	<7.8	<7.3	460	18.4
Methyl isobutylketone (MIBK)	(ug/kg)	<1730	<2330	<8830	<9820	<10.3	<9.6	<11.8	<11.9	<7.3	<7.0	<7.8	<7.3	<256	<9.5
Methyl tert-butyl ether	(ug/kg)	<86.6	<117	<441	<491	<0.5	<0.5	<0.6	<0.6	< 0.4	<0.4	< 0.4	<0.4	<12.8	<0.5
Methylene chloride	(ug/kg)	<173	<233	<883	<982	<1.0	1.7	1.6	1.9	0.8	<0.7	1.1	<0.7	<25.6	1.6
Styrene	(ug/kg)	<173	<233	<883	<982	<1.0	1.4	3.2	2.3	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Tetrachloroethylene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Toluene	(ug/kg)	6280	5670	10900	14800	1.4	6.9	10.3	5.7	4.5	3	5	2.3	<25.6	5.5
trans-1,3-Dichloropropene	(ug/kg)	<173	<233	<883	<982	<1.0	<1.0	<1.2	<1.2	<0.7	<0.7	<0.8	<0.7	<25.6	<1.0
Trichloroethylene	(ug/kg)	<173	<233	<883	<982	<1.0	1	<1.2	<1.2	<0.7	<0.7	<0.8	< 0.7	<25.6	<1.0
Vinyl chloride	(ug/kg)	<86.6	<117	<441	<491	<0.5	<0.5	<0.6	<0.6	<0.4	< 0.4	<0.4	<0.4	<12.8	<0.5
Xylene (total)	(ug/kg)	9920	8750	140000	196000	12	13.8	25.4	11.1	3.6	3.1	4.6	2.2	46	5.2

Notes: mg/kg Milligrams per kilogram

(1) Provisional remediation objective provided by IEPA

----- No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

TABLE 5-20 DUPLICATE RESULTS FOR SVOCS CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

00110717117117		B-503 B-503-3 7/13/2004 2'-3'	B-503 B-503-3D 7/13/2004 2'-3'	B-504 B-504-7 7/13/2004 6'-7'	B-504 B-504-7D 7/13/2004 6'-7'	B-509 B-509-8 7/21/2004 7'-8'	B-509 B-509-8D) 7/21/2004 7'-8'	B-514 B-514-3 7/22/2004 2'-3'	B-514 B-514-3D 7/22/2004 2'-3'	B-553 B-553-32 7/14/2004 31'-32'	B-553 B-553-32D 7/14/2004 31'-32'	B-556 B-556-28 7/20/2004 27'-28'	B-556 B-556-28D 7/20/2004 27'-28'	B-559 B-559-8 7/19/2004 7'-8'	B-559 B-559-8D 7/19/2004 7'-8'
CONSTITUENT	UNITS	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate	Primary	Duplicate
1,2,4-Trichlorobenzene	(mg/kg)	<50.3	<77.4	<60.7	<61.5	< 0.856	<4.32	<2.12	<3.19	<0.145	<0.143	<0.143	<0.147	<0.170	<0.163
2,4,5-Trichlorophenol	(mg/kg)	<35.9	<55.3	<43.3	<43.9	<0.611	<3.09	<1.52	<2.28	<0.104	<0.102	<0.102	<0.105	<0.122	<0.116
2,4,6-Trichlorophenol	(mg/kg)	<47.7	<73.3	<57.5	<58.3	< 0.811	<4.10	<2.01	<3.03	< 0.137	<0.135	< 0.135	<0.139	<0.161	< 0.154
2,4-Dichlorophenol	(mg/kg)	<45.8	<70.4	<55.2	<55.9	<0.778	<3.93	<1.93	<2.91	<0.132	<0.130	<0.130	<0.134	<0.155	<0.148
2,4-Dimethylphenol	(mg/kg)	<48.0	<73.9	<57.9	<58.7	< 0.817	<4.13	<2.03	<3.05	<0.138	<0.137	<0.136	<0.141	<0.162	<0.155
2,4-Dinitrophenol	(mg/kg)	<40.5	<62.2	<48.8	<49.5	<0.688	<3.48	<1.71	<2.57	<0.117	<0.115	<0.115	<0.118	<0.137	<0.131
2,4-Dinitrotoluene	(mg/kg)	<39.3	<60.5	<47.4	<48.1	< 0.669	<3.38	<1.66	<2.50	<0.113	<0.112	<0.112	<0.115	<0.133	<0.127
2,6-Dinitrotoluene	(mg/kg)	<40.9	<62.8	<49.3	<49.9	< 0.695	<3.51	<1.72	<2.59	<0.118	<0.116	<0.116	<0.120	<0.138	<0.132
2-Chloronaphthalene	(mg/kg)	<45.4	<69.8	<54.7	<55.5	< 0.772	<3.90	<1.91	<2.88	<0.131	<0.129	<0.129	<0.133	<0.153	<0.147
2-Chlorophenol	(mg/kg)	<48.0	<73.9	<57.9	<58.7	<0.817	<4.13	<2.03	<3.05	<0.138	<0.137	<0.136	<0.141	<0.162	< 0.155
2-Methylnaphthalene	(mg/kg)	<45.0	<69.2	1180	1280	<0.766	<3.87	<1.90	<2.86	< 0.130	<0.128	<0.128	< 0.132	< 0.152	<0.146
3,3-Dichlorobenzidine	(mg/kg)	<32.5	<50.0	<39.2	<39.8	< 0.553	<2.80	<1.37	<2.06	< 0.094	< 0.092	< 0.092	< 0.095	< 0.110	< 0.105
4,6-Dinitro-o-cresol	(mg/kg)	<40.9	<62.8	<49.3	<49.9	< 0.695	<3.51	<1.72	<2.59	<0.118	<0.116	<0.116	<0.120	<0.138	<0.132
4-Bromophenyl phenyl ether	(mg/kg)	<34.8	<53.5	<42.0	<42.5	< 0.592	<2.99	<1.47	<2.21	< 0.100	< 0.099	< 0.099	< 0.102	<0.118	< 0.113
4-Chlorophenyl phenyl ether	(mg/kg)	<37.4	<57.6	<45.2	<45.8	< 0.637	<3.22	<1.58	<2.38	<0.108	<0.106	<0.106	<0.110	< 0.127	<0.121
Bis(2-chloroethoxy)methane	(mg/kg)	<44.3	<68.1	<53.4	<54.1	< 0.753	<3.80	<1.87	<2.81	<0.128	<0.126	<0.125	<0.129	< 0.150	< 0.143
Bis(2-chloroethyl)ether	(mg/kg)	<53.7	<82.6	<64.8	<65.7	< 0.914	<4.62	<2.27	<3.41	< 0.155	< 0.153	<0.152	<0.157	<0.182	< 0.174
Bis(2-chloroisopropyl)ether	(mg/kg)	<43.1	<66.3	<52.0	<52.7	< 0.733	<3.71	<1.82	<2.74	<0.124	<0.123	<0.122	<0.126	<0.146	<0.139
Bis(2-ethylhexyl)phthalate (BEHP)	(mg/kg)	<44.3	<68.1	<53.4	<54.1	<0.753	<3.80	<1.87	<2.81	0.3	0.404	0.25	0.23	0.43	0.28
Butyl benzyl phthalate	(mg/kg)	<38.2	<58.8	<46.1	<46.7	< 0.650	<3.28	<1.61	<2.43	<0.110	<0.109	<0.108	<0.112	<0.129	<0.124
Carbazole	(mg/kg)	<46.1	<71.0	<55.7	<56.4	<0.785	<3.97	<1.95	<2.93	< 0.133	<0.131	<0.131	<0.135	<0.156	<0.149
Dibenzofuran	(mg/kg)	<47.7	<73.3	69	70	1.6	<4.10	<2.01	<3.03	< 0.137	<0.135	<0.135	<0.139	<0.161	<0.154
Diethyl phthalate	(mg/kg)	<36.3	<55.8	<43.8	<44.4	<0.618	<3.12	<1.53	<2.30	<0.105	<0.103	< 0.103	<0.106	<0.123	<0.117
Dimethyl phthalate	(mg/kg)	<34.4	<52.9	<41.5	<42.1	<0.585	<2.96	<1.45	<2.18	< 0.099	<0.098	<0.098	<0.101	<0.116	<0.111
Di-n-butyl phthalate	(mg/kg)	<39.0	<59.9	<47.0	<47.6	< 0.663	<3.35	<1.64	<2.47	<0.112	<0.111	<0.110	<0.114	< 0.132	<0.126
Di-n-octyl phthalate	(mg/kg)	<39.3	<60.5	<47.4	<48.1	< 0.669	<3.38	<1.66	<2.50	<0.113	<0.112	<0.112	<0.115	< 0.133	<0.127
Hexachlorobenzene	(mg/kg)	<37.1	<57.0	<44.7	<45.3	< 0.630	<3.19	<1.56	<2.35	< 0.107	<0.105	< 0.105	<0.108	<0.125	<0.120
Hexachlorobutadiene	(mg/kg)	<58.6	<90.2	<70.7	<71.7	< 0.997	<5.04	<2.47	<3.72	< 0.169	<0.167	<0.166	<0.172	<0.198	<0.190
Hexachlorocyclopentadiene	(mg/kg)	<38.6	<59.3	<46.5	<47.2	<0.656	<3.32	<1.63	<2.45	<0.111	<0.110	<0.109	<0.113	< 0.130	<0.125
Hexachloroethane	(mg/kg)	<63.2	<97.1	<76.2	<77.2	<1.07	<5.43	<2.67	<4.01	<0.182	<0.180	< 0.179	<0.185	<0.214	<0.204
Isophorone	(mg/kg)	<44.6	<68.6	<53.8	<54.6	< 0.759	<3.84	<1.88	<2.83	<0.129	<0.127	<0.127	<0.131	<0.151	<0.144
m & p-Cresol(s)	(mg/kg)	<47.7	<73.3	<57.5	<58.3	<0.811	<4.10	<2.01	<3.03	<0.137	<0.135	<0.135	<0.139	< 0.161	<0.154
m-Dichlorobenzene	(mg/kg)	<63.5	<97.7	<76.6	<77.7	<1.08	<5.46	<2.68	<4.03	<0.183	<0.181	<0.180	<0.186	<0.215	<0.206
m-Nitroaniline	(mg/kg)	<31.0	<47.7	<37.4	<37.9	<0.528	<2.67	<1.31	<1.97	< 0.089	<0.088	<0.088	<0.091	< 0.105	<0.100
Nitrobenzene	(mg/kg)	<47.3	<72.7	<57.0	<57.8	<0.804	<4.06	<1.99	<3.00	<0.136	<0.134	< 0.134	<0.138	< 0.160	<0.153
N-Nitrosodiphenylamine	(mg/kg)	<34.8	<53.5	<42.0	<42.5	<0.592	<2.99	<1.47	<2.21	< 0.100	< 0.099	< 0.099	<0.102	<0.118	<0.113
N-Nitrosodipropylamine	(mg/kg)	<41.6	<64.0	<50.2	<50.9	<0.708	<3.58	<1.76	<2.64	<0.120	<0.118	<0.118	<0.122	<0.141	<0.135
o-Cresol	(mg/kg)	<44.6	<68.6	<53.8	<54.6	< 0.759	<3.84	<1.88	<2.83	<0.129	<0.127	<0.127	<0.131	<0.151	<0.144
o-Dichlorobenzene	(mg/kg)	<60.1	<92.5	<72.5	<73.5	<1.02	<5.17	<2.54	<3.82	<0.173	<0.171	<0.171	<0.176	< 0.203	<0.195
o-Nitroaniline	(mg/kg)	<34.4	<52.9	<41.5	<42.1	<0.585	<2.96	<1.45	<2.18	< 0.099	<0.098	<0.098	<0.101	<0.116	<0.111
o-Nitrophenol	(mg/kg)	<42.4	<65.1	<51.1	<51.8	<0.721	<3.64	<1.79	<2.69	<0.122	<0.120	<0.120	<0.124	< 0.143	<0.137
p-Chloroaniline	(mg/kg)	<45.8	<70.4	<55.2	<55.9	<0.778	<3.93	<1.93	<2.91	<0.132	< 0.130	< 0.130	<0.134	<0.155	<0.148
p-Chloro-m-cresol	(mg/kg)	<41.6	<64.0	<50.2	<50.9	<0.708	<3.58	<1.76	<2.64	<0.120	<0.118	<0.118	<0.122	<0.141	<0.135
PCP	(mg/kg)	<250	<384	<301	<305	<4.25	<21.5	<10.5	<15.8	<0.720	<0.710	<0.708	< 0.730	<0.844	< 0.807
p-Dichlorobenzene	(mg/kg)	<60.1	<92.5	<72.5	<73.5	<1.02	<5.17	<2.54	<3.82	<0.173	<0.171	<0.171	<0.176	<0.203	<0.195
Phenol	(mg/kg)	<43.9	<67.5	<52.9	<53.6	< 0.746	<3.77	<1.85	<2.79	<0.126	<0.125	<0.124	<0.128	<0.148	< 0.142
p-Nitroaniline	(mg/kg)	<34.4	<52.9	<41.5	<42.1	<0.585	<2.96	<1.45	<2.18	< 0.099	<0.098	<0.098	<0.101	<0.116	<0.111
p-Nitrophenol	(mg/kg)	<37.1	<57.0	<44.7	<45.3	<0.630	<3.19	<1.56	<2.35	<0.107	<0.105	<0.105	<0.108	<0.125	<0.120

Notes: mg/kg Milligrams per kilogram

(1) Provisional remediation objective provided by IEPA

No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

TABLE 5-21 DUPLICATE RESULTS FOR METALS AND CYANIDE CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	UNITS	B-503 B503-3 (2-3) 7/13/2004 3 Primary	B-503 B503-3D (2-3) 7/13/2004 3 Duplicate 1	B-504 B504-7 (6-7) 7/13/2004 7 Primary	B-504 B504-7D (6-7) 7/13/2004 7 Duplicate 1	B-509 B509-8 (7-8') 7/21/2004 8 Primary	B-509 B509-8D (7-8') 7/21/2004 8 Duplicate 1	B-513 B513-2 (1-2) 7/12/2004 2 Primary	B-513 B513-2D (1-2) 7/12/2004 2 Duplicate 1	B-514 B514-3 (2-3') 7/22/2004 3 Primary
Cyanide	(mg/kg)	11.7	63.3					17	13.8	16.6
Arsenic	(mg/kg)	8.31	2.68	<2.31	5.86	12.7	16.5	13.6	10.6	11.3
Barium	(mg/kg)	99.6	41.3	63.8	60.6	117	165	129	124	128
Cadmium	(mg/kg)	0.3	0.23	0.31	0.38	0.1	0.33	0.36	0.15	0.29
Chromium	(mg/kg)	18.1	17.2	14.7	11.7	16.8	20	22.4	19.2	15.7
Lead	(mg/kg)	202	67.6	16.4	22	13.8	19.1	470	83.6	113
Mercury	(mg/kg)	0.167	0.172	0.026	0.048	0.028	0.041	0.352	0.053	4.2
Selenium	(mg/kg)	<4.00	<3.85	<3.70	<1.85	<3.92	<4.00	<4.00	<4.00	<3.85
Silver	(mg/kg)	<1.00	<0.96	<0.93	<0.46	<0.98	<1.00	<1.00	<1.00	<0.96

Notes: mg/kg Milligrams per kilogram

(1) Provisional remediation objective provided by IEPA

No remediation objective has been established by the IEPA for this constituent for this exposure route

<12 Not detected at the level identified

TABLE 5-21 DUPLICATE RESULTS FOR METALS AND CYANIDE CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

CONSTITUENT	UNITS	B-514 B514-3D (2-3') 7/22/2004 3 Duplicate 1	B-553 B553-32 (31-32) 7/14/2004 32 Primary	B-553 B553-32D (31-32 7/14/2004 32 Duplicate 1	B-556 B556-28 (27-28' 7/20/2004 28 Primary	B-556 B556-28D (27-28 7/20/2004 28 Duplicate 1	B-559 B559-8 (7-8') 7/19/2004 8 Primary	B-559 B559-8D (7-8') 7/19/2004 8 Duplicate 1
						•		
Cyanide	(mg/kg)	18.3						
Arsenic	(mg/kg)	13.4	5.46	2.98	3.69	2.2	14.5	8.95
Barium	(mg/kg)	134	14.6	11.9	17.2	16.8	226	147
Cadmium	(mg/kg)	0.45	< 0.20	< 0.19	< 0.19	< 0.19	0.54	0.44
Chromium	(mg/kg)	20.9	10.1	10.5	11.4	11.2	23.5	24.2
Lead	(mg/kg)	208	8.62	6.92	9.94	9.49	18.7	20.6
Mercury	(mg/kg)	4.46	0.009	0.007	0.008	0.009	0.049	0.056
Selenium	(mg/kg)	<3.85	<4.00	<3.77	<3.77	<3.70	<4.00	<3.77
Silver	(mg/kg)	<0.96	<1.00	<0.94	<0.94	<0.93	<1.00	<0.94
No	tes: mg/kg	mg/kg	Milligrams per kilogram					
	(1)	(1)	Provisional remediation ob	jective provided by IEPA				
			No remediation objective h	as been established by the	EPA for this constituent for	this exposure route		
	<12	<12	Not detected at the level id	lentified				
			Analytical result exceeds of	one or more Tier 1 RO				

TABLE 6-1 MANUFACTURED GAS PLANT RELATED CONSTITUENTS OF CONCERN COMPREHENSIVE SITE INVESTIGATION REPORT CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

<u>SOIL</u> <u>GROUNDWATER</u>

Inorganics Cyanide

Metals Chromium Lead Arsenic

Volatile Aromatics

Benzene Ethylbenzene Toluene Total Xylenes Styrene Acetone Methylene Chloride

Polycylic Aromatic Hydrocarbons

Acenaphthene
Acenaphthylene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Chrysene

Dibenzo (a,h,)anthracene

Dibenzofuran Fluorene

Indeno(1,2,3,cd)pyrene

Naphthalene Phenanthrene

2-methylnaphthalene

Volatile Aromatics

Benzene Ethylbenzene Toluene

Polycylic Aromatic Hydrocarbons

Acenaphthene
Acenaphthylene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene

Chrysene Fluoranthene Fluorene

Indeno(1,2,3,cd)pyrene

Naphthalene Phenanthrene

Pyrene

Table 6-2

TOC SAMPLE SUMMARY CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Location	Depth (Feet)	Soil Type	TOC (mg/kg)
CHPH 200-01	1	fill	16,900
CHPH 201-01	1	fill	23,100
CHPH 202-01	1	fill (coal)	276,000
CHPH 203-01	1	fill (coal)	111,000
CHPH 200-02	5	Silty CLAY	2,230
CHPH 201-02	9	CLAY	3,230
CHPH 202-02	10	CLAY	1,650
CHPH 203-02	10	Silty CLAY	11,500
CHPH 200-03	14	Sandy CLAY	13,600
CHPH 201-03	15	CLAY	7,300
CHPH 202-03	15	CLAY	2,570
CHPH 203-03	15	Silty CLAY	3,010

Notes:

mg/kg - milligrams per kilogram

TOC - total organic carbon

Average TOC for depths of 0'-3', 3'-10', and greater than 10'

Table 6-3

SOIL ATTENUATION SOURCE EVALUATION CHAMPAIGN MGP SITE CHAMPAIGN, ILLINOIS AMERENIP

Location	Depth (Feet)	TPH (mg/kg)	TOC
B-504-3	2-3	19,920	6000 ⁽¹⁾
TP-503-3	3	24,730	6000 ⁽¹⁾
TP-504-3	3	6,690	6000 ⁽¹⁾
B-505-6	5-6	31,110	2000 ⁽¹⁾
B-516-5	4-5	5,410	2000 ⁽¹⁾
TP-507-3.5	3.5	12,510	2000 ⁽¹⁾
TP-508-4	4	28,630	2000 ⁽¹⁾
B-504-21	20-21	11,040	4293 ⁽²⁾
B-506-17	16-17	12,900	4293 ⁽²⁾
B-507-19	18-19	23,215	4293 ⁽²⁾
B-514-17	16-17	60,700	4293 ⁽²⁾
B-553-24	23-24	49,310	4293 ⁽²⁾
B-554-18	17-18	6,670	4293 ⁽²⁾
B-562-14	13-14	6,220	4293 ⁽²⁾

Notes:

TPH - Total petroleum hydrocarbons

mg/kg - milligrams per kilogram

^{(1) -} Default value from IAC 742

 $^{^{(2)}}$ - Average TOC value from samples CHPH-200-02, CHPH-201-02, and CHPH -202-02

		CLASS I	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-102	UMW-104	UMW-105	UMW-105	UMW-106	UMW-107	UMW-107
CONSTITUENT	UNITS	GROUNDWATER STANDARD	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006	12/13/2006	9/21/2007	7/26/2004	7/26/2004	3/15/2005	7/26/2004	7/26/2004	3/15/2005
Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	760	589
Ethylbenzene	(ug/l)	1000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250	36
Toluene	(ug/l)	700	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<250	4
Xylene (total)	(ug/l)	10000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.4	1.4	<5.0	<5.0	<5.0	<5.0	77	64.1
Acenaphthene	(ug/l)	420	<3.00									<3.00	<3.00		<3.00	<3.00	<3.00
Acenaphthylene	(ug/l)	210	<1.50									<1.50	<1.50		<1.50	<1.50	<7.5
Anthracene	(ug/l)	2100	< 0.30									< 0.30	< 0.30		< 0.30	< 0.30	< 0.30
Benzo(a)anthracene	(ug/l)	1.3	< 0.09									< 0.09	< 0.09		< 0.09	< 0.09	< 0.09
Benzo(a)pyrene	(ug/l)	0.2	<0.12									<0.12	< 0.12		<0.12	<0.12	<0.12
Benzo(b)fluoranthene	(ug/l)	0.18	<0.15									<0.15	<0.15		<0.15	<0.15	<0.15
Benzo(ghi)perylene	(ug/l)		< 0.30									< 0.30	< 0.30		< 0.30	< 0.30	< 0.30
Benzo(k)fluoranthene	(ug/l)	0.17	<0.15									<0.15	< 0.15		<0.15	<0.15	< 0.15
Chrysene	(ug/l)	1.5	< 0.45									< 0.45	< 0.45		< 0.45	< 0.45	< 0.45
Dibenzo(a,h)anthracene	(ug/l)	0.3	<0.18									<0.18	<0.18		<0.18	<0.18	<0.18
Fluoranthene	(ug/l)	280	< 0.90									< 0.90	< 0.90		< 0.90	< 0.90	< 0.90
Fluorene	(ug/l)	280	< 0.30									< 0.30	< 0.30		< 0.30	< 0.30	< 0.30
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43	< 0.30									< 0.30	< 0.30		< 0.30	< 0.30	< 0.30
Naphthalene	(ug/l)	140	<3.00									<3.00	<3.00		<3.00	87.7	53.2
Phenanthrene	(ug/l)	210	< 0.60									< 0.60	< 0.60		< 0.60	< 0.60	< 0.60
Pyrene	(ug/l)	210	<0.30									<0.30	<0.30		< 0.30	< 0.30	<0.30

Notes:

		CLASS I	UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-107	UMW-108	UMW-108	UMW-108	UMW-108	UMW-108	UMW-108	UMW-108
CONSTITUENT	UNITS	GROUNDWATER STANDARD	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006	12/13/2006	6/14/2007	9/21/2007	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006
Benzene	(ug/l)	5	549	344	998	289	1280	812	798	1020	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ethylbenzene	(ug/l)	1000	27.8	17.1	45.8	18.2	69.1	44.1	32	55.7	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0
Toluene	(ug/l)	700	<25.0	2.6	5.7	2.4	11	7.1	< 5.0	<50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0
Xylene (total)	(ug/l)	10000	49.2	32.1	54.6	30.7	81.2	55.2	43	71.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acenaphthene	(ug/l)	420	<3.00	<3.00	<3.00	<3.00	<3.00	<0.10	<1.00	<5.0	<3.00						
Acenaphthylene	(ug/l)	210	44.5	<1.50	<1.50	<1.50	5.38	0.2	<1.00	0.19	<1.50						
Anthracene	(ug/l)	2100	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.14	<1.00	0.13	< 0.30						
Benzo(a)anthracene	(ug/l)	1.3	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	<0.10	<1.00	< 0.13	< 0.09						
Benzo(a)pyrene	(ug/l)	0.2	<0.12	<0.12	< 0.12	< 0.12	< 0.12	<0.10	<1.00	< 0.20	<0.12						
Benzo(b)fluoranthene	(ug/l)	0.18	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.10	<1.00	<0.18	< 0.15						
Benzo(ghi)perylene	(ug/l)		< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.10	1.1	< 0.50	< 0.30						
Benzo(k)fluoranthene	(ug/l)	0.17	<0.15	<0.15	<0.15	<0.15	< 0.15	<0.10	<1.00	<0.17	<0.15						
Chrysene	(ug/l)	1.5	< 0.45	< 0.45	< 0.45	< 0.45	< 0.45	<0.10	<1.00	< 0.15	< 0.45						
Dibenzo(a,h)anthracene	(ug/l)	0.3	<0.18	<0.18	<0.18	<0.18	<0.18	<0.10	<1.00	< 0.30	<0.18						
Fluoranthene	(ug/l)	280	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	<0.10	<1.00	< 0.10	< 0.90						
Fluorene	(ug/l)	280	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.10	<1.00	<2.0	< 0.30						
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.10	<1.00	< 0.43	< 0.30						
Naphthalene	(ug/l)	140	99.4	82.6	181	106	243	161	170	160	<3.00						
Phenanthrene	(ug/l)	210	< 0.60	< 0.60	<0.60	< 0.60	<0.60	<0.10	<1.00	0.1	<0.60						
Pyrene	(ug/l)	210	<0.30	<0.30	<0.30	<0.30	<0.30	<0.10	<1.00	<2.0	<0.30						

Notes:

		CLASS I	UMW-108	UMW-108	UMW-108	UMW-109	UMW-110	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A	UMW-111A
CONSTITUENT	UNITS	GROUNDWATER STANDARD	12/13/2006	6/14/2007	9/14/2007	7/26/2004	7/26/2004	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006	12/13/2006	6/14/2007	9/21/2007
Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	15.6	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ethylbenzene	(ug/l)	1000	<5.0	< 5.0	<5.0	<5.0	2.3	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0
Toluene	(ug/l)	700	< 5.0	< 5.0	< 5.0	< 5.0	67.5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0
Xylene (total)	(ug/l)	10000	<5.0	<5.0	<5.0	<5.0	37.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acenaphthene	(ug/l)	420				<3.00	87.6	<3.00									
Acenaphthylene	(ug/l)	210				<1.50	92.6	<1.50									
Anthracene	(ug/l)	2100				< 0.30	15.1	< 0.30									
Benzo(a)anthracene	(ug/l)	1.3				< 0.09	0.33	< 0.09									
Benzo(a)pyrene	(ug/l)	0.2				<0.12	< 0.12	< 0.12									
Benzo(b)fluoranthene	(ug/l)	0.18				<0.15	< 0.15	<0.15									
Benzo(ghi)perylene	(ug/l)					< 0.30	< 0.30	< 0.30									
Benzo(k)fluoranthene	(ug/l)	0.17				< 0.15	< 0.15	< 0.15									
Chrysene	(ug/l)	1.5				< 0.45	< 0.45	< 0.45									
Dibenzo(a,h)anthracene	(ug/l)	0.3				<0.18	<0.18	<0.18									
Fluoranthene	(ug/l)	280				< 0.90	12.1	< 0.90									
Fluorene	(ug/l)	280				< 0.30	7.66	< 0.30									
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43				< 0.30	< 0.30	< 0.30									
Naphthalene	(ug/l)	140				<3.00	24.6	<3.00									
Phenanthrene	(ug/l)	210				< 0.60	26.7	< 0.60									
Pyrene	(ug/l)	210				<0.30	5.25	< 0.30									

Notes:

		CLASS I	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-112	UMW-113	UMW-114	UMW-114	UMW-114	UMW-114
CONSTITUENT	UNITS	GROUNDWATER STANDARD	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006	12/13/2006	6/14/2007	9/21/2007	7/26/2004	7/26/2004	3/15/2005	6/9/2005	9/27/2005
Benzene	(ug/l)	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.7	628	726	867	1130
Ethylbenzene	(ug/l)	1000	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	120	1240	1260	1370
Toluene	(ug/l)	700	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1	868	163	152	190
Xylene (total)	(ug/l)	10000	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	4.8	425	920	932	1010
Acenaphthene	(ug/l)	420	<3.00										33.9	214	101	222	208
Acenaphthylene	(ug/l)	210	<1.50										70.7	552	<15.0	<7.5	<7.5
Anthracene	(ug/l)	2100	< 0.30										< 0.30	1.04	<0.3	< 0.3	8.2
Benzo(a)anthracene	(ug/l)	1.3	< 0.09										< 0.09	< 0.09	0.2	< 0.09	< 0.09
Benzo(a)pyrene	(ug/l)	0.2	<0.12										< 0.12	<0.12	0.14	< 0.12	<0.12
Benzo(b)fluoranthene	(ug/l)	0.18	<0.15										<0.15	<0.15	< 0.15	<0.15	<0.15
Benzo(ghi)perylene	(ug/l)		< 0.30										< 0.30	< 0.30	< 0.30	< 0.3	< 0.3
Benzo(k)fluoranthene	(ug/l)	0.17	<0.15										<0.15	<0.15	< 0.15	<0.15	<0.15
Chrysene	(ug/l)	1.5	< 0.45										< 0.45	< 0.45	< 0.45	< 0.45	< 0.45
Dibenzo(a,h)anthracene	(ug/l)	0.3	<0.18										<0.18	<0.18	<0.18	<0.18	<0.18
Fluoranthene	(ug/l)	280	< 0.90										< 0.90	0.99	0.94	1.07	1.09
Fluorene	(ug/l)	280	< 0.30										2.36	20.6	48.4	64.1	44.4
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43	< 0.30										< 0.30	< 0.30	< 0.3	< 0.3	< 0.3
Naphthalene	(ug/l)	140	<3.00										580	3650	7570	5920	11500
Phenanthrene	(ug/l)	210	< 0.60										5990	7.48	11	10.2	9.87
Pyrene	(ug/l)	210	< 0.30										6020	0.64	0.66	0.65	0.4

Notes:

		CLASS I	UMW-114	UMW-114	UMW-114	UMW-114	UMW-114	UMW-114	UMW-115	UMW-115	UMW-115	UMW-115	UMW-115	UMW-115	UMW-115	UMW-115	UMW-115
CONSTITUENT	UNITS	GROUNDWATER STANDARD	12/27/2005	6/22/2006	9/19/2006	12/13/2006	6/14/2007	9/21/2007	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/19/2006	12/13/2006	6/14/2007
Benzene	(ug/l)	5	939	936	938	1130	1150	1120	12.9	5.2	8.3	12.5	4.1	11.7	7	4.4	9
Ethylbenzene	(ug/l)	1000	1150	1140	1220	1170	1160	1060	< 5.0	< 5.0	< 5.0	1.9	< 5.0	<5.0	1.4	< 5.0	< 5.0
Toluene	(ug/l)	700	133	131	150	150	170	130	1.2	< 5.0	1.1	1.1	< 5.0	1.4	< 5.0	< 5.0	< 5.0
Xylene (total)	(ug/l)	10000	891	1020	924	984	963	861	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	1.0	1.2	1.2	< 5.0
Acenaphthene	(ug/l)	420	236	159	111	140	158	86	13.5								
Acenaphthylene	(ug/l)	210	<7.5	868	<15.0	22	85.9	19.7	26.4								
Anthracene	(ug/l)	2100	<3.0	1.8	<0.3	1.17	21.3	1.3	< 0.30								
Benzo(a)anthracene	(ug/l)	1.3	1.1	0.91	0.2	0.16	1.6	0.25	< 0.09								
Benzo(a)pyrene	(ug/l)	0.2	1.07	0.97	<0.12	0.11	< 0.50	0.13	<0.12								
Benzo(b)fluoranthene	(ug/l)	0.18	0.49	0.30	<0.15	< 0.10	< 0.50	<0.18	<0.15								
Benzo(ghi)perylene	(ug/l)		0.44	0.68	< 0.30	< 0.10	< 0.50	< 0.50	< 0.30								
Benzo(k)fluoranthene	(ug/l)	0.17	<0.15	<0.15	<0.15	< 0.10	< 0.50	<0.17	<0.15								
Chrysene	(ug/l)	1.5	1.22	0.93	< 0.45	< 0.10	< 0.50	0.17	< 0.45								
Dibenzo(a,h)anthracene	(ug/l)	0.3	<0.18	<0.18	<0.18	< 0.10	< 0.50	< 0.30	<0.18								
Fluoranthene	(ug/l)	280	4.66	3.38	< 0.9	0.56	0.7	0.85	< 0.90								
Fluorene	(ug/l)	280	68.6	42.8	< 0.3	17.4	18.1	17.8	8.46								
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43	0.31	0.30	< 0.3	< 0.10	< 0.50	<.043	< 0.30								
Naphthalene	(ug/l)	140	5980	7510	7880	5980	6440	5560	<3.00								
Phenanthrene	(ug/l)	210	12.8	14.0	11.1	5.84	6.0	6.18	< 0.60								
Pyrene	(ug/l)	210	2.29	2.74	0.55	0.83	0.95	1.4	< 0.30								

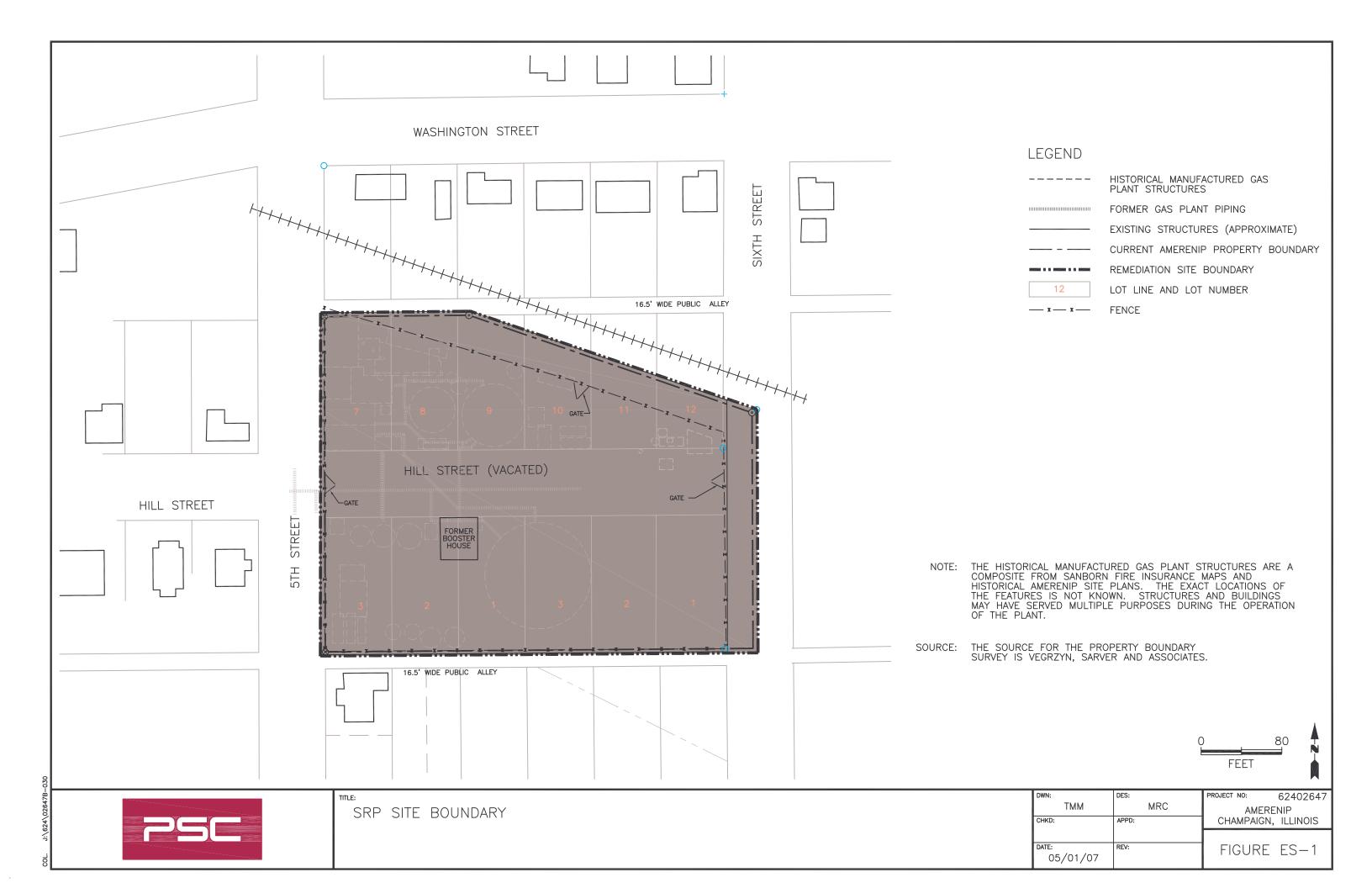
Notes:

		CLASS I GROUNDWATER	UMW-115	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116	UMW-116
CONSTITUENT	UNITS	STANDARD	9/21/2007	7/26/2004	3/15/2005	6/9/2005	9/27/2005	12/27/2005	6/22/2006	9/16/2006	12/13/2006	6/14/2007	6/14/2007	9/14/2007
Benzene	(ug/l)	5	12.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Ethylbenzene	(ug/l)	1000	1.8	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0
Toluene	(ug/l)	700	1.2	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0
Xylene (total)	(ug/l)	10000	1.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acenaphthene	(ug/l)	420		<3.00										
Acenaphthylene	(ug/l)	210		<1.50										
Anthracene	(ug/l)	2100		< 0.30										
Benzo(a)anthracene	(ug/l)	1.3		< 0.09										
Benzo(a)pyrene	(ug/l)	0.2		< 0.12										
Benzo(b)fluoranthene	(ug/l)	0.18		<0.15										
Benzo(ghi)perylene	(ug/l)			< 0.30										
Benzo(k)fluoranthene	(ug/l)	0.17		< 0.15										
Chrysene	(ug/l)	1.5		< 0.45										
Dibenzo(a,h)anthracene	(ug/l)	0.3		<0.18										
Fluoranthene	(ug/l)	280		< 0.90										
Fluorene	(ug/l)	280		< 0.30										
Indeno(1,2,3-cd)pyrene	(ug/l)	0.43		< 0.30										
Naphthalene	(ug/l)	140		<3.00										
Phenanthrene	(ug/l)	210		< 0.60										
Pyrene	(ug/l)	210		<0.30										

Notes:

ug/l - micrograms per liter

<2.0 - not detected at the detection limit noted

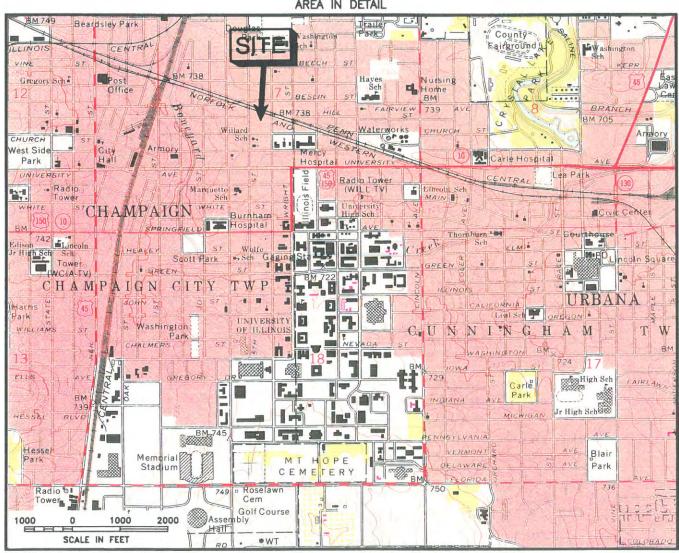

Exceeds the Class 1 Groundwater St

List of Figures

Figure Number	Figure Name
ES-1	Remediation Site Map
1-1	Site Location Map
1-2	Site Map
2-1	1869 Panoramic
2-2	1910 Site Plan
2-3	1922 Site Plan
2-4	1929 Sanborn Map
2-5	Current Site Layout
2-6	Groundwater Elevation Contour – Shallow Groundwater System - July 2004
2-7	Groundwater Elevation Contour – Shallow Groundwater System – December 2006
2-8	Groundwater Elevation Contour – Deep Groundwater System January 1993
2-9	Site Cross Section Transect Locations
2-10	West - East Cross Section A – A'
2-11	West - East Cross Section B – B'
2-12	West - East Cross Section C – C'
2-13	South - North Cross Section D – D'
2-14	South - North Cross Section E – E'
2-15	South - North Cross Section F – F'
2-16	Phase 1C/1D Probehole Location Map
2-17	Phase II SI Borehole Locations – November 1990 to January 1992
2-18	Phase II SI Monitoring Well and Piezometer Location – November 1990 to January 1992

2-19	Phase II Test Pit, Surface Soil and Sewer Sample Locations
2-20	SSI Approximate Test Pit and Probehole Locations – March 1997
2-21	Approximate IRM Removal Areas
3-1	SRP Site Boundary and Existing Structures
4-1	CSI Test Pit Locations – 2004 Locations
4-2	CSI Probehole Locations – 2004 Locations
4-3	CSI Groundwater Sample Locations – 2004 Locations
4-4	CSI Sample Locations – 2004 Locations
6-1	Historical Structures and All Sample Locations
6-2	Soil Ingestion Pathway 0' to 3' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-3	Soil Inhalation Pathway 0' to 3' Depth BTEX and Naphthalene Constituents Exceeding Tier 1 ROs
6-4	Soil Groundwater Pathway 0' to 3' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-5	Soil Ingestion Pathway 3' to 10' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-6	Soil Inhalation Pathway 3' to 10 'Depth BTEX and Naphthalene Constituents Exceeding Tier 1 ROs
6-7	Soil to Groundwater Pathway 3' to 10' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-8	Soil Ingestion Pathway Greater Than 10' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-9	Soil Inhalation Pathway Greater Than 10 'Depth BTEX and Naphthalene Constituents Exceeding Tier 1 ROs
6-10	Soil to Groundwater Pathway Greater Than 10' Depth BTEX and PAH's Constituents Exceeding Tier 1 ROs
6-11	Groundwater Ingestion Pathway above Residential Tier 1 ROs
7-1	Exceedance of Tier 1 ROs for BTEX & PAH 0' – 3' Depth Interval

7-2	Exceedance of Tier 1 ROs for BTEX & PAH 3' – 10' Depth Interval	
7-3	Exceedance of Tier 1 ROs for BTEX & PAH 10' – 20' Depth Interval	
7-4	Exceedance of Tier 1 ROs for BTEX & PAH > 20' Depth Interval	
7-5	West - East Cross Section A – A' Extent of Impacts	
7-6	West - East Cross Section B– B' Extent of Impacts	
7-7	West - East Cross Section C- C' Extent of Impacts	
7-8	South - North Cross Section D- D' Extent of Impacts	
7-9	South - North Cross Section E – E' Extent of Impacts	
7-10	South - North Cross Section F – F' Extent of Impacts	



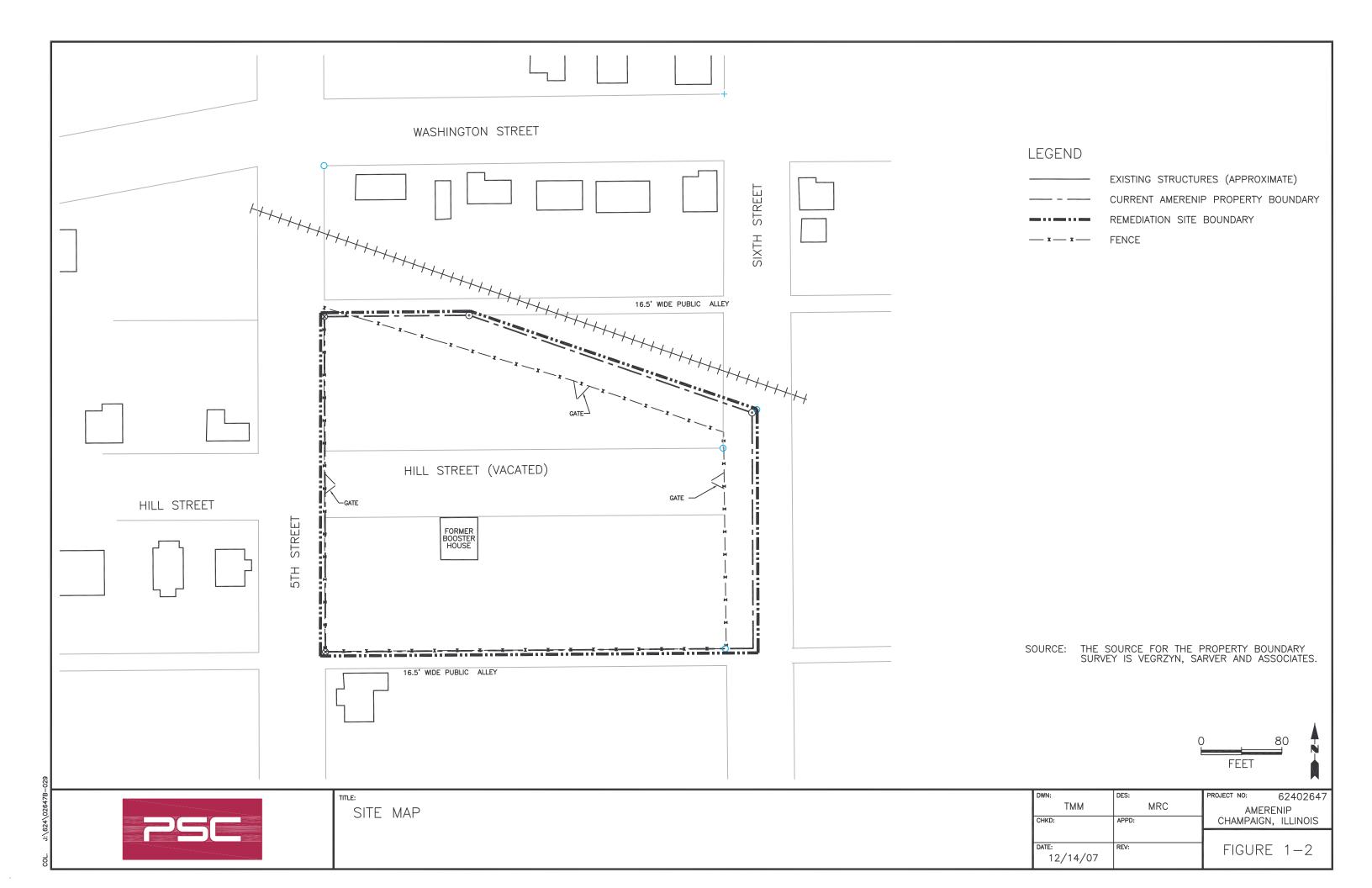
CHAMPAIGN COUNTY

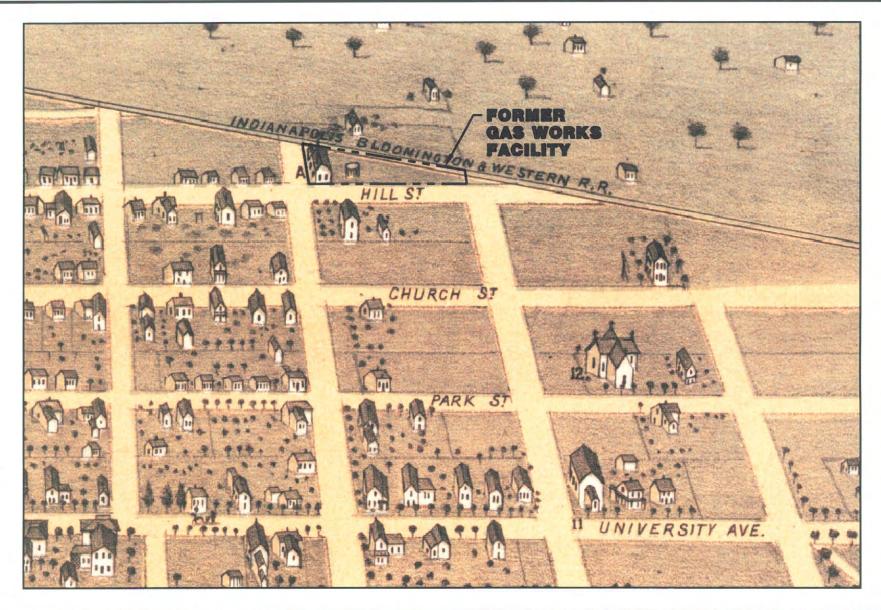
AREA IN DETAIL

Modified from U.S. Geological Survey, Urbana, Illinois, quadrangle, Photorevised 1975.

SCALE IS VARIABLE

SITE LOCATION MAP


DWN: TMM	DES.: SPB	PRO
CHKD:	APPD:	1
DATE:	RFV ·	-

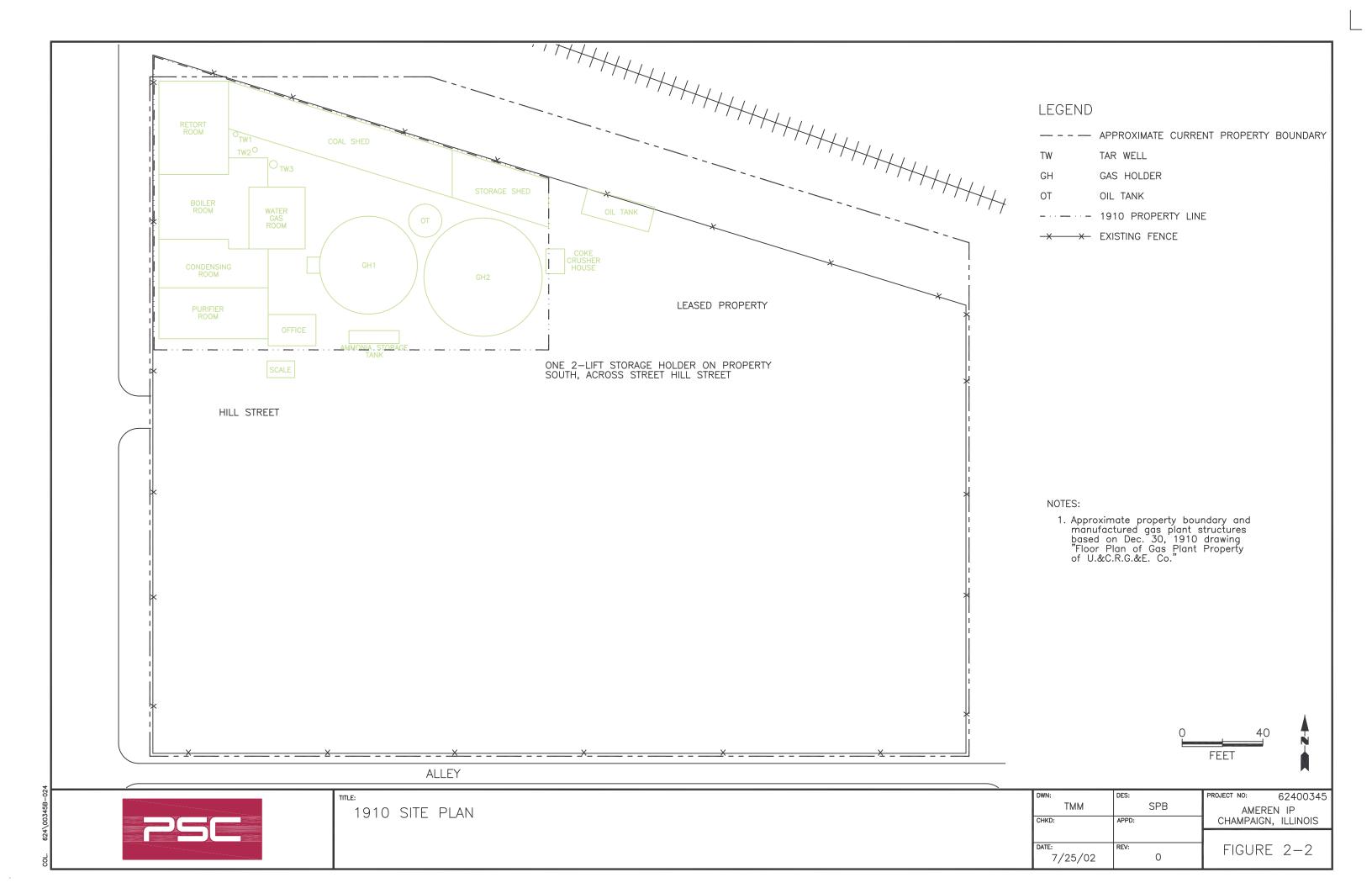

2/24/00

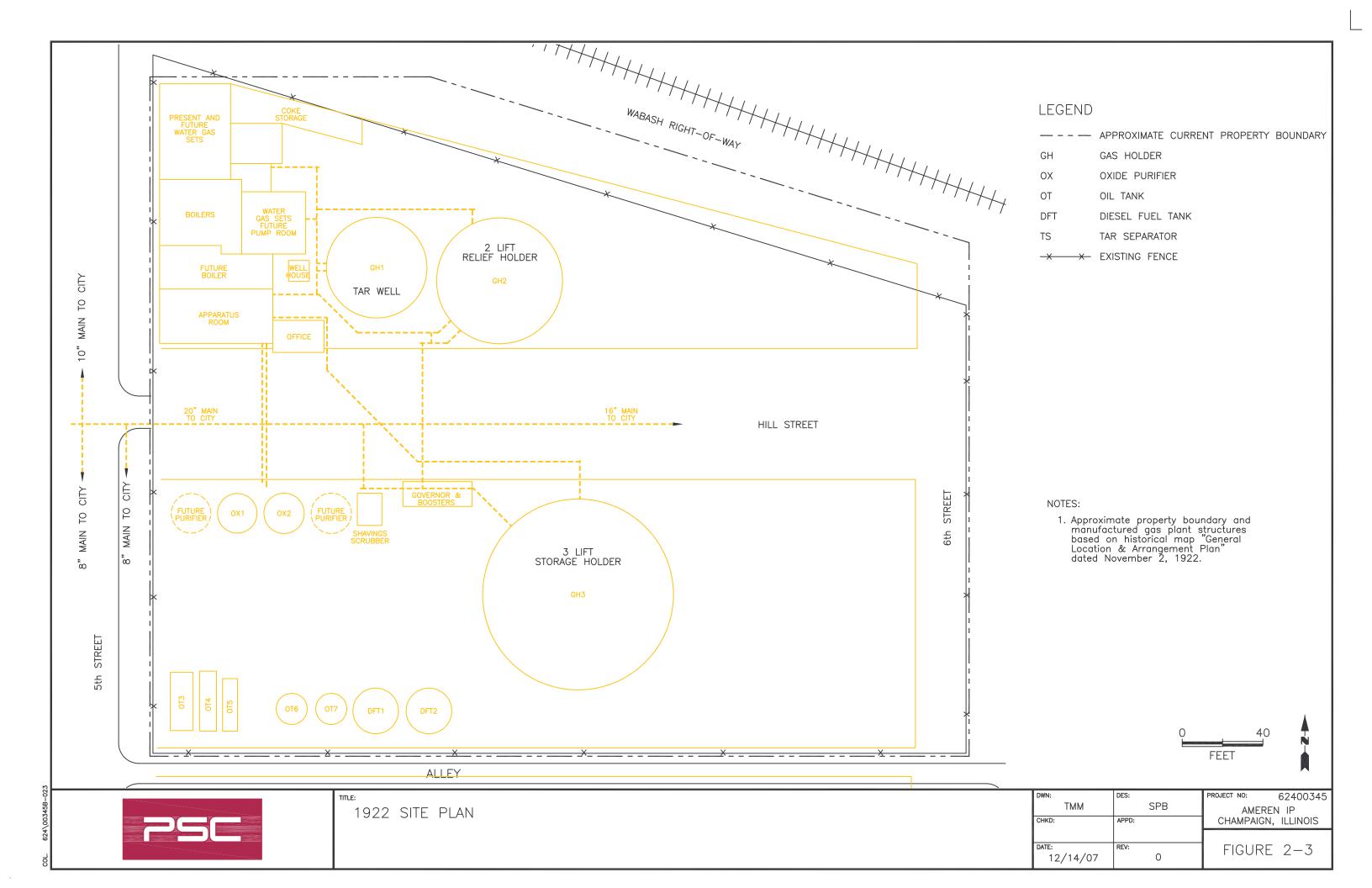
0

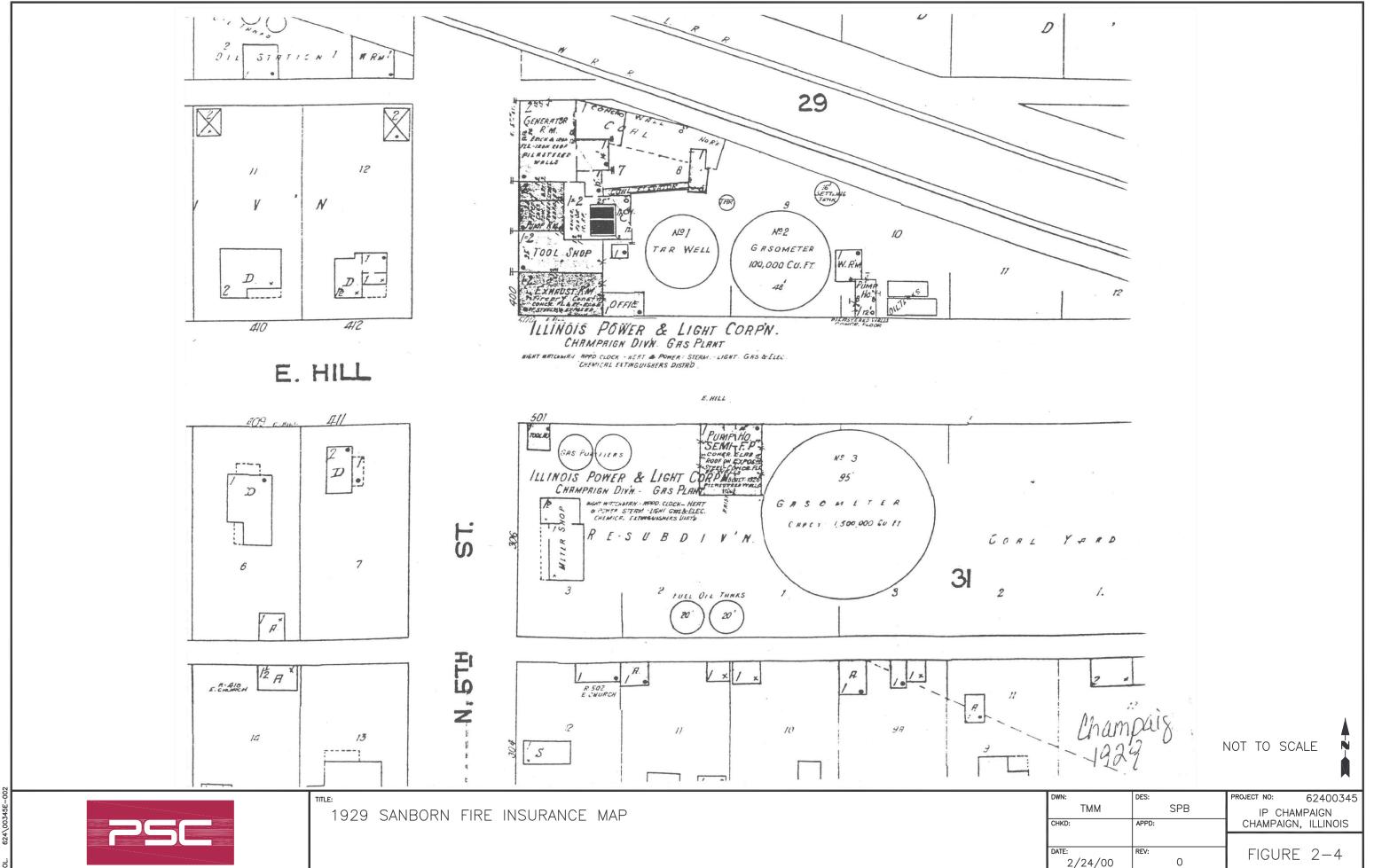
62400345 AMEREN IP CHAMPAIGN, ILLINOIS

FIGURE 1-1

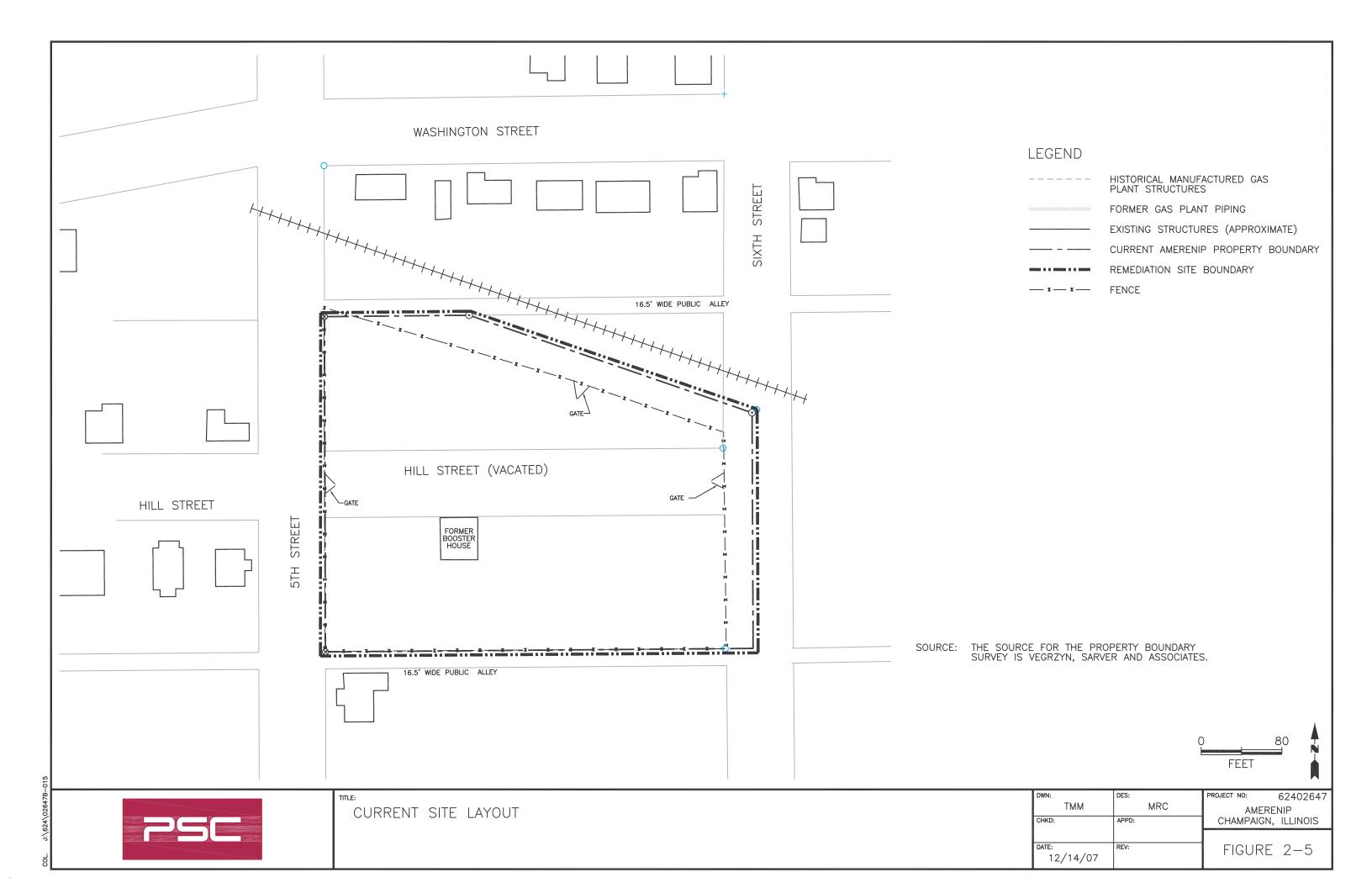
TTLE:

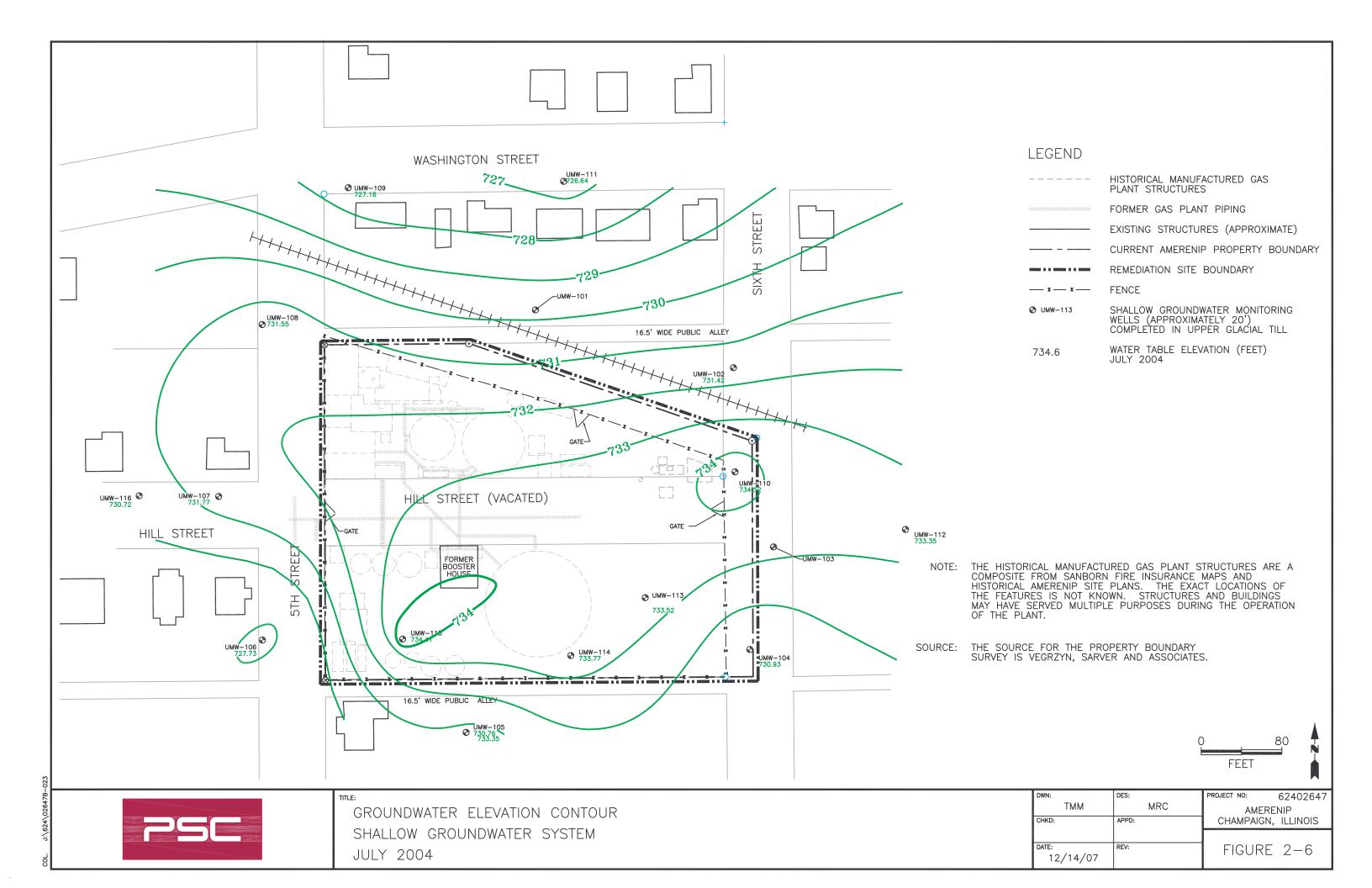

1869 PANORAMIC

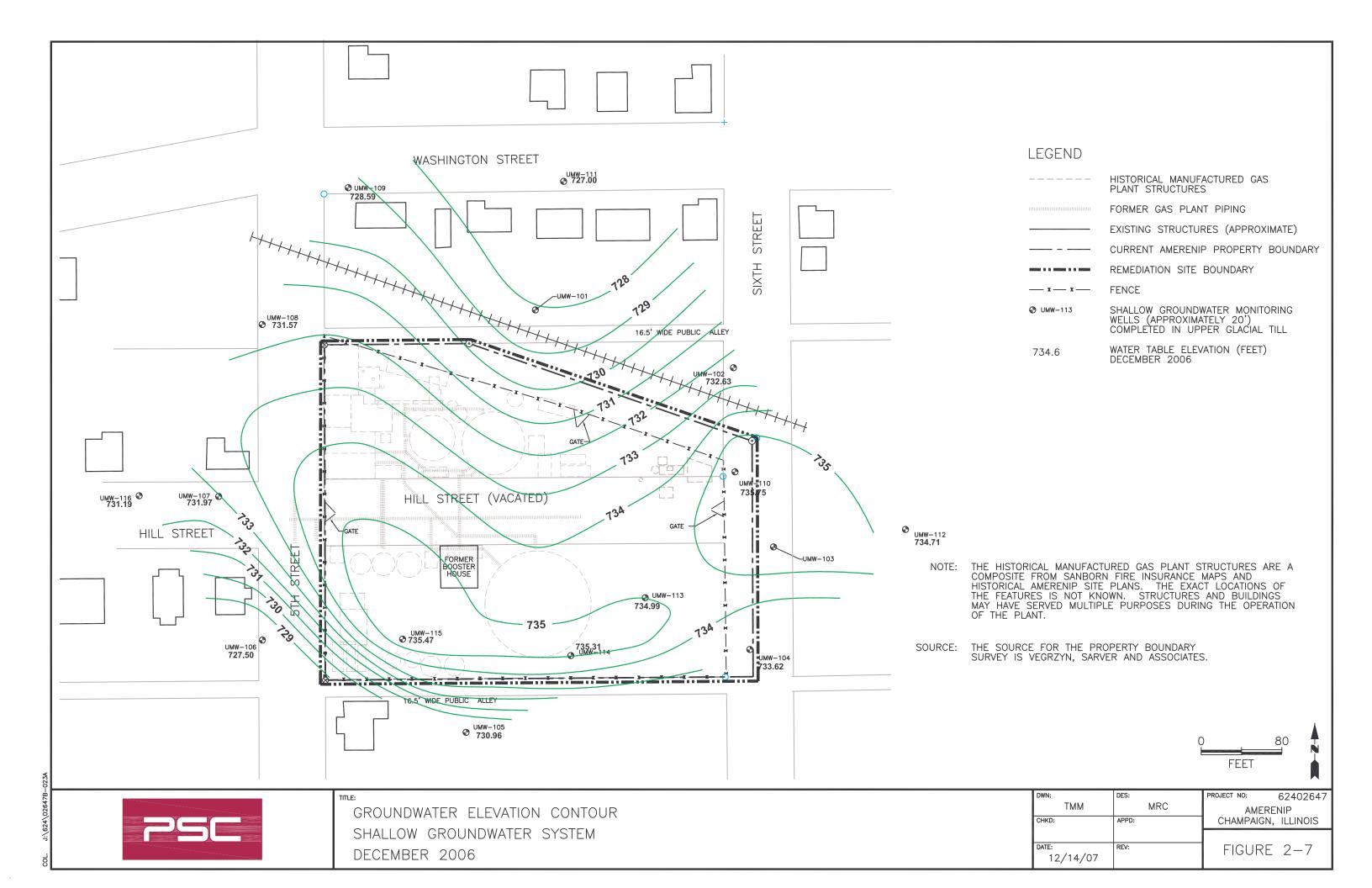

DWN: TMM	JG
CHKD:	APPD:
DATE: 7/25/02	REV.:

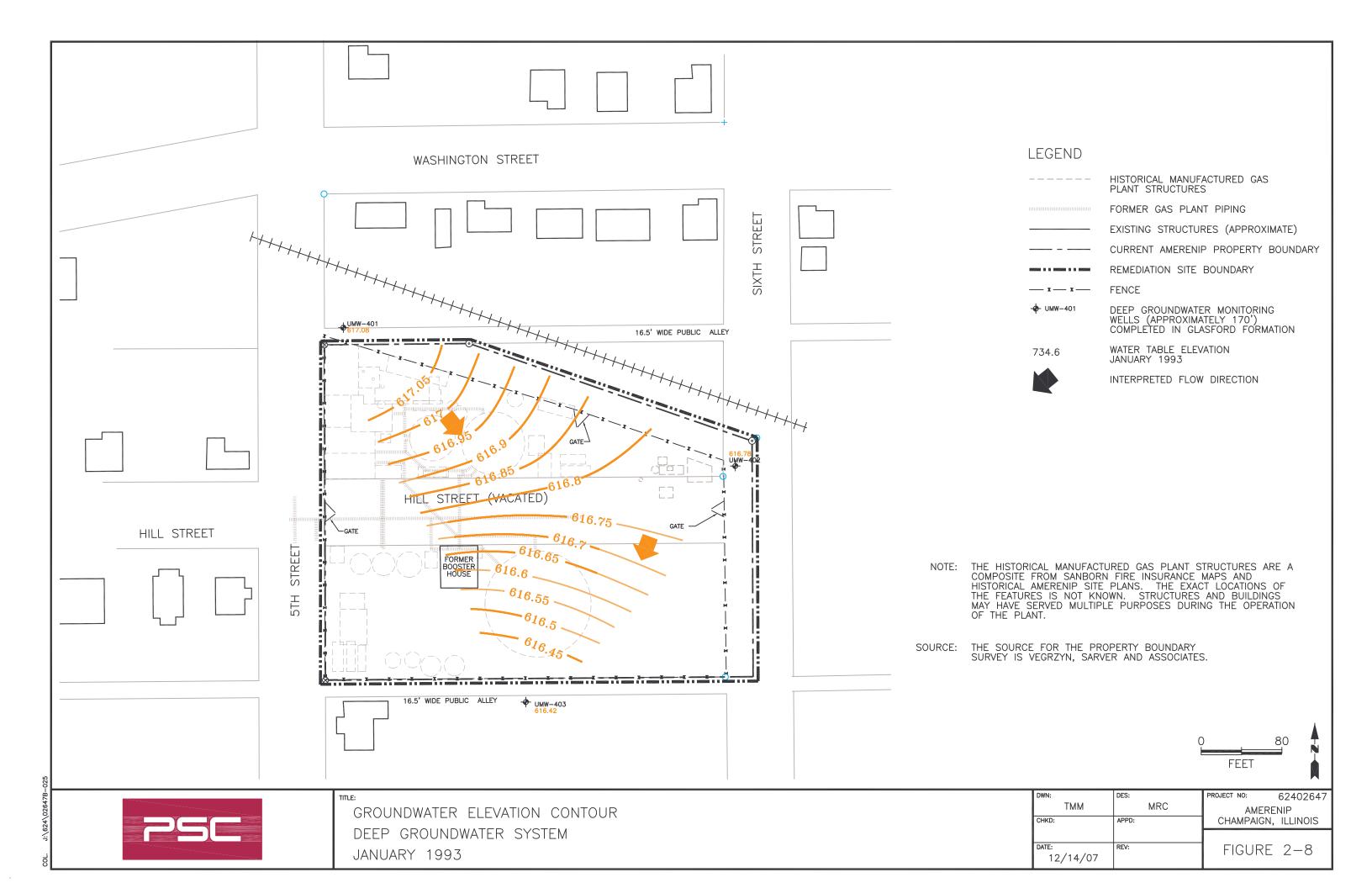

PROJECT NO.: 62400345

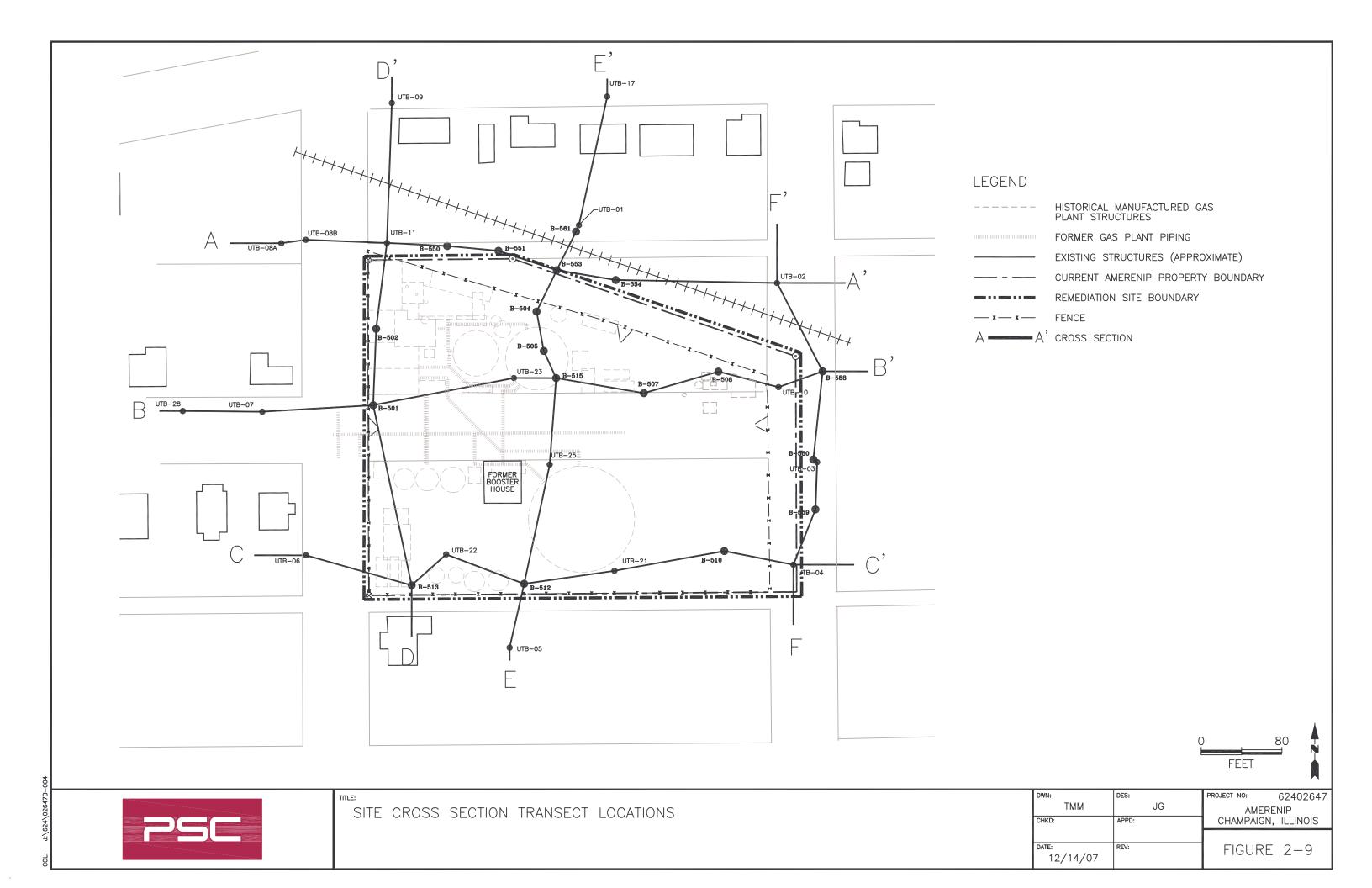
AMEREN IP
CHAMPAIGN, ILLINOIS

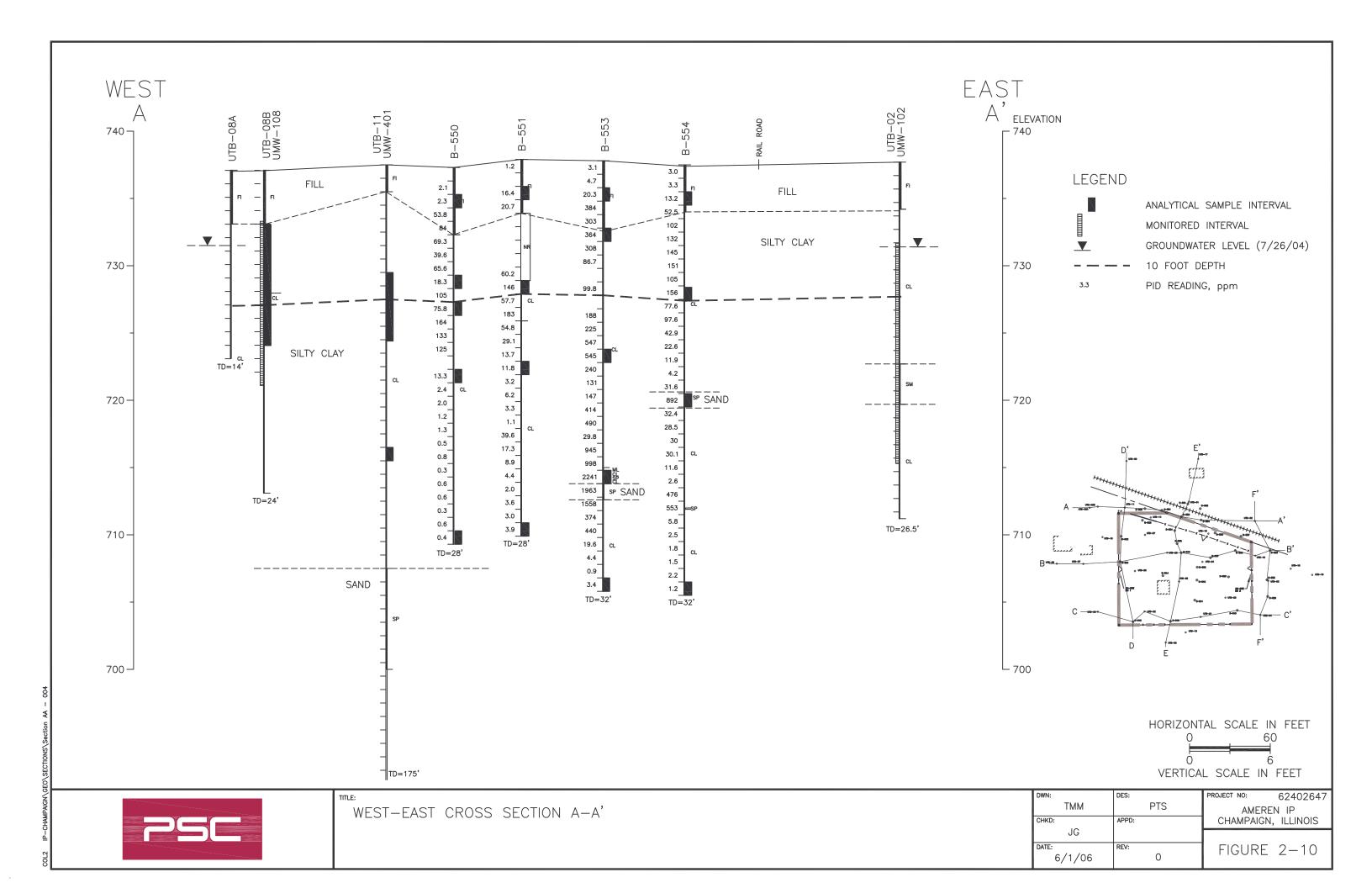

FIGURE 2-1

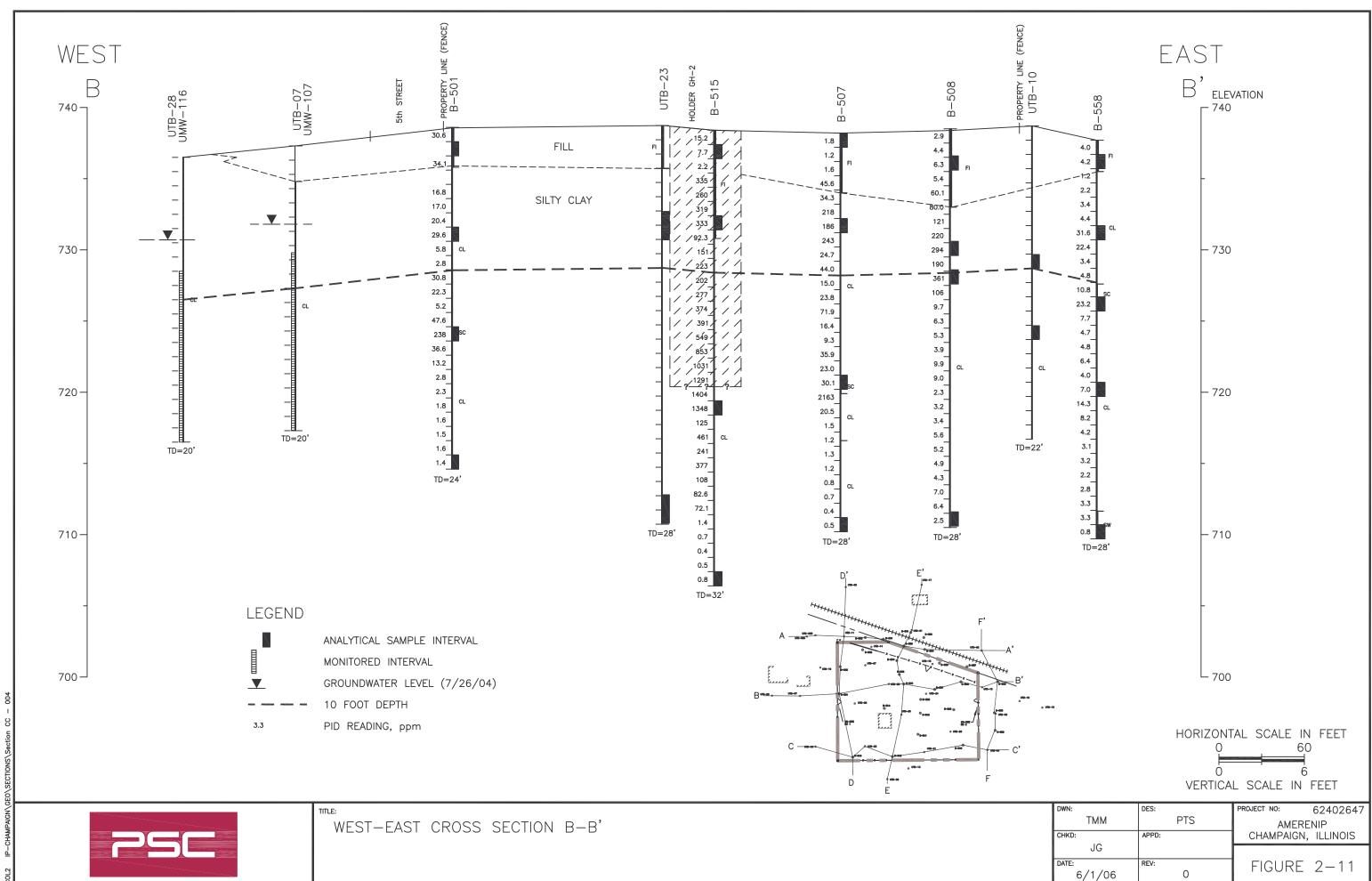


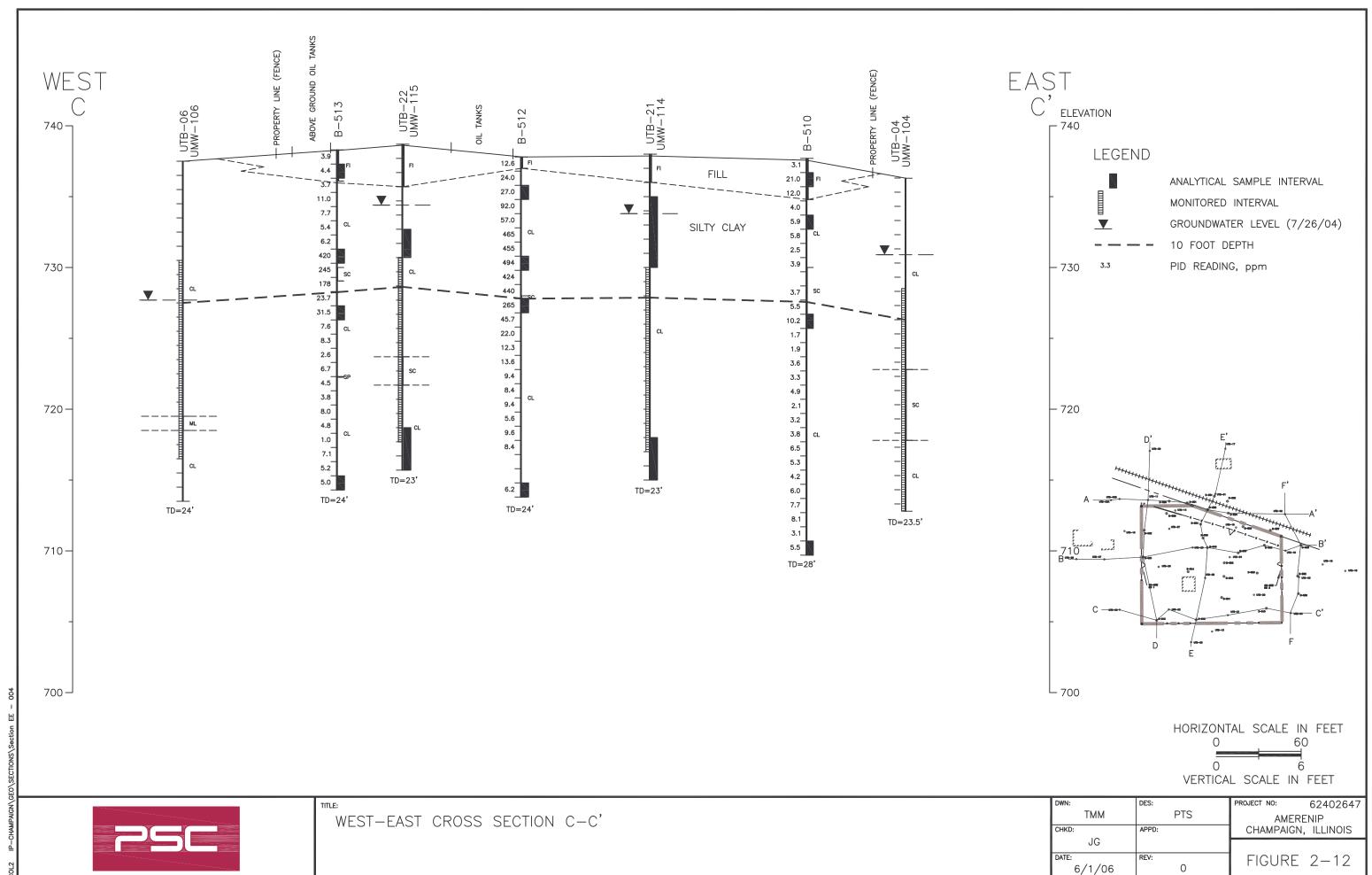


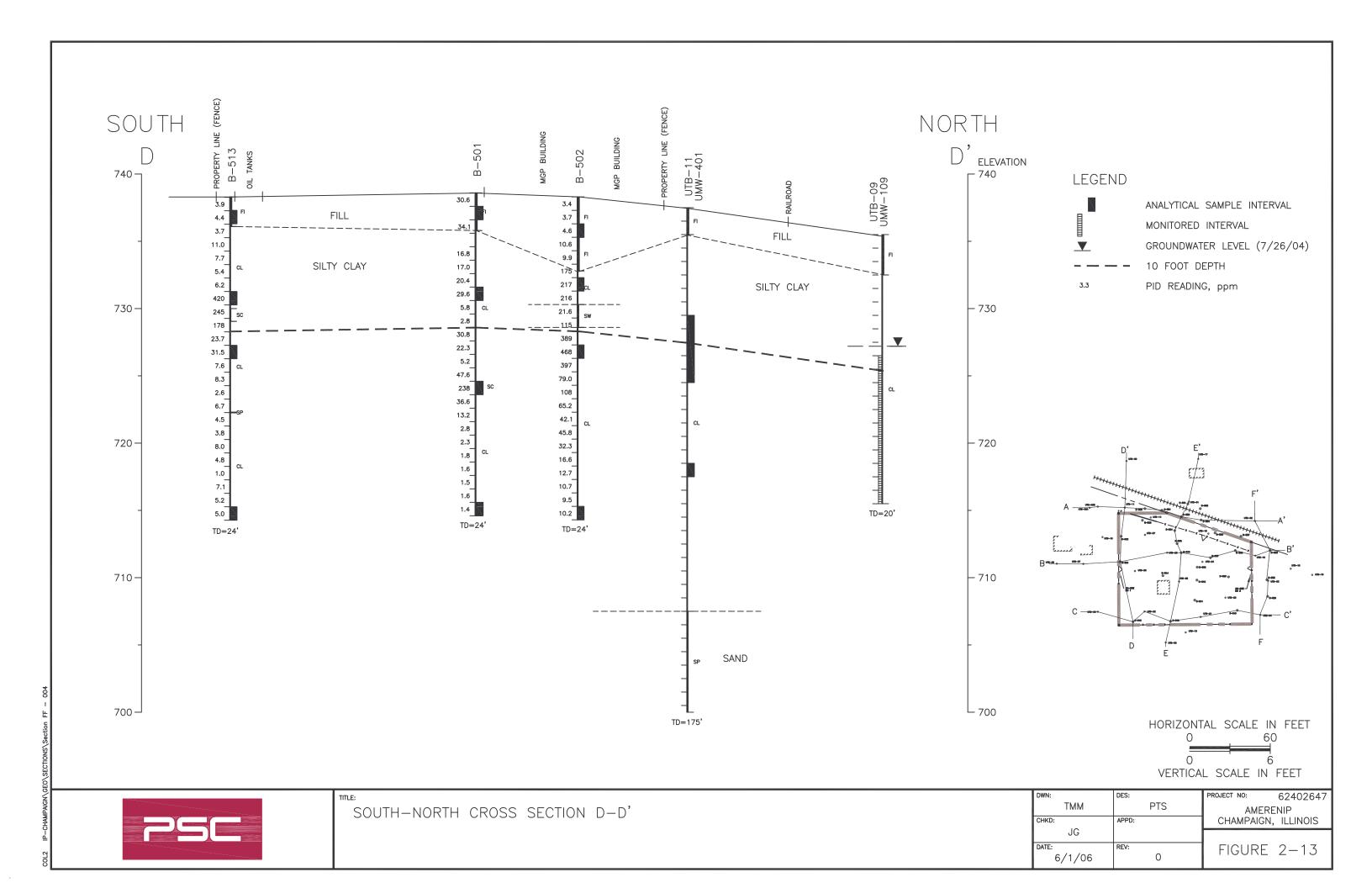



0.45F_0

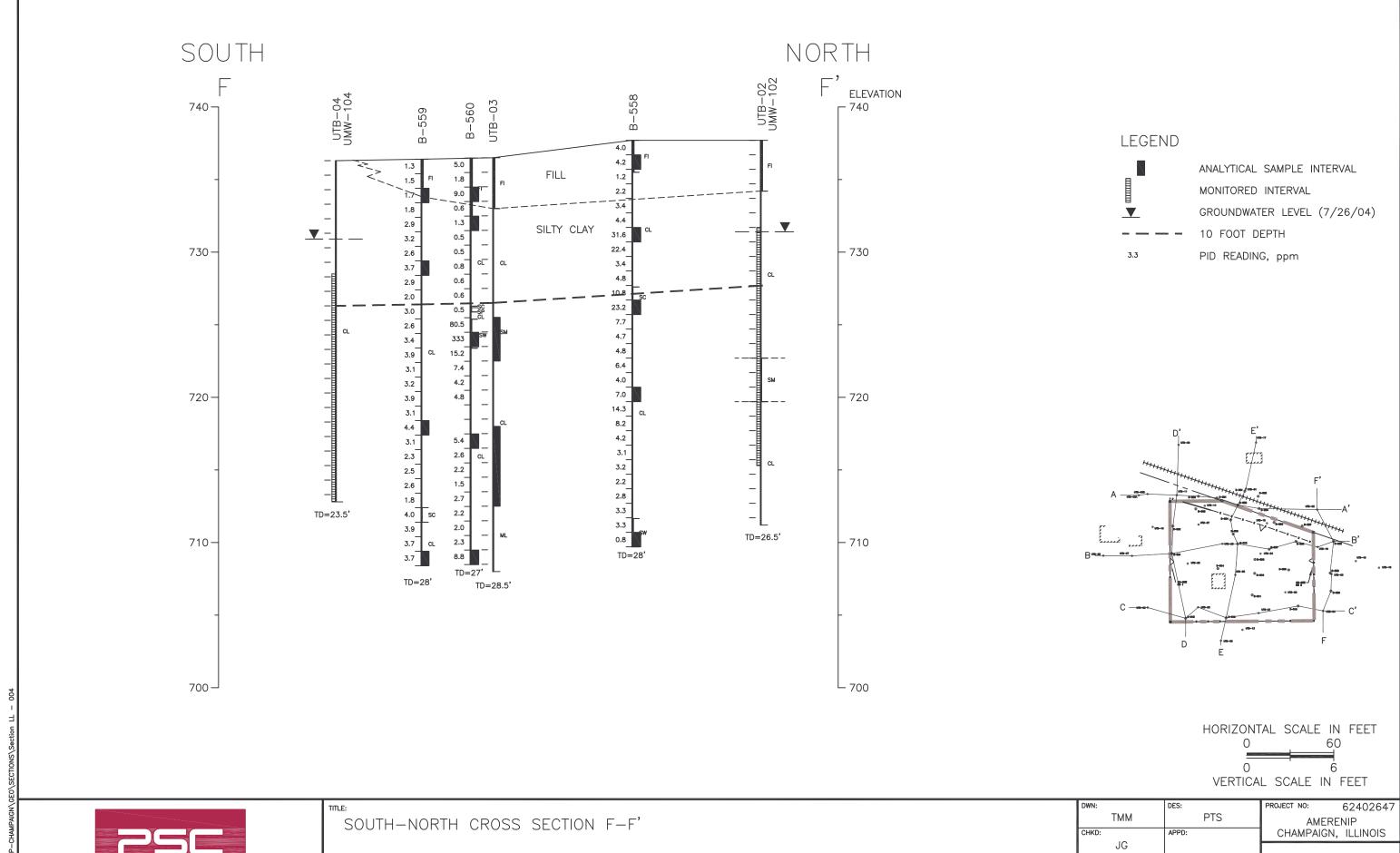
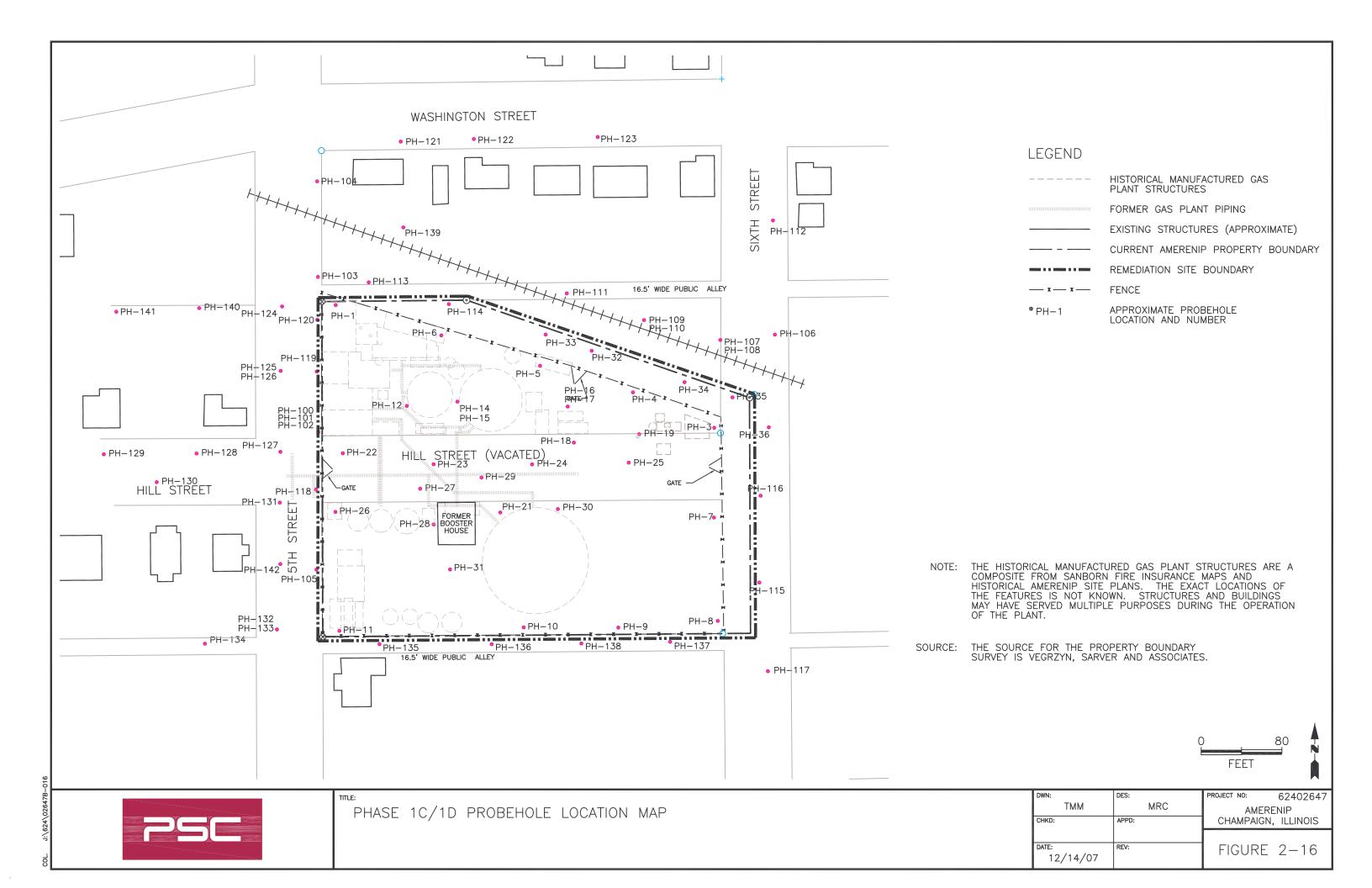
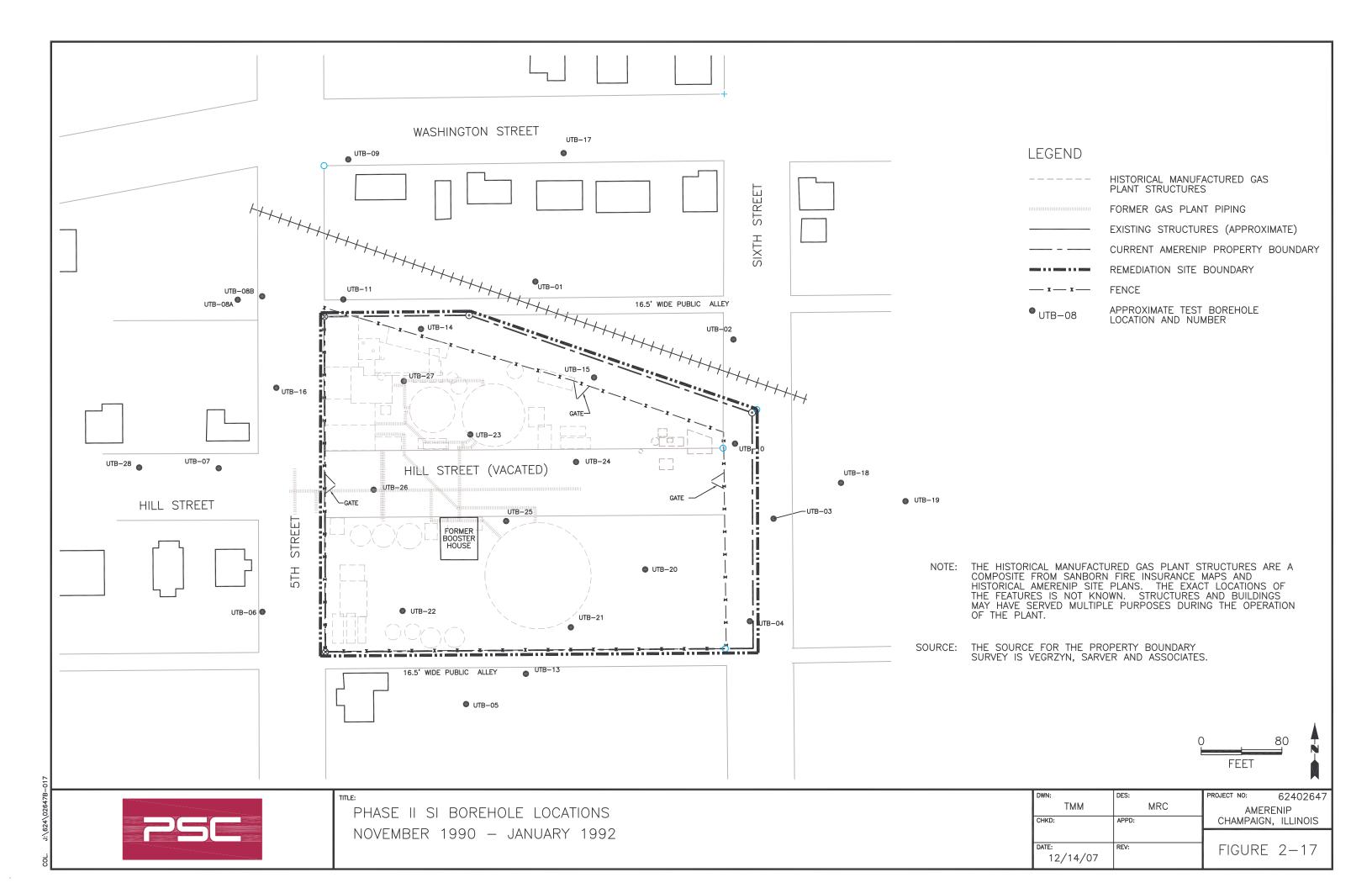


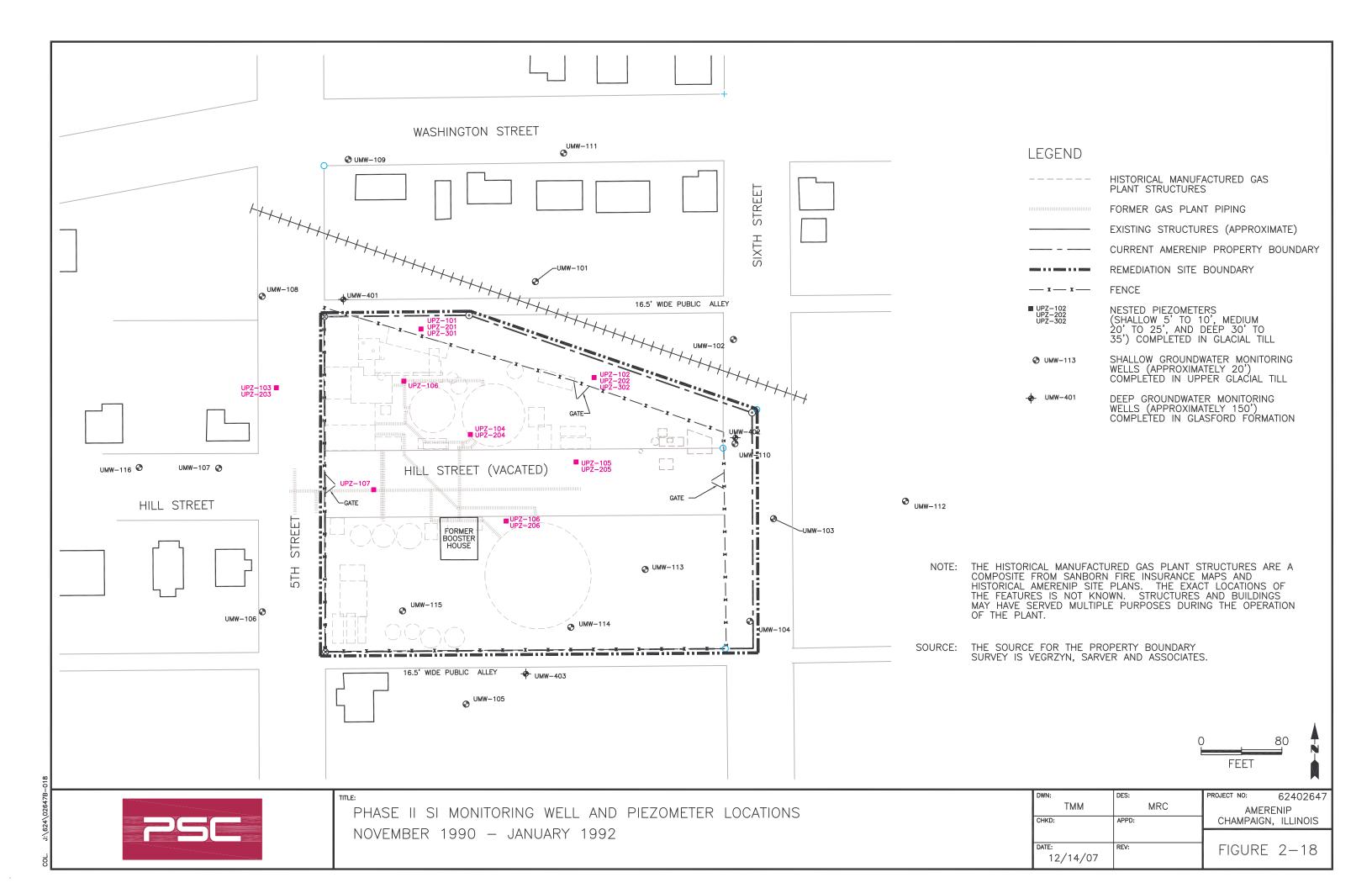


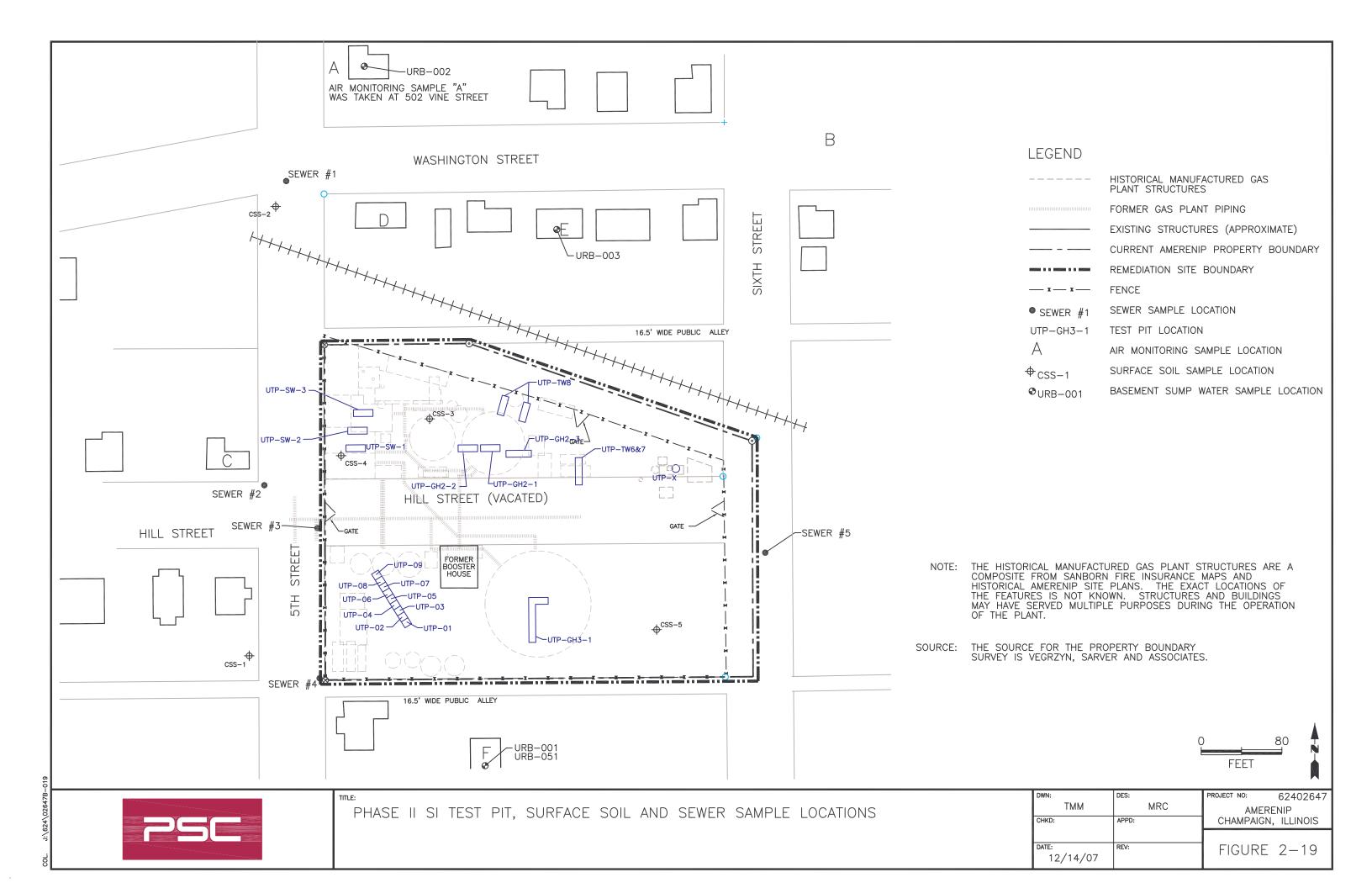


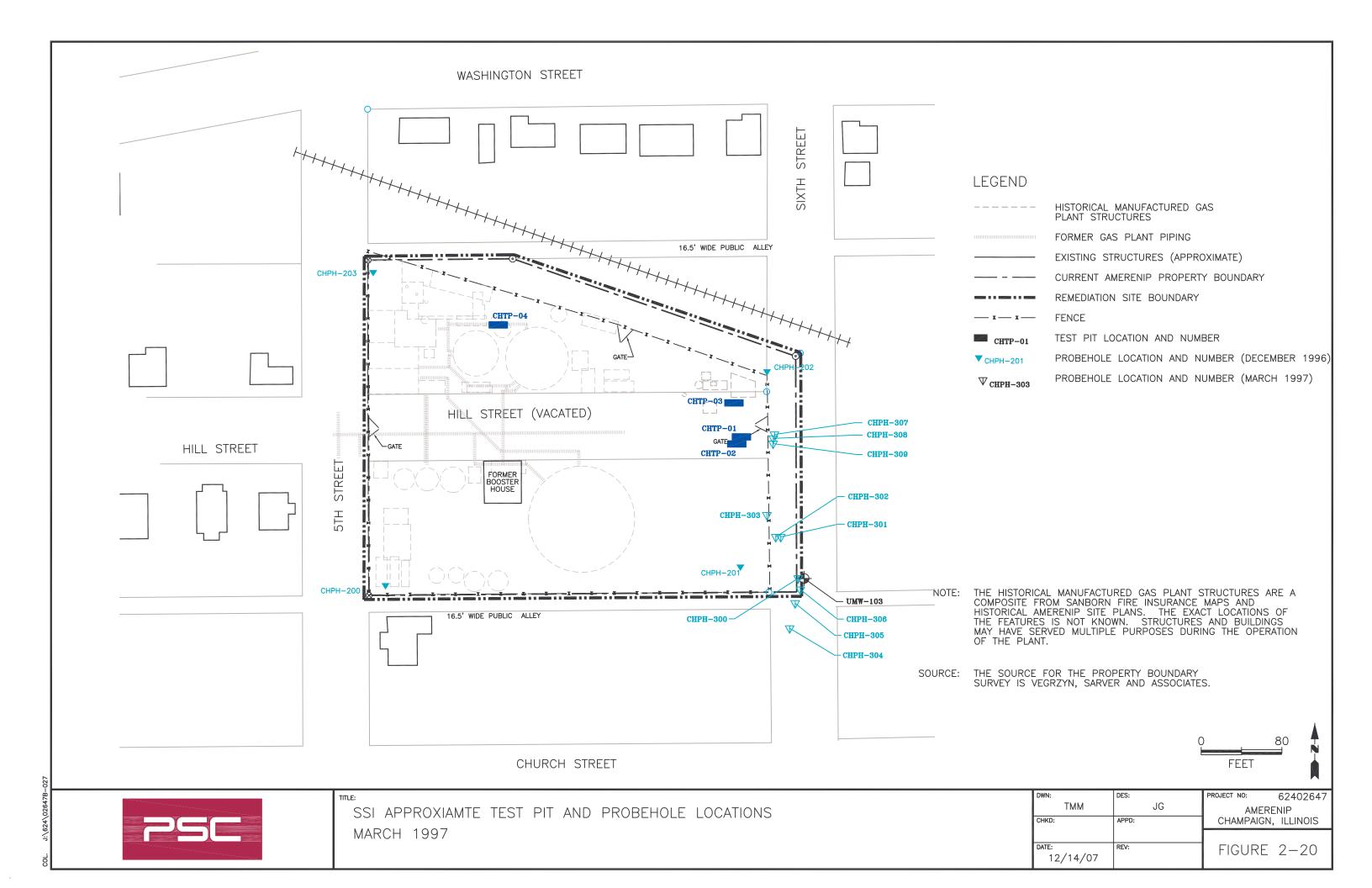


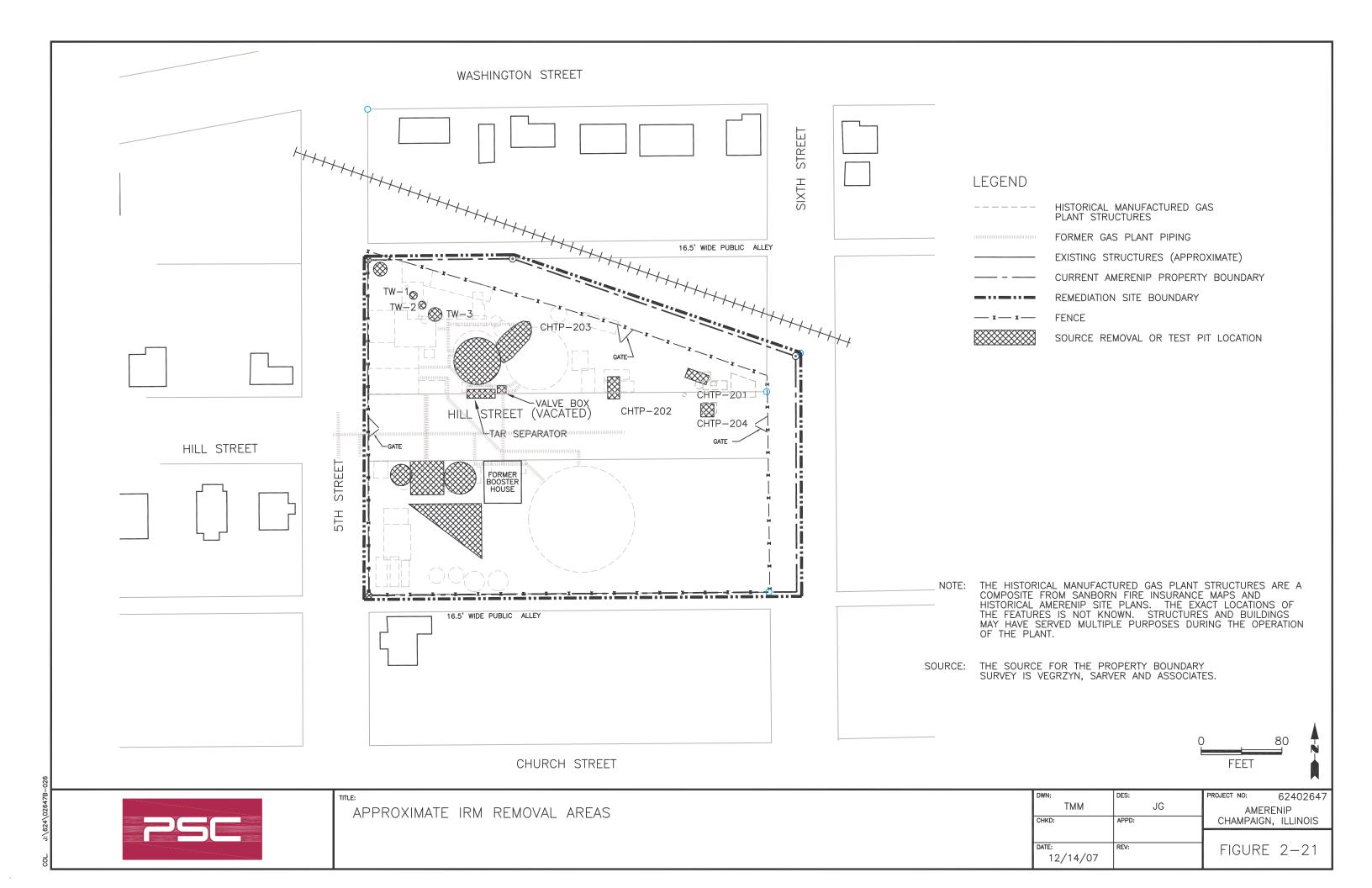


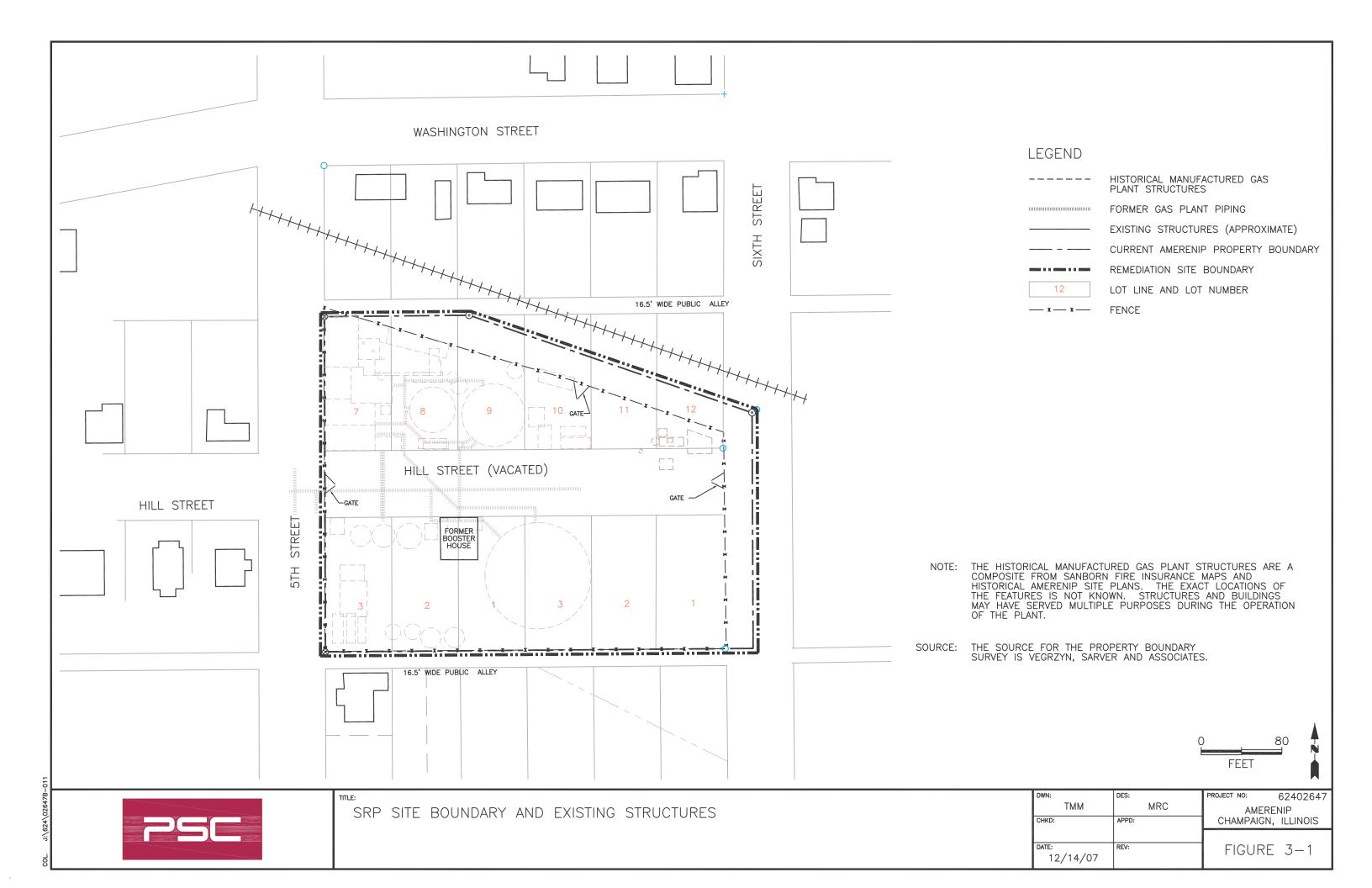




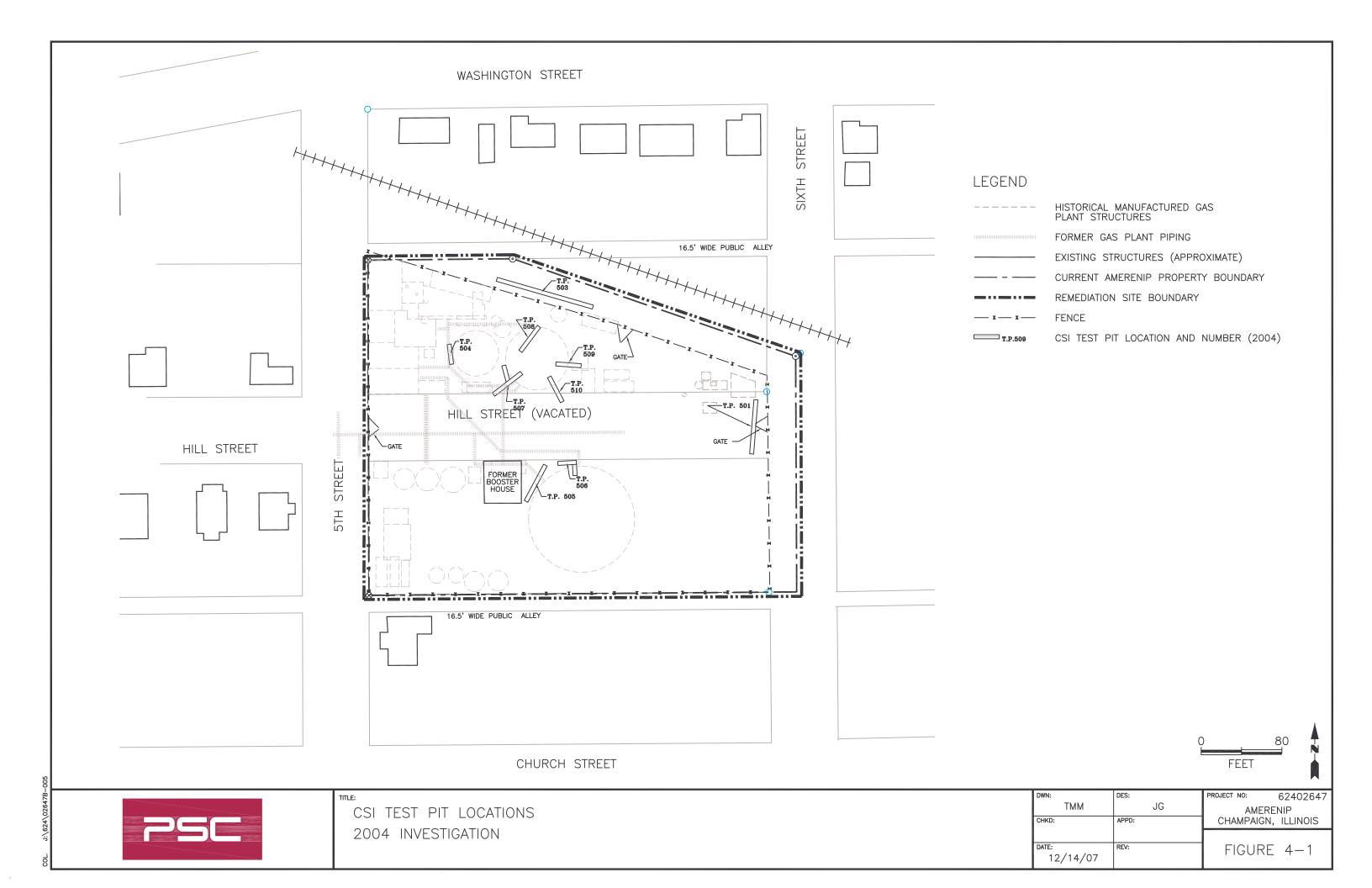

FIGURE 2-15

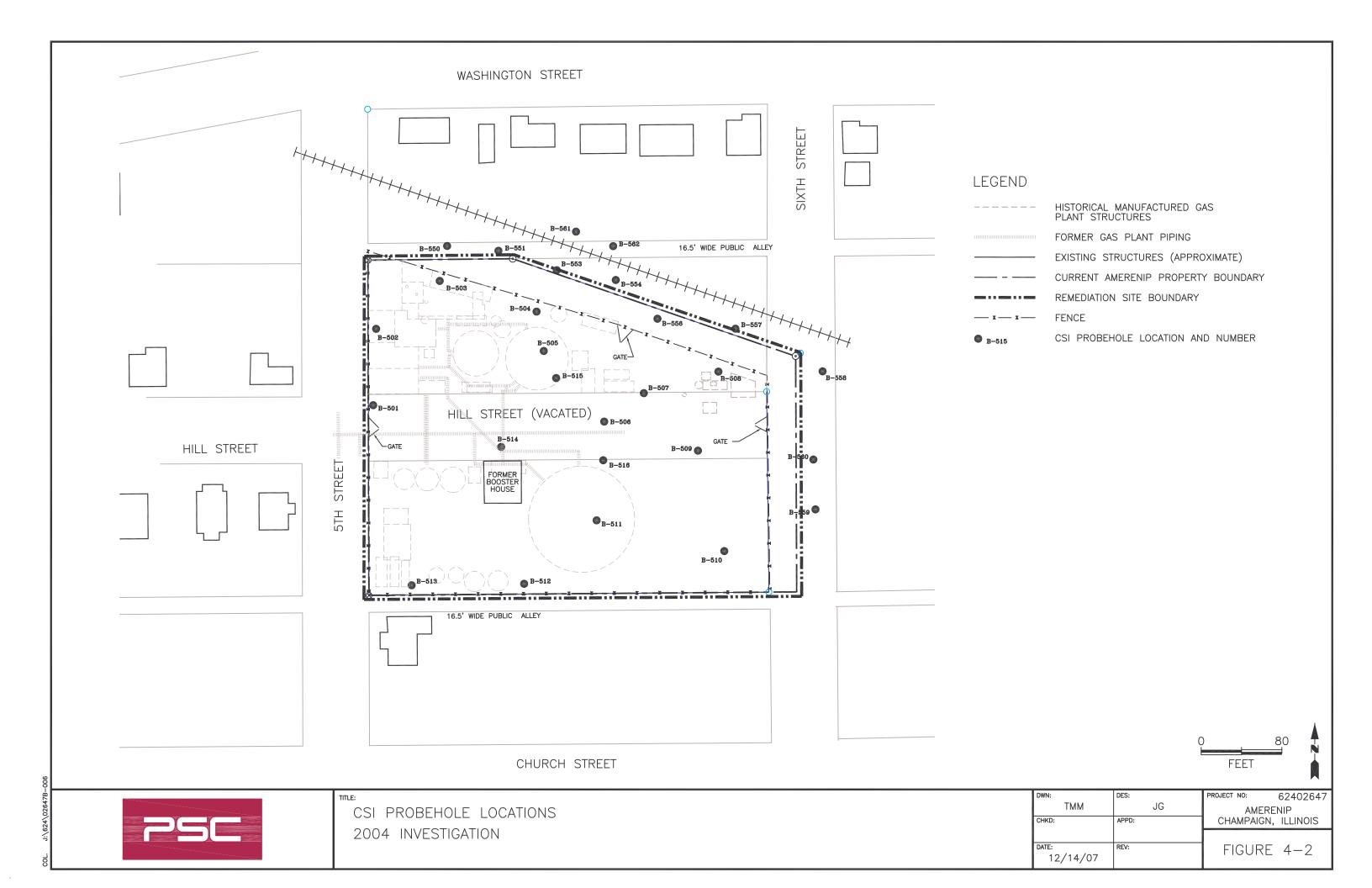

0

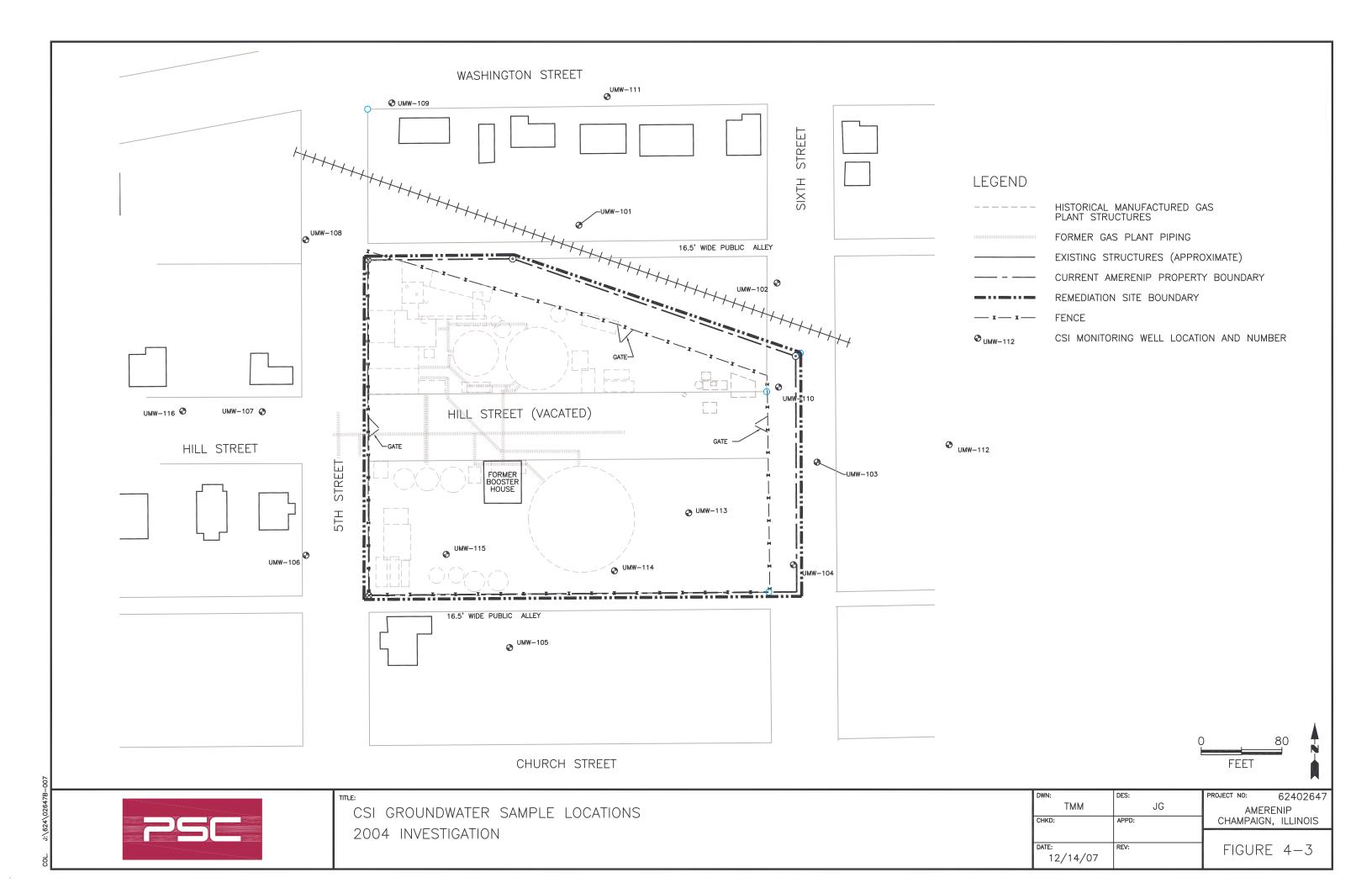

6/1/06

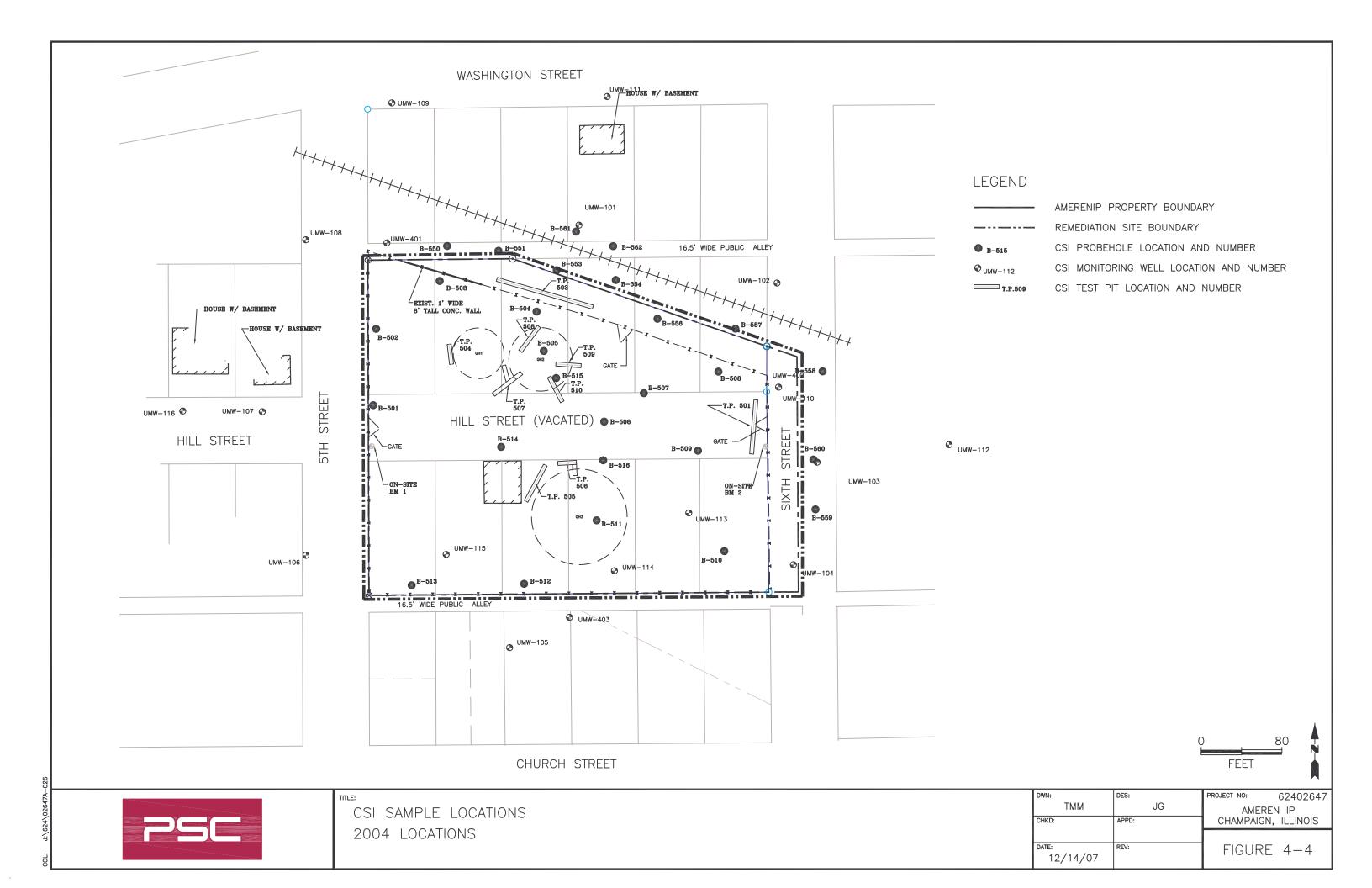


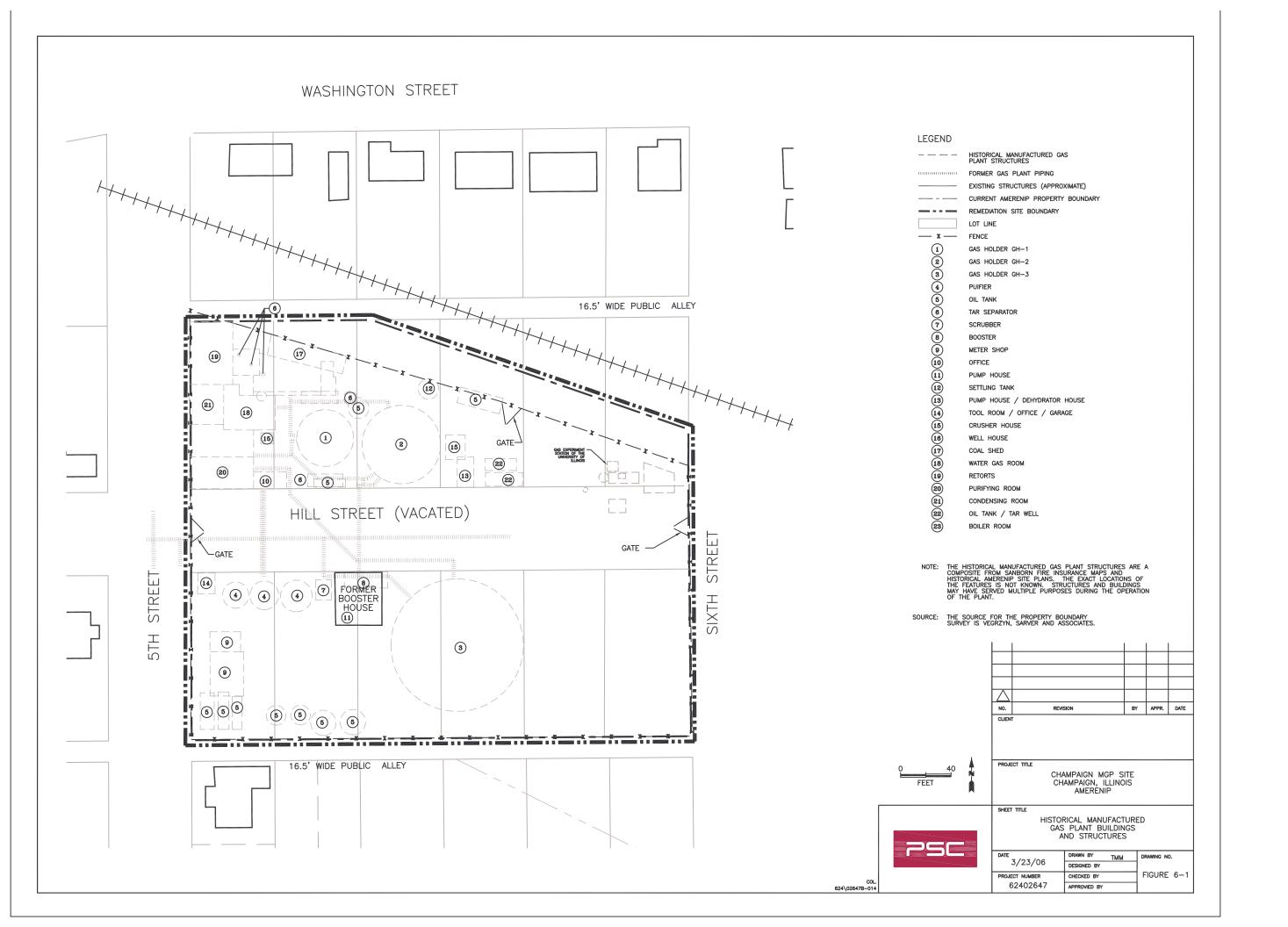


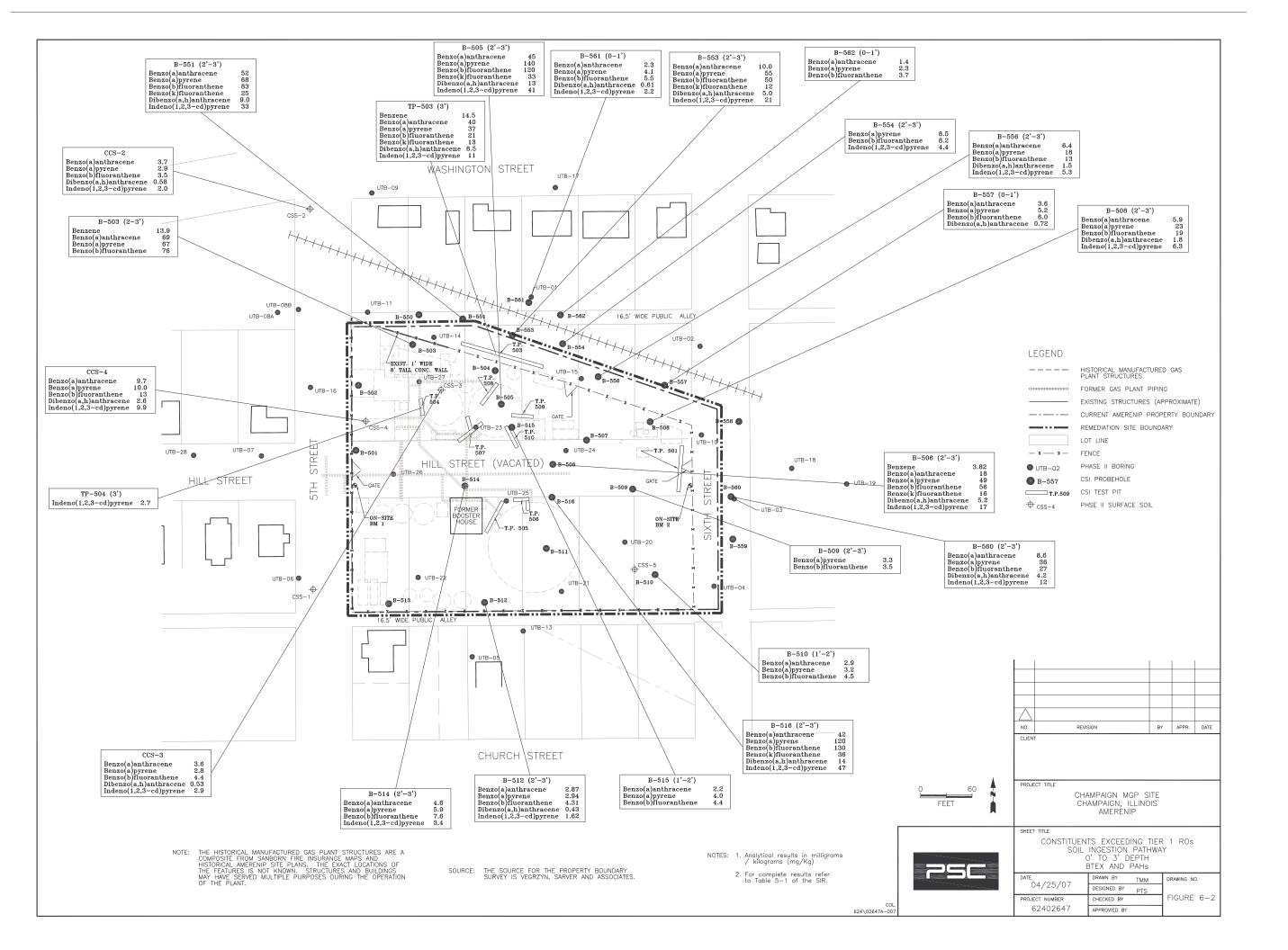


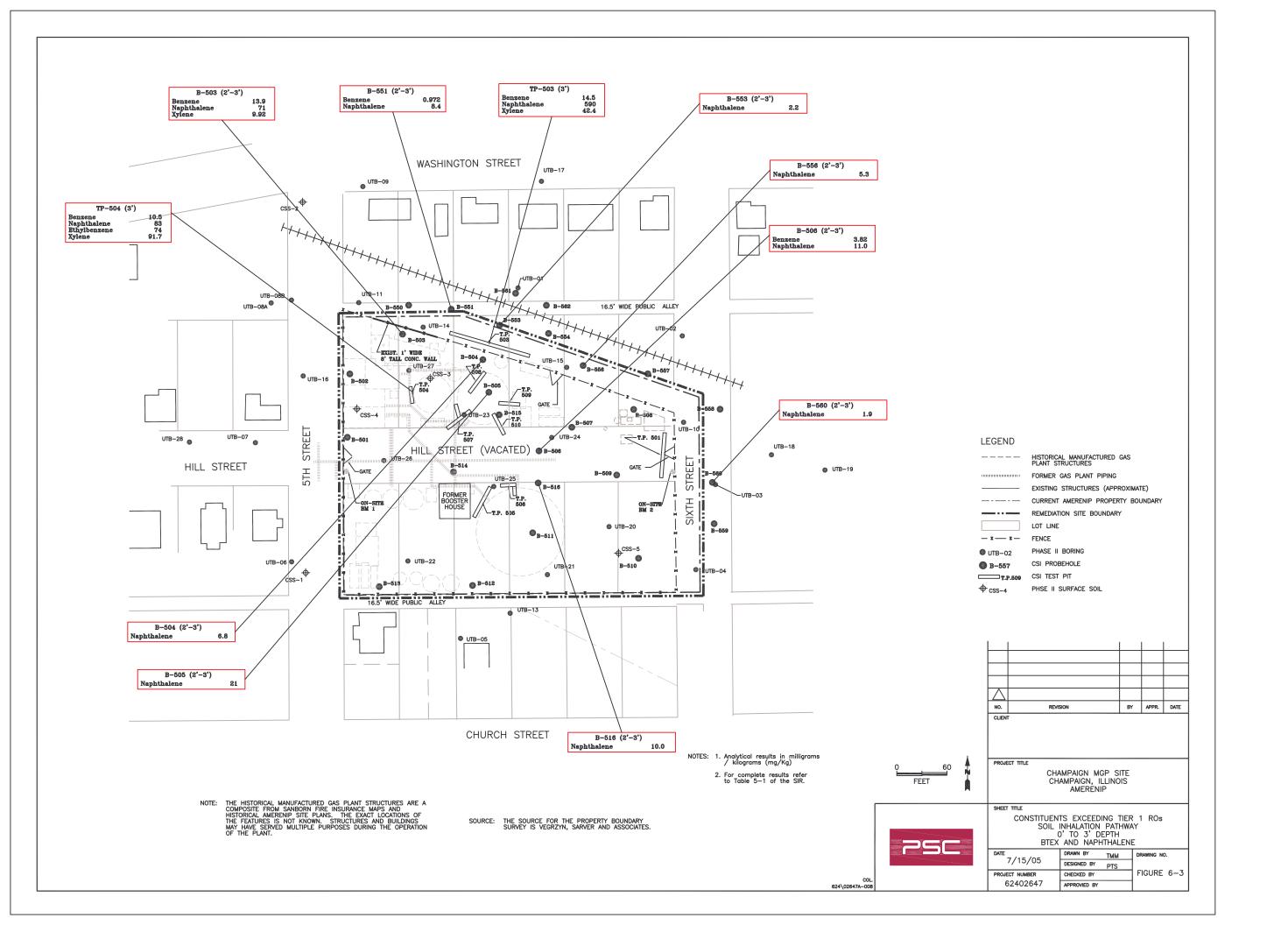


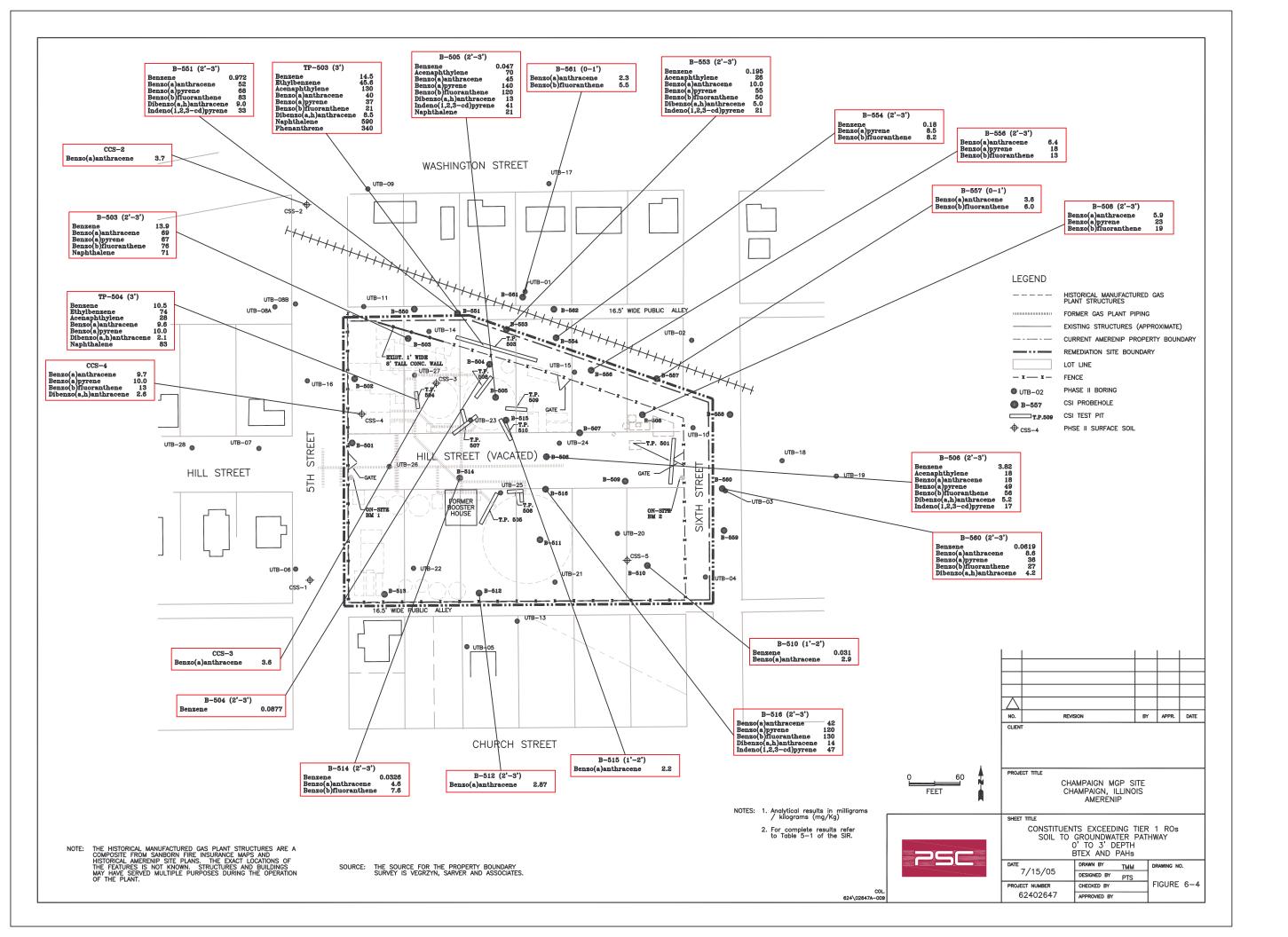


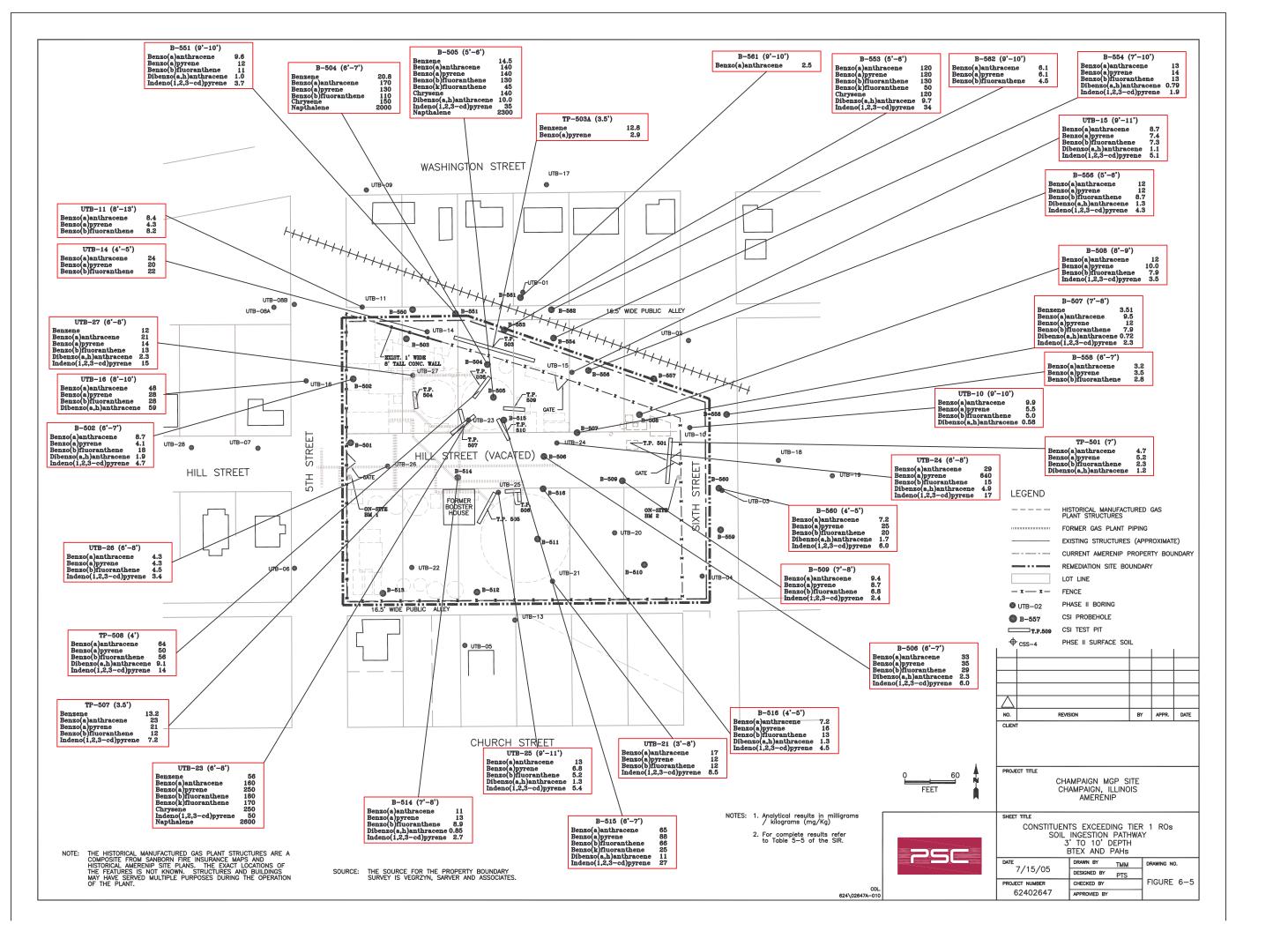


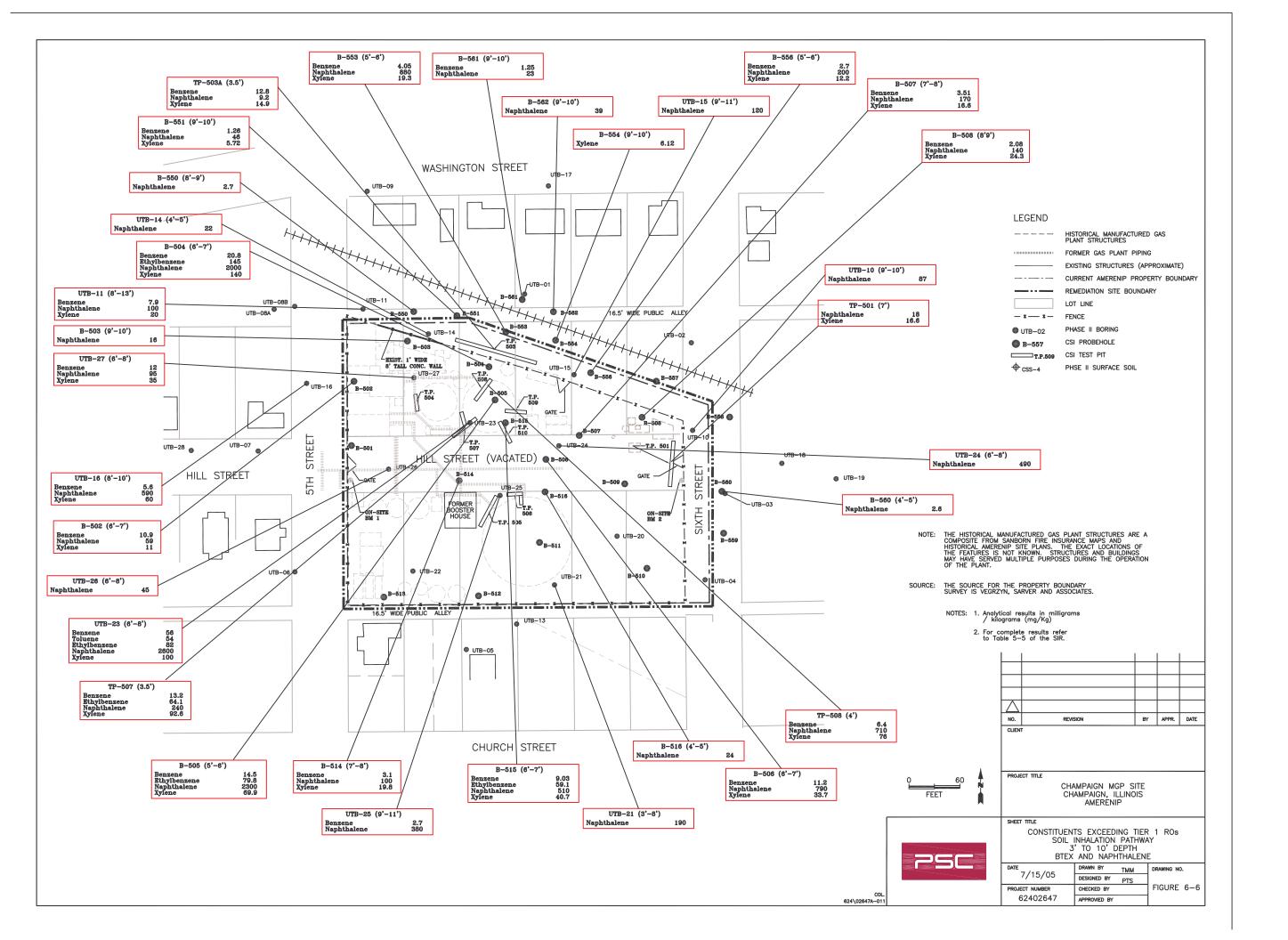


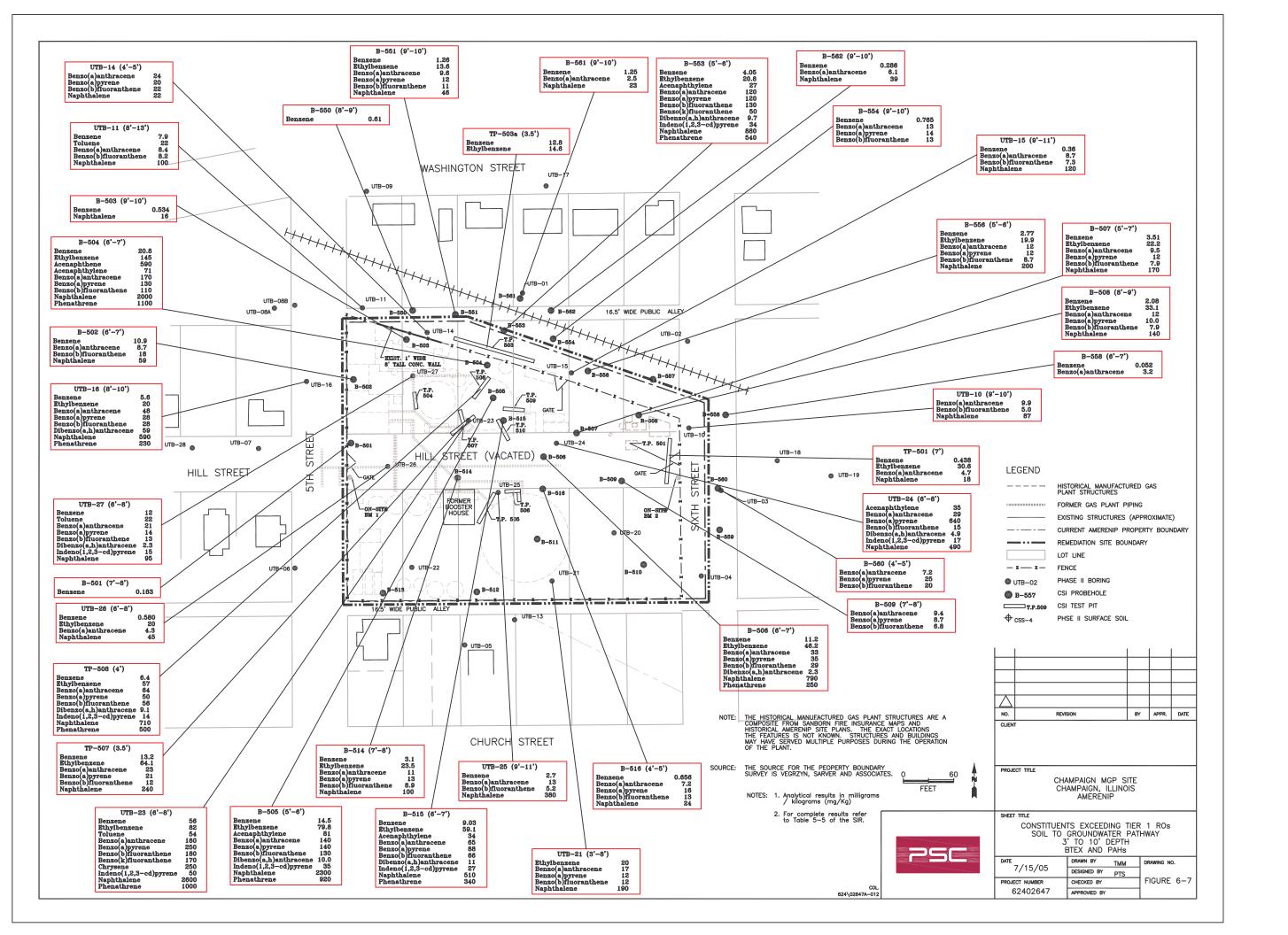


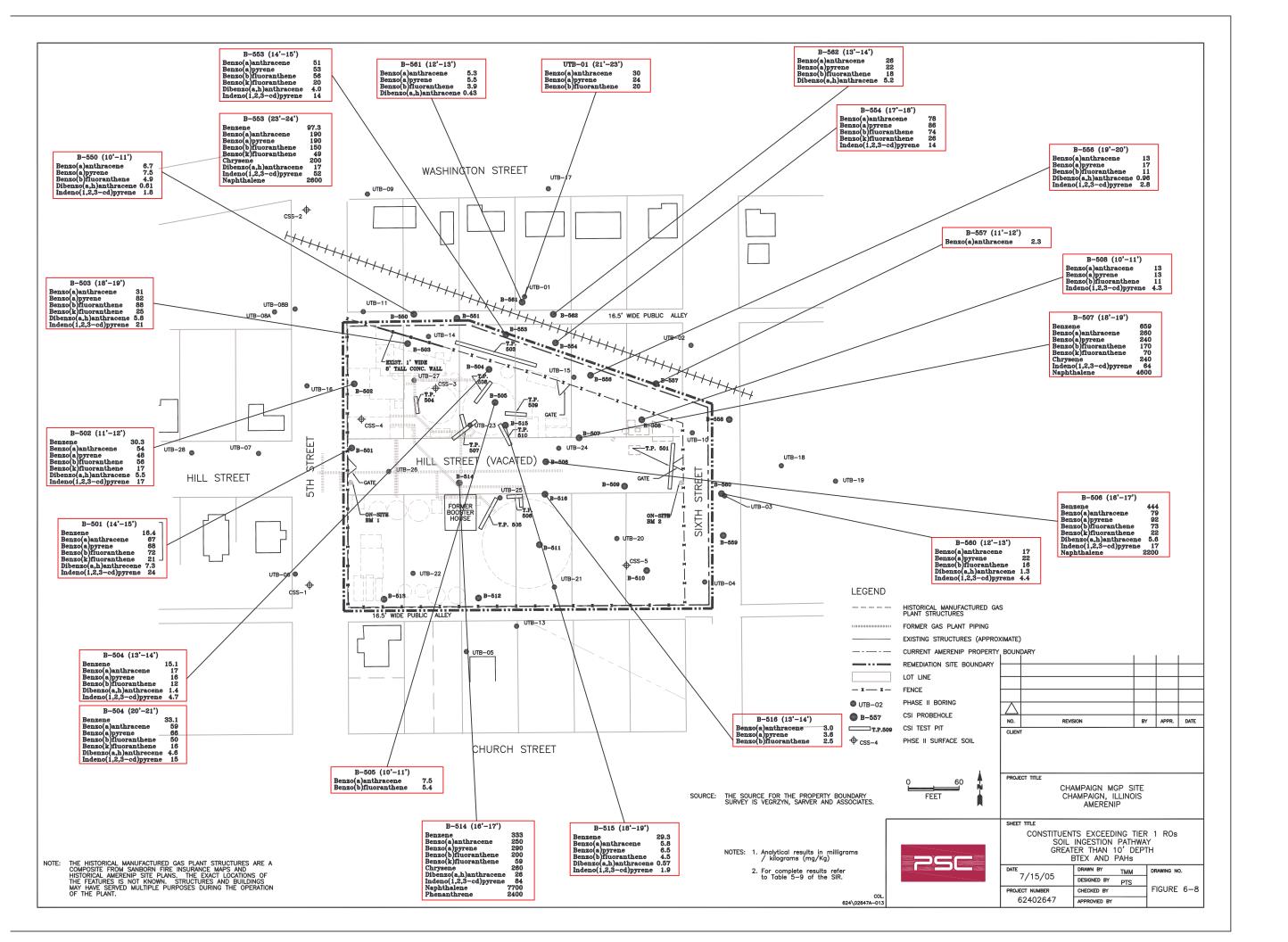


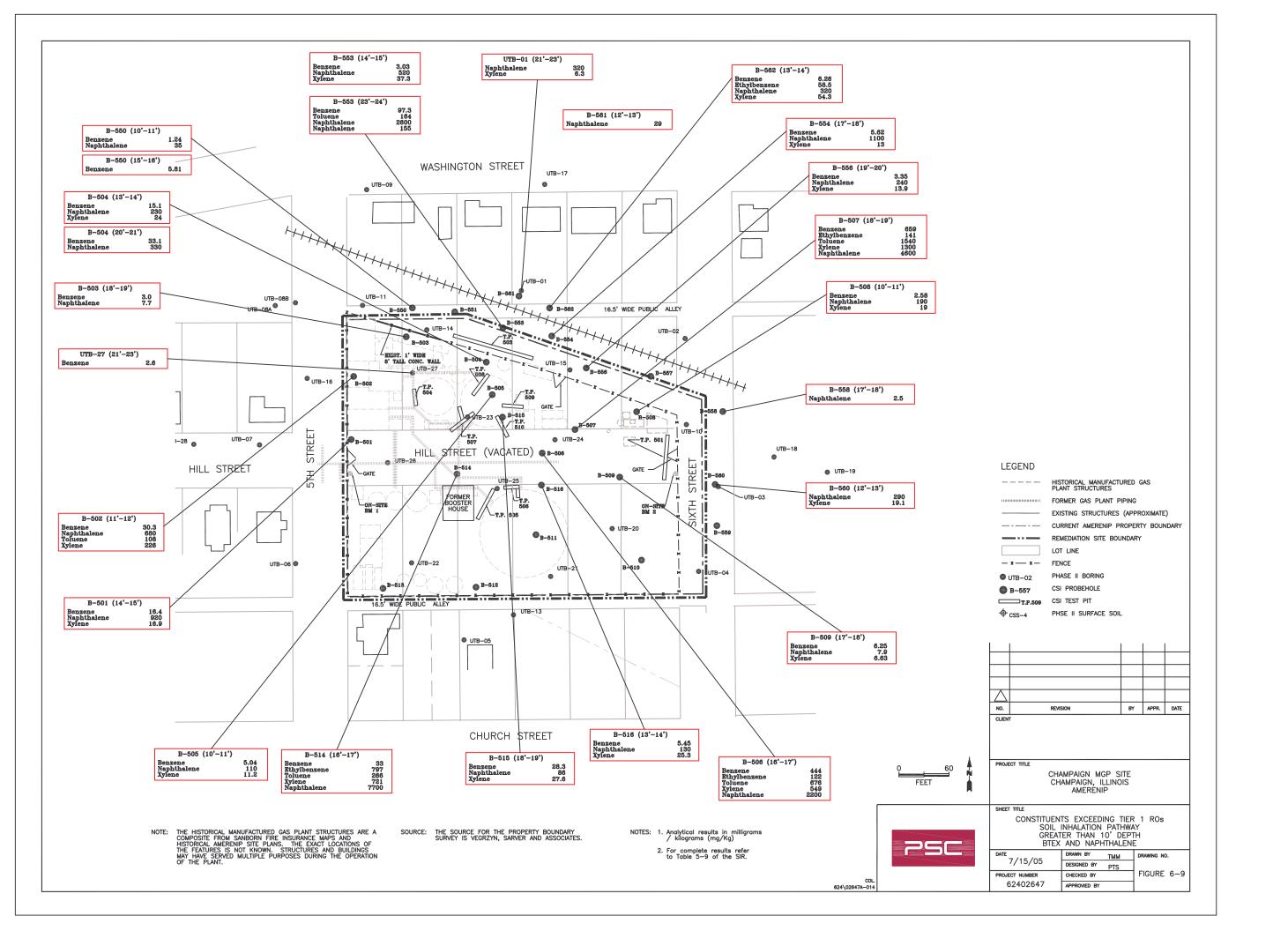


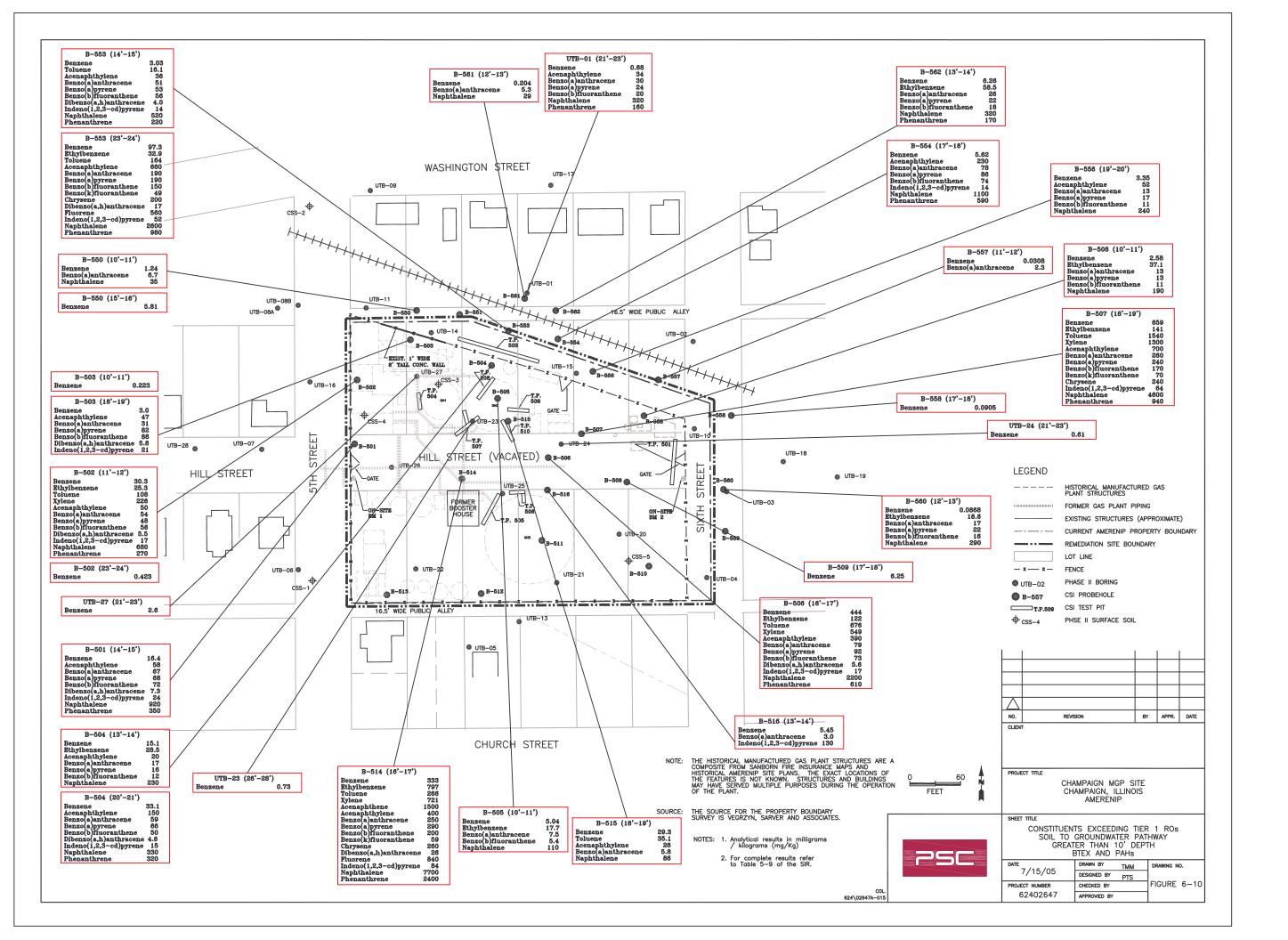


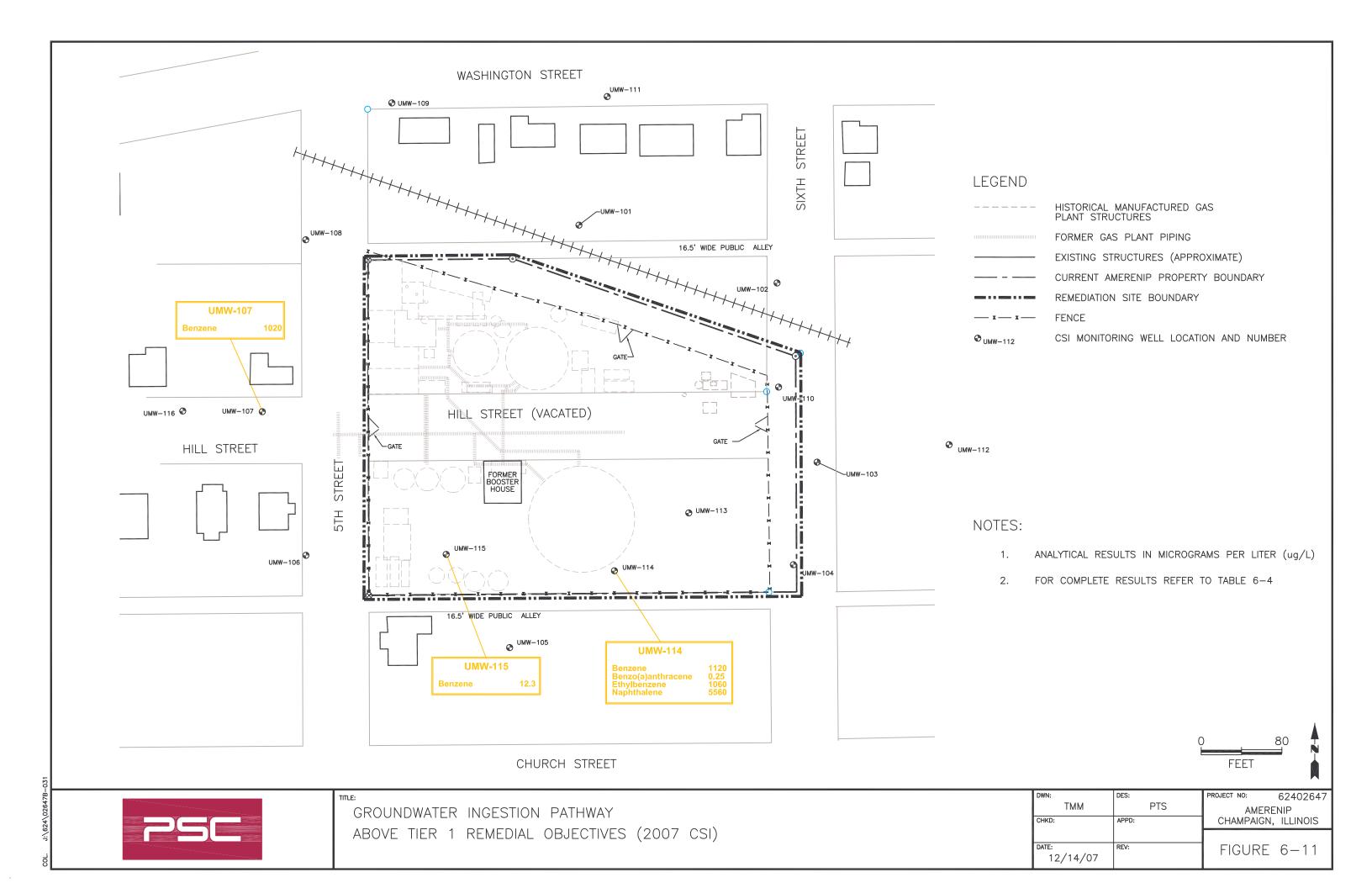


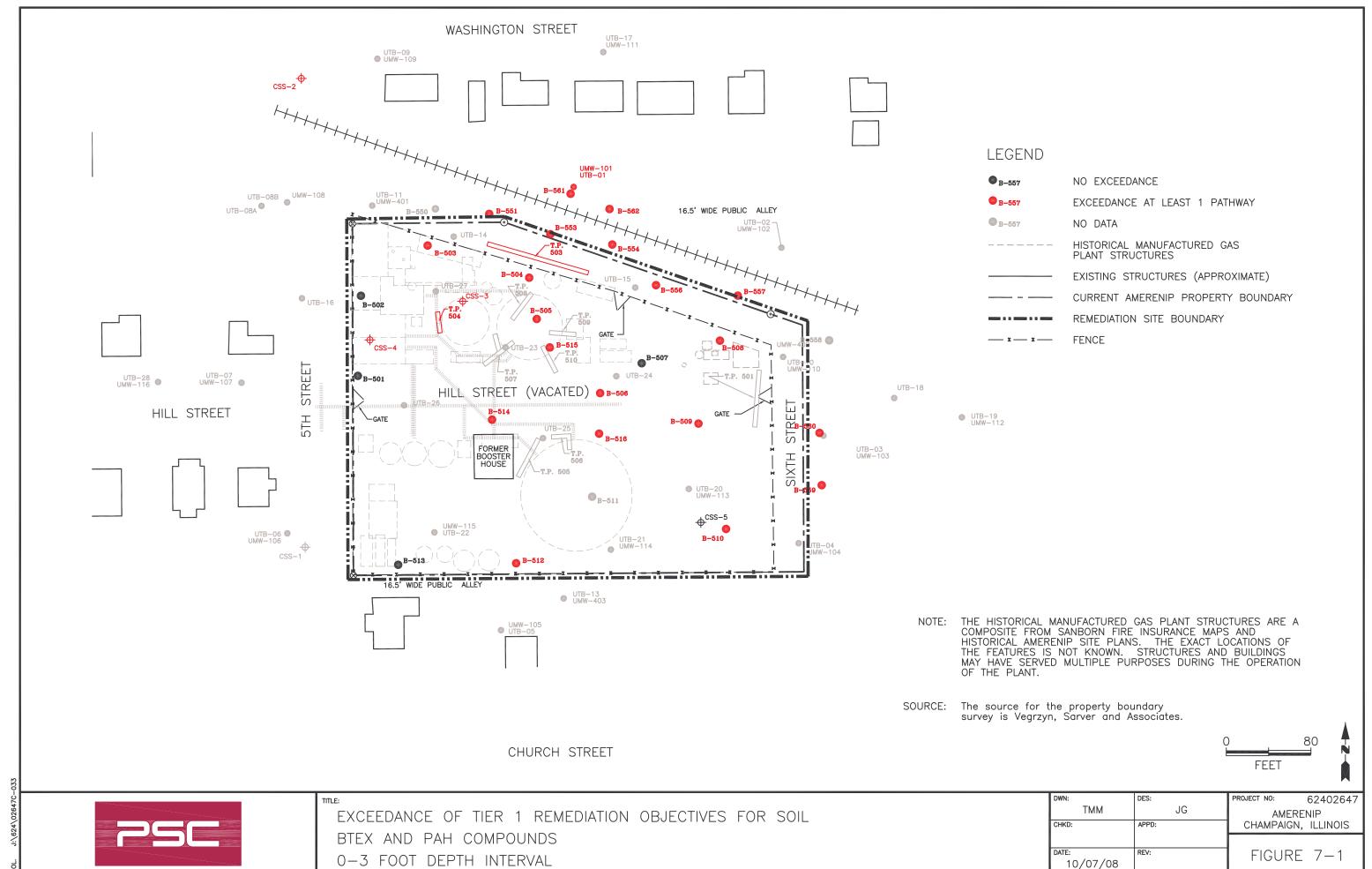


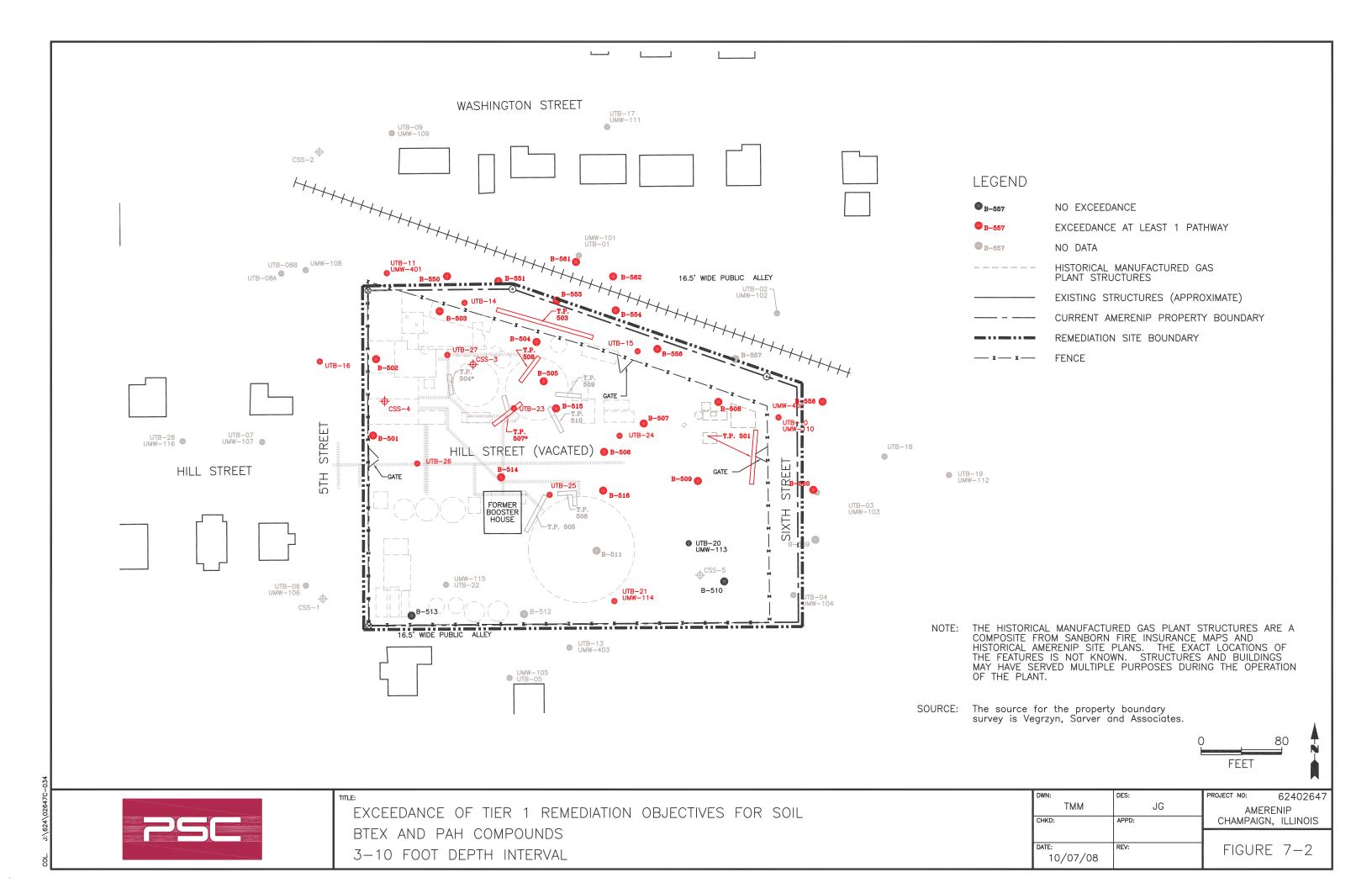


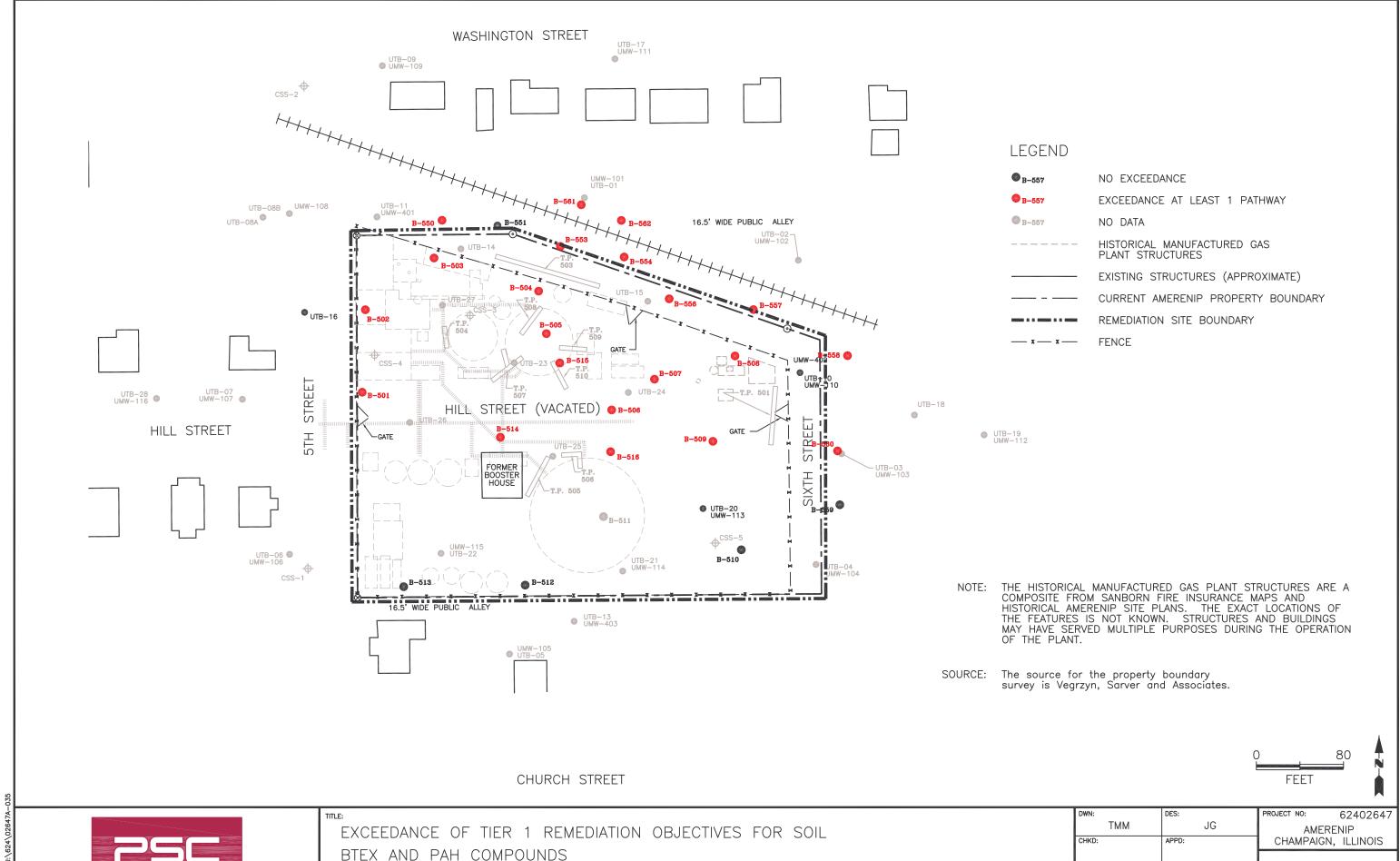


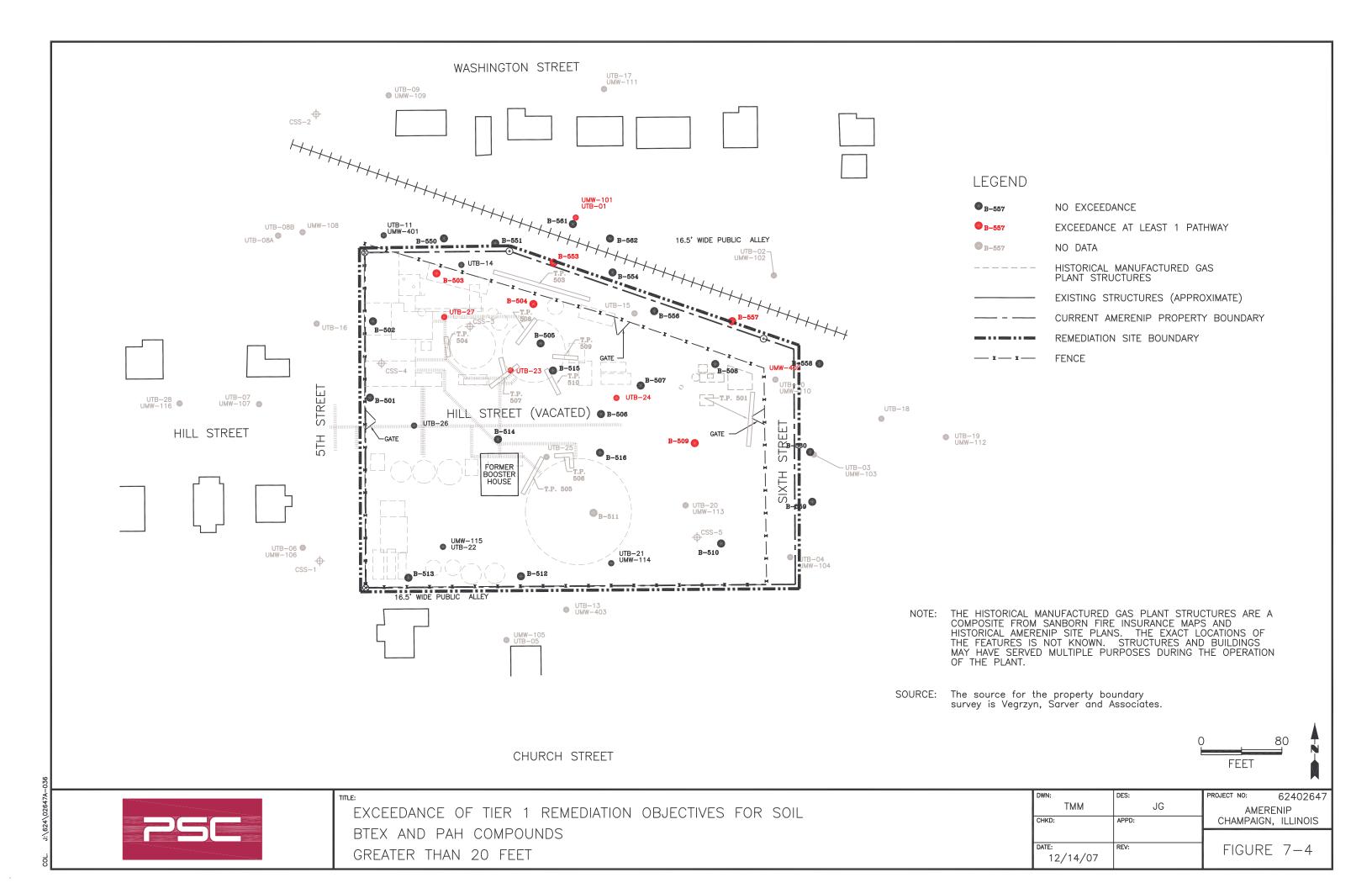


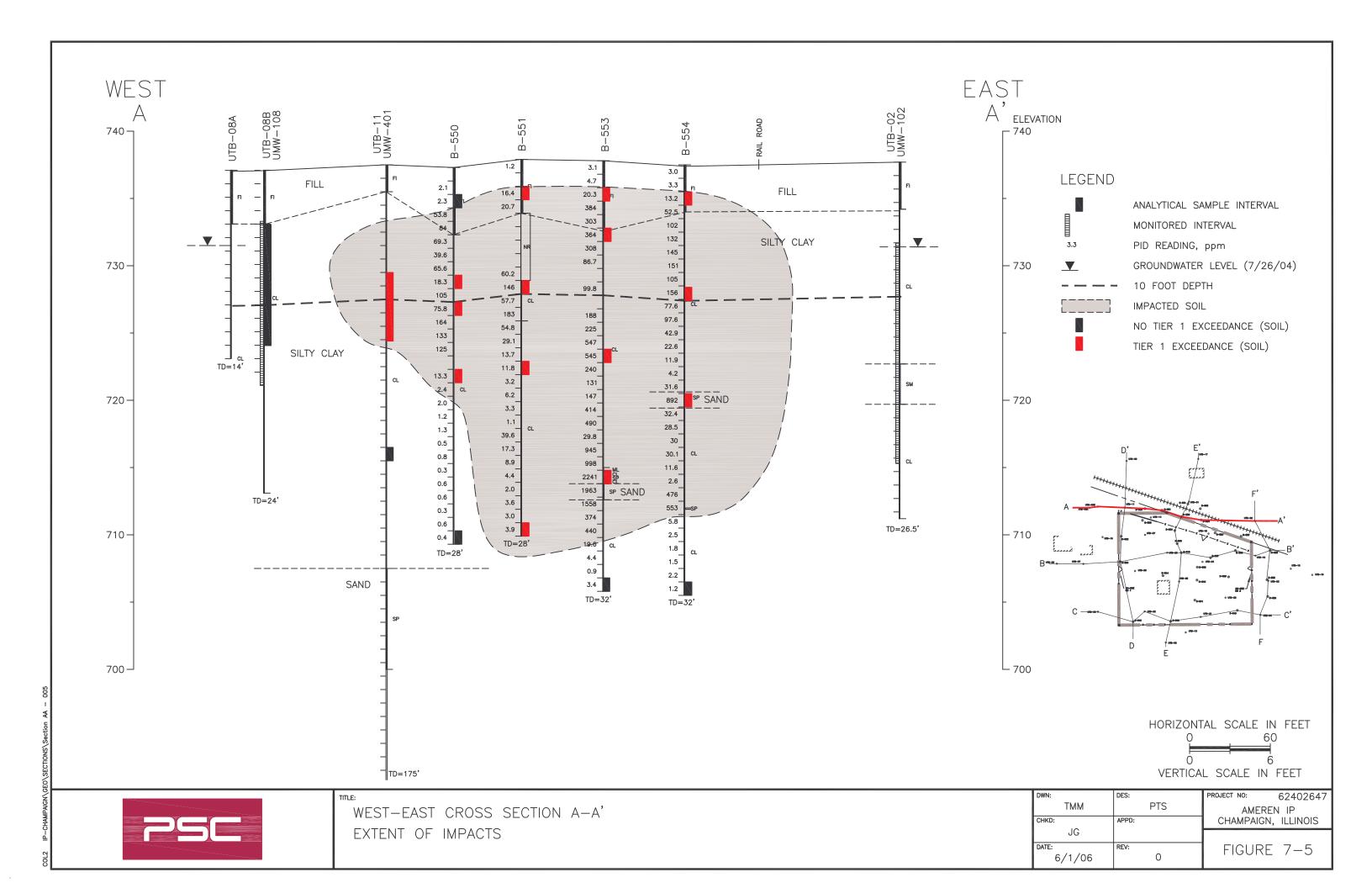






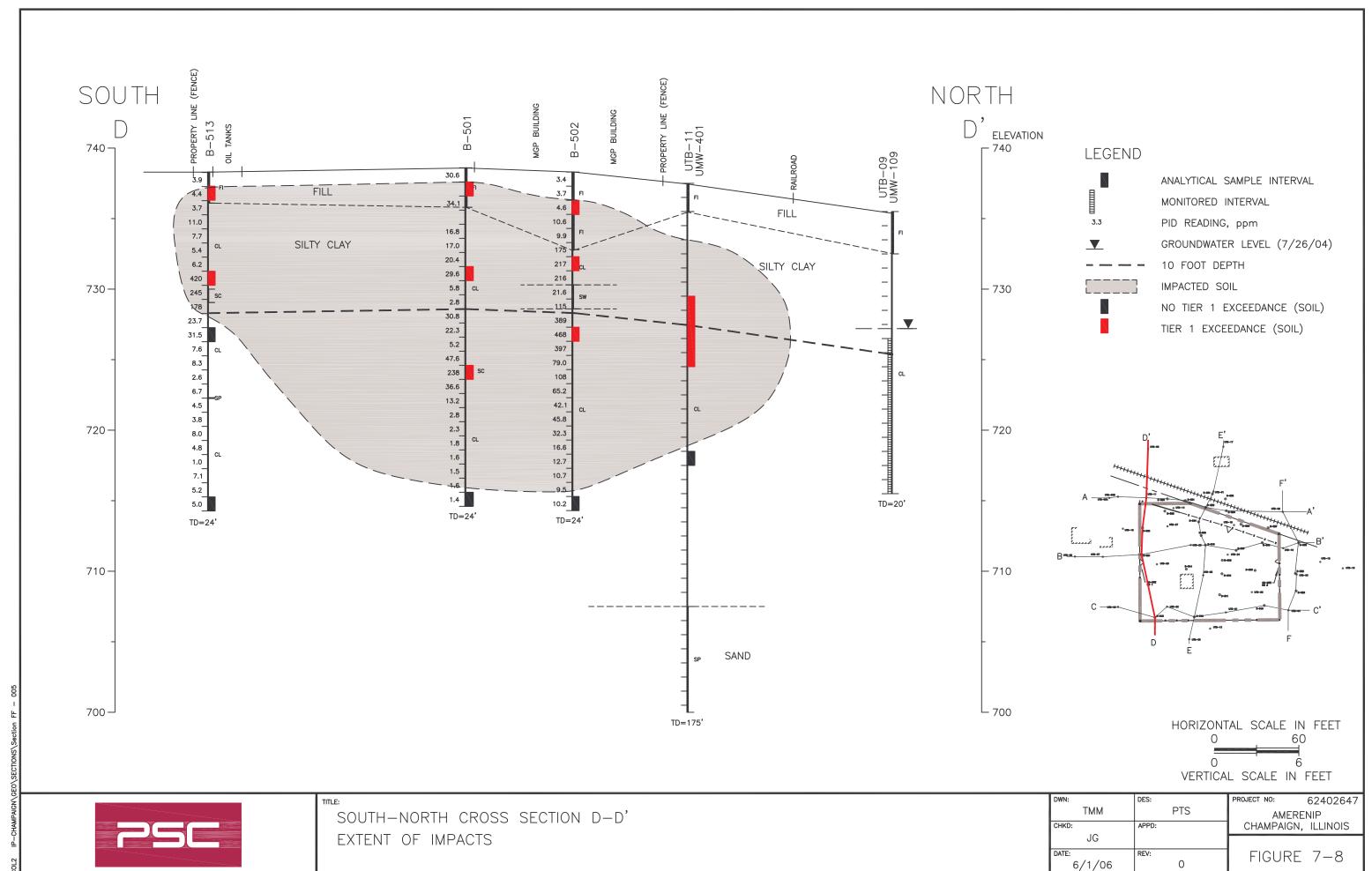


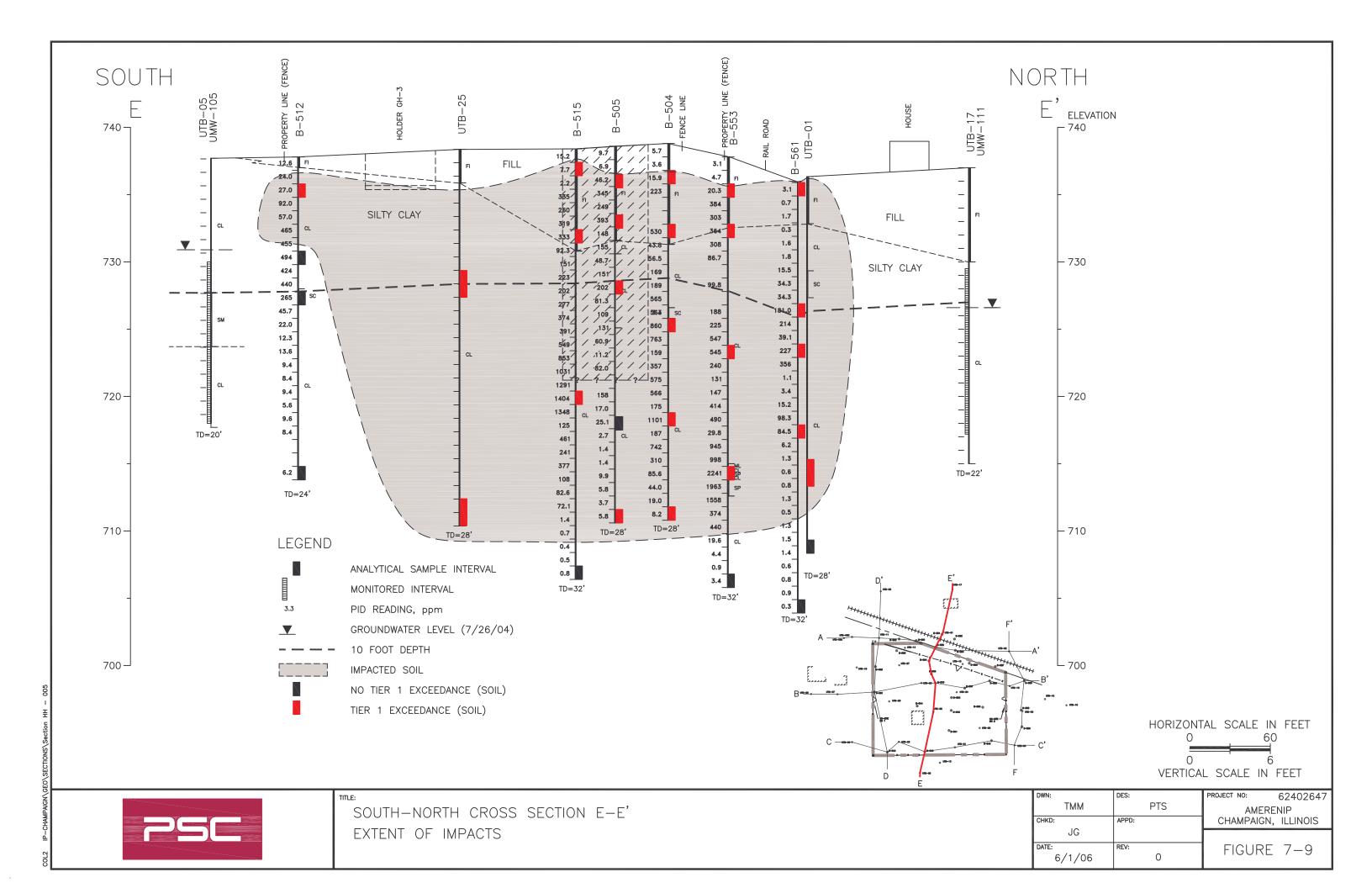


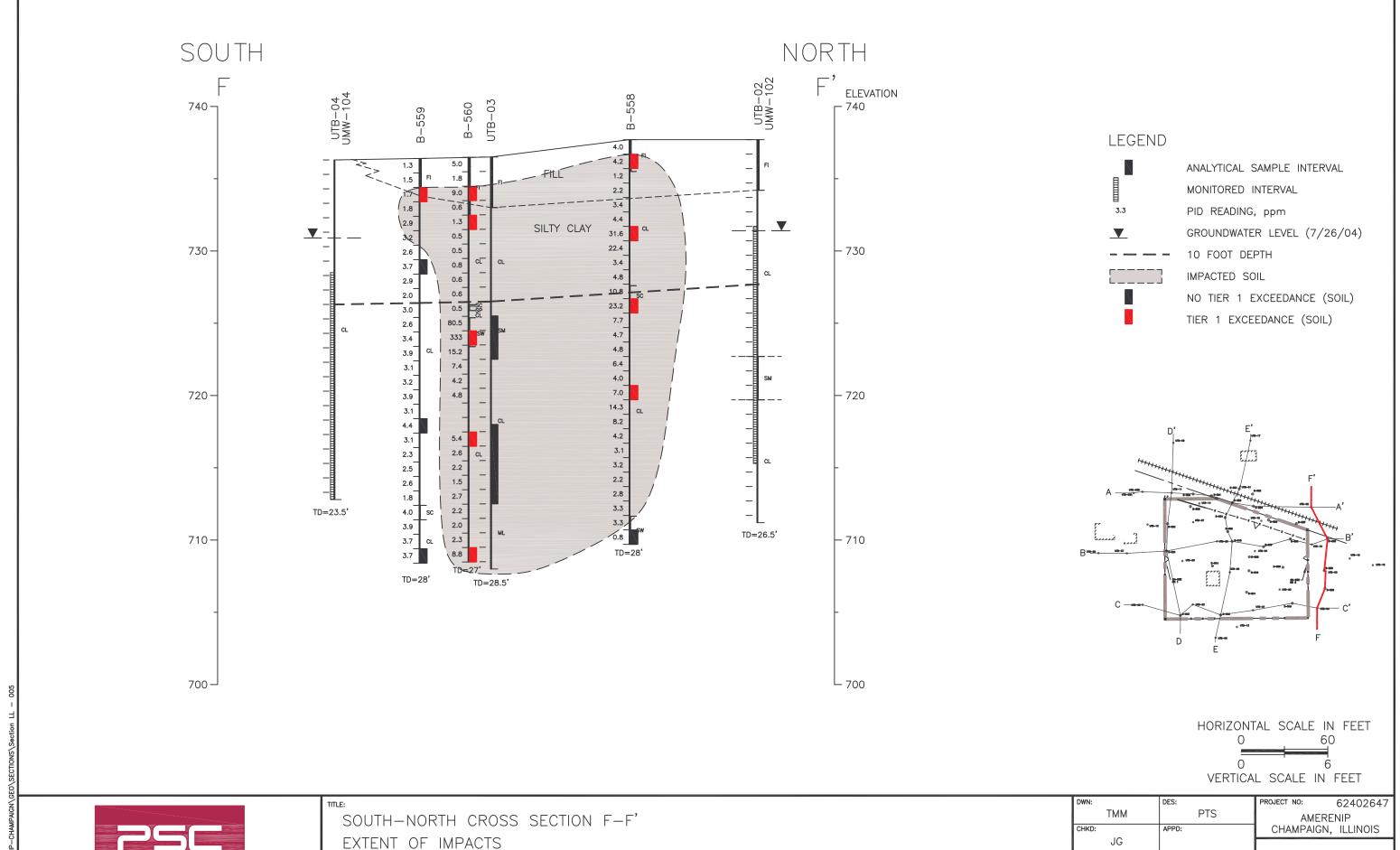


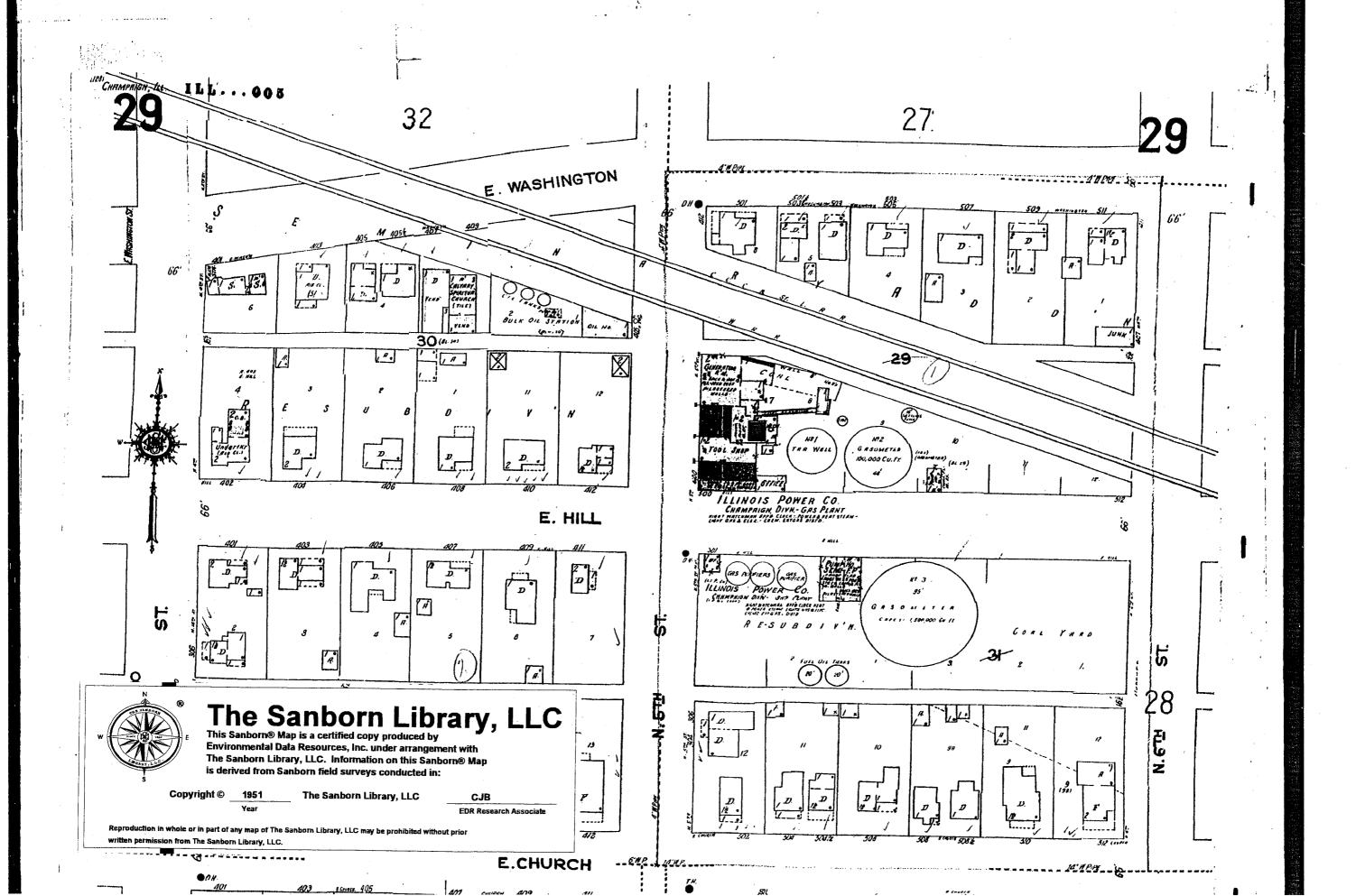
10-20 FOOT DEPTH INTERVAL

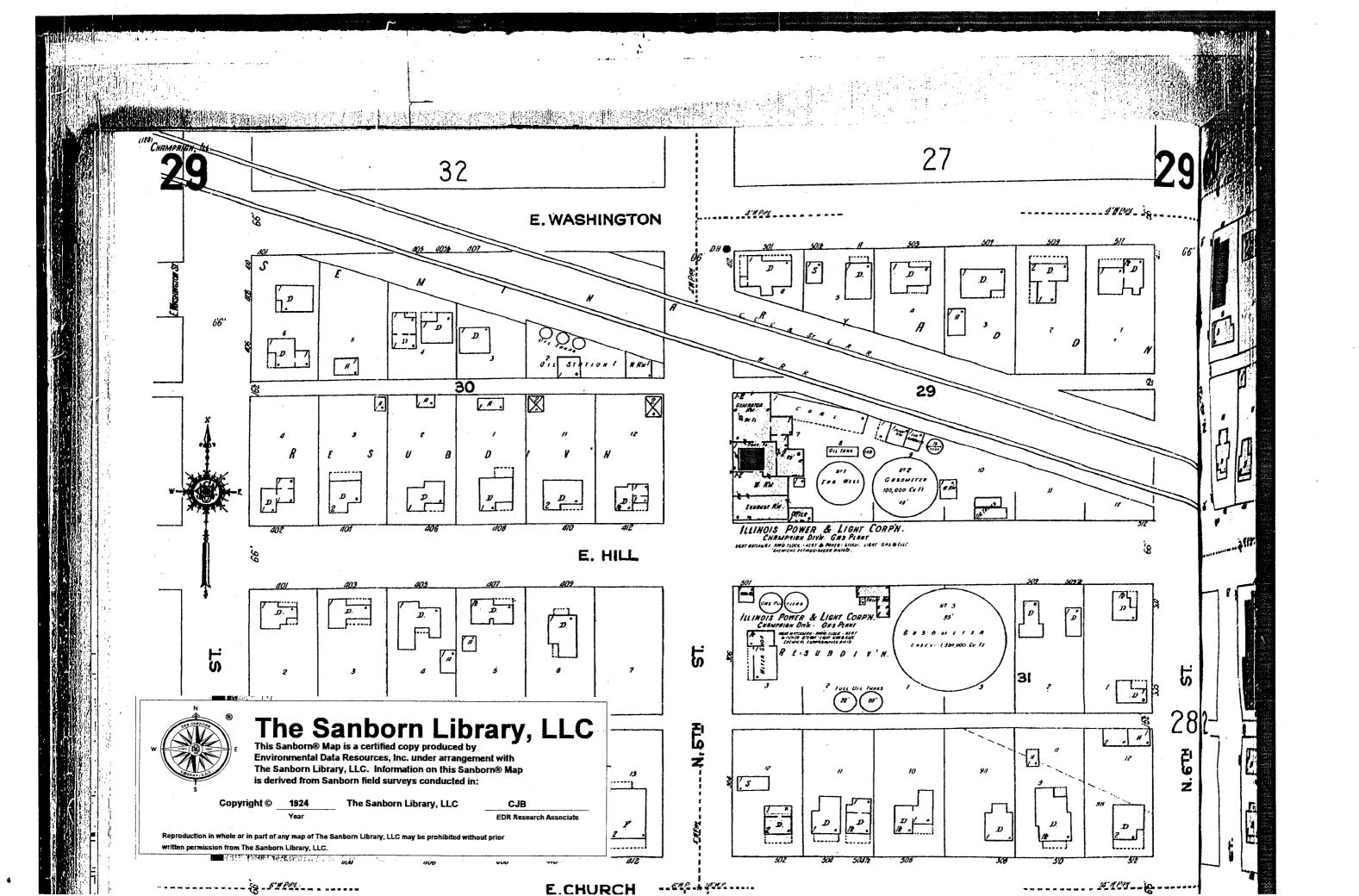
FIGURE 7-3

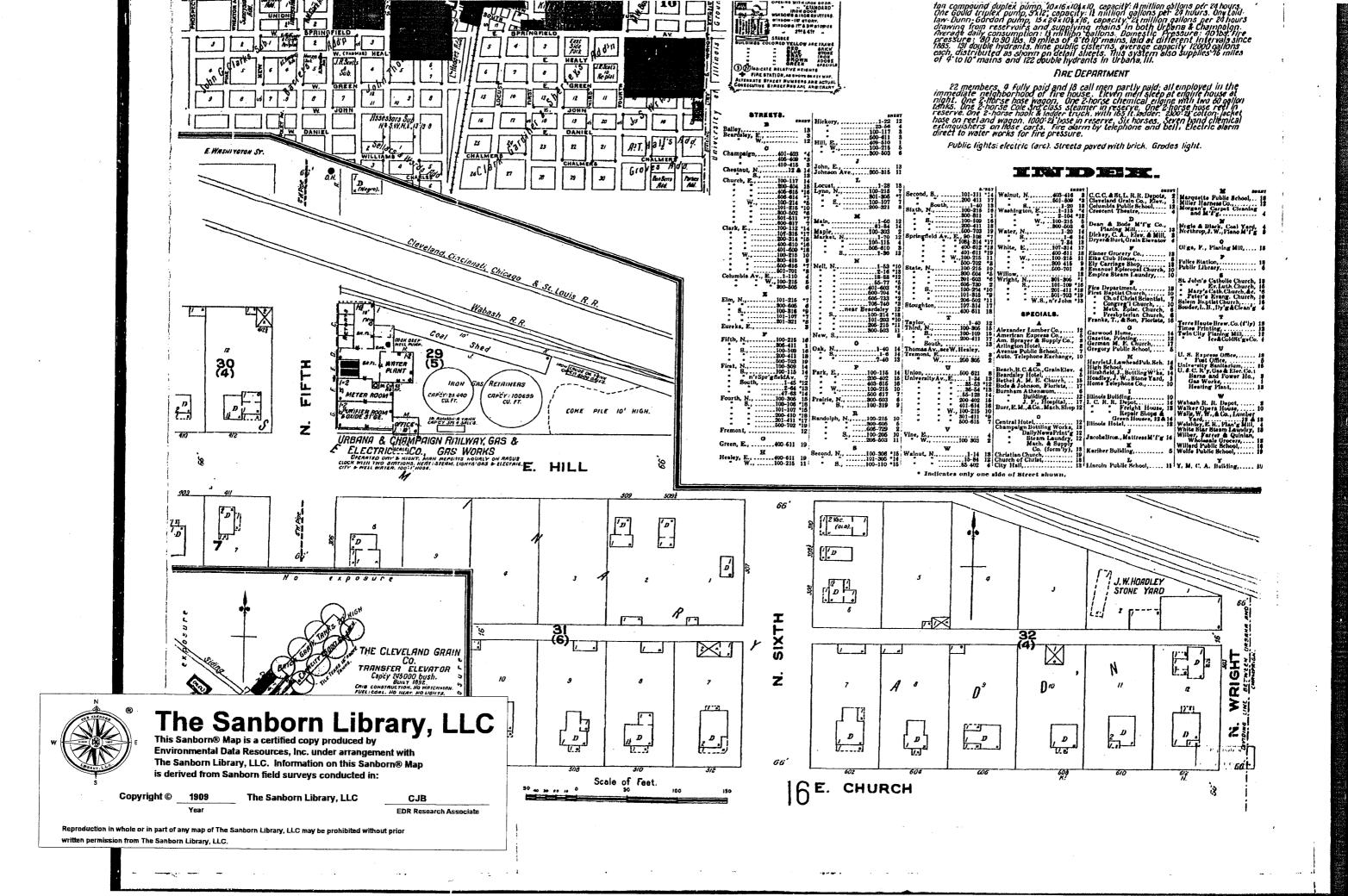

12/14/07

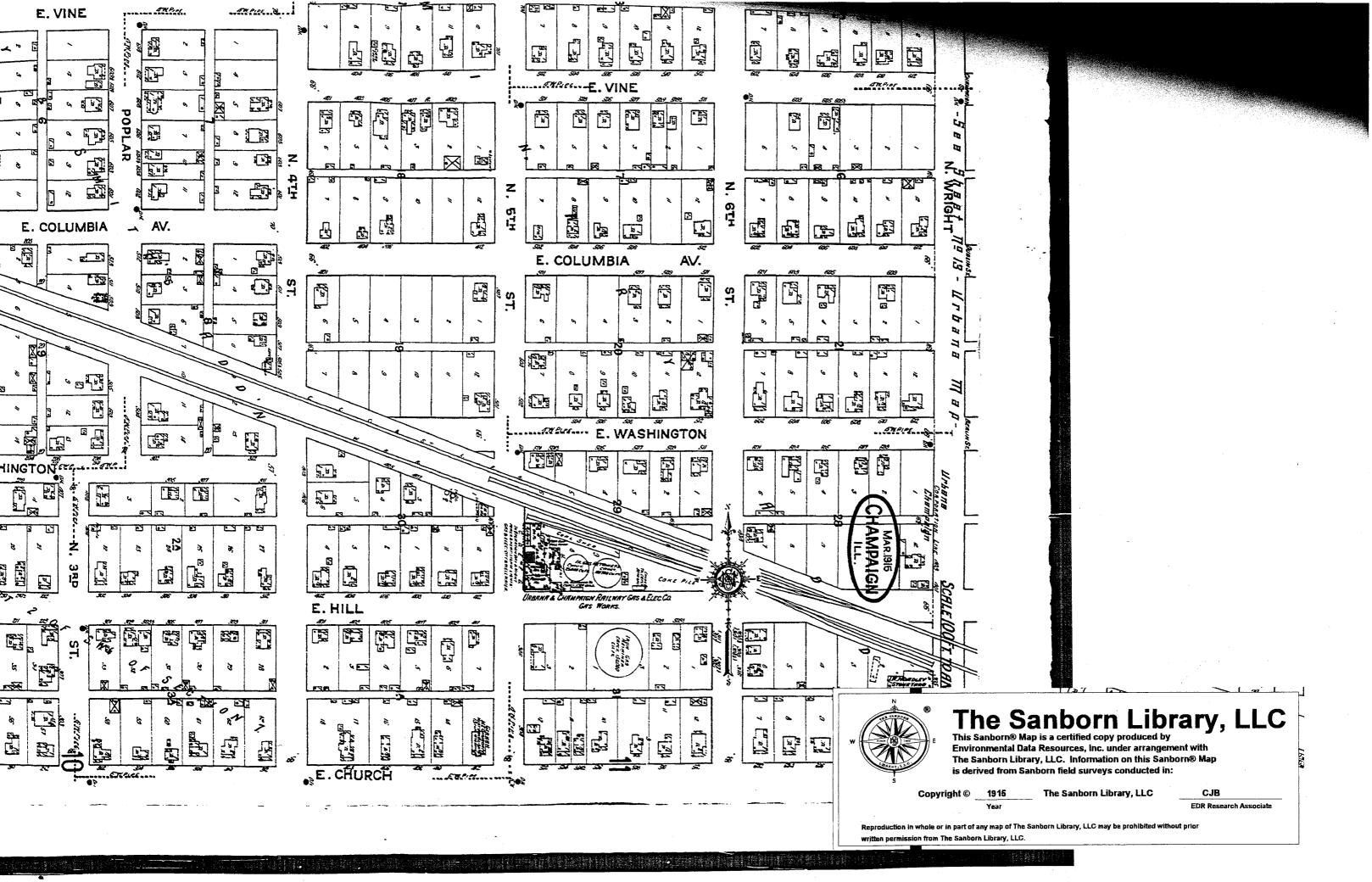


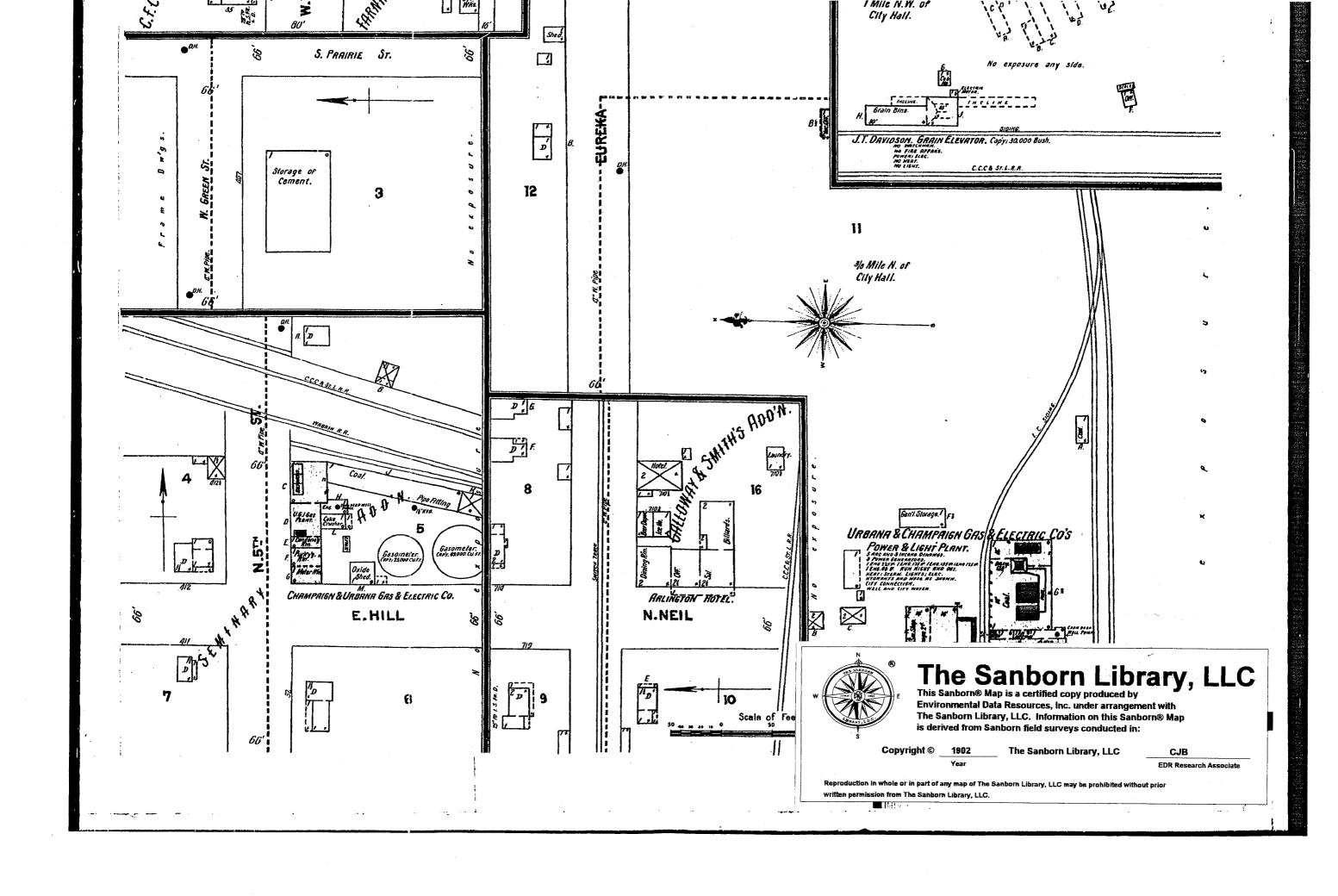


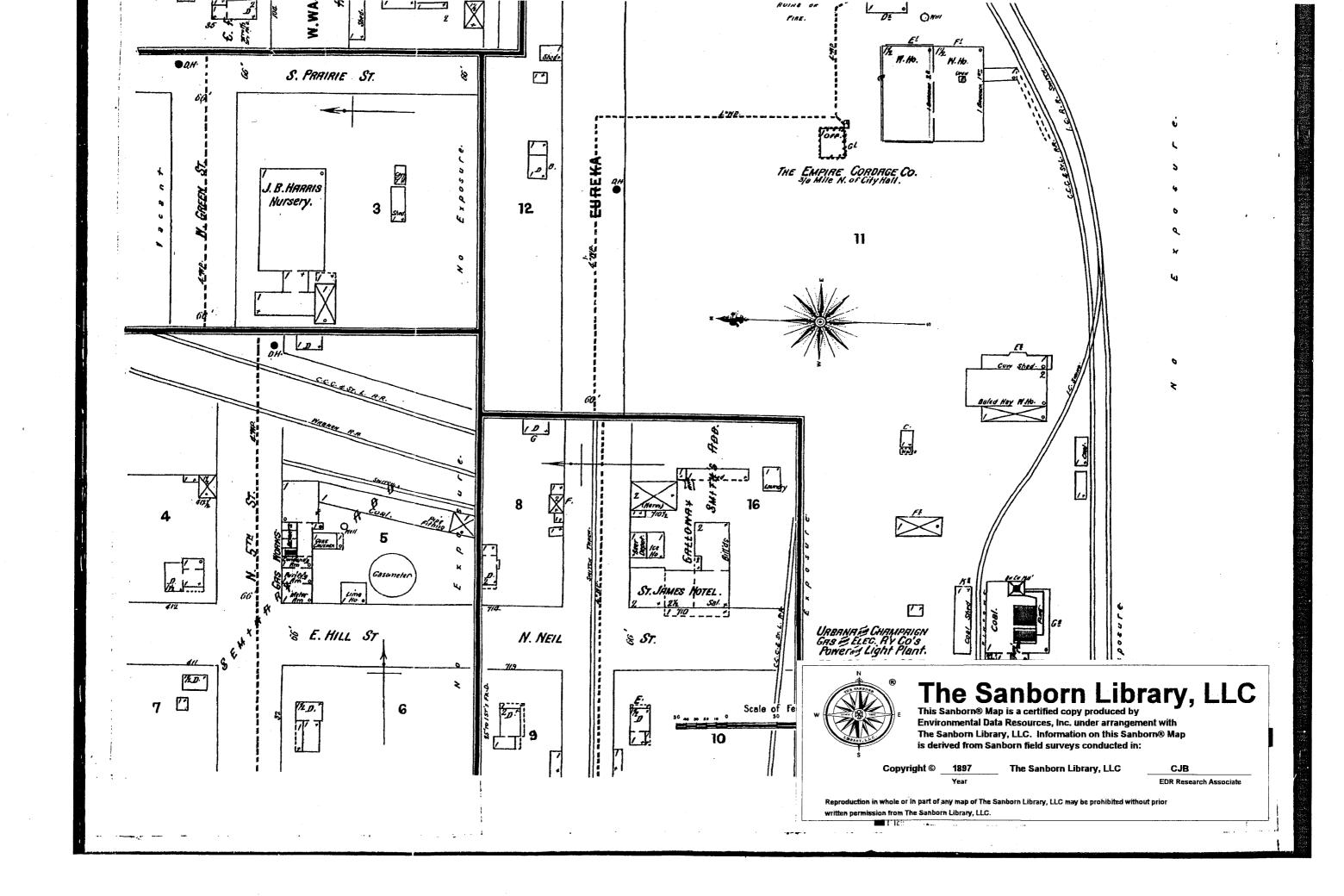

FIGURE 7-10

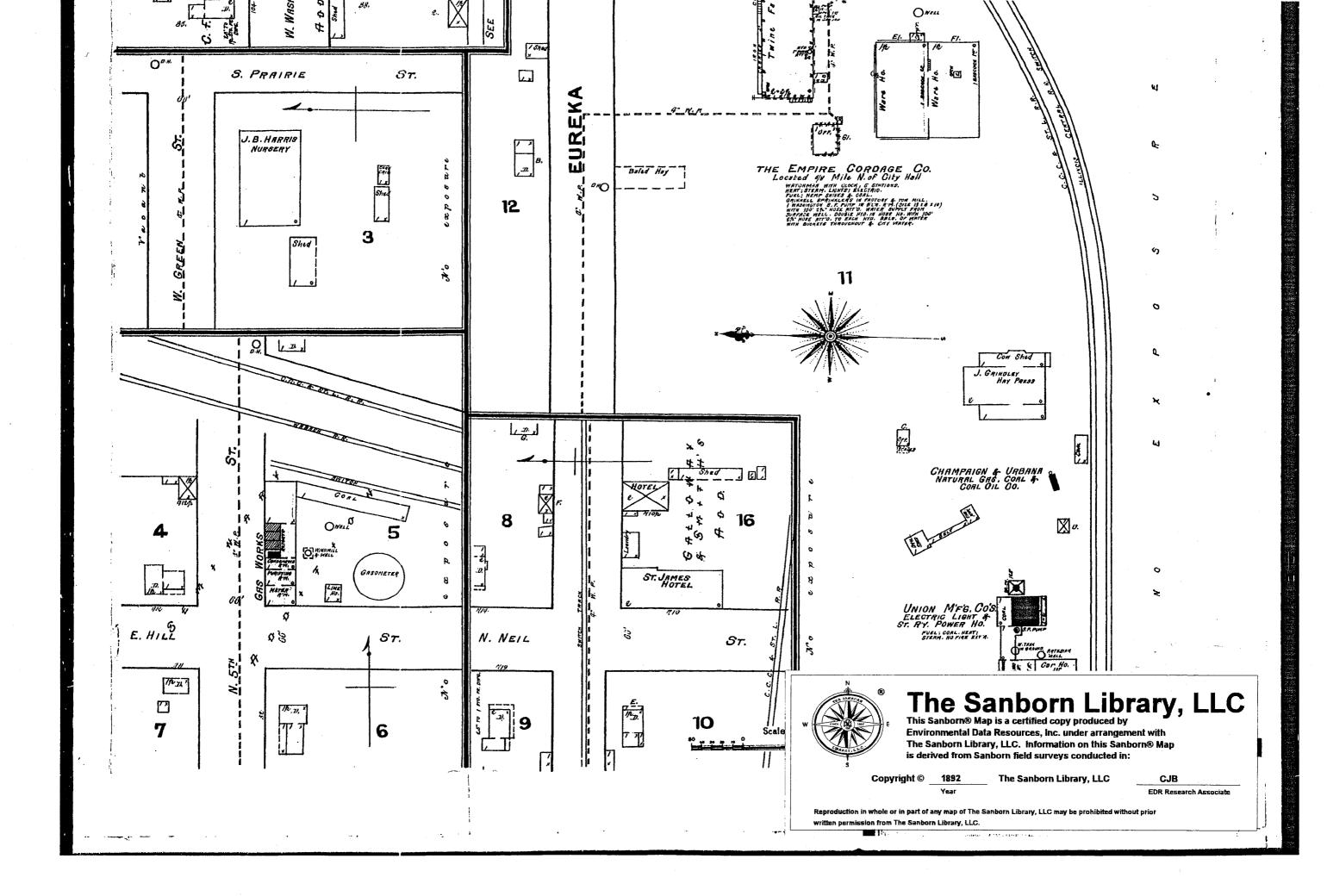

6/1/06

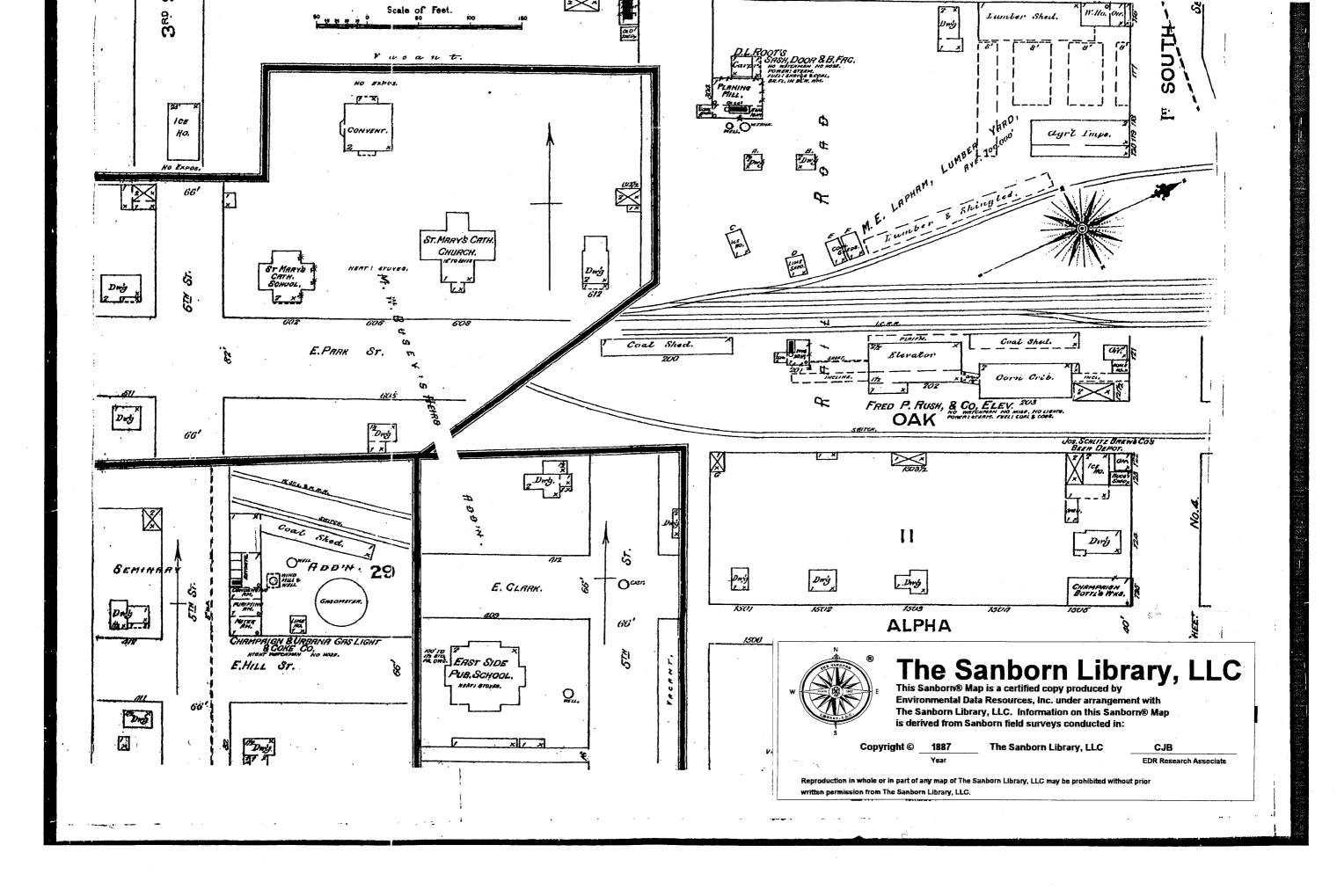

0


APPENDIX A


Sanborn Fire Insurance Maps







APPENDIX B

EDR Illinois Water Well Report EDR Radius Map With Geo Check

EDR Illinois Water Well Report

IP Champaign, Former MGP 308 North Fifth Street Champaign, IL 61820

Inquiry Number: 815413.3s

July 16, 2002

The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06890

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Introduction.	_ 1
Topographic Map	. 2
Well Search Summary	_ 3
Well Findings	_ 5
APPENDICES	
Government Records Searched	. A-1

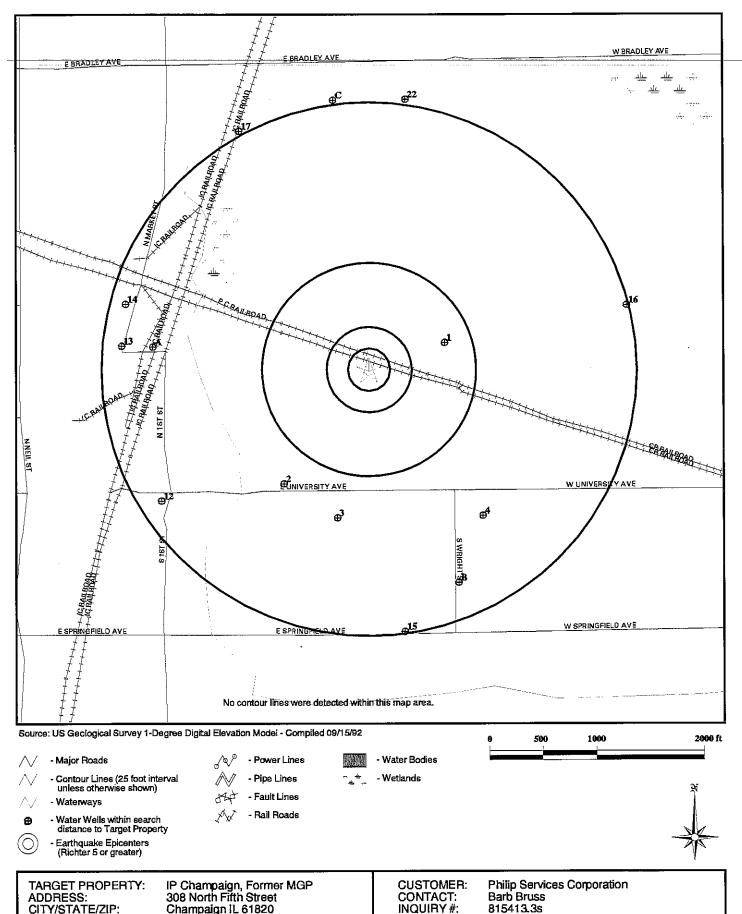
Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL EDR BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES.

Entire contents copyright 2001 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and the edr logos are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.


The EDR Illinois Water Well Report

The EDR-Illinois Water Well Report is a screening tool designed to assist in the location of water supply wells in accordance with the Illinois EPA Leaking Underground Storage Tank Program: Site Classification Completion Report.

The EDR-Illinois Water Well Report consists of the following information within 1/2 mile of target property:

- wells
- map displaying concentric rings at 200', 400' 1000' and 2500'
- topography (25 foot intervals unless otherwise shown)
- major roads
- surface water bodies
- railroad tracks
- flood plains (available in selected counties)
- wetlands (available in selected counties)
- geologic data
- radon data

TOPOGRAPHIC MAP - 815413.3s - Philip Services Corporation

ADDRESS:

LAT/LONG:

CITY/STATE/ZIP:

Champaign IL 61820 40.1194 / 88.2318

Barb Bruss

815413.3s July 16, 2002

DATE:

WELL SEARCH SUMMARY

GEOLOGIC AGE IDENTIFICATION†

Geologic Code:

PP1

Era: System: Paleozoic Pennsylvanian

Series:

Atokan and Morrowan Series

ROCK STRATIGRAPHIC UNIT[†]

Category:

Stratifed Sequence

SEARCH DISTANCE RADIUS INFORMATION

SEARCH DISTANCE (miles)
0.500
0.500
0,500

FEDERAL DATABASE WELL INFORMATION

MAP	WELL	LOCATION
<u>ID</u>	<u>ID</u>	FROM TP

NO WELLS FOUND

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	120192353800	753 Ft. ENE
2	120192432900	1334 Ft. SW
3	120192433000	1422 Ft. SSW
4	120190045900	1733 Ft, SE
A5	120192428900	2025 Ft. West
A6	120192428800	2025 Ft. West
B7	120190045700	2164 Ft. SSE
B8	120190046100	2164 Ft. SSE
B9	120190046000	2164 Ft. SSE
B10	120190045800	2164 Ft. SSE
B11	120190046200	2164 Ft. SSE
12	120190044300	2294 Ft. WSW
13	120190040400	2316 Ft. West
14	120190040300	2351 Ft. WNW
15	120190047400	2480 Ft. South
16	120190045100	2483 Ft. ENE
17	120192432800	2540 Ft. NNW
C18	120192353600	2542 Ft. North
C19	120192354000	2542 Ft. North
C20	120192354400	2542 Ft. North
C21	120192354500	2542 Ft. North
22	120190100700	2552 Ft. North

WELL SEARCH SUMMARY

PUBLIC WATER SUPPLY SYSTEM INFORMATION

NO WELLS FOUND

AREA RADON INFORMATION

Federal EPA Radon Zone for CHAMPAIGN County: 1

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L..

Federal Area Radon Information for CHAMPAIGN COUNTY, IL

Number of sites tested: 15

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	2.120 pCi/L	87%	13%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	5.453 pCi/L	60%	33%	7%

WELL SEARCH FINDINGS

Map ID Direction Distance

1 ENE 753 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353800 WTST 3353474	Group Number: Boring: Y Coord:	31 0 2584555
2 SW 1334 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192432900 WATER 3351996	Group Number: Boring: Y Coord:	31 0 2583217
3 SSW 1422 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192433000 WTST 3352496	Group Number. Boring: Y Coord:	31 0 2582905
4 SE 1733 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045900 WTST 3353849	Group Number: Boring: Y Coord:	31 0 2582946
A5 West 2025 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192428900 WTST 3350766	Group Number. Boring: Y Coord:	31 0 2584478
A6 West 2025 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192428800 WTST 3350766	Group Number: Boring: Y Coord:	31 0 2584478
B7 SSE 2164 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045700 WATER 3353631	Group Number: Boring: Y Coord:	31 0 2582318
B8 SSE 2164 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190046100 WTST 3353863	Group Number: Boring: Y Coord:	31 0 258 2 299
B9 SSE 2164 Ft.	Info Source: AP1 ID: Well Type: X Coord:	IL Geological Survey 120190046000 WTST 3353863	Group Number: Boring: Y Coord:	31 0 2582299

WELL SEARCH FINDINGS

Map ID
Direction
Distance

B10 SSE 2164 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045800 WTST 3353863	Group Number: Boring: Y Coord:	31 0 2582299
B11 SSE 2164 Ft	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190046200 WATER 3353863	Group Number: Boring: Y Coord:	31 0 2582299
12 WSW 2294 Pt.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190044300 WTST 3350864	Group Number. Boring: Y Coord:	31 0 2583042
13 West 2316 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190040400 WATER 3350476	Group Number: Boring: Y Coord:	31 0 2584482
14 WNW 2351 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190040300 WTST 3350507	Group Number: Boring: Y Coord:	31 0 2584873
15 South 2480 Pt.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190047400 WATER 3353138	Group Number: Boring: Y Coord:	31 0 2581852
16 ENE 2483 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045100 WATER 3355160	Group Number: Boring: Y Coord:	31 0 2584927
17 NNW 2540 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192432800 WTST 3351537	Group Number: Boring: Y Coord:	31 0 2586497
C18 North 2542 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353600 WTST 3352406	Group Number: Boring: Y Coord:	31 0 2586795

WELL SEARCH FINDINGS

Map ID Direction Distance

C19 North 2542 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354000 WTST 3352406	Group Number: Boring: Y Coord:	31 0 2586795
C20 North 2542 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354400 WTST 3352406	Group Number: Boring: Y Coord:	31 0 2586795
C21 North 2542 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354500 WTST 3352406	Group Number: Boring: Y Coord:	31 0 2586795
22 North 2552 Ft.	Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190100700 WTST 3353084	Group Number: Boring: Y Coord:	31 0 2586813

ILLINOIS GOVERNMENT WELL RECORDS SEARCHED

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after

August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

Area Radon Information

Source: EPA

Telephone: 303-236-1525

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 202-564-9370

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

USGS Water Wells: In November 1971 the United States Geological Survey (USGS) implemented a national water resource information tracking system. This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on more than 900,000 wells, springs, and other sources of groundwater.

County Well Data in Illinois: Cook and DuPage Counties

Source: Illinois State Geological Survey

Telephone: 217-244-2387

Illinois Private Well Database and PICS (Public, Industrial, Commercial Survey)

Source: Illinois State Water Survey

Telephone: 217-333-9043

Illinois State Geological Survey Water Wells

Source: Illinois State Geological Survey

Telephone: 217-333-5102

Point data set that shows locations, well type, and well ID for wells in Illinois. Data comes from driller's logs.

STREET AND ADDRESS INFORMATION

© 2001 Geographic Data Technology, Inc., Rel. 07/2001. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

The EDR Radius Map with GeoCheck®

IP Champaign, Former MGP 308 North Fifth Street Champaign, IL 61820

Inquiry Number: 815413.1s

July 17, 2002

The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06890

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary.	ES1
Overview Map	2
Detail Map	3
Map Findings Summary.	4
Map Findings.	5
Orphan Summary.	21
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map	A- 8
Physical Setting Source Map Findings.	A-9
Physical Setting Source Records Searched	A-29

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer Copyright and Trademark Notice

This report contains information obtained from a variety of public and other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL EDR BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES.

Entire contents copyright 2001 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and the edr logos are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR). The report meets the government records search requirements of ASTM Standard Practice for Environmental Site Assessments, E 1527-00. Search distances are per ASTM standard or custom distances requested by the user.

TARGET PROPERTY INFORMATION

ADDRESS

308 NORTH FIFTH STREET CHAMPAIGN, IL 61820

COORDINATES

Latitude (North): Longitude (West): 40.119400 - 40° 7' 9.8"

88.231800 - 88° 13' 54.5"

Universal Tranverse Mercator: Zone 16 UTM X (Meters): UTM Y (Meters):

395033.1 4441526.5

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property: Source:

2440088-A2 URBANA, IL USGS 7.5 min quad index

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following government records. For more information on this property see page 5 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
ILLINOIS POWER TOWN GAS PLANT 502 EAST HILL STREET CHAMPAIGN, IL 61820	S RP	N/A
ILLINOIS POWER CO CHAMPAIGN MGP 502 E HILL ST CHAMPAIGN, IL 61820	RCRIS-SQG FINDS	ILD984783472

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the ASTM E 1527-00 search radius around the target property for the following databases:

FEDERAL ASTM STANDARD

NPL	. National Priority List
Proposed NPL	Proposed National Priority List Sites
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NFRAP	. CERCLIS No Further Remedial Action Planned
CORRACTS	
RCRIS-TSD.	Resource Conservation and Recovery Information System
	Resource Conservation and Recovery Information System

ERNS_____ Emergency Response Notification System

STATE ASTM STANDARD

SHWS..... State Oversight List

SWF/LF...... Available Disposal for Solid Waste in Illinois - Solid Waste Landfills Subject

to State Surcharge

IMPDMENT Surface Impoundment Inventory

CAT...... Category List

FEDERAL ASTM SUPPLEMENTAL

CONSENT....... Superfund (CERCLA) Consent Decrees

ROD..... Records Of Decision

Delisted NPL...... National Priority List Deletions

HMIRS Hazardous Materials Information Reporting System

MLTS..... Material Licensing Tracking System

MINES..... Mines Master Index File NPL Liens_____ Federal Superfund Liens PADS...... PCB Activity Database System

TRIS...... Toxic Chemical Release Inventory System

TSCA...... Toxic Substances Control Act

FTTS......FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, &

. Rodenticide Act)/TSCA (Toxic Substances Control Act)

STATE OR LOCAL ASTM SUPPLEMENTAL

IL NIPC..... Solid Waste Landfill Inventory

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified.

Elevations have been determined from the USGS 1 degree Digital Elevation Model and should be evaluated on a relative (not an absolute) basis, Relative elevation information between sites of close proximity should be field verified. EDR's definition of a site with an elevation equal to the target property includes a tolerance of +/- 10 feet. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property (by more than 10 feet). Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in bold italics are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

FEDERAL ASTM STANDARD

RCRIS: The Resource Conservation and Recovery Act database includes selected information on sites that generate, store, treat, or dispose of hazardous waste as defined by the Act. The source of this database is the U.S. EPA.

A review of the RCRIS-SQG list, as provided by EDR, and dated 06/10/2002 has revealed that there are 4 RCRIS-SQG sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
IVEY AUTO BODY SPECIALIST	503 E UNIVERSITY	1/8 - 1/45	D7	7
CHRIS AUTO BODY	501 E UNIVERSITY AVE	1/8 - 1/4S	D8	8
SHEPARDSON DR CR OFFICE LAB	1401 W PARK AVE	1/8 - 1/4 <i>SE</i>	C15	13
KEY ONE HOUR CLEANERS NO 136	401 E UNIVERSITY	1/8 - 1/4SSW	F16	13

STATE ASTM STANDARD

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Illinois Environmental Protection Agency's LUST Incident Report.

A review of the LUST list, as provided by EDR, and dated 05/24/2002 has revealed that there are 7 LUST sites within approximately 0.5 miles of the target property.

Address	Dist / Dir	Map ID	Page
600 EAST PARK ST.	1/8 - 1/4 SSE	B5	6
606 EAST UNIVERSITY AVE	1/8 - 1/4 SSE	E11	9
606 EAST GROVE	1/4 - 1/2NNE	17	14
306 EAST UNIVERSITY	1/4 - 1/2SW	18	15
1412 WEST UNIVERSITY AV	1/4 - 1/2SE	19	15
210 E UNIVERSITY AVE	1/4 - 1/2 SW	20	16
209 SOUTH 1ST ST.	1/4 - 1/2SW	21	17
	600 EAST PARK ST. 606 EAST UNIVERSITY AVE 606 EAST GROVE 306 EAST UNIVERSITY 1412 WEST UNIVERSITY AV	600 EAST PARK ST. 1/8 - 1/4 SSE 606 EAST UNIVERSITY AVE 1/8 - 1/4 SSE 606 EAST GROVE 1/4 - 1/2 NNE 306 EAST UNIVERSITY 1/4 - 1/2 SW 1412 WEST UNIVERSITY AV 1/4 - 1/2 SE 210 E UNIVERSITY AVE 1/4 - 1/2 SW	600 EAST PARK ST. 1/8 - 1/4 SSE B5 606 EAST UNIVERSITY AVE 1/8 - 1/4 SSE E11 606 EAST GROVE 1/4 - 1/2 NNE 17 306 EAST UNIVERSITY 1/4 - 1/2 SW 18 1412 WEST UNIVERSITY AVE 1/4 - 1/2 SE 19 210 E UNIVERSITY AVE 1/4 - 1/2 SW 20

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Illinois State Fire Marshal's STC Facility List.

A review of the UST list, as provided by EDR, and dated 06/11/2002 has revealed that there are 7 UST sites within approximately 0.25 miles of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
CHAMPAIGN CO MENTAL HEALTH CTR	600 E PARK	1/8 - 1/4 SSE	B4	6
MICRO ELECTRONICS BLDG	208 N WRIGHT ST	1/8 - 1/4SE	C6	7
CITY OF CHAMPAIGN	105 S 5TH ST	1/8 - 1/4S	D9	8
URBANA ARMORY	PO BOX 1049 600 E UNIVE	1/8 - 1/4SSE	E10	9
AVENUE AUTO SALES	606 E UNIVERSITY AVE	1/8 - 1/4SSE	E12	10
BIGFOOD #100	609 E UNIVERSITY	1/8 - 1/4SSE	E13	11
VACANT LOT	409 E. UNIVERSITY	1/8 - 1/4SSW	F14	13

STATE OR LOCAL ASTM SUPPLEMENTAL

A review of the SRP list, as provided by EDR, and dated 05/17/2002 has revealed that there are 3 SRP sites within approximately 1 mile of the target property.

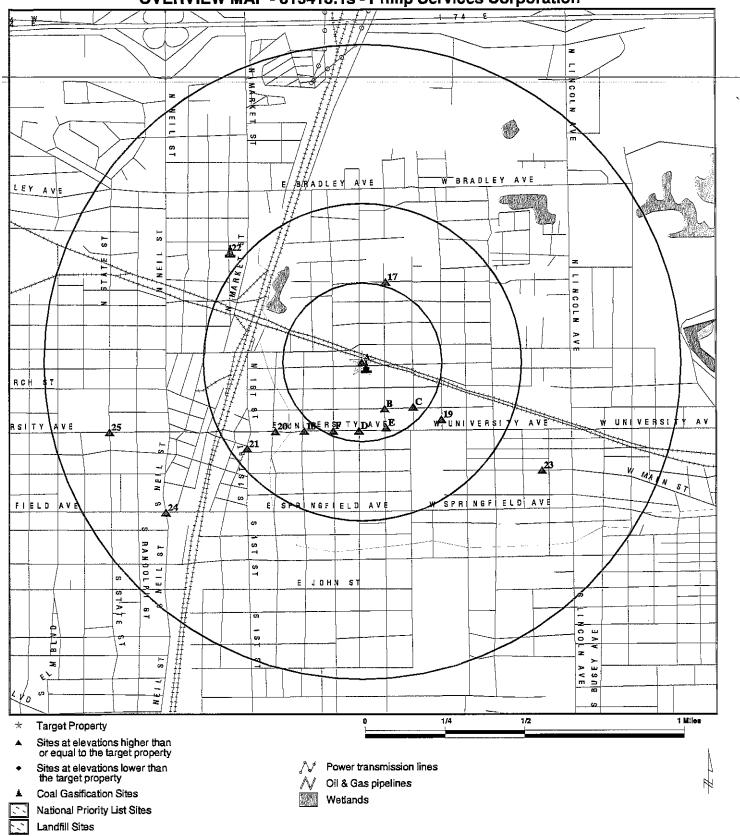
Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
ALMA MASON	1021 WEST MAIN STREET	1/2 - 1 ESE	23	19

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
PORTER PROPERTY	405 SOUTH NEIL STREET	1/2 - 1 SW	24	19
CHRISTIE CLINIC	101 SOUTH STATE STREET	1/2 - 1 WSW	/ 25	20

PROPRIETARY DATABASES

Former Manufactured Gas (Coal Gas) Sites:

The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative


A review of the Coal Gas list, as provided by EDR, has revealed that there are 2 Coal Gas sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
CHAMPAIGN AND URBANA GAS LIGHT	500 & 501 E. HILL	0 - 1/8 SE		6
URBANA AND CHAMPAIGN GAS & ELE	CHAMPAIGN ST.	1/2 - 1 NW		19

Due to poor or inadequate address information, the following sites were not mapped:

Site Name	Database(s)
CHAMPAIGN MUNICIPAL	CERC-NFRAP
CHAMPAIGN MUNICIPAL #1	CERC-NFRAP
LOEWEN GROUP INTERNATIONAL, INC.	LUST
URBANA & CHAMPAIGN SANITARY DIST.	LUST
CAMP FARM MANAGEMENT INC.	LUST
ROCKET MOTOR FREIGHT (AMOCO OIL CO.	LUST
LEE, HARLAN	LUST
JR SCHUGEL TRUCKING INC.	LUST
CHAS LEVY CO.	LUST
LEE, HARLAN	LUST
CHAMPAIGN/URBANA MASTRANSIT CO.	LUST
FORMER SITE STATION 74	UST
WINGFIELD DISTRIBUTORS INC	UST
L & L SALES & SER INC	UST
ILDOT STA 1219 0 14	RCRIS-SQG, FINDS
ILDOT STA 321 62 12	RCRIS-SQG, FINDS
EMULSICOAT INC	RCRIS-SQG, FINDS
CHAMPAIGN RAILYARD MILE POST 128	ERNS
SOUTHSIDE OF CHAMPAIGN UNIV. OF ILLINOIS - CHAMPAIGN/URBANA	ERNS FINDS
GENERAL SERVICES - CHAMPAIGN REG. BLDG.	FINDS
ILLINOIS POWER CO - CHAMPAIGN PROPANE PL	FINDS
U S GSA - FEDERAL BLDG CHAMPAIGN	FINDS
URBANA CHAMPAIGN S D SW	FINDS
5.15.11.11.11.11.11.11.11.11.11.11.11.11	1 11100

OVERVIEW MAP - 815413.1s - Philip Services Corporation

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG: IP Champaign, Former MGP 308 North Fifth Street Champaign IL 61820 40.1194 / 88.2318 CUSTOMER: Philip Services Corporation CONTACT: Barb Bruss

CONTACT: INQUIRY#: DATE:

815413.1s July 17, 2002 11:05 am

DETAIL MAP - 815413.1s - Philip Services Corporation N ROM FOXWELL CT FOXWELL CT W FARS ST E GROVE ST 19 ASHING BOYELEN SCHOOL E GROVE ST JONES MARILYA en si 믚 HOLTS OR HOLTS DR S E VINE ST W BEECH ST E VINE ST PELMOTH WILLEFFED W PHILLIPS DA N ROMINE ST IS HIS N ¥ N WRIGHT NSTHST 굨 W DUBLIN ST E COLUMBIA AVE W E COLUMBIA AVE E COLUMBIA AVE PHILLIPS DR N WRIGHT ST N STH ST 4TH ST EHIB) N ASH ST E WASHINGTON ST E-WASHINGTON ST W BESLIN ST ON ST E WASHING N 6TH ST A MURICHLE SL ROMINE Narb ST ATH ST 9 E ANAL ST W HILL ST EHILLST E HILL ST E HILL ST E HILL ST IS HIS N ဌ N 4TH ST N STH ST WRIGHT ST 윎 WICHURCH ST CHURCH ST E CHURCH ST E CHURCH ST E CHURCH ST **С**НИВСН ST NROMINE WRIGHT ST STH ST N 47H ST 18 H S1 4 COVENANT MEXICAL CENTER **C**6 E PARK ST E PARK ST E PARK ST В E PARK ST E PARK ST E PARK TANNER MARY N ROWIN IS HIS N N 4TH ST N STH ST 23 E10 E UNIVERSITY AVE FIRE & UNIVERSITY AVE W UNIVERSITY AVE WU E UNIVERSITY AVE E UNIVERSITY AVE E UNIVERSITY AVE S WRIGHT ST S ATH ST S 3RD ST ŝ E CLARK ST FIGURE ST E CLARK ST 1/16 1/8 1/4 Miles ø Target Property

Power transmission lines

Oil & Gas pipelines

Wetlands

TARGET PROPERTY: IP Champaign, Former MGP CUSTOMER: Philip Services Corporation ADDRESS: 308 North Fifth Street CONTACT: Barb Bruss CITY/STATE/ZIP: Champaign IL 61820 INQUIRY#: 815413.1s July 17, 2002 11:06 am 40.1194 / 88.2318 LAT/LONG: DATE:

Sites at elevations higher than or equal to the target property

Sites at elevations lower than the target property

Coal Gasification Sites

Sensitive Receptors
National Priority List Sites

Landfill Sites

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FEDERAL ASTM STANDARI	2							
NPL Proposed NPL CERCLIS CERC-NFRAP CORRACTS RCRIS-TSD RCRIS Lg. Quan. Gen. RCRIS Sm. Quan. Gen. ERNS	x	1.000 1.000 0.500 0.250 1.000 0.500 0.250 0.250 TP	0 0 0 0 0 0 0 0 0 0 NR	0 0 0 0 0 0 0 4 NR	0 0 0 NR 0 0 NR NR NR	0 NR NR 0 NR NR NR	NR NR NR NR NR NR NR NR	0 0 0 0 0 0 0 0 4
State Haz. Waste State Landfill LUST UST IMPDMENT CAT		1.000 0.500 0.500 0.250 0.500 1.000	0 0 0 0	0 0 2 7 0	0 0 5 NR 0 0	O NR NR NR NR O	NR NR NR NR NR	0 0 7 7 0
FEDERAL ASTM SUPPLEME	<u>INTAL</u>							
CONSENT ROD Delisted NPL FINDS HMIRS MLTS MINES NPL Liens PADS RAATS TRIS TSCA FTTS	X	1.000 1.000 1.000 TP TP TP 0.250 TP TP TP TP	0 0 0 R R R O R R R R R R R R R R R R R	0 0 0 R NR NR 0 R NR NR NR NR NR NR NR NR NR	0 0 0 R NR NR R NR NR R NR NR N	0 0 0 R R R R R R R R R R R R R R R R R	NR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE OR LOCAL ASTM SUPPLEMENTAL								
SRP IL NIPC	x	1.000 0.500	0 0	0 0	0 0	3 NR	NR NR	3
EDR PROPRIETARY HISTOI	RICAL DATAB	ASES						
Coal Gas AQUIFLOW - see EDR Ph	ysical Setting	1.000 Source Adde	1 ndum	0	0	1	NR	2

TP = Target Property

NR = Not Requested at this Search Distance

^{*} Sites may be listed in more than one database

Map ID

MAP FINDINGS

Direction Distance

Distance (ft.)

Elevation

Database(s)

SRP

RCRIS-SQG 1000258192

FINDS ILD984783472

EDR ID Number EPA ID Number

S104491173

N/A

Α1 Target ILLINOIS POWER TOWN GAS PLANT

502 EAST HILL STREET

CHAMPAIGN, IL 61820 Property

Site 1 of 3 in cluster A

SRP:

IL EPA Id: US EPA Id: 0190100008 ILD984783472

P.O. Box 511

Remediation Applicant Co:

Illinois Power Company

Remediation Applicant Title: Contact First Name: Contact Last Name:

Mr. Brian Martin

Contact Address: Contact Address:

500 South 27th Street 500 South 27th Street

Decatur, IL, 62525 (217) 424-7525 Contact Phone: Date Enrolled:

08/31/1989 Philip Environmental Consultant Company: Darrel Wolff, P.E. Point Of Contact:

Consultant Address:

210 West Sand Bank Road

P.O. Box 330 Columbia, IL, 62236

(618) 281-7173 Consultant Phone: Proj Mgr Assigned: Frierdich Sec. 4 Letter Date: 11 11

No Further Remediation Letter Dt: NFR Recorded: Active:

Total Acres:

5,00000

11

True

A2 Target Property ILLINOIS POWER CO CHAMPAIGN MGP

502 E HILL ST

CHAMPAIGN, IL 61820

Site 2 of 3 in cluster A

RCRIS: Owner:

ILLINOIS POWER CO

(217) 424-6488 ILD984783472

EPA ID:

Contact:

BOB THOMAS (217) 424-7087

Classification: Small Quantity Generator

Used Oil Recyc: Yes

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Facility Registry System (FRS)

Resource Conservation and Recovery Act Information system (RCRAINFO)

MAP FINDINGS

Map ID Direction Distance

EDR ID Number Distance (ft.) EPA ID Number Elevation Database(s)

А3 CHAMPAIGN AND URBANA GAS LIGHT AND COKE Coal Gas G000001008 N/A

UST U001141518

LUST \$104527359

N/A

N/A

SE < 1/8 500 & 501 E. HILL CHAMPAIGN, IL 61820

117 ft.

Higher Site 3 of 3 in cluster A

COAL GAS SITE DESCRIPTION:

1887 site is on northeast corner of E. Hill and 5th Streets, south of the Wabash alled

Champaign and Urbana Gas and Electric Co., additional gasometer to the eas 1924, site called

Illinois Power and Light Corp. Champaign Division Gas Plant -e s of E. Hill Street.

©Copyright 1993 Real Property Scan, Inc.

В4 CHAMPAIGN CO MENTAL HEALTH CTR

SSE 600 E PARK

1/8-1/4 CHAMPAIGN, IL 61820

855 ft.

Higher Site 1 of 2 in cluster B

UST:

Facility ID: 4027406

Status: Closed

Covenant Medical Ctr Owner Name: 1400 W Park

Owner Address:

Urbana, IL 61866

Contact: Mann Bob

(217) 337-2156 Phone #: Permit Number: Not reported Permit Expires: Not reported

Tank Status: Removed Tank Last Used: Not reported

Fee Owed: Nο Tank Number: Tank Capacity: 3000 Tank Age: 28 Tank Red Tag: Νo

Tank Substance: Diesel

В5 COVENANT MEDICAL CTR.

600 EAST PARK ST. SSE CHAMPAIGN, IL 61820 1/8-1/4

855 ft. Higher

Site 2 of 2 in cluster B

LUST:

892657 Incident Num: IL EPA Id: 0190105107 12/15/1989 IEMA Date: Attn: Robert Mann

PRP Name: Covenant Medical Ctr. PRP Address: 1400 West Park Urbana, IL 61801 Not reported PRP Phone:

Non LUST Determination Letter: 11

Section 57.59(g) Letter: 11

12/07/1990 NFA/NFR Letter: Site Classification: Not reported

Project Manager not yet assigned. Project Manager:

Product Type: Diesel Fuel General Date: 02/29/1992

General Desc: 45 Day Report received Map ID

MAP FINDINGS

Direction Distance Distance (ft.) Elevation Database(s) **COVENANT MEDICAL CTR. (Continued)** Site Name: Covenant Medical Ctr. General Date: 02/29/1992 General Desc: 20 Day Report received Site Name: Covenant Medical Ctr. General Date: 01/10/1990 General Desc: Response Letter received Site Name: Covenant Medical Ctr. 12/29/1989 General Date: General Desc: Notice of Release Letter sent Covenant Medical Ctr. Site Name: NFR/NFA Date: Not reported Taco Desc: Not reported Not reported Site Name: Document Desc: Not reported Document Received: Not reported Response Type: Not reported Response Mailed; Not reported Site Name: Not reported C6 MICRO ELECTRONICS BLDG 208 N WRIGHT ST SE 1/8-1/4 **URBANA, IL 61801** 1124 ft. Higher Site 1 of 2 in cluster C UST:

Facility ID: 4033063 Status: Closed

Owner Name: University Of Illinois Owner Address: 506 S Wright St

Champaign, IL 61820

Ignazito Martin D Contact: (217) 244-7784 Phone #:

Permit Number: Not reported Permit Expires: Not reported Tank Status: Removed Tank Last Used: 5/1/94 00:00:00

No

Fee Owed: Tank Number. Tank Capacity: 2000 Tank Age: 10 Tank Red Tag: No Tank Substance: Diesel

IVEY AUTO BODY SPECIALIST D7 South 503 E UNIVERSITY

1/8-1/4 CHAMPAIGN, IL 61820 1134 ft.

Site 1 of 3 in cluster D Higher

RCRIS-SQG 1000439528 FINDS ILD075616656

EDR ID Number

EPA ID Number

S104527359

U001964937

N/A

Map ID Direction

MAP FINDINGS

Distance

Distance (ft.)

Elevation

Database(s)

RCRIS-SQG

EDR ID Number EPA ID Number

IVEY AUTO BODY SPECIALIST (Continued)

1000439528

1004692403 IL0000189688

UST U003805655

N/A

RCRIS:

Owner:

SWANSON DOUGLAS

(312) 555-1212

EPA ID:

ILD075616656

Contact:

DOUGLAS SWANSON

(217) 356-3961

Classification: Small Quantity Generator

Used Oil Recyc: No TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Facility Registry System (FRS)

Resource Conservation and Recovery Act Information system (RCRAINFO)

South 1/8-1/4 1135 ft. Higher

D8

CHRIS AUTO BODY 501 E UNIVERSITY AVE CHAMPAIGN, IL 61820

Site 2 of 3 in cluster D

RCRIS:

Owner:

MOFFITT CHRIS

(217) 355-5076

EPA ID:

IL0000189688

Contact:

CHRIS MOFFITT

(217) 355-5076

Classification: Small Quantity Generator Used Oil Recyc: No

TSDF Activities: Not reported

Violation Status: No violations found

South 1/8-1/4 1148 ft. Higher

D9

CITY OF CHAMPAIGN

105 S 5TH ST

CHAMPAIGN, IL 61820

Site 3 of 3 in cluster D UST:

Facility ID:

4040707 Exempt

Status:

City Of Champaign Public Works

Owner Name: Owner Address:

702 Edgebrook

Champaign, IL 61820

Contact:

Eleanor Blackmon (217) 351-4466

Phone #: Permit Number:

Not reported

Permit Expires:

Tank Status:

Not reported

Exempt from registration Tank Last Used: 12/31/73 00:00:00

Fee Owed:

Nο

Tank Number:

TC815413.1s Page 8

Map ID Direction

General Desc:

Site Name:

MAP FINDINGS

Distance Distance (ft.) EDR ID Number EPA ID Number Elevation Database(s) U003805655 CITY OF CHAMPAIGN (Continued) Tank Capacity: 6000 Tank Age: Not reported Tank Red Tag: No Tank Substance: Fuel Oil E10 UST U000855533 URBANA ARMORY SSE PO BOX 1049 600 E UNIVERSITY AVE N/A URBANA, IL 61801 1/8-1/4 1154 ft. Site 1 of 4 in cluster E Higher UST: Facility ID: 4026325 Status: Closed Owner Name: IL Dept, of Military Affairs Owner Address: 1301 N. MacArthur Blvd. Springfield, IL 62702 Galassi Cpt Mike Contact: Phone #: (217) 333-5795 Permit Number: Not reported Permit Expires: Not reported Tank Status: Removed Tank Last Used: 3/1/91 00:00:00 Fee Owed: Nο Tank Number: Tank Capacity: 10000 Tank Age: 38 Tank Red Tag: No Tank Substance: Kerosene LUST \$104872172 SNODGRASS, LARRY E11 SSE 606 EAST UNIVERSITY AVE. N/A 1/8-1/4 CHAMPAIGN, IL 61820 1202 ft. Higher Site 2 of 4 in cluster E 20002365 Incident Num: 0190105299 IL EPA Id: IEMA Date: 12/18/2000 Attn: Not reported PRP Name: Larry Snodgrass PRP Address: R.R. 2, Box 71 Heyworth, IL 61745 PRP Phone: (309) 473-3671 Non LUST Determination Letter: 11 Section 57.59(g) Letter: NFA/NFR Letter: 08/07/2001 Site Classification: Not reported Project Manager: Hale Product Type: Unleaded Gasoline General Date: 12/21/2000 General Desc: Notice of Release Letter sent Site Name: Snodgrass, Larry 05/24/2001 General Date:

Professional Engineer Certification received

Snodgrass, Larry

MAP FINDINGS

Distance (ft.)

Elevation Site

Database(s)

EDR ID Number EPA ID Number

S104872172

SNODGRASS, LARRY (Continued)

General Date: 05/24/2001

General Desc: 45 Day Report Addendum received

Site Name: Snodgrass, Larry

General Date: 07/30/2001

General Desc: Miscellaneous Correspondence received

Site Name: Snodgrass, Larry General Date: 01/17/2001

General Desc: 20 Day Report received
Site Name: Snodgrass, Larry
General Date: 02/02/2001

General Desc: 45 Day Report received Site Name: Snodgrass, Larry

General Date: 03/05/2001

General Desc: 45 Day Selection Received Letter sent

Site Name: Snodgrass, Larry General Date: 01/10/2001

General Desc: Early Action Extension Request received

Site Name: Snodgrass, Larry General Date: 01/26/2001

General Desc: Early Action Extension Approval Letter sent

Site Name: Snodgrass, Larry NFR/NFA Date: 08/07/2001

Taco Desc: No Groundwater Encountered

 Site Name:
 Snodgrass, Larry

 NFR/NFA Date:
 08/07/2001

 Taco Desc:
 Tier 1-Soil

 Site Name:
 Snodgrass, Larry

Document Desc: Corrective Action Completion Report

Document Received: 05/24/2001
Response Type: Approved
Response Mailed: 08/07/2001
Site Name: Snodgrass, Larry

SSE 1/8-1/4 1202 ft. Higher

F12

AVENUE AUTO SALES 606 E UNIVERSITY AVE CHAMPAIGN, IL 61820

Site 3 of 4 in cluster E

UST:

Facility ID: 4040209 Status: Closed

Owner Name: Larry Snodgrass Owner Address: RR 2 Box 71

Heyworth, IL 61745

Contact: Larry Snodgrass
Phone #: (309) 473-3671
Permit Number: Not reported
Permit Expires: Not reported
Tank Status: Removed

Tank Last Used: 12/31/79 00:00:00 Fee Owed: No

Tank Number: 1
Tank Capacity: 6000
Tank Age: Not reported

Tank Red Tag: No Tank Substance: Gasoline

Facility ID: 4040209

UST U003762780 N/A

MAP FINDINGS

Distance (ft.)

Elevation

Database(s)

EDR ID Number EPA ID Number

U003762780

AVENUE AUTO SALES (Continued)

Status:

Closed

Owner Name: Owner Address:

Larry Snodgrass RR 2 Box 71

Heyworth, IL 61745

Contact: Phone #: Larry Snodgrass (309) 473-3671

Permit Number:

Not reported

Permit Expires:

Not reported

Tank Status:

Removed

Tank Last Used: 12/31/79 00:00:00

Fee Owed:

Nο

Tank Number.

6000

Tank Capacity:

Tank Age:

Not reported

Tank Red Tag: No Tank Substance: Gasoline

Facility ID:

4040209

Status:

Closed

Owner Name:

Larry Snodgrass

Owner Address:

RR 2 Box 71

Heyworth, IL 61745

Contact:

Larry Snodgrass

(309) 473-3671

Phone #: Permit Number:

Not reported

Permit Expires:

Not reported Removed

Tank Status:

Tank Last Used: 12/31/79 00:00:00

Fee Owed:

No

Tank Number.

Tank Capacity:

8**2**00 Not reported

Tank Age: Tank Red Tag:

Tank Substance: Gasoline

E13

BIGFOOD #100 SSE

609 E UNIVERSITY CHAMPAIGN, IL 61820

1/8-1/4 1205 ft

Higher

Site 4 of 4 in cluster E

UST:

Facility ID:

4008005

Status:

Active

Owner Name:

Bigfoot Food Stores LLC P. O. Box 347

Owner Address:

Columbus, IN 47202

Contact:

Not reported

Phone #:

Not reported

Permit Number: Permit Expires:

Not reported

Tank Status:

Not reported

Tank Last Used: Not reported

Currently in use

Fee Owed:

Tank Number:

Tank Capacity:

Tank Age:

10000

No

30

Tank Red Tag:

No

Tank Substance: Gasoline

TC815413.1s Page 11

UST U000864263

N/A

MAP FINDINGS

Distance (ft.)

Elevation

Database(s)

EDR ID Number EPA ID Number

BIGFOOD #100 (Continued)

U000864263

Facility ID:

4008005

Status:

Active

Owner Name:

Bigfoot Food Stores LLC P. O. Box 347

Owner Address:

Columbus, IN 47202

Contact: Phone #: Not reported Not reported

Permit Number: Not reported Permit Expires:

Not reported Currently in use

Tank Status: Tank Last Used: Not reported

Fee Owed: Tank Number: Tank Capacity:

No 2 10000 30 No

Tank Red Tag: Tank Substance: Gasoline

Facility ID:

Tank Age:

4008005

Status:

Active

Owner Name:

Bigfoot Food Stores LLC

Owner Address: P. O. Box 347

Columbus, IN 47202

Contact: Phone #:

Not reported Not reported Permit Number: Not reported

Permit Expires: Tank Status:

Not reported Currently in use

Tank Last Used: Not reported

Νo

Fee Owed: Tank Number:

3 Tank Capacity: 10000 30

Tank Age: Tank Red Tag: No Tank Substance: Gasoline

Facility ID:

4008005

Status:

Active

Owner Name:

Bigfoot Food Stores LLC

Owner Address:

P.O. Box 347 Columbus, IN 47202

Contact:

Not reported Not reported

Phone #: Permit Number: Not reported Permit Expires:

Not reported Currently în use

Tank Status:

Tank Last Used: Not reported No

Fee Owed: Tank Number:

6000

Tank Capacity: Tank Age: Tank Red Tag:

15 No

Tank Substance: Gasoline

Map ID MAP FINDINGS Direction Distance EDR ID Number Distance (ft.) Site Database(s) EPA ID Number Elevation F14 VACANT LOT UST U003667611 SSW 409 E. UNIVERSITY N/A 1/8-1/4 CHAMPAIGN, IL 61821 1219 fL Higher Site 1 of 2 in cluster F UST: Facility ID: 4038923 Status: Exempt Owner Name: Ekstedt David Owner Address: 2202 Briarhill Champaign, IL 61821 Contact: Dave Ekstedt Рһоле #; (217) 359-6245 Permit Number: Not reported Permit Expires: Not reported Tank Status: Exempt from registration Tank Last Used: 12/31/73 00:00:00 Fee Owed: Νo Tank Number: Tank Capacity: 500 Tank Age: Not reported Tank Red Tag: No Tank Substance: Heating Oil C15 SHEPARDSON DR CR OFFICE LAB RCRIS-SQG 1000345197 SE 1401 W PARK AVE FINDS ILD115730764 1/8-1/4 URBANA, IL 61801 1223 ft Site 2 of 2 in cluster C Higher RCRIS: Owner: SHEPARDSON CR MD (312) 555-1212 EPA ID: ILD115730764 Contact: CARL MARTIN (217) 367-7889 Classification: Small Quantity Generator Used Oil Recyc: No TSDF Activities: Not reported Violation Status: No violations found FINDS: Other Pertinent Environmental Activity Identified at Site:

Facility Registry System (FRS)

Resource Conservation and Recovery Act Information system (RCRAINFO)

F16 **KEY ONE HOUR CLEANERS NO 136 401 E UNIVERSITY** SSW

1/8-1/4 CHAMPAIGN, IL 61820 1232 ft.

Higher Site 2 of 2 in cluster F

TC815413.1s Page 13

RCRIS-SQG 1000126811

FINDS ILD981099542

MAP FINDINGS

Distance (ft.) Elevation

Database(s)

EDR ID Number EPA ID Number

KEY ONE HOUR CLEANERS NO 136 (Continued)

RCRIS:

Owner:

BEGLEY CO

(312) 555-1212

EPA ID:

ILD981099542

Contact:

WENDELL LAKE (606) 623-2550

Classification: Small Quantity Generator

Used Oil Recyc: No

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Facility Registry System (FRS)

Resource Conservation and Recovery Act Information system (RCRAINFO)

17 NNE 1/4-1/2 1395 ft. Higher

CHAMPAIGN SCHOOL DIST.

LUST:

Incident Num: IL EPA Id:

IEMA Date:

Attn:

PRP Name: PRP Address:

PRP Phone: Non LUST Determination Letter:

Section 57.59(g) Letter: NFA/NFR Letter:

Site Classification:

Project Manager:

Product Type: General Date:

General Desc: Site Name: General Date:

General Desc: Site Name: NFR/NFA Date:

Document Desc: Document Received: Response Type: Response Mailed:

Site Name:

Taco Desc:

Site Name:

606 EAST GROVE

CHAMPAIGN, IL 61820

891093

0190100022 06/23/1989 Don

Champaign School Dist. 703 South New

Champaign, IL 61820

Not reported 11 II

Not reported Project Manager not yet assigned.

Diesel Fuel 09/07/1989

11

Response Letter received Champaign School Dist. 07/11/1989

Notice of Release Letter sent Champaign School Dist.

Not reported 1000126811

LUST S104527767

N/A

TC815413.1s Page 14

Map ID Direction MAP FINDINGS

Distance Distance (ft.) Elevation

Database(s)

EDR ID Number EPA ID Number

LUST \$104523516

N/A

SW 1/4-1/2

18

II-HAIII

306 EAST UNIVERSITY CHAMPAIGN, IL 61820

1491 ft. Higher

LUST:

Incident Num: 932848 IL EPA Id: 0190105090 IEMA Date: 10/29/1993 Vicki Argaritis Attn: PRP Name: U-Haul P.O. Box 21502 PRP Address: Phoenix, AZ 85036

PRP Phone: Not reported

Non LUST Determination Letter: IISection 57.59(g) Letter: 11 07/12/1996 NFA/NFR Letter: Site Classification: NFA Haskins Project Manager:

Product Type: Used or Waste Oil General Date: 11/04/1993

Notice of Release Letter sent General Desc:

Site Name: U-Haul 02/01/1994 General Date:

General Desc: 20 Day Report received

Site Name: U-Haul General Date: 07/10/1996

General Desc: Professional Engineer Certification received

Site Name: U-Haul General Date: 02/01/1994

45 Day Report received General Desc:

Site Name: U-Haul 07/10/1996 General Date:

45 Day Report received General Desc:

Site Name: U-Haul NFR/NFA Date: Not reported Taco Desc: Not reported Site Name: Not reported

Document Desc: Site Classification Work Plan Budget

Document Received: 07/25/1996

Approved with Modifications Response Type:

09/09/1996 Response Mailed: Site Name: U-Haul

Site Classification Work Plan Document Desc:

07/10/1996 Document Received:

Approved without Review Response Type:

Response Mailed: 07/12/1996 Site Name: U-Haul

Document Desc: Site Classification Completion Report

Document Received: 07/10/1996 Approved without Review

Response Type: 07/12/1996 Response Mailed:

Site Name: U-Haul

PROVENA COVENANT MEDICAL CTR. 1412 WEST UNIVERSITY AVE.

URBANA, IL 61801

LUST \$104529047 N/A

SE 1/4-1/2 1621 ft. Higher

19

MAP FINDINGS

Distance (ft.)

Elevation Site Database(s)

EDR ID Number EPA ID Number

PROVENA COVENANT MEDICAL CTR. (Continued)

S104529047

Incident Num: 982217 IL EPA Id: 0191055139 IEMA Date: 09/08/1998 Attn: J.D. Hutton PRP Name:

Provena Covenant Medical Ctr.

PRP Address: 1400 West Park St. Urbana, IL 61801 (217) 337-2411 PRP Phone:

Non LUST Determination Letter: 17

Section 57.59(g) Letter: 07/15/1999

NFA/NFR Letter: II

Site Classification: Not reported Project Manager: Kuhlman Fuel Oil Product Type:

Used or Waste Oil General Date: 07/15/1999 General Desc: Review Letter sent

Site Name: Provena Covenant Medical Ctr.

General Date: 06/11/1999

General Desc: Elect not to proceed under Title XVI form (letter) received

Provena Covenant Medical Ctr. Site Name:

General Date: 09/14/1998

General Desc: Notice of Release Letter sent Provena Covenant Medical Ctr. Site Name:

General Date: 01/12/1999

General Desc: 45 Day Report received

Site Name: Provena Covenant Medical Ctr.

01/12/1999 General Date:

General Desc: 20 Day Report received Site Name: Provena Covenant Medical Ctr.

NFR/NFA Date: Not reported Taco Desc: Not reported Site Name: Not reported

Document Desc: Corrective Action Completion Report

01/12/1999 Document Received: Denied Response Type: 05/12/1999 Response Mailed:

Site Name: Provena Covenant Medical Ctr.

20 sw 1/4-1/2 1840 ft Higher

TWIN CITY RADIATOR 210 E UNIVERSITY AVE CHAMPAIGN, IL 61820

RCRIS-SQG 1000824836 FINDS ILD984912154

LUST

MAP FINDINGS

Distance (ft.)

Elevation

Database(s)

EDR ID Number EPA ID Number

TWIN CITY RADIATOR (Continued)

1000824836

RCRIS:

Owner:

RONS TOR INC

(217) 352-5111

EPA ID:

ILD984912154

Contact:

JOHN DORSETT (217) 352-5111

Classification: Small Quantity Generator

Used Oil Recyc: No

TSDF Activities: Not reported

Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

Facility Registry System (FRS)

Resource Conservation and Recovery Act Information system (RCRAINFO)

LUST:

Incident Num: IL EPA Id: IEMA Date: Attn:

PRP Name:

901302 0190100029 05/16/1990 Not reported Twin City Radiator 210 East University

PRP Address : Champaign, IL 61820 PRP Phone: Not reported

Non LUST Determination Letter: IISection 57.59(g) Letter: IINFA/NFR Letter: 11

Site Classification: Not reported

Project Manager: Project Manager not yet assigned.

Product Type: Non Petroleum Product

General Date: 05/21/1990 Notice of Release Letter sent General Desc:

Site Name: Twin City Radiator

06/04/1990 General Date:

General Desc: Response Letter received Twin City Radiator Site Name: NFR/NFA Date: Not reported Taco Desc: Not reported Not reported Site Name: Document Desc: Not reported Document Received: Not reported Response Type: Not reported Response Mailed: Not reported Site Name: Not reported

21 SW PEOPLES PERFORMANCE AUTOMOTIVE

209 SOUTH 1ST ST. CHAMPAIGN, IL 61820

1/4-1/2 2389 ft. Higher

LUST:

Incident Num ; IL EPA Id: IEMA Date: Attn:

962114 0190105234 11/13/1996 Patrick Wasson LUST S104521776 N/A

MAP FINDINGS

Distance (ft.)

EDR ID Number Elevation Database(s) EPA ID Number

PEOPLES PERFORMANCE AUTOMOTIVE (Continued)

Peoples Performance Automotive PRP Name:

PRP Address: 209 South 1st St. Champaign, IL 61820

PRP Phone: Not reported

Non LUST Determination Letter: IISection 57.59(g) Letter: 11 NFA/NFR Letter:

Site Classification: Not reported Haskins Project Manager:

Product Type: Used or Waste Oil General Date: 09/23/1997

General Desc: 45 Day Report received

Site Name: Peoples Performance Automotive

General Date: 11/19/1996

General Desc: Notice of Release Letter sent Peoples Performance Automotive Site Name:

06/04/1997 General Date:

General Desc: 20 Day Report received

Site Name: Peoples Performance Automotive

NFR/NFA Date: Not reported Not reported Taco Desc: Not reported Site Name: Document Desc: Not reported Document Received: Not reported Response Type: Not reported Response Mailed: Not reported Site Name: Not reported

Incident Num: 971720 0190105234 IL EPA Id: IEMA Date: 09/15/1997 Attn: Patrick Wasson

PRP Name: Peoples Performance Automotive

PRP Address: 209 South 1st St. Champaign, IL 61820 PRP Phone: (217) 352-9520

Non LUST Determination Letter: 11 Section 57,59(g) Letter: 11 NFA/NFR Letter:

Site Classification: Not reported

Project Manager: Project Manager not yet assigned.

Product Type: Fuel Oil General Date: 10/01/1997

General Desc: 20 Day Report received

Peoples Performance Automotive Site Name:

General Date: 10/14/1997

General Desc: 45 Day Report received

Site Name: Peoples Performance Automotive

NFR/NFA Date: Not reported Taco Desc: Not reported Site Name: Not reported Document Desc: Not reported Document Received: Not reported Not reported Response Type: Response Mailed: Not reported Site Name: Not reported

S104521776

Map ID Direction

MAP FINDINGS

Distance

EDR ID Number Distance (ft.) Database(s) EPA ID Number Elevation

22 URBANA AND CHAMPAIGN GAS & ELECTRIC CO. POWER AND Coal Gas G000001009 N/A

NW 1/2-1 CHAMPAIGN ST. CHAMPAIGN, IL 61820

2855 ft. Higher

COAL GAS SITE DESCRIPTION:

1892 site is on the eastern side of Champaign between E. Eureka and North St. S from the eastern end of Tremont St. Illinois Central Railroad runs through site

©Copyright 1993 Real Property Scan, Inc.

ALMA MASON 23 ESE **1021 WEST MAIN STREET** 1/2-1 **URBANA, IL 61801**

S104780100

N/A

3483 ft. Higher

SRP:

0191055097 IL EPA Id: US EPA Id: Not reported

Remediation Applicant Co: University of Illinois at Urbana-Champaign

(217) 788-2450

Remediation Applicant Title: Mr. Contact First Name: Jeffrey Contact Last Name: Schrader

Contact Address: 101 South Gregory Drive 101 South Gregory Drive Contact Address: Urbana, IL, 61801

2173339297 Contact Phone: Date Enrolled: 10/04/2000 Consultant Company: Hanson Engineers Point Of Contact: Curt Krueger, P.E. Consultant Address: 1525 South 6th Street Springfield, IL, 62703

Proj Mgr Assigned: Crompton Sec. 4 Letter Date : 04/10/2001 No Further Remediation Letter Dt: 04/20/2001 NFR Recorded: Active: False

Total Acres: 0.07000

24 SW 1/2-1 4109 ft. Higher

PORTER PROPERTY 405 SOUTH NEIL STREET CHAMPAIGN, IL 61820

Consultant Phone:

SRP \$105151659 N/A

SRP:

IL EPA ld: 0190105312 US EPA Id: Not reported Remediation Applicant Co: Not reported Remediation Applicant Title: Mr.

Contact First Name: Richard Contact Last Name: Porter

Contact Address: 4504 Crossgate Drive Contact Address: 4504 Crossgate Drive

Champaign, IL, 61822 Contact Phone: 2173511685

Date Enrolled : 08/31/2001

Consultant Company: HDC Engineering, Inc.

MAP FINDINGS

Distance (ft.)

Elevation

Database(s)

EDR ID Number EPA ID Number

S105151659

S104491175

N/A

PORTER PROPERTY (Continued)

Point Of Contact:

Kevin Saylor

Consultant Address:

201 West Springfield Avenue

Suite 300

Champaign, IL, 61824 (217) 352-6976

Consultant Phone: Proj Mgr Assigned:

Hall

Sec. 4 Letter Date :

11

No Further Remediation Letter Dt:

04/01/2002 05/07/2002

NFR Recorded: Active:

False

Total Acres:

0.20000

25 wsw 1/2-1 4351 ft. Higher

CHRISTIE CLINIC

101 SOUTH STATE STREET

CHAMPAIGN, IL 61820

SRP:

IL EPA ld:

US EPA ld:

0190105228 Not reported

Remediation Applicant Co:

First Mutual Bank S.B.

Remediation Applicant Title:

Mr. Philip

Contact First Name: Contact Last Name:

Duffy 135 East Main Street

Contact Address: Contact Address:

135 East Main Street Decatur, IL, 62523

Contact Phone: Date Enrolled:

(217) 429-2306 09/11/1996

Consultant Company:

KELRON Environmental

Point Of Contact:

Barbra Irwin

Consultant Address:

1213 Dorchester Drive

Champaign, IL, 61821

Consultant Phone: Proj Mgr Assigned: (217) 355-1349

Sec. 4 Letter Date :

MΑ 09/26/1996

No Further Remediation Letter Dt:

11

NFR Recorded:

IIFalse

Active: Total Acres:

0.44000

œ	
⋖	
-	
9	
- 5	
=	
_	
v.	
_	
2	
⋖	
-	
=	
Ū.	
α	
$\overline{}$	
_	

City	EDR ID	Site Name	Site Address	di <u>Z</u>	Dalabase(s)
CHAMPAIGN	S103686729	LOEWEN GROUP INTERNATIONAL, INC.	RT. 50	61820	LUST
CHAMPAIGN	1004477122	UNIV. OF ILLINOIS - CHAMPAIGN/URBANA	354 ADMINISTRATION BUILDING	61820	FINDS
CHAMPAIGN	97406042	CHAMPAIGN RAILYARD MILE POST 128	CHAMPAIGN RAILYARD MILE POST 128		ERNS
CHAMPAIGN	1001201880	ILDOT STA 1219 0 14	FAI RTE 74 IL CENTRAL RR	61820	RCRIS-SQG, FINDS
CHAMPAIGN	1004480155	GENERAL SERVICES - CHAMPAIGN REG, BLDG.	2125 SOUTH FIRST STREET	61820	FINDS
CHAMPAIGN	1004474209	ILLINOIS POWER CO - CHAMPAIGN PROPANE PL	GRIFFITH LANE	61820	FINDS
CHAMPAIGN	S104189566	URBANA & CHAMPAIGN SANITARY DIST.	1401 A INTERSTATE	61820	LUST
CHAMPAIGN	S103291926	CAMP FARM MANAGEMENT INC.	7103 NORTH MATTIS	61820	LUST
CHAMPAIGN	U001141558	FORMER SITE STATION 74	1510 NEIL ST	61820	UST
CHAMPAIGN	S105428005	ROCKET MOTOR FREIGHT (AMOCO OIL CO.	601 NORTH NEIL	61820	LUST
CHAMPAIGN	1003870273	CHAMPAIGN MUNICIPAL	1/3MI E OF JCT US 150 & 1-57	61801	CERC-NFRAP
CHAMPAIGN	1004480137	U S GSA - FEDERAL BLDG CHAMPAIGN	RANDOLPH AND CHURCH STS	61820	FINDS
CHAMPAIGN	1004474961	1004474961 URBANA CHAMPAIGN S D SW	2404 SOUTH RISING ROAD	61820	FINDS
CHAMPAIGN	2000545585	SOUTHSIDE OF CHAMPAIGN	SOUTHSIDE OF CHAMPAIGN		ERNS
URBANA	U001132990		RR 1 BOX 137 STATE RT 45	61801	UST
URBANA	S103292022	LEE, HARLAN	R.R. 1, RD. 185 NORTH	61801	LUST
URBANA	S103292021	JR SCHUGEL TRUCKING INC.	RT. 45 NORTH	61801	LUST
URBANA	S104001959	CHAS LEVY CO.	U.S. 45 NORTH	61801	LUST
URBANA	S104524128	LEE, HARLAN	RT. 45 NORTH / 1-74	61801	LUST
URBANA	U000855541	L & L SALES & SER INC	RT 45 NORTH RD 1850 NORTH	61801	ust
URBANA	S103292017	CHAMPAIGN/URBANA MASTRANSIT CO.	106 SOUTH CHESTNUT ST.	61801	LUST
URBANA	1001201874	ILDOT STA 321 62 12	FAI RTE 74 CUNNINGHAM AVE	61801	RCRIS-SQG, FINDS
URBANA	1003870274	CHAMPAIGN MUNICIPAL #1	1210 E UNIVERSITY AVE	61801	CERC-NFRAP
URBANA	1004477077	EMULSICOAT INC	705 E UNIVERSITY AVE	61801	RCRIS-SQG, FINDS

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement

of the ASTM standard.

FEDERAL ASTM STANDARD RECORDS

NPL: National Priority List

Source: EPA Telephone: N/A

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

EPA Region 6

EPA Region 8

Telephone: 214-655-6659

Telephone: 303-312-6774

Date of Government Version: 04/22/02 Date Made Active at EDR: 06/21/02

Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 05/06/02

Elapsed ASTM days: 46

Date of Last EDR Contact: 05/06/02

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1

Telephone 617-918-1143

EPA Region 3

Telephone 215-814-5418

EPA Region 4

Telephone 404-562-8033

Telephone 404-302-0033

Proposed NPL: Proposed National Priority List Sites Source: EPA Telephone: N/A

Date of Government Version: 02/26/02

Date Made Active at EDR: 06/21/02 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 05/06/02

Elapsed ASTM days: 46

Date of Last EDR Contact: 05/06/02

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA

Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/12/02 Date Made Active at EDR: 06/03/02 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 03/25/02 Elapsed ASTM days: 70

Date of Last EDR Contact: 06/24/02

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA

Telephone: 703-413-0223

As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

Date of Government Version: 02/14/02 Date Made Active at EDR: 06/03/02 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 03/25/02 Elapsed ASTM days: 70

Date of Last EDR Contact: 06/24/02

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 800-424-9346

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 05/02/02 Date Made Active at EDR: 07/15/02 Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 05/06/02

Elapsed ASTM days: 70

Date of Last EDR Contact: 06/10/02

RCRIS: Resource Conservation and Recovery Information System

Source: EPA/NTIS Telephone: 800-424-9346

Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA).

Date of Government Version: 06/10/02 Date Made Active at EDR: 07/15/02 Database Release Frequency: Varies

Date of Data Arrival at EDR: 06/20/02

Elapsed ASTM days: 25

Date of Last EDR Contact: 06/20/02

ERNS: Emergency Response Notification System

Source: EPA/NTIS Telephone: 202-260-2342

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 12/31/01 Date Made Active at EDR: 07/15/02 Database Release Frequency: Varies Date of Data Arrival at EDR: 07/02/02

Elapsed ASTM days: 13

Date of Last EDR Contact: 04/29/02

FEDERAL ASTM SUPPLEMENTAL RECORDS

BRS: Biennial Reporting System

Source: EPA/NTIS Telephone: 800-424-9346

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG)

and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/99

Database Release Frequency: Biennially

Date of Last EDR Contact: 06/17/02

Date of Next Scheduled EDR Contact: 09/16/02

CONSENT: Superfund (CERCLA) Consent Decrees

Source: EPA Regional Offices

Telephone: Varies

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: N/A Database Release Frequency: Varies Date of Last EDR Contact: N/A

Date of Next Scheduled EDR Contact: N/A

ROD: Records Of Decision

Source: EPA

Telephone: 703-416-0223

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 09/30/01

Database Release Frequency: Annually

Date of Last EDR Contact: 07/09/02

Date of Next Scheduled EDR Contact: 10/07/02

DELISTED NPL: National Priority List Deletions

Source: EPA Telephone: N/A

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the

NPL where no further response is appropriate.

Date of Government Version: 04/22/02

Database Release Frequency: Quarterly

Date of Last EDR Contact: 05/06/02

Date of Next Scheduled EDR Contact: 08/05/02

FINDS: Facility Index System/Facility Identification Initiative Program Summary Report

Source: EPA Telephone: N/A

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 03/21/02

Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/08/02

Date of Next Scheduled EDR Contact: 10/07/02

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/31/01
Database Release Frequency: Annually

Date of Last EDR Contact: 04/22/02

Date of Next Scheduled EDR Contact: 07/22/02

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission

Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency,

EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/12/02

Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/08/02

Date of Next Scheduled EDR Contact: 10/07/02

MINES: Mines Master Index File

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959

Date of Government Version: 06/05/02

Database Release Frequency: Semi-Annually

Date of Last EDR Contact: 07/01/02

Date of Next Scheduled EDR Contact: 09/30/02

NPL LIENS: Federal Superfund Liens

Source: EPA

Telephone: 205-564-4267

Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability.

USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/91

Database Release Frequency: No Update Planned

Date of Last EDR Contact: 05/28/02

Date of Next Scheduled EDR Contact: 08/26/02

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-564-3887

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers

of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 03/01/02

Database Release Frequency: Annually

Date of Last EDR Contact: 05/14/02

Date of Next Scheduled EDR Contact: 08/12/02

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/95

Database Release Frequency: No Update Planned

Date of Last EDR Contact: 06/10/02

Date of Next Scheduled EDR Contact: 09/09/02

TRIS: Toxic Chemical Release Inventory System

Source: EPA

Telephone: 202-260-1531

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and

land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/99

Database Release Frequency: Annually

Date of Last EDR Contact: 06/24/02

Date of Next Scheduled EDR Contact: 09/23/02

TSCA: Toxic Substances Control Act

Source: EPA

Telephone: 202-260-5521

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

site.

Date of Government Version: 12/31/98

Database Release Frequency: Every 4 Years

Date of Last EDR Contact: 06/10/02

Date of Next Scheduled EDR Contact: 09/09/02

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA

Telephone: 202-564-2501

Date of Government Version: 01/14/02

Database Release Frequency: Quarterly

Date of Last EDR Contact: 07/03/02

Date of Next Scheduled EDR Contact: 09/23/02

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-564-2501

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA,

TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the

Agency on a quarterly basis.

Date of Government Version: 04/25/02 Database Release Frequency: Quarterly Date of Last EDR Contact: 07/03/02

Date of Next Scheduled EDR Contact; 09/23/02

STATE OF ILLINOIS ASTM STANDARD RECORDS

SHWS: State Oversight List

Source: Illinois Environmental Protection Agency

Telephone: 217-524-4863

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 03/01/02 Date Made Active at EDR: 03/20/02 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 03/08/02

Elapsed ASTM days: 12

Date of Last EDR Contact: 05/29/02

SWF/LF: Available Disposal for Solid Waste in Illinois - Solid Waste Landfills Subject to State Surcharge

Source: Illinois Environmental Protection Agency

Telephone: 217-785-8604

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 01/01/02 Date Made Active at EDR: 04/23/02 Database Release Frequency: Annually Date of Data Arrival at EDR: 03/08/02

Elapsed ASTM days: 46

Date of Last EDR Contact: 05/29/02

LUST: Leaking Underground Storage Tank Sites
Source: Illinois Environmental Protection Agency

Telephone: 217-782-6760

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 05/24/02 Date Made Active at EDR: 06/12/02 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 05/28/02 Elapsed ASTM days: 15

Date of Last EDR Contact: 02/25/02

UST: Underground Storage Tank Facility List

Source: Illinois State Fire Marshal Telephone: 217-785-0969

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 06/11/02 Date Made Active at EDR: 06/21/02 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 06/11/02

Elapsed ASTM days: 10

Date of Last EDR Contact: 02/25/02

IMPDMENT: Surface Impoundment Inventory

Source: Illinois Waste Management & Research Center

Database Release Frequency: No Update Planned

Telephone: 217-333-8940

Statewide inventory of industrial, municipal, mining, oil & gas, and large agricultural impoundment. This study was conducted by the Illinois EPA to assess potential for contamination of shallow aquifers. This was a one-time study. Although many of the impoundments may no longer be present, the sites may be contaminated.

Date of Government Version: 12/31/80 Date Made Active at EDR: 06/03/02 Date of Data Arrival at EDR: 03/08/02

Elapsed ASTM days: 87

Date of Last EDR Contact: 02/20/02

CAT: Category List Source: Illinois EPA Telephone: N/A

Sites on this list are: Notice of Response Action, NPL, Pre/proposed NPL, Completed Remedial Action, Site Remediation Program, Federal Facilities, and Cleanup Started and/or Completed Sites.

Date of Government Version: 06/01/97 Date Made Active at EDR: 08/14/97

Database Release Frequency: No Update Planned

Date of Data Arrival at EDR: 07/07/97

Elapsed ASTM days: 38

Date of Last EDR Contact: 02/26/01

STATE OF ILLINOIS ASTM SUPPLEMENTAL RECORDS

SRP: Site Remediation Program Database

Source: Illinois Environmental Protection Agency

Telephone: 217-785-9407

The database identifies the status of all voluntary remediation projects administered through the pre-notice site

cleanup program (1989 to 1995) and the site remediation program (1996 to the present).

Date of Government Version: 05/17/02

Database Release Frequency: Semi-Annually

Date of Last EDR Contact: 05/20/02

Date of Next Scheduled EDR Contact: 08/19/02

IL NIPC: Solid Waste Landfill Inventory

Source: Northeastern Illinois Planning Commission

Telephone: 312-454-0400

Solid Waste Landfill Inventory. NIPC is an inventory of active and inactive solid waste disposal sites, based on state, local government and historical archive data. Included are numerous sites which previously had never

been identified largely because there was no obligation to register such sites prior to 1971.

Date of Government Version: 08/01/88
Database Release Frequency: No Update Planned

Date of Last EDR Contact: 06/11/97
Date of Next Scheduled EDR Contact: N/A

EDR PROPRIETARY HISTORICAL DATABASES

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines/Electrical Transmission Lines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines and electrical transmission lines.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

STREET AND ADDRESS INFORMATION

© 2001 Geographic Data Technology, Inc., Rel. 07/2001. This product contains proprietary and confidential property of Geographic Data Technology, Inc. Unauthorized use, including copying for other than testing and standard backup procedures, of this product is expressly prohibited.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

IP CHAMPAIGN, FORMER MGP 308 NORTH FIFTH STREET CHAMPAIGN, IL 61820

TARGET PROPERTY COORDINATES

Latitude (North): 40.119400 - 40° 7' 9.8" Longitude (West): 88.231796 - 88° 13' 54.5" Universal Tranverse Mercator: Zone 16

Universal Tranverse Mercator: Zone 16 UTM X (Meters): 395033.1 UTM Y (Meters): 4441526.5

EDR's GeoCheck Physical Setting Source Addendum has been developed to assist the environmental professional with the collection of physical setting source information in accordance with ASTM 1527-00, Section 7.2.3. Section 7.2.3 requires that a current USGS 7.5 Minute Topographic Map (or equivalent, such as the USGS Digital Elevation Model) be reviewed. It also requires that one or more additional physical setting sources be sought when (1) conditions have been identified in which hazardous substances or petroleum products are likely to migrate to or from the property, and (2) more information than is provided in the current USGS 7.5 Minute Topographic Map (or equivalent) is generally obtained, pursuant to local good commercial or customary practice, to assess the impact of migration of recognized environmental conditions in connection with the property. Such additional physical setting sources generally include information about the topographic, hydrologic, hydrogeologic, and geologic characteristics of a site, and wells in the area.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata. EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

USGS TOPOGRAPHIC MAP ASSOCIATED WITH THIS SITE

Target Property:

2440088-A2 URBANA, IL

Source: USGS 7.5 min quad index

GENERAL TOPOGRAPHIC GRADIENT AT TARGET PROPERTY

Target Property:

General East

Source: General Topographic Gradient has been determined from the USGS 1 Degree Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

FEMA Flood

Target Property County
CHAMPAIGN, IL

Electronic Data
Not Available

Flood Plain Panel at Target Property:

Not Reported

Additional Panels in search area:

Not Reported

NATIONAL WETLAND INVENTORY

NWI Electronic

NWI Quad at Target Property

Data Coverage

URBANA

YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Site-Specific Hydrogeological Data*:

Search Radius:

2.0 miles

Status:

Not found

AQUIFLOW®

Search Radius: 2.000 Miles.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

AD ID

LOCATION

GENERAL DIRECTION

MAP ID Not Reported FROM TP

GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:

Paleozoic

Category: Stratifed Sequence

System:

Pennsylvanian

Series:

Atokan and Morrowan Series

Code:

PP1 (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Amdt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name:

FLANAGAN

Soil Surface Texture:

silt loam

Hydrologic Group:

Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class:

Somewhat poorly. Soils commonly have a layer with low hydraulic conductivity, wet state high in profile, etc. Depth to water table is

1 to 3 feet.

Hydric Status: Soil does not meet the requirements for a hydric soil.

Corrosion Potential - Uncoated Steel: HIGH

Depth to Bedrock Min:

> 60 inches

Depth to Bedrock Max:

> 60 inches

	Soil Layer Information							
	Bou	ndary		Classi	fication			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)	
1	0 inches	18 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 2.00 Min: 0.60	Max: 7.30 Min: 5.10	
2	18 inches	45 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 2.00 Min: 0.60	Max: 7.30 Min: 5.60	
3	45 inches	60 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 0.60 Min: 0.20	Max: 8.40 Min: 6.10	

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures: silty clay loam

Surficial Soil Types:

silty clay loam

Shallow Soil Types:

No Other Soil Types

Deeper Soil Types:

stratified silt loam

silty clay loam

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

According to ASTM E 1527-00, Section 7.2.2, "one or more additional state or local sources of environmental records may be checked, in the discretion of the environmental professional, to enhance and supplement federal and state sources... Factors to consider in determining which local or additional state records, if any, should be checked include (1) whether they are reasonably ascertainable, (2) whether they are sufficiently useful, accurate, and complete in light of the objective of the records review (see 7.1.1), and (3) whether they are obtained, pursuant to local, good commercial or customary practice." One of the record sources listed in Section 7.2.2 is water well information. Water well information can be used to assist the environmental professional in assessing sources that may impact groundwater flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE

SEARCH DISTANCE (miles)

Federal USGS

1.000

Federal FRDS PWS

Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
K50	400734088132601	1/2 - 1 Mile NE
K51	400734088132601	1/2 - 1 Mile NE
M53	400736088132701	1/2 - 1 Mile NE
M54	400736088132701	1/2 - 1 Mile NE
K59	400734088132201	1/2 - 1 Mile NE
K60	400734088132201	1/2 - 1 Mile NE
M61	400737088132601	1/2 - 1 Mile NE
M62	400737088132601	1/2 - 1 Mile NE
M65	400740088133001	1/2 - 1 Mile NNE
M66	400740088133001	1/2 - 1 Mile NNE
M67	400737088132301	1/2 - 1 Mile NE
M68	400737088132301	1/2 - 1 Mile NE
M70	400737088131901	1/2 - 1 Mile NE
M71	400737088131901	1/2 - 1 Mile NE
O82	400738088131501	1/2 - 1 Mile NE
O83	400738088131501	1/2 - 1 Mile NE

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	FROM TP
152	IL0001594	1/2 - 1 Mile WSW

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	GIL00011635	1/8 - 1/4 Mile ENE
À2	GIL00012348	1/4 - 1/2 Mile SW
A3	GIL00012349	1/4 - 1/2 Mile SSW
B4	GIL00009385	1/4 - 1/2 Mile SE
C5	GIL00012308	1/4 - 1/2 Mile West
C6	GIL00012309	1/4 - 1/2 Mile West
B7	GIL00009383	1/4 - 1/2 Mile SSE
B8	GIL00009386	1/4 - 1/2 Mile SSE
B9	GIL00009387	1/4 - 1/2 Mile SSE
B10	GIL00009384	1/4 - 1/2 Mile SSE
B11	GIL00009388	1/4 - 1/2 Mile SSE
12	GIL00009370	1/4 - 1/2 Mile WSW
C13	GIL00003370	1/4 - 1/2 Mile West
C14	GIL00009359	1/4 - 1/2 Mile WNW
D15	GIL00009391	1/4 - 1/2 Mile South
16	GIL00009377	1/4 - 1/2 Mile Souti
E17	GIL0009377 GIL00012347	1/4 - 1/2 Mile ENE
F18	GIL00012347 GIL00011641	1/4 - 1/2 Mile North
F19	GIL00011637	1/4 - 1/2 Mile North 1/4 - 1/2 Mile North
F20	GIL00011642	
F21	GIL00011633	1/4 - 1/2 Mile North
F22	GIL00009685	1/4 - 1/2 Mile North
G23	GIL00011632	1/2 - 1 Mile SE
G24	GIL00009547	1/2 - 1 Mile SE
G25	GIL00011644	1/2 - 1 Mile SE
E26	GIL00009981	1/2 - 1 Mile NW
D27	GIL00009393	1/2 - 1 Mile SSE
E28	GIL00009372	1/2 - 1 Mile NW
E29	GIL00011639	1/2 - 1 Mile NNW
E30	GIL00011638	1/2 - 1 Mile NNW
E31	GIL00011634	1/2 - 1 Mile NNW
E32	GIL00011636	1/2 - 1 Mile NNW
E33	GIL00011640	1/2 - 1 Mile NNW
D34	GIL00009396	1/2 - 1 Mile South
D35	GIL00009395	1/2 - 1 Mile South
H36	GIL00009379	1/2 - 1 Mile NNE
G37	GIL00012663	1/2 - 1 Mile SSE
138	GIL00011366	1/2 - 1 Mile West
J39	GIL00009731	1/2 - 1 Mile SSE
J40	GIL00009728	1/2 - 1 Mile SSE
J41	GIL00009394	1/2 - 1 Mile SSE
J42	GIL00009133	1/2 - 1 Mile SSE
K43	GIL00009687	1/2 - 1 Mile NE
H44	GIL00009380	1/2 - 1 Mile NE
145	GIL00009357	1/2 - 1 Mile WSW
146	GIL00009358	1/2 - 1 Mile WSW
D47	GIL00009371	1/2 - 1 Mile South
L48	GIL00009378	1/2 - 1 Mile ESE
K49	GIL00009389	1/2 - 1 Mile NE
L55	GIL00009686	1/2 - 1 Mile ESE
156	GIL00010181	1/2 - 1 Mile West
K57	GIL00009684	1/2 - 1 Mile NE

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
K58	GIL00009382	1/2 - 1 Mile NE
K63	GIL00009376	1/2 - 1 Mile NE
N64	G1L00009392	1/2 - 1 Mile SE
K69	G1L00009688	1/2 - 1 Mile NE
M72	G1L00009373	1/2 - 1 Mile NE
73	G1L00009666	1/2 - 1 Mile West
074	G1L00009374	1/2 - 1 Mile NE
O75	GIL00009381	1/2 - 1 Mile NE
P76	GIL00011648	1/2 - 1 Mile South
P77	GIL00011647	1/2 - 1 Mile South
P78	GIL00011649	1/2 - 1 Mile South
79	GIL00009138	1/2 - 1 Mile SSE
N80	GIL00011651	1/2 - 1 Mile SE
O81	GIL00009375	1/2 - 1 Mile NE
84	GIL00012370	1/2 - 1 Mile SE
Q85	GIL00011645	1/2 - 1 Mile South
Q86	GIL00011646	1/2 - 1 Mile South
87	GIL00012350	1/2 - 1 Mile ESE
88	GIL00009369	1/2 - 1 Mile NNW
89	GIL00009368	1/2 - 1 Mile NE
90	GIL00010238	1/2 - 1 Mile North
91	GIL00012367	1/2 - 1 Mile South

PHYSICAL SETTING SOURCE MAP - 815413.1s

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: LAT/LONG:

Cluster of Multiple Icons

IP Champaign, Former MGP 308 North Fifth Street Champaign IL 61820 40.1194 / 88.2318 CUSTOMER:

Philip Services Corporation Barb Bruss

CONTACT: INQUIRY#: DATE:

815413.1s July 17, 2002 11:07 am

Map ID Direction Distance Elevation				Database	EDR ID Number
1 ENE 1/8 - 1/4 Mile Higher				IL WELLS	GIL00011635
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353800 Water Well Test Hole 3353474	Group Number: Boring: Y Coord:	31 0 2584555		
A2 SW 1/4 - 1/2 Mile Higher				IL WELLS	GIL00012348
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192432900 Water Well 3351996	Group Number: Boring: Y Coord:	31 0 2583217		
A3 SSW 1/4 - 1/2 Mile Higher				IL WELLS	GIL00012349
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192433000 Water Well Test Hole 3352496	Group Number: Boring: Y Coord:	31 0 2582905		
B4 SE 1/4 - 1/2 Mile Higher				IL WELLS	GIL00009385
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045900 Water Well Test Hole 3353849	Group Number: Boring: Y Coord:	31 0 2582946		
C5 West 1/4 - 1/2 Mile Higher				IL WELLS	GIL00012308
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192428800 Water Well Test Hole 3350766	Group Number: Boring: Y Coord:	31 0 2584478		

Map ID Direction Distance Elevation				Database	EDR ID Number
C6 West 1/4 - 1/2 Mile Higher				IL WELLS	GIL00012309
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192428900 Water Well Test Hole 3350766	Group Number: Boring: Y Coord:	31 0 2584478		
B7 SSE 1/4 - 1/2 Mile Higher				IL WELLS	GIL00009383
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045700 Water Well 3353631	Group Number: Boring: Y Coord:	31 0 2582318		
B8 SSE 1/4 - 1/2 Mile Higher				IL WELLS	GIL00009386
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190046000 Water Well Test Hole 3353863	Group Number: Boring: Y Coord:	31 0 2582299		
B9 SSE 1/4 - 1/2 Mile Higher				IL WELLS	GIL00009387
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190046100 Water Well Test Hole 3353863	Group Number: Boring: Y Coord:	31 0 2582299		
B10 SSE 1/4 - 1/2 Mile Higher				IL WELLS	GIL00009384
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045800 Water Well Test Hole 3353863	Group Number: Boring: Y Coord:	31 0 2582299		

Map ID Direction Distance EDR ID Number Database Elevation B11 SSE 1/4 - 1/2 Mile Higher **IL WELLS** G1L00009388 Info Source: IL Geological Survey 120190046200 APLID: Group Number: 31 Well Type: Water Well Boring: 0 X Coord: 3353863 Y Coord: 2582299 WSW 1/4 - 1/2 Mile **IL WELLS** GIL00009370 Higher IL Geological Survey Info Source: 120190044300 Group Number: 31 API ID: Well Type: Water Well Test Hole Boring: 0 X Coord: 3350864 Y Coord: 2583042 C13 West 1/4 - 1/2 Mile **IL WELLS** G1L00009360 Higher IL Geological Survey Info Source: API ID: 120190040400 Group Number: 31 Water Well 0 Well Type: Boring: X Coord: 3350476 Y Coord: 2584482 C14 WNW IL WELLS GIL00009359 1/4 - 1/2 Mile Higher Info Source: IL Geological Survey 120190040300 31 APLID: Group Number: Water Well Test Hole Well Type: Boring: 0 Y Coord: 2584873 X Coord: 3350507 D15 **JL WELLS** GIL00009391 South 1/4 - 1/2 Mile Higher IL Geological Survey 120190047400 Info Source: APLID: Group Number. 31 Well Type: Water Well Boring:

Y Coord:

X Coord:

3353138

2581852

Map ID Direction Distance Database EDR ID Number Elevation 16 ENE 1/4 - 1/2 Mile Higher IL WELLS GIL00009377 Info Source: IL Geological Survey APHD: 120190045100 Group Number: 31 Well Type: Water Well Boring: 0 X Coord: 3355160 Y Coord: 2584927 NNW 1/4 - 1/2 Mile IL WELLS GIL00012347 Higher IL Geological Survey Info Source: 120192432800 Group Number: APLID: 31 Well Type: Water Well Test Hole Boring: 0 X Coord: 3351537 Y Coord: 2586497 F18 North 1/4 - 1/2 Mile Higher IL WELLS GIL00011641 IL Geological Survey Info Source: APHD: 120192354400 Group Number: 31 Water Well Test Hole Well Type: Boring: n X Coord: 3352406 Y Coord: 2586795 F19 North 1/4 - 1/2 Mile Higher IL WELLS GIL00011637 Info Source: IL Geological Survey 120192354000 APLID: Group Number: 31 Water Well Test Hole Well Type: Boring: 0 X Coord: 3352406 Y Coord: 2586795 F20 IL WELLS GIL00011642 North 1/4 - 1/2 Mile Higher Info Source: IL Geological Survey 120192354500 API ID: Group Number: 31 Well Type: Water Well Test Hole Boring: O 2586795 X Coord: 3352406 Y Coord:

Map ID Direction Distance Elevation				Database	EDR ID Number
F21 North 1/4 - 1/2 Mile Higher				IL WELLS	GIL00011633
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353600 Water Well Test Hole 3352406	Group Number: Boring: Y Coord:	31 0 2586795		
F22 North 1/4 - 1/2 Mile Higher				IL WELLS	G1L00009685
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190100700 Water Well Test Hole 3353084	Group Number: Boring: Y Coord:	31 0 2586813		
G23 SE 1/2 - 1 Mile Higher				IL WELLS	G I L00011632
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353500 Water Well Test Hole 3354539	Group Number: Boring: Y Coord:	31 0 2582320		
G24 SE 1/2 - 1 Mile Higher				IL WELLS	G1L00009547
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190080800 Water Well 3354539	Group Number: Boring: Y Coord:	31 0 2582320		
G25 SE 1/2 - 1 Mile Higher				IL WELLS	GIL00011644
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354700 Water Well Test Hole 3354539	Group Number: Boring: Y Coord:	31 0 2582320		

Map ID Direction Distance Elevation				Database	EDR ID Number
E26 NW 1/2 - 1 Mile Higher				IL WELLS	GIL00009981
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190142000 Water Well 3351136	Group Number. Boring: Y Coord:	31 0 2586387		
D27 SSE 1/2 - 1 Mile Higher				IL WELLS	GIL00009393
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190047600 Water Well Test Hole 3353705	Group Number: Boring: Y Coord:	31 0 2581803		
E28 NW 1/2 - 1 Mile Higher				IL WELLS	GIL00009372
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190044500 Water Well 3351120	Group Number: Boring: Y Coord:	31 0 2586386		
E29 NNW 1/2 - 1 Mile Higher				IL WELLS	GIL00011639
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354200 Water Well Test Hole 3351728	Group Number: Boring: Y Coord:	31 0 2586778		
E30 NNW 1/2 - 1 Mile Higher				IL WELLS	G1L00011638
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354100 Water Well Test Hole 3351728	Group Number: Boring: Y Coord:	31 0 2586778		

Map ID Direction Distance Elevation				Database	EDR ID Number
E31 NNW 1/2 - 1 Mile Higher			,	IL WELLS	GIL00011634
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353700 Water Well Test Hole 3351728	Group Number: Boring: Y Coord:	31 0 2586778		
E32 NNW 1/2 - 1 Mile Higher				IL WELLS	GIL00011636
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192353900 Water Well Test Hole 3351728	Group Number: Boring: Y Coord:	31 0 2586778		
E33 NNW 1/2 - 1 Mile Higher				IL WELLS	GIL00011640
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192354300 Water Well Test Hole 3351728	Group Number: Boring: Y Coord:	31 0 2586778		
D34 South 1/2 - 1 Mile Higher				IL WELLS	G1L00009396
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190047900 Water Well 3353201	Group Number: Boring: Y Coord:	31 0 2581621		
D35 South 1/2 - 1 Mile Higher				IL WELLS	G1L00009395
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190047800 Water Well 3353201	Group Number: Boring: Y Coord:	3 1 0 2581621		

Map ID Direction Distance Elevation				Database	EDR ID Number
H36 NNE 1/2 - 1 Mile Higher				IL WELLS	GIL00009379
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045300 Water Well Test Hole 3353762	Group Number: Boring: Y Coord:	31 0 2586831		
G37 SSE 1/2 - 1 Mile Higher				IL WELLS	GiL00012663
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192467300 Water Well 3354043	Group Number: Boring: Y Coord:	31 0 2581813		
I38 West 1/2 - 1 Mile Higher				IL WELLS	GIL00011366
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120192306900 Water Well 3350013	Group Number: Boring: Y Coord:	31 0 2583710		
J39 SSE 1/2 - 1 Mile Higher				IL WELLS	GIL00009731
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190106300 Water Well - Plugged 3353877	Group Number: Boring: Y Coord:	31 0 2581641		
J40 SSE 1/2 - 1 Mile Higher				IL WELLS	GIL00009728
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190106000 Water Well 33538 7 7	Group Number: Boring: Y Coord:	31 0 2581641		

Map ID Direction Distance Elevation				Database	EDR ID Number
J41 SSE 1/2 - 1 Mile Higher				IL WELLS	GIL00009394
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190047700 Water Well 3353877	Group Number: Boring: Y Coord:	31 0 2581641		
J42 SSE 1/2 - 1 Mile Higher				IL WELLS	GIL00009133
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190000300 Water Well 3353877	Group Number: Boring: Y Coord:	31 0 2581641		
K43 NE 1/2 - 1 Mile Higher				IL WELLS	GIL00009687
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190100900 Water Well 3355132	Group Number: Boring: Y Coord:	31 0 2586220		
H44 NE 1/2 - 1 Mile Higher				IL WELLS	GIL00009380
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190045400 Water Well Test Hole 3354440	Group Number: Boring: Y Coord:	31 0 2586849		
I45 WSW 1/2 - 1 Mile Higher				IL WELLS	GIL00009357
Info Source: API ID: Well Type: X Coord:	IL Geological Survey 120190040000 Water Well 3349812	Group Number: Boring: Y Coord:	31 0 2583479		

Map ID Direction Distance Datab<u>ase</u> EDR ID Number Elevation 146 WSW 1/2 - 1 Mile **IL WELLS** G1L00009358 Higher IL Geological Survey Info Source: API ID: 120190040100 Group Number. 31 Water Well Weil Type: Boring: 0 3349812 2583479 X Coord: Y Coord: **D47** South 1/2 - 1 Mile Higher **IL WELLS** GIL00009371 Info Source: IL Geological Survey 120190044400 API ID: 31 Group Number: Boring: Well Type: Water Well 0 3353348 2581209 X Coord: Y Coord: L48 ESE IL WELLS GIL00009378 1/2 - 1 Mile Higher IL Geological Survey Info Source: 120190045200 API ID: Group Number: 31 Water Well Test Hole Well Type: 0 Boring: X Coord: 3355864 Y Coord: 2583654 K49 NE 1/2 - 1 Mile IL WELLS GIL00009389 Higher IL Geological Survey Info Source: APLID: 120190046300 Group Number: 31 Water Well Well Type: Boring: 0 X Coord: 3354809 Y Coord: 2586847

K50 NE 1/2 - 1 Mile Higher

FED USGS 400734088132601

BASIC WELL DATA

Site Type: Year Constructed: Single well, other than collector or Ranney type

740.00 ft. Altitude:

1937 County: State:

Well Depth: 218.00 ft. Depth to Water Table: 140.00 ft. 06011937 Date Measured:

Prim. Use of Site:

Topographic Setting: Flat surface Withdrawal of water Prim. Use of Water: Public supply

Champaign

Illinios

Map ID Direction Distance

Database EDR ID Number Elevation

K51 NE

FED USGS 400734088132601

Champaign

Facility Longitude: 088 14 35

1/2 - 1 Mile Higher

BASIC WELL DATA

Single well, other than collector or Ranney type Site Type: County:

Year Constructed: 1937 740.00 ft. Altitude: Well Depth: 218.00 ft.

State: Illinios Topographic Setting: Flat surface Depth to Water Table: Prim. Use of Site: Withdrawal of water 140.00 ft.

Public supply Date Measured: 06011937 Prim. Use of Water:

152 FRDS PWS IL0001594 WSW

1/2 - 1 Mile Higher

PWS ID: IL0001594 PWS Status: Active Date Initiated: June / 77 Date Deactivated: Not Reported

PWS Name: CAMP KIWANIS

RR

MAHOMET, IL 61820

Addressee / Facility: Not Reported

Facility Latitude: 40 06 59 City Served: Not Reported

Treatment Class: Untreated Population: 25

PWS currently has or had major violation(s) or enforcement: No

M53 400736088132701 **FED USGS**

1/2 - 1 Mile Higher

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type

Year Constructed: 1946 County: Champaign 743.00 ft. State: Illinios Altitude: Flat surface Well Depth: 217,00 ft. Topographic Setting: Depth to Water Table: 165.00 ft. Prim. Use of Site: Withdrawal of water Prim. Use of Water: 06011946 Public supply Date Measured:

M54 NE 1/2 - 1 Mile

Higher

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type

Year Constructed: 1946 County: Champaign 743.00 ft. lllinios. Altitude: State: 217.00 ft. Topographic Setting: Flat surface Well Depth: Depth to Water Table: 165.00 ft. Prim. Use of Site: Withdrawal of water Date Measured: 06011946 Prim. Use of Water: Public supply

FED USGS

400736088132701

Map ID Direction Distance Elevation

Database IL WELLS

IL WELLS

IL WELLS

IL WELLS

FED USGS

EDR ID Number

G1L00009686

GIL00010181

GIL00009684

GIL00009382

400734088132201

L55 ESE 1/2 - 1 Mile Higher

IL Geological Survey

120190100800 Water Well Test Hole

Group Number: Boring:

31 0

APHD: Well Type: X Coord:

Info Source:

3356103

Y Coord:

2583644

156 West 1/2 - 1 Mile

Higher

Info Source: API ID:

IL Geological Survey

120192167900 Water Well

Group Number: Boring:

31 0

Well Type: X Coord:

3349391

Y Coord:

2583836

K57 NE 1/2 - 1 Mile Higher

Info Source:

APLID: Well Type: X Coord:

IL Geological Survey

120190100600 Water Well Test Hole 3355118

Group Number: Boring:

Y Coord:

31 0

2586867

K58 NE 1/2 - 1 Mile

Higher

Info Source: APHD:

Well Type: X Coord:

IL Geological Survey

120190045600 Water Well Test Hole

33**5**5118

Group Number: Boring:

31 0 2586867

Y Coord:

K59 NE 1/2 - 1 Mile Higher

BASIC WELL DATA

Altitude:

Site Type: Year Constructed:

Date Measured:

Single well, other than collector or Ranney type County:

1928 743.00 ft. Well Depth: 224.00 ft. Depth to Water Table:

143.00 ft.

State: Topographic Setting:

Illinios Flat surface Withdrawal of water

11011928

Prim. Use of Site: Prim. Use of Water:

Public supply

Champaign

Map ID Direction Distance

Elevation Database EDR ID Number

K60 ΝE

FED USGS 400734088132201 1/2 - 1 Mile

Champaign

Flat surface

Illinios

Higher

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type

Year Constructed: 1928 County: 743.00 ft. Altitude: State: Topographic Setting: Well Depth: 224.00 ft. Depth to Water Table: 143.00 ft. Prim, Use of Site:

Withdrawal of water Prim, Use of Water: Public supply Date Measured: 11011928

M61 NE 1/2 - 1 Mile

FED USGS 400737088132601

Higher

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type

Year Constructed: Champaign 1921 County: Altitude: 743.00 ft. State: Illinios Well Depth: 208.00 ft. Topographic Setting: Flat surface Depth to Water Table: 106,00 ft. Prim, Use of Site: Withdrawal of water Prim. Use of Water: Date Measured: 01011921 Public supply

M62 FED USGS 400737088132601 NE 1/2 - 1 Mile

Higher

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type Year Constructed: 1921 County: Champaign 743.00 ft. Illinios Altitude: State: Well Depth: 208.00 ft. Topographic Setting: Flat surface Depth to Water Table: 106.00 ft. Prim. Use of Site: Withdrawal of water Date Measured: 01011921 Prim. Use of Water: Public supply

K63 IL WELLS GIL00009376

NE 1/2 - 1 Mile Higher

Info Source: IL Geological Survey

120190045000 APHD: Group Number: 31 Well Type: Water Well Test Hole Boring: 2586552 X Coord: 3355463 Y Coord:

N64 1/2 - 1 Mile Higher

GIL00009392

IL WELLS

Info Source:

IL Geological Survey

APLID: Well Type:

120190047500 Water Well

Group Number: Boring:

31 0

3355229 X Coord:

Y Coord:

2581682

M65 NNE

1/2 - 1 Mile Higher

FED USGS

400740088133001

BASIC WELL DATA

Site Type: Year Constructed: Single well, other than collector or Ranney type 1938

County: State:

Champaign Illinios Flat surface

Altitude: Well Depth: Depth to Water Table:

Date Measured:

740.00 ft. 225.00 ft. 146.00 ft. 12011938

Topographic Setting: Prim. Use of Site: Prim. Use of Water:

Withdrawal of water Public supply

M66 NNE 1/2 - 1 Mile Higher

FED USGS

400740088133001

BASIC WELL DATA

Site Type: Year Constructed:

Single well, other than collector or Ranney type 1938 740.00 ft.

County: State:

Champaign Illinios Flat surface

Altitude: Well Depth: Depth to Water Table: Date Measured:

225.00 ft. 146.00 ft. 12011938 Topographic Setting: Prim. Use of Site: Prim. Use of Water.

Withdrawal of water Public supply

M67

NE 1/2 - 1 Mile Higher

FED USGS

400737088132301

BASIC WELL DATA

Site Type:

Single well, other than collector or Ranney type

Year Constructed: Altitude: Well Depth:

1946 743.00 ft. 207.10 ft. County: State:

Champaign Illinios Topographic Setting: Flat surface

Depth to Water Table: Date Measured:

163.20 ft. 06011946

Prim. Use of Site: Prim. Use of Water: Withdrawal of water Public supply

M68

ΝE 1/2 - 1 Mile Higher

FED USGS

400737088132301

BASIC WELL DATA

Site Type:

Single well, other than collector or Ranney type

Year Constructed: 1946 743,00 ft. Altitude: Well Depth:

207.10 ft. 163.20 ft.

County: State: Topographic Setting:

Illinios Flat surface Withdrawal of water

Depth to Water Table: Date Measured:

06011946

Prim. Use of Site: Prim. Use of Water:

Public supply

Champaign

Map ID Direction Distance

Database EDR ID Number Elevation

NE 1/2 - 1 Mile Higher

K69 IL WELLS GIL00009688

Info Source: IL Geological Survey

API ID: Well Type: 120190101000 Water Well Test Hole

3355556 X Coord:

Group Number: Boring:

31 0

Y Coord: 2586802

M70 NE 1/2 - 1 Mile

400737088131901 **FED USGS**

Higher

BASIC WELL DATA

Date Measured:

Site Type: Single well, other than collector or Ranney type County:

Year Constructed: Altitude: Well Depth: Depth to Water Table:

1941 740.00 ft. 197.00 ft. 166.00 ft.

State: Topographic Setting: Prim. Use of Site: Prim. Use of Water:

Champaign Illinios Flat surface Withdrawal of water Public supply

M71 NE 1/2 - 1 Mile Higher

FED USGS 400737088131901

BASIC WELL DATA

Site Type: Single well, other than collector or Ranney type

11011949

Year Constructed: Altitude: Well Depth: Depth to Water Table:

1941 740.00 ft. 197.00 ft. 166,00 ft.

11011949

County: State: Topographic Setting:

Prim. Use of Site:

Prim. Use of Water.

Champaign Illinios Flat surface Withdrawal of water Public supply

M72 NE 1/2 - 1 Mile

Date Measured:

IL WELLS GIL00009373

Higher

Info Source:

IL Geological Survey

API ID: Well Type:

120190044700 Water Well Test Hole

Group Number: Boring:

31 0

X Coord:

3355439

Y Coord:

2587129

West 1/2 - 1 Mile Higher

IL WELLS

GIL00009666

Info Source:

IL Geological Survey

API ID: Well Type: X Coord:

120190098500 Water Well 3348939

Group Number: Boring:

31 0

31

0

2586885

Y Coord:

2583502

074 ΝE

1/2 - 1 Mile Higher

IL Geological Survey

Info Source: 120190044800 API ID: Water Well Well Type: X Coord: 3355795

Group Number:

Boring: Y Coord:

GIL00009374

075 NE 1/2 - 1 Mile Higher

IL Geological Survey

120190045500

3355795

Group Number:

Boring: Y Coord: IL WELLS

IL WELLS

IL WELLS

IL WELLS

GIL00009381

GIL00011648

GIL00011647

Info Source: API ID:

Well Type: X Coord:

Water Well Test Hole

31 0

2586885

P76 South 1/2 - 1 Mile Higher

> Info Source: API ID:

IL Geological Survey 120192355300

Well Type: 3353228 X Coord:

Water Well Test Hole

Group Number:

Boring: Y Coord: 31

2580288

P77 South 1/2 - 1 Mile Higher

API ID:

Info Source:

Well Type:

X Coord:

IL Geological Survey

120192355200 Water Well Test Hole

3353228

Group Number:

Boring: Y Coord: 31 0

2580288

P78 South 1/2 - 1 Mile Higher

IL WELLS

GIL00011649

Info Source:

IL Geological Survey

API ID: Well Type: X Coord:

120192355400

Water Well Test Hole 3353228

Boring:

Group Number:

31 0

Y Coord:

2580288

IL WELLS

IL WELLS

IL WELLS

FED USGS

GIL00009138

GIL00011651

GIL00009375

79 SSE 1/2 - 1 Mile Higher

> Info Source: API ID: Well Type:

X Coord:

IL Geological Survey 120190002300

Water Well Test Hole

3354764

Group Number:

Boring: Y Coord: 31 0

2580703

N80 SE 1/2 - 1 Mile Higher

> Info Source: APLID: Well Type:

X Coord:

IL Geological Survey

120192355700 Water Well Test Hole

3355243

Group Number:

Boring: Y Coord: 31

0 2581012

081

NE 1/2 - 1 Mile Higher

Info Source:

API ID:

Well Type: 3355974 X Coord:

IL Geological Survey

120190044900 Water Well Test Hole

Group Number: Boring: Y Coord:

31

2586888

082 NE

1/2 - 1 Mile Higher

Altitude:

Well Depth:

Date Measured:

BASIC WELL DATA

Site Type: Year Constructed: Single well, other than collector or Ranney type

1927 745.00 ft. 212.00 ft. Depth to Water Table: 131,00 ft.

09011927

State: Topographic Setting:

County:

Champaign Illinios Flat surface

Prim. Use of Site: Withdrawal of water Prim. Use of Water: Public supply

083 NE 1/2 - 1 Mile Higher

FED USGS

400738088131501

400738088131501

BASIC WELL DATA

Site Type:

Single well, other than collector or Ranney type

Year Constructed: 1927 Altitude:

County: 745.00 ft. State:

Champaign Illinios

Well Depth: Depth to Water Table: Date Measured:

212.00 ft. 131,00 ft. 09011927 Topographic Setting: Flat surface Prim. Use of Site: Prim, Use of Water:

Withdrawal of water Public supply

SE

1/2 - 1 Mile Higher

IL WELLS

GIL00012370

Info Source:

API ID:

IL Geological Survey

120192435200 Water Well Test Hole Group Number: 31

0

Well Type: X Coord:

3355919

Boring: Y Coord:

2581031

Q85 South 1/2 - 1 Mile Higher

IL WELLS

GIL00011645

Info Source: API ID:

IL Geological Survey

120192355000 Well Type: Water Well Test Hole

Group Number. Boring:

Group Number:

Y Coord:

31 0

3352564 X Coord:

2579605

Q86

South 1/2 - 1 Mile Higher

IL WELLS

GIL00011646

Info Source:

API ID: Well Type:

X Coord:

IL Geological Survey

120192355100 Water Well Test Hole Group Number: Boring:

31

3352564 2579605 Y Coord:

ESE

1/2 - 1 Mile Higher

IL WELLS

GIL00012350

Info Source: API ID: Well Type:

X Coord:

IL Geological Survey

120192433100

Boring: Water Well Test Hole 3357518 Y Coord: 31 0

2583373

88 WMM 1/2 - 1 Mile Higher

IL WELLS

GIL00009369

Info Source:

IL Geological Survey

API ID: Well Type: X Coord:

120190044200

Water Well Test Hole

3350697

Group Number:

Boring: Y Coord: 31 0

2588675

NE 1/2 - 1 Mile Higher

Info Source:

API ID: Well Type: X Coord:

IL Geological Survey

120190044000 Water Well Test Hole

3356051

Group Number:

Boring: Y Coord:

31 0

2587915

90 North 1/2 - 1 Mile Higher

Info Source:

APLID: Well Type: X Coord:

IL Geological Survey

120192175200 Water Well

3353016

Group Number:

Boring: Y Coord: 31 0

31

2579296

2589336

91 South 1/2 - 1 Mile Higher

Info Source:

API ID: Well Type: X Coord:

IL Geological Survey 120192434900

Water Well Test Hole

3353586

Group Number:

Boring: Y Coord:

IL WELLS

IL WELLS

IL WELLS

GIL00012367

GIL00009368

GIL00010238

AREA RADON INFORMATION

Federal EPA Radon Zone for CHAMPAIGN County: 1

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for CHAMPAIGN COUNTY, IL

Number of sites tested: 15

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	2.120 pCi/L	87%	13%	0%
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	5.453 pCi/L	60%	33%	7%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOWR Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Amdt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the national Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

ADDITIONAL ENVIRONMENTAL RECORD SOURCES

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: In November 1971 the United States Geological Survey (USGS) implemented a national water resource information tracking system. This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on more than 900,000 wells, springs, and other sources of groundwater.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STATE RECORDS

County Well Data in Illinois: Cook and DuPage Counties

Source: Illinois State Geological Survey

Telephone: 217-244-2387

Illinois Private Well Database and PICS (Public, Industrial, Commercial Survey)

Source: Illinois State Water Survey

Telephone: 217-333-9043

Illinois State Geological Survey Water Wells

Source: Illinois State Geological Survey

Telephone: 217-333-5102

Point data set that shows locations, well type, and well ID for wells in Illinois. Data comes from driller's logs.

RADON

Area Radon Information

Source: EPA

Telephone: 303-236-1525

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 202-564-9370

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

APPENDIX C

Phase II Soil Analytical Data Sheets

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219787
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 26-DEC-90	PO Number P0072488
(317)243-8305	Printed 27-DEC-90	Sampled 04-DEC-90 12:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-01-01 SAMPLE LOCATION:: UTB-01 (21'-23')

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Analyst: W. WATNESS Analysis Date: 12-DEC-90			Test: P130.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	1 100	Result	Det. Limit	Units Grams mL
ARSENIC GFAA SW846-7060 Analyst: S. GRAY Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW84	Instrum 16-3050	nent: GFAA)	Test: M103.2.	0
Parameter ARSENIC	3.6	Result	Det. Limit	Units mg/kg
CVAA ACID DIGESTION OF S/S/S SAMPLES SW846-7471 Analyst: M. SCROGHAM Analysis Date: 12-DEC-90			Test: P131.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	0.4	Result	Det. Limit	Units Grams mL
MERCURY CVAA SW846-7471 Analyst: M. SCROGHAM Analysis Date: 13-DEC-90 Prep: CVAA ACID DIGESTION OF S/S/S SAMPLES SW84	Instru 46-747]	ment: CVAA l	Test: M120.2.	0
Parameter MERCURY	BDL	Result	Det. Limit 0.13	Units mg/kg
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: W. WATNESS Analysis Date: 12-DEC-90	6-3050		Test: P129.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	1 100	Result	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90	Instru ES SW84	ment: ICP 46-3050	Test: M104.3.	0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL		Result	Det. Limit	Units

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A2197	
CADMIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M108.3.	0
Parameter CADMIUM	Result BDL	Det. Limit 5.0	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M110.3.	0
Parameter CHROMIUM	Result 7.0	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP ES SW846-3050	Test: M112.3.	0
Parameter COPPER	Result 12	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP LES SW846-3050	Test: M115.3.	0
Parameter IRON	Result 12000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPI) Instrument: ICP _ES SW846-3050	Test: M116.3.	0
Parameter LEAD	Result 6.0	Det. Limit 5.0	Units mg/kg
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPI	Instrument: ICP LES SW846-3050	Test: M119.3.	0
Parameter MANGANESE	Result 520	Det. Limit	Units mg/kg
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPI	Instrument: ICP LES SW846-3050	Test: M122.3.	0
Parameter NICKEL	Result 11	Det. Limit	Units mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMP	O Instrument: ICP LES SW846-3050	Test: M139.3.	0
Parameter ZINC	Result 41	Det. Limit 2.0	Units mg/kg
GC/MS SONICATION EXTRACTION FOR ORGANICS SW846 Analyst: J. MINNIEAR, II Analysis Date: 12-DEC-90	-35 50 0	Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 5.2 1.0	Det. Limit	Units Grams mL

Danamatan	Result	Det. Limit	Units
Parameter CENAPHTHENE	78000	19000	ug/kg
CENAPHTHYLENE	34000	19000	ug/kg
NTHRACENE	56000	19000	ug/kg
ENZ (A) ANTHRACENE	30000	19000	ug/kg
	24000	19000	ug/kg
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	20000	19000	ug/kg
	BDL	19000	ug/kg
BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE	BDL	19000	ug/kg
BENZYL ALCOHOL	BDL	19000	ug/kg
BENZYLBUTYLPHTHALATE	BDL	19000	ug/kg
	BDL	19000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	19000	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	19000	ug/kg
IS(2-CHLOROISOPROPYL)ETHER	BDL	19000	
SIS(2-ETHYLHEXYL)PHTHALATE			ug/kg
-BROMOPHENYLPHENYLETHER	BDL	19000 19000	ug/kg
ARBAZOLE	BDL		ug/kg
-CHLOROANILINE	BDL	19000	ug/kg
2-CHLORONAPHTHALENE	BDL	19000	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	19000	ug/kg
CHRYSENE	34000	19000	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	19000	ug/kg
)IBENZOFURAN	24000	19000	ug/kg
,2-DICHLOROBENZENE	BDL	19000	ug/kg
,3-DICHLOROBENZENE	BDL	19000	ug/kg
1,4-DICHLOROBENZENE	BDL	19000	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	39000	ug/kg
DIETHYLPHTHALATE	BDL	19000	ug/kg
DIMETHYLPHTHALATE	BDL	19000	ug/kg
DI-N-BUTYLPHTHALATE	BDL	19000	ug/kg
DINITROBENZENES	BDL	19000	ug/kg
2,4-DINITROTOLUENE	BDL	19000	ug/kg
2,6-DINITROTOLUENE	BDL	19000	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	19000	ug/kg
LUORANTHENE	60000	19000	ug/kg
LUORENE	70000	19000	ug/kg
HEXACHLOROBENZENE	BDL	19000	ug/kg
HEXACHLOROBUTADIENE	BDL	19000	ug/kg
IEXACHLOROCYCLOPENTADIENE	BDL	19000	ug/kg
IEXACHLOROETHANE	BDL	19000	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	19000	ug/kg
SOPHORONE	BDL	19000	ug/kg
2-METHYLNAPHTHALENE	190000	19000	ug/kg
NAPHTHALENE	320000	19000	ug/kg
P-NITROANILINE	BDL	96000	ug/kg
S-NITROANILINE	BDL	96000	ug/kg
	BDL	96000	ug/kg
-NITROANILINE	BDL	19000	ug/kg
NITROBENZENE N-NITROSO-DIPHENYLAMINE	BDL	19000	ug/kg
	BDL	19000	
N-NITROSO-DI-N-PROPYLAMINE			ug/kg
PHENANTHRENE	160000	19000	ug/kg
PICOLINE	BDL	96000	ug/kg
PYRENE	74000	19000	ug/kg
PYRIDINE	BDL	96000	ug/kg
TETRACHLOROBENZENES	BDL	19000	ug/kg Page

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A219787

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	96000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	19000	ug/kg
BENZOIC ACID	BDL	96000	ug/kg
-CHLORO-3-METHYLPHENOL	BDL	19000	ug/kg
2-CHLOROPHENOL	BDL	19000	ug/kg
2,4-DICHLOROPHENOL	BDL	19000	ug/kg
2,4-DIMETHYLPHENOL	BDL	19000	ug/kg
1,6-DINITRO-2-METHYLPHENOL	BDL	96000	ug/kg
2,4-DINITROPHENOL	BDL	96000	ug/kg
2-METHYLPHENOL	BDL	19000	ug/kg
1-METHYLPHENOL	BDL	19000	ug/kg
2-NITROPHENOL	BDL	19000	ug/kg
I-NITROPHENOL	BDL	96000	ug/kg
PENTACHLOROPHENOL	BDL	96000	ug/kg
PHENOL	BDL	19000	ug/kg
TETRACHLOROPHENOL	BDL	19000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	19000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	19000	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		
PHENOL-D5	*		
NITROBENZENE-D5	***		
2-FLUOROBIPHENYL	*		
2,4,6-TRIBROMOPHENOL	*		
FERPHENYL-D14	*		
DILUTION FACTOR 1:10			
ALSO DETECTED			
JNKNOWN	EST 200000 RT=3.23		
BENZENE(1-METHYLETHYL)	EST 46000 RT=5.68		
B-HEXENÈ-2,5-DIONE	EST 32000 RT=6.52		
LH-INDENE	EST 32000 RT=10.12		
L-METHYLNAPHTHALENE	EST 150000 RT=18.81		
NAPHTHALENE,1-ETHYL	EST 66000 RT=20.68		
NAPHTHALENE, DIMETHYL	EST 78000 RT=20.93		
NAPHTHALENE, DIMETHYL	EST 96000 RT=21.19		
NAPHTHALENE, DIMETHYL	EST 54000 RT=21.28		
NAPHTHALENE, DIMETHYL	EST 64000 RT=21.58		
NAPHTHALENE, TRIMETHYL	EST 48000 RT=23.53		
H-PHENALENE	EST 58000 RT=23.88		
INKNOWN	EST 78000 RT=24.79		
H-FLUORENE, METHYL	EST 60000 RT=26.04	***************************************	***************************************
HENANTHRENE, 4-METHYL	EST 62000 RT=28.88		
PHENANTHRENE, METHYL	EST 62000 RT=28.96		
ANTHRACENE, 1-METHYL	EST 90000 RT=29.21		
NTHRACENE, 1-METHYL	EST 58000 RT=29.29		
PHENANTHRENE, 9, 10-DIMETHYL	EST 56000 RT=30.67		
JNKNOWN	EST 50000 RT=30.07		
NOTE: * SURROGATES DILUTED OUT	E31 30000 K1=31.3/	1	

VOLATILE ORGANICS SW846-8240 Analyst: A. WIDZISZ Analysis Date: 11-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	0,68	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BOL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
I,2-DICHLOROPROPANE ETHYLBENZENE	5.6	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
	BDL	0.63	mg/kg
2-HEXANONE	BDL	0.03	
METHYLENE CHLORIDE	BDL	0.63	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.31	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	1.5	mg/kg
TETRAHYDROFURAN		0.31	mg/kg
TOLUENE	1.2 BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)			mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	6.3	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	108		% Rec
TOLUENE-D8	115		% Rec
BROMOFLUOROBENZENE	117		% Rec
DILUTION FACTOR 1:63			

PHENOLS DISTILLATION SW846-9065			
Analyst: C. BOYLE Analysis Date	: 11-DEC-90	Test: P405.7	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FTNAL VOLUME	100		l mL

EMS HERITAGE L	ABURATURIES, INC.		Lab Sample 1	D: AZ19/8/
PHENOLS 4AAP S Analyst: J. GRIFFIN Prep: PHENOLS	W846-9066	Instrument: AUTO-ANALYZER		0
PHENOLS	Parameter	Result BDL	Det. Limit	Units mg/kg

Sample Comments

* See Note for Parameter BDL Below Detection Limit

EST Estimated Value RT Retention Time

Sample chain of custody number 3401.

Last Page 6

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	08-DEC-90	A219792
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	04-JAN-91	P0072488
(317)243-8305	Printed	Sampled
AND THE WARRY	05-JAN-91	04-DEC-90 12:10

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-01-02

SAMPLE LOCATION:: UTB-01 (27'-28')

Analyst: J. MINNIEAR, II Analysis Date: 26-DEC-90		Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME 30.	Result	Det. Limit	Units Grams

Analysis Date: 28-DEC-90 Instrument: GC/MS SVOA Test: 0505.3. 0 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550				
Parameter ACENAPHTHENE	Result BDL	Det. Limit	Units ug/kg	
ACENAPHTHENE	BDL	330	ug/kg	
ANTHRACENE	BDL	330	ug/kg	
BENZ (A) ANTHRACENE	BDL	330		
BENZO(A)PYRENE	BDL	330	0/ 0	
BENZO(A)FTRENE BENZO(B)FLUORANTHENE	BDL	330	ug/kg	
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg	
BENZO(K)FLUORANTHENE	BDL	330	ug/kg	
BENZYL ALCOHOL	BDL	330	0, 0	
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg	
	BDL	330		
BIS(2-CHLOROETHOXY)METHANE BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg	
DIS(2-CHLURUISUPROPIL)EIHER	BDL	330	ug/kg	
BIS(2-ETHYLHEXYL)PHTHALATE 4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg	
CARBAZOLE	BDL	330	ug/kg	
4-CHLOROANILINE	BDL	330	3/ 3	
2-CHLORONAPHTHALENE	BDL	330	ug/kg	
4-CHLOROPHENYLPHENYLETHER	BDL	330		
CHRYSENE	BDL	330	ug/kg	
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg ug/kg	
DIBENZOFURAN	BDL	330	ug/kg	
1,2-DICHLOROBENZENE	BDL	330		
1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE	BDL	330	ug/kg	
1,4-DICHLOROBENZENE	BDL	330	ug/kg	
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg	
DIETHYLPHTHALATE	BDL	330	ug/kg ug/kg	

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A219792

Parameter DIMETHYLPHTHALATE	Result BDL	Det. Limit	Units ug/kg
DI-N-BUTYL PHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	
	BDL		ug/kg
2,6-DINITROTOLUENE		330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
FLUORANTHENE	BDL	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADI ENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
[SOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	BDL	330	ug/kg
?-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
I-NITROANILINE	BDL	1600	ug/kg
VITROBENZENE	BDL	330	ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	
2-PICOLINE	BDL		ug/kg
PYRENE	BDL	1600	ug/kg
PYRIDINE		330	ug/kg
	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
I-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
?-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
-METHYLPHENOL -	BDL	330	
-METHYLPHENOL	BDL	330	ug/kg
?-NITROPHENOL	BDL	330	ug/kg
-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
ETRACHLOROPHENOL	BDL	330	ug/kg
,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
URROGATE RECOVERY	552	330	49/ K9
?-FLUOROPHENOL	64		% Rec
PHENOL-D5	80		% Rec
ITROBENZENE-D5	82		% Rec
-FLUOROBIPHENYL	75		% Rec
,4,6-TRIBROMOPHENOL	18	***************************************	% Rec
ÉRPHENYL-D14	71		% Rec

VOLATILE ORGANICS SW846-8240 Analyst: A. WIDZISZ Analysis Date: 17-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TŔĪĊHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
(YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	105		% Rec
TOLUENE-D8	116		% Rec
BROMOFLUOROBENZENE	115		% Rec
DILUTION FACTOR 1:63			/ INEC
PHENOLS DISTILLATION SW846-9065 Analyst: C. BOYLE Analysis Date: 11-DEC-90		Took - 0/05 7	٥
Parameter	Result	Test: P405.7.	I
INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units
INAL VOLUME	100		Grams

EMS HERITAGE LABORA	ATORIES, INC.		Lab Sample	ID: A219792
PHENOLS 4AAP SW846- Analyst: J. GRIFFIN Prep: PHENOLS DIS		Instrument: AUTO-ANALYZER	Test: 0405.7	'. 0
PHENOLS	Parameter	Result BDL	Det. Limit	Units mg/kg

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3401.

DR stewer

QUALITY ASSURANCE REPORT

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219792
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 04-JAN-91	PO Number P0072488
(317)243-8305	Printed 09-JAN-91	Sampled 04-DEC-90 12:10

Sample Description

SAMPLE NO.: UTB-01-02

SAMPLE LOCATION:: UTB-01 (27'-28')

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270

Analys	t : M. DON	OFRIO	Analysis Date: 28-DEC		ent: GC/MS	SVOA	Test: 0505.	3. 0	
C0000000000000000000000000000000000000	ver: S. BRO p: GC/MS		Review Date: 04-JAN ATION EXTRACTION FOR ORGAN		A COLUMN TARRETT TARREST		Run: R1104	31	
QC Type CCV	Identifier Q177965	124.3 -4.3	Parameter See Attached Report g9273b.ind	True Value	Spike Val	Observed	Units	% Rec	% Diff
SAMPLE	A219792	*****************	See Certificate of Analysis			***************************************			***************************************

	ver: C. KOLA		Review Date: 19-DEC		: >1432G	I	Run: R1093	91	
	Identifier	The state of the s	Parameter	True Value	Spike Val	Observed	Units	% Rec	% Dift
DPS01	Q170724	A220062	1,1-DICHLOROETHENE	0.00	3.2	2.9	mg/kg	91	6
DPS01	Q170724	A220062	TRICHLOROETHENE	0.00	3.2	3.1	mg/kg	97	3
DPS01	Q170724	A220062	BENZENE	0.00	3.2	3.4	mg/kg	106	6
DPS01	Q170724	A220062	TOLUENE	0.00	3.2	3.7	mg/kg	116	5
DPS01	Q170724	A220062	CHLOROBENZENE	0.00	3.2	3.7	mg/kg	116	5
SPI01	Q170723	A220062	1,1-DICHLOROETHENE	0.00	3.2	3.1	mg/kg	97	
SPI01	Q170723	A220062	TRICHLOROETHENE	0.00	3.2	3.2	mg/kg	100	
SPI01	Q170723	A220062	BENZENE	0.00	3.2	3.6	mg/kg	113	
SPI01	Q170723	A220062	TOLUENE	0.00	3.2	3.9	mg/kg	122	
SPI01	Q170723	A220062	CHLOROBENZENE	0.00	3.2	3.9	mg/kg	122	
ccv	Q170716	*******************	See Attached Report g1420g.ind						A
BLA01	Q170717		See Attached Report g1421g.ind						
SAMPLE	A219792		See Certificate of Analysis						

Analys	st : J. GRIFF	FIN	Analysis Date: 14-D	EC-90 Instrum	ent: AUTO-A	NALYZER	Test: 0405.	7.0	
101000000000000000000000000000000000000	ver: B. SHRAK n· DHFNOI		Review Date: 17-D TILLATION SW846-9065	EC-90 File ID	: 319		Run: R1092	74	
100000000000000000000000000000000000000	Identifier S		Parameter	True Value	Spike Val	Observed	Units	% Rec	% Diff
SAMPLE	A219792		See Certificate of Analysis	10.00			0.11.10	10 1100	100111

PHENOLS 4AAP SW846-9066

Service Location . EMS HERITAGE LABORATORIES, INC.	Received 01-DEC-90	Lab ID A219237
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 12-DEC-90	PO Number PO072488
(317)243-8305	Printed 06-MAR-91	Sampled 29-NOV-90 14:00

Report To

Bill To

ILLINOIS POWER COMPANY WILLIAM WITTS P.O. BOX 511 500 SOUTH 27TH STREET DECATUR, IL 62525

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-03-01 DESCRIPTION: UTB-03 (11-13.5')

Analyst: K. SMITH Analysis Date: 03-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 100	Det. Limit	Units Grams mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Parameter	Result BDL	Det. Limit 0.1	Units mg/kg
CYANIDE DISTILLATION SW846-9010 Analyst: C. BOYLE Analysis Date: 03-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 250	Det. Limit	Units Grams mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.25	Units mg/kg
HYDROCARBON SCAN SW846-8000 Analyst: J. SMITH Analysis Date: 06-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE DIESEL FUEL	Result BDL BDL	Det. Limit 25 100	Units mg/kg mg/kg
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 06-DEC-90		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result BDL	Det. Limit	Units mg/L

Analyst: A. WIDZISZ Analysis Date: 10-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN ACRYLONITRILE	BDL	3.1	mg/kg
	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	0.45		mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE		0.31	mg/kg
	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
(YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			111114444444
DICHLOROETHANE-D4	96		% Rec
TOLUENE-D8	100		% Rec
BROMOFLUOROBENZENE	102		% Rec
OILUTION FACTOR 1:63			70 NGC
GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3	3550		
Analyst: M. FRANK Analysis Date: 05-DEC-90 Parameter	Result	Test: P236.4.	000000000000000000000000000000000000000
INITIAL WEIGHT OR VOLUME	30.0 Result	Det. Limit	Units Grams
FINAL VOLUME	1.0		ai aiis

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID Analyst: K. STONER Analysis Date: O Prep: GC/MS SONICATION EXTRACTION FOR OF	DEC-90 Instrument: GC/MS SVOA RGANICS SW846-3550	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	940	330	ug/kg
CENAPHTHYLENE	390	330	ug/kg
NTHRACENE	BDL	330	ug/kg
ENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZÒ (Á) PYRENE	BDL	330	ug/kg
ENZO(B)FLUORANTHENE	BDL	330	ug/kg
ENZO(G,H,I)PERYLENE	BDL	330	ug/kg
ENZO(K)FLUÓRANTHENE	BDL	330	ug/kg
ENZYL ALCOHOL	BDL	330	ug/kg
ENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	330	
IS(2-CHLOROISOPROPYL)ETHER	BDL		ug/kg
IS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
		330	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	BDL	330	ug/kg
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	BDL	330	ug/kg
IBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
IBENZOFURAN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL	330	ug/kg
,4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
IETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	
LUORANTHENE	BDL	330	ug/kg
LUORENE	530		ug/kg
EXACHLOROBENZENE		330	ug/kg
	BDL	330	ug/kg
EXACHLOROBUTADIENE	BDL	330	ug/kg
EXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
EXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	BDL	330	ug/kg
-METHYLNAPHTHALENE	EST 270	330	ug/kg
APHTHALENE	BDL	330	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
ITROBENZENE	BDL	330	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
HENANTHRENE	1200	330	ug/kg
-PICOLINE	BDL	1600	
YRENE	BDL	330	ug/kg
YRIDINE	BDL		ug/kg
		1600	ug/kg
ETRACHLOROBENZENES	BDL	330	ug/kg

Lab Sample ID: A219237

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	69		% Rec
PHENOL-D5	76		% Rec
NITROBENZENE-D5	77		% Rec
2-FLUOROBIPHENYL	76		% Rec
2,4,6-TRIBROMOPHENOL	38	*	% Rec
TERPHENYL-D14	90		% Rec

Sample Comments

ONE CONTAINER BROKEN IN TRANSIT...

BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 3400.

Detuson

Service Location EMS HERITAGE LABORATORIES, INC.	Received 01-DEC-90	Lab ID A219238
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 14-DEC-90	PO Number PO072488
(317)243-8305	Printed 06-MAR-91	Sampled 29-NOV-90 15:00

Report To

ILLINOIS POWER COMPANY WILLIAM WITTS P.O. BOX 511 500 SOUTH 27TH STREET DECATUR, IL 62525 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-03-02

DESCRIPTION: UTB-03 (18.5-23.5')

Analyst: K. SMITH Analysis Date: 03-DEC-90	T	Test: P405.7.	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 100	Det. Limit	Units Grams mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Parameter	Result BDL	Det. Limit	Units mg/kg
CYANIDE DISTILLATION SW846-9010 Analyst: C. BOYLE Analysis Date: 03-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 250	Det. Limit	Units Grams mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.25	Units mg/kg
HYDROCARBON SCAN SW846-8000 Analyst: J. SMITH Analysis Date: 06-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE DIESEL FUEL	Result BDL BDL	Det. Limit 25 100	Units mg/kg mg/kg
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 06-DEC-90		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 70	Det. Limit	Units mg/L

Analyst: T. WIEGAND Analysis Date: 05-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	
Parameter ACETONE	Result	Det. Limit	Units
ACROLEIN	BDL	1.2	mg/kg
ACRYLONITRILE	BDL	3.1	mg/kg
BENZENE	BDL	4.4	mg/kg
ATTION OF THE PERSON OF THE PE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	0.41	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL		mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
retrahydrofuran	BDL	0.31	mg/kg
TOLUENE	BDL	1.5	mg/kg
1,2-DICHLOROETHENE (TOTAL)		0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	
TRICHLOROETHENE	BDL	0.31	mg/kg
/INYL ACETATE	BDL	0.63	mg/kg
/INYL_CHLORIDE	BDL	0.63	mg/kg
YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY		111-15-14-14-14-14-1	111111111111111111111111111111111111111
	XX.		
DICHLOROETHANE-D4	108		% Rec
TOLUENE-D8	116		% Rec
BROMOFLUOROBENZENE	117	The state of the s	% Rec
DILUTION FACTOR 1:63		7-77	THE CONTROL OF THE CO

GC/MS SONICATION EXTRACTION FOR ORGANICS SW8 Analyst: M. FRANK Analysis Date: 05-DE		Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 30.7 1.0	Det. Limit	Units Grams mL

LATILE ORGAN		

Analyst: M. DONOFRIO Analysis Date: 10-DEC-90 Instrument: GC/MS SVOA Test: 0505.3. 0

Parameter ACENAPHTHENE	Result	Det. Limit	Units
ACENAPHTHENE ACENAPHTHYLENE	BDL	330	ug/kg
***************************************	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
ENZ(A)ANTHRACENE	BDL	330	ug/kg
ENZO(A)PYRENE	BDL	330	ug/kg
ENZO(B) FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K)FLUORANTHENE	BDL	330	ug/kg
BENZYL ÁLCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	330	
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ug/kg
TC/2 ETUVI-UEVVI-VDUTHALATE		330	ug/kg
IS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	BDL	330	ug/kg
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	BDL	330	ug/kg
IBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
IBENZÔFÚRÁN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	
,3-DICHLOROBENZENE	BDL		ug/kg
,4-DICHLOROBENZENE		330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	330	ug/kg
	BDL	660	ug/kg
IETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL	330	
EXACHLOROBENZENE	BDL		ug/kg
EXACHLOROBUTADIENE		330	ug/kg
	BDL	330	ug/kg
EXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
EXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	BDL	330	ug/kg
-METHYLNAPHTHALENE	BDL	330	ug/kg
APHTHALENE	BDL	330	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
ITROBENZENE	BDL		
		330	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
HENANTHRENE	BDL	330	ug/kg
-PICOLINE	BDL	1600	ug/kg
YRENE	BDL	330	ug/kg
YRIDINE	BDL	1600	ug/kg
ETRACHLOROBENZENES	BDL	330	ug/kg

Lab Sample ID: A219238

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BÉNZOIC ACID	BDL	1600	
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL		ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL		330	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			And the state of t
2-FLUOROPHENOL	69		% Rec
PHENOL-D5	79		% Rec
NITROBENZENE-D5	81		% Rec
2-FLUOROBIPHENYL	84		% Rec
2,4,6-TRIBROMOPHENOL	73		% Rec
TERPHENYL-D14	98	***************************************	% Rec
ALSO DETECTED			
UNKNOWN	RT=2.14		
UNKNOWN	RT=3.11		
UNKNOWN	RT=3.77		
JNKNOWN	RT=4.25		
JNKNOWN	RT=4.81	100	· · · · · · · · · · · · · · · · · · ·
JNKNOWN	RT=5.07	7	***************************************
JNKNOWN	RT=5.37		
JNKNOWN	RT=5.7		*****************
(1-METHYLETHYL)BENZENE JNKNOWN	RT=7.48		
NOTE OF A STATE OF A S	RT=7.74		
JNKNOWN INICADALIN	RT=8.2		
JNKNOWN	RT=9.49		**************************************
UNKNOWN	RT=11.25		
JNKNOWN HYDROCARBON	RT=22.95	**************************************	

Sample Comments

UNE	CONTAINER	BROKEN	IN	TRANSII	

BDL Below Detection Limit

RT Retention Time

Sample chain of custody number 3400.

Deterson

Service Location EMS HERITAGE LABORATORIES, INC.	Received 01-DEC-90	Lab ID A219235
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-DEC-90	PO Number P0072488
(317)243-8305	Printed 12-DEC-90	Sampled 28-NOV-90 15:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-08B-01 DESCRIPTION: UTB-08 (4-9')

Analyst: S. MCCROTTY

CHEMICAL OXYGEN DEMAND

CHEMICAL OXYGEN DEMAND EPA 410.4

Parameter

Analyst: K. SMITH Analysis Date: 03-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 100	Det. Limit	Units Grams mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Parameter	Result BDL	Det. Limit	Units mg/kg
CYANIDE DISTILLATION SW846-9010 Analyst: C. BOYLE Analysis Date: 03-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 250	Det. Limit	Units Grams mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.25	Units mg/kg
HYDROCARBON SCAN SW846-8000 Analyst: J. SMITH Analysis Date: 06-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE DIESEL FUEL	Result BDL BDL	Det. Limit 25 100	21 3

Analysis Date: 06-DEC-90

36

Result

Units

10 mg/L

Test: G301.1. 0

Det. Limit

VOLATILE ORGANICS SW846-8240 Analyst: T. WIEGAND Analysis Date: 03-DEC-90	Instruments CC/HC VOL	T-14: 0540.7	0
Parameter	Instrument: GC/MS VOA	Test: 0510.3.	000000000000000000000000000000000000000
ACETONE	Result BDL	Det. Limit	Units
CROLEIN	BDL	1.2	mg/kg
CRYLONITRILE	BDL	3.1	mg/kg
ENZENE	BDL	4.4	mg/kg
ROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
ROMOMETHANE	BDL	0.31	mg/kg
ARBON DISULFIDE	BDL	0.63	mg/kg
ARBON TETRACHLORIDE	BDL	0.31	mg/kg
HLOROBENZENE	BDL	0.31 0.31	mg/kg
HLOROETHANE	BDL		mg/kg
HLOROFORM	BDL	0.63	mg/kg
HLOROMETHANE	BDL	0.31	mg/kg
IBROMOCHLOROMETHANE	BDL	0.63	mg/kg
IS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
ICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHANE ,2-DICHLOROETHANE		0.31	mg/kg
	BDL	0.31	mg/kg
,1-DICHLOROETHENE	BDL	0.31	mg/kg
,2-DICHLOROPROPANE THYLBENZENE	BDL	0.31	mg/kg
LUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
-HEXANONE ETHYLENE CHLORIDE	BDL	0.63	mg/kg
	BDL	0.31	mg/kg
ETHYL ETHYL KETONE	BDL	0.63	mg/kg
-METHYL-2-PENTANONE Tyrene	BDL	0.63	mg/kg
	BDL	0.31	mg/kg
,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
ETRACHLOROETHENE	BDL	0.31	mg/kg
ETRAHYDROFURAN	BDL	1.5	mg/kg
OLUENE CONTROL (TOTAL)	BDL	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)	BDI	0.31	mg/kg
RANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
RICHLOROETHENE	ВД	0.31	mg/kg
INYL ACETATE	BDL	0.63	mg/kg
INYL_CHLORIDE	BDL	0.63	mg/kg
YLENE (TOTAL)	BDL	0.31	mg/kg
URROGATE RECOVERY			
ICHLOROETHANE-D4	117		% Rec
OLUENE-D8	104		% Rec
ROMOFLUOROBENZENE	105		% Rec
ILUTION FACTOR 1:63		**************************************	
LSO DETECTED		***************************************	
NKNOWN	RT=23,54		
NKNOWN	RT=27.96		***************************************
NKNOWN	RT=29.36		
NKNOWN	RT=31.96		***************************************
NKNOWN	RT=33.57		***************************************

Lab Sample ID: A219235

Analyst: M. FRANK Analysis Date	e: 05-DEC-90	Test: P236.4	. 0
Parameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	30.2		Grams

Analyst: K. STONER Analysis Da Prep: GC/MS SONICATION EXTRACTION FOR	R ORGANICS SW846-3550		
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	330	ug/kg
CENAPHTHYLENE	BDL	330	01 0
NTHRACENE	BDL	330	ug/kg
ENZ (A) ANTHRACENE	BDL	330	
ENZO(A) PYRENE	BDL	330	ug/kg
ENZO(B) FLUORANTHENE	BDL	330	ug/kg
ENZO(G,H,I)PERYLENE	BDL	330	ug/kg
ENZO(K)FLUORANTHENE	BDL	330	ug/kg
ENZYL ALCOHOL	BDL	330	ug/kg
ENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
IS(2-CHLOROISOPRÓPYL)ETHER	BDL	330	ug/kg
IS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	BDL	330	ug/kg
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	BDL	330	ug/kg
IBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
IBENZÔFÚRÁN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL	330	ug/kg
,4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
ÍETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
6-DINITROTOLUENE	BDL	330	
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL		ug/kg ug/kg
LUORENE	BDL	330	ug/kg
EXACHLOROBENZENE	BDL	330	ug/kg
EXACHLOROBUTADIENE	BDL		
EXACHLOROGYCLOPENTADIENE	BDL	330	ug/kg
EXACHLOROETHANE	BDL	330	
IDENO(1,2,3-CD)PYRENE		330	ug/kg
SOPHORONE	BDL	330	
METHYLNAPHTHALENE	BDL	330	ug/kg
	BDL	330	ug/kg
APHTHALENE	BDL	330	ug/kg
NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
ITROBENZENE	BDL	330	ug/kg
NITROSO-DIPHENYLAMINE	BDL	330	ug/kg

Lab Sample ID: A219235

N-NITROSO-DI-N-PROPYLAMINE	Result	Det. Limit	Units
	BDL	330	31 3
PHENANTHRENE 2. DICOLUNE	BDL	330	
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE BENZOIC ACID	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	0, 0
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL		ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL		330	ug/kg
	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	69		% Rec
PHENOL-D5	82		% Rec
NITROBENZENE-D5	86		% Rec
2-FLUOROBIPHENYL	80		% Rec
2,4,6-TRIBROMOPHENOL	91		% Rec
TERPHENYL-D14	83		% Rec
ENTHERIL DIT	00		10 KEC

Sample Comments

BDL Below Detection Limit RT Retention Time

Sample chain of custody number 3400.

Skelewer

Service Location EMS HERITAGE LABORATORIES, INC.	Received 01-DEC-90	Lab ID A219236
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-DEC-90	PO Number P0072488
(317)243-8305	Printed 12-DEC-90	Sampled 28-NOV-90 16:00

Report To

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Sample Description

SAMPLE ID:: UTB-08B-02 DESCRIPTION: UTB-08 (9-13')

Parameter

CHEMICAL OXYGEN DEMAND

Analyst: K. SMITH Analysis Date: 03-DEC-90)	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 100	Det. Limit	Units Grams mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Parameter	Result BDL	Det. Limit 0.1	Units mg/kg
CYANIDE DISTILLATION SW846-9010 Analyst: C. BOYLE Analysis Date: 03-DEC-90)	Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 250	Det. Limit	Units Grams mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010) Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.25	Units mg/kg
HYDROCARBON SCAN SW846-8000 Analyst: J. SMITH Analysis Date: 06-DEC-90) Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE DIESEL FUEL	Result BDL BDL	Det. Limit 25 100	

Result

33

Units

mg/L

Det. Limit

10

VOLATILE ORGANICS SW846-8240 Analyst: T. WIEGAND Analysis Date: 03-DEC-9	O Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE ACROS EXA	BDL	1.2	mg/kg
CROLEIN	BDL		mg/kg
CRYLONITRILE	BDL	4.4	mg/kg
ENZENE	BDL	0.31	mg/kg
ROMODICHLOROMETHANE	BDL	0.31	mg/kg
ROMOFORM	BDL	0.31	mg/kg
ROMOMETHANE	BDL	0.63	mg/kg
ARBON DISULFIDE	BDL	0.31	mg/kg
ARBON TETRACHLORIDE	BDL	0.31	mg/kg
HLOROBENZENE	2.5	0.31	mg/kg
HLOROETHANE	BDL	0.63	mg/kg
HLOROFORM	BDL	0.31	mg/kg
HLOROMETHANE	BDL	0.63	mg/kg
IBROMOCHLOROMETHANE	BDL	0.31	mg/kg
IS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
ICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHANE	BDL	0.31	mg/kg
, 2-DICHLOROETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHENE	BDL	0.31	mg/kg
,2-DICHLOROPROPANE	BDL	0.31	mg/kg
THYLBENZENE LUOPOTRI GILLOROMETUANE	BDL	0.31	mg/kg
LUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
-HEXANONE	BDL	0.63	mg/kg
ETHYLENE CHLORIDE ETHYL ETHYL KETONE	BDL	0.31	mg/kg
-METHYL-2-PENTANONE	BDL	0.63	mg/kg
TYRENE	BDL	0.63	mg/kg
	BDL BDL	0.31	mg/kg
,1,2,2-TETRACHLOROETHANE ETRACHLOROETHENE		0.31	mg/kg
ETRAHYDROFURAN	0.44	0.31	mg/kg
OLUENE	BDL	1.5	mg/kg
,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
DANS 1 2 DICULODODDODENE	BDL	0.31	mg/kg
RANS-1,3-DICHLOROPROPENE ,1,1-TRICHLOROETHANE	BDL BDL	0.31	mg/kg
,1,2-TRICHLOROETHANE		0.31	mg/kg
RICHLOROETHENE	BDL	0.31	
INYL ACETATE	BDL	0.31	mg/kg
INYL CHLORIDE	BDL	0.63	mg/kg
***************************************	BDL	0.63	mg/kg
YLENE (TOTAL)	BDL	0.31	mg/kg
URROGATE RECOVERY			
ICHLOROETHANE-D4	121		% Daa
OLUENE-D8	121		% Rec
BROMOFLUOROBENZENE	110	******	% Rec
ILUTION FACTOR 1:63	110		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANI Analyst: M. FRANK Analysis Dat	CS SW846-3550 te: 05-DEC-90	Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.5	Det. Limit	Units Grams
FINAL VOLUME	10		l mL

Analyst: K. STONER Analysis Date: 10-DEC-90 Instrument: GC/MS SVOA Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550		Test: 0505.3. 0	
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	330	ug/kg
CENAPHTHYLENE	BDL	330	
NTHRACENE	BDL	330	ug/kg
ENZ (A) ANTHRACENE	BDL	330	ug/kg
ENZÒ(Á)PYRENE	BDL	330	ug/kg
ENZO(B)FLUORANTHENE	BDL	330	ug/kg
ENZO(G,H,I)PERYLENE	BDL	330	ug/kg
ENZO(K)FLUÓRANTHENE	BDL	330	ug/kg
ENZYL ÁLCOHOL	BDL	330	ug/kg
ENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
IS(2-CHLOROISOPROPYL)ETHER	BDL	330	0, 0
IS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
-BROMOPHENYLPHENYLETHER			
	BDL	330	ug/kg
ARBAZOLE CULODOANILINE	BDL	330	0, 0
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL		ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	BDL	330	ug/kg
IBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
IBENZOFURAN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL		ug/kg
,4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
IETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL		ug/kg
		330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL	330	ug/kg
EXACHLOROBENZENE	BDL	330	ug/kg
EXACHLOROBUTAD I ENE	BDL	330	ug/kg
EXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
EXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	BDL	330	ug/kg
METHYLNAPHTHALENE	BDL	330	ug/kg
APHTHALENE	BDL	330	
NITROANILINE	BDL	***********************************	ug/kg
·NITROANILINE			ug/kg
	BDL	1600	ug/kg
NITROANILINE	BDL	1600	ug/kg
TROBENZENE	BDL	330	ug/kg
NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
IENANTHRENE	BDL	330	ug/kg
PICOLINE	BDL	1600	ug/kg
RENE	BDL	330	ug/kg
'RIDINE	BDL	1600	ug/kg
TRACHLOROBENZENES	BDL	330	ug/kg
		330	Page

Lab Sample ID: A219236

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	71		% Rec
PHENOL-D5	75		% Rec
NITROBENZENE-D5	83		% Rec
2-FLUOROBIPHENYL	81		% Rec
2,4,6-TRIBROMOPHENOL	49		% Rec
TERPHENYL-D14	93		% Rec

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3400.

Reterson

Report To	Bill To	
(01/)210 0000	06-MAR-91	30-NOV-90 12:00
INDIANAPOLIS, IN 46231 (317)243-8305	14-DEC-90	P0072488 Sampled
7901 W. MORRIS ST.	Complete	PO Number
EMS HERITAGE LABORATORIES, INC.	01-DEC-90	A219239
Service Location	Received	Lab ID

ILLINOIS POWER COMPANY WILLIAM WITTS
P.O. BOX 511
500 SOUTH 27TH STREET DECATUR, IL 62525

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-10-01 DESCRIPTION: UTB-10 (9-10')

PHENOLS DISTILLATION SW846-9065 Analyst: K. SMITH Analysis Date: 03-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 100	Det. Limit	Units Grams mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Parameter	Result BDL	Det. Limit 0.1	Units mg/kg
CYANIDE DISTILLATION SW846-9010 Analyst: C. BOYLE Analysis Date: 03-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 10 250	Det. Limit	Units Grams mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.25	Units mg/kg
HYDROCARBON SCAN SW846-8000 Analyst: J. SMITH Analysis Date: 06-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE DIESEL FUEL	Result BDL BDL	Det. Limit 25 100	Units mg/kg mg/kg

Lab Sample ID: A219239

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 06-DEC-90		Test: G301,1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 140	Det. Limit Units

Analyst: T. WIEGAND Analysis Date: 03-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
CETONE	BDL	1.2	mg/kg
CROLEIN	BDL	3.1	mg/kg
CRYLONITRILE	BDL	4.4	mg/kg
ENZENE	BDL	0.31	mg/kg
ROMODICHLOROMETHANE	BDL	0.31	mg/kg
ROMOFORM	BDL	0.31	mg/kg
ROMOMETHANE	BDL	0.63	mg/kg
ARBON DISULFIDE	BDL	0.31	mg/kg
ARBON TETRACHLORIDE	BDL	0.31	mg/kg
HLOROBENZENE	BDL	0.31	mg/kg
ILOROETHANE	BDL	0.63	mg/kg
ILOROFORM	BDL	0.31	mg/kg
ILOROMETHANE	BDL	0.63	mg/kg
BROMOCHLOROMETHANE	BDL	0.31	mg/kg
IS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
CHLORODIFLUOROMETHANE	BDL		mg/kg
1-DICHLOROETHANE	BDL	0.31	mg/kg
,2-DICHLOROETHANE	BDL	0.31	mg/kg
1-DICHLOROETHENE		0.31	mg/kg
2-DICHLOROPROPANE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
HYLBENZENE	3.2	0.31	mg/kg
UOROTRICHLOROMETHANE	BDL	0.31	mg/kg
HEXANONE	BDL	0.63	mg/kg
THYLENE CHLORIDE	BDL	0.31	mg/kg
THYL ETHYL KETONE	BDL	0.63	mg/kg
METHYL-2-PENTANONE	BDL	0.63	mg/kg
YRENE	BDL	0.31	mg/kg
1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TRACHLOROETHENE	BDL	0.31	mg/kg
TRAHYDROFURAN	BDL	1.5	mg/kg
LUENE	BDL	0.31	mg/kg
2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
ANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TCHLOROETHENE	BDL	0.31	mg/kg
NYL ACETATE	BDL	0.63	mg/kg
NYL CHLORIDE	BDL	0.63	
LENE (TOTAL)	3.1	0.31	mg/kg mg/kg
RROGATE RECOVERY			***************************************
CILL ODOCTUANDE DA	1.07		
CHLOROETHANE-D4	127		% Rec
DLUENE - D8	130		% Rec
OMOFLUOROBENZENE	130		% Rec
LUTION FACTOR 1:63 TE: SAMPLE WAS RERUN WITH NO IMPROVEMENT IN SU	200		

Lab Sample ID: A219239

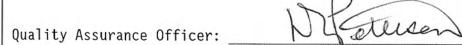
GC/MS SONICATION EXTRACTION FOR ORGANICS SW84 Analyst: M. FRANK Analysis Date: 05-DEC		Test: P236.4	0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.6	Det. Limit	Units Grams
FINAL VOLUME		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mL

Parameter	Result	Det. Limit	Units
CENAPHTHENE	* 16000	16000	ug/kg
CENAPHTHYLENE	5100	330	ug/kg
NTHRACENE	* 18000	16000	ug/kg
ENZ (A) ANTHRACENE	* 9900	16000	ug/kg
ENZÔ(Á)PYRENE	5500	330	ug/kg
ENZO(B)FLUORANTHENE	5000	330	ug/kg
ENZO(G,H,I)PERYLENE	2900	330	ug/kg
ENZO (K) FLUÓRANTHENE	1600	330	ug/kg
ENZYL ÁLCOHOL	BDL	330	ug/kg
NZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
IS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
IS(2-ETHYLHEXYL)PHTHALATE	BDL	330	
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	BDL		ug/kg
-CHLOROANILINE	BDL	330	ug/kg
CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	* 10000	330	ug/kg
IBENZ(A,H)ANTHRACENE	580	16000	ug/kg
IBENZOFURAN	3900	330	ug/kg
, 2-DICHLOROBENZENE		330	ug/kg
	BDL	330	ug/kg
3-DICHLOROBENZENE	BDL	330	ug/kg
4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
[ETHYLPHTHALATE	BDL	330	ug/kg
METHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
4-DINITROTOLUENE	BDL	330	ug/kg
6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
UORANTHENE	* 17000	16000	ug/kg
UORENE	* 20000	16000	ug/kg
XACHLOROBENZENE	BDL	330	ug/kg
XACHLOROBUTADIENE	BDL	330	ug/kg
XACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
XACHLOROETHANE	BDL	330	ug/kg
IDENO(1,2,3-CD)PYRENE	2900	330	ug/kg
SOPHORONE	BDL	330	ug/kg
METHYLNAPHTHALENE	* 8400	16000	ug/kg
APHTHALENE	* 87000	16000	ug/kg
NITROANILINE	BDL	1600	ug/kg
NITROANILINE	BDL	1600	ug/kg
NITROANILINE	BDL	1600	ug/kg
TROBENZENE	BDL	330	ug/kg
NITROSO-DIPHENYLAMINE	BDL	330	ug/kg

Parameter TROSO-DI-N-PROPYLAMINE ANTHRENE COLINE NE DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL THYLPHENOL TROPHENOL 5-TRICHLOROPHENOL 6-TRICHLOROPHENOL	Result BDL * 56000 BDL * 32000 BDL BDL BDL BDL BDL BDL BDL	330 330 330 1600 1600 330 330 1600 1600	ug/kg
ANTHRENE COLINE NE DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	* 56000 BDL * 32000 BDL BDL BDL BDL BDL BDL BDL B	16000 16000 16000 16000 16000 3300 16000 3300 33	ug/kg
COLINE NE DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL * 32000 BDL BDL BDL BDL BDL BDL BDL BDL BDL BD	16000 16000 16000 16000 16000 3300 16000 3300 33	ug/kg
NE DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL * 32000 BDL BDL BDL BDL BDL BDL BDL BDL BDL BD	1600 16000 16000 330 1600 330 1600 330 330 330 1600 160	ug/kg
NE DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	* 32000 BDL BDL BDL BDL BDL BDL BDL	16000 1600 330 1600 330 1600 330 330 330 1600 160	ug/kg
DINE ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	1600 330 1600 330 1600 330 330 330 1600 160	ug/kg
ACHLOROBENZENES ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 1600 330 1600 330 330 330 1600 1600	ug/kg
ENEDIAMINE 4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	1600 330 1600 330 330 330 1600 1600 1600	ug/kg
4-TRICHLOROBENZENE OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 1600 330 330 330 330 1600 1600 1600	ug/kg
OIC ACID LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	1600 330 330 330 330 1600 1600 330 330 1600 160	ug/kg
LORO-3-METHYLPHENOL LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 330 330 330 1600 1600 330 330 1600 160	ug/kg
LOROPHENOL DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 330 330 1600 1600 330 330 1600 1600	ug/kg
DICHLOROPHENOL DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 330 330 1600 1600 330 330 1600 1600	ug/kg
DIMETHYLPHENOL DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 330 1600 1600 330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	330 1600 1600 330 330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
DINITRO-2-METHYLPHENOL DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	1600 1600 330 330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
DINITROPHENOL THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL	1600 330 330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
THYLPHENOL THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	330 330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg
THYLPHENOL TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL BDL BDL BDL	330 330 1600 1600 330 330	ug/kg ug/kg ug/kg ug/kg
TROPHENOL TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL BDL BDL	330 1600 1600 330 330	ug/kg ug/kg ug/kg
TROPHENOL ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL BDL	1600 1600 330 330	ug/kg ug/kg
ACHLOROPHENOL OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL BDL	1600 330 330	ug/kg
OL ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL BDL	330 330	ug/kg ug/ka
ACHLOROPHENOL 5-TRICHLOROPHENOL	BDL BDL	330	ug/ka
5-TRICHLOROPHENOL	BDL		
			ug/kg
6-TRICHLOROPHENOL	DDI	330	ug/kg
	BDL	330	ug/kg
OGATE RECOVERY			
UOROPHENOL			
	70	100	% Rec
OL-D5	84	morns and a state of the state	% Rec
OBENZENE-D5	** 230	100	% Rec
UOROBI PHENYL	77		% Rec
6-TRIBROMOPHENOL	114	100 100 100 100 100 100 100 100 100 100	% Rec
HENYL-D14	** 190		% Rec
DETECTED			
NWC	RT=4.84	12.11	
ETHYLETHYL)-BENZENE	RT=7.49		
5-TRIMETHYĹBENZENE	RT=8.89	· ·	
4-TRIMETHYLBENZENE	RT=9.6		***************************************
HYL-3-METHYLBENZENE			***************************************
HYNYL-4-METHYLBENZENE	RT=10.3	S 5 2501000000000000000000000000000000000	MALL CONTROL OF THE C
	RT=10.87		
THYLNAPHTHALENE	RT=16.73	ormilu (1001111111111111111111111111111111111	
HYL = NAPHTHALENE	RT=18.21		777.777.777.777.777.777.777.777.777.77
DIMETHYLNAPHTHALENE	RT=18.46		
DIMETHYLNAPHTHALENE	RT=18.67		
-PROPENYL)-NAPHTHALENE	RT=19.72		
THYL-1,1'-BIPHENYL	RT=19.87		
5-TRIMÉTHYLNAPHTHALENE	RT=20.72		Contraction of the Contraction o
HENALENE TENALENE	RT=21.05		***************************************
THYLENE-9H-FLUORENE	RT=24.54		
THYLPHENANTHRENE			***************************************
	RT=25.87	111111111111111111111111111111111111111	***************************************
THYLANTHRACENE	RT=25.97		***************************************
DWN	RT=26.19		
DWN	RT=26.12		
NZOTHIOPHENE * * FROM 1:50 DILUTION	RT=23.91	1	

NOTE: ** DUE TO MATRIX EFFECTS
NOTE: BENZO(A) ANTHRACENE, CHRYSENE, AND 2-METHYLNAPHTHALENE ESTIMATED

TMC	HED	TACE	LADOD	ATOR	TEC	TNIC
EIIO	HEK	LIAGE	LABOR	AIUK.	LES.	INC.


Lab Sample ID: A219239

CONCENTRATIONS

Sample Comments

* See Note for Parameter ** See Note for Parameter BDL Below Detection Limit RT Retention Time

Sample chain of custody number 3400.

Service Location		Received	Lab	ID
EMS HERITAGE LABORATORIES, INC.	1.0	01-DEC-90	A219	9240
7901 W. MORRIS ST.		Complete	PO Nu	ımber
INDIANAPOLIS, IN 46231 (317)243-8305		14-DEC-90	P0072	
(317)243-6305		Printed	Sampl	
		06-MAR-91	28-NOV-9	30 13:00
Report To		Bill T	o	
ILLINOIS POWER COMPANY	ILLINOI	S POWER CO	MPANY	
WILLIAM WITTS	ACCOUNT	S PAYABLE		
P.O. BOX 511	P.O. BO			
500 SOUTH 27TH STREET DECATUR, IL 62525	DECATOR	, IL 62525		
DECATOR, IL 02525				
Sample Descr	iption			
SAMPLE ID:: UTB-10-02 DESCRIPTION: UTB-10 (14-19')				
			NHC-	
PHENOLS DISTILLATION SW846-9065 Analyst: K. SMITH Analysis Date: 03-DEC-90			T+ D40F 7	0
Parameter	Result		Test: P405.7.	Units
INITIAL WEIGHT OR VOLUME	10		Det. Limit	Grams
FINAL VOLUME	100			mL
				1
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 04-DEC-90	Instrument: AUT	O-ANALYZER	Test: 0405.7.	0
Prep: PHENOLS DISTILLATION SW846-9065				
Parameter	Result		Det. Limit	Units
PHENOLS	BDL		0.1	mg/kg
CYANIDE DISTILLATION SW846-9010	.,,,,,			
Analyst: C. BOYLE Analysis Date: 03-DEC-90			Test: P101.4.	0
Parameter	Result		Det. Limit	Units
INITIAL WEIGHT OR VOLUME FINAL VOLUME	10			Grams
TNAL VOLUME	250		1	mL
CYANIDE TOTAL (AUTOMATED) SW846-9012				
Analyst: J. GRIFFIN Analysis Date: 03-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUT	O-ANALYZER	Test: G101.4.	0
Parameter	D7+		I Dot Linit	11
CYANIDE	Result BDL		Det. Limit 0.25	Units mg/kg
JIMIDE	DDL		0.25	ilig/ kg
HYDROCARBON SCAN SW846-8000				
Analyst: J. SMITH Analysis Date: 06-DEC-90	Instrument: GC/	50000000000000000000000000000000000000	Test: 0409.0.	0
Parameter	Result		Det. Limit	Units
GASOL INE	BDL		25	mg/kg
DIESEL FUEL	BDL		100	mg/kg
CHEMICAL OXYGEN DEMAND EPA 410.4				
Analyst: S. MCCROTTY Analysis Date: 06-DEC-90			Test: G301.1.	0
	Result		Test: G301.1. Det. Limit 10	Units

EMS	HERITAGE	LABORATORIES,	INC.

Lab Sample ID: A219240

Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL		mg/kg
VINYL ACETATE	BDL	0.31	mg/kg
VINYL CHLORIDE		0.63	mg/kg
	BDL	0.63	mg/kg
(YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY		000000000000000000000000000000000000000	
DICH ODOETHAND DA	101		0/ 5
DICHLOROETHANE-D4	121	2222000000	% Rec
TOLUENE-D8	117	1411	% Rec
BROMOFLUOROBENZENE	116		% Rec
DILUTION FACTOR 1:63			**************************************
ALSO DETECTED			
UNKNOWN	RT=27.96	100 100 100 100 100 100 100 100 100 100	

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: M. FRANK Analysis Date:		Toot: 0226 A	0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.2	Det. Limit	Units Grams
FINAL VOLUME	1.0	The second section of the sect	mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analyst: M. DONOFRIO Analysis Date: 10-DEC-90 Instrument: GC/MS SV0A Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550			Test: 0505.3. 0		
Parameter	Result	Det. Limit	Units		
ACENAPHTHENE	BDL	330	ug/kg		
CENAPHTHYLENE	BDL	330	ug/kg		
NTHRACENE	BDL	330	ug/kg		
BENZ (A) ANTHRACENE	BDL	330	ug/kg		
BENZO(A) PYRENE	BDL	330	ug/kg		
	BDL				
BENZO (B) FLUORANTHENE		330	ug/kg		
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg		
BENZO(K)FLUORANTHENE	BDL	330	ug/kg		
BENZYL ALCOHOL	BDL	330	ug/kg		
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg		
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg		
BIS(2-CHLOROETHYL)ÉTHER	BDL	330	ug/kg		
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	330	ug/kg		
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg		
I-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg		
CARBAZOLE	BDL	330	ug/kg		
A-CHLOROANILINE	BDL	330			
			ug/kg		
2-CHLORONAPHTHALENE	BDL	330	ug/kg		
1-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg		
CHRYSENE	BDL	330	ug/kg		
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg		
DIBENZOFURAN	BDL	330	ug/kg		
1,2-DICHLOROBENZENE	BDL	330	ug/kg		
1,3-DICHLOROBENZENE	BDL	330	ug/kg		
1,4-DICHLOROBENZENE	BDL	330	ug/kg		
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg		
DIETHYLPHTHALATE	BDL	330	ug/kg		
DIMETHYLPHTHALATE	BDL	330	ug/kg		
DI-N-BUTYLPHTHALATE	BDL	330			
			ug/kg		
DINITROBENZENES	BDL	330	ug/kg		
2,4-DINITROTOLUENE	BDL	330	ug/kg		
2,6-DINITROTOLUENE	BDL	330	ug/kg		
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg		
FLUORANTHENE	BDL	330	ug/kg		
FLUORENE	BDL	330	ug/kg		
HEXACHLOROBENZENE	BDL	330	ug/kg		
HEXACHLOROBUTADIENE	BDL	330	ug/kg		
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg		
JEYACHI ODOETHANE	BDL	330	ug/kg		
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg		
ISOPHORONE	BDL	330			
			ug/kg		
2-METHYLNAPHTHALENE	BDL	330	ug/kg		
NAPHTHALENE	BDL	330	ug/kg		
2-NITROANILINE	BDL	1600	ug/kg		
B-NITROANILINE	BDL	1600	ug/kg		
-NITROANILINE	BDL	1600	ug/kg		
ITROBENZENE	BDL	330	ug/kg		
I-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg		
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg		
PHENANTHRENE	BDL	330			
			ug/kg		
2-PICOLINE	BDL	1600	ug/kg		
PYRENE	BDL	330	ug/kg		
PYRIDINE	BDL	1600	ug/kg		

Lab Sample ID: A219240

Parameter	Result	Det. Limit	Units
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
-CHLOROPHENOL	BDL	330	ug/kg
,4-DICHLOROPHENOL	BDL	330	ug/kg
,4-DIMETHYLPHENOL	BDL	330	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
,4-DINITROPHENOL	BDL	1600	ug/kg
-METHYLPHENOL	BDL	330	ug/kg
-METHYLPHENOL	BDL	330	ug/kg
-NITROPHENOL	BDL	330	ug/kg
-NITROPHENOL	BDL	1600	ug/kg
ENTACHLOROPHENOL	BDL	1600	ug/kg
HENOL	BDL	330	ug/kg
ETRACHLOROPHENOL	BDL	330	ug/kg
,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	70		% Rec
HENOL-D5	73		% Rec
ITROBENZENE-D5	83	XXXIII XXXII X	% Rec
-FLUOROBIPHENYL	84		% Rec
2,4,6-TRIBROMOPHENOL	75		% Rec
ERPHENYL-D14	90		% Rec
LSO DETECTED	30		76 NEC
INKNOWN	RT=1.66		
NKNOWN	RT=3.14		
NKNOWN	RT=3.75		
INKNOWN	RT=4.85		
NKNOWN	RT=5.08		
NKNOWN	RT=5.4		
NKNOWN	RT=5.4 RT=5.71		
1-METHYLETHYL)BENZENE	RT=3.71 RT=7.47	100000000000000000000000000000000000000	101110000000000000000000000000000000000
NKNOWN	RT=7.47 RT=8.21		
INKNOWN	RT=9.5		
		V	NAMES OF TAXABLE PARTY.
INKNOWN HYDROCARBON	RT=22.95		144
JNKNOWN	RT=33.22		

		•	
Samp	le.	Commen	ts

BDL	Below Detection	Limit
RT	Retention Time	

Sample chain of custody number 3400.

Welleson

EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST. INDIANAPOLIS, IN 46231		1 00 DEC 00		700
INDIANAPOLIS, IN 46231		08-DEC-90	A219	
		Complete 28-DEC-90	PO Nur PO072	
(317)243-8305		Printed	Sample	
(317)243 0300		29-DEC-90	03-DEC-9	
Report To		Bill T	0	
JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330	ACCO P.O.	NOIS POWER CON OUNTS PAYABLE BOX 511 TUR, IL 62525	MPANY	
Sample Desc	ription			
SAMPLE NO.: UTB-11-01 SAMPLE LOCATION:: UTB-11 (8'-13')				
GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050)		Test: P130.7.	0
Analyst: W. WATNESS Analysis Date: 12-DEC-90		Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	1	resurt	Det. Elinit	Grams
INAL WEIGHT OR VOLUME	100			mL
ARSENIC GFAA SW846-7060 Analyst: S. GRAY ACID DIGESTION OF S/S/S SAMPLES SW8	Instrumen 346-3050	t: GFAA	Test: M103.2.	0
Parameter	3.2	Result	Det. Limit	Units mg/kg
ARSENIC	73.2		1.0	i iiig/ itg
CVAA ACID DIGESTION OF S/S/S SAMPLES SW846-7471 Analyst: M. SCROGHAM Analysis Date: 12-DEC-90	1000		Test: P131.7.	0
Parameter		Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	100			Grams mL
INAL VOLUME	100			
MERCURY CVAA SW846-7471 Analyst: M. SCROGHAM Analysis Date: 13-DEC-90 Prep: CVAA ACID DIGESTION OF S/S/S SAMPLES SW8) Instrumen 346-7471	t: CVAA	Test: M120.2.	0
Parameter MERCURY	BDL	Result	Det. Limit 0.13	units mg/kg
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: W. WATNESS Analysis Date: 12-DEC-90	16-3050)		Test: P129.7.	0
Parameter		Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100			Grams mL
FINAL WEIGHT OR VOLUME	100		A	4::(II L
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90			Test: M104.3.	

Parameter

BARIUM

Det. Limit Units
1.0 mg/kg

Result

30

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A2197
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 24-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M108.3.	0
Parameter CADMIUM	Result BDL	Det. Limit 5.0	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M110.3.	0
Parameter CHROMIUM	Result 12	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M112.3.	0
Parameter COPPER	Result 13	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M115.3.	0
Parameter IRON	Result 16000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M116.3.	0
Parameter LEAD	Result 13	Det. Limit 5.0	Units mg/kg
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M119.3.	0
Parameter MANGANESE	Result 230	Det. Limit	Units mg/kg
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M122.3.	0
Parameter NICKEL	Result 18	Det. Limit	Units mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/	e: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M139.3.	0
Parameter ZINC	Result 49	Det. Limit 2.0	Units mg/kg
GC/MS SONICATION EXTRACTION FOR ORGANI Analyst: J. MINNIEAR, II Analysis Dat	CS SW846-3550 te: 12-DEC-90	Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	30.0 1.0	Det. Limit	Units Grams mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analyst: M. DONOFRIO Analysis Date: 20-DEC-90 Instrument: GC/MS SVOA Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550		Test: 0505.3.	0	
Parameter	Result	Det. Limit	Units	
CENAPHTHENE	3500	1600	ug/kg	
CENAPHTHYLENE	12000	1600	ug/kg	
NTHRACENE	14000	1600	ug/kg	
NZ (A) ANTHRACENE	8400	1600	ug/kg	
ENZO(A) PYRENE	4300	1600	ug/kg	
ENZO(B) FLUORANTHENE	8200	1600	ug/kg	
ENZO(G,H,I)PERYLENE	BDL	1600	ug/kg	
NZO(K)FLUORANTHENE	BDL	1600	ug/kg	
ENZYL ALCOHOL	BDL	1600	ug/kg	
ENZYLBUTYLPHTHALATE	BDL	1600	ug/kg	
IS(2-CHLOROETHOXY)METHANE	BDL	1600	ug/kg	
IS(2-CHLOROETHYL)ETHER	BDL	1600	ug/kg	
IS(2-CHLOROISOPROPYL)ETHER	BDL	1600	ug/kg	
	BDL	1600	ug/kg	
IS(2-ETHYLHEXYL)PHTHALATE	BDL	1600	ug/kg ug/kg	
BROMOPHENYLPHENYLETHER		1600		
ARBAZOLE	BDL		ug/kg	
-CHLOROANILINE	BDL	1600	ug/kg	
CHLORONAPHTHALENE	BDL	1600	ug/kg	
-CHLOROPHENYLPHENYLETHER	BDL	1600	ug/kg	
HRYSENE	7100	1600	ug/kg	
[BENZ(A,H)ANTHRACENE	BDL	1600	ug/kg	
BENZOFURAN	13000	1600	ug/kg	
2-DICHLOROBENZENE	BDL	1600	ug/kg	
,3-DICHLOROBENZENE	BDL	1600	ug/kg	
,4-DICHLOROBENZENE	BDL	1600	ug/kg	
,3'-DICHLOROBENZIDINE	BDL	3300	ug/kg	
IETHYLPHTHALATE	BDL	1600	ug/kg	
IMETHYLPHTHALATE	BDL	1600	ug/kg	
I-N-BUTYLPHTHALATE	BDL	1600	ug/kg	
INITROBENZENES	BDL	1600	ug/kg	
,4-DINITROTOLUENE	BDL	1600	ug/kg	
,6-DINITROTOLUENE	BDL	1600	ug/kg	
I-N-OCTYLPHTHALATE	BDL	1600	ug/kg	
LUORANTHENE	18000	1600	ug/kg	
LUORENE	14000	1600	ug/kg	
EXACHLOROBENZENE	BDL	1600	ug/kg	
EXACHLOROBUTADIENE	BDL	1600	ug/kg	
EXACHLOROGYCLOPENTADIENE	BDL	1600	ug/kg	
EXACHLOROETHANE	BDL	1600	ug/kg	
NDENO(1,2,3-CD)PYRENE	BDL	1600	ug/kg	
SOPHORONE	BDL	1600	ug/kg	
-METHYLNAPHTHALENE	* 31000	8200	ug/kg	
APHTHALENE	* 100000	8200	ug/kg	
-NITROANILINE	BDL	8000	ug/kg	
	BDL	8000	ug/kg	
-NITROANILINE	BDL	8000	ug/kg	
-NITROANILINE	BDL	1600	ug/kg	
TROBENZENE		1600	ug/kg	
-NITROSO-DIPHENYLAMINE	BDL		ug/kg	
-NITROSO-DI-N-PROPYLAMINE	BDL	1600	ug/kg	
IENANTHRENE	* 39000	8200	ug/kg	
-PICOLINE	BDL	8000	ug/kg	
YRENE	12000	1600	ug/kg	
YRIDINE	BDL	8000	ug/kg	
ETRACHLOROBENZENES	BDL	1600	ug/kg	

Lab Sample ID: A219786

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	8000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	1600	ug/kg
BÉNZOIC ACID	BDL	8000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	1600	ug/kg
2-CHLOROPHENOL	BDL	1600	ug/kg
2,4-DICHLOROPHENOL	BDL	1600	ug/kg
2,4-DIMETHYLPHENOL	17000	1600	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	8000	ug/kg
2,4-DINITROPHENOL	BDL	8000	ug/kg
2-METHYLPHENOL	4300	1600	ug/kg
4-METHYLPHENOL	14000	1600	ug/kg
2-NITROPHENOL	BDL	1600	ug/kg
4-NITROPHENOL	BDL	8000	ug/kg
PENTACHLOROPHENOL	BDL	8000	ug/kg
PHENOL	1700	1600	ug/kg
TETRACHLOROPHENOL	BDL	1600	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	1600	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	1600	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	65		% Rec
PHENOL-D5	71	· · · · · · · · · · · · · · · · · · ·	% Rec
NITROBENZENE-D5	63		% Rec
2-FLUOROBIPHENYL	65		% Rec
2,4,6-TRIBROMOPHENOL	30	111111111111111111111111111111111111111	% Rec
TÉRPHENYL-D14	64	(2)	% Rec
DILUTION FACTOR 1:5			

Analysis Date: 11-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	12	mg/kg
ACROLEIN	BDL	31	mg/kg
ACRYLONITRILE	BDL	44	mg/kg
BENZENE	7.9	3.1	mg/kg
BROMODICHLOROMETHANE	BDL	3.1	mg/kg
BROMOFORM	BDL	3.1	mg/kg
BROMOMETHANE	BDL	6.3	mg/kg
CARBON DISULFIDE	BDL	3.1	mg/kg
CARBON TETRACHLORIDE	BDL	3.1	mg/kg
CHLOROBENZENE	BDL	3.1	mg/kg
CHLOROETHANE	BDL	6.3	mg/kg
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3,1	mg/kg
1,1-DICHLOROETHANE	BDL	3.1	mg/kg
1,2-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL	3.1	mg/kg
1,2-DICHLOROPROPANE	BDL	3.1	mg/kg
ETHYLBENZENE	4.3	3.1	mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	
2-HEXANONE	BDL	6.3	mg/kg

Lab Sample ID: A219786

Parameter	Result	Det. Limit	Units
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	mg/kg
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE	BDL	3.1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3.1	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	22	3.1	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
1,1,1-TRICHLOROETHANE	BDL	3.1	mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.4	mg/kg
TRICHLOROETHENE	BDL	3.1	mg/kg
VINYL ACETATE	BDL	6.3	mg/kg
VINYL CHLORIDE	BDL	6.3	mg/kg
XYLENE (TOTAL)	20	3,1	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	*		
TOLUENE-D8	*		
BROMOFLUOROBENZENE	*		
DILUTION FACTOR 1:630			

Analyst: C. BOYLE	Analysis Date:	11-DEC-90	Test: P405.7	. 0
Paran NITIAL WEIGHT OR VOLUME	neter	Result 10	Det. Limit	Units Grams

PHENOLS 4AAP SW846-906	6			
Analyst: J. GRIFFIN Prep: PHENOLS DISTILL	Analysis Date: 14-DEC-90 ATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Par	ameter	Result	Det. Limit	Units
PHENOLS		12	0.50	mg/kg

Sample Comments

* See Note for Parameter BDL Below Detection Limit

Sample chain of custody number 3401.

Paleison

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219791
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 04-JAN-91	PO Number P0072488
(317)243-8305	Printed 05-JAN-91	Sampled 03-DEC-90 17:20

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-11-02

SAMPLE LOCATION:: UTB-11 (21'-22')

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270

GC/MS SONICATION EXTRACTION FOR ORGANI Analyst: J. MINNIEAR, II Analysis Dat	CS SW846-3550 e: 12-DEC-90	Test: P236.4	. 0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.2	Det. Limit	Units Grams
FINAL VOLUME	1.0		mL

Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ(A)ANTHRACENE	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
BENZO(B)FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K)FLUORANTHENE	BDL	330	ug/kg
BENZYĽ ÁLCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3′-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg

Page 1

ENS HERITAGE EADORATORIES, INC.		Eas campic :	
Parameter	Result	Det. Limit	Units
DIMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL	330	ug/kg
IEXACHLOROBENZENE	BDL	330	ug/kg
IEXACHLOROBUTADIENE	BDL	330	ug/kg
IEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
IEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	BDL	330	ug/kg
IAPHTHALENE	BDL	330	ug/kg
P-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE -NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
	BDL	330	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	
N-NITROSO-DI-N-PROPYLAMINE		330	ug/kg
PHENANTHRENE	BDL		ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
YRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
roluened i Amine	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
1-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
I-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
retrachlorophenol	BDL	330	ug/kg
	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	DUL	330	ug/ kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	71		% Rec
PHENOL-D5	76		% Rec
NITROBENZENE-D5	78		% Rec
2-FLUOROBIPHENYL	78		% Rec
2,4,6-TRIBROMOPHENOL	40		% Rec
TÉRPHENYL-D14	95		% Rec

VOLATILE ORGANICS SW846-8240 Analyst: A. WIDZISZ Analysis Date: 11-DEC-9	00 Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLÓRODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	0.71	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	106		% Rec
TOLUENE-D8	19.7		% Rec
BROMOFLUOROBENZENE DILUTION FACTOR 1:63	114		% Rec

PHENOLS DISTILLATION SW846-9065 Analyst: C. BOYLE Analysis Date	e: 11-DEC-90	Test: P405.7.	. 0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
TNAL VOLUME	100		mL

PHENOLS 4AAP SW846-9066	INC.		Lab Sample I	D: A2197
Analyst: J. GRIFFIN Prep: PHENOLS DISTILLATION	Analysis Date: 14-DEC-9 SW846-9065	PO Instrument: AUTO-ANALY	ZER Test: 0405.7.	0
Parameter PHENOLS		Result BDL	Det. Limit	Units mg/kg
DL Below Detection Limit ample chain of custody numb	Sample C er 3401.	comments		

Quality Assurance Officer: _

DK sterson

Service Location MS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219788
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 26-DEC-90	PO Number P0072488
(317)243-8305	Printed 27-DEC-90	Sampled 05-DEC-90 15:20

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-14-01

SAMPLE LOCATION:: UTB-14 (4'-5')

GFAA ACID DIGESTION OF S/S/S SAMPLES S Analyst: W. WATNESS Analysis Dat	W846-3050 e: 12-DEC-90	Test: P130.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
ARSENIC GFAA SW846-7060 Analyst: S. GRAY Analysis Dat Prep: GFAA ACID DIGESTION OF S/S/S SA	e: 18-DEC-90 Instrument: GFAA MPLES SW846-3050	Test: M103.2.	0
Parameter ARSENIC	Result 3.0	Det. Limit 0.50	Units mg/kg
CVAA ACID DIGESTION OF S/S/S SAMPLES S Analyst: M. SCROGHAM Analysis Dat	W846-7471 e: 12-DEC-90	Test: P131.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 0.4 100	Det. Limit	Units Grams mL
MERCURY CVAA SW846-7471 Analyst: M. SCROGHAM Analysis Date Prep: CVAA ACID DIGESTION OF S/S/S SA		Test: M120.2.	0
Parameter MERCURY	Result BDL	Det. Limit 0.13	Units mg/kg
FAA OR ICP ACID DIGESTION OF S/S/S SAM Analyst: W. WATNESS Analysis Dat	PLES SW846-3050 te: 12-DEC-90	Test: P129.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date Prep: FAA OR ICP ACID DIGESTION OF S/	te: 17-DEC-90 Instrument: ICP S/S SAMPLES SW846-3050	Test: M104.3.	0
Parameter BARIUM	Result 33	Det. Limit	Units mg/kg

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A2197
CADMIUM ICP SW846-6010 Analyst: M. JAO	Instrument: ICP	Test: M108.3. 0
Parameter CADMIUM	Result BDL	Det. Limit Units 5.0 mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP	Test: M110.3. 0
Parameter CHROMIUM	Result 8.0	Det. Limit Units 1.0 mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP	Test: M112.3. 0
Parameter COPPER	Result	Det. Limit Units 2.0 mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP ES SW846-3050	Test: M115.3. 0
Parameter IRON	Result 20000	Det. Limit Units 2.0 mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	Instrument: ICP ES SW846-3050	Test: M116.3. 0
Parameter LEAD	Result 23	Det. Limit Units 5.0 mg/kg
MANGANESE ICP SW846-6010 Analysis M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M119.3. 0
Parameter MANGANESE	Result 210	Det. Limit Units 1.0 mg/kg
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M122.3. 0
Parameter NICKEL	Result 14	Det. Limit Units 1.0 mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL		Test: M139.3. 0
Parameter ZINC	Result 98	Det. Limit Units 2.0 mg/kg
GC/MS SONICATION EXTRACTION FOR ORGANICS SW846- Analyst: J. MINNIEAR, II Analysis Date: 12-DEC-90	3550	Test: P236.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 5.0 1.0	Det. Limit Units Grams mL

Prep: GC/MS SONICATION EXTRACTION FOR O			
Parameter	Result	Det. Limit	Units
CENAPHTHENE	38000	19000	ug/kg
CENAPHTHYLENE	BDL	19000	ug/kg
NTHRACENE	34000	19000	ug/kg
ENZ (A) ANTHRACENE	24000	19000	ug/kg
ENZO(A)PYRENE	20000	19000	ug/kg
ENZO(B) FLUORANTHENE	22000	19000	ug/kg
ENZO(G,H,I)PERYLENE	BDL	19000	ug/kg
ENZO(K)FLUORANTHENE	BDL	19000	ug/kg
ENZYL ALCOHOL	BDL	19000	ug/kg
ENZYLBUTYLPHTHALATE	BDL	19000	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	19000	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	19000	ug/kg
IS(2-CHLOROISOPROPYL)ETHER	BDL	19000	ug/kg
IS(2-ETHYLHEXYL)PHTHALATE	BDL	19000	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	19000	ug/kg
ARBAZOLE	BDL	19000	ug/kg
-CHLOROANILINE	BDL	19000	ug/kg
-CHLORONAPHTHALENE	BDL	19000	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	19000	ug/kg
HRYSENE	26000	19000	ug/kg
IBENZ(A,H)ANTHRACENE	BDL	19000	ug/kg
IBENZÒFÚRÁN	28000	19000	ug/kg
, 2-DICHLOROBENZENE	BDL	19000	ug/kg
,3-DICHLOROBENZENE	BDL	19000	ug/kg
, 4-DICHLOROBENZENE	BDL	19000	ug/kg
,3'-DICHLOROBENZIDINE	BDL	39000	ug/kg
IETHYLPHTHALATE	BDL	19000	ug/kg
IMETHYLPHTHALATE	BDL	19000	ug/kg
I-N-BUTYLPHTHALATE	BDL	19000	ug/kg
INITROBENZENES	BDL	19000	ug/kg
,4-DINITROTOLUENE	BDL	19000	ug/kg
,6-DINITROTOLUENE	BDL	19000	ug/kg
I-N-OCTYLPHTHALATE	BDL	19000	ug/kg
	46000	19000	ug/kg
LUORANTHENE LUORENE	38000	19000	ug/kg
	BDL	19000	ug/kg
EXACHLOROBENZENE EXACHLOROBUTADIENE	BDL	19000	ug/kg
	BDL	19000	ug/kg
EXACHLOROCYCLOPENTADIENE		19000	ug/kg
EXACHLOROETHANE	BDL	19000	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	19000	ug/kg
SOPHORONE	BDL		ug/kg
-METHYLNAPHTHALENE	BDL	19000	ug/kg
APHTHALENE	22000	19000	ug/kg
-NITROANILINE	BDL	96000	ug/kg
-NITROANILINE	BDL	96000	ug/kg
-NITROANILINE	BDL	96000	ug/kg
ITROBENZENE	BDL	19000	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	19000	ug/kg
-NITROSO-DI-N-PROPYLAMINE	BDL	19000	ug/kg
HENANTHRENE	96000	19000	
-PICOLINE	BDL	96000	ug/kg
YRENE	48000	19000	0, 0
YRIDINE	BDL	96000	ug/kg
ETRACHLOROBENZENES	BDL	19000	ug/kg

Lab Sample ID: A219788

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	96000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	19000	ug/kg
BENZOIC ACID	BDL	96000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	19000	ug/kg
2-CHLOROPHENOL	BDL	19000	ug/kg
2,4-DICHLOROPHENOL	BDL	19000	ug/kg
2,4-DIMETHYLPHENOL	BDL	19000	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	96000	ug/kg
2,4-DINITROPHENOL	BDL	96000	ug/kg
2-METHYLPHENOL	BDL	19000	ug/kg
4-METHYLPHENOL	BDL	19000	ug/kg
2-NITROPHENOL	BDL	19000	ug/kg
4-NITROPHENOL	BDL	96000	ug/kg
PENTACHLOROPHENOL	BDL	96000	ug/kg
PHENOL	BDL	19000	ug/kg
TETRACHLOROPHENOL	BDL	19000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	19000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	19000	ug/kg
	BUL	13000	ug/ kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		
PHENOL-D5	*	****	
NITROBENZENE-D5			
2-FLUOROBIPHENYL	*		
2,4,6-TRIBROMOPHENOL	*		
TERPHENYL-D14	*		
DILUTION FACTOR 10			
ALSO DETECTED			
UNKNOWN	EST 192000 RT=3.23		
BENZENE(1-METHYLETHYL)	EST 40000 RT=5.68		
UNKNOWN HYDROCARBON	EST 26000 RT=16.23		
UNKNOWN HYDROCARBON	EST 54000 RT=17.95		
UNKNOWN	EST 52000 RT=18.36		
1-METHYL NAPHTHALENE	EST 32000 RT=18.81		
UNKNOWN HYDROCARBON	EST 42000 RT=20.35		
NAPHTHALENE, DIMETHYL	EST 40000 RT=20.93		
NAPHTHALENE, DIMETHYL	EST 40000 RT=21.2		
NAPHTHALENE, DIMETHYL	EST 28000 RT=21.59		***************************************
UNKNOWN HYDROCARBON	EST 70000 RT=22		
UNKNOWN HYDROCARBON	EST 62000 RT=22.84		
	EST 28000 RT=23.3		
NAPHTHALENE, TRIMETHYL		****	
NAPHTHALENE, TRIMETHYL	EST 26000 RT=23.54		
NAPHTHALENE, TRIMETHYL	EST 26000 RT=23.65		
NAPHTHALENE, TRIMETHYL	EST 34000 RT=23.83		
UNKNOWN HYDROCARBON	EST 94000 RT=26.06		
UNKNOWN	EST 68000 RT=26.88		
UNKNOWN NOTE: * SURROGATES DILUTED OUT	EST 57000 RT=27.54		

VOLATILE ORGANICS SW846-8 Analyst: A. WIDZISZ	Analysis Date: 11-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Paramet	er	Result	Det. Limit	Units
CETONE		BDL	1.2	mg/kg
CROLEIN		BDL	3.1	mg/kg
CRYLONITRILE		BDL	4.4	mg/kg

Page 4

Lab Sample ID: A219788

Parameter	Result	Det. Limit	Units
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0,31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANC 1 2 DICH ODODDODENE	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.63	
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE XYLENE (TOTAL)	0,33	0.31	mg/kg
SURROGATE RECOVERY			
DICHIODOETHANE DA	1112		% Rec
DICHLOROETHANE-D4	* 125	322311	% Rec
TOLUENE-D8	114		% Rec
BROMOFLUOROBENZENE DILUTION FACTOR 1:63	1.5-1		10 NCC

NOTE: * RAN TWICE WITH NO IMPROVEMENT IN SURROGATE RECOVERY

PHENOLS DISTILLATION SW846-9065	11 050 00	Test: P405.7	0
Analyst: C. BOYLE Analysis Date Parameter TNITIAL HEIGHT OF VOLUME	Result	Det. Limit	Units Grams
INITIAL WEIGHT OR VOLUME FINAL VOLUME	100		mL.

PHENOLS 4AAP SW846-9066
Analyst: J. GRIFFIN Analysis Date: 14-DEC-90 Instrument: AUTO-ANALYZER PHENOLS DISTILLATION SW846-9065

Parameter PHENOLS Parameter 2.5

Parameter PHENOLS Parameter 2.5

Parameter 2.5

Result Det. Limit Units mg/kg

Sample Comments

* See Note for Parameter BDL Below Detection Limit

EST Estimated Value RT Retention Time

Sample chain of custody number 3401.

Quality Assurance Officer: _

Gabusch

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219793
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 21-DEC-90	PO Number P0072488
(317)243-8305	Printed 22-DEC-90	Sampled 06-DEC-90 16:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-14-02

SAMPLE LOCATION:: UTB-14 (32'-33')

GC/MS SONICATION EXTRACTION FOR ORGANIC	S SW846-3550		200
Analyst: J. MINNIEAR, II Analysis Date:	: 12-DEC-90	Test: P236.4	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	30.1		Grams
FINAL VOLUME	1.0		m L

Parameter	CID FRACTIONS) SW846-8270 e: 18-DEC-90 Instrument: GC/MS SVOA ORGANICS SW846-3550 Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A) PYRENE	BDL	330	ug/kg
BENZO(B)FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K)FLUORANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ÉTHER BIS(2-CHLOROISOPROPYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	330	
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	
4-CHLOROANILINE	BDL	330	
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	
DIBENZ(A,H)ANTHRACENE	BDL	330	
DIBENZOFURAN	BDL	330	
1,2-DICHLOROBENZENE	BDL	330	
1,3-DICHLOROBENZENE	BDL	330	
1,4-DICHLOROBENZENE	BDL	330	
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg Page

ENS HERITAGE EADORATORIES, THO			
Parameter	Result	Det. Limit	Units
)IMETHYLPHTHALATE	BDL	330	ug/kg
)I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL		ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL		ug/kg
IEXACHLOROBENZENE	BDL	330	ug/kg
IEXACHLOROBUTADIENE	BDL	330	ug/kg
IEXACHLOROCYCLOPENTAD I ENE	BDL	330	ug/kg
IEXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	BDL	330	ug/kg
-METHYLNAPHTHALENE	BDL	330	ug/kg
IAPHTHALENE	BDL	330	ug/kg
-NITROANILINE	BDL	1600	ug/kg
S-NITROANILINE	BDL	1600	
-NITROANILINE	BDL	1600	ug/kg
	BDL	330	ug/kg
ITROBENZENE	BDL	330	ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	330	
I-NITROSO-DI-N-PROPYLAMINE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	330	ug/kg
PHENANTHRENE	BDL		ug/kg
PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
1-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	
4-METHYLPHENOL	BDL	330	
2-NITROPHENOL	BDL	330	ug/kg
1-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
	BDL	330	
PHENOL COORDENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	
2,4,5-TRICHLOROPHENOL	BDL BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	DUL	330	ug/ kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	32		% Rec
	68		% Rec
PHENOL-D5	77		% Rec
NITROBENZENE-D5	79		% Rec
2-FLUOROBIPHENYL		44,111,111	% Rec
2,4,6-TRIBROMOPHENOL	4		% Rec
TERPHENYL-D14	72	40.11.41.41.41.41.41.41.41.41.41.41.41.41.	/ Nec

VOLATILE ORGANICS SW846-8240 Analyst: A. WIDZISZ Analysis Date: 12-DEC-90	Instrument: GC/MS VOA	Test: 0510.3. 0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
NCROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	110		% Rec
TOLUENE-D8	98		% Rec
BROMOFLUOROBENZENE	102		% Rec
DILUTION FACTOR 1:63			
PHENOLS DISTILLATION SW846-9065 Analyst: C. BOYLE Analysis Date: 11-DEC-90		Test: P405.7.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FINAL VOLUME	100		mL

Lab Sample ID: A219793 EMS HERITAGE LABORATORIES, INC. PHENOLS 4AAP SW846-9066 Analysis Date: 14-DEC-90 Instrument: AUTO-ANALYZER Test: 0405.7. 0 Analyst: J. GRIFFIN Prep: PHENOLS DISTILLATION SW846-9065 Det. Limit Units Parameter Result **BDL** 0.1 mg/kg PHENOLS

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3401.

Quality Assurance Officer: <u>Ha Beuscl</u>

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219789
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 26-DEC-90	PO Number P0072488
(317)243-8305	Printed	Sampled
1.074	02-JAN-91	06-DEC-90 15:20

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-16-01

SAMPLE LOCATION:: UTB-16 (8'-10')

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: P130.7	. 0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

Parameter	Result	Det. Limit	Units
ARSENIC	4.4	1.5	mg/kg
ADDITION 1	0.010		mg/kg
ADDITION 2	0.020		mg/kg
ADDITION 3	0.040		mg/kg
SAMPLE	0.0135		Conc
SAMPLE + ADD 1	0.0222		Conc
SAMPLE + ADD 2	0.0312		Conc
SAMPLE + ADD 3	0.0496		Conc
DILUTION	3		

CVAA ACID DIGESTION OF S/S/S SAMPLES SW84	16-7471		
Analyst: M. SCROGHAM Analysis Date:	12-DEC-90	Test: P131.7.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

MERCURY CVAA SW846- Analyst: M. SCROGHAM Prep: CVAA ACID DI		: 13-DEC-90 Instrument: CVAA PLES SW846-7471	Test: M120.2.	0
MERCURY	Parameter	Result BDL	Det. Limit 0.13	Units mg/kg

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	บ: A2197
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: W. WATNESS Analysis Date: 12-DEC-90	6-3050	Test: P129.7.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
INAL WEIGHT OR VOLUME	100		mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M104.3.	0
Parameter BARIUM	Result 16	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M108.3.	0
Parameter CADMIUM	Result BDL	Det. Limit 5.0	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M110.3.	0
Parameter CHROMIUM	Result 13	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M112.3.	0
Parameter COPPER	Result 10	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M115.3.	0
Parameter IRON	Result 15000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M116.3.	0
Parameter LEAD	Result 10	Det. Limit 5.0	Units mg/kg
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL		Test: M119.3.	0
Parameter MANGANESE	Result 370	Det. Limit	Units mg/kg
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPL	Instrument: ICP ES SW846-3050	Test: M122.3.	0
Parameter	Result	Det. Limit	Units mg/kg

BDL

BDL

BDL

BDI

BDL

260000

HEXACHI OROBUTADI ENE

HEXACHLOROETHANE

ISOPHORONE

HEXACHLOROCYCLOPENTADIENE

2-METHYLNAPHTHALENE

INDENO(1,2,3-CD)PYRENE

Page 3

ug/kg

uq/kq

ug/kg

ug/kg

ug/kg

ug/kg

39000

39000

39000

39000

39000

39000

Parameter	Result	Det. Limit	Units
NAPHTHALENE	590000	39000	ug/kg
2-NITROANILINE	BDL	190000	ug/kg
B-NITROANILINE	BDL	190000	ug/kg
4-NITROANILINE	BDL	190000	ug/kg
NITROBENZENE	BDL	39000	ug/kg
N=NITROSO-DIPHENYLAMINE	BDL	39000	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	39000	ug/kg
PHENANTHRENE	230000	39000	ug/kg
2-PICOLINE	BDL	190000	ug/kg
PYRENE	100000	39000	ug/kg
PYRIDINE	BDL	190000	ug/kg
TETRACHLOROBENZENES	BDL	39000	ug/kg
TOLUENEDIAMINE	BDL	190000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	39000	ug/kg
T, Z, 4-INTERLUNUDENZENE	BDL	190000	ug/kg
BENZOIC ACID	BDL	39000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	39000	ug/kg
2-CHLOROPHENOL			
2,4-DICHLOROPHENOL	BDL	39000 39000	ug/kg
2,4-DIMETHYLPHENOL	BDL		ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	190000	ug/kg
2,4-DINITROPHENOL	BDL	190000	ug/kg
2-METHYLPHENOL	BDL	39000	ug/kg
4-METHYLPHENOL	BDL	39000	ug/kg
2-NITROPHENOL	BDL	39000	ug/kg
4-NITROPHENOL	BDL	190000	ug/kg
PENTACHLOROPHENOL	BDL	190000	ug/kg
PHENOL	BDL	39000	ug/kg
TETRACHLOROPHENOL	BDL	39000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	39000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	39000	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		
PHENOL-D5	*		
NITROBENZENE-D5	*	121 11111111111111111111111111111111111	
	*		· · · · · · · · · · · · · · · · · · ·
2-FLUOROBIPHENYL	•		
2,4,6-TRIBROMOPHENOL	*		127170000000000000000000000000000000000
TERPHENYL-D14			
DILUTION FACTOR 1:20			
ALSO DETECTED	EST 300000 RT=3.16		
UNKNOWN	***************************************		
BENZENE, METHYLETHYL	EST 60000 RT=5.62		
1H-INDENE	EST 72000 RT=10.05		
NAPHTHALENE, 1-METHYL	EST 220000 RT=18.77	/W////	
NAPHTHALENE, 2-ETHENYL	EST 63000 RT=20.34		111111111111111111111111111111111111111
NAPHTHALENE, 2-ETHYL	EST 48000 RT=20.65		
NAPHTHALENE, DIMETHYL	EST 120000 RT=20.88		
NAPHTHALENE, DIMETHYL	EST 120000 RT=21.16		
NAPHTHALENE, DIMETHYL	EST 63000 RT=21.25		
NAPHTHALENE, DIMETHYL	EST 71000 RT=21.55		
NAPHTHALENE, TRIMETHYL	EST 21000 RT=23.5		
UNKNOWN	EST 31000 RT=23.83		7
DIBENZOFURAN, 4-METHYL	EST 30000 RT=25		
9H-FLUORENE, METHYL	EST 39000 RT=26.01		
	EST 26000 RT=26.83		
UNKNOWN	EST 39000 RT=28.84		
PHENANTHRENE, 4-METHYL	L31 33000 K1-20.04		Page 4

Lab Sample ID: A219789

Parameter	Result	Det. Limit	Units
UNKNOWN	EST 32000 RT=28.93		
UNKNOWN	EST 44000 RT=29.13		
11H-BENZO(A)FLUORENE	EST 40000 RT=32.83		
11H-BENZO(B)FLUORENE	EST 28000 RT=33.06	ALL MANAGEMENT OF THE PROPERTY	

NOTE: * SURROGATES DILUTED OUT

Analyst: A. WIDZISZ Analysis Date: 11-DEC-		Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	12	mg/kg
ACROLEIN	BDL	31	mg/kg
ACRYLONITRILE	BDL	44	mg/kg
BENZENE	5.6	3.1	mg/kg
BROMODICHLOROMETHANE	BDL	3.1	mg/kg
BROMOFORM	BDL	3.1	mg/kg
BROMOMETHANE	BDL	6.3	mg/kg
CARBON DISULFIDE	BDL	3.1	mg/kg
CARBON TETRACHLORIDE	BDL	3.1	mg/kg
CHLOROBENZENE	BDL	3.1	mg/kg
CHLOROETHANE	BDL	6.3	mg/kg
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	BDL	3.1	mg/kg
	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL	3.1	mg/kg
1,2-DICHLOROPROPANE	20	3.1	mg/kg
ETHYLBENZENE			mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	mg/kg
2-HEXANONE	BDL	6.3	mg/kg
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	mg/kg
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE	BDL	3.1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3.1	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	7.2	3.1	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
1,1,1-TRICHLOROETHANE	BDL		mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.1	mg/kg
TRICHLOROETHENE	BDL	3.1	
VINYL ACETATE	BDL	6.3	mg/kg
VINTE ACCIATE VINYL CHLORIDE	BDL	6.3	mg/kg
	60	3.1	mg/kg
XYLENE (TOTAL)	00	3.1	liig/ kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	*		
	*		111111111111111111111111111111111111111
TOLUENE-D8	*		
BROMOFLUOROBENZENE			
DILUTION FACTOR 1:630	111111111111111111111111111111111111111		ł

Lab Sample ID: A219789

NOTE: * SURROGATES DILUTED OUT

PHENOLS DISTILLATION SW846-9065			
Analyst: C. BOYLE Analysis Date: 11-DE	C-90	Test: P405.7.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FINAL VOLUME	100		mL

PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Test: 0405.7. 0 Analysis Date: 14-DEC-90 Instrument: AUTO-ANALYZER Prep: PHENOLS DISTILLATION SW846-9065 Result Det. Limit Units Parameter BDL PHENOLS $0.1 \mid mg/kg$

Sample Comments

See Note for Parameter BDLBelow Detection Limit

EST Estimated Value RT Retention Time

Sample chain of custody number 3401.

Quality Assurance Officer: <u>HaBusck</u>

Service Location EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219794
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 04-JAN-91	PO Number P0072488
(317)243-8305	Printed 05-JAN-91	Sampled 06-DEC-90 16:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-16-02

SAMPLE LOCATION:: UTB-16 (16.5'-18')

GC/MS SONICATION EXTRACTION FOR ORGANICS	SW846-3550		
Analyst: J. MINNIEAR, II Analysis Date:	12-DEC-90	Test: P236.4	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	30.0		Grams

	ACID FRACTIONS) SW846-8270 te: 27-DEC-90 Instrument: GC/MS SVOA R ORGANICS SW846-3550		
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	
ANTHRACENE	BDL	330	
BENZ (A) ANTHRACENE	BDL	330	
BENZÓ(Á)PYRENE	BDL	330	
BENZO(B)FLUORANTHENE	BDL	330	
BENZO(G,H,I)PERYLENE	BDL	330	
BENZO(K)FLUORANTHENE	BDL	330	
BENZYL ALCOHOL	BDL	330	
BENZYLBUTYLPHTHALATE	BDL	330	
BIS(2-CHLOROETHOXY)METHANE	BDL	330	
BIS(2-CHLOROETHYL)ÉTHER	BDL	330	
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	330	
4-BROMOPHENYLPHENYLETHER	BDL	330	
CARBAZOLE	BDL	330	
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DÍETHYLPHTHALATE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
DIMETHYLPHTHALATE	BDL BDL	330	ug/kg
DI-N-BUTYLPHTHALATE		330	0, 0
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
FLUORANTHENE	BDL BDL	330 330	ug/kg
FLUORENE			ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	BDL	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	58		% Rec
PHENOL-D5	63	***************************************	% Rec
NITROBENZENE-D5	62		% Rec
2-FLUOROBIPHENYL	61		% Rec
2,4,6-TRIBROMOPHENOL	14		% Rec
TERPHENYL-D14	71		% Rec

NOTE: SAMPLE RUN TWICE WITH NO IMPROVEMENT IN INTERNAL STANDARD RECOVERY

Analyst: A. WIDZISZ Analysis Da		D-4 1/-/4	0 Units
Parameter ACETONE	Result BDL	Det. Limit	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	
CARBON DISULFIDE	BDL	0.03	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
***************************************	BDL		mg/kg
CHLOROBENZENE		0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
I,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
I,1,2-TRICHLOROETHANE	BDL	0.31	
FRICHLOROETHENE	BDL	0.31	mg/kg mg/kg
/INYL ACETATE	BDL		
/INYL CHLORIDE	BDL	0.63	mg/kg
		0.63	mg/kg
(YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	119		% Rec
FOLUENE-D8	112		% Rec
BROMOFLUOROBENZENE	112		% Rec
DILUTION FACTOR 1:63	1. T.		

PHENOLS DISTILLATION SW846-9065 Analyst: C. BOYLE Analysis Date	te: 11-DEC-90	Test: P405.7	0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		l mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A21979
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 14-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.1	Units mg/kg

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3401.

Service Location . EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219790
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 04-JAN-91	PO Number PO072488
(317)243-8305	Printed 06-MAR-91	Sampled 07-DEC-90 11:00

Report To

ILLINOIS POWER COMPANY WILLIAM WITTS P.O. BOX 511 500 SOUTH 27TH STREET DECATUR, IL 62525 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-18-01

SAMPLE LOCATION:: UTB-18 (4.5'-5')

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Analyst: W. WATNESS Analysis Date: 12-DEC-90		Test: P130.7.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

ARSENIC GFAA (3 POINT MSA) SW846-7060 Analyst: M. BAUER Analysis Date: Prep: GFAA ACID DIGESTION OF S/S/S SAM	18-DEC-90 Instrument: GFAA PLES SW846-3050	Test: M603.2.	0
Parameter	Result	Det. Limit	Units
ARSENIC	5.8	2.5	mg/kg
ADDITION 1	0.010		mg/kg
ADDITION 2	0.020		mg/kg
ADDITION 3	0.040		mg/kg
SAMPLE	0.0107		Conc
SAMPLE + ADD 1	0.0204		Conc
SAMPLE + ADD 2	0.0310		Conc
SAMPLE + ADD 3	0.0494		Conc
DILUTION	5		

THREE POINT METHOD OF STANDARD ADDITIONS REQUIRED DUE TO POOR SPIKE RECOVERY.

MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846-7471 Analyst: M. SCROGHAM Analysis Date: 12-DEC-90 Test: P131.7. 0			
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL.

Analyst: M. SCROGHAM Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF	e: 13-DEC-90 Instrument: CVAA S/S/S SAMPLES SW846-7471	Test: M120.2.	0
Parameter	Result	Det. Limit	Units
MERCURY	BDL	0.13	ma/ka

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A21979
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES S Analyst: W. WATNESS Analysis Date: 12-DE	W846-3050 c-90	Test: P129.7. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DE Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M104.3. 0
Parameter BARIUM	Result 69	Det. Limit Units 1.0 mg/kg
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 24-DE Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M108.3. 0
Parameter CADMIUM	Result BDL	Det. Limit Units 5.0 mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DE Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M110.3. 0
Parameter CHROMIUM	Result 12	Det. Limit Units 1.0 mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DE Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M112.3. 0
Parameter COPPER	Result 15	Det. Limit Units 2.0 mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DE Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M115.3. 0
Parameter IRON	Result 15000	Det. Limit Units 2.0 mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M116.3. 0
Parameter LEAD	Result 10	Det. Limit Units 5.0 mg/kg
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M119.3. 0
Parameter MANGANESE	Result 400	Det. Limit Units 1.0 mg/kg
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	C-90 Instrument: ICP MPLES SW846-3050	Test: M122.3. 0
ricp. This on for hors bruestron or 3/3/3 sh		

EMS HERITAGE LABORATORIES, INC. Lab Sample ID: A219790 ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 17-DEC-90 Instrument: ICP Test: M139.3. 0 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Parameter Result Det. Limit Units ZINC 60 2.0 mg/kg GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 Analyst: J. MINNIEAR, II Analysis Date: 12-DEC-90 Test: P236.4. 0 Parameter Result Units Det. Limit INITIAL WEIGHT OR VOLUME 20.0 Grams FINAL VOLUME 1.0 ml SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analyst: M. DONOFRIO Analysis Date: 27-DEC-90 Instrument: GC/MS SVOA Test: 0505.3. 0 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 Parameter Result Det. Limit Units ACENAPHTHENE BDL 490 ug/kg ACENAPHTHYLENE BDL 490 ug/kg ANTHRACENE BDL 490 ug/kg BENZ(A)ANTHRACENE BDI 490 ug/kg BENZO(A) PYRENE BDL 490 ug/kg BENZO(B) FLUORANTHENE BDI 490 ug/kg BENZO(G, H, I) PERYLENE BDL 490 ug/kg BENZO(K) FLUORANTHENE BDL 490 ug/kg BENZYL ALCOHOL BDL 490 ug/kg BENZYLBUTYLPHTHALATE BDI 490 ug/kg BIS(2-CHLOROETHOXY)METHANE BDL 490 ug/kg BIS(2-CHLOROETHYL)ETHER BDL 490 ug/kg BIS(2-CHLOROISOPROPYL)ETHER BDL 490 ug/kg BIS(2-ETHYLHEXYL)PHTHALATE BDL 490 ug/kg 4-BROMOPHENYLPHENYLETHER BDL 490 ug/kg CARBAZOLE BDL 490 ug/kg 4-CHLOROANILINE BDL 490 ug/kg 2-CHLORONAPHTHALENE BDL 490 ug/kg 4-CHLOROPHENYLPHENYLETHER BDL 490 ug/kg CHRYSENE BDL 490 ug/kg DIBENZ(A, H) ANTHRACENE BDL 490 ug/kg DIBENZOFURAN BDL 490 ug/kg 1,2-DICHLOROBENZENE BDL 490 ug/kg 1.3-DICHLOROBENZENE BDL 490 ug/kg 1,4-DICHLOROBENZENE BDL 490 ug/kg 3.3'-DICHLOROBENZIDINE BDL 990 ug/kg DIETHYLPHTHALATE BDL 490 ug/kg DIMETHYLPHTHALATE BDL 490 ug/kg DI-N-BUTYLPHTHALATE BDL 490 ug/kg DINITROBENZENES BDL 490 ug/kg 2,4-DINITROTOLUENE BDL 490 ug/kg 2,6-DINITROTOLUENE BDL 490 ug/kg DI-N-OCTYLPHTHALATE BDL 490 ug/kg FLUORANTHENE BDL 490 ug/kg FLUORENE BDL 490 ug/kg HEXACHLOROBENZENE BDL 490 ug/kg HEXACHLOROBUTADIENE BDL 490 ug/kg HEXACHLOROCYCLOPENTADIENE BDI 490 ug/kg HEXACHLOROETHANE BDL 490 ug/kg INDENO(1,2,3-CD)PYRENE BDL 490 ug/kg **ISOPHORONE** BDL 490 ug/kg 2-METHYLNAPHTHALENE BDL 490

ug/kg Page 3

Parameter	Result	Det. Limit	Units
NAPHTHALENE	BDL	490	ug/kg
2-NITROANILINE	BDL	2400	ug/kg
3-NITROANILINE	BDL	2400	ug/kg
4-NITROANILINE	BDL	2400	ug/kg
NITROBENZENE	BDL	490	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	490	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	490	ug/kg
PHENANTHRENE	BDL	490	ug/kg
2-PICOLINE	BDL	2400	ug/kg
PYRENE	BDL	490	ug/kg
PYRIDINE	BDL	2400	ug/kg
TETRACHLOROBENZENES	BDL	490	ug/kg
TOLUENEDIAMINE	BDL	2400	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	490	ug/kg
BENZOIC ACID	BDL	2400	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	490	ug/kg
2-CHLOROPHENOL	BDL	490	ug/kg
2,4-DICHLOROPHENOL	BDL	490	ug/kg
2.4-DIMETHYLPHENOL	BDL	490	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	2400	ug/kg
2,4-DINITROPHENOL	BDL	2400	ug/kg
2-METHYLPHENOL	BDL	490	ug/kg
4-METHYLPHENOL	BDL	490	ug/kg
2-NITROPHENOL	BDL	490	ug/kg
4-NITROPHENOL	BDL	2400	ug/kg
PENTACHLOROPHENOL	BDL	2400	ug/kg
PHENOL	BDL	490	ug/kg
TETRACHLOROPHENOL	BDL	490	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	490	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	490	ug/kg
·	DDL	490	ug/ kg
SURROGATE RECOVERY	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		BESTERNAL CARACTERS OF THE STATE OF THE STAT
2-FLUOROPHENOL	19		% Rec
PHENOL-D5	56		% Rec
NITROBENZENE-D5	75	144444114, 114	% Rec
2-FLUOROBIPHENYL	74		% Rec
2,4,6-TRIBROMOPHENOL	4	· · · · · · · · · · · · · · · · · · ·	% Rec
TERPHENYL-D14	70	7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
NOTE: SAMPLE RUN TWICE WITH NO IMPROVEMENT IN	INTERNAL CTANDARD DE	COVEDY	% Rec

Analyst: A. WIDZISZ Analysis Da	te: 11-DEC-90 Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mq/kq
CARBON TETRACHLORIDE	BDL	0.31	mq/kq
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg

	0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.31 0.63 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.63 0.63 0.63 0.63 0.31 0.31 1.5 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.63 0.63 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.63 0.31 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.63 0.31 0.63 0.63 0.31 0.31 0.31 0.31 0.31 0.31	mg/kg
	0.31 0.63 0.63 0.31 0.31 0.31 1.5 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	0.63 0.63 0.31 0.31 0.31 1.5 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	0.63 0.31 0.31 0.31 1.5 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	0.63 0.31 0.31 0.31 1.5 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
	0.31 0.31 0.31 1.5 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg mg/kg
	0.31 0.31 1.5 0.31 0.31 0.31 0.31	mg/kg mg/kg mg/kg mg/kg
	0.31 1.5 0.31 0.31 0.31 0.31	mg/kg mg/kg mg/kg
	1.5 0.31 0.31 0.31 0.31	mg/kg mg/kg
	0.31 0.31 0.31 0.31	mg/kg
	0.31 0.31 0.31	
	0.31 0.31	ma/ka
	0.31	
		mg/kg
		mg/kg
	0.31	mg/kg
	0.31	mg/kg
	0.63	mg/kg
	0.63	mg/kg
	0.31	mg/kg
		% Rec % Rec % Rec
14		1
esult	Det. Limit	Units
	11111111111111	Grams
		mL
: AUTO-ANALYZER	R Test: 0405.7.	0
sult	Det. Limit	Units
	0.1	mg/kg
: 4	AUTO-ANALYZEI	AUTO-ANALYZER Test: 0405.7.

Service Location ' ! EMS HERITAGE LABORATORIES, INC.	Received 08-DEC-90	Lab ID A219795
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 27-DEC-90	PO Number PO072488
(317)243-8305	Printed	Sampled
	06-MAR-91	07-DEC-90 12:00

Report To

ILLINOIS POWER COMPANY WILLIAM WITTS
P.O. BOX 511
500 SOUTH 27TH STREET DECATUR, IL 62525

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UTB-18-02

SAMPLE LOCATION:: UTB-18 (17-18')

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270

GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550

Analyst: J. MINNIEAR, II Analysis Date: 12-DEC-90 Test: P236.4. 0

Parameter
INITIAL WEIGHT OR VOLUME 20.0
FINAL VOLUME 20.0
INDED

Test: P236.4. 0

Grams

Test: P236.4. 0

Index of the parameter and p

Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	490	ug/kg
ACENAPHTHYLENE	BDL	490	ug/kg
ANTHRACENE	BDL	490	ug/kg
BENZ (A) ANTHRACENE	BDL	490	ug/kg
BENZO(A)PYRENE	520	490	ug/kg
BENZO(B)FLUORANTHENE	850	490	ug/kg
BENZO(G,H,I)PERYLENE	BDL	490	
BENZO(K)FLUORANTHENE	BDL	490	ug/kg
BENZYL ALCOHOL	BDL	490	ug/kg
BENZYLBUTYLPHTHALATE	BDL	490	
BIS(2-CHLOROETHOXY)METHANE	BDL	490	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	490	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	490	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	490	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	490	ug/kg
CARBAZOLE	BDL	490	ug/kg
4-CHLOROANILINE	BDL	490	ug/kg
2-CHLORONAPHTHALENE	BDL	490	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	490	ug/kg
CHRYSENE	EST 430	490	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	490	ug/kg
DIBENZOFURAN	BDL	490	ug/kg
1,2-DICHLOROBENZENE	BDL	490	ug/kg
1,3-DICHLOROBENZENE	BDL	490	ug/kg
1,4-DICHLOROBENZENE	BDL	490	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	990	ug/kg
DIETHYLPHTHALATE	BDL	490	ug/kg

Page 1

Parameter	Result	Det. Limit	Units
DIMETHYLPHTHALATE	BDL	490	ug/kg
DI-N-BUTYLPHTHALATE	BDL	490	ug/kg
DINITROBENZENES	BDL	490	ug/kg
2,4-DINITROTOLUENE	BDL	490	ug/kg
2,6-DINITROTOLUENE	BDL	490	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	490	ug/kg
LUORANTHENE	EST 400	490	ug/kg
LUORENE	BDL	490	ug/kg
HEXACHLOROBENZENE	BDL	490	ug/kg
IEXACHLOROBUTADIENE	BDL	490	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	490	ug/kg
HEXACHLOROETHANE	BDL	490	ug/kg
INDENO(1 2 2 CD) DVDENE	BDL	490	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	490	ug/kg
I SOPHORONE	BDL	490	
2-METHYLNAPHTHALENE			ug/kg
NAPHTHALENE	BDL	490	ug/kg
2-NITROANILINE	BDL	2400	ug/kg
3-NITROANILINE	BDL	2400	ug/kg
1-NITROANILINE	BDL	2400	ug/kg
NITROBENZENE	BDL	490	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	490	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	490	ug/kg
PHENANTHRENE	BDL	490	ug/kg
2-PICOLINE	BDL	2400	ug/kg
PYRENE	EST 350	490	ug/kg
PYRIDINE	BDL	2400	ug/kg
TETRACHLOROBENZENES	BDL	490	ug/kg
TOLUENEDIAMINE	BDL	2400	ug/kg
1 2 4 TRICHLORORENZENE	BDL	490	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	2400	ug/kg
BENZOIC ACID	BDL	490	
4-CHLORO-3-METHYLPHENOL		490	ug/kg
2-CHLOROPHENOL	BDL		ug/kg
2,4-DICHLOROPHENOL	BDL	490	ug/kg
2,4-DIMETHYLPHENOL	BDL	490	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	2400	ug/kg
2,4-DINITROPHENOL	BDL	2400	ug/kg
2-METHYLPHENOL	BDL	490	
4-METHYLPHENOL	BDL	490	ug/kg
2-NITROPHENOL	BDL	490	ug/kg
4-NITROPHENOL	BDL	2400	ug/kg
PENTACHLOROPHENOL	BDL	2400	ug/kg
PHENOL	BDL	490	ug/kg
TETRACHLOROPHENOL	BDL	490	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	490	ug/kg
	BDL	490	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	430	ug/ kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	63	0.000	% Rec
PHENOL-D5	83	100000000000000000000000000000000000000	% Rec
NITROBENZENE-D5	67	Mark Market	% Rec
2-FLUOROBIPHENYL	65		% Rec
2,4,6-TRIBROMOPHENOL	49		% Rec
TERPHENYL-D14	67	111111111111111111111111111111111111111	% Rec

Parameter	Result	Det. Limit	Units
CETONE	BDL	1.2	mg/kg
CROLEIN	BDL	3.1	mg/kg
CRYLONITRILE	BDL	4.4	mg/kg
SENZENE	BDL	0.31	mg/kg
ROMODICHLOROMETHANE	BDL	0.31	mg/kg
ROMOFORM	BDL	0.31	mg/kg
ROMOMETHANE	BDL	0.63	mg/kg
ARBON DISULFIDE	BDL	0.31	mg/kg
ARBON TETRACHLORIDE	BDL	0.31	mg/kg
HLOROBENZENE	BDL	0.31	mg/kg
HLOROETHANE	BDL	0.63	mg/kg
HLOROFORM	BDL	0.31	mg/kg
HLOROMETHANE	BDL	0.63	mg/kg
IBROMOCHLOROMETHANE	BDL	0.31	mg/kg
IS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
ICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHANE	BDL	0.31	mg/kg
,2-DICHLOROETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHENE	BDL	0.31	mg/kg
,2-DICHLOROPROPANE	BDL	0.31	mg/kg
THYLBENZENE	BDL	0.31	
LUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
-HEXANONE	BDL		mg/kg
ETHYLENE CHLORIDE	BDL	0.63	mg/kg
		0.31	mg/kg
ETHYL ETHYL KETONE	BDL	0.63	mg/kg
-METHYL-2-PENTANONE	BDL	0.63	mg/kg
TYRENE	BDL	0.31	mg/kg
,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
ETRACHLOROETHENE	BDL	0.31	mg/kg
ETRAHYDROFURAN	BDL	1.5	mg/kg
OLUENE	BDL	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
RANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
RICHLOROETHENE	BDL		mg/kg
INYL ACETATE	BDL	0.63	mg/kg
INYL CHLORIDE	BDL	0.63	mg/kg
(LENE (TOTAL)	BDL	0.31	mg/kg
JRROGATE RECOVERY			
TOULODOFTHANE DA	110	111111111111111111111111111111111111111	
ICHLOROETHANE-D4	116		% Rec
OLUENE-D8	111	111111111111111111111111111111111111111	% Rec
ROMOFLUOROBENZENE ILUTION FACTOR 1:63	116		% Rec

PHENOLS DISTILLATION SW846-9065			
Analyst: C. BOYLE Analysis Date: 11-DEC	C-90	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
FINAL VOLUME	100		m

EMS HERITAGE LABORATORIES, INC.

PHENOLS 4AAP SW846-9066

Analyst: J. GRIFFIN Analysis Date: 14-DEC-90 Instrument: AUTO-ANALYZER PHENOLS DISTILLATION SW846-9065

Parameter PHENOLS

Parameter PHENOLS

Parameter BDL

Result BDL

Det. Limit Units mg/kg

Sample Comments

BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 3401.

Deleser

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91		
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 16-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92		pled -91 08:45

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE
ILLINOIS POWER COMPANY
P.O. BOX 511
DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-15-S01 DESCRIPTION: 09'-11' IMPACTED

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: L. MATTINGLY Analysis Date: 30-DEC-9	1	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FTNAL VOLUME	100		mL

Analyst: J. GRIFF	(AUTOMATED) SW846-9066 IN Analysis Date: 31-DEC-9	1 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result 0.30	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010		Test: P101.	4.0
Analyst: J. GRIFFIN Analysis Date: 30-DEC-91 Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FINAL VOLUME	250		mL.

CYANIDE, TOTAL (AUTO Analyst: J. GRIFFIN Prep: CYANIDE DISTILLATION	Analysis Date: 30-DEC-	91 Instrument: AUTO-ANALYZER	Test: G101.4	.0
CVANIDE	Parameter	Result 0.35	Det. Limit	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IF		Test: P503.7	. 0
Analyst: C. BRODERICK Analysis Date: 27-DEC-9			
Parameter INITIAL WEIGHT OR VOLUME	Result 27.45	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E			
Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Ins Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550 P5	strument: IR 03.7.0	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result 27	Det. Limit	Units mg/kg

Analyst: K. FULLMER Analysis Date: 31-DEC-91			
Parameter HEMICAL OXYGEN DEMAND	Result 19000	Det. Limit 1000	Units mg/kg
:100 DILUTION			
AA OR ICP ACID DIGESTION OF S/S/S SAMPLES SI Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	N846-3050	Test: P129.7.	010000000000000000000000000000000000000
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
AA OR ICP ACID DIGESTION OF S/S/S SAMPLES S Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92	W846-3050	Test: P129.7.	1
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
ARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 In Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050	strument: ICP P129.7.0	Test: M104.3.	0
Parameter BARIUM	Result 74.	Det. Limit	Units mg/kg
ADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Ir Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050	strument: ICP P129.7.0	Test: M108.3.	0
Parameter CADMIUM	Result BDL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 In Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M110.3.	0
Parameter CHROMIUM	Result 7.3	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 II Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M112.3	.0
Parameter COPPER	Result	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M115.3	.0
Parameter IRON	Result 8900	Det. Limit 2.0	units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M116.3	.0
Parameter	Result	Det. Limit	Units mg/kg

DILUTION 1:100

ANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-JAN-9 Prep: FAA OR ICP ACID DIGESTION OF \$/\$/S SAMPLES SW846		Test: M119.3.	0
Parameter MANGANESE	Result 280	Det. Limit	Units ma/ka

NICKEL ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: D8-JAN-92 Prep: FAA OR ICP ACID DIGESTION DF S/S/S SAMPLES SW846		Test: M122.3	.0
Parameter NICKEL	Result 15.	Det. Limit	Units mg/kg
ZINC ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-JAN-9/ Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846		Test: M139.3	.0
Prep: FAA UK ICP ACID DIGESTION OF 3/3/3 SAMPLES SWOTE			

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91	-3050	Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

	-92 Instrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-305	Result	Det. Limit	Units
RSFNIC	2.5	2.5	mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SAMP		Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL.

MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DE Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES		Test: M120.2	.0
Parameter MEDCUDY	Result BDL	Det. Limit 0.13	Units mg/kg

Analyst: H. WILLIAMS Analysis Date: 24-DEC	Result	Det. Limit Units
Parameter	BDL	1.2 mg/kg
CROLEIN	BDL	3.1 mg/kg
CRYLONITRILE	BDL	4.4 mg/kg
NZENE	0.36	0.31 mg/kg
ROMODICHLOROMETHANE	BDL	0.31 mg/kg
ROMOFORM	BDL	0.31 mg/kg
ROMOMETHANE	RDF	0.63 mg/kg

Lab Sample ID: A244475

Parameter	Result	Det. Limit	Units
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-D1CHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	1,8	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0,63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TOTOULODOCTUCNE	BDL	0.31	mg/kg
TRICHLOROETHENE VINYL ACETATE	BDL	0.63	
	BDL	0.63	mg/kg
VINYL CHLORIDE	1.7	0.31	mg/kg
XYLENE (TOTAL)			
SURROGATE RECOVERY			***************************************
DICHLOROETHANE-D4	109		% Rec
TOLUENE-D8	94		% Rec
BROMOF LUOROBENZENE	103	110000000000000000000000000000000000000	% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 24-DEC-91	SW846-3550	Test: P236.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.99	Det. Limit	Units Grams
INAL VOLUME	1.0		m.

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACID FRACTIONS) SW846-8270 Analyst: J. ELLIS Analysis Date: 08-JAN-92 Instrument: GC/MS SVOA Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 P236.4.0		Test: 0505.3.0	
Parameter ACENAPHTHENE	Result EST 53000	Det. Limit 330	Units ug/kg
ACENAPHTHYLENE ANTHRACENE	EST 22000	330	ug/kg
BENZ(A)ANTHRACENE BENZO(A)PYRENE	EST 14000 7400	330 330	ug/kg ug/kg
RENZO (R) EL LIORANTHENE	7300	330	ug/kg

EMS HERITAGE LABORATURIES, INC.	Result	Det. Limit	Units
Parameter SENZO(G,H,I)PERYLENE	4800 Result		ug/kg
ENZO(KAELHODANTHENE	2300	330	ug/kg
ENZO (K.) FLUORANTHENE	BDL		ug/kg
ENZYL ALCOHOL	BDL		ug/kg
ENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL		ug/kg
IS(2-CHLOROETHYL)ETHER		330	
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	2600		ug/kg
I-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	730		ug/kg
1-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
1-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	9000	330	ug/kg
DIBENZ(A,H)ANTHRACENE	1100	330	ug/kg
DIBENZOFURAN	3600		ug/kg
I,2-DICHLOROBENZENE	BDL	330	ug/kg
I,3-DICHLOROBENZENE	BDL		ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE 3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
	BDL	330	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE			ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	330	
FLUORANTHENE	EST 27000	330	
FLUORENE	EST 23000		ug/kg
HEXACHLOROBENZENE	BDL	330	
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTAD I ENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	5100	330	ug/kg
ISOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	EST 85000	330	ug/kg
NAPHTHALENE	EST 190000	330	ug/kg
	BDL		ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL		ug/kg
4-NITROANILINE	BDL	330	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	FCT OFOOD	330	ug/kg
PHENANTHRENE	EST 95000	1600	
2-PICOLINE	BDL		ug/kg
PYRENE	EST 22000	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	1600	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	DUL	1000	Page

Parameter	Result	Det. Limit	Units				
2-METHYLPHENOL 4-METHYLPHENOL 2-NITROPHENOL 4-NITROPHENOL PENTACHLOROPHENOL	BDL	330	ug/kg				
	BDL BDL BDL BDL	330 330 1600 1600	ug/kg ug/kg ug/kg ug/kg				
				PHENOL	BDL	330	ug/kg
				TETRACHLOROPHENOL	BDL	330	ug/kg
				2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg				
SURROGATE RECOVERY							
2-FLUOROPHENOL	76		% Rec				
PHENOL-D5	80		% Rec				
NITROBENZENE-D5	86		% Rec				
2-FLUOROBIPHENYL	88		% Rec				
2,4,6-TRIBROMOPHENOL	80		% Rec				
TERPHENYL-D14	56		% Rec				

Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	Result	Det. Limit	Units
Parameter	32000 Result	16000	ug/kg
ACENAPHTHENE	BDL	16000	ug/kg
ACENAPHTHYLENE	EST 15000	16000	ug/kg
ANTHRACENE	EST 8700	16000	ug/kg
BENZ (A) ANTHRACENE	BDL	16000	ug/kg
BENZO(A)PYRENE	BDL	16000	ug/kg
BENZO(B)FLUORANTHENE	BDL	16000	ug/kg
BENZO(G,H,I)PERYLENE	BDL	16000	ug/kg
BENZO(K)FLUORANTHENE	BDL	16000	ug/kg
BENZYL ALCOHOL	BDL		ug/kg
BENZYLBUTYLPHTHALATE	BDL	16000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL		ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	16000	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	16000	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	16000	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	16000	ug/kg
CARBAZOLE	BDL	16000	ug/kg
4-CHLOROANILINE	BDL	16000	ug/kg
2-CHLORONAPHTHALENE	BDL	16000	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	16000	
CHRYSENE		16000	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	16000	
DTBENZOFURAN	BDL	16000	ug/kg
1,2-DICHLOROBENZENE	BDL	16000	
1,3-DICHLOROBENZENE	BDL	16000	ug/kg
1,4-DICHLOROBENZENE	BDL	33000	
3,3'-DICHLOROBENZIDINE	BDL		
DIETHYLPHTHALATE	BDL	16000 16000	ug/kg
DIMETHYLPHTHALATE	BDL	16000	
DI-N-BUTYLPHTHALATE	BDL	16000	ug/kg
DINITROBENZENES	BDL	16000	
2,4-DINITROTOLUENE	BDL		ug/kg
2,6-DINITROTOLUENE	BDL	16000	
DI-N-OCTYLPHTHALATE	BDL	16000	ug/kg
FLUORANTHENE	EST 16000	16000	ug/kg Page

Lab Sample ID: A244475

EMS HERITAGE LABORATORIES, INC.

Parameter	Result 18000	Det. Limit 16000	Units ug/kg
FLUORENE		16000	ug/kg
HEXACHLOROBENZENE	BDL	16000	ug/kg
HEXACHLOROBUTAD I ENE	BDL	16000	ug/kg ug/kg
HEXACHLOROCYCLOPENTAD1ENE	BDL	16000	
HEXACHLOROETHANE	BDL		ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	16000	ug/kg
ISOPHORONE	BDL	16000	ug/kg
2-METHYLNAPHTHALENE	65000	16000	ug/kg
NAPHTHALENE	120000	16000	ug/kg
2-NITROANILINE	BDL	80000	ug/kg
B-NITROANILINE	BDL	80000	ug/kg
4-NITROANILINE	BDL	80000	ug/kg
NITROBENZENE	BDL	16000	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	16000	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	16000	ug/kg
PHENANTHRENE	54000	16000	ug/kg
2-PICOLINE	BDL	80000	ug/kg
PYRENE	23000	16000	ug/kg
PYRIDINE	BDL	80000	ug/kg
TETRACHLOROBENZENES	BDL	16000	ug/kg
	BDL	80000	ug/kg
TOLUENEDIAMINE	BDL	16000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	80000	ug/kg
BENZOIC ACID	BDL	16000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	16000	ug/kg
2-CHLOROPHENOL		16000	ug/kg
2,4-DICHLOROPHENOL	BDL	16000	ug/kg
2,4-DIMETHYLPHENOL	BDL	80000	
4,6-DINITRO-2-METHYLPHENOL	BDL		ug/kg
2,4-DINITROPHENOL	BDL	80000	ug/kg
2-METHYLPHENOL	BDL	16000	ug/kg
4-METHYLPHENOL	BDL	16000	ug/kg
2-NITROPHENOL	BDL	16000	ug/kg
4-NITROPHENOL	BDL	80000	ug/kg
PENTACHLOROPHENOL	BDL	80000	ug/kg
PHENOL	BDL	16000	ug/kg
TETRACHLOROPHENOL	BDL	16000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	16000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	16000	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		% Rec
PHENOL-D5	*		% Rec
NITROBENZENE-D5	***************************************		% Rec
2-FLUOROBIPHENYL	*		% Rec
2,4,6-TRIBROMOPHENOL	*		% Rec
TERPHENYL-D14	*		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3550 Analyst: G. WILSON Analysis Date: 30-DEC-91		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.94	Det. Limit	Units Grams
FINAL VOLUME	5		m£

POLYNUCLEAR AROMATIC HYDROCARBONS BY HPL Analyst: T. COFFELT Analysis Date: 02-JAN-9	P2 Instrument: HPLC	Test: 0630.0.0	
Parameter	Result	Det. Limit	Units
NAPHTHALENE	200	1.0	mg/kg
ACENAPHTHYLENE	8.6	1.6	mg/kg
ACENAPHTHENE	67	1.0	mg/kg
FLUORENE	5]	0.12	mg/kg
PHENANTHRENE	99	1.0	mg/kg
ANTHRACENE	31	0.14	mg/kg
FLUORANTHENE	100 130	0.14	mg/kg
PYRENE	60 100	0.50	mg/kg
BENZ (A) ANTHRACENE	33	0.86	mg/kg
CHRYŠEŃE	22	0.20	mg/kg
BENZO(B)FLUORANTHENE	14	0.20	mg/kg
BENZO(K)FLUORANTHENE	12	0.080	mg/kg
BENZO(A)PYRENE	14 35	1.5	mg/kg
DIBENŻO(A,H)ANTHRACENE	BDL	0.56	mg/kg
BENZO(G,H,I)PERYLENE	14	0.94	mg/kg
INDENO(1,2,3-CD)PYRENE	9.2	0.20	mg/kg

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC

ANALYSIS.

AMENDED REPORT 4/30/92, GAB.

Sample Comments

DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED REPORT 4/30/92, GAB.

* See Note for Parameter BDL Below Detection Limit

EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244476
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 10-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 29-APR-92		pled -91 10:20

Report To

KATHLEEN A. BLAINE
JOHN MATHES AND ASSOCIATES
210 WEST SAND BANK ROAD
P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-15-SO2 DESCRIPTION: 33'-35' CLEAN

PHENOLS DISTILLATION SW846-9065 Analyst: R. RIFE Analysis Date: 03-JAN-92	2	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

PHENOLS 4AAP (AUTOMATED Analyst: J. GRIFFIN) SW846-9066 Analysis Date: 07-JAN-92	Instrument: AUTO-ANALYZER	Test: 0405.7	.0
Prep: PHENOLS DISTILLATION SW84				
	rameter	Result	Det. Limit	Units

CYANIDE DISTILLATION SW846-9010		Test: P101.	/ n
Analyst: J. GRIFFIN Analysis Date: 30-DEC-	71 Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
ETNAL VOLUME	250		mL.

CYANIDE, TOTAL (AUTOMATED) SW846-90 Analyst: J. GRIFFIN Analysis Date: 3 Prep: CYANIDE DISTILLATION SW846-9010 P101.4.0	30-DEC-91 Instrument: AUTO-ANALYZER	Test: G101.4	0
Parameter	Result	Det. Limit	Units
	BDL	0.25	mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR SW846	-3550	Test: P503.7	7 0
Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Parameter INITIAL WEIGHT OR VOLUME	Result 26.63	Det. Limit	Units Grams

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503		7 + 0507 7	0
Analyst: C. BRODERICK Analysis Date: 27-DEC-91		Test: G503.7	.0
Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-35			
Parameter PETROLEUM HYDROCARBONS	Result BDL	Det. Limit	Units mg/kg

Lab Sample ID: A244476

	Test: G301.1.	U
Result 1600	Det. Limit 1000	Units mg/kg
	11000000	No.

OLATILE ORGANICS SW846-8240 Analyst: H. WILLIAMS Analysis Date: 24-DEC-91	Instrument: GC/MS VOA	Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
CETONE	BDL	1.2	mg/kg
CROLEIN	BDL	3.1	mg/kg
CRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
I,2-DICHLOROETHANE	BDL	0.31	mg/kg
I,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.63	mg/kg
2-HEXANONE	BDL	0.31	mg/kg
METHYLENE CHLORIDE	BDL	0.63	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE		0.31	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL		
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	0, 0
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICULODOETHANE DA	109		% Rec
DICHLOROETHANE-D4	96	111111111111111111111111111111111111111	% Rec
TOLUENE-D8	101		% Rec

1:63 DILUTION

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 24-DEC-9		Test: P236.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.07	Det. Limit	Units Grams
FINAL VOLUME			ML

EMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACI Analyst: J. ELLIS Analysis Date: 08-JAN-9 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3	2 Instrument: GC/MS SVOA	Test: 0505.3.0	
Parameter	Result	Det. Limit	Units
CENAPHTHENE	2700	330	ug/kg
ICENAPHTHYLENE	BDL	330	ug/kg
NTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A) PYRENE	BDL	330	ug/kg
BENZO(B) FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K) FLUORANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg
1-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL		ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	
FLUORANTHENE	EST 220	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	550	330	ug/kg
NAPHTHALENE	1300	330	ug/kg
NAPHTHALENE 2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg

Lab Sample ID: A244476

Parameter	Result	Det. Limit	Units
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	470	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	EST 220	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	77		% Rec
PHENOL-D5	77	Property of the Control of the Contr	% Rec
NITROBENZENE-D5	77		% Rec
2-FLUOROBI PHENYL	86		% Rec
2,4,6-TRIBROMOPHENOL	74		% Rec
TERPHENYL-D14	90		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3550 Analyst: G. WILSON Analysis Date: 30-DEC-91		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.90	Det. Limit	Units Grams
ΤΝΔΙ ΥΩΙΙΜΕ	5		mL

POLYNUCLEAR AROMATIC HYDROCARBONS BY HE Analysis T. COFFELT Analysis Date: 02-JAN Prep: SONICATION EXTRACTION FOR ORGANICS SW846-3550	-92 Instrument: HPLC	Test: 0630.0.0
Parameter NAPHTHALENE	Result 0.98	Det. Limit Units 0.005 mg/kg
ACENAPHTHYLENE	BDL	0.008 mg/kg
ACENAPHTHENE	0.25	0.005 mg/kg
FLUORENE	0.17	0.0006 mg/kg
PHENANTHRENE	0.39	0.005 mg/kg
ANTHRACENE	0.12	0.0007 mg/kg
FLUORANTHENE	0.50	0.0007 mg/kg
PYRENE	0.40	0.0025 mg/kg
BENZ (A) ANTHRACENE	0.11	0.0043 mg/kg
CHRYSENE	0.17	0.001 mg/kg

Lab Sample ID: A244476

Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	0.001	mg/kg
RENZO (K) EL UORANTHENE	BDL	0.0004	mg/kg
BENZO(A) PYRENE	0.29	0.0077	mg/kg
DIBENZO(A.H)ANTHRACENE	BDL	0.0028	mg/kg
BENZO(G,H,I)PERYLENE	0.065	0.0047	mg/kg
INDENO(1.2.3-CD)PYRENE	0.055	0.001	mg/kg

Sample Comments

DIFFERENCES BETWEEN SW-846 METHOD 8310 AND 8270 ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THOSE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS. AMENDED REPORT 4/29/92, GAB.

BDL Below Detection Limit EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

HaBusch

Service Location HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	A244469
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 14-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 08-MAY-92		oled -91 11:45

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ACCOUNTS PAYABLE
ILLINOIS POWER COMPANY
P.O. BOX 511
DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-20-S01

DESCRIPTION: 07'-08' IMPACTED

HENOLS DISTILLATION SW846-9065 Analyst: R. RIFE Analysis Date: 06-JAN-5	92	Test: P405.	7.0
Parameter	Result	Det. Limit	Units Grams
NITIAL WEIGHT OR VOLUME	10		ui uiis

Analyst: J. GRIFFI	AUTOMATED) SW846-9066 N Analysis Date: 07-JAN- TILLATION SW846-9065 P405.7.0	92 Instrument: AUTO-ANALYZER	Test: 0405.7	0
PHENOLS	Parameter	Result BDL	Det. Limit 0.1	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 30-DEC-9	1	Test: P101.4	0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL

Analyst: J. GRIF		91 Instrument: AUTO-ANALYZER	Test: G101.4	.0
Prep: CYANIDE DI	STILLATION SW846-9010 P101.4.0			I
CYANIDE	Parameter	Result	Det. Limit 0.25	units mg/kg

ONICATION EXTRACTION FOR ORGANICS BY IR SW Analyst: C. BRODERICK Analysis Date: 27-DEC-91	1010 0000	Test: P503.7	7.0
Parameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	25.94		Grams

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503 Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-35	Instrument: IR	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result BDL	Det. Limit	Units mg/kg

Lab Sample ID: A244469

HEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1.0)
Parameter HEMICAL OXYGEN DEMAND	Result 2000	Det. Limit 1000	Units mg/kg
:100 DILUTION			
AA OR ICP ACID DIGESTION OF S/S/S SAMPLES S Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	SW846-3050	Test: P129.7.	000000000000000000000000000000000000000
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES S Analyst: J. VANSKYOCK Analysis Date: 09-JAN-92	SW846-3050	Test: P129.7.	1
Parameter INITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050	nstrument: ICP	Test: M104.3.	0
Parameter BARIUM	Result 97.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050	nstrument: ICP) P129.7.0	Test: M108.3.	0
Parameter CADMIUM	Result 0.62	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 07-JAN-92 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050	nstrument: ICP) P129.7.0	Test: M110.3.	0
Parameter CHROMIUM	Result 13.	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 09-JAN-92 I Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M112.3	.0
Parameter COPPER	Result 13.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305		Test: M115.3	.0
Parameter IRON	Result 15000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 06-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305		Test: M116.3	-0
Parameter	Result	Det. Limit	Units

Lab Sample ID: A244469

		Lab Sample ID: A24440
IANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30	Instrument: ICP 050 P129.7.0	Test: M119.3.0
Parameter MANGANESE	Result 460	Det. Limit Units 1.0 mg/kg
NICKEL ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 09-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30	Instrument: ICP 050 P129.7.1	Test: M122.3.0
Parameter NICKEL	Result 19.	Det. Limit Units 1.0 mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3	Instrument: ICP 050 P129.7.0	Test: M139.3.0
Parameter ZINC	Result 54.	Det. Limit Units 2.0 mg/kg
GFAA ACID DIGESTION OF S/S/S SAMPLES SW846 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91	i-3050	Test: P130.7.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date: 02-JAN-92 Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P1	Instrument: GFAA 30.7.0	Test: M103.2.0
Parameter ARSENIC 1:5 dilution	Result 3.6	Det. Limit Units 1.0 mg/kg
MERCURY CVAA ACID DIGESTION OF S/S/S SAMP	LES SW846-7471 MOD	Test: P131.7.0
Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 0.4 100	Det. Limit Units Grams mL
MERCURY CVAA SW846-7471 MOD		Test: M120.2.0
Analyst: K. HACK Analysis Date: 26-DEC-91	5-7471 MOD P131.7.0	
Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW840 Parameter	Result BDL	Det. Limit Units 0.13 mg/kg
Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240	6-7471 MOD P131.7.0 Result BDL	Det. Limit Units 0.13 mg/kg
Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240	A Part Section 1	Det. Limit Units 0.13 mg/kg Test: 0510.3.0 Det. Limit Units 1.2 mg/kg 3.1 mg/kg 4.4 mg/kg
Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 08-JAN-92 Parameter ACETONE ACROLEIN	Result BDL Instrument: GC/MS VOA Result BDL BDL BDL BDL	Det. Limit Units 0.13 mg/kg Test: 0510.3.0 Det. Limit Units 1.2 mg/kg 3.1 mg/kg

Lab Sample ID: A244469

HERITAGE LABORATORIES, INC.

Parameter	Result	Det. Limit	Units
CHLOROFORM	BDL	0.31 0.63	mg/kg
CHLOROMETHANE	BDL	0.31	mg/kg mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL		mg/kg
,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
L,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZEN E	BDL	0,31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDI	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0,31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			4
DICHLOROETHANE-D4	93		% Rec
TOLUENE-D8	109	71	% Rec
BROMOFLUOROBENZENE	99		% Rec
PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY	The state of the s		
		THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRE	

GC/MS SONICATION EXTRACTION FOR ORGANICS Apalyst: G. HUGHS Analysis Date: 23-DEC-9		Test: P236.4	0
Analyst: G. HUGHS Analysis Date: 23-DEL-9 Parameter INITIAL WEIGHT OR VOLUME	Result 30.30	Det. Limit	Units Grams
FINAL VOLUME			mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: 11-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	92 Instrument: GC/MS SVOA -3550 P236.4.0	Test: 0505.3.	0
Parameter ACFNAPHTHENE	Result	Det. Limit	Units
	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO (A) PYRENE	BDL	330	ug/kg
BENZO(B)FLUORANTHENE	BDL BDL	330	ug/kg
BENZO(G,H,I)PERYLENE		330	ug/kg

HERITAGE LABORATORIES, INC.			
Parameter	Result	Det. Limit	Units
BENZO(K)FLUORANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	EST 270	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
Z-UNLURUNAPHIHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
1,2-DICHLOROBENZENE		330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg ug/kg
1,4-DICHLOROBENZENE	BDL	660	
3,3'-DICHLOROBENZIDINE	BDL		ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
FLUORANTHENE	BDL	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL		ug/kg
ISOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE		330	ug/kg
NAPHTHALENE	BDL	1600	ug/kg
2-NITROANILINE	BDL		ug/kg
3-NITROANILINE	BDL	1600	
4-NITROANILINE	BDL		ug/kg
NITROBENZENE	BDL	330	ug/kg
NATEDOCO DEDUCANIA AMENIC	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	
PHENANTHRENE	DUL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
DENZOTE ACTO	BDL	1600	
BENZOIC ACID	BDL	330	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	
2-CHLOROPHENOL	BDL	330	
2,4-DICHLOROPHENOL	BDL	330	
2,4-DIMETHYLPHENOL	BDL	1600	ug/kg
4,6-DINITRO-2-METHYLPHENOL		1600	
2,4-DINITROPHENOL	BDL	330	ug/kg
2-METHYLPHENOL	BDL	330	Page 5

Lab Sample ID: A244469

Parameter	Result	Det. Limit	Units
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
I-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL		330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	89		% Rec
PHENOL-D5	80		% Rec
VITROBENZENE-D5	92		% Rec
2-FLUOROBIPHENYL	82		% Rec
2,4,6-TRIBROMOPHENOL	79		% Rec
TERPHENYL-D14	85		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3550 Analyst: B. SWEENEY Analysis Date: 23-DEC-91		Test: P236.1	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 31.61	Det. Limit	Units Grams
TNAL VOLUME	5	11111111111111111111111111111111111111	mL

Analyst: T. COFFELT Analysis Date: 28-DEC	Result	Det. Limit Units
NAPHTHALENE	BDL	.005 mg/kg
ACENAPHTHYLENE	0,16	.008 mg/kg
ACENAPHTHENE	0.12	.005 mg/kg
FLUORENE	BDL	.0006 mg/kg
PHENANTHRENE	BDL	.005 mg/kg
ANTHRACENE	BDL	.0007 mg/kg
FLUORANTHENE	0.10	.0007 mg/kg
PYRENE	0.14	.0025 mg/kg
BENZ (A) ANTHRACENE	0.066	.0043 mg/kg
CHRYSENE	BDL	.001 mg/kg
BENZO(B)FLUORANTHENE	BDL	.001 mg/kg
BENZO(K) FLUORANTHENE	BDL	.0004 mg/kg
BENZO(A)PYRENE	BDL	.0077 mg/kg
DIBENZO(A,H)ANTHRACENE	BDL	.0028 mg/kg
BENZO(G,H,I)PERYLENE	BDL	.0047 mg/kg
INDENO(1,2,3-CD)PYRENE	BDL	.001 mg/kg

CORRECTED DETECTION LIMITS.

Sample Comments

SAMPLE NOT HOMOGENEOUS (NI)

Below Detection Limit BDL

Estimated Value **EST**

IDEM Drinking Water Certification Number C-49-01

Lab Sample ID: A244469

Sample Comments

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Service Location HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project Lab I 638 A2444	
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 14-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 08-MAY-92		pled -91 14:10

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-20-S02 DESCRIPTION: 17'-18' CLEAN

PHENOLS DISTILLATION SW846-9065		Test: P405.7	7 N
Analyst: L. MATTINGLY Analysis Date: 30-DEC-9 Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: J. GRIF	(AUTOMATED) SW846-9066 FIN Analysis Date: 31-DEC- STILLATION SW846-9065 P405.7.0	91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result BDL	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 30-DEC-	91	Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
TNAL VOLUME	250		mL

CYANIDE, TOTA Analyst: J. GRIF	AL (AUTOMATED) SW846-9012 FIN Analysis Date: 30-DEC-	91 Instrument: AUTO-ANALYZER	Test: G101.4	.0
Prep: CYANIDE DI	STILLATION SW846-9010 P101.4.0			Τ
CYANIDE	Parameter	Result BDL	Det. Limit 0.25	Units mg/kg

Analyst: C. BRODERICK Analysis Date: 27-DEC-9	21	Test: P503.	7.0
Parameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	25.81		Grams

TOTAL PETROLEUM HYDROCARBONS BY IR SM 50 Analyst: C. BRODERICK Analysis Date: 27-DEC-9	1 Instrument: IR	Test: G503.7	.0
Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3	550 P503.7.0		
Parameter PFTROLFUM HYDROCARBONS	Result BDL	Det. Limit	Units mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1	.0
Parameter CHEMICAL OXYGEN DEMAND	Result 2300	Det. Limit 1000	Units mg/kg
1:100 DILUTION			

OLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 08-JAN-92 Instrume	nt: GC/MS VOA	Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
CETONE	BDL	1.2	mg/kg
CROLEIN	BDL	3.1	
CRYLONITRILE	BDL	4.4	mg/kg
DENZENE	BDL	0.31	mg/kg
ROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
ARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	
FLUOROTRICHLOROMETHANE		0.63	
2-HEXANONE	BDL	0.03	CONTRACTOR CONTRACTOR CONTRACTOR
METHYLENE CHLORIDE	BDL		
METHYL ETHYL KETONE	BDL	0.63	
4-METHYL-2-PENTANONE	BDL	0,63	
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	5	
TOLUENE	BDL	0.31	
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	
1,1,1-TRICHLOROETHANE	BDL	0.31	
1,1,2-TRICHLOROETHANE	BDL	0.31	
TRICHLOROETHENE	BDL	0.31	
VINYL ACETATE	BDL	0.63	
VINYL CHLORIDE	BDL	0.63	
	BDL	0.31	mg/kg
XYLENE (TOTAL)			
SURROGATE RECOVERY			
DICHLOROETHANE-D4	100		% Rec
	105		% Rec
TOLUENE-D8	97		% Rec
BROMOFLUOROBENZENE			
PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY CAPILLARY COLUMN METHOD 8260 ON THIS INSTRUMENT	****		

1:63 DILUTION FACTOR SAMPLE WAS RUN OUTSIDE OF HOLDING TIME.

GC/MS SONICATION EXTRACTION FOR ORGANICS		Test: P236.	4.0
Analyst: G. HUGHS Analysis Date: 23-DEC-9 Parameter INITIAL WEIGHT OR VOLUME	Result 30.09	Det. Limit	Units Grams
FINAL VOLUME			mL

EMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACI Analyst: J. ELLIS Analysis Date: 11-JAN-5 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-	22 Instrument: GC/MS SVUA	Test: 0505.3.0	
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	330	ug/kg
CENAPHTHYLENE	BDL	330	ug/kg
NTHRACENE	BDL	330	ug/kg
ENZ (A) ANTHRACENE	BDL	330	ug/kg
ENZ(A) ANTINACENE ENZO(A) PYRENE	BDL	330	ug/kg
ENZO(A)FILUORANTHENE	BDL	330	
BENZO(G, H, I) PERYLENE	BDL	330	ug/kg
ENZO(K) FLUORANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	1600	330	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
I-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	
DIBENZOFURAN	BDL	330	ug/kg
I,2-DICHLOROBENZENE	BDL	330	ug/kg
I,3-DICHLOROBENZENE	BDL	330	ug/kg
I,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	
2,4-DINITROTOLUENE	BDL	330	
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	
FLUORANTHENE	BDL	330	
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	BDL	330	
HEXACHLOROCTCLOFENTADTENE HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	
ISOPHORONE	BDL	330	
2-METHYLNAPHTHALENE	BDL	330	
	BDL	330	ug/kg
NAPHTHALENE 2-NITROANILINE	BDL		ug/kg

Lab Sample ID: A244470

HERITAGE LABORATORIES, INC.

Parameter	Result	Det. Limit	Units
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL		ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	90		% Rec
PHENOL-D5	81		% Rec
NITROBENZENE-D5	81		% Rec
2-FLUOROBIPHENYL	84		% Rec
2,4,6-TRIBROMOPHENOL	58		% Rec
TERPHENYL-D14	89		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846 Analyst: B. SWEENEY Analysis Date: 23-DEC-9		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.45	Det. Limit	Units Grams
INAL VOLUME	5		mL

Parameter	Result	Det. Limit Units
NAPHTHALENE	BDL	000 mg/kg
ACENAPHTHYLENE	RD	.005 mg/kg
ACENAPHTHENE	BDL	.005 mg/kg
FLUORENE	BDL	.0006 mg/kg
PHENANTHRENE	0.014	.005 mg/kg
ANTHRACENE	BDL	.0007 mg/kg
FLUORANTHENE	BDL	.0007 mg/kg
PYRENE	BDI	.0025 mg/kg
	BDI	.0043 mg/kg
BENZ (A) ANTHRACENE	PNI	001 mg/kg

Lab Sample ID: A244470

Parameter	Result	Det. Limit Units
BENZO(B)FLUORANTHENE	BDL	.001 IIIg/ kg
	BDL	.0004 mg/kg
BENZO(A)PYRENE	BDL	.00// mg/kg
)TBENŻO(A.H)ANTHRACENE	BDL	.0028 mg/kg
BENZO(G,H,I)PERYLENE	BDL	.0047 mg/kg
INDENO(1,2,3-CD)PYRENE	BDL	.001 mg/kg
AMENDED REPORT 5/8/92, GAB.		
CORRECTED DETECTION LIMITS.		

Sample Comments

BDL Below Detection Limit

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Habusch

Service Location EMS_HEDITAGE_LARORATORIESINC	Received 20-DEC-91	Project 638	Lab ID A244471
S HERITAGE LABORATORIES, INC. DI W. MORRIS ST. DIANAPOLIS, IN 46231	Complete 16-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92		pled -91 08:15

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-21-SO1 DESCRIPTION: 03'-08' IMPACTED

PHENOLS DISTILLATION SW846-9065 Analyst: L. MATTINGLY Analysis Date: 30-DEC-	91	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
TNAL VOLUME	100		mL.

Instrument: AUTO-ANALYZER	Test: 0405.7.0
Result RDI	Det. Limit Units 0.1 mg/kg

CYANIDE DISTILLATION SW846-9010			
Analyst: J. GRIFFIN Analysis Date: 30-DEC-	21	Test: P101.4	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		-mL

Analyst: J. GRIF	AL (AUTOMATED) SW846-9012 FIN Analysis Date: 30-DEC- STILLATION SW846-9010 P101.4.0	91 Instrument: AUTO-ANALYZER	Test: G101.4.0	
CVANTOE	Parameter	Result 5.1	Det. Limit	Units mg/kg

Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Parameter Result	1222 / 124	_
INITIAL WEIGHT OR VOLUME 26.58	Det. Limit	Units Grams

TOTAL PETROLEUM HYDROCARBONS BY IR SM 5031 Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-355	Instrument: IR	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result 760	Det. Limit	Units mg/kg

		Lab Sample 11	. 12777
CHEMICAL OXYGEN DEMAND EPA 410.4 Analysis K. FULLMER Analysis Date: 27-DEC-9	ı	Test: G301.1	.0
CHEMICAL OXYGEN DEMAND 1:100 DILUTION	5100 Result	Det. Limit 1000	Units mg/kg
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLI Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	ES SW846-3050	Test: P129.7	.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLI Analyst: J. VANSKYOCK Analysis Date: 09-JAN-92	ES SW846-3050	Test: P129.7	.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-	Instrument: ICP 3050 P129.7.0	Test: M104.3	.0
Parameter BARIUM	Result 64.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M108.3.	.0
Parameter CADMIUM	Result 0.65	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 07-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M110.3.	0
Parameter CHROMIUM	Result 77.	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 09-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF \$/\$/\$ SAMPLES SW846-		Test: M112.3.	0
Parameter COPPER	Result 13.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M115.3.	0
Parameter IRON	Result 16000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 06-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M116.3.	0
Parameter LEAD	Result 18.	Det. Limit 5.0	Units mg/kg

Lab Sample ID: A244471

LIIS HERITAGE LABORATURIES, INC.		Lab Sample ID: A2444
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF \$/\$/\$ \$/	te: 31-DEC-91 Instrument: ICP AMPLES SW846-3050 P129.7.0	Test: M119.3.0
MANGANESE Parameter	Result 390	Det. Limit Units
	350	1.0 mg/kg
NICKEL ICP SW846-6010 Analyst: A. HILSCHER Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/S/S S/	te: 09-JAN-92 Instrument: ICP AMPLES SW846-3050 P129.7.1	Test: M122.3.0
NICKEL Parameter	Result 20.	Det. Limit Units 1.0 mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION OF S/S/S SA	e: 31-DEC-91	Test: M139.3.0
ZINC	Result 51.	Det. Limit Units 2.0 mg/kg
GFAA ACID DIGESTION OF S/S/S SAM Analyst: J. VANSKYOCK Analysis Dat	PLES SW846-3050 e: 23-DEC-91	Test: P130.7.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date	e: 02-JAN-92 Instrument: GFAA	Test: M103.2.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES	SW846-3050 P130.7.0	
Parameter ARSENIC 1:5 dilution	6.0 Result	Det. Limit Units 2.5 mg/kg
Parameter ARSENIC 1:5 dilution	6.0 Result 6.0 /S/S SAMPLES SW846-7471 MOD	5 TO THE STATE OF
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date Parameter	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result	2.5 mg/kg
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date Parameter INITIAL WEIGHT OR VOLUME	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4	2.5 mg/kg Test: P131.7.0
ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result	Z.5 mg/kg Test: P131.7.0 Det. Limit Units
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date Parameter INITIAL WEIGHT OR VOLUME	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 0.4 100 e: 26-DEC-91 Instrument; CVAA	Z.5 mg/kg Test: P131.7.0 Det. Limit Units Grams
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF S/S/S: Parameter	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result	Test: P131.7.0 Det. Limit Units Grams ML Test: M120.2.0 Det. Limit Units
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF S/S/S S Parameter MERCURY	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0
ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF \$/\$/\$ S. Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result	Test: P131.7.0 Det. Limit Units Grams ML Test: M120.2.0 Det. Limit Units
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF S/S/S: Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Parameter	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result Result	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units 0.13 mg/kg Test: 0510,3.0 Det. Limit Units
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF \$/\$/\$ S. Parameter MERCURY OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Parameter ACETONE	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL Result BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units 0.13 mg/kg Test: 0510.3.0 Det. Limit Units mg/kg
Parameter ARSENIC I:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF S/S/S S Parameter MERCURY OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Parameter ACETONE CROLEIN	Result 6.0 /S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL Result BDL Result BDL Result BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg Test: 0510.3.0
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF \$/\$/\$ S Parameter MERCURY MERCUR	Result 6.0 75/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL BDL BDL BDL BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units 0.13 mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 31 mg/kg 44 mg/kg
Parameter ARSENIC I:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date INITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF S/S/S S Parameter MERCURY MOD Analysis Date Parameter MERCURY MANALYSIS DATE MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MANALYSIS DATE MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MANALYSIS DATE MERCURY MERCURY MERCURY MERCURY MANALYSIS DATE MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MANALYSIS DATE MANALYSIS DATE MERCURY MANALYSIS DATE MANALYSIS DATE MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MOD MANALYSIS DATE MANALYSIS DATE MANALYSIS DATE MERCURY MOD MERCURY MERCURY MOD MERCURY MOD MANALYSIS DATE MOD MANALYSIS DATE MOD MANALYSIS DATE MOD MERCURY MOD MERCURY MOD MERCURY MOD MANALYSIS DATE MOD MANALYSIS DATE MOD MOD MERCURY MOD MOD MOD MERCURY MOD MOD MOD MOD MOD MOD MOD MO	Result 6.0 /S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL BDL BDL BDL BDL BDL BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 31 mg/kg 44 mg/kg 3.1 mg/kg
Parameter ARSENIC I:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Analysis Date INITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF S/S/S Parameter MERCURY MOLITIE ORGANICS SW846-8240 Analysis Date Parameter MERCURY MERCURY MERCURY MODITIE ORGANICS SW846-8240 Analysis Date Parameter MERCURY MERCURY MODITIE ORGANICS SW846-8240 Analysis Date Parameter MERCURY MERCURY MODITIE ORGANICS SW846-8240 Analysis Date Parameter MODITIE ORGANICS SW846-8240 Analysis Date Parameter	Result 6.0 75/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL BDL BDL BDL BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 31 mg/kg 44 mg/kg 3.1 mg/kg 3.1 mg/kg 3.1 mg/kg 3.1 mg/kg 3.1 mg/kg 3.1 mg/kg
Parameter ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF S/S/S: Parameter MERCURY MODITIES MERCURY MERCURY MERCURY MODITIES MODITIES MERCURY MODITIES MODITIES MERCURY MODITIES MERCURY MODITIES MERCURY MODITIES MODITIES MERCURY MODITIES MODITIE	Result 6.0 /S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL BDL BDL BDL BDL BDL BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 3.1 mg/kg
ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF S/S/S S. Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE ACETONE ACETONE ACROLEIN ACRYLONITRILE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMOTORM BROMOMETHANE CARBON DISULFIDE	Result 6.0 /S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL BDL BDL BDL BDL BDL BDL BDL	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510,3.0 Det. Limit Units mg/kg 3.1 mg/kg
ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF \$/\$/\$ S. Parameter MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY MERCURY MERCURY MERCURY MERCURY MANALYSIS Date Parameter MERCURY MERCURY	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 3.1 mg/kg
ARSENIC 1:5 dilution MERCURY CVAA ACID DIGESTION OF S. Analyst: K. HACK Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Prep: MERCURY CVAA ACID DIGESTION OF \$/\$/\$ S. Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date	/S/S SAMPLES SW846-7471 MOD e: 26-DEC-91 Result 0.4 100 e: 26-DEC-91 Instrument: CVAA SAMPLES SW846-7471 MOD P131.7.0 Result BDL Result BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7.0 Det. Limit Units Grams mL Test: M120.2.0 Det. Limit Units mg/kg Test: 0510.3.0 Det. Limit Units mg/kg 3.1 mg/kg

Parameter	Result	Det. Limit	Units
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHANE	BDL	3.1	mg/kg
1,2-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL	3.1	mg/kg
1,2-DICHLOROPROPANE	BDL	3.1	mg/kg
ETHYLBENZENE	20	3.1	mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	mg/kg
2-HEXANONE	BDL	6.3	mg/kg
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	mg/kg
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE	BDL	3./1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	8.8	3.1	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
1,1,1-TRICHLOROETHANE	BDL	3.1	mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.7	mg/kg
TRICHLOROETHENE	BDL	3.1	mg/kg
VINYL ACETATE	BDL	6.3	mg/kg
/INYL CHLORIDE	BDL	6.3	mg/kg
(YLENE (TOTAL)	BDL	3.1	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4			<i>o/</i> - D
FOLUENE-D8	96		% Rec
BROMOFLUOROBENZENE	117		% Rec
1:630 DILUTION	1.17		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANIC Analyst: N. ROHADFOX Analysis Date: 24-DEC-		Test: P236.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.02	Det. Limit	Units Grams
INAL VOLUME			mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: 11-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	-3550 P236.4.0		
Parameter ACENAPHTHENE	Result EST 73000	Det. Limit 660	Units ug/kg
ACENAPHTHYL ENE	1300	660	ug/kg
ANTHRACENE	EST 29000	660	ug/kg
BENZ(A)ANTHRACENE	EST 17000	660	ug/kg
BENZO(A)PYRENE	EST 12000	660	ug/kg
BENZO(B)FLUORANTHENE	12000	660	ug/kg
BENZO(G,H,I)PERYLENE	10000	660	ug/kg
BENZO(K)FLUORANTHENE	BDL	660	ug/kg
BENZYL ALCOHOL	BDL	660	ug/kg
BENZYLBUTYLPHTHALATE	BDL	660	ua/ka

Parameter	Provide	Lab Sample ID	
BIS(2-CHLOROETHOXY)METHANE	Result BDL	Det. Limit	Units
BIS(2-CHLOROETHYL)ETHER	BDL	660	01 0
BIS(2-CHLOROISOPROPYL)ETHER	BDL	660	01 0
BIS(2-ETHYLHEXYL)PHTHALATE		660	ug/kg
4-BROMOPHENYLPHENYLETHER	4400	660	ug/kg
	BDL	660	ug/kg
CARBAZOLE	EST 650	660	ug/kg
4-CHLOROANILINE	BDL	660	ug/kg
2-CHLORONAPHTHALENE	BDL	660	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	660	ug/kg
CHRYSENE	EST 11000	660	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	660	ug/kg
DIBENZOFURAN	4700	660	ug/kg
1,2-DICHLOROBENZENE	BDL	660	ug/kg
1,3-DICHLOROBENZENE	BDL	660	ug/kg
1,4-DICHLOROBENZENE	BDL		ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE		1300	ug/kg
	BDL	660	ug/kg
DIMETHYLPHTHALATE	BDL	660	
OI-N-BUTYLPHTHALATE	BDL	660	ug/kg
DINITROBENZENES	BDL	660	
2,4-DINITROTOLUENE	BDL	660	ug/kg
2,6-DINITROTOLUENE	BDL	660	ug/kg
DI-N-OCTYLPHTHALATE	BDL	660	ug/kg
LUORANTHENE	EST 26000	660	ug/kg
LUORENE	EST 27000	660	ug/kg
IEXACHLOROBENZENE	BDL	660	ug/kg
HEXACHLOROBUTAD I ENE	BDL	660	
IEXACHLOROCYCLOPENTADIENE	BDL	660	ug/kg
IEXACHLOROETHANE	BDL		ug/kg
NDENO(1,2,3-CD)PYRENE	8500	660	ug/kg
SOPHORONE		660	ug/kg
-METHYLNAPHTHALENE	BDL	660	ug/kg
	EST 110000	660	ug/kg
IAPHTHALENE	EST 320000	660	ug/kg
-NITROANILINE	BDL	3200	ug/kg
-NITROANILINE	BDL	3200	ug/kg
-NITROANILINE	BDL	3200	ug/kg
IITROBENZENE	BDL	660	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	660	ug/kg
-NITROSO-DI-N-PROPYLAMINE	BDL	660	ug/kg
HENANTHRENE	EST 120000	660	ug/kg
-PICOLINE	BDL	3200	ug/kg
YRENE	EST 58000		ug/kg
YRIDINE		660	ug/kg
ETRACHLOROBENZENES	BDL	3200	ug/kg
	BDL	660	ug/kg
OLUENEDIAMINE	BDL	3200	ug/kg
,2,4-TRICHLOROBENZENE	BDL	660	ug/kg
ENZOIC ACID	BDL	3200	ug/kg
-CHLORO-3-METHYLPHENOL	BDL	660	ug/kg
-CHLOROPHENOL	BDL	660	ug/kg
,4-DICHLOROPHENOL	BDL		ug/kg
,4-DIMETHYLPHENOL	BDL	660	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL	3200	ug/kg
,4-DINITROPHENOL	BDL	3200	
-METHYL PHENOL	BDL	CONTRACTOR OF THE PROPERTY OF	ug/kg
-METHYLPHENOL	BDL		ug/kg
-NITROPHENOL		660	ug/kg
-NITROPHENOL	BDL		ug/kg
-NT I KOLUENOF	BDL	3200	ug/kg

Lab Sample ID: A244471

Parameter	Result	Det. Limit	Units
PENTACHLOROPHENOL	BDL	3200	ug/kg
PHENOL	BDL	660	ug/kg
TETRACHLOROPHENOL	BDL	660	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	660	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	660	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	110		% Rec
PHENOL-D5	96		% Rec
NITROBENZENE-D5	97		% Rec
2-FLUOROBIPHENYL	60		% Rec
2,4,6-TRIBROMOPHENOL	38		% Rec
TERPHENYL-D14	66	**************************************	% Rec

SONICATION EXTRACTION FOR ORGANICS SW846- Analyst: G. WILSON Analysis Date: 30-DEC-91		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.96	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Parameter	Result	Det. Limit	Units
NAPHTHALENE	340	1.0	mg/kg
ACENAPHTHYLENE	10 (600)	1.6	mg/kg
ACENAPHTHENE	90	1.0	mg/kg
FLUORENE	39	harman and a contract the contract of the cont	mg/kg
PHENANTHRENE	130	1.0	mg/kg
ANTHRACENE	41	0.14	mg/kg
FLUORANTHENE	130-6280	0.14	mg/kg
PYRENE	68× (27)	0.50	mg/kg
BENZ(A)ANTHRACENE	48.	0.86	mg/kg
CHRYSENE	33	0.20	mg/kg
BENZO(B)FLUORANTHENE	22	0.20	mg/kg
BENZO(K)FLUORANTHENE	BDL~(180)	0.080	mg/kg
BENZO(A)PYRENE	35 (60)	1.5	mg/kg
DIBENZO(A,H)ANTHRACENE	BDL		mg/kg
BENZO(G,H,I)PERYLENE	9.2	0.94	mg/kg
INDENO(1,2,3-CD)PYRENE	15	0,20	mg/kg

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC ANALYSIS.

AMENDED REPORT 4/30/92, GAB.

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/A Analyst: J. ELLIS Analysis Date: 13-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	-92 Instrument: GC/MS SVOA	Test: 0505.3	.1
Parameter ACENAPHTHENE	Result 46000	Det. Limit	Units
ACENAPHTHYLENE	BDI	26000	ug/kg
ANTHRACENE	EST 18000	26000	ug/kg
BENZ (A) ANTHRACENE	BDL	26000	ug/kg
BENZO(A)PYRENE	BDL	26000	ug/kg

Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	26000	ug/kg
BENZO(G,H,I)PERYLENE	BDL	26000	ug/kg
BENZO(K)FLUORANTHENE	BDL	26000	ug/kg
BENZYL ALCOHOL	BDL	26000	ug/kg
BENZYLBUTYLPHTHALATE	BDL	26000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	26000	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	26000	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	26000	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	26000	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	26000	ug/kg
CARBAZOLE	BDL	26000	ug/kg
4-CHLOROANILINE	BDL	26000	ug/kg
2-CHLORONAPHTHALENE	BDL	26000	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	26000	ug/kg
CHRYSENE	BDL	26000	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	26000	ug/kg ug/kg
DIBENZOFURAN	I BDL	26000	
1,2-DICHLOROBENZENE	BDL	26000	ug/kg
1,3-DICHLOROBENZENE	BDL	26000	010
1,4-DICHLOROBENZENE	BDL		ug/kg
3,3'-DICHLOROBENZIDINE	BDL	26000 52000	
DIETHYLPHTHALATE			ug/kg
	BDL	26000	
DIMETHYLPHTHALATE	BDL	26000	ug/kg
DI-N-BUTYLPHTHALATE	BDL	26000	
DINITROBENZENES	BDL	26000	ug/kg
2,4-DINITROTOLUENE	BDL	26000	01 0
2,6-DINITROTOLUENE	BDL	26000	ug/kg
DI-N-OCTYLPHTHALATE	BDL	26000	DESTRUCTION OF THE PROPERTY OF THE PARTY OF
FLUORANTHENE	EST 23000	26000	ug/kg
FLUORENE	EST 22000	26000	ug/kg
HEXACHLOROBENZENE	BDL	26000	ug/kg
HEXACHLOROBUTADIENE	BDL	26000	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	26000	ug/kg
HEXACHLOROETHANE	BDL	26000	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	26000	ug/kg
ISOPHORONE	BDL	26000	ug/kg
2-METHYLNAPHTHALENE	65000	26000	ug/kg
NAPHTHALENE	190000	26000	ug/kg
2-NITROANILINE	BDL	120000	ug/kg
3-NITROANILINE	BDL	120000	ug/kg
4-NITROANILINE	BDL	120000	ug/kg
NITROBENZENE	BDL	26000	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	26000	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	26000	ug/kg
PHENANTHRENE	64000	26000	ug/kg
2-PICOLINE	BDL	120000	ug/kg
PYRENE	41000	26000	ug/kg
PYRIDINE	BDL	120000	ug/kg
TETRACHLOROBENZENES	BDL	26000	ug/kg
TOLUENEDIAMINE	BDL	120000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	26000	ug/kg
BENZOIC ACID	BDL	120000	
4-CHLORO-3-METHYLPHENOL	BDL	26000	ug/kg
2-CHLOROPHENOL	BDL	26000	ug/kg
2,4-DICHLOROPHENOL	BDL		ug/kg
2,4-DIMETHYLPHENOL	BDL	26000	ug/kg
		26000	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	120000	ug/kg

Lab Sample ID: A244471

,4-DINITROPHENOL		Det. Limit	Units
,	BDL	120000	ug/kg
-METHYLPHENOL	BDL	26000	ug/kg
-METHYLPHENOL	BDL	26000	ug/kg
-NITROPHENOL	BDL	26000	ug/kg
-NITROPHENOL	BDL	120000	ug/kg
ENTACHLOROPHENOL	BDL	120000	ug/kg
HENOL	BDL	26000	ug/kg
ETRACHLOROPHENOL	BDL	26000	ug/kg
,4,5-TRICHLOROPHENOL	BDL	26000	ug/kg
,4,6-TRICHLOROPHENOL	BDL	26000	ug/kg
URROGATE RECOVERY			
-FLUOROPHENOL	*		% Rec
HENOL-D5	*		% Rec
ITROBENZENE-D5			% Rec
-FLUOROBIPHENYL	*		% Rec
,4,6-TRIBROMOPHENOL	*		% Rec
ERPHENYL-D14 :80 DILUTION	*		% Rec

NOTE: * SURROGATES DILUTED OUT

Sample Comments

SAMPLE NOT HOMOGENEOUS (NI)
DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.
AMENDED REPORT 4/30/92, GAB.

* See Note for Parameter BDL Below Detection Limit

EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Service Location HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244472
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete PO Number 14-JAN-92 PO072488-CHAMPAIGN		Number
(317)243-8305	Printed 08-MAY-92		oled ·91 09:20

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE
ILLINOIS POWER COMPANY
P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-21-S02 DESCRIPTION: 20'-23' CLEAN

Analyst: L. MATTINGLY Analysis Date: 30-DEC-	91	Test: P405.	7.0
Parameter NITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
INAL VOLUME	100		m!

Analyst: J. GRIFF	(AUTOMATED) SW846-9066 IN Analysis Date: 31-DEC- TILLATION SW846-9065 P405.7.0	-91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result BDL	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010			
Analyst: J. GRIFFIN Analysis Date: 30-DEC-9	1	Test: P101.	4.0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FINAL VOLUME	250		mL

Analyst: J. GRIFF	L (AUTOMATED) SW846-9012 IN Analysis Date: 30-DEC STILLATION SW846-9010 P101.4.0	-91 Instrument: AUTO-ANALYZER	Test: G101.4	.0
CYANIDE	Parameter	Result BDL	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY I Analyst: C. BRODERICK Analysis Date: 27-DEC-		Test: P503.7	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 26.29	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E			
Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550		Test: G503.7	.0
Parameter	Result	Det. Limit	Units
PETROLEUM HYDROCARBONS	111	10	ma/ka

Analyst: K. FULLMER Analysis Date: 27-DEC-9	1	Test: G301.1	.0
Parameter	Result	Det. Limit	Units
CHEMICAL OXYGEN DEMAND	1400	1000	mg/kg

Analyst: C. BOYLE Analysis Date: 24-DE	C-91 Instrument: GC/MS VOA	Test: 0510.3	.0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLÓRODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
I,2-DICHLOROETHANE	BDL	0.31	mg/kg
I,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL		mg/kg
I,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE		0.31	mg/kg
TETRAHYDROFURAN	BDL	0.31	mg/kg
(**************************************	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)	BDL	0,31	mg/kg
RANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
,1,1-TRICHLOROETHANE	BDL	031	mg/kg
,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
RICHLOROETHENE	BDL	0.31	mg/kg
INYL ACETATE	BDL	0.63	mg/kg
'INYL CHLORIDE	BDL	0.63	mg/kg
YLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
ICHLOROETHANE-D4	104		% Rec
OLUENE-D8	103		% Rec
ROMOFLUOROBENZENE	95		% Rec

1:63 DILUTION

GC/MS SONICATION EXTRACTION FOR ORGANIC Analyst: N. ROHADFOX Analysis Date: 24-DEC-		Test: P236.4	·.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.99	Det. Limit	Units Grams
FINAL VOLUME			in l

Analyst: J. ELLIS Analysis Date: 11-JAN-92 Instrument: GC/MS SVOA Test: 0505.3.0 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 P236.4.0				
Parameter	Result	Det. Limit	Units	
ACENAPHTHENE	BDL	330	ug/kg	
ACENAPHTHYLENE	BDL	330	0, 0	
ANTHRACENE	BDL	330	ug/kg	
BENZ(A)ANTHRACENE	BDL	330		
BENZO(A)PYRENE	BDL	330	ug/kg	
BENZO(B)FLUORANTHENE	BDL	330	ug/kg	
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg	
BENZO(K)FLUORANTHENE	BDL	330	ug/kg	
BENZYL ALCOHOL	BDL	330	ug/kg	
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg	
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg	
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg	
BIS(2-ETHYLHEXYL)PHTHALATE	330	330	ug/kg	
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg	
CARBAZOLE	BDL	330		
4-CHLOROANILINE	BDL	330	ug/kg	
2-CHLORONAPHTHALENE	BDL	330	ug/kg	
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg	
CHRYSENE	BDL	330	ug/kg	
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg	
DIBENZOFURAN	BDL	330	ug/kg	
l,2-DICHLOROBENZENE	BDL	330	ug/kg	
I,3-DICHLOROBENZENE	BDL	330	ug/kg	
l,4-DICHLOROBENZENE	BDL	330	ug/kg	
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg	
DIETHYLPHTHALATE	BDL	330	ug/kg	
DIMETHYLPHTHALATE	BDL	330	ug/kg	
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg	
DINITROBENZENES	BDL	330	ug/kg	
2,4-DINITROTOLUENE	BDL	330	ug/kg	
2,6-DINITROTOLUENE	BDL	330	ug/kg	
DI-N-OCTYLPHTHALATE	BDL	330		
LUORANTHENE	BDL	330	ug/kg	
LUORENE	BDL	330	ug/kg	
IEXACHLOROBENZENE	BDL	330	ug/kg	
IEXACHLOROBUTADI ENE	BDL	330	ug/kg	
IEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg	
EXACHLOROETHANE	BDL	330	ug/kg	
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg	
SOPHORONE	BDL	330	ug/kg	
-METHYLNAPHTHALENE	BDL	330	ug/kg	
APHTHALENE	180	330	ug/kg	
?-NITROANILINE	BDL	1600	ug/kg	
3-NITROANILINE	BDL	1600	ug/kg	

Parameter	Result	Det. Limit	Units
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2=PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	75		% Rec
PHENOL-D5	7.5		% Rec
NITROBENZENE-D5	70		% Rec
2-FLUOROBIPHENYL	78		% Rec
2,4,6-TRIBROMOPHENOL	64		% Rec
TÉRPHENYL-D14	80		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3 Analyst: G. WILSON Analysis Date: 30-DEC-91	550	Test: P236.1	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.91	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Analyst: T. COFFELT Analysis Date: 02-JA		Test: 0630.0.0	
Parameter NAPHTHALENE	0.070	Det. Limit 0.005 m	Units q/kq
ACENAPHTHYLENE	BDL	0.008 m	a/ka
ACENAPHTHENE	0.13	0.005 m	g/kg
FLUORENE	BDL	0.0006 m	a/ka
PHENANTHRENE	0.047	0.005 m	a/ka
ANTHRACENE	BDL	0.0007 m	a/ka
FLUORANTHENE	BDL	0.0007 m	a/ka
PYRENE	BDL	0.0025 m	a/ka
BENZ (A) ANTHRACENE	BDL	0.0043 m	g/kg
CHRYSENE	BDL	0.001 m	a/ka
BENZO(B)FLUORANTHENE	BDL	0.001 m	a/ka

Lab Sample ID: A244472

Parameter	Result	Det. Limit Units
BENZO(K)FLUORANTHENE	BDL	0.0004 mg/kg
BENZO(A)PYRENE	BDL	0.0077 mg/kg
DIBENZO(A,H)ANTHRACENE	BDL	0.0028 mg/kg
BENZO(G,H,I)PERYLENE	BDL	0.0047 mg/kg
INDENO(1,2,3-CD)PYRENE	BDL	0.001 mg/kg
AMENDED REPORT 5/8/92, GAB.		
CORRECTED DETECTION LIMITS.		

Sample Comments

BDL Below Detection Limit

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Hubrisch

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244473
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete PO Number 16-JAN-92 PO072488-CHAMPAIO		
(317)243-8305	Printed 30-APR-92		pled -91 12:00

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-22-S01 DESCRIPTION: 06'-08' IMPACTED

PHENOLS DISTILLATION SW846-9065 Analyst: L. MATTINGLY Analysis Date: 30-DEC-91		Test: P405.7	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
ETNAL VOLUME	100		- mL

Analyst: J. GRIF	(AUTOMATED) SW846-9066 IN Analysis Date: 31-DEC- STILLATION SW846-9065 P405.7.0	91 Instrument: AUTO-ANALYZER	Test: 0405.77	.0
PHENOLS	Parameter	Result BDL	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010			
Analyst: J. GRIFFIN Analysis Date: 30-DEC-9	1	Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
TNAL VOLUME	250		mL.

Parameter	Result	Det. Limit	Units
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 30-DEC-91 Prep: CYANIDE DISTILLATION SW846-9010 P101.4.0	Instrument: AUTO-ANALYZER	Test: G101.4	.0

SONICATION EXTRACTION FOR ORGANICS BY I Analyst: C. BRODERICK Analysis Date: 27-DEC-		Test: P503.7	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.71	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 50 Analyst: C. BRODERICK Analysis Date: 27-DEC-		Test: G503.7	.0
Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-			
Parameter	Result	Det. Limit	Units
PETROLEUM HYDROCARBONS	270	10	mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1	.0
Parameter HEMICAL OXYGEN DEMAND 1:100 DILUTION	Result 4100	Det. Limit 1000	Units
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SWA Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	846-3050	Test: P129.7	.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SWE Analyst: J. VANSKYOCK Analysis Date: 09-JAN-92	846-3050	Test: P129.7	.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M104.3	.0
Parameter BARIUM	Result 29.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M108.3	.0
Parameter CADMIUM	Result BDL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 07-JAN-92 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M110.3	.0
Parameter CHROMIUM	Result	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 09-JAN-92 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M112.3	.0
Parameter COPPER	Result 8.3	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M115.3	.0
Parameter IRON	Result 8100	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 06-JAN-92 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M116.3	.0
	Result	Det. Limit	Units

Lab Sample ID: A244473

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID	
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3		Test: M119.3.	0
MANGANESE Parameter	Result 1200	Det. Limit	Units mg/kg
NICKEL ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 09-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3		Test: M122.3.	0
Parameter NICKEL	Result 20.	Det. Limit	Units mg/kg
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3		Test: M139.3.	.0
Parameter ZINC	Result 28.	Det. Limit 2.0	Units mg/kg
GFAA ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91	6-3050	Test: P130.7.	.0
Parameter INITIAL WEIGHT OR VOLUME TINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date: 02-JAN-92		Test: M103.2.	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P1	130.7.0		
Parameter ARSENIC	Result 2.9	Det. Limit	Units mg/kg
Parameter ARSENIC 1:2 dilution	2.9 Result		mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME	2.9 Result	1.00	mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	LES SW846-7471 MOD O.4 100 Instrument: CVAA	1.00 Test: P131.7	mg/kg Units Grams mL
Parameter ARSENIC I:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter	LES SW846-7471 MOD O.4 100 Instrument: CVAA	Test: P131.7. Det. Limit	mg/kg Units Grams mL
Parameter ARSENIC I:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 MERCURY MERCURY MERCURY MERCURY MERCURY MOD MATILE ORGANICS SW846-8240	2.9 Result 2.9 LES SW846-7471 MOD Result 0.4 100 Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13	mg/kg Units Grams mL Units mg/kg
Parameter ARSENIC I:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY	2.9 Result 2.9 LES SW846-7471 MOD Result 0.4 100 Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL	Test: P131.7. Det. Limit Test: M120.2.	mg/kg Units Grams mL Units mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter	Result 2.9 LES SW846-7471 MOD Result 0.4 100 Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Instrument: GC/MS VOA Result BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2	o Units Grams mL Units mg/kg
Parameter IRSENIC IERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME IERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter IERCURY OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ICETONE ICETONE ICETONE ICETONE ICETONE ICETONE	Instrument: CVAA 6-7471 MOD Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Instrument: GC/MS VOA Result BDL BDL BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1	o Units Grams mL Units mg/kg Units mg/kg mg/kg mg/kg
Parameter IRSENIC IERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME IERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter IERCURY OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ICETONE ICETONE ICEROLEIN ICEROLEIN ICEROLEIN	Instrument: CVAA S-7471 MOD Instrument: CVAA BDL Instrument: GC/MS VOA Result BDL BDL BDL BDL BDL BDL	Test: P131.73 Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3 Det. Limit 1.2 3.1 4.4	o Units Grams mL Units mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Parameter ARSENIC I:2 dilution DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME DIGESTION OF S/S/S SAMPLES SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter DERCURY OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ACETONE ACETONE ACETONE ACEYLONITRILE BENZENE	Instrument: CVAA 5-7471 MOD Instrument: CVAA 5-7471 MOD P131.7.0 Result BDL Instrument: GC/MS VOA Result BDL BDL BDL BDL BDL BDL BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31	o Units Grams mL Units mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Parameter ARSENIC I:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 MERCURY MARCURY MERCURY MERCURY MERCURY MERCURY MARCURY MERCURY MARCURY MARCURY MARCURY MOD MARCU	LES SW846-7471 MOD Result 0.4 100 Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Instrument: GC/MS VOA Result BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31	ounits Grams mL Units Grams mL Units mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ACETONE ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM	Instrument: CVAA 6-7471 MOD Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Result BDL Result BDL BDL BDL BDL BDL BDL BDL BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31 0.31	Units Grams mL Units Grams mL Units mg/kg Units mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMPANALYST: K. HACK ANALYST: K. HACK ANALYST: Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD ANALYST: K. HACK ANALYSTS Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 ANALYST: C. BOYLE ACETONE ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	Instrument: CVAA 6-7471 MOD Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Instrument: GC/MS VOA Result BDL BDL BDL BDL BDL BDL BDL BDL	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31 0.31 0.63	Units Grams mL Units Grams mL Units mg/kg o Units mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE	Instrument: CVAA S-7471 MOD P131.7.0 Instrument: GC/MS VOA BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7. Det. Limit Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31 0.31 0.63 0.31	Units Grams mL Units Grams mL Units mg/kg Units mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE	LES SW846-7471 MOD Result 0.4 100 Instrument: CVAA 6-7471 MOD P131.7.0 Result BDL Result BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7. Det. Limit Test: M120.2. Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31 0.31 0.63 0.31 0.63 0.31 0.31	Units Grams mL Units Grams mL Units mg/kg Units mg/kg
Parameter ARSENIC 1:2 dilution MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME MERCURY CVAA SW846-7471 MOD Analyst: K. HACK Analysis Date: 26-DEC-91 Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SW846 Parameter MERCURY VOLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 26-DEC-91 Parameter ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON DISULFIDE	Instrument: CVAA S-7471 MOD P131.7.0 Instrument: GC/MS VOA BDL BDL BDL BDL BDL BDL BDL BD	Test: P131.7. Det. Limit Det. Limit 0.13 Test: 0510.3. Det. Limit 1.2 3.1 4.4 0.31 0.31 0.31 0.63 0.31	Units Grams mL Units Grams mL Units mg/kg Units mg/kg

Lab Sample ID: A244473

EMS HERITAGE LABORATORIES, INC.

Parameter	Result	Det. Limit	Units
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	100		% Rec
TOLUENE-D8	100		% Rec
BROMOFLUOROBENZENE	113		% Rec
1:63 DILUTION			

GC/MS SONICATION EXTRACTION FOR ORGANICS	S SW846-3550		
Analyst: N. ROHADFOX Analysis Date: 24-DEC-5	21	Test: P236.	4.0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	30.0	A IN CONTRACT	Grams

Parameter	Result	Det. Limit Units
ACENAPHTHENE	BDL	1300 ug/kg
ACENAPHTHYLENE	BDL	1300 ug/kg
ANTHRACENE	BDL	1300 ug/kg
BENZ(A)ANTHRACENE	BDL	1300 ug/kg
BENZÒ(Á)PYRENE	BDL	1300 ug/kg
BENZO(B)FLUORANTHENE	BDL	1300 ug/kg
BENZO(G,H,I)PERYLENE	BDL	1300 ug/kg
BENZO(K)FLUORANTHENE	BDL	1300 ug/kg
BENZYL ÁLCOHOL	BDL	1300 ug/kg
BENZYLBUTYLPHTHALATE	BDL	1300 ug/kg

Parameter BIS(2-CHLOROETHOXY)METHANE	Result BDL	Det. Limit	Units
DIS(2-CHLOROETHVL) TITLED		1300	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	1300	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	1300	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	4200	1300	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	1300	ug/kg
CARBAZOLE	BDL	1300	ug/kg
4-CHLOROANILINE	BDL	1300	ug/kg
2-CHLORONAPHTHALENE	BDL	1300	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	1300	ug/kg
CHRYSENE	BDL	1300	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	1300	ug/kg
DIBENZOFURAN	BDL		
1,2-DICHLOROBENZENE	BDL	1300	ug/kg
1,3-DICHLOROBENZENE		1300	ug/kg
1 A DICH ODODENZENE	BDL	1300	
1,4-DICHLOROBENZENE	BDL	1300	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	2600	
DIETHYLPHTHALATE	BDL .	1300	ug/kg
DIMETHYLPHTHALATE	BDL	1300	ug/kg
DI-N-BUTYLPHTHALATE	BDL	1300	ug/kg
DINITROBENZENES	BDL	1300	ug/kg
2,4-DINITROTOLUENE	BDL	1300	ug/kg
2,6-DINITROTOLUENE	BDL	1300	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	1300	ug/kg
FLUORANTHENE	BDL	1300	ug/kg
FLUORENE	EST 690	1300	ug/kg
HEXACHLOROBENZENE	BDL		ug/kg
HEXACHLOROBUTADIENE	BDL	1300	ug/kg
HEXACHLOROCYCLOPENTADIENE		1300	ug/kg
	BDL	1300	ug/kg
HEXACHLOROETHANE	BDL	1300	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	1300	ug/kg
ISOPHORONE	BDL	1300	ug/kg
2-METHYLNAPHTHALENE	BDL	1300	ug/kg
NAPHTHALENE	BDL	1300	ug/kg
2-NITROANILINE	BDL	6400	ug/kg
3-NITROANILINE	BDL	6400	ug/kg
4-NITROANILINE	BDL	6400	ug/kg
NITROBENZENE	BDL	1300	ug/kg
N=NITROSO-DIPHENYLAMINE	BDL	1300	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	1300	ug/kg
PHENANTHRENE	1500		ug/kg
2-PICOLINE -	BDL	1300	ug/kg
		6400	ug/kg
PYRENE	BDL	1300	ug/kg
PYRIDINE	BDL	6400	ug/kg
TETRACHLOROBENZENES	BDL	1300	ug/kg
TOLUENEDIAMINE	BDL	6400	ug/kg
I,2,4-TRICHLOROBENZENE	BDL	1300	ug/kg
BENZOIC ACID	BDL	6400	ug/kg
I-CHLORO-3-METHYLPHENOL	BDL	1300	ug/kg
2-CHLOROPHENOL	BDL	1300	ug/kg
2,4-DICHLOROPHENOL	BDL	1300	ug/kg
,4-DIMETHYLPHENOL	BDL	1300	
,6-DINITRO-2-METHYLPHENOL	BDL		ug/kg
A_DINITRO-E-HEITHERNE		6400	ug/kg
2,4-DINITROPHENOL	BDL	6400	ug/kg
P-METHYLPHENOL	BDL	1300	ug/kg
I-METHYLPHENOL	BDL	1300	ug/kg
?-NITROPHENOL	BDL	1300	ug/kg
4-NITROPHENOL	BDL	6400	ug/kg

Lab Sample ID: A244473

Parameter	Result	Det. Limit Uni
PENTACHLOROPHENOL	BDL	6400 ug/k
PHENOL	BDL	1300 tia/b
TETRACHLOROPHENOL	BDL	1300 ug/k
2,4,5-TRICHLOROPHENOL	BDL	1300 ug/k
2,4,6-TRICHLOROPHENOL	BDL	1300 ug/k
SURROGATE RECOVERY		
2-FLUOROPHENOL	88	% Re
PHENOL-D5	76	% Re
NITROBENZENE-D5	72	% Re
2-FLUOROBIPHENYL	80	% Re
2,4,6-TRIBROMOPHENOL	80	% Re
TERPHENYL-D14	88	% Re

SONICATION EXTRACTION FOR ORGANICS SW846- Analyst: G. WILSON Analysis Date: 30-DEC-91	3550	Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.15	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Parameter	Result	Det. Limit	Units
NAPHTHALENE	BDL	.1	mg/kg
ACENAPHTHYLENE	BDL	.16	mg/kg
ACENAPHTHENE	BDL	.1	mg/kg
FLUORENE	2.2	.012	mg/kg
PHENANTHRENE	1.7	.1	mg/kg
ANTHRACENE	BDL	.014	mg/kg
FLUORANTHENE	BDL	.014	mg/kg
PYRENE	BDL	.05	mg/kg
BENZ(A)ANTHRACENE	BDL	.086	mg/kg
CHRYSENE	BDL	.02	mg/kg
BENZO(B)FLUORANTHENE	BDL	.02	mg/kg
BENZO(K)FLUORANTHENE	BDL	.008	mg/kg
BENZO(A)PYRENE	BDL	.15	mg/kg
DIBENZO(A,H)ANTHRACENE	BDL	.056	mg/kg
BENZO(G,H,I)PERYLENE	BDL	.094	mg/kg
INDENÒ(1,2,3-CD)PYRENE	BDL	.02	mg/kg

Sample Comments

SAMPLE NOT HOMOGENEOUS (NI) AMENDED REPORT 4/30/92, GAB.

Below Detection Limit BDL **EST** Estimated Value

IDEM Drinking Water Certification Number C-49-01

Lab Sample ID: A244473

Sample Comments

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	20-DEC-91	A244474
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	13-JAN-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	14-JAN-92	12-DEC-91 14:35

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-22-S02 DESCRIPTION: 20'-23' CLEAN

LOCATION: CHAMPAIGN

Analyst: L. MATTINGLY	Analysis Date: 30-DEC-91		Test: P405.7	. 0
INITIAL WEIGHT OR VOLUME FINAL VOLUME		Result 10 100	Det. Limit	Units Grams mL

PHENOLS	4AAP (AUTOMATED) SW846-9066		
Analyst: J Prep:	. GRIFFIN Analysis Date: 31 PHENOLS DISTILLATION SW846-9065	-DEC-91 Instrument: AUTO-ANALYZER	Test: 0405.7. 0
PHENOLS	Parameter	Result BDL	Det. Limit Units 0.1 mg/kg

CYANIDE DISTILLATION SW Analyst: J. GRIFFIN	Analysis Date: 30-DEC-91		Test: P101.4	. 0
Para INITIAL WEIGHT OR VOLUME FINAL VOLUME	mmeter	Result 10 250	Det. Limit	Units Grams mL

Analyst: J. GRIFFIN	(AUTOMATED) SW846-9012 Analysis Date: 30-DEC-91 DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
CYANIDE	Parameter	Result BDL	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR S Analyst: C. BRODERICK Analysis Date: 27		Test: P503.7	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 26.20 100	Det. Limit	Units Grams mL

TOTAL PETROLEUM HYDROCARBONS BY Analyst: C. BRODERICK A Prep: SONICATION EXTRACTION FO	nalysis Date: 27-DEC-91		Test: G503.7.	0
Perameter PETROLEUM HYDROCARBONS	OR ORGANICS BY IR	Result BDL	Det. Limit	Units mg/kg

Analyst: K. FULLMER	Analysis Date: 27-DEC-91		Test: G301.1.	0
CHEMICAL OXYGEN DEMAND 1:100 DILUTION		Result 1400	Det. Limit 1000	Units mq/kq

Analyst: C. BOYLE	Analysis Date: 24-DEC-91	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter		Result	Det. Limit	Units
ACETONE		BDL	1.2	mg/kg
ACROLEIN		BDL	3.1	mg/kg
ACRYLONITRILE		BDL	4.4	mg/kg
BENZENE		BDL	0.31	mg/kg
BROMODICHLOROMETHANE		BDL	0.31	mg/kg
BROMOFORM		BDL	0.31	mg/kg
BROMOMETHANE		BDL	0.63	mg/kg
CARBON DISULFIDE		BDL		mg/kg
CARBON TETRACHLORIDE		BDL	0.31	mg/kg
CHLOROBENZENE			0.31	mg/kg
		BDL	0.31	mg/kg
CHLOROETHANE		BDL	0.63	mg/kg
CHLOROFORM		BDL	0.31	mg/kg
CHLOROMETHANE		BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE		BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE		BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE		BDL	0.31	mg/kg
l,1-DICHLOROETHANE		BDL	0.31	mg/kg
l,2-DICHLOROETHANE		BDL	0.31	mg/kg
l,1-DICHLOROETHENE		BDL	0.31	mg/kg
1,2-DICHLOROPROPANE		BDL	0.31	mg/kg
THYLBENZENE		BDL	0.31	
FLUOROTRICHLOROMETHANE	//	BDL		mg/kg
2-HEXANONE		BDL	0.31	mg/kg
METHYLENE CHLORIDE			0.63	mg/kg
METHYL ETHYL KETONE		BDL	0.31	mg/kg
		BDL	0.63	mg/kg
-METHYL-2-PENTANONE	- 1	BDL	0.63	mg/kg
STYRENE		BDL	0.31	mg/kg
,1,2,2-TETRACHLOROETHANE		BDL	0.31	mg/kg
TETRACHLOROETHENE		BDL	0.31	mg/kg
TETRAHYDROFURAN		BDL	1.5	mg/kg
OLUENE		BDL	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)		BDL	0.31	mg/kg
RANS-1,3-DICHLOROPROPENE		BDL	0.31	mg/kg
,1,1-TRICHLOROETHANE		BDL	0.31	mg/kg
,1,2-TRICHLOROETHANE		BDL	0.31	mg/kg
RICHLOROETHENE		BDL		
INYL ACETATE		BDL	0.31	mg/kg
INYL CHLORIDE	O		0.63	mg/kg
YLENE (TOTAL)		BDL	0.63	mg/kg
TILLIAL (TOTAL)		BDL	0.31	mg/kg
URROGATE RECOVERY				

Parameter	Result	Det. Limit	Units
ICHLOROETHANE-D4	113		% Rec
OLUENE-D8	112		% Rec
ROMOFLUOROBENZENE	119		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3 Analyst: N. ROHADFOX Analysis Date: 24-DEC-91	3550	Test: P236.4	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 29.99 1.0	Det. Limit	Units Grams mL

Analysis J. ELLIS Analysis Date: Prep: GC/MS SONICATION EXTRACTION FOR O	09-JAN-92 Instrument: GC/MS SVOA RGANICS SW846-3550	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
BENZO(B)FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K)FĹUÓRANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	
BIS(2-CHLOROETHOXY)METHANE	BDL		ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
		330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	790	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL		ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE		330	ug/kg
	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTAD I ENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	BDL	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BÉNZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
-1.1-	DOL	530	ug/ kg
SURROGATE RECOVERY			1000
2-FLUOROPHENOL	65		% Rec
PHENOL-D5	75		% Rec
NITROBENZENE-D5	72		% Rec
2-FLUOROBIPHENYL	83		% Rec
2,4,6-TRIBROMOPHENOL	63		% Rec
TERPHENYL-D14	81		% Rec

SONICATION EXTRACTION Analyst: G. WILSON	FOR ORGANICS SW846- Analysis Date: 3	Test: P236.1	. 0
INITIAL WEIGHT OR VOLUM	rameter 1E	Det. Limit	Units Grams
FINAL VOLUME			l mL

POLYNUCLEAR AROMATIC HYDROCARBONS BY HANALYSTS T. COFFELT ANALYSTS DATE Prep: SONICATION EXTRACTION FOR ORGAN	te: 02-JAN-92 Instrument: HPLC	Test: 0630.0.	0
Parameter	Result	Det. Limit	Units
NAPHTHALENE	BDL	0.005	mg/kg
ACENAPHTHYLENE	BDL	0.008	mg/kg
ACENAPHTHENE	BDL	0.005	mg/kg
FLUORENE	BDL	0.0006	mg/kg
PHENANTHRENE	0.14	0.005	mg/kg
ANTHRACENE	BDL	0.0007	mg/kg

Lab Sample ID: A244474

Parameter	Result	Det. Limit	Units
FLUORANTHENE	BDL	0.0007	mg/kg
PYRFNF	BDL	0.0025	mg/kg
BENZ(A)ANTHRACENE	BDL	0.0043	mg/kg
CHRYSENE	BDL	0.001	mg/kg
BENZO(B)FLUORANTHENE	BDL	0.001	mg/kg
RENZO(K) FLUORANTHENE	BDL	0.0004	mg/kg
BENZO(A)PYRENE	BDL	0.0077	mg/kg
DIBENZO(A.H)ANTHRACENE	BDL	0.0028	mg/kg
BENZO(G,H,I)PERYLENE	BDL	0.0047	mg/kg
	RNI	0.001	mg/kg

Sample Comments

BDL Below Detection Limit

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244479
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 13-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92		pled -91 14:20

Report To

ACCOUNTS PAYABLE

Bill To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-23-S01

DESCRIPTION: 06'-08' IMPACTED LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065			
Analyst: M. GAUGHAN Analysis Date: 23-DEC-91		Test: P405.7	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: J. GRIFF	(AUTOMATED) SW846-9066 IN Analysis Date: 24-DEC- STILLATION SW846-9065 P405.7.0	91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result 7.2	Det. Limit 0.20	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 02-JAN-92		Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL

Analyst: J. GRIFFI	(AUTOMATED) SW846-9012 N Analysis Date: 03-JAN ILLATION SW846-9010 P101.4.0	-92 Instrument: AUTO-ANALYZER	Test: G101.4	.0
CYANIDE	Parameter	Result 14	Det. Limit 0.50	Units mg/kg

Analyst: C. BRODERICK Analysis Date: 27-DEC	-91	Test: P503.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 26.82	Det. Limit	Units Grams
FINAL VOLUME	100		l mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID	: A24447
TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Instru Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550 P503.7	ment: IR .0	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result 2900	Det. Limit	Units mg/kg
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1	.0
Parameter CHEMICAL OXYGEN DEMAND 1:100 DILUTION	Result 10000	Det. Limit 1000	Units mg/kg
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	6-3050	Test: P129.7	.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92	6-3050	Test: P129.7	.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Instru Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P129		Test: M104.3	.0
Parameter BARIUM	Result 77.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Instru Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P129		Test: M108.3	.0
Parameter CADMIUM	Result BDL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Instru Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P129		Test: M110.3	.0
Parameter CHROMIUM	Result 5.3	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Instru Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P125		Test: M112.3	.0
Parameter COPPER	Result 22.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Instru Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P129		Test: M115.3	.0
Parameter IRON	Result 13000	Det. Limit 2.0	Units mg/kg

LEAD ICP SW84 Analyst: M. JAO	6-6010 Analysis Date: 31-DEC-		Test: M116.3.0
LEAD	Parameter	Result 170	Det. Limit Units 5.0 mg/kg

MANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-JAN		Test: M119.3	.0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8	46-3050 P129.7.1 Result	Det. Limit	Units
Parameter	180	1.0	mg/kg

NICKEL ICP SW846-6010 Analyst: A. HILSCHER Prep: FAA OR ICP ACID DIGES	Analysis Date: 08-JAN-		Test: M122.3	.0
NICKEL	Parameter	Result 8.1	Det. Limit	Units mg/kg

INC ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-Ja	AN-92 Instrument: ICP	Test: M139.3	.0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES S	W846-3050 P129.7.1		
Parameter INC	Result 100	Det. Limit 2.0	Units mg/kg

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91	0	Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

Analyst: W. WATNESS Analysis Date: 04-JAN- Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050		Test: M103.2	.0
Parameter	Result 2.5	Det. Limit	Units mg/kg

IERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91		Test: P131.	7.0
Parameter NITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams

Analyst: K. HACK	SW846-7471 MOD Analysis Date: 26-DEC- VAA ACID DIGESTION OF S/S/S SAMPLES SW		Test: M120.2	.0
MERCURY	Parameter	Result 0.33	Det. Limit 0.13	Units mg/kg

Lab Sample ID: A244479

EMS HERITAGE LABORATORIES, INC.

VOLATILE ORGANICS SW846-8240 Analyst: H. WILLIAMS Analysis Date: 24-DEC-91 Instrument: GC/MS VOA		Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	48	mg/kg
ACROLEIN	BDL	120	mg/kg
ACRYLONITRILE	BDL	170	mg/kg
BENZENE	56	12	mg/kg
BROMODICHLOROMETHANE	BDL	12	mg/kg
BROMOFORM	BDL	12	mg/kg
BROMOMETHANE	BDL	25	mg/kg
CARBON DISULFIDE	BDL		mg/kg
CARBON TETRACHLORIDE	BDL	12	mg/kg
CHLOROBENZENE	BDL		mg/kg
CHLOROETHANE	BDL	25	mg/kg
CHLOROFORM	BDL		mg/kg
CHLOROMETHANE	BDL	25	mg/kg
DIBROMOCHLOROMETHANE	BDL	12	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	12	mg/kg
DICHLORODIFLUOROMETHANE	BDL	12	mg/kg
1,1-DICHLOROETHANE	BDL	12	mg/kg
1,2-DICHLOROETHANE	BDL	12	mg/kg
1,1-DICHLOROETHENE	BDL	12	mg/kg
1,2-DICHLOROPROPANE	BDL		mg/kg
ETHYLBENZENE	82	12	mg/kg
FLUOROTRICHLOROMETHANE	BDL		mg/kg
2-HEXANONE	BDL	25	mg/kg
METHYLENE CHLORIDE	BDL		mg/kg
METHYL ETHYL KETONE	BDL	25	mg/kg
4-METHYL-2-PENTANONE	BDL	25	
STYRENE	BDL	12	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	12	mg/kg
TETRACHLOROETHENE	BDL		mg/kg
TETRAHYDROFURAN	BDL		mg/kg
TOLUENE	54	12 12	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL		0, 0
TRANS-1,3-DICHLOROPROPENE	BDL	12 12	mg/kg
1,1,1-TRICHLOROETHANE	BDL		mg/kg
1,1,2-TRICHLOROETHANE	BDL	12 12	mg/kg
TRICHLOROETHENE	BDL	25	mg/kg
VINYL ACETATE	BDL	25	mg/kg
VINYL CHLORIDE	BDL	12	mg/kg
XYLENE (TOTAL)	100	12	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	**		% Rec
TOLUENE-D8	**		% Rec
BROMOFLUOROBENZENE	**		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS SW8	46-3550		
Analyst: N. ROHADFOX Analysis Date: 24-DEC-91		Test: P236.4	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.03	Det. Limit	Units Grams
FINAL VOLUME	2.0		mL

EMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACII Analyst: J. ELLIS Analysis Date: 09-JAN-92 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-35		Test: 0505.3.1	
Parameter	Result	Det. Limit	Units
CENAPHTHENE	390000	160000	ug/kg
CENAPHTHYLENE	BDL	160000	ug/kg
NTHRACENE	230000	160000	ug/kg
BENZ (A) ANTHRACENE	EST 160000	160000	ug/kg
BENZO(A) PYRENE	BDL	160000	ug/kg
BENZO(B)FLUORANTHENE	BDL	160000	ug/kg
BENZO(G,H,I)PERYLENE	BDL	160000	ug/kg
BENZO(K) FLUORANTHENE	BDL	160000	ug/kg
BENZYL ALCOHOL	BDL	160000	ug/kg
BENZYLBUTYLPHTHALATE	BDL	160000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	160000	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	160000	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	160000	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	160000	ug/kg
I-BROMOPHENYLPHENYLETHER	BDL	160000	ug/kg
	BDL	160000	ug/kg
CARBAZOLE	BDL	160000	ug/kg
I-CHLOROANILINE	BDL	160000	ug/kg
2-CHLORONAPHTHALENE	BDL	160000	ug/kg
1-CHLOROPHENYLPHENYLETHER	EST 160000	160000	ug/kg
CHRYSENE CONTROL CONTR	BDL	160000	ug/kg
DIBENZ(A,H)ANTHRACENE		160000	
DIBENZOFURAN	BDL	160000	ug/kg
I,2-DICHLOROBENZENE	BDL	160000	ug/kg
I,3-DICHLOROBENZENE	BDL		ug/kg
I,4-DICHLOROBENZENE	BDL	160000	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	330000	ug/kg
DIETHYLPHTHALATE	BDL	160000	ug/kg
DIMETHYLPHTHALATE	BDL	160000	ug/kg
DI-N-BUTYLPHTHALATE	BDL	160000	ug/kg
DINITROBENZENES	BDL	160000	ug/kg
2,4-DINITROTOLUENE	BDL	160000	ug/kg
2,6-DINITROTOLUENE	BDL	160000	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	160000	ug/kg
FLUORANTHENE	360000	160000	
FLUORENE	370000	160000	ug/kg
HEXACHLOROBENZENE	BDL	160000	ug/kg
HEXACHLOROBUTADIENE	BDL	160000	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	160000	ug/kg
HEXACHLOROETHANE	BDL	160000	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	160000	ug/kg
ISOPHORONE	BDL	160000	ug/kg
2-METHYLNAPHTHALENE	1600000	160000	ug/kg
NAPHTHALENE	2600000	160000	ug/kg
2-NITROANILINE	BDL	800000	
Z-NITROANILINE 3-NITROANILINE	BDL	800000	ug/kg
4-NITROANILINE	BDL	800000	
NITROBENZENE	BDL	160000	ug/kg
	BDL	160000	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	160000	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	1000000	160000	
PHENANTHRENE	BDL	800000	ug/kg
2-PICOLINE		160000	
PYRENE PYRIDINE	630000 BDL	800000	ug/kg ug/kg

Lab Sample ID: A244479

EMS HERITAGE LABORATORIES, INC.

Result	Det. Limit	Units
BDL		ug/kg
BDL		ug/kg
BDL		ug/kg
BDL	ATTACA TO THE PROPERTY OF THE	ug/kg
BDL		ug/kg
BDL	A THE STREET STREET, STREET STREET, ST	ug/kg
BDL		ug/kg
BDL		ug/kg
BDL		ug/kg
		ug/kg
BDL	160000	ug/kg
*		% Rec
*	Live to the second seco	% Rec
	BDL	BDL

1:250 DILUTION NOTE: * SURROGATES DILUTED OUT NOTE: FAILS INTERNAL STANDARD

SONICATION EXTRACTION FOR ORGANICS SW846-3	550	Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.96	Det. Limit	Units Grams
ETNAL VOLUME	5		mL

000000000000000000000000000000000000000	Donul +	Det. Limit	Units
Parameter	1800	2.5	mg/kg
NAPHTHALENE			
ACENAPHTHYLENE	BDL	4.0	mg/kg
ACENAPHTHENE	500	2.5	mg/kg
FLUORENE	670	0.30	mg/kg
PHENANTHRENE	1000	2.5	mg/kg
ANTHRACENE	270	0.35	mg/kg
FLUORANTHENE	1400	0.35	mg/kg
PYRENE	1200	3.3	mg/kg
BENZ (A) ANTHRACENE	390	2.2	mg/kg
CHRYSENE	250	5.0	mg/kg
BENZO(B)FLUORANTHENE	180	5.0	mg/kg
BENZO(K)FLUORANTHENE	170	0.20	mg/kg
BENZO(A)PYRENE	250 521	3.9	mg/kg
DIBENZO(A, H) ANTHRACENE	BDL	1.4	mg/kg
BENZO(G,H,I)PERYLENE	160	2.4	mg/kg

Lab Sample ID: A244479

Det. Limit Units Result Parameter 5.0 mg/kg 50 INDENO(1,2,3-CD) PYRENE

1:500 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC ANALYSIS. AMENDED REPORT 4/30/92, GAB.

Sample Comments

DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED REPORT 4/30/92, GAB.

See Note for Parameter

** See Note for Parameter

Below Detection Limit BDL

Estimated Value EST

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

GloBusch

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Lab ID A244480
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 13-JAN-92 PO07	PO Number 2488-CHAMPAIGN
(317)243-8305	Printed	Sampled - DEC-91 15:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-23-SO2
DESCRIPTION: 26'-28' CLEAN

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW84	6-9065			
Analyst: M. GAUGHAN	Analysis Date: 23-DEC-91		Test: P405.7	. 0
Paramet INITIAL WEIGHT OR VOLUME FINAL VOLUME	er	Result 10 100	Det. Limit	Units Grams mL

PHENOLS 4AAP (AUTOMATE	D) SW846-9066			
Analyst: J. GRIFFIN Prep: PHENOLS DISTILL	Analysis Date: 24-DEC-91 ATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
PHENOLS Pa	rameter	Result BDL	Det. Limit 0.10	Units mg/kg

CYANIDE DISTILLATION S	Analysis Date: 30-DEC-91		Test: P101.4	0
Analyst: J. GRIFFIN	Allatysis Date: 30-DEC-91		rest: P101.4. 0	
Par	ameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUM	F 1	0		Grams
INAL VOLUME	7	50		mL

CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Da Prep: CYANIDE DISTILLATION SW846-9010	te: 30-DEC-91 Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter	Result	Det. Limit 0.25	Units
CYANIDE	BDL		mg/kg

SONICATION EXTRACTION FOR Analyst: N. HEMMERLEIN	ORGANICS BY IR SW846-3550 Analysis Date: 30-DEC-91)	Test: P503.7	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	25	Result 5.22 00	Det. Limit	Units Grams mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E Analysis: C. BRODERICK Analysis Date: 31-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR		Test: G503.7.	0
Parameter PETROLEUM HYDROCARBONS	Result BDL	Det. Limit	Units mg/kg

Analysis Date: 27-	'-DEC-91 Test: G301.1. 0		
Parameter CHEMICAL OXYGEN DEMAND	Result 4400	Det. Limit 1000	Units mg/kg
1:100 DILUTION			

Analyst: H. WILLIAMS	Analysis Date: 24-DEC-91	Instrument: GC/MS VOA	Test: 0510.3.	
Parameter		Result	Det. Limit	Units
CETONE		BDL	1.2	mg/kg
CROLEIN		BDL	3.1	mg/kg
CRYLONITRILE		BDL	4.4	mg/kg
ENZENE		0.73	0.31	mg/kg
ROMODICHLOROMETHANE		BDL	0.31	mg/kg
ROMOFORM		BDL	0.31	mg/kg
ROMOMETHANE		BDL	0.63	mg/kg
ARBON DISULFIDE		BDL	0.31	mg/kg
ARBON TETRACHLORIDE		BDL	0.31	mg/kg
		BDL	0.31	mg/kg
HLOROBENZENE		BDL	0.63	mg/kg
HLOROETHANE		BDL	0.31	mg/kg
HLOROFORM		BDL	0.63	mg/kg
HLOROMETHANE			0.31	
IBROMOCHLOROMETHANE		BDL		mg/kg
IS-1,3-DICHLOROPROPENE		BDL	0.31	mg/kg
)ICHLORODIFLUOROMETHANE		BDL	0.31	mg/kg
,1-DICHLOROETHANE		BDL	0.31	mg/kg
,2-DICHLOROETHANE		BDL	0.31	mg/kg
,1-DICHLOROETHENE		BDL	0.31	mg/kg
,2-DICHLOROPROPANE		BDL	0.31	mg/kg
THYLBENZENE		BDL	0.31	mg/kg
LUOROTRICHLOROMETHANE		BDL	0.31	mg/kg
2-HEXANONE		BDL	0.63	mg/kg
METHYLENE CHLORIDE		BDL	0.31	mg/kg
METHYL ETHYL KETONE		BDL	0.63	mg/kg
-METHYL-2-PENTANONE		BDL	0.63	mg/kg
		BDL	0.31	mg/kg
STYRENE		BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE		BDL	0.31	mg/kg
TETRACHLOROETHENE		BDL	1.5	
TETRAHYDROFURAN				mg/kg
TOLUENE		BDL	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)		BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE		BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE		BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE		BDL	0.31	mg/kg
TRICHLOROETHENE		BDL	0.31	mg/kg
INYL ACETATE		BDL	0.63	mg/kg
/INYL CHLORIDE		BDL	0.63	mg/kg
(YLENE (TOTAL)		BDL	0.31	mg/kg
SURROGATE RECOVERY			W 100 P. 10 P.	

Parameter	Result	Det. Limit	Units
DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE	94 92 98		% Rec % Rec % Rec
1:63 DILUTION			

GC/MS SONICATION EXTRACTION FOR ORGANICS SW8 Analyst: N. ROHADFOX Analysis Date: 24-DE	46-3550 c-91	Test: P236.4	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 30.07 1.0	Det. Limit	Units Grams mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACID FRACTIONS) SW846-8270 Analysis J. ELLIS Analysis Date: 09-JAN-92 Instrument: GC/MS SVOA Test: 0505.3. 0 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550			
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
CENAPHTHYLENE	BDL	330	ug/kg
NTHRACENE	BDL	330	ug/kg
	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
ENZO(B) FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE		330	ug/kg
ENZO(K)FLUORANTHENE	BDL	330	
SENZYL ALCOHOL	BDL		ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
SIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	EST 280	330	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
ARBAZOLE	BDL	330	ug/kg
-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
- CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
I,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE		330	
I,4-DICHLOROBENZENE	BDL		ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
)I-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	BDL	330	ug/kg
LUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL.	330	ug/kg
	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE	DUL	330	Page

Parameter	Result	Det. Limit	Units
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	BDL	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
	BDL	330	ug/kg
2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4.6 DINITRO 2 METUVI DUENOI	BDL	1600	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	330	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	1600	ug/kg
4-NITROPHENOL		1600	
PENTACHLOROPHENOL	BDL	330	ug/kg
PHENOL	BDL		ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	76		% Rec
PHENOL-D5	82		% Rec
NITROBENZENE-D5	70		% Rec
	74		% Rec
2-FLUOROBIPHENYL	53		% Rec
2,4,6-TRIBROMOPHENOL	75		% Rec
TERPHENYL-D14	1.0		70 Net

SONICATION EXTRACTION FOR ORGANICS SW846-3550			
Analyst: G. WILSON Analysis Date: 30-DEC-9	91	Test: P236.1	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 30.07 5	Det. Limit	Units Grams mL

POLYNUCLEAR AROMATIC HYDROCARBONS BY HPLC SW84 Analysis: T. COFFELT Analysis Date: 02-JAN-	92 Instrument: HPLC	Test: 0630.0.	0
Prep: SONICATION EXTRACTION FOR ORGANICS SW84	Result	Det. Limit	Units
NAPHTHALENE	0.13	0.005	mg/kg
ACENAPHTHYLENE	BDL	0.008	mg/kg
ACENAPHTHENE	0.028	0.005	mg/kg
FLUORENE	BDL	0.0006	mg/kg
PHENANTHRENE	0.077	0.005	mg/kg
ANTHRACENE	0.016	0.0007	mg/kg

Page 4

Lab Sample ID: A244480

Parameter	Result	Det. Limit	Units
FLUORANTHENE	0.16	0.0007	mg/kg
PYRENE		0.0025	mg/kg
BENZ (A) ANTHRACENE	0.035	0.0043	mg/kg
CHRYSENE	0.035	0.001	mg/kg
BEN7O(B)FLUORANTHENE	BDL	0.001	mg/kg
BENZO(K)FLUORANTHENE	BD1	0.0004	mg/kg
RENZO(A) PYRENE	0.12	0.0077	mg/kg
DIBENZO(A.H)ANTHRACENE	BDL	0.0028	mg/kg
BENZO(G. H. I) PERYLENE	BDL	0.0047	mg/kg
	DIJ	0.001	mq/kq

Sample Comments

BDL Below Detection Limit

EST Estimated Value

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91			
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 13-JAN-92		Number -CHAMPAIGN	
(317)243-8305	Printed 30-APR-92		pled -91 08:30	

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-24-SO1 DESCRIPTION: 06'-08' IMPACTED

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 23-DEC-91		Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
ETNAL VOLUME	100		mL

Analyst: J. GRIF	(AUTOMATED) SW846-9066 FIN Analysis Date: 24-DEC-1 STILLATION SW846-9065 P405.7.0	P1 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result 0.84	Det. Limit 0.10	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 30-DEC-9	1	Test: P101.4	 0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL

Analyst: J. GRIF	AL (AUTOMATED) SW846-9012 FIN Analysis Date: 30-DEC- STILLATION SW846-9010 P101.4.0	91 Instrument: AUTO-ANALYZER	Test: G101.4	.0
CYANIDE	Parameter	Result 11	Det. Limit	Units mg/kg

ONICATION EXTRACTION FOR ORGANICS BY IR SW8 Analyst: N. HEMMERLEIN Analysis Date: 30-DEC-91	46-3550	Test: P503.7	'.O
Parameter NITIAL WEIGHT OR VOLUME	27.70 Result	Det. Limit	Units Grams

TOTAL PETROLEUM HYDROCARBONS BY IR SM 5	03E		
Analyst: C. BRODERICK Analysis Date: 31-DEC- Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-		Test: G503.7	.0
Parameter	Result	Det. Limit	Units mg/kg
PETROLEUM HYDROCARBONS	350	10	mg/kg

Analyst: K. FULLMER Analysis Date: 31-DEC-91	Result	Det. Limit	Units
Parameter CHEMICAL OXYGEN DEMAND	32000		mg/kg
:100 DILUTION			
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	S SW846-3050	Test: P129.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92	S SW846-3050	Test: P129.7.	1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3		Test: M104.3.	0
Parameter BARIUM	Result 83.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3	Instrument: ICP 3050 P129.7.0	Test: M108.3.	0
Parameter CADMIUM	Result BDL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M110.3.	0
Parameter CHROMIUM	Result 11.	Det. Limit	Units mg/kg
COPPER ICP SW846-5010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M112.3.	0
Parameter COPPER	Result 14.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M115.3.	0
Parameter IRON	Result 20000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-		Test: M116.3	.0
	Result	Det. Limit	Units

ANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-JAN-		Test: M119.3.0	
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84 Parameter	6-3050 P129.7.1	Det. Limit U	Inits
MANGANESE	79.	1.0 mg/	/kg

Prep: FAA OR ICP ACID DIGES	STION OF S/S/S SAMPLES SW84			
NICKEL	Parameter	Result 18.	Det. Limit	units mg/kg

INC ICP SW846-6010 Inalyst: A. HILSCHER Analysis Date: 12-JAN- Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8		Test: M139.3	.0
Parameter	Result	Det. Limit	Units
INC	96.	2.0	mg/kg

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91	3050	Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
INAL WEIGHT OR VOLUME	100		mL.

RSENIC GFAA SW846-7060 Analyst: W. WATNESS Analysis Date: 04-		Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-	3050 P130.7.0		I
Parameter	Result 5.5	Det. Limit	Units mg/kg

HERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91		Test: P131.	7.0
Parameter [NITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
INAL VOLUME	100		mL

Parameter Result Det. Limit Units	Prep: MERCURY CVAA ACID DIGESTION OF S/S/S SAMPLES SWE		Det. Limit	Units
-----------------------------------	--	--	------------	-------

Analyst: H. WILLIAMS Analysis Date: 24-DEC	91 Instrument: GC/MS VOA	
Parameter	Result	Det. Limit Unit
ACETONE	BDL	12 mg/kg
ACROLEIN	BDL	31 mg/Kg
ACRYLONITRILE	BDL	44 mg/kg
BENZENE	BDL	3.1 mg/kg
BROMODICHI OROMETHANE	BDL	3.1 mg/kg
RROMOEORM	BDL	3.1 mg/kg
RDOMOMETHANE	BDL	6.3 mg/kg

Lab Sample ID: A244481

EMS HERITAGE LABORATORIES. INC.

INITIAL WEIGHT OR VOLUME

FINAL VOLUME

Parameter	Result	Det. Limit	Units
CARBON DISULFIDE	BDL	3.1	mg/kg
CARBON TETRACHLORIDE	BDL	3.1	mg/kg
CHLOROBENZENE	BDL	3.1	mg/kg
CHLOROETHANE	BDL	6.3	mg/kg
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHANE	BDL	3,1	mg/kg
1,2-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL	3.1	mg/kg
1,2-DICHLOROPROPANE	BDL	3.1	mg/kg
ETHYLBENZENE	8.2	3,1	mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	mg/kg
2-HEXANONE	BDL	6.3	mg/kg
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE	BDL	3.1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3.1	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	BDL	3.1	
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	
1,1,1-TRICHLOROETHANE	BDL	3.1	mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.1	
TRICHLOROETHENE	BDL	3.1	mg/kg
VINYL ACETATE	BDL	6.3	mg/kg
VINYL CHLORIDE	BDL	6.3	
XYLENE (TOTAL)	5.6	3.1	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	XX		% Rec
TOLUENE-D8	**		% Rec
BROMOFLUOROBENZENE	**		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 Test: P236.4.0 Analysis Date: 24-DEC-91 Analyst: N. ROHADFOX Units Result Det. Limit 30.05 Grams

1.0

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/ Analyst: J. ELLIS Analysis Date: 09-2 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SWI	JAN-92 Instrument: GC/MS SVOA	Test: 0505.3.0
Parameter ACENAPHTHENE	Result EST 140000	Det. Limit Units 330 ug/kg
ACENAPHTHENE ACENAPHTHYLENE	EST 35000	330 ug/kg
ANTHRACENE	EST 42000	330 ug/kg
BENZ(A)ANTHRACENE	EST 29000	330 ug/kg
RENZO(A) PYRENE	EST 640000	330 ug/kg

mL

Result EST 15000 EST 17000 3600 BDL BDL BDL BDL BDL BDL EST 8600 BDL 970 BDL BDL BDL BDL BDL ST 8600 BDL ST 8600 BDL	Det. Limit 330 330 330 330 330 330 330 330 330 33	ug/kg
EST 17000 3600 BDL BDL BDL BDL BDL EST 8600 BDL 970 BDL BDL BDL BDL BDL	330 330 330 330 330 330 330 330 330 330	ug/kg
3600 BDL BDL BDL BDL EST 8600 BDL 970 BDL BDL BDL	330 330 330 330 330 330 330 330 330 330	ug/kg
BDL	330 330 330 330 330 330 330 330 330 330	ug/kg
BDL	330 330 330 330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
BDL BDL BDL EST 8600 BDL 970 BDL BDL BDL	330 330 330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
BDL BDL EST 8600 BDL 970 BDL	330 330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
BDL EST 8600 BDL 970 BDL BDL BDL	330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
EST 8600 BDL 970 BDL BDL BDL	330 330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg ug/kg
BDL 970 BDL BDL BDL	330 330 330 330 330 330	ug/kg ug/kg ug/kg ug/kg
970 BDL BDL BDL	330 330 330 330	ug/kg ug/kg ug/kg
BDL BDL BDL	330 330 330	ug/kg ug/kg
BDL BDL	330 330	ug/kg
BDL	330	
BDL		
		ug/kg
10000	330	ug/kg
4900	330	ug/kg
		ug/kg ug/kg
		ug/kg
		ug/kg
		ug/kg
BDL		ug/kg
BDL		ug/kg
BDL	330	ug/kg
	330	ug/kg
	330	ug/kg
		ug/kg
		ug/kg
***************************************		ug/kg
		ug/kg
		ug/kg
		ug/kg
		ug/kg
	330	ug/kg
BDL		ug/kg
BDL	1600	ug/kg
	1600	ug/kg
The state of the s		ug/kg
	330	ug/kg
		ug/kg
		ug/kg
		ug/kg
PDT 00000		ug/kg ug/kg
EST 86000		
		ug/kg
		ug/kg
BDL		
BDL		ug/kg
	1600	ug/kg
	330	ug/kg
		ug/kg
		ug/kg
	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	ug/kg
	EST 12000 BDL	EST 12000 330 BDL 330

Lab Sample ID: A244481

EMS HERITAGE LABORATORIES, INC.

Parameter	Result	Det. Limit	Units
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	93		% Rec
PHENOL-D5	90		% Rec
NITROBENZENE-D5	447		% Rec
2-FLUOROBIPHENYL	95		% Rec
2,4,6-TRIBROMOPHENOL	274		% Rec
TERPHENYL-D14	46		% Rec

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: 09-JAN- Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	-92 Instrument: GC/MS SVOA	Test: 0505.3.	Test: 0505.3.1	
Parameter	Result	Det. Limit	Units	
ACENAPHTHENE	100000	82000	ug/kg	
ACENAPHTHYLENE	BDL	82000	ug/kg	
ANTHRACENE	BDL	82000	ug/kg	
BENZ (A) ANTHRACENE	BDL	82000	ug/kg	
BENZÒ(Á)PYRENE	BDL	82000	ug/kg	
BENZO(B)FLUORANTHENE	BDL	82000	ug/kg	
BENZO(G,H,I)PERYLENE	BDL	82000	ug/kg	
BENZO(K)FLUÓRANTHENE	BDL	82000	ug/kg	
BENZYL ALCOHOL	BDL	82000	ug/kg	
BENZYLBUTYLPHTHALATE	BDL	82000	ug/kg	
BIS(2-CHLOROETHOXY)METHANE	BDL	82000	ug/kg	
BIS(2-CHLOROETHYL)ÉTHER	BDL	82000	ug/kg	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	82000	ug/kg	
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	82000	ug/kg	
4-BROMOPHENYLPHENYLETHER	BDL	82000	ug/kg	
CARBAZOLE	BDL	82000	ug/kg	
4-CHLOROANILINE	BDL	82000	ug/kg	
2-CHLORONAPHTHALENE	BDL	82000	ug/kg	
4-CHLOROPHENYLPHENYLETHER	BDL	82000	ug/kg	
CHRYSENE	BDL	82000	ug/kg	
DIBENZ(A,H)ANTHRACENE	BDL	82000	ug/kg	
DIBENZOFURAN	BDL	82000	ug/kg	
1,2-DICHLOROBENZENE	BDL	82000	ug/kg	
1,3-DICHLOROBENZENE	BDL	82000	ug/kg	
1,4-DICHLOROBENZENE	BDL	82000	ug/kg	
3,3'-DICHLOROBENZIDINE	BDL	160000	ug/kg	
DIETHYLPHTHALATE	BDL	82000	ug/kg	
DIMETHYLPHTHALATE	BDL	82000	ug/kg	
DI-N-BUTYLPHTHALATE	BDL	82000	ug/kg	
DINITROBENZENES	BDL	82000	ug/kg	
2,4-DINITROTOLUENE	BDL	82000	ug/kg	
2,6-DINITROTOLUENE	BDL	82000	ug/kg	
DI-N-OCTYLPHTHALATE	BDL	82000	ug/kg	

Parameter	Result	Det. Limit	Units
FLUORANTHENE	68000	82000	ug/kg
FLUORENE	EST 57000	82000	ug/kg
HEXACHLOROBENZENE	BDL	82000	ug/kg
HEXACHLOROBUTAD I ENE	BDL	82000	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	82000	ug/kg
HEXACHLOROETHANE	BDL	82000	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	82000	ug/kg
I SOPHORONE	BDL	82000	ug/kg
2-METHYLNAPHTHALENE	110000	82000	ug/kg
NAPHTHALENE	490000	82000	ug/kg
2-NITROANILINE	BDL	400000	ug/kg
3-NITROANILINE	BDL	400000	ug/kg
4-NITROANILINE	BDL	400000	ug/kg
NITROBENZENE	BDL	82000	ug/kg
NITROSO-DIPHENYLAMINE	BDL	82000	ug/kg
N-NITROSO-DIPHENTLAMINE N-NITROSO-DI-N-PROPYLAMINE	BDL	82000	ug/kg
	56000	82000	ug/kg
PHENANTHRENE PARCOLINE	BDL	400000	ug/kg
2-PICOLINE	110000	82000	ug/kg
PYRENE	BDL	400000	ug/kg
PYRIDINE	BDL	82000	ug/kg
TETRACHLOROBENZENES		400000	ug/kg
TOLUENEDIAMINE	BDL	82000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL		
BENZOIC ACID	BDL	400000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	82000	ug/kg
2-CHLOROPHENOL	BDL	82000	ug/kg
2,4-DICHLOROPHENOL	BDL	82000	ug/kg
2,4-DIMETHYLPHENOL	BDL	82000	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	400000	ug/kg
2,4-DINITROPHENOL	BDL	400000	ug/kg
2-METHYLPHENOL	BDL	82000	ug/kg
4-METHYLPHENOL	BDL	82000	ug/kg
2-NITROPHENOL	BDL	82000	ug/kg
4-NITROPHENOL	BDL		ug/kg
PENTACHLOROPHENOL	BDL	400000	ug/kg
PHENOL	BDL	82000	ug/kg
TETRACHLOROPHENOL	BDL	82000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	82000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	82000	ug/kg
2,7,0-1KICHLOKOFHLINGL	555		
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		% Rec
PHENOL-D5	*		% Rec
NITROBENZENE-D5	*		% Rec
2-FLUOROBIPHENYL	*		% Rec
2,4,6-TRIBROMOPHENOL	*		% Rec
Z, T, U- INIDOUNDETHENDE	*		% Rec
TERPHENYL-D14 1:250 DILUTION			1

1:250 DILUTION NOTE: * SURROGATES DILUTED OUT NOTE: FAILS INTERNAL STANDARD

Lab Sample ID: A244481

Last Page 8

SONICATION EXTRACTION FOR ORGANICS SW84 Analyst: G. WILSON Analysis Date: 30-DEC-		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 31.05	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Parameter	Result	Det. Limit	Units
NAPHTHALENE	430		mg/kg
ACENAPHTHYLENE	28 B)C		mg/kg
ACENAPHTHENE	120		mg/kg
FLUORENE	100		mg/kg
PHENANTHRENE	160 200	1.0	mg/kg
ANTHRACENE	64	.14	mg/kg
FLUORANTHENE	110 240	.14	mg/kg
PYRENE	81 200	.5	mg/kg
BENZ(A)ANTHRACENE	47 69	.86	mg/kg
CHRYŚEŃE	35 46	.20	mg/kg
BENZO(B)FLUORANTHENE	21 3-3	.20	mg/kg
BENZO(K)FLUORANTHENE	16 50	.08	mg/kg
BENZO(A)PYRENE	46 86		mg/kg
DIBENŻO(A,H)ANTHRACENE	BDL	.56	mg/kg
BENZO(G,H,I)PERYLENE	23 33	.94	mg/kg
INDENÒ(1,2,3-CD)PYRENE	16 ⋞/	.20	mg/kg

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC

ANALYSIS.

AMENDED REPORT 4/30/92, GAB.

Sample Comments

DIFFERENCE BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED REPORT 4/30/92, GAB.

* See Note for Parameter

** See Note for Parameter

BDL Below Detection Limit

EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Lab ID A244482
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 13-JAN-92	PO Number PO072488-CHAMPAIGN
(317)243-8305	Printed 14-JAN-92	Sampled 15-DEC-91 09:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-24-SO2 DESCRIPTION: 21'-23' CLEAN

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SI Analyst: R. RIFE	Analysis Date: 03	-JAN-92	Test: P405.7	. 0
Par INITIAL WEIGHT OR VOLUM	ameter	Result 10	Det. Limit	Units Grams
FINAL VOLUME		100		mL

PHENOLS 4AAP (AUTOMATED) SW846-9066			
	s Date: 07-JAN-92 Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.1	Units mg/kg

CYANIDE DISTILLATION S	W846-9010			
Analyst: J. GRIFFIN	Analysis Date: 02-JAN-92		Test: P101.4	. 0
Par INITIAL WEIGHT OR VOLUM	ameter F	Result	Det. Limit	Units Grams
FINAL VOLUME		250		mL mL

Analyst: J. GRIFFI	L (AUTOMATED) SW846-9012 N Analysis Date: 03-JAN-9 E DISTILLATION SW846-9010	2 Instrument: AUTO-ANALYZER	Test: G101.4.	0
CYANIDE	Parameter	Result BDL	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR	SW846-3550		
Analyst: N. HEMMERLEIN Analysis Date:	30-DEC-91	Test: P503.7	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 28.87 100	Det. Limit	Units Grams mL

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 2000	Det. Limit	Units mg/kg
1:100 DILUTION			

Analyst: H. WILLIAMS Analysis Date: 24-DEC-91	Instrument: GC/MS VOA	Test: 0510.3.	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	0.61	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE		0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	
ETHYLBENZENE	BDL		mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
	BDL	0.63	mg/kg
VINYL CULORIDE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.31	mg/kg
XYLENE (TOTAL)	DUL	0.51	וויש/ ויש
SURROGATE RECOVERY			
SUKKUGATE KECUVEKT			

Parameter	Result		Units
DICHLOROETHANE-D4	98		Rec
TOLLIENE DO	1 94	1 %	Rec
BROMOFLUOROBENZENE	95	%	Rec
1:63 DILUTION	1		

GC/MS SONICATION EXTRACTION FOR ORGANICS SW840 Analyst: N. ROHADFOX Analysis Date: 24-DEC-	Test: P236.4	. 0
Parameter INITIAL WEIGHT OR VOLUME EINAL VOLUME	Det. Limit	Units Grams mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACID Analyst: J. ELLIS Analysis Date: 09 Prep: GC/MS SONICATION EXTRACTION FOR ORG	9-JAN-92 Instrument: GC/MS SVOA	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	330	ug/kg
CENAPHTHYLENE	BDL	330	ug/kg
NTHRACENE	BDL	330	ug/kg
	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
BENZO(B) FLUORANTHENE		330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	
BENZO(K)FLUORANTHENE	BDL		ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	1500	330	ug/kg
I-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
I-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
	BDL	330	ug/kg
DIBENZOFURAN	BDL	330	ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE		330	ug/kg
I,4-DICHLOROBENZENE	BDL	660	
3,3'-DICHLOROBENZIDINE	BDL		ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	
2,6-DINITROTOLUENE	BDL	330	ug/kg
DÍ-N-OCTYLPHTHALATE	BDL	330	ug/kg
FLUORANTHENE	EST 230	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
2-METHYLNAPHTHALENE	EST 290	330	ug/kg
NAPHTHALENE	760	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	520	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	EST 310	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
•	DDL		49/ 119
SURROGATE RECOVERY			
2-FLUOROPHENOL	73		% Rec
PHENOL-D5	71		% Rec
NITROBENZENE-D5	61		% Rec
2-FLUOROBIPHENYL	67		% Rec
2,4,6-TRIBROMOPHENOL	46		% Rec
TÉRPHENYL-D14	71		% Rec

	Test: P236.1	. 0
Result	Det. Limit	Units
30.11		Grams
	30.11 5	30.11 5

POLYNUCLEAR AROMATIC HYDROCARBONS BY H Analyst: T. COFFELT Analysis Dat Prep: SONICATION EXTRACTION FOR ORGAN	e: 02-JAN-92 Instrument: HPLC	Test: 0630.0.	0
Parameter	Result	Det. Limit	Units
NAPHTHALENE	0.46	0.005	mg/kg
ACENAPHTHYLENE	0.047	0.008	mg/kg
ACENAPHTHENE	0.084	0.005	mg/kg
FLUORENE	0.089	0.0006	mg/kg
PHENANTHRENE	0.27	0.005	mg/kg
ANTHRACENE	0.074	0.0007	mg/kg

Page 4

Lab Sample ID: A244482

Parameter	Result	Det. Limit	Units
FLUORANTHENE	0.34	0.0007	mg/kg
PYRENE	0.35	0.0025	mg/kg
RENZ (A) ANTHRACENE	0.10	0.0043	mg/kg
CHRYSENE	0.073	0.001	mg/kg
BENZO(B)FLUORANTHENE	BDL	0.001	mg/kg
RENZO (K) EL LIORANTHENE	BDL	0.0004	mg/kg
BENZO(A) PYRENE	0.20	0.0077	mg/kg
DIBENZO(A, H) ANTHRACENE	BDL	0.0028	mg/kg
BENZO(G,H,I)PERYLENE	0.15	0.0047	mg/kg
INDENO(1 2 3-CD) PYRENE	0 063	0.001	mg/kg

Sample Comments

BDL Below Detection Limit

EST Estimated Value

Hilason

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Received 20-DEC-91	Project 638	A244477
	Complete PO Nu 16-JAN-92 PO072488-0		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92		oled -91 09:00

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-25-S01 DESCRIPTION: 09'-11' IMPACTED

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065		Test: P405.7	7 _0
Analyst: R. RIFE Analysis Date: 03-JAN-92 Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams

Analyst: J. GRIF	(AUTOMATED) SW846-9066 IN Analysis Date: 07-JAN-92 In	strument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result 1.5	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 30-DEC-5	21	Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
ETNAL VOLUME	250		mL.

CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 30-DEC-91 Prep: CYANIDE DISTILLATION SW846-9010 P101.4.0	Instrument: AUTO-ANALYZER	Test: G101.4	.0
Parameter	Result 0.80	Det. Limit	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR SW846 Analyst: C. BRODERICK Analysis Date: 27-DEC-91	-3550	Test: P503.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 27.51	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E		100	_
Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Ins Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550 P5		Test: G503.7	.0
Parameter PFTROLEUM HYDROCARBONS	Result 69	Det. Limit	Units mg/kg

HEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 31-DEC-91		Test: G301.1.0
Parameter	Result 18000	Det. Limit Units 1000 mg/kg
HEMICAL OXYGEN DEMAND ::100 DILUTION	18000	1000 1119/ 119
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	46-3050	Test: P129.7.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92		Test: P129.7.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 1 100	Det. Limit Units Grams ML
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P1	rument: ICP	Test: M104.3.0
Parameter BARIUM	Result 55.	Det. Limit Units 1.0 mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P1	rument: ICP 29.7.0	Test: M108.3.0
Parameter CADMIUM	Result BDL	Det. Limit Units 0.50 mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P	rument: ICP	Test: M110.3.0
Parameter CHROMIUM	Result 8.6	Det. Limit Unit: 1.0 mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M112.3.0
COPPER	Result 11.	Det. Limit Unit 2.0 mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Inst Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M115.3.0
Parameter	Result 12000	Det. Limit Unit 2.0 mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Ins Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P		Test: M116.3.0
Parameter	Result 8.9	Det. Limit Unit 5.0 mg/kg

nalyst: A. HILSCHER Analysis Date: 12-JAN		Test: M119.3.0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8 Parameter	Result	Det. Limit Unit
IANGANESE	560	1.0 mg/kg

NICKEL ICP SW846-6010 Applyst: A. HILSCHER Analysis Date: 08-JAN-	92 Instrument: ICP	Test: M122.3	.0
Analyst: A. HILSCHER Analysis Date: US-JAN- Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8-			
Parameter	Result	Det. Limit	Units ma/ka
ICKEL	14.	1.0	mg/kg

nalyst: A. HILSCHER Analysis Date: 12-JAN-		Test: M139.3.	U
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84	6-3050 P129.7.1		
Parameter	Result	Det. Limit	Units
INC	42.	2.0	mg/kg

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91		Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

	-92 Instrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-305 Parameter	0. P130.7.0 Result	Det. Limit	Units
ARSENIC	3.7	2.5	mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SA Analyst: K. HACK Analysis Date: 26-DEC-		Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: K. HACK	SW846-7471 MOD Analysis Date: 26-DEC- A ACID DIGESTION OF S/S/S SAMPLES SW		Test: M120.2	.0
MERCURY	Parameter	. Result BDL	Det. Limit 0.13	Units mg/kg

Analysi: H. WILLIAMS Analysis Date: 24-DEC	-91 Instrument: GC/MS VOA	Test: 0510.3.0
Parameter	Result	Det. Limit Units
ACETONE	BDL	1.2 mg/kg
ACROLEIN	BDL	3.1 mg/Kg
ACRYLONITRILE	BDL	4.4 mg/kg
BENZENE	2.7	0.31 mg/kg
BROMODICHLOROMETHANE	BDL	0.31 mg/kg
BROMOFORM	BDL	0.31 mg/kg
RROMOMETHANE	BDL	0.63 mg/kg

Parameter	Result	Det. Limit	Units
CARBON DISULFIDE	BDL	0.31	mg/kg
ARBON TETRACHLORIDE	BDL	0.31	mg/kg
HLOROBENZENE	BDL	0.31	mg/kg
HLOROETHANE	BDL	0.63	mg/kg
HLOROFORM	BDL	0.31	mg/kg
HLOROMETHANE	BDL	0.63	mg/kg
IBROMOCHLOROMETHANE	BDL	0.31	mg/kg
IS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
ICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHANE	BDL	0.31	mg/kg
,2-DICHLOROETHANE	BDL	0.31	mg/kg
,1-DICHLOROETHENE	BDL	0.31	mg/kg
,2-DICHLOROPROPANE	BDL	0.31	mg/kg
THYLBENZENE	9.5	0.31	mg/kg
LUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
-HEXANONE	BDL	0.63	mg/kg
ETHYLENE CHLORIDE	BDL	0.31	mg/kg
ETHYL ETHYL KETONE	BDL	0.63	mg/kg
-METHYL-2-PENTANONE	BDL	0.63	mg/kg
TYRENE	BDL	0.31	mg/kg
,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
ÉTRACHLOROETHENE	BDL	0.31	mg/kg
ETRAHYDROFURAN	BDL	1.5	mg/kg
OLUENE	4.0	0.31	mg/kg
,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
RANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
RICHLOROETHENE	BDL	0.31	mg/kg
INYL ACETATE	BDL	0.63	mg/kg
INYL CHLORIDE	BDL	0.63	mg/kg
(YLENE (TOTAL)	12	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	116		% Rec
TOLUENE-D8	92		% Rec
BROMOFLUOROBENZENE	91		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 24-DEC-9		Test: P236.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.97	Det. Limit	Units Grams
FTNAL VOLUME	10		mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AU Analyst: J. ELLIS Analysis Date: 08-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	I-92 Instrument: GC/MS SVOA	Test: 0505.3	.0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	EST 53000	330	ug/kg
ACENAPHTHYLENE	EST 13000	330	ug/kg
ANTHRACENE	37000	330	ug/kg
BENZ(A)ANTHRACENE	EST 13000	330	ug/kg
BENZO(A)PYRENE	EST 6800	330	ug/kg
BENZO(B) EL UORANTHENE	5200	330	ug/kg

EMS HERITAGE LABORATORIES, INC.	Result	Det. Limit	Units
Parameter BENZO(G,H,I)PERYLENE	EST 5600	330	ug/kg
BENZO(K)FLUORANTHENE	2000	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	EST 9200	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	*************************	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	
CARBAZOLE	1300		ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	EST 8100	330	ug/kg
DIBENZ(A,H)ANTHRACENE	1300	330	ug/kg
DIBENZOFURÁN	5200	330	ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
	EST 51000	330	ug/kg
FLUORANTHENE	EST 38000	330	ug/kg
FLUORENE	BDL	330	
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	EST 5400		ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE		330	
2-METHYLNAPHTHALENE	EST 190000	330	
NAPHTHALENE	EST 290000		ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	EST 174000	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	EST 34000	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	
			ug/kg

Parameter	Result	Det. Limit	Units
2-METHYLPHENOL	EST 240	330	ug/kg
4-METHYLPHENOL	EST 320	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	EST 200	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	84		% Rec
PHENOL-D5	94	The second state of the second	% Rec
NITROBENZENE-D5	215		% Rec
2-FLUOROBI PHENYL	78		% Rec
2,4,6-TRIBROMOPHENOL	152		% Rec
TERPHENYI -D14	68		% Rec

	-3550 P236.4.0 Result	Det. Limit	Units
Parameter	BDL	130000	ug/kg
ACENAPHTHENE	BDL	130000	ug/kg
ACENAPHTHYLENE	BDL	130000	ug/kg
ANTHRACENE	BDL	130000	ug/kg
BENZ (A) ANTHRACENE	BDL	130000	ug/kg
BENZO(A)PYRENE BENZO(B)FLUORANTHENE	BDL	130000	ug/kg
	BDL	130000	ug/kg
BENZO(G,H,I)PERYLENE	BDL	130000	ug/kg
BENZO(K) FLUORANTHENE	BDL	130000	ug/kg
BENZYL ALCOHOL BENZYLBUTYLPHTHALATE	BDL	130000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	l BDL	130000	ug/kg
BIS(2-CHLOROETHOXT)METHANE BIS(2-CHLOROETHYL)ETHER	BDL	130000	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	130000	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	130000	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	130000	ug/kg
CARBAZOLE	BDL	130000	
4-CHLOROANILINE	BDL	130000	ug/kg
2-CHLORONAPHTHALENE	BDL	130000	
4-CHLOROPHENYLPHENYLETHER	BDL	130000	ug/kg
CHRYSENE	BDL	130000	
DIBENZ(A,H)ANTHRACENE	BDL	130000	ug/kg
DIBENZOFURAN	BDL	130000	
1,2-DICHLOROBENZENE	BDL	130000	ug/kg
1,3-DICHLOROBENZENE	BDL	130000	ug/kg
1,4-DICHLOROBENZENE	BDL	130000	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	260000	
DIETHYLPHTHALATE	BDL	130000	ug/kg
DIMETHYLPHTHALATE	BDL	130000	
DI-N-BUTYLPHTHALATE	BDL	130000	ug/kg
DINITROBENZENES	BDL	130000	
2,4-DINITROTOLUENE	BDL	130000	ug/kg
2,6-DINITROTOLUENE	BDL	130000	ug/kg
DI-N-OCTYLPHTHALATE	BDL	130000	ug/kg
FLUORANTHENE	BDL	130000	

Lab Sample ID: A244477

THE HEDITAGE LARODATORIES INC.

EMS HERITAGE LABORATORIES, INC. Parameter	Result	Det. Limit	Units
LUORENE	BDL	130000	ug/kg
EXACHLOROBENZENE	BDL	130000	ug/kg
EXACHLOROBUTADIENE	BDL	130000	ug/kg
EXACHLOROCYCLOPENTADIENE	BDL	130000	ug/kg
IEXACHLOROETHANE	BDL	130000	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	130000	ug/kg
SOPHORONE	BDL	130000	ug/kg
-METHYLNAPHTHALENE	120000	130000	ug/kg
IAPHTHALENE	380000	130000	ug/kg
2-NITROANILINE	BDL	640000	ug/kg
3-NITROANILINE	BDL	640000	ug/kg
I-NITROANILINE	BDL	640000	ug/kg
VITROBENZENE	BDL	130000	ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	130000	ug/kg
I-NITROSO-DI-N-PROPYLAMINE	BDL	130000	ug/kg
PHENANTHRENE	EST 68000	130000	ug/kg
mam: man	BDL	640000	ug/kg
2-PICOLINE	BDL	130000	ug/kg
PYRENE	BDL	640000	ug/kg
PYRIDINE FETRACHLOROBENZENES	BDL	130000	ug/kg
	BDL	640000	ug/kg
TOLUENEDIAMINE	BDL	130000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	640000	ug/kg
BENZOIC ACID	BDL	130000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	130000	ug/kg
2-CHLOROPHENOL	BDL	130000	ug/kg
2,4-DICHLOROPHENOL	BDL	130000	ug/kg
2,4-DIMETHYLPHENOL	BDL	640000	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	640000	ug/kg
2,4-DINITROPHENOL	BDL	130000	ug/kg
2-METHYLPHENOL	BDL	130000	ug/kg
4-METHYLPHENOL	BDL	130000	ug/kg
2-NITROPHENOL	BDL	640000	ug/kg
4-NITROPHENOL	BDL	640000	ug/kg
PENTACHLOROPHENOL		130000	ug/kg
PHENOL	BDL	130000	ug/kg
TETRACHLOROPHENOL	BDL	130000	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	130000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	130000	ug/ kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		% Rec
PHENOL-D5	*		% Rec
NITROBENZENE-D5	*		% Rec
2-FLUOROBIPHENYL	*		% Rec
2,4,6-TRIBROMOPHENOL	*		% Rec
TERPHENYL-D14	*		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846- Analyst: G. WILSON Analysis Date: 30-DEC-91		Test: P236 .	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.13	Det. Limit	Units Grams
TNAL VOLUME	5		mL.

POLYNUCLEAR AROMATIC HYDROCARBONS BY HP Analyst: T. COFFELT Analysis Date: 02-JAN-	92 Instrument: HPLC	Test: 0630.0	0.0.0	
Parameter	Result	Det. Limit	Units	
NAPHTHALENE	320	1.0	mg/kg	
ACENAPHTHYLENE	14 ያስር	1.6	mg/kg	
ACENAPHTHENE	37	1.011	mg/kg	
FLUORENE	38	0.12	mg/kg	
PHENANTHRENE	65	1.0	mg/kg	
ANTHRACENE	20	0.12	mg/kg	
FLUORANTHENE	82	0.14	mg/kg	
PYRENE	69	0.50	mg/kg	
BENZ (A) ANTHRACENE	22	0.86	mg/kg	
CHRYSENE	14	0.20	mg/kg	
BENZO(B)FLUORANTHENE	9.2	0.20	mg/kg	
BENZO(K)FLUORANTHENE	8.1	0.080	mg/kg	
BENZO(A)PYRENE	23	1.5	mg/kg	
DIBENZO(A,H)ANTHRACENE	EST 0.16 602	0.56	mg/kg	
BENZO(G,H,I)PERYLENE	12	0.94	mg/kg	
INDENÒ(1,2,3-CD)PYRENE	5.8	0.20	mg/kg	

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC ANALYSIS.

AMENDED REPORT 4/30/92, GAB.

Sample Comments

DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED REPORT 4/30/92, GAB.

* See Note for Parameter BDL Below Detection Limit EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	20-DEC-91	A244478
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	13-JAN-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	14-JAN-92	14-DEC-91 09:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-25-S02 DESCRIPTION: 26'-28' CLEAN

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW84				
Analyst: R. RIFE	Analysis Date: 03-JAN-92		Test: P405.7	. 0
Parame	ter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME		10		Grams
FINAL VOLUME		100		mL

PHENOLS 4AAP (AUTOM	ATED) SW846-9066			
Analyst: J. GRIFFIN		Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Prep: PHENOLS DIST	ILLATION SW846-9065			
	Parameter	Result	Det. Limit	Units
PHENOLS		BDL	0.1	mg/kg

346-9010			
Analysis Date: 30-DEC-91		Test: P101.4	. 0
neter	Result	Det. Limit	Units Grams
	846-9010 Analysis Date: 30-DEC-91	Analysis Date: 30-DEC-91	Analysis Date: 30-DEC-91 Result Det. Limit

CYANIDE, TOTAL	(AUTOMATED) S	SW846-9012			
Analyst: J. GRIFFIN		Analysis Date: 30-DEC-91	Instrument: AUTO-ANALYZER	Test: G101.4.	0
CYANIDE	Parameter		Result BDL	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY Analyst: C. BRODERICK Analysis Date		Test: P503.7	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	26.00		Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E

Analyst: C. BRODERICK Analysis Date: 27-DEC-91 Instrument: IR Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550

Parameter PETROLEUM HYDROCARBONS

Result Det. Limit Units BDL Units mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analys	sis Date: 27-DEC-91	Test: G301.1. 0
Parameter HEMICAL OXYGEN DEMAND	Result 2800	Det. Limit Units 1000 mg/kg

Analyst: H. WILLIAMS Parameter	Result	Det. Limit	Units
CETONE	BDL	1.2	mg/kg
CROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.63	mg/kg
BROMOMETHANE	BDL	0.31	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.63	mg/kg
CHLOROETHANE		0.31	
CHLOROFORM	BDL		mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
I,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
THYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
1-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
I,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			3, 3

Parameter	Result	Det. Limit	Units
DICHLOROETHANE-D4	119	%	Rec
TOLUENE - D8	112	1 %	Rec
BROMOFLUOROBENZENE	115	%	Rec

GC/MS SONICATION EXTRAC	TION FOR ORGANICS SW846-3 Analysis Date: 24-DEC-91	550	Test: P236.4	. 0
Para INITIAL WEIGHT OR VOLUME	meter	Result 30.07	Det. Limit	Units Grams
FINAL VOLUME		1.0	- 11	mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: Prep: GC/MS SONICATION EXTRACTION FOR (09-JAN-92 Instrument: GC/MS SVOA	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
BENZO(B) FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE		330	
BENZO(K)FLUORANTHENE .	BDL		ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	670	330	ug/kg
4-BROMOPHENYLPHEŃYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	
DIBENZOFURAN		330	
1,2-DICHLOROBENZENE	BDL		ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	ug/kg
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg
FLUORANTHENE	BDL	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE		330	
HEXACHLOROETHANE	BDL		ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	390	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
2,1,0 INTOILEONOTHEROE	DOL.	330	49/119
SURROGATE RECOVERY			
2-FLUOROPHENOL	60	WEIGHT 1	% Rec
PHENOL-D5	66		% Rec
NITROBENZENE-D5	55		% Rec
2-FLUOROBIPHENYL	58		% Rec
2,4,6-TRIBROMOPHENOL	79		% Rec
TERPHENYL-D14	61		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3550				
Analyst: G. WILSON	Analysis Date: 30-DEC-91		Test: P236.1	. 0
Pai	rameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUM	E	29.91		Grams
FINAL VOLUME		5		mL

Analysi: T. COFFELT Analysis Date Prep: SONICATION EXTRACTION FOR ORGAN	e: 02-JAN-92 Instrument: HPLC ICS SW846-3550	Test: 0630.0.	0
Parameter	Result	Det. Limit	Units
NAPHTHALENE	0.35	0.005	mg/kg
ACENAPHTHYLENE	BDL	0.008	mg/kg
ACENAPHTHENE	0.034	0.005	mg/kg
FLUORENE	0.59	0.0006	mg/kg
PHENANTHRENE	0.097	0.005	mg/kg
ANTHRACENE	0.023	0.0007	mg/kg

Lab Sample ID: A244478

Parameter	Result	Det. Limit	Units
FLUORANTHENE	0.22	0.0007	mg/kg
PYRENE	U.19	0.0025	mg/kg
BENZ(A)ANTHRACENE	BDL	0.0043	mg/kg
CHDYCENE	BDL	0.001	mg/kg
BENZO(B) FLUORANTHENE	BDL	0.001	mg/kg
RENZO (K) EL LIORANTHENE		0.0004	mg/kg
BENZO(A) PYRENE	0.27	0.0077	mg/kg
DIBENZO(A.H)ANTHRACENE	BDL	0.0028	mg/kg
BEN7O(G.H.I)PERYLENE	0.047	0.0047	mg/kg
INDENO(1,2,3-CD) PYRENE	BDL	0.001	mq/kq

Sample Comments

BDL Below Detection Limit

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244483
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 14-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92		pled -91 13:30

Report To

Bill To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-26-S01

DESCRIPTION: 06'-08' IMPACTED

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 23-DEC-9	1	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: J. GRIFFI	AUTOMATED) SW846-9066 IN Analysis Date: 24-DEC- TILLATION SW846-9065 P405.7.0	91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result 0.15	Det. Limit 0.10	Units ma/ka

CYANIDE DISTILLATION SW846-9010 Analyst: L. MATTINGLY Analysis Date: 30-DEC-	91	Test: P101.4	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL:

CYANIDE, TOTA	L (AUTOMATED) SW846-9012			
Analyst: J. GRIFF		72 Instrument: AUTO-ANALYZER	Test: G101.4	.0
	Parameter	Result	Det. Limit	Units

SONICATION EXTRACTION FOR ORGANICS BY I Analyst: N. HEMMERLEIN Analysis Date: 30-DEC-		Test: P503.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 26.46	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 50)3E		
Analyst: C. BRODERICK Analysis Date: 31-DEC- Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-		Test: G503.7	.0
Parameter	Result	Det. Limit	Units
PETROLEUM HYDROCARBONS	160	10	mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1.0
Parameter CHEMICAL OXYGEN DEMAND	Result 6800	Det. Limit Units 1000 mg/kg
1:100 DILUTION	4 T T T	
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	SW846-3050	Test: P129.7.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92	SW846-3050	Test: P129.7.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit Units Grams ML
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305	Instrument: ICP	Test: M104.3:0
Parameter BARIUM	Result 44.	Det. Limit Units 1.0 mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF \$/\$/\$ SAMPLES SW846-305		Test: M108.3.0
Parameter CADMIUM	Result BDL	Det. Limit Units 0.50 mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305		Test: M110.3.0
Parameter CHROMIUM	Result 7.9	Det. Limit Units 1.0 mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305		Test: M112.3.0
Parameter COPPER	Result 8.8	Det. Limit Units 2.0 mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305	865586666666666666666666444444444444444	Test: M115.3.0
Parameter IRON	Result 12000	Det. Limit Units 2.0 mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-305		Test: M116.3.0
Parameter LEAD	Result 9.4	Det. Limit Units 5.0 mg/kg

	2-JAN-92 Instrument: ICP	Test: M119.3.0)
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLE	s sw846-3050 P129.7.1		
Parameter	Result	Det. Limit	Units
MANGANESE	860	1.0	mg/kg

NICKEL ICP SW Analyst: A. HILS Prep: FAA OR ICP		-92 Instrument: ICP 346-3050 P129.7.0	Test: M122.3	.0
NICKEL	Parameter	Result 15.	Det. Limit	Units mg/kg
ZINC ICP SW84 Analyst: A. HILS		-92 Instrument: ICP	Test: M139.3	.0

	Parameter	Result	Det. Limit Un
ZINC		44.	2.0 mg/k

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-91		Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mL

Analyst: W. WATNESS Analysis Date: 04-JA	N-92 Instrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-30	50 P130.7.0		
Parameter	Result	Det. Limit	Units
DINIC	4.7	2.0	mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: K. HACK Analysis Date: 26-DEC-91		Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: K. HACK			Test: M120.2	.0
Prep: MERCURY CV	/AA ACID DIGESTION OF S/S/S SAMPLES SV Parameter	Result	Det. Limit	Units
MERCURY		BDL	0.13	mg/kg

Analyst: R. SHAMP Analysis Date: 08-JAN	-92 Instrument: GC/MS VOA	Test: 0510.3.	Test: 0510.3.0	
Parameter	Result	Det. Limit	Units	
ACETONE	BDL	1.2	mg/kg	
ACROLEIN	BDL	3.1	mg/kg	
ACRYLONITRILE	BDL	4.4	mg/kg	
BENZENE	0.58	0.31	mg/kg	
BROMODICHLOROMETHANE	BDL	0.31	mg/kg	
BROMOFORM	BDL	0.31	mg/kg	
BROMOMETHANE	BDL	0.63	mg/kg	

Lab Sample ID: A244483

EMS HERITAGE LABORATORIES, INC.

Parameter	Result	Det. Limit	Units
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODI FLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	EST 22	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	0.38	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TETRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	2.3	0.31	
AILERE (TOTAL)			
SURROGATE RECOVERY			
DICHLOROETHANE-D4	69		% Rec
TOLUENE-D8	86		% Rec
BROMOFLUOROBENZENE PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY CAPILLARY COLUMN METHOD 8260 ON THIS INSTRUMENT	100		% Rec

1:63 DILUTION FACTOR
SAMPLE WILL BE RERUN FOR DILUTION AND SURROGATE RECOVERY. ALSO SAMPLE WAS RUN
OUTSIDE OF HOLDING TIME.

Analyst: R. SHAMP Analysis Date: 10-JAN	OLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 10-JAN-92 Instrument: GC/MS VOA		Test: 0510.3.1	
Parameter	Result	Det. Limit	Units	
ACETONE	BDL	12	mg/kg	
ACROLEIN		31	mg/kg	
ACRYLONITRILE	BDL	44	mg/kg	
BENZENE	BDL	3.1	mg/kg	
BROMODICHLOROMETHANE	BDL	3.1	mg/kg	
BROMOFORM	BDL	3.1	mg/kg	
BROMOMETHANE	BDL	6.3	mg/kg	
CARBON DISULFIDE	BDL	3.1	mg/kg	
CARBON TETRACHLORIDE	BDL	3.1	mg/kg	

Parameter	Result	Det. Limit	Units
CHLOROBENZENE	BDL	3.1	mg/kg
CHLOROETHANE	BDL	6.3	mg/kg
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3.1	mg/kg
1.1-DICHLOROETHANE	BDL	3.1	mg/kg
1,2-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL	3,1	mg/kg
1,2-DICHLOROPROPANE	BDL	3.1	mg/kg
ETHYLBENZENE	20	3.1	mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	mg/kg
2-HEXANONE	BDL	6.3	mg/kg
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	mg/kg
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE	BDL	3.1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3.1	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	BDL	3.1	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
1,1,1-TRICHLOROETHANE	BDL	3.1	mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.1	mg/kg
TRICHLOROETHENE	BDL	3.1	mg/kg
VINYL ACETATE	BDL	6.3	mg/kg
VINYL CHLORIDE	BDL	6.3	mg/kg
XYLENE (TOTAL)	BDL	3.1	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	*		% Rec
TOLUENE-D8	*		% Rec
BROMOFLUOROBENZENE	***************************************		% Rec
PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY			
CAPILLARY COLUMN METHOD 8260 ON THIS INSTRUMENT			

GC/MS SONICATION EXTRACTION FOR ORGANICS S	W846-3550		
Analyst: N. ROHADFOX Analysis Date: 24-DEC-91		Test: P236.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.92	Det. Limit	Units Grams
ETNAL VOLUME	10		mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: 09-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	-92 Instrument: GC/MS SVOA	Test: 0505.3	.1
Parameter ACFNAPHTHENE	Result 17000	Det. Limit 3300	Units ug/kg
ACENAPHTHYLENE	BDL	3300	ug/kg
ANTHRACENE	8100	3300	ug/kg
BENZ (A) ANTHRACENE	4300	3300	ug/kg
BENZO(A)PYRENE	4300	3300	ug/kg

EMS HERITAGE LABORATORIES, INC.	Result	Det. Limit	Units
Parameter	BDL	3300	ug/kg
BENZO(B) FLUORANTHENE	BDL	3300	ug/kg
BENZO(G, H, I) PERYLENE	BDL	3300	ug/kg
BENZO(K) FLUORANTHENE BENZYL ALCOHOL	BDL	3300	ug/kg
BENZYLBUTYLPHTHALATE	BDL	3300	ug/kg
	BDL	3300	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	3300	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	3300	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	5900	3300	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	3300	ug/kg
4-BROMOPHENYLPHENYLETHER CARBAZOLE	BDL	3300	ug/kg
4-CHLOROANILINE	BDL	3300	ug/kg
2-CHLORONAPHTHALENE	BDL	3300	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	3300	ug/kg
CHRYSENE	4100	3300	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	3300	ug/kg
DIBENZOFURAN	2200	3300	ug/kg
1,2-DICHLOROBENZENE	BDL	3300	ug/kg
1,3-DICHLOROBENZENE	BDL	3300	ug/kg
1,3-DICHLOROBENZENE	BDL	3300	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	6600	ug/kg
DIETHYLPHTHALATE	BDL	3300	ug/kg
DIMETHYLPHTHALATE	BDL	3300	ug/kg
DI-N-BUTYLPHTHALATE	BDL	3300	ug/kg
DINITROBENZENES	BDL	3300	ug/kg
2,4-DINITROTOLUENE	BDL	3300	ug/kg
2,6-DINITROTOLUENE	BDL	3300	ug/kg
DI-N-OCTYLPHTHALATE	BDL	3300	ug/kg
FLUORANTHENE	9500	3300	ug/kg
FLUORENE	8800	3300	ug/kg
HEXACHLOROBENZENE	BDL	3300	ug/kg
HEXACHLOROBUTADIENE	BDL	3300	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	3300	ug/kg
HEXACHLOROETHANE	BDL	3300	ug/kg
INDENO(1,2,3-CD) PYRENE	BDL	3300	ug/kg
ISOPHORONE	BDL	3300	ug/kg
2-METHYLNAPHTHALENE	BDL	3300	ug/kg
NAPHTHALENE	45000	3300	ug/kg
2-NITROANILINE	BDL	16000	ug/kg
3-NITROANILINE	BDL	16000	ug/kg
4-NITROANILINE	BDL	16000	ug/kg
NITROBENZENE	BDL	3300	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	3300	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	3300	
PHENANTHRENE	27000	3300	ug/kg
2-PICOLINE	BDL	16000	ug/kg
PYRENE	17000	3300	ug/kg
PYRIDINE	BDL	16000	ug/kg
TETRACHLOROBENZENES	BDL	3300	ug/kg
TOLUENEDIAMINE	BDL	16000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	3300	ug/kg
BENZOIC ACID	BDL	16000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	3300	ug/kg
2-CHLOROPHENOL	BDL	3300	
2,4-DICHLOROPHENOL	BDL	3300	ug/kg
2,4-DIMETHYLPHENOL	BDL	3300	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	16000	ug/kg

Lab Sample ID: A244483

Parameter	Result	Det. Limit	Units
2,4-DINITROPHENOL	BDL	16000	ug/kg
2-METHYLPHENOL	BDL	3300	ug/kg
4-METHYLPHENOL	BDL	3300	ug/kg
2-NITROPHENOL	BDL	3300	ug/kg
4-NITROPHENOL	BDL	16000	ug/kg
PENTACHLOROPHENOL	BDL	16000	ug/kg
PHENOL	BDL	3300	ug/kg
TETRACHLOROPHENOL	BDL	3300	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	3300	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	3300	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	*		% Rec
PHENOL-D5	*		% Rec
NITROBENZENE-D5	***************************************		% Rec
2-FLUOROBIPHENYL	*		% Rec
2,4,6-TRIBROMOPHENOL	*		% Rec
TERPHENYL-D14	*		% Rec

1:10 DILUTION NOTE: * SURROGATES DILUTED OUT NOTE: FAILS INTERNAL STANDARD

SONICATION EXTRACTION FOR ORGANICS SW846-3550)	Test: P236.	1.0
Analyst: G. WILSON Analysis Date: 30-DEC-91 Parameter INITIAL WEIGHT OR VOLUME	Result 30.32	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Parameter	Result	Det. Limit	Units
NAPHTHALENE	72	1.0	mg/kg
ACENAPHTHYLENE	BDL	1.6	mg/kg
ACENAPHTHENE	29	1.0	mg/kg
FLUORENE	17	0.12	mg/kg
PHENANTHRENE	42	1.0	mg/kg
ANTHRACENE	12	0.14	mg/kg
FLUORANTHENE	40 00	0.14	mg/kg
PYRENE	14 5	0.50	mg/kg
BENZ (A) ANTHRACENE	9.4	0.86	mg/kg
CHRYSENE	7.5	0.20	mg/kg
BENZO(B)FLUORANTHENE	4.5	0.20	mg/kg
BENZO(K)FLUORANTHENE	3.4	0.080	mg/kg
BENZO(A)PYRENE	12	1.5	mg/kg
DIBENŻO(A,H)ANTHRACENE	BDL	0.56	mg/kg
BENZO(G,H,I)PERYLENE	12	0.94	mg/kg
INDENÒ(1,2,3-CD)PYRENE	3.4	0.20	mg/kg

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC

ANALYSIS.

AMENDED REPORT 4/30/92, GAB.

Sample Comments

DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED REPORT 4/30/92, GAB.

* See Note for Parameter BDL Below Detection Limit EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Appusch

CERTIFICATE OF ANALYSIS

Service Location HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project Lab 638 A2444	
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 16-JAN-92		Number -CHAMPAIGN
(317)243-8305	Printed 08-MAY-92	3.30	pled -91 15:10

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-26-SO2 DESCRIPTION: 21'-23' CLEAN

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: R. RIFE Analysis Date: 03-JAN-9	2	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

PHENOLS 4AAP (AUTOMATED) SW8 Analyst: J. GRIFFIN Analys Prep: PHENOLS DISTILLATION SW846-9065	pate: 07-JAN-92 Instrument: AUTO-ANALYZER	Test: 0405.7.0
Parameter PHENOLS	Result BDL	Det. Limit Units 0.1 mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 02-JAN-92		Test: P101.4	÷.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FTNAL VOLUME	250		l mL

CYANIDE, TOTAL (AUTOMATED) SW846 Analyst: J. GRIFFIN Analysis Dat	-9012 e: 03-JAN-92 Instrument: AUTO-ANALYZER	Test: G101.4.0
Prep: CYANIDE DISTILLATION SW846-9010 P101. Parameter	4.0 Result	Det. Limit Units
CYANIDE	BDL	0.25 mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR Analyst: N. HEMMERLEIN Analysis Date: 30-DEC-91		Test: P503.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 25.02	Det. Limit	Units Grams
FINAL VOLUME	100	11111111111111111111111111111111111111	mL.

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503E Analyst: C. BRODERICK Analysis Date: 31-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3550	Instrument: IR	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result BDL	Det. Limit	Units mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1	.0
Parameter CHEMICAL OXYGEN DEMAND	Result 3700	Det. Limit 1000	Units mg/kg
1:100 DILUTION			

OLATILE ORGANICS SW846-8240 Analyst: C. BOYLE Analysis Date: 27-DEC-91 Instrument: GC/MS VOA		Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL		mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROPTHENE 1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
	BDL	0.63	mg/kg
2-HEXANONE	BDL	0,31	mg/kg
METHYLENE CHLORIDE	BDL	0.63	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.31	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	1.5	mg/kg
TETRAHYDROFURAN	BDL	0.31	mg/kg
TOLUENE TOTAL	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)		0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL		
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	
TRICHLOROETHENE	BDL		mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	102		% Rec
	102		% Rec
TOLUENE + D8 BROMOFLUOROBENZENE	96		% Rec

1:63 DILUTION

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 27-DEC-9		Test: P236.4	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.01	Det. Limit	Units Grams
FINAL VOLUME	1.0		mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACID FRACTIONS) SW846-8270 Analyst: J. ELLIS Analysis Date: 13-JAN-92 Instrument: GC/MS SVOA Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 P236.4.0		Test: 0505.3.0	
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	BDL	330	ug/kg
BENZO(A)PYRENE	BDL	330	ug/kg
BENZO(B)FLUORANTHENE	BDL	330	ug/kg
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg
BENZO(K)FLUORANTHENE	BDL	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	350	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg
4-CHLOROANILINE	BDL	330	ug/kg
2-CHLORONAPHTHALENE	BDL	330	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
CHRYSENE	BDL	330	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg
DIBENZOFURAN	BDL		ug/kg
1,2-DICHLOROBENZENE	BDL	330	ug/kg
1,3-DICHLOROBENZENE	BDL	330	ug/kg
1,4-DICHLOROBENZENE	BDL	330	ug/kg
3,3'-DICHLOROBENZIDINE	BDL		ug/kg
DIETHYLPHTHALATE	BDL	330	ug/kg
DIMETHYLPHTHALATE	BDL	330	ug/kg
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg
DINITROBENZENES	BDL	330	
2,4-DINITROTOLUENE	BDL	330	ug/kg
2,6-DINITROTOLUENE	BDL	330	ug/kg
DI-N-OCTYLPHTHALATE	BDL	330	
FLUORANTHENE	BDL	330	ug/kg
FLUORENE	BDL	330	ug/kg
HEXACHLOROBENZENE	BDL	330	ug/kg
HEXACHLOROBUTADIENE	BDL	330	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
HEXACHLOROETHANE	BDL	330	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
ISOPHORONE	BDL	330	ug/kg
2-METHYLNAPHTHALENE	BDL	330	ug/kg
NAPHTHALENE	BDL	330	ug/kg
2-NITROANILINE	BDL	1600	ug/kg
3-NITROANILINE	BDL	1600	ug/kg

Lab Sample ID: A244484

HERITAGE LABORATORIES, INC.

HERITAGE EMBORATORIES, INC.			
Parameter	Result	Det. Limit	Units
I-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE	BDL	330	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	BDL	330	ug/kg
2-PICOLINE	BDL	1600	ug/kg
PYRENE	BDL	330	ug/kg
PYRIDINE	BDL	1600	ug/kg
TETRACHLOROBENZENES	BDL	330	ug/kg
TOLUENEDIAMINE	BDL	1600	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BENZOIC ACID	BDL	1600	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
2-CHLOROPHENOL	BDL	330	ug/kg
2,4-DICHLOROPHENOL	BDL	330	ug/kg
2,4-DIMETHYLPHENOL	BDL	330	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
2,4-DINITROPHENOL	BDL	1600	ug/kg
2-METHYLPHENOL	BDL	330	ug/kg
4-METHYLPHENOL	BDL	330	ug/kg
2-NITROPHENOL	BDL	330	ug/kg
4-NITROPHENOL	BDL	1600	ug/kg
PENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	82		% Rec
PHENOL-D5	77		% Rec
NITROBENZENE-D5	68	8	% Rec
2-FLUOROBIPHENYL	68		% Rec
2,4,6-TRIBROMOPHENOL	67		% Rec
TERPHENYL-D14	98		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846-3550		Test: P236.	1.0
Analyst: G. WILSON Analysis Date: 30-DEC-91 Parameter INITIAL WEIGHT OR VOLUME	Result 30.20	Det. Limit	Units Grams
FINAL VOLUME	5		mL

Analyst: T. COFFELT Analysis Date: 02-JAN-	92 Instrument: HPLC	Test: 0630.0.0
Parameter	Result	Det. Limit Units
NAPHTHALENE	0.015	.005 mg/kg
ACENAPHTHYLENE	BDL	.008 mg/kg
ACENAPHTHENE	BDL	.005 mg/kg
FLUORENE	BDL	.0006 mg/kg
PHENANTHRENE	0.022	.005 mg/kg
ANTHRACENE	0.0020	.0007 mg/kg
FLUOPANTHENE	BDL	.0007 mg/kg
PYRENE	0.22	.0025 mg/kg
DENZ/ALANTHDACENE	BDI	.0043 mg/kg
CHRACENE	0.022	.001 mg/kg
CHKT DENE	BDL	001 mg/kg

Lab Sample ID: A244484

Parameter	Result	Det. Limit Units
BENZO(K)FLUORANTHENE	BDL	.0004 mg/kg
BENZO (A) PYRENE		.00// mg/kg
DIBENŻO(A,H)ANTHRACENE	BDL	.0028 mg/kg
BENZO(G.H.I)PERYLENE	BDL	.0047 mg/kg
INDENO(1.2.3-CD)PYRENE	BDL	.001 mg/kg
AMENDED REPORT 5/8/92, GAB.		
CORRECTED DETECTION LIMITS.		

Sample Comments

BDL Below Detection Limit

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-91	Project 638	Lab ID A244485
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete PO Number 17-JAN-92 PO072488-CHAMPAIG		
(317)243-8305	Printed 30-APR-92	5,500	pled -91 10:10

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-27-S01 DESCRIPTION: 06'-08' IMPACTED

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065			
Analyst: M. GAUGHAN Analysis Date: 23-DEC-91 Parameter	Result	Test: P405.	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FTNAL VOLUMF	100		mL

Analyst: J. GRIFF	(AUTOMATED) SW846-9066 Fin Analysis Date: 24-DEC- STILLATION SW846-9065 P405.7.0	91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
	Parameter	Result	Det. Limit	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: L. MATTINGLY Analysis Date: 30-DEC-	91	Test: P101,	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL

CYANIDE, TOTAL (AUTOMATED) Analyst: J. GRIFFIN Anal Prep: CYANIDE DISTILLATION SW846-90	ysis Date: 03-JAN-92 Instrume	nt: AUTO-ANALYZER	Test: G101.4	.0
CYANIDE		Result 5.3	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY II Analyst: N. HEMMERLEIN Analysis Date: 30-DEC-		Test: P503.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 25.11	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 503 Analyst: C. BRODERICK Analysis Date: 31-DEC-91 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-33	Instrument: IR	Test: G503.7	.0
Parameter PETROLEUM HYDROCARBONS	Result 160	Det. Limit	Units mg/kg

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-DEC-91		Test: G301.1	.0
Parameter CHEMICAL OXYGEN DEMAND	Result 7800	Det. Limit 1000	Units mg/kg
1:100 DILUTION			
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 27-DEC-91	SW846-3050	Test: P129.7	.0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES Analyst: J. VANSKYOCK Analysis Date: 10-JAN-92	SW846-3050	Test: P129.7	'.1
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M104.3	6.0
Parameter BARIUM	Result 88.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 08-JAN-92 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M108.3	i.0
Parameter CADMIUM	Result BDL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M110.3	3.0
Parameter CHROMIUM	Result 10.	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M112.:	3.0
Parameter COPPER	Result 13.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M115.	3.0
Parameter IRON	Result 12000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-91 Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-30		Test: M116.	3.0
$a_0 x_0 x_0 x_0 x_0 x_0 x_0 x_0 x_0 x_0 x$		Det. Limit	Units

ANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 12-JAN		Test: M119.3	.0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8	46-3050 P129.7.1 Result	Det. Limit	Units
MANGANESE	210	1.0	mg/kg

NICKEL ICP SW Analyst: A. HILSO Prep: FAA OR ICP			Test: M122.3	.0
NICKEL	Parameter	Result 15.	Det. Limit	Units mg/kg

nalyst: A. HILSCHER Analysis Date: 12-JAN-		Test: M139.3	.0
Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84	6-3050 P129.7.1		
Parameter	Result	Det. Limit	Units
INC	43.	2.0	mg/kg

GFAA ACID DIGESTION OF S/S/S SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 23-DEC-9		Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

RSENIC GFAA SW846-7060 inalyst: W. WATNESS Analysis Date: 04-JAN-9		Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3050	P130.7.0		
Parameter	Result 5.4	Det. Limit	Units mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SAMI Analyst: K. HACK Analysis Date: 26-DEC-91		Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

Analyst: K. HACK			Test: M120.2	.0
MERCURY	AA ACID DIGESTION OF S/S/S SAMPLES SW8 Parameter	Result BDL	Det. Limit 0.13	Units mg/kg

	-91 Instrument: GC/MS VOA	Det. Limit Units
ACETONE Parameter	BDL Result	12 mg/kg
ACROLEIN	BDL	31 mg/kg
ACRYLONITRILE	BDL	44 mg/kg
BENZENE	12	3.1 mg/kg
BROMODICHLOROMETHANE	BDL	3.1 mg/kg
BROMOFORM	BDL	3.1 mg/kg
BROMOMETHANE	BDL	6.3 mg/kg

EMS HERITAGE LABORATORIES, INC. Lab Sample ID: A244485

Parameter	Result	Det. Limit	Units
CARBON DISULFIDE	BDL	3.1	mg/kg
CARBON TETRACHLORIDE	BDL	3.1	mg/kg
CHLOROBENZENE	BDL	3.1	mg/kg
CHLOROETHANE	BDL	6.3	mg/kg
CHLOROFORM	BDL	3.1	mg/kg
CHLOROMETHANE	BDL	6.3	mg/kg
DIBROMOCHLOROMETHANE	BDL	3.1	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	3.1	mg/kg
DICHLORODIFLUOROMETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHANE	BDL	3.1	mg/kg
1,2-DICHLOROETHANE	BDL	3.1	mg/kg
1,1-DICHLOROETHENE	BDL		mg/kg
1,2-DICHLOROPROPANE	BDL	3.1	mg/kg
ETHYLBENZENE	7,4	3.1	mg/kg
FLUOROTRICHLOROMETHANE	BDL	3.1	mg/kg
2-HEXANONE	BDL	6.3	mg/kg
METHYLENE CHLORIDE	BDL	3.1	mg/kg
METHYL ETHYL KETONE	BDL	6.3	mg/kg
4-METHYL-2-PENTANONE	BDL	6.3	mg/kg
STYRENE		3.1	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	3.1	mg/kg
TETRACHLOROETHENE	BDL	3.1	mg/kg
TETRAHYDROFURAN	BDL	15	mg/kg
TOLUENE	22	3.1	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	3.1	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	3.1	
1,1,1-TRICHLOROETHANE	BDL	3.1	mg/kg
1,1,2-TRICHLOROETHANE	BDL	3.2	
TRICHLOROETHENE	BDL	3.1	mg/kg
VINYL ACETATE	BDL		mg/kg
VINIL ACCIATE VINYL CHLORIDE	BDL	6.3	
XYLENE (TOTAL)	35	3.1	mg/kg
·		V.	
SURROGATE RECOVERY			
DICHLOROETHANE-D4	108		% Rec
TOLUENE-D8	100		% Rec
BROMOFLUOROBENZENE	109		% Rec
1:630 DILUTION			

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 27-DEC-9		Test: P236.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.0	Det. Limit	Units Grams
FINAL VOLUME	1.0		

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: J. ELLIS Analysis Date: 11-JAN Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846	-92 Instrument: GC/MS SVOA	Test: 0505.3	.0
Parameter ACFNAPHTHENE	Result EST 37000	Det. Limit 660	Units ug/kg
ACENAPHTHYLENE	EST 12000	660	ug/kg
ANTHRACENE	EST 45000	660	ug/kg
BENZ(A)ANTHRACENE	EST 36000	660	ug/kg
BENZÔ(Á) PYRENE	EST 14000	660	ug/kg
BENZO(B)FLUORANTHENE	EST 13000	660	ug/kg

EMS HERITAGE LABORATORIES, INC.		D. A. 1.2-2.4	Unite
Parameter	EST 11000	Det. Limit 660	Units ug/kg
BENZO(G,H,I)PERYLENE	The second secon	660	ug/kg
ENZO(K)FLUORANTHENE	4800	660	ug/kg
ENZYL ALCOHOL	BDL		
ENZYLBUTYLPHTHALATE	BDL	660	ug/kg
IS(2-CHLOROETHOXY)METHANE	BDL	660	ug/kg
IS(2-CHLOROETHYL)ETHER	BDL	660	ug/kg
IS(2-CHLOROISOPRÓPYL)ETHER	BDL	660	ug/kg
IS(2-ETHYLHEXYL)PHTHÁLATE	2400	660	ug/kg
-BROMOPHENYLPHENYLETHER	BDL	660	ug/kg
ARBAZOLE	2600	660	ug/kg
-CHLOROANILINE	BDL	660	ug/kg
-CHLORONAPHTHALENE	BDL	660	ug/kg
	BDL	660	ug/kg
-CHLOROPHENYLPHENYLETHER	EST 22000	660	ug/kg
HRYSENE	2300	660	ug/kg
IBENZ(A,H)ANTHRACENE		660	ug/kg
IBENZOFURAN	EST 15000		ug/kg
,2-DICHLOROBENZENE	BDL	660	ug/kg
,3-DICHLOROBENZENE	BDL	660	ug/kg
,4-DICHLOROBENZENE	BDL	660	ug/kg
,3'-DICHLOROBENZIDINE	BDL	1300	ug/kg
IETHYLPHTHALATE	BDL	660	ug/kg
IMETHYLPHTHALATE	BDL	660	ug/kg
I-N-BUTYLPHTHALATE	BDL	660	ug/kg
INITROBENZENES	BDL	660	ug/kg
	BDL	660	ug/kg
,4-DINITROTOLUENE	BDL	660	
,6-DINITROTOLUENE	BDL	660	ug/kg
I-N-OCTYLPHTHALATE		660	
LUORANTHENE	EST 49000		
LUORENE	EST 35000	660	ug/kg
IEXACHLOROBENZENE	BDL	660	
IEXACHLOROBUTAD I ENE	BDL	660	ug/kg
IEXACHLOROCYCLOPENTADIENE	BDL	660	ug/kg
IEXACHLOROETHANE	BDL	660	ug/kg
NDENO(1,2,3-CD)PYRENE	EST 15000	660	ug/kg
SOPHORONE	BDL	660	ug/kg
2-METHYLNAPHTHALENE	EST 25000	660	
	EST 120000	660	
IAPHTHALENE	BDL	3200	
-NITROANILINE	BDL	3200	ug/kg
-NITROANILINE		3200	
-NITROANILINE	BDL	660	
ITROBENZENE	BDL		ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	660	ug/kg
I-NITROSO-DI-N-PROPYLAMINE	BDL	660	ug/kg
HENANTHRENE	EST 180000	660	ug/kg
-PICOLINE	BDL	3200	ug/kg
YRENE	EST 103000	660	ug/kg
YRIDINE	BDL	3200	
ETRACHLOROBENZENES	BDL	660	
	BDL	3200	
OLUENEDIAMINE	BDL	660	
,2,4-TRICHLOROBENZENE		3200	
BENZOIC ACID	BDL		
-CHLORO-3-METHYLPHENOL	BDL	660	
2-CHLOROPHENOL	BDL	660	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
2,4-DICHLOROPHENOL	BDL	660	0, 0
2,4-DIMETHYLPHENOL	3800	660	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	3200	
2,4-DINITROPHENOL	BDL	3200	ug/kg

Parameter	Result	Det. Limit	Units
2-METHYLPHENOL	1500	660	ug/kg
4-METHYLPHENOL	3600	660	ug/kg
2-NITROPHENOL	BDL	660	ug/kg
4-NITROPHENOL	BDL	3200	ug/kg
PENTACHLOROPHENOL	BDL	3200	ug/kg
PHENOL	2100	660	ug/kg
TETRACHLOROPHENOL	BDL	660	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	660	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	660	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	107		% Rec
PHENOL-D5	84		% Rec
NITROBENZENE-D5	97		% Rec
2-FLUOROBIPHENYL	110		% Rec
2,4,6-TRIBROMOPHENOL	66		% Rec
TERPHENYL-D14	131		% Rec
1:2 DILUTION			

Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846			
Parameter	Result	Det. Limit 16000	Units ug/kg
ACENAPHTHENE	29000	16000	
ACENA PHTHY LENE	EST_11000	16000	ug/kg ug/kg
ANTHRACENE	34000	16000	ug/kg
BENZ (A) ANTHRACENE	21000	16000	
BENZO (A) PYRENE	BDL	16000	ug/kg
BENZO(B)FLUORANTHENE	BDL		ug/kg
BENZO(G,H,I)PERYLENE	BDL	16000	ug/kg
BENZO(K)FLUORANTHENE	BDL	16000	ug/kg
BENZYL ÁLCOHOL	BDL	16000	ug/kg
BENZYLBUTYLPHTHALATE	BDL	16000	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	16000	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	16000	ug/kg
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	16000	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	16000	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	16000	ug/kg
CARBAZOLE	BDL	16000	ug/kg
4-CHLOROANILINE	BDL	16000	ug/kg
2-CHLORONAPHTHALENE	BDL	16000	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	16000	ug/kg
CHRYSENE	17000	16000	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	16000	ug/kg
DIBENZÔFÚRÁN	EST 13000	16000	ug/kg
1,2-DICHLOROBENZENE	BDL	16000	ug/kg
1,3-DICHLOROBENZENE	BDL	16000	ug/kg
1,4-DICHLOROBENZENE	BDL	16000	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	33000	ug/kg
DIETHYLPHTHALATE	BDL	16000	ug/kg
DIMETHYLPHTHALATE	BDL	16000	ug/kg
DI-N-BUTYLPHTHALATE	BDL	16000	ug/kg
DINITROBENZENES	BDL	16000	ug/kg
2,4-DINITROTOLUENE	BDL	16000	ug/kg
2,6-DINITROTOLUENE	BDL	16000	ug/kg Page

Parameter	Result	Det. Limit 16000	Units
DI-N-OCTYLPHTHALATE	BDL	16000	ug/kg ug/kg
FLUORANTHENE	48000	16000	ug/kg
FLUORENE	35000	16000	ug/kg
HEXACHLOROBENZENE	BDL	16000	
HEXACHLOROBUTAD I ENE	BDL		ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	16000	ug/kg
HEXACHLOROETHANE	BDL	16000	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	16000	ug/kg
ISOPHORONE	BDL	16000	ug/kg
2-METHYLNAPHTHALENE	24000	16000	ug/kg
NAPHTHALENE	95000	16000	ug/kg
2-NITROANILINE	BDL	80000	ug/kg
3-NITROANILINE	BDL	80000	ug/kg
4-NITROANILINE	BDL	80000	ug/kg
NITROBENZENE	BDL	16000	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	16000	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	16000	ug/kg
PHENANTHRENE	110000	16000	ug/kg
2-PICOLINE	BDL	80000	ug/kg
PYRENE	59000	16000	ug/kg
PYRIDINE	BDL	80000	ug/kg
TETRACHLOROBENZENES	BDL	16000	ug/kg
TOLUENEDIAMINE	BDL	80000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	16000	ug/kg
BENZOIC ACID	BDL	80000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	16000	ug/kg
2-CHLOROPHENOL	BDL	16000	ug/kg
2,4-DICHLOROPHENOL	BDL	16000	ug/kg
2,4-DIMETHYLPHENOL	BDL	16000	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	80000	ug/kg
2,4-DINITROPHENOL	BDL	80000	ug/kg
2-METHYLPHENOL	BDL	16000	ug/kg
	BDL	16000	ug/kg
4-METHYLPHENOL	BDL	16000	ug/kg
2-NITROPHENOL	BDL	80000	ug/kg
4-NITROPHENOL	BDL	80000	ug/kg
PENTACHLOROPHENOL	BDL	16000	
PHENOL	BDL	16000	ug/kg
TETRACHLOROPHENOL	BDL	16000	ug/kg
2,4,5-TRICHLOROPHENOL		16000	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	1.0000	ug/ kg
SURROGATE RECOVERY			11111111111111111111111111111111111111
2-FLUOROPHENOL			% Rec
PHENOL-D5	*		% Rec
NITROBENZENE-D5	*		% Rec
2-FLUOROBIPHENYL	*		% Rec
2,4,6-TRIBROMOPHENOL	*		% Rec
TERPHENYL-D14	*		% Rec

NOTE: * SURROGATES DILUTED OUT

Lab Sample ID: A244485

SONICATION EXTRACTION FOR ORGANICS SW846-		Test: P236.	1.0
Analyst: G. WILSON Analysis Date: 30-DEC-91 Parameter INITIAL WEIGHT OR VOLUME	Result 31.47	Det. Limit	Units Grams
FINAL VOLUME	. 5		mL.

Parameter	Result	Det. Limit	Units
NAPHTHALENE	170	1.0	mg/kg
ACENAPHTHYLENE	23	1.6	mg/kg
ACENAPHTHENE	51	1.0	mg/kg
FLUORENE	83	0.12	mg/kg
PHENANTHRENE	160	1.0	mg/kg
ANTHRACENE	54	0.14	mg/kg
FLUORANTHENE	150	0.14	mg/kg
PYRENE	180	0.50	mg/kg
BENZ(A)ANTHRACENE	61	0.86	mg/kg
CHRYSENE	40	0.20	mg/kg
BENZO(B)FLUORANTHENE	29	0.20	mg/kg
BENZO(K)FLUORANTHENE	25	0.08	mg/kg
BENZO(A) PYRENE	37	1.5	mg/kg
DIBENZO(A, H) ANTHRACENE	EST 0.31	0.56	mg/kg
BENZO(G,H,I)PERYLENE	26	0.94	mg/kg
INDENÒ(1,2,3-CD)PYRENE	ii /	0.20	mg/kg

1:200 DILUTION

MATRIX INTERFERENCES PRESENT A QUESTION OF APPLICABILITY OF THIS SAMPLE TO HPLC

ANALYSIS.

AMENDED 4/30/92, GAB.

Sample Comments

DIFFERENCES BETWEEN SW-846 8310 AND 8270 DATA ARE POSSIBLY DUE TO SAMPLE NON-HOMOGENEITY; DIFFERENT SAMPLE CONTAINERS WERE USED FOR THESE METHODS. THE NATURE OF THE SAMPLE MADE HOMOGENIZATION PROBLEMATIC. COMPARISON OF SAMPLES AFTER ANALYSIS SHOW OBVIOUS VISUAL DIFFERENCES BETWEEN CONTAINERS OF THE SAME SAMPLE.

AMENDED 4/30/92, GAB.

* See Note for Parameter

BDL Below Detection Limit

EST Estimated Value

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

MBusch

CERTIFICATE OF ANALYSIS

Received Project Lab ID Service Location A244486 20-DEC-91 638 HERITAGE LABORATORIES, INC. PO Number Complete 7901 W. MORRIS ST. 21-JAN-92 PO072488-CHAMPAIGN INDIANAPOLIS, IN 46231 (317)243-8305 Printed Sampled 08-MAY-92 16-DEC-91 11:30

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: UTB-27-S02 DESCRIPTION: 21'-23' CLEAN

LOCATION: CHAMPAIGN

Result	Det. Limit	Units Grams
j	Result	Result Det. Limit

Analyst: J. GRIFFIN	UTOMATED) SW846-9066 Analysis Date: 31-DEC- LATION SW846-9065 P405.7.0	-91 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHFNOLS	Parameter	Result 20	Det. Limit 0.50	Units mg/kg

CYANIDE DISTILLATION SW846-9010 Analyst: L. MATTINGLY Analysis Date: 30-DEC-9	21	Test: P101.4.0
Analyst: L. MATTINGLY Analysis Date: 30-DEC-9 Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit Units Grams
FINAL VOLUME	250	mL

CYANIDE, TOTA	AL (AUTOMATED) SW846-9012 FIN Analysis Date: 03-JAN-	92 Instrument: AUTO-ANALYZER	Test: G101.4	.0
Prep: CYANIDE DI	STILLATION SW846-9010 P101.4.0			
CVANIDE	Parameter	Result BDL	Det. Limit 0.25	Units mg/kg

SONICATION EXTRACTION FOR ORGANICS BY IR SW846	-3550		
Analyst: N. HEMMERLEIN Analysis Date: 30-DEC-91		Test: P503.7	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 26.07	Det. Limit	Units Grams
FINAL VOLUME	100		mL

TOTAL PETROLEUM HYDROCARBONS BY IR SM 50)3E		
Analyst: C. BRODERICK Analysis Date: 31-DEC-9 Prep: SONICATION EXTRACTION FOR ORGANICS BY IR SW846-3		Test: G503.7	.0
Parameter	Result	Det. Limit	Units
PETROLEUM HYDROCARBONS	BDL	10	mg/kg

1:63 DILUTION

GC/MS SONICATION EXTRACTION FOR ORGANICS Analyst: N. ROHADFOX Analysis Date: 27-DEC-9		Test: P236.4	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 29.99	Det. Limit	Units Grams
INAL VOLUME	1.0		mL

Analyst: J. ELLIS Analysis Date: 11-JAN-9	DLATILE ORGANICS (BASE/NEUTRAL/ACID FRACTIONS) SW846-8270 : J. ELLIS Analysis Date: 11-JAN-92 Instrument: GC/MS SVOA Test: 0505.3 C/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 P236.4.0		malysis Date: 11-JAN-92 Instrument: GC/MS SVOA Test: 0303.3.0	
Parameter	Result	Det. Limit	Units	
ACENAPHTHENE	BDL	330	ug/kg	
ACENAPHTHYLENE	BDL	330	ug/kg	
ANTHRACENE	BDL	330	ug/kg	
BENZ (A) ANTHRACENE	BDL	330	ug/kg	
BENZO(A)PYRENE	BDL	330	ug/kg	
BENZO(B)FLUORANTHENE	BDL	330	ug/kg	
BENZO(G,H,I)PERYLENE	BDL	330	ug/kg	
BENZO(K)FLUORANTHENE	BDL	330	ug/kg	
BENZYL ALCOHOL	BDL	330	ug/kg	
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg	
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg	
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg	
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	330	ug/kg	
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg	
CARBAZOLE	BDL	330	ug/kg	
4-CHLOROANILINE	BDL	330	ug/kg	
2-CHLORONAPHTHALENE	BDL	330	ug/kg	
4-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg	
CHRYSENE	BDL	330		
DIBENZ(A,H)ANTHRACENE	BDL	330	ug/kg	
DIBENZOFURÁN	BDL	330	ug/kg	
1,2-DICHLOROBENZENE	BDL	330	ug/kg	
1,3-DICHLOROBENZENE	BDL	330	ug/kg	
1,4-DICHLOROBENZENE	BDL	330	ug/kg	
3,3'-DICHLOROBENZIDINE	BDL	660	ug/kg	
DIETHYLPHTHALATE	BDL	330	ug/kg	
DIMETHYLPHTHALATE	BDL	330	ug/kg	
DI-N-BUTYLPHTHALATE	BDL	330	ug/kg	
DINITROBENZENES	BDL	330	ug/kg	
2,4-DINITROTOLUENE	BDL	330	ug/kg	
2,6-DINITROTOLUENE	BDL	330	ug/kg	
DI-N-OCTYLPHTHALATE	BDL	330	ug/kg	
FLUORANTHENE	BDL	330	ug/kg	
FLUORENE	BDL	330	ug/kg	
HEXACHLOROBENZENE	BDL	330	ug/kg	
HEXACHLOROBUTAD I ENE	BDL	330	ug/kg	
HEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg	
HEXACHLOROETHANE	BDL	330	ug/kg	
INDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg	
ISOPHORONE	BDL	330	ug/kg	
2-METHYLNAPHTHALENE	BDL	330	ug/kg	
NAPHTHALENE	BDL	330	ug/kg	
2-NITROANILINE	BDL	1600	ug/kg	
3-NITROANILINE	BDL	1600	ug/kg	

TERITAGE LABORATORIES, INC.		Las campie 12	
Parameter	Result	Det. Limit	Units
4-CHLOROANILINE	BDL	1600	ug/kg
2-CHLORONAPHTHALENE	BDL	1600	ug/kg
4-CHLOROPHENYLPHENYLETHER	BDL	1600	ug/kg
CHRYSENE	BDL	1600	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	1600	ug/kg
JIBENZ (A, H) ANTHRACENE	BDL	1600	ug/kg
DIBENZOFURAN	BDL	1600	ug/kg
1,2-DICHLOROBENZENE	BDL	1600	ug/kg
1,3-DICHLOROBENZENE	BDL	1600	ug/kg
1,4-DICHLOROBENZENE	BDL	3300	ug/kg
3,3'-DICHLOROBENZIDINE		1600	ug/kg
DÍETHYLPHTHALATE	BDL	1600	ug/kg
DIMETHYLPHTHALATE	BDL	1600	ug/kg
DI-N-BUTYLPHTHALATE	BDL		
DINITROBENZENES	BDL	1600	ug/kg
2,4-DINITROTOLUENE	BDL	1600	ug/kg
2,6-DINITROTOLUENE	BDL	1600	ug/kg
DÎ-N-OCTYLPHTHALATE	BDL	1600	ug/kg
FLUORANTHENE	BDL	1600	ug/kg
FLUORENE	BDL	1600	ug/kg
HEXACHLOROBENZENE	BDL	1600	ug/kg
HEXACHLOROBUTADIENE	BDL	1600	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL	1600	ug/kg
HEXACHLOROETHANE	BDL	1600	ug/kg
INDENO(1,2,3-CD)PYRENE	BDL	1600	ug/kg
TODUODONE	BDL	1600	ug/kg
I SOPHORONE	BDL	1600	ug/kg
2-METHYLNAPHTHALENE	BDL	1600	ug/kg
NAPHTHALENE	BDL	8000	ug/kg
2-NITROANILINE	BDL	8000	ug/kg
3-NITROANILINE	BDL	8000	ug/kg
4-NITROANILINE	BDL	1600	ug/kg
NITROBENZENE		1600	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	1600	
N-NITROSO-DI-N-PROPYLAMINE	BDL	1600	ug/kg
PHENANTHRENE	BDL		ug/kg
2-PICOLINE	BDL	8000	ug/kg
PYRENE	BDL	1600	ug/kg
PYRIDINE	BDL	8000	ug/kg
TETRACHLOROBENZENES	BDL	1600	ug/kg
TOLUENEDIAMINE	BDL	8000	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	1600	ug/kg
BENZOIC ACID	BDL	8000	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	1600	ug/kg
2-CHLOROPHENOL	BDL	1600	ug/kg
2,4-DICHLOROPHENOL	BDL	1600	ug/kg
2,4-DIMETHYLPHENOL	EST 1100	1600	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	8000	
7. 0 DINITEDODUENOI	BDL	8000	ug/kg
2,4-DINITROPHENOL	10000	1600	
2-METHYLPHENOL	12000	1600	ug/kg
4-METHYLPHENOL	BDL	1600	
2-NITROPHENOL	BDL	8000	ug/kg
4-NITROPHENOL	BDL	8000	
PENTACHLOROPHENOL		1600	ug/kg
PHENOL	EST 1200	1600	
TETRACHLOROPHENOL	BDL	1600	
2,4,5-TRICHLOROPHENOL	BDL BDL	1600	ug/kg ug/kg
2,4,6-TRICHLOROPHENOL			

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 21-JAN-92	Project 638	Lab ID A245915
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 10-FEB-92		Number -CHAMPAIGN
(317)243-8305	Printed	Sam	pled
	29-APR-92	19-JAN-	-92 14:20

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: CSS-1

DESCRIPTION: CSS-1 (0" TO 6")

LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065			
Analyst: M. GAUGHAN Analysis Date: 23-JAN-	92	Test: P405.7	7.0
INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL:

PHENOLS 4AAP	(AUTOMATED) SW846-9066			
Analyst: J. GRIFF Prep: PHENOLS DI	FIN Analysis Date: 23-JAN-97 STILLATION SW846-9065 P405.7.0	2 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
DUENOI S	Parameter	Result BDL	Det. Limit	Units

CYANIDE DISTILLATION SW846-9010			
Analyst: M. GAUGHAN Analysis Date: 23-JAN-9	2	Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		ml

Analyst: J. GRIFF	L (AUTOMATED) SW846-9012 FIN Analysis Date: 24-JAN-9 STILLATION SW846-9010 P101.4.0	92 Instrument: AUTO-ANALYZER	Test: G101.4	.0
	Parameter	Result	Det. Limit	Units

HYDROCARBON SCAN BY GC:FID SW846-8015 M Analyst: N. HEMMERLEIN Analysis Date: 23-JAN-		Test: 0409.1.0
Parameter DIESEL FUEL	Result BDL	Det. Limit Units 25 mg/kg
GASOLINE OTHER HYDROCARBONS	BDL BDL	5 mg/kg mg/kg

Analyst: K. FULLMER Analysis Date: 22-JAN-92		Test: G301.1	.0
Parameter	Result	Det. Limit	Units
CHEMICAL OXYGEN DEMAND	52000	1000	mg/kg

CHEMICAL OXYGEN	Parameter N DEMAND	Result 52000	Det. Limit 1000	Units mg/kg
1:100 dilution		10.770.775		mai ma
	D DIGESTION OF S/S/S SAMPL Analysis Date: 22-JAN-9		Test: P129.7	.0
INITIAL WEIGHT FINAL WEIGHT OF	***************************************	Result 1 100	Det. Limit	Units Grams mL
BARIUM ICP SW84 Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M104.3	.0
BARIUM	Parameter	Result 93.	Det. Limit	Units mg/kg
CADMIUM ICP SWE Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M108.3	.0
CADMIUM	Parameter	Result 0.63	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M110.3	.0
CHROMIUM	Parameter	Result 9.3	Det. Limit	Units mg/kg
COPPER ICP SW84 Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M112.3.	.0
COPPER	Parameter	Result 18.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846- Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M115.3.	.0
IRON	Parameter	Result 12000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846- Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M116.3.	.0
LEAD	Parameter	Result 130	Det. Limit 5.0	Units mg/kg

LEAD ICP SW846-6 Analyst: A. HILSCHER	Analysis Date: 23-JAN-		Test: M116.3	.0
Prep: FAA OR ICP ACII	DIGESTION OF S/S/S SAMPLES SW84 Parameter	6-3050 P129.7.0	Det. Limit	Units
LEAD		130	5.0	mg/kg

MANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 22-JAN- Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW84		Test: M119.3	.0
FIED. IAA OK ICE ACID DIGESTION OF 3/3/3 SAPELES SWO	+0 3030 F 127.11.0		
Parameter	Result	Det. Limit	Units

Lab Sample ID: A245915

NICKEL ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 22-J Prep: FAA OR ICP ACID DIGESTION OF \$/\$/\$ SAMPLES S	AN-92 Instrument: ICP	Test: M122.3	o.
Parameter NICKEL	Result 13.	Det. Limit	Units mg/kg

ZINC ICP SW846-6010 Analyst: A. HILSCHER And Prep: FAA OR ICP ACID DIGESTION O	alysis Date: 22-JAN-92 F S/S/S SAMPLES SW846-305		Test: M139.3	.0
7 INC	eter	Result	Det. Limit	Units ma/ka

GFAA ACID DIGESTION OF S/S/S SAMPLES SW840 Analyst: K. HACK Analysis Date: 22-JAN-92	5-3050	Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

Analyst: R. KOBZA, JR. Analysis Date: 24	-JAN-92 Instrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF \$/\$/\$ SAMPLES \$W846	-3050 P130.7.0		
Parameter	Result	Det. Limit	Units
AKSENIC	5.5	1.0	mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SAMPL Analyst: P. SIMS Analysis Date: 29-JAN-92	ES SW846-7471 MOD	Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

MERCURY CVAA SW Analyst: P. SIMS Prep: MERCURY CVAA	1846-7471 MOD Analysis Date: 29-JAN-ACID DIGESTION OF S/S/S SAMPLES SW		Test: M120.2	.0
MERCURY	Parameter	Result 0.14	Det. Limit 0.13	Units mg/kg

Analyst: C. BOYLE Analysis Date: 29-JAN	-92 Instrument: GC/MS VOA	Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	**************************************	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL		mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg

Parameter	Result	Det. Limit	Units
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	106		% Rec
TOLUENE-D8	114		% Rec
BROMOFLUOROBENZENE	97		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANIC Analyst: G. HUGHS Analysis Date: 31-JAN-		Test: P236.4	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.06	Det. Limit	Units Grams
FINAL VOLUME	1.0		mL

			1
Parameter ACENAPHTHENE	Result BDL	Det. Limit	ug/kg
ACENAPHTHENE	BDL	330	ug/kg
ANTHRACENE	BDL	330	ug/kg
BENZ (A) ANTHRACENE	450	330	ug/kg
BENZO(A)PYRENE	390	330	ug/kg
BENZO(A)FILUORANTHENE	770	330	ug/kg
BENZO(G,H,I)PERYLENE	EST 300	330	ug/kg
BENZO(K)FLUORANTHENE	EST 250	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	2000	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
4-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	480	330	ug/kg
IBENZ(A, H) ANTHRACENE	BDL	330	ug/kg
IBENZOFURAN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL	330	ug/kg
,4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
ÍETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	820	330	ug/kg ug/kg
LUORENE	BDL	330	ug/kg ug/kg
EXACHLOROBENZENE	BDL	330	
IEXACHLOROBENZENE IEXACHLOROBUTADIENE	BDL	330	ug/kg
			ug/kg
IEXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
IEXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD) PYRENE	410	330	ug/kg
SOPHORONE	BDL	330	ug/kg
-METHYLNAPHTHALENE	BDL	330	ug/kg
IAPHTHALENE	BDL	330	ug/kg
:-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
ITROBENZENE	BDL	330	ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
I-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	390	330	ug/kg
-PICOLINE	BDL	1600	ug/kg
YRENE	570	330	ug/kg
YRIDINE	BDL	1600	ug/kg
ETRACHLOROBENZENES	BDL	330	ug/kg
OLUENEDIAMINE	BDL	1600	ug/kg
,2,4-TRICHLOROBENZENE	BDL	330	ug/kg
BÉNZOIC ACID	BDL	1600	ug/kg
-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
-CHLOROPHENOL	BDL	330	ug/kg
,4-DICHLOROPHENOL	BDL	330	ug/kg
,4-DIMETHYLPHENOL	BDL	330	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL.	1600	
A_DINITEODERO	BDL	1600	ug/kg
,4-DINITROPHENOL	BDL		ug/kg
-METHYL PHENOL		330	ug/kg
-METHYLPHENOL	BDL	330	ug/kg
-NITROPHENOL	BDL	330	ug/kg
-NITROPHENOL	BDL	1600	ug/kg
ENTACHLOROPHENOL	BDL	1600	ug/kg
HENOL	BDL	330	ug/kg
ETRACHLOROPHENOL	BDL	330	ug/kg
,4,5-TRICHLOROPHENOL	BDL BDL	330 330	ug/kg
1,4,6-TRICHLOROPHENOL			ug/kg

Lab Sample ID: A245915

SURROGATE RECOVERY	Result	Det. Limit	Units
2-FLUOROPHENOL	46	9	% Rec
PHENOL-D5	92	9	% Rec
NITROBENZENE-D5 2-FLUOROBIPHENYL	98		% кес % Rec
2,4,6-TRIBROMOPHENOL	111	9	% Rec
TERPHENYL-D14	89	9	% Rec

SONICATION EXTRACTION FOR ORGANICS SW84 Analyst: G. WILSON Analysis Date: 22-JAN-		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.08	Det. Limit	Units Grams

Parameter	Result	Det. Limit	Units
NAPHTHALENE	BDL		/kg
ACENAPHTHYLENE	BDL		/kg
ACENAPHTHENE	BDL		/kg
FLUORENE	0.044		/kg
PHENANTHRENE	0.34		/kg
ANTHRACENE	0.059	0.0007 mg	/kg
FLUORANTHENE	EST 1.1	0.0007 mg	/kg
PYRENE	EST 1.2	0.0025 mg	J/kg
BENZ (A) ANTHRACENE	EST 0.53		/kg
CHRYŚEŃE	EST 0.55	0.001 mg	/kg
BENZO(B)FLUORANTHENE	0.56		/kg
BENZO(K)FLUORANTHENE	0.39	0.0004 mg	/kg
BENZO(A)PYRENE	0.65	0.0077 mg	/kg
DIBENŻO(A,H)ANTHRACENE	0.069		/kg
BENZO(G,H,I)PERYLENE	0.40	0.0047 mg	/kg
INDENÒ(1,2,3-CD)PYRENE	0.47		/kg

PCB SONICATION EXTRACTION SW846-3550 Analyst: L. DOBBINS Analysis Date: 22-JAN-	92	Test: P231.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10.69	Det. Limit	Units Grams
FINAL VOLUME	100		mL mL

POLYCHLORINATED BIPHENYLS (PCBS) SW846-8080 Analyst: E. WERNZ Analysis Date: 24-JAN-92 Instrument: GC/ECD Prep: PCB SONICATION EXTRACTION SW846-3550 P231.1.0		Test: 0301.2.0	
Parameter	Result	Det. Limit Units	
PCB AROCHLOR 1016	BDL	1.0 mg/kg	
PCB AROCHLOR 1221	BDL	5.0 mg/kg	
PCB AROCHLOR 1232	BDL	1.0 mg/kg	
PCB AROCHLOR 1242	BDL	1.0 mg/kg	
PCB AROCHLOR 1248	BDL	1.0 mg/kg	
PCB AROCHLOR 1254	BDL	1.0 mg/kg	
PCB AROCHLOR 1260	BDL	1.0 mg/kg	
PCB AROCHLOR 1262	BDL	1.0 mg/kg	

Lab Sample ID: A245915

Sample Comments

AMENDED REPORT 4/29/92, GAB.

BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 4078.

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

CERTIFICATE OF ANALYSIS

Service Location	Received	Project	Lab ID
EMS HERITAGE LABORATORIES, INC.	21-JAN-92	638	A245916
7901 W. MORRIS ST.	Complete	PO Number	
INDIANAPOLIS, IN 46231	11-FEB-92	P0099698-CHAMPAI	
(317)243-8305	Printed	Sampled	
	29-APR-92	19-JAN-	92 14:45

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: CSS-2

DESCRIPTION: CSS-2 (0" TO 6") LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 23-JAN-9	72	Test: P405.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL

PHENOLS 4AAP (AUTOMATED) SW846 Analyst: J. GRIFFIN Analysis Prep: PHENOLS DISTILLATION SW846-9065 P4	23-JAN-92 Instrument: AUTO-ANALYZER	Test: 0405.7.0
Parameter	Result BDL	Det. Limit Units

CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 23-JAN-9	2	Test: P101.	4.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	250		mL

Analyst: J. GRIF	•	Instrument: AUTO-ANALYZER	Test: G101.4	.0
Prep: CYANIDE DI	STILLATION SW846-9010 P101.4.0			

Parameter	Result	Det. Limit	Units
DIESEL FUEL	* 38	25	mg/kg
GASOLINE	BDL	5	mg/kg
OTHER HYDROCARBONS	BDL		mg/kg

Lab Sample ID: A245916

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 22-JAN-92		Test: G301.1.0	
Parameter CHEMICAL OXYGEN DEMAND	Result 47000	Det. Limit 1000	Units mg/kg
1:100 dilution			

CHEMICAL OXYGEN DEMAND	4	7000	1000	mg/kg
1:100 dilution				
FAA OR ICP ACID DIGESTION Analyst: K. HACK Anal	OF S/S/S SAMPLES SW846-30 ysis Date: 22-JAN-92	50	Test: P129.7	.0
Paramet INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	1	Result	Det. Limit	Units Grams mL
BARIUM ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 22-JAN-92 Instrument: S/S/S SAMPLES SW846-3050 P129.7.0	ICP	Test: M104.3	.0
Paramet BARIUM		Result 9.	Det. Limit	Units mg/kg
CADMIUM ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 22-JAN-92 Instrument: S/S/S SAMPLES SW846-3050 P129.7.0	ICP	Test: M108.3	.0
Paramet CADMIUM		Result DL	Det. Limit 0.50	Units mg/kg
CHROMIUM ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 22-JAN-92 Instrument: S/S/S SAMPLES SW846-3050 P129.7.0	TCP	Test: M110.3	.0
Paramet CHROMIUM		Result .0	Det. Limit	Units mg/kg
COPPER ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 22-JAN-92 Instrument: S/S/S SAMPLES SW846-3050 P129.7.0	ICP	Test: M112.3	.0
Paramet COPPER	21	Result O.	Det. Limit 2.0	Units mg/kg
IRON ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 22-JAN-92 Instrument: S/S/S SAMPLES SW846-3050 P129.7.0	TCP	Test: M115.3	.0
Paramet IRON		Result 2000	Det. Limit 2.0	Units mg/kg
LEAD ICP SW846-6010 Analyst: A. HILSCHER Anal Prep: FAA OR ICP ACID DIGESTION OF	ysis Date: 23-JAN-92	ICP	Test: M116.3	.0
Paramet	er	Result	Det. Limit	Units

LEAD		59.	5.0	mg/kg
MANGANESE ICP S		-92 Instrument: ICP	Test: M119.3	.0
	ID DIGESTION OF S/S/S SAMPLES SW8	46-3050 P129.7.0		
MANGANESE	Parameter	Result 380	Det. Limit	Units mg/kg

ZINC

Parameter

Lab Sample ID: A245916

Det. Limit Units 2.0 mg/kg

	LADORATORILS, INC.		Lab Sample 11	7. NETUS.
NICKEL ICP SW Analyst: A. HILS Prep: FAA OR ICP			Test: M122.3	.0
NICKEL	Parameter	Result 12.	Det. Limit	Units mg/kg
ZINC ICP SW84 Analyst: A. HILS Prep: FAA OR ICP			Test: M139.3	.0

GFAA ACID DIGESTION OF S/S/S SAMPLES SW846-3	050		
Analyst: K. HACK Analysis Date: 22-JAN-92		Test: P130.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Grams
INAL WEIGHT OR VOLUME	100		mL

Result

74.

Analyst: R. KOBZA, JR. Analysis Date: .	24-JAN-92 Instrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF S/S/S SAMPLES SW8	46-3050 P130.7.0		
Parameter	Result	Det. Limit	Units
ARSENIC	5.0	1.0	mg/kg

MERCURY CVAA ACID DIGESTION OF S/S/S SAN Analyst: P. SIMS Analysis Date: 29-JAN-1		Test: P131.	7.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

MERCURY CVAA SW8	346-7471 MOD			
Analyst: P. SIMS	Analysis Date: 29-JAN-	92 Instrument: CVAA	Test: M120.2	.0
Prep: MERCURY CVAA A	CID DIGESTION OF S/S/S SAMPLES SW	846-7471 MOD P131.7.0		
AEDCUDY	Parameter	Result BDL	Det. Limit	Units ma/ka

Analyst: C. BOYLE Analysis Date: 29-JAN-	-92 Instrument: GC/MS VOA	Test: 0510.3.0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL .	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg

Parameter	Result	Det. Limit	Units
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	112		% Rec
TOLUENE-D8	110		% Rec
BROMOFLUOROBENZENE	94		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANICS			
Analyst: G. HUGHS Analysis Date: 31-JAN-9	2	Test: P236.4	4.0
Parameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	29.90		Grams

D	Result	Det. Limit	Units
Parameter ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	EST 320	330	ug/kg
ANTHRACENE	870	330	ug/kg
BENZ(A)ANTHRACENE	3700	330	ug/kg
BENZO(A) PYRENE	2900	330	ug/kg
BENZO(B) FLUORANTHENE	EST 5800	330	ug/kg
BENZO(G,H,I)PERYLENE	1900	330	ug/kg
BENZO(K)FLUÓRANTHENE	1200	330	ug/kg
BENZYL ÁLCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
BIS(2-CHLOROETHYL)ETHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	610	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	2900	330	ug/kg
IBENZ(A,H)ANTHRACENE	580	330	ug/kg
IBENZÔFÚRÁN	BDL	330	ug/kg
,2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL	330	ug/kg
,4-DICHLOROBENZENE	BDL	330	ug/kg
,3'-DICHLOROBENZIDINE	BDL	660	ug/kg
IETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE	BDL	330	ug/kg
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
	BDL	330	ug/kg
INITROBENZENES		330	
,4-DINITROTOLUENE	BDL		ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	4700	330	ug/kg
LUORENE	EST 210	330	ug/kg
EXACHLOROBENZENE	BDL	330	ug/kg
EXACHLOROBUTADIENE	BDL	330	ug/kg
EXACHLOROCYCLOPENTADIENE	BDL	330	ug/kg
EXACHLOROETHANE	BDL	330	ug/kg
NDENO(1,2,3-CD)PYRENE	2000		ug/kg
SOPHORONE	BDL	330	ug/kg
-METHYLNAPHTHALENE	BDL		ug/kg
	BDL	330	ug/kg
APHTHALENE	BDL		
-NITROANILINE			ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL		ug/kg
ITROBENZENE	BDL	330	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
HENANTHRENE	3000	330	ug/kg
-PICOLINE	BDL	1600	ug/kg
YRENE	4700	330	ug/kg
YRIDINE	BDL	1600	ug/kg
ETRACHLOROBENZENES	BDL	330	ug/kg
DLUENEDIAMINE	BDL	1600	ug/kg
	BDL	330	ug/kg
,2,4-TRICHLOROBENZENE	BDL	1600	ug/kg
ENZOIC ACID			
-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
-CHLOROPHENOL	BDL	330	ug/kg
,4-DICHLOROPHENOL	BDL	330	ug/kg
,4-DIMETHYLPHENOL	BDL	330	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
,4-DINITROPHENOL	BDL	1600	ug/kg
-METHYLPHENOL	BDL	330	ug/kg
-METHYLPHENOL	BDL .	330	ug/kg
-NITROPHENOL	BDL.	330	ug/kg
-NITROPHENOL	BDL	1600	ug/kg
	BDL	1600	ug/kg
ENTACHLOROPHENOL		330	ug/kg
HENOL	BDL		ug/kg
ETRACHLOROPHENOL	BDL	330	
,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
,4,6-TRICHLOROPHENOL	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
SURROGATE RECOVERY			
2-FLUOROPHENOL	42		% Rec
PHENOL - D5	100		% Rec
NITROBENZENE-D5	98		% Rec
2-FLUOROBIPHENYL	98		% Rec
2,4,6-TRIBROMOPHENOL	90		% Rec
TÉRPHENYL-D14	101		% Rec

EMI-VOLATILE ORGANICS (BASE/NEUTRAL/ACID FRACTIONS) SW846-8270 Analyst: M. FRANK Analysis Date: 07-FEB-92 Instrument: GC/MS SVOA Test: 0505.3.1 Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW846-3550 P236.4.0			.1
Prep: GC/MS SONICATION EXTRACTION FOR ORGANICS SW040 Parameter	+3330 P236.4.0 Result	Det. Limit	Units
ACENAPHTHENE	BDL	660	ug/kg
ACENAPHTHYLENE	EST 440	660	
ANTHRACENE	810	660	ug/kg
BENZ (A) ANTHRACENE	3600	660	
BENZO(A) PYRENE	3000	660	ug/kg
BENZO(B)FLUORANTHENE	3500	660	
BENZO(G,H,I)PERYLENE	3400	660	ug/kg
BENZO(K)FLUORANTHENE	1300	660	
BENZYL ALCOHOL	BDL	660	ug/kg
BENZYLBUTYLPHTHALATE	BDL	660	
BIS(2-CHLOROETHOXY)METHANE	BDL	660	ug/kg
BIS(2-CHLOROETHOXT)METHANE BIS(2-CHLOROETHYL)ETHER	BDL	660	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	660	ug/kg
BIS(2-ETHYLHEXYL)PHTHALATE	720	660	
4-BROMOPHENYLPHENYLETHER	BDL	660	ug/kg
CARBAZOLE	BDL		ug/kg
4-CHLOROANILINE	BDL	660	ug/kg
2-CHLORONAPHTHALENE	BDL	660	
4-CHLOROPHENYLPHENYLETHER	BDL	660	ug/kg
	4000	660	
CHRYSENE	BDL	660	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	660	
DIBENZOFURAN	BDL	660	ug/kg
1,2-DICHLOROBENZENE	BDL	660	
1,3-DICHLOROBENZENE	BDL	660	ug/kg
1,4-DICHLOROBENZENE	BDL	1300	
3,3'-DICHLOROBENZIDINE	BDL	660	
DIETHYLPHTHALATE	BDL	660	ug/kg
DIMETHYLPHTHALATE		660	
DI-N-BUTYLPHTHALATE	BDL		ug/kg
DINITROBENZENES	BDL	660 660	01 0
2,4-DINITROTOLUENE	BDL		ug/kg
2,6-DINITROTOLUENE	BDL	660 660	ug/kg
DI-N-OCTYLPHTHALATE	BDL		ug/kg
FLUORANTHENE	6000	660	
FLUORENE	BDL	660	ug/kg
HEXACHLOROBENZENE	BDL	660	
HEXACHLOROBUTADIENE	BDL	660	ug/kg
HEXACHLOROCYCLOPENTADIENE	BDL BDI	660	ug/kg
HEXACHLOROETHANE	BDL	660	ug/kg
INDENO(1,2,3-CD)PYRENE	4200	660	
I SOPHORONE	BDL	660	ug/kg
2-METHYLNAPHTHALENE	BDL	660	0, 0
NAPHTHALENE	BDL	660	ug/kg
2-NITROANILINE	BDL	3200	ug/kg Page

Parameter	Result	Det. Limit	Units
3-NITROANILINE	BDL	3200	ug/kg
4-NITROANILINE	BDL	3200	ug/kg
NITROBENZENE	BDL	660	ug/kg
N-NITROSO-DIPHENYLAMINE	BDL	660	ug/kg
N-NITROSO-DI-N-PROPYLAMINE	BDL	660	ug/kg
PHENANTHRENE	3100	660	ug/kg
2-PICOLINE	BDL	3200	ug/kg
PYRENE	6000	660	ug/kg
PYRIDINE	BDL	3200	ug/kg
TETRACHLOROBENZENES	BDL	660	ug/kg
TOLUENEDIAMINE	BDL	3200	ug/kg
1,2,4-TRICHLOROBENZENE	BDL	660	ug/kg
BENZOIC ACID	BDL	3200	ug/kg
4-CHLORO-3-METHYLPHENOL	BDL	660	ug/kg
2-CHLOROPHENOL	BDL	660	ug/kg
2,4-DICHLOROPHENOL	BDL	660	ug/kg
2,4-DIMETHYLPHENOL	BDL	660	ug/kg
4,6-DINITRO-2-METHYLPHENOL	BDL	3200	ug/kg
2,4-DINITROPHENOL	BDL	3200	ug/kg
2-METHYLPHENOL	BDL	660	ug/kg
4-METHYLPHENOL	BDL	660	ug/kg
2-NITROPHENOL	BDL	660	ug/kg
4-NITROPHENOL	BDL	3200	ug/kg
PENTACHLOROPHENOL	BDL	3200	ug/kg
PHENOL	BDL	660	ug/kg
TETRACHLOROPHENOL	BDL	660	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	660	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	660	ug/kg
SURROGATE RECOVERY			
2-FLUOROPHENOL	54		% Rec
PHENOL-D5	91		% Rec
NITROBENZENE-D5	120		% Rec
2-FLUOROBIPHENYL	93		% Rec
2,4,6-TRIBROMOPHENOL	89		% Rec
TERPHENYL-D14	57		% Rec

SONICATION EXTRACTION FOR ORGANICS SW846 Analyst: G. WILSON Analysis Date: 22-JAN-9		Test: P236.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 30.13	Det. Limit	Units Grams
FINAL VOLUME	5		mL

POLYNUCLEAR AROMATIC HYDROCARBONS BY HI Analyst: T. COFFELT Analysis Date: 02-FEB Prep: SONICATION EXTRACTION FOR ORGANICS SW846-3550	-92 Instrument: HPLC	Test: 0630.0.0
Parameter	Result	Det. Limit Units
NAPHTHALENE	0.11	.05 mg/kg
ACENAPHTHYLENE	EST 0.062	.08 mg/kg
ACENAPHTHENE	0.063	.05 mg/kg
FLUORENE	0.36	.006 mg/kg
PHENANTHRENE	1.6	.05 mg/kg
ANTHRACENE	0.31	.007 mg/kg
FLUORANTHENE	4.8	.007 mg/kg

Lab Sample ID: A245916

Parameter	Result	Det. Limit Units
PYRENE	3.5	.025 mg/kg
BENZ (A) ANTHRACENE	2.0	.043 mg/kg
CHRYSENE	12.2	.01 mg/kg
BENZO(B)FLUORANTHENE	2.3	.01 mg/kg
BENZO(K) FLUORANTHENE	1.7	.004 mg/kg
BENZO(A) PYRENE	2,4	.077 mg/kg
DIBEN7O(A.H)ANTHRACENE	0.30	.028 mg/kg
BEN7O(G.H.I)PERYLENE	1.5	.047 mg/kg
INDENO(1,2,3-CD) PYRENE	2.0	.01 mg/kg

1:10 DILUTION

THE SAMPLE WAS SCREENED USING AN INJECTION SIZE WHICH IS BELOW THE PROVEN INSTRUMENT RELIABILITY OF REPRODUCTION.

AMENDED REPORT 4/29/92, GAB.

PCB SONICATION EXTRACTION SW846-3550 Analyst: L. DOBBINS Analysis Date: 22-JAN-9	2	Test: P231.	1.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10.51	Det. Limit	Units Grams
FINAL VOLUME	100		mL

POLYCHLORINATED BIPHENYLS (PCBS) SW846-8080 Analyst: E. WERNZ Analysis Date: 24-JAN-92 Instrument: GC/ECD Test: 0301.2.0 Prep: PCB SONICATION EXTRACTION SW846-3550 P231.1.0				
Parameter	Result	Det. Limit Units		
PCB AROCHLOR 1016	BDL	1.0 mg/kg		
PCB AROCHLOR 1221	BDL	5.0 mg/kg		
PCB AROCHLOR 1232	BDL	1.0 mg/kg		
PCB AROCHLOR 1242	BDL	1.0 mg/kg		
PCB AROCHLOR 1248	BDL	1.0 mg/kg		
PCB AROCHLOR 1254	BDL	1.0 mg/kg		
PCB AROCHLOR 1260	BDL	1.0 mg/kg		
PCB AROCHLOR 1262	BDL	1.0 mg/kg		

Sample Comments

AMENDED REPORT 4/29/92, GAB.

* See Note for Parameter

BDL Below Detection Limit

EST Estimated Value

Sample chain of custody number 4078.

IDEM Drinking Water Certification Number C-49-01

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Quality Assurance Officer: Habusek

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 21-JAN-92	Project 638	Lab ID A245917
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-FEB-92		Number -CHAMPAIGN
(317)243-8305	Printed 30-APR-92	7.70	pled -92 15:35

Report To

Bill To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID:: CSS-3 DESCRIPTION: CSS-3 (0" TO 6") LOCATION: CHAMPAIGN

PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 23-JAN-	92	Test: P405.7	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 10	Det. Limit	Units Grams
FINAL VOLUME	100		mL.

Analyst: J. GRIFF	(AUTOMATED) SW846-9066 IN Analysis Date: 23-JAN- TILLATION SW846-9065 P405.7.0	-92 Instrument: AUTO-ANALYZER	Test: 0405.7	.0
PHENOLS	Parameter	Result BDL	Det. Limit 0.1	Units mg/kg

CYANIDE DISTILLATION SW846-9010			
Analyst: M. GAUGHAN Analysis Date: 23-JAN-92		Test: P101.4	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	10		Grams
FTNAL VOLUME	250		mL

CYANIDE, TOTA	AL (AUTOMATED) SW846-9012			
Analyst: J. GRIF Prep: CYANIDE DI	FIN Analysis Date: 24-JAN-97 STILLATION SW846-9010 P101.4.0	2 Instrument: AUTO-ANALYZER	Test: G101.4	.0
CVANIDE	Parameter	Result 7 /	Det. Limit	Units ma/ka

Analyst: N. HEMMERLEIN Analysis Date: 23-JAN-			T
Parameter	Result	Det. Limit	Units
DIESEL FUEL	* 31	25	mg/kg
GASOL INE	BDL	5:	mg/kg
OTHER HYDROCARBONS	BDL		mg/kg

Lab Sample ID: A245917

Analyst: K. FULLMER Analysis Date: 22-JAN-9	<u> </u>	Test: G301.1	
Parameter	47000 Result	Det. Limit	Units
HEMICAL OXYGEN DEMAND		1000	mg/kg

AA OR ICP ACID DIGESTION OF S/S/S SAMPI Analyst: K. HACK Analysis Date: 22-JAN-		Test: P129.	7.0
Parameter NITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
TNAL WEIGHT OR VOLUME	100		mL

BARIUM ICP S Analyst: A. HIL		-92 Instrument: ICP	Test: M104.3	.0
Prep: FAA OR IC	P ACID DIGESTION OF S/S/S SAMPLES SW8	46-3050 P129.7.0		La constant
BARIUM	Parameter	Result	Det. Limit	Units ma/ka

CADMIUM ICP SWE Analyst: A. HILSCHE Prep: FAA OR ICP AC			Test: M108.3	.0
CADMIUM	Parameter	Result 0.51	Det. Limit 0.50	Units mg/kg

CHROMIUM ICP SW846-6010 Analyst: A. HILSCHER Ana Prep: FAA OR ICP ACID DIGESTION OF	strument: ICP P129.7.0	Test: M110.3	.0
Parame CHROMIUM	Result 5.9	Det. Limit	Units mg/kg

Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW846-3050 P129.7.0 Parameter	Result	Det. Limit	Units
---	--------	------------	-------

IRON ICP SW846-6010	72 (10 62 1	Test: M115.3.0
Analyst: A. HILSCHER Analysis D Prep: FAA OR ICP ACID DIGESTION OF S/S/S	e: 22-JAN-92 Instrument: ICP MMPLES SW846-3050 P129.7.0	Test, HT13.3.0
Parameter IRON	Result 14000	Det. Limit Units 2.0 mg/kg

LEAD ICP SW8				
Analyst: A. HILS	SCHER Analysis Date: 23-JAN- P ACID DIGESTION OF S/S/S SAMPLES SW84		Test: M116.3	.U
FIED. TAN OR TO	Parameter	Result	Det. Limit	Units
LEAD		80.	5.0	mg/kg

MANGANESE ICP SW846-6010 Analyst: A. HILSCHER Analysis Date: 22-JAN Prep: FAA OR ICP ACID DIGESTION OF S/S/S SAMPLES SW8		Test: M119.3	.0
Parameter	Result	Det. Limit	Units mg/kg

Lab Sample ID: A245917

				ma/ka
	Parameter	Result	Det. Limit	Units
	ID DIGESTION OF S/S/S SAMPLES SW84	46-3050 P129.7.0		
Analyst: A. HILSCHE	Analysis Date: 22-JAN-	92 Instrument: ICP	Test: M122.3	.0
NICKEL ICP SW84				

ZINC ICP SW			Test: M139.3	.0
ZINC	Parameter	Result 74.	Det. Limit 2.0	Units mg/kg

GFAA ACID DIGESTION OF S/S/S SAMPLES SW84 Analyst: K. HACK Analysis Date: 22-JAN-92	6-3050	Test: P130.7	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Grams
FINAL WEIGHT OR VOLUME	100		mL

nstrument: GFAA 7.0	Test: M103.2	.0
Result 3.2	Det. Limit	Units mg/kg
	7.0	7.0

MERCURY CVAA ACID DIGESTION OF S/S/S SAMP Analyst: P. SIMS Analysis Date: 29-JAN-92		Test: P131.7	.0
Parameter INITIAL WEIGHT OR VOLUME	Result 0.4	Det. Limit	Units Grams
FINAL VOLUME	100		mL

MERCURY CVAA S Analyst: P. SIMS Prep: MERCURY CVAA	W846-7471 MOD Analysis Date: 29-JAN ACID DIGESTION OF S/S/S SAMPLES SI		Test: M120.2	.0
MERCURY	Parameter	Result 0.20	Det. Limit 0.13	Units mg/kg

Analyst: C. BOYLE Analysis Date: 29-JAN	Result	Det. Limit	Units
ACETONE Parameter	BDL	1.2	mg/kg
ACROLEIN	BDL	3.1	mg/kg
ACRYLONITRILE	BDL	4.4	mg/kg
BENZENE	BDL	0.31	mg/kg
BROMODICHLOROMETHANE	BDL	0.31	mg/kg
BROMOFORM	BDL	0.31	mg/kg
BROMOMETHANE	BDL	0.63	mg/kg
CARBON DISULFIDE	BDL	0.31	mg/kg
CARBON TETRACHLORIDE	BDL	0.31	mg/kg
CHLOROBENZENE	BDL	0.31	mg/kg
CHLOROETHANE	BDL	0.63	mg/kg
CHLOROFORM	BDL	0.31	mg/kg
CHLOROMETHANE	BDL	0.63	mg/kg
DIBROMOCHLOROMETHANE	BDL	0.31	mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
DICHLORODIFLUOROMETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHANE	BDL	0.31	mg/kg

Parameter	Result	Det. Limit	Units
1,2-DICHLOROETHANE	BDL	0.31	mg/kg
1,1-DICHLOROETHENE	BDL	0.31	mg/kg
1,2-DICHLOROPROPANE	BDL	0.31	mg/kg
ETHYLBENZENE	BDL	0.31	mg/kg
FLUOROTRICHLOROMETHANE	BDL	0.31	mg/kg
2-HEXANONE	BDL	0.63	mg/kg
METHYLENE CHLORIDE	BDL	0.31	mg/kg
METHYL ETHYL KETONE	BDL	0.63	mg/kg
4-METHYL-2-PENTANONE	BDL	0.63	mg/kg
STYRENE	BDL	0.31	mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	0.31	mg/kg
TÉTRACHLOROETHENE	BDL	0.31	mg/kg
TETRAHYDROFURAN	BDL	1.5	mg/kg
TOLUENE	BDL	0.31	mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	0.31	mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	0.31	mg/kg
1,1,1-TRICHLOROETHANE	BDL	0.31	mg/kg
1,1,2-TRICHLOROETHANE	BDL	0.31	mg/kg
TRICHLOROETHENE	BDL	0.31	mg/kg
VINYL ACETATE	BDL	0.63	mg/kg
VINYL CHLORIDE	BDL	0.63	mg/kg
XYLENE (TOTAL)	BDL	0.31	mg/kg
SURROGATE RECOVERY			
DICHLOROETHANE-D4	110		% Rec
TOLUENE-D8	111		% Rec
BROMOFLUOROBENZENE	98		% Rec

GC/MS SONICATION EXTRACTION FOR ORGANIC Analyst: G. HUGHS Analysis Date: 31-JAN-		Test: P236.	4.0
Analyst: G. HUGHS Analysis Date: 31-JAN- Parameter INITIAL WEIGHT OR VOLUME	Result 30.06	Det. Limit	Units Grams
ETNAL VOLUME	1.0		mL

Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	330	ug/kg
ACENAPHTHYLENE	1900	330	ug/kg
ANTHRACENE	1000	330	ug/kg
BENZ(A)ANTHRACENE	3600	330	ug/kg
BENZÒ(Á)PYRENE	2800	330	ug/kg
BENZO(B)FLUORANTHENE	EST 6100	330	ug/kg
BENZO(G,H,I)PERYLENE	3200	330	ug/kg
BENZO(K)FĽUÓRANTHENE	1600	330	ug/kg
BENZYL ALCOHOL	BDL	330	ug/kg
BENZYLBUTYLPHTHALATE	BDL	330	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	330	ug/kg
B1S(2-CHLOROETHYL)ÉTHER	BDL	330	ug/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	330	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	610	330	ug/kg
4-BROMOPHENYLPHENYLETHER	BDL	330	ug/kg
CARBAZOLE	BDL	330	ug/kg

Parameter	Result	Det. Limit	Units
-CHLOROANILINE	BDL	330	ug/kg
-CHLORONAPHTHALENE	BDL	330	ug/kg
-CHLOROPHENYLPHENYLETHER	BDL	330	ug/kg
HRYSENE	3200	330	ug/kg
IBENZ(A,H)ANTHRACENE	530	330	ug/kg
IBENZOFURAN	BDL	330	ug/kg
, 2-DICHLOROBENZENE	BDL	330	ug/kg
,3-DICHLOROBENZENE	BDL	330	ug/kg
	BDL	330	ug/kg
,4-DICHLOROBENZENE	BDL	660	ug/kg
,3'-DICHLOROBENZIDINE	BDL	330	ug/kg
IETHYLPHTHALATE	BDL	330	ug/kg
IMETHYLPHTHALATE			
I-N-BUTYLPHTHALATE	BDL	330	ug/kg
INITROBENZENES	BDL	330	ug/kg
,4-DINITROTOLUENE	BDL	330	ug/kg
,6-DINITROTOLUENE	BDL	330	ug/kg
I-N-OCTYLPHTHALATE	BDL	330	ug/kg
LUORANTHENE	3300	330	ug/kg
LUORENE	EST 300	330	ug/kg
EXACHLOROBENZENE	BDL	330	ug/kg
IEXACHLOROBUTAD I ENE	BDL	330	ug/kg
EXACHEOROGYCLOPENTADIENE	BDL	330	ug/kg
EXACHEOROGY CLOPEN YAD TENE	BDL	330	ug/kg
NDENO/1 2 2 CONDVDENE	2900		ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	330	ug/kg
SOPHORONE		330	
-METHYLNAPHTHALENE	EST 330		ug/kg
IAPHTHALENE	EST 330	330	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
-NITROANILINE	BDL	1600	ug/kg
ITROBENZENE	BDL	330	ug/kg
I-NITROSO-DIPHENYLAMINE	BDL	330	ug/kg
I-NITROSO-DI-N-PROPYLAMINE	BDL	330	ug/kg
PHENANTHRENE	2200	330	ug/kg
-PICOLINE	BDL	1600	ug/kg
PYRENE	5300	330	ug/kg
	BDL	1600	ug/kg
PYRIDINE	BDL	330	ug/kg
ETRACHLOROBENZENES		1600	
OLUENEDIAMINE	BDL	330	ug/kg
.,2,4-TRICHLOROBENZENE	BDL		ug/kg
BENZOIC ACID	BDL	1600	ug/kg
-CHLORO-3-METHYLPHENOL	BDL	330	ug/kg
-CHLOROPHENOL	BDL	330	ug/kg
,4-DICHLOROPHENOL	BDL	330	ug/kg
A_DIMETHYL PHENOL	BDL	330	ug/kg
,6-DINITRO-2-METHYLPHENOL	BDL	1600	ug/kg
,4-DINITROPHENOL	BDL	1600	ug/kg
-METHYLPHENOL	BDL	330	ug/kg
	BDL	330	ug/kg
-METHYL PHENOL	BDL	330	
-NITROPHENOL		1600	ug/kg
-NITROPHENOL	BDL		
ENTACHLOROPHENOL	BDL	1600	ug/kg
PHENOL	BDL	330	ug/kg
TETRACHLOROPHENOL	BDL	330	ug/kg
2,4,5-TRICHLOROPHENOL	BDL	330	ug/kg
2,4,6-TRICHLOROPHENOL	BDL	330	ug/kg

APPENDIX D

Phase II SI Geologic Logs

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-01** Project Name: IP - Champaign Former MGP Elevation: 736.34' Datum: Project Number: 17246 Coordinate X: 1012797.45 Coordinate Y: 1257590.00 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28.00' Borehole Dia.: 0.00in Date Started: 12/04/90 Date Completed: 12/04/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: Logged By: Mark Jefferies CTS Penetrometer (tsf) PID Reading (ppm Sample Number & Depth Interval Recovery Percent Elevation (feet) USCS Code Graphic Log Material Description CTS-1 0-3 20 0' Topsoil, dark brown, Silty Clay, with brick fragments (Fill) 735 FI CTS-2 100 3-8 1.0 3'5" Tan Silty CLAY and sand 5 730 7' Tan-Green SAND, fine with clay, coal tar layer at 7 to 7.5 feet 8' - Tar-like material noted with some odors. Water CTS-3 8-13 80 2.0 9' Tan Silty CLAY with brown to black sand stringers 10' - Moderate tar-like odor 10 725 12' - Strong tar-like odor Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-01** Project Name: IP - Champaign Former MGP Elevation: 736.34' Datum: Project Number: 17246 Coordinate X: 1012797.45 Coordinate Y: 1257590.00 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00" Borehole Dia.: 0.00in Date Started: 12/04/90 Date Completed: 12/04/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Mark Jefferies Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-4 100 13-18 3.0 720 16' Gray Silty CLAY with gravel (gravel is rounded quartz and shale fragments) CTS-5 18-23 100 74 20 LAB 715 -23' - Strong tar-like odor CTS-6 23-28 3.2 60 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-01** Elevation: 736.34 Datum: Project Name: IP - Champaign Former MGP Project Number: 17246 Coordinate X: 1012797.45 Coordinate Y: 1257590.00 Borehole Dia.: 0.00in Total Depth: 28.00 Location: 502 E. Hill St. Champaign, Illinois Date Started: 12/04/90 Date Completed: 12/04/90 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Drilling Method: CTS Logged By: Mark Jefferies Sample Number & Depth Interval PID Reading (ppm) Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery 25' - no odors 25 710 -LAB 28' Termination of boring. .30 705 35 Remarks:

Page 3 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-02** Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Project Number: 122765 Coordinate X: 1012996.65 Coordinate Y: 1257521.51 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 26.50' Borehole Dia.: 0.00in Date Started: 11/28/90 Date Completed: 11/28/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description Black cinders, rubble fine gravel (Fill) CTS-1 33 1-3.5 0 FI 735 3.5' Brown-Black CLAY, trace sand and fine gravel, medium stiff, moist CTS-2 80 3.5-8.5 0 5 730 8' Light Brown Sandy, CLAY, trace gravel, wet. Water CTS-3 100 8.5-13.5 10 Remarks:

Page 1 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-02** Project Name: IP - Champaign Former MGP Elevation: 737.70 Datum: Project Number: 122765 Coordinate X: 1012996.65 Coordinate Y: 1257521.51 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 26.50 Borehole Dia.: 0.00in Date Started: 11/28/90 Date Completed: 11/28/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery 725 13' Less sand CTS-4 100 0 LAB 3.5-15.5 14' Gray Sandy CLAY, trace gravel 15' Silty SAND CTS-5 0 5.5-18.5 0 SM 720 18' Gray CLAY, trace fine sand, soft, moist CTS-6 50 8.5-20.5 0 20 CL 715 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-02** Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Project Number: 122765 Coordinate X: 1012996.65 Coordinate Y: 1257521.51 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 26.50' Borehole Dia.: 0.00in Date Started: 11/28/90 Date Completed: 11/28/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Drilling Method: Logged By: Scott Jander CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description CTS-7 50 24.5-26.5 24.5' Trace fine gravel, stiff, slightly damp 0 CL 26.5' Termination of boring. 710 30 705 -35 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-03** Project Name: IP - Champaign Former MGP Elevation: 736.50' Datum: Project Number: 17246 Coordinate Y: 1257346.53 Coordinate X: 1013032.65 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.50' Borehole Dia.: 0.00in Date Started: 11/29/90 Date Completed: 11/30/90 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Mathis Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description CTS-1 0-3.5 73 Black-Brown fill with gravels, organics, slightly damp debris (Fill) 735 FI 3.5' Grayish-Brown CLAY with staining, moist CTS-2 3.5-8.5 90 0 5 730 CTS-3 90 8.5-13.5 0 Brown, soft 11' Brown Silty SAND with fine gravel, tar-like odor, wet. Water AB 725 Remarks:

Page 1 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-03** Project Name: IP - Champaign Former MGP Elevation: 736.50' Datum: Project Number: 17246 Coordinate X: 1013032.65 Coordinate Y: 1257346.53 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.50 Borehole Dia.: 0.00in Date Started: 11/29/90 Date Completed: 11/30/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log Depth (feet) USCS Code Material Description SM 13' Brown Silty CLAY, stiff, moist CTS-4 80 3.5-18.5 0 15 CL Gray SIIty CLAY, trace sand, trace fine gravel, soft, moist to wet 16' 720 18' - Slight tar-like odor CTS-5 100 8.5-23.5 0 LAB 20 715 23' - Stiff CTS-6 80 3.5-28.5 23.5' Gray Sandy SILT with fine gravel, stiff; sand layers, moist Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-03** Project Name: IP - Champaign Former MGP Elevation: 736.50' Datum: Project Number: 17246 Coordinate X: 1013032.65 Coordinate Y: 1257346.53 Location: 502 E. Hill St. Champaign, Illinois Total Depth: Borehole Dia.: 0.00in 28.50" Date Started: 11/29/90 Date Completed: 11/30/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description 25 ML 710 28.5' Termination of boring. 30 705 35 Remarks:

Page 3 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-04** Project Name: IP - Champaign Former MGP Elevation: 736.30" Datum: Project Number: 122765 Coordinate X: 1013012.86 Coordinate Y: 1257242,33 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 23.50' Borehole Dia.: 0.00in Date Started: 11/27/90 Date Completed: 11/27/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) USCS Code Graphic Log Material Description CTS-1 0-3.5 49 Brown CLAY, trace coarse sand, trace fine gravel, soft, slightly damp 735 CTS-2 3.5-8.5 100 0 CL 5 730 CL 8.5 Grayish-Brown CLAY, trace gravel CTS-3 60 8.5-13.5 0 10 725 Oxidation stains. Water at 12.5' Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-04** Project Name: IP - Champaign Former MGP Elevation: 736.30' Datum: Project Number: 122765 Coordinate X: 1013012.86 Coordinate Y: 1257242.33 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 23.50 Borehole Dia.: 0.00in Date Started: 11/27/90 Date Completed: 11/27/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number 8 Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery CTS-4 100 3.5-15.5 0 15' Gray Sandy CLAY, trace fine gravel, medium stiff, wet -15 CTS-5 100 5.5-18.5 720 CTS-6 100 8.5-23.5 0 20 21' Gray CLAY, trace fine gravel, stiff, slightly damp 715 23.5' Termination of boring. Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-05** Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Project Number: 122765 Coordinate X: 1012731.63 Coordinate Y: 1257160.20 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 20.00" Borehole Dia.: 0.00in Date Started: 12/05/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: Logged By: Mark Jefferies CTS Recovery Percent PID Reading (ppm) Sample Number & Depth Interval Penetrometer (tsf) Elevation (feet) USCS Code Graphic Log Depth (feet) Material Description Recovery Dark Brown-Black Silty CLAY, slightly damp 735 5 - Dark tan - Light tan 730 Tan Silty SAND with clay (gray), wet 10' 10 SM - Water 11' Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-05** Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Project Number: 122765 Coordinate X: 1012731.63 Coordinate Y: 1257160.20 502 E. Hill St. Champaign, Illinois Location: Total Depth: 20.00 Borehole Dia.: 0.00in Date Started: 12/05/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Mark Jefferies Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery SM 725 Gray Silty CLAY, wet 15 720 20' Termination of boring. 20 715 -Remarks:

Page 2 of 2

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-06** Project Name: IP - Champaign Former MGP Elevation: 737.50 Datum: Project Number: 122765 Coordinate X: 1012529.74 Coordinate Y: 1257251.66 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 0.00in Date Started: 11/29/90 Date Completed: 11/29/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Scott Jander Drilling Method: CTS Logged By: Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Asphalt gravel 1' Black-Brown fill, trace gravel, stiff, slightly damp CTS-1 1-4 50 735 CL 4' Brown Silty CLAY, trace fine gravel, medium stiff, moist CTS-2 4-9 60 5' - Dark tan -5 - With fine sand. Water 730 -CL - Stiff, dry CTS-3 9-14 40 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-06** Project Name: IP - Champaign Former MGP Elevation: 737.50' Datum: Project Number: 122765 Coordinate X: 1012529.74 Coordinate Y: 1257251.66 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 0.00in Date Started: 11/29/90 Date Completed: 11/29/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Drilling Method: Logged By: Scott Jander CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description Recovery 725 Gray Silty CLAY with fine gravel CTS-4 14-19 60 720 18' Brown SILT with fine gravel. 3" silt layer ML 19' Gray Sandy CLAY, stiff, slightly damp CTS-5 19-21 100 20 CTS-6 21-24 66 22' - Silty CLAY with fine gravel 715 -Termination of boring. Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-07** Project Name: IP - Champaign Former MGP Elevation: 737.30' Datum: Project Number: 122765 Coordinate X: 1012486.44 Coordinate Y: 1257393.96 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 20.00 Borehole Dia.: 0.00in Date Started: 12/05/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: Mark Jefferies Logged By: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description CTS-1 0-2.5 100 Topsoil, brown, silty 735 Gray Silty CLAY, mottled, light tan, medium stiff, moist CTS-2 100 2.5-8 0 5 730 -8' - Water CTS-3 8-13 90 0.5 10 - Gray Sandy CLAY, trace coarse rounded gravels of quartz and shale Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-07** Project Name: IP - Champaign Former MGP Elevation: 737.30' Datum: Project Number: 122765 Coordinate X: 1012486.44 Coordinate Y: 1257393.96 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 20.00' Borehole Dia.: 0.00in Date Started: 12/05/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Mark Jefferies Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description 725 CTS-4 100 13-18 1.0 LAB 15 720 CTS-5 18-20 0 0.75 20' Termination of boring. 20 715 -Remarks:

Page 2 of 2

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-08A

Project Name:	IP - Champaign Fo	ormer MGP	Elevation:	737.10'	Datum:		
Project Number:	17246		Coordinate X:	1012484.00	Coordinate Y: 1257545.00		
Location:	502 E. Hill St. Cha	ampaign, Illinois	Total Depth:	14.00'	Borehole Dia.: 0.00in		
Date Started: 01/28/90		Date Completed: 01/28/90					

Township/Range: Sec 7; T19N; R9E Concultant Drillad By

Logge	20.0	-త					Drilling Method: CTS		12		T
Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (1st)	Lab Sample
735 -		CTS-1 1-4	57		0.0	FI	0' Black cinders, fine gravel, debi	ris, (FILL)			
	-5	CTS-2 4-9	100				4' Dark Brown-Black Clay with o	rganics, stiff, slightly damp			
730 – - -	- 10	CTS-3 9-14	100			CL	7.5' - Brown-Gray Sandy CLAY wi	th diesel odor, trace gravel, soft, moist.			
725 –	. 10						11.5' - Moisture 12' - Trace sand 13' - Trace gravel				
	- 15				11		13' - Trace gravel 13.5' - Stiff 14' Termination of boring.				
720 — - -											
715 -	-20										
	-25										
710 –											

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: UTB-08B Project Name: IP - Champaign Former MGP Elevation: 737.10' Datum: Project Number: 17246 Coordinate X: 1012505.00 Coordinate Y: 1257564.32 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 0.00in Date Started: 11/28/90 Date Completed: 11/29/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description 0' Black cinders, fine gravel, debris, (FILL) CTS-1 1-4 13 FI 735 4' Dark Brown-Black Clay, stiff, slightly damp CTS-2 4-9 100 -5 730 8' - Brownish gray with staining and Diesel odor 9' - Brown Sandy CLAY, trace gravel, soft, moist. Water CTS-3 9-14 100 LAB 11' - Brownish-Gray CLAY, trace fine sand, stiff, slightly damp Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: UTB-08B Project Name: IP - Champaign Former MGP Elevation: 737.10' Datum: Project Number: 17246 Coordinate X: 1012505.00 Coordinate Y: 1257564.32 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 0.00in Date Started: 11/28/90 Date Completed: 11/29/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Recovery Material Description 14' - Silty, trace gravel, no odors CTS-4 14-19 80 720 CTS-5 19-24 90 20 715 -24' Termination of boring. Remarks:

Page 2 of 2

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-09** Project Name: IP - Champaign Former MGP Elevation: 735.50' Datum: Project Number: 122765 Coordinate X: 1012614.88 Coordinate Y: 1257699.93 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 20.00 Borehole Dia.: 0.00in Date Started: 12/17/91 Date Completed: 12/17/91 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-1 0-3 100 Dark Brown FILL 735 FI Dark Brown CLAY, trace sand, medium stiff, slightly damp 3' CTS-2 100 3-8 0 5 730 Brown Silty CLAY, medium stiff, slightly damp CTS-3 100 8-13 0 -10 725 Remarks:

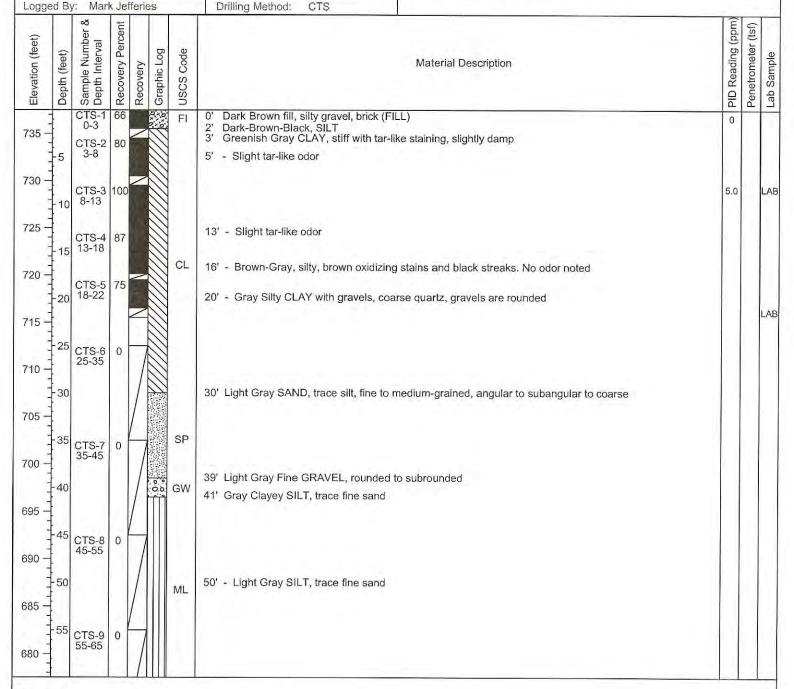
RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-09** Project Name: IP - Champaign Former MGP Elevation: 735.50' Datum: Project Number: 122765 Coordinate X: 1012614.88 Coordinate Y: 1257699.93 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 20.00 Borehole Dia.: 0.00in Date Started: 12/17/91 Date Completed: 12/17/91 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Scott Jander Drilling Method: Logged By: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-4 100 13-18 0 14.5' Gray Silty CLAY, stiff, slightly damp 15 720 CTS-5 100 18-20 20' Termination of boring. 20 715 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-10** Project Name: IP - Champaign Former MGP Elevation: 737.20' Datum: Project Number: 17246 Coordinate X: 1012998.18 Coordinate Y: 1257998.33 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 22.00' Borehole Dia.: 0.00in Date Started: 11/30/90 Date Completed: 11/30/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Scott Jander Drilling Method: Logged By: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description CTS-1 0-4 50 Black cinders, gravels, organic materials, stiff, wet (FILL) FI 735 Brown-Black CLAY with gravel, tar-like staining with odors, stiff, moist CTS-2 4-9 90 -5 730 - Silty, soft. 8.5' - Tar-Like material and water noted. CTS-3 9-14 100 LAB 10' - Stiff, moist Remarks:

Page 1 of 2

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-10** Project Name: IP - Champaign Former MGP Elevation: 737.20' Datum: Project Number: 17246 Coordinate X: 1012998.18 Coordinate Y: 1257998.33 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 22.00' Borehole Dia.: 0.00in Date Started: 11/30/90 Date Completed: 11/30/90 Township/Range: Sec 7; T19N; R9E Consultant: Mathis Drilled By: Mathis Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description Recovery 725 CTS-4 14-19 50 15' - No odor noted 720 -CTS-5 100 19-22 19' Gray Silty CLAY with fine gravel, stiff, slightly damp 20 Termination of boring. 715 Remarks:

Page 2 of 2


BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

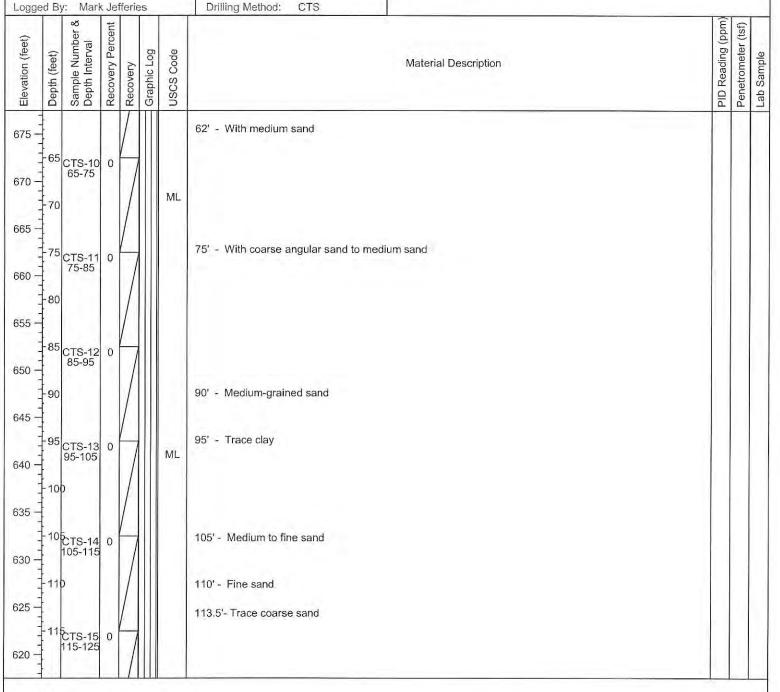
UTB-11

Project Name:	IP - Champaign Former MGP	Elevation: 737.50'	Datum:
Project Number:	17246	Coordinate X: 1012620.00	Coordinate Y: 1257555.00
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 175.00'	Borehole Dia.: 0.00in

Date Started: 12/03/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:


UTB-11

Project Name:	IP - Champaign Forme	r MGP	Elevation:	737.50'	Datum:	
Project Number:	17246		Coordinate X:	1012620.00	Coordinate Y: 1257555.00	
Location:	502 E. Hill St. Champa	ign, Illinois	Total Depth:	175.00'	Borehole Dia.: 0.00in	
D-4- 04-4-1, 40	/02/00 D	N-t- C				

Date Started: 12/03/90 Date Completed: 12/05/90 Consultant:

Drilled By:

Township/Range: Sec 7; T19N; R9E

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-11** Project Name: IP - Champaign Former MGP Elevation: 737.50' Datum: Project Number: Coordinate Y: 1257555.00 17246 Coordinate X: 1012620.00 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 175.00 Borehole Dia.: 0.00in Date Started: 12/03/90 Date Completed: 12/05/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Mark Jefferies Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery 615 ¹²CTS-16 0 125-135 ML 610 130 605 135-17 135-145 135' - Medium sand 0 600 139' - Fine sand 595 145' - Light Gray Sandy SILT, medium-grained sand 590 151' Brown Clayey SAND, very fine sand 152' Light Gray Sandy SILT with fine sand CTS-18 0 151-155 SC LAB 585 155-19 155-165 0 580 ML 160 575 165-175 0 166' Light Gray Gravelly SAND, medium to coarse-grained 570 SP 172' Light Gray Silty SAND, trace gravel 565 SC 175' Termination of boring.

Remarks:

560

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-12** Project Name: IP - Champaign Former MGP Elevation: 738.70 Datum: Project Number: 122765 Coordinate X: 1012996.19 Coordinate Y: 1257431.40 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 176.50 Borehole Dia.: 0.00in Date Started: 11/30/90 Date Completed: 12/02/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Scott Jander Drilling Method: CTS PID Reading (ppm) Sample Number & Depth Interval Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log Depth (feet) USCS Code Recovery Material Description Grayish Brown Silty CLAY with sand and gravel, medium stiff, moist to wet 735 5 730 725 720 20 715 710 30 705 34' Light Gray Fine SAND, with coarse subangular to angular gravel 35 SP 700 40' Light Gray Silty CAY, very stiff, moist 40 695 -45 690 -50 685 -55 680

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-12** IP - Champaign Former MGP Project Name: Elevation: Datum: 738.70' Project Number: 122765 Coordinate X: 1012996.19 Coordinate Y: 1257431.40 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 176.50' Borehole Dia.: 0.00in Date Started: 11/30/90 Date Completed: 12/02/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Recovery Material Description 675 65 670 665 75 76' Light Gray Sandy SILT with clay, trace gravel 660 80 655 85 88' - more gravel 650 90 ML 645 95 640 100 635 104' Light Gray Silty SAND, trace fine gravel 105 630 111' with fine gravel 625 SM 620 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-12** Project Name: IP - Champaign Former MGP Elevation: 738.70' Datum: Project Number: 122765 Coordinate X: 1012996.19 Coordinate Y: 1257431.40 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 176.50 Borehole Dia.: 0.00in Date Started: 11/30/90 Date Completed: 12/02/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery SM 615 124' Light Gray SILT, trace sand 125 610 605 135 600 ML 595 590 150' - Sandy 150 585 155' Light Gray Silty SAND, fine to medium grained 155 580 SM 160 163' Light Gray Clayey Subangular SAND, medium grained 575 165 570 170 SC 172' - Brown Clayey SAND, trace gravel 565 -175CTS-1 0 174.6-176.5 174.6-176.5 176.5' Termination of boring. 560

Remarks:

Page 3 of 3

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-13

Project Name:	IP - Champaig	n Former MGP	Elevation: 738.70'	Datum:		
Project Number	er: 122765		Coordinate X: 1012791.58	Coordinate Y: 1257190.74		
Location:	502 E. Hill St.	Champaign, Illinois	Total Depth; 170.00'	Borehole Dia.: 0.00in		
Date Started: 12/04/90		Date Completed: 12/07/90		T. Control		

Date Started: 12/04/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By:

Logged By: Mark Jefferies Drilling Method: CTS

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description O' Topsoil, black to brown, organic 3' Gravish-Brown Silty CLAY trace sand		Penetrometer (tsf)	Lab Sample
		CTS-1 0-3	92			OL		0		
735 -	-5	CTS-2 3-8	50				3' Grayish-Brown Silty CLAY, trace sand	1.5		LAB
730 -		CTS-3 8-13	50			CH	8' Water	0.5		
	10	6-13		1	1	OD	11' Tan SAND, fine grained, loose to wet			
725 -	15	CTS-4 13-18	80			SP	13' Gray Sllty CLAY with medium grained quartz, gravel are rounded to subrounded, wet			
720 -	-20	CTS-5 18-23	50					0.3		
715 -		CTS-6 23-28	100			CL	21' - Shale fragments			
710 -	25	25-20								
710 -	-30	CTS-7 30-40	0	7		ML	30' Light Gray Sandy SILT, medium grained sand			
705 -	35					IVIL.	35' Light Gray Silty SAND, medium grained sand			
700 -						SM				
	40	CTS-8 40-50	0	7			40' Light Gray Sandy GRAVEL, with fines, shale, and siltstone fragments			
695 -	-45	7								
690 -	-50	OTO O	0			GC				
685 -		CTS-9 50-60	0							
500	-55					5.00	55' Light Gray Sandy SILT, trace clay			
680 -		7				ML				

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-13** Elevation: 738.70 Datum: Project Name: IP - Champaign Former MGP Coordinate Y: 1257190.74 Coordinate X: 1012791.58 Project Number: 122765 Total Depth: 170.00' Borehole Dia.: 0.00in Location: 502 E. Hill St. Champaign, Illinois Date Started: 12/04/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: CTS Logged By: Mark Jefferies Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log JSCS Code Depth (feet) Material Description CTS-10 60-70 0 675 65' - with fine gravel 670 CTS-11 70-80 0 665 660 ML CTS-12 80-90 655 85 650 CTS-13 90-100 90' - Light Gay Sandy SILT with fine gravel, trace clay 645 94' - Light Gray Clayey SILT, trace gravel 95 640 100-110 100-110 ML 0 635 105 630 CTS-15 110-120 0 625 620 - Light Gray SILT with fine to coarse sand, trace clay Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-13** Project Name: IP - Champaign Former MGP Elevation: 738.70' Datum: Project Number: 122765 Coordinate X: 1012791.58 Coordinate Y: 1257190.74 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 170,00 Borehole Dia.: 0.00in Date Started: 12/04/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Drilling Method: CTS Mark Jefferies Sample Number & Depth Interval PID Reading (ppm Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description CTS-16 120-130 615 610 130 CTS-17 130-140 ML 130' - Trace coarse sand 0 605 - Trace coarse sand - Trace fine sand 600 141' - Light Gray SILT, trace clay, trace sand 595 -145 590 150 CTS-19 150-160 Light Gray Silty SAND (very fine), trace clay 585 580 160-170 160-170 SM 575 165 570 170' Termination of boring. 565 175 560 Remarks:

Page 3 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-14** Datum: Project Name: IP - Champaign Former MGP Elevation: 738.15' Coordinate X: 1012675.00 Coordinate Y: 1257524.00 Project Number: 17246 502 E. Hill St. Champaign, Illinois Total Depth: 33.00" Borehole Dia.: 0.00in Location: Date Started: 12/05/90 Date Completed: 12/06/90 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Drilling Method: CTS Mark Jefferies Logged By: Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description 30 CTS-1 0-3 0 Silt and gravel, copper colored to dark brown, (FILL) Tar-like material noted with odor 30 735 FI CTS-2 0 3-8 LAF Dark Green to Black CLAY. 6.5' Water 9.4 730 CTS-3 8-13 5.0 725 CTS-4 13-18 80 - Greenish gray to black 15' CH - Thin layers of poorly-graded sand at 14 and 17 feet 17' 18' - Mottled, gold to gray 720 CTS-5 18-23 10.1 100 - Mottled, Gold to Gray Silty CLAY 715 CTS-6 23-28 0 27' Tan SAND layer, five-inches thick 710 0.5 CTS-7 28-33 28' Gray Silty CLAY with quartz, gravel rounded to subrounded Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-14** IP - Champaign Former MGP Elevation: Datum: 738.15' Project Name: Coordinate X: 1012675.00 Coordinate Y: 1257524.00 Project Number: 17246 Total Depth: 33.00' Borehole Dia.: 0.00in 502 E. Hill St. Champaign, Illinois Location: Date Started: 12/05/90 Date Completed: 12/06/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Mark Jefferies Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery - Gray Silty CLAY with gravel CL 33' Termination of boring. 705 35 700 695 45 690 50 685 55 680 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-15

Project Name:	IP - Champaign Former MGP	Elevation: 738.02'	Datum:
Project Number:	17246	Coordinate X: 1012855.07	Coordinate Y: 1257484.66
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 35.00'	Borehole Dia.: 0.00in
	The state of the s		

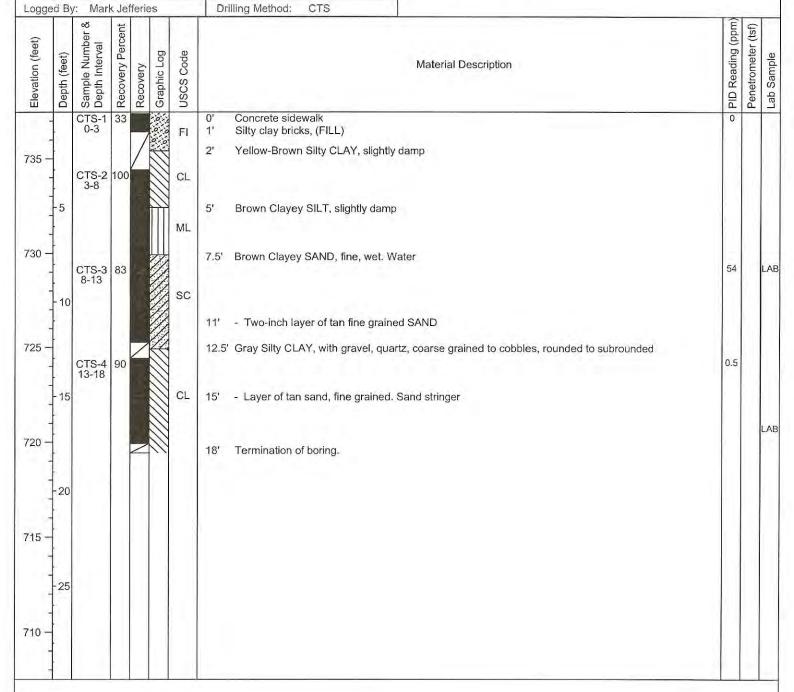
Date Started: 12/13/91 Date Completed: 12/13/91 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By:

Logged By: Scott Jander Drilling Method: CTS

Elevation (feet)			Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample		
		CTS-1 0-3	100	_	0.0	FI	0' Dark organic material (FILL)	13		
735 -		CTS-2 3-8	100		0 0 ///		3' Black, Dark-Brown CLAY, stained, soft, moist	80		
	5						6' Light Brown to Gray Silty CLAY, very soft, tar-like staining with strong odor, wet			
730 -	-	CTS-3 8-10	100			CL	9' - Water			LAB
	- 10	CTS-4 10-13	O				11.5' - Sandy 12' - Light Brown Silty CLAY, tar-like stains	40		
725 -	- - - 15	CTS-5 13-18	100					35		
720 -		CTS-6 18-20	100					30		
6	-20	CTS-7 20-23	100				20' Dark Gray Silty CLAY, stiff, slightly damp	0		
715 -	- 25	CTS-8 23-28	100			CL	23' - with fine gravel and fine sand			
710 —	-	CTS-9 28-33	100				28' - Trace sand, no gravel	0		

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-15** Project Name: IP - Champaign Former MGP Elevation: 738.02' Datum: Project Number: 17246 Coordinate X: 1012855.07 Coordinate Y: 1257484.66 502 E. Hill St. Champaign, Illinois Total Depth: 35.00 Location: Borehole Dia.: 0.00in Date Completed: 12/13/91 Date Started: 12/13/91 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval PID Reading (ppm) Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Gray SAND with fine gravel, trace clay 33' 705 CTS-10 100 33-35 0 LAB SP 35' Termination of boring. 700 40 695 45 690 50 685 680 Remarks:


BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-16

Project Name: IP - Champaign Former MGP Elevation: 737.42' Datum: Project Number: 17246 Coordinate X: 1012546.40 Coordinate Y: 1257475.80 502 E. Hill St. Champaign, Illinois Location: Total Depth: 18.00' Borehole Dia.: 0.00in

Date Started: 12/06/90 Date Completed: 12/06/90 Township/Range: Sec 7; T19N; R9E Consultant:

Drilled By:

Mark Jefferies

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-17

Project Name: IP - Champaign Former MGP Elevation: 737.00' Datum: Project Number: 122765 Coordinate X: 1012828.33 Coordinate Y: 1257706.23 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 22.00' Borehole Dia.: 0.00in

Date Started: 12/07/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By:

CTS

Drilling Method: Logged By: Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-1 0-3 8 White fine gravel, slightly damp (FILL) 735 CTS-2 5 0 FI 3-8 730 Brown Silty CLAY, soft, slightly damp CTS-3 8-13 0 725 Water 13' CTS-4 13-18 70 0 14' Gray Silty CLAY with gravel, quartz, rounded, stiff, moist 16' - Slightly damp 720 CTS-5 100 18-22 0 19' - Very stiff 22' Termination of boring. 715 710

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-18** Elevation: 737.00' Datum: Project Name: IP - Champaign Former MGP Project Number: 17246 Coordinate X: 1013500.00 Coordinate Y: 1257150.00 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 18.00" Borehole Dia.: 0.00in Date Started: 12/07/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: CTS Mark Jefferies Logged By: Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-1 0-3 33 Green-tan clay, rubble, wood chips, (FILL) 735 FI 1.0 CTS-2 100 some tar-like material noted near this locationLight Tan CLAY to black 3-8 4.5' - Slight tar-like odor noted 6' - Light Tan to Black CLAY 730 CTS-3 8-13 0.5 100 9' - Gray Sandy CLAY, wet. Water 725 CTS-4 13-18 100 0 17' - Gray Silty CLAY, hard, stiff, moist 720 18' Termination of boring. 20 715 25 710 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-19

Project Name:IP - Champaign Former MGPElevation:737.70'Datum:Project Number:122765Coordinate X:1013167.17Coordinate Y:1257361.27Location:502 E. Hill St. Champaign, IllinoisTotal Depth:20.00'Borehole Dia.:0.00in

Date Started: 12/07/90 Date Completed: 12/07/90 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By:

Logged By: Jorge Garcia Drilling Method: CTS

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Lab Sample
		CTS-1 0-3	83		0 0	FI	1' Gravelly, silt, brown (FILL)	0	
735 — - -	-5	CTS-2 3-8	83			,,	3' Gray-Brown Mottled CLAY with Silt, trace gravel, organic material	o	
						CL			
30 –		CTS-3 8-13	80				8' - Brown Silty CLAY, soft, wet 8.5' - Water	o	
	- 10	0 10		Ĭ		SM	10' Brown Silty SAND, layer one-foot thick		
						SIVI	11' Brown Silty CLAY, soft, wet		
'25 – -		CTS-4 13-15	100	/		7.7	14' - Gray Sandy CLAY, trace gravel, very stiff, moist		LA
	- 15 -	CTS-5 15-18				CL	14 - Gray Sandy CLAT, trace graver, very still, moist	0	
- 20 –		OTO 6	0.0					0	
	-20	CTS-6 18-20	03				20' Termination of boring.		
'15 – -									
1	- 25 -								
- 10 –									
į									8

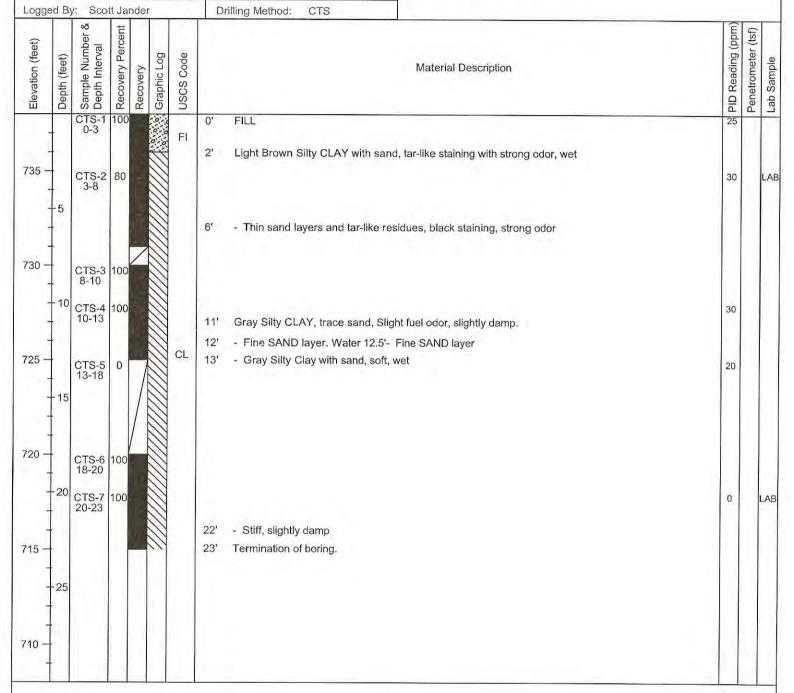
RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-20** Project Name: IP - Champaign Former MGP Elevation: 738.20' Datum: Project Number: 17246 Coordinate X: 1012909.17 Coordinate Y: 1257293.65 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 23.00' Borehole Dia.: 0.00in Date Started: 12/11/91 Date Completed: 12/11/91 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Drilling Method: CTS Scott Jander Sample Number & Depth Interval PID Reading (ppm Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description CTS-1 0-3 33 FILL, brown-black FI 3' Light Brown-Gray Silty CLAY with fine sand, soft, moist 735 CTS-2 20 3-8 AB CTS-3 8-10 730 100 1.5 10' - wet CTS-4 10-13 100 0.5 12' - Fine SAND layer. Water 12.5' - Fine SAND layer 13' - Gray Silty Clay with sand, soft, wet. CTS-5 100 13-18 725 720 CTS-6 18-20 100 100 0 CTS-7 20-23 - Stiff, slightly damp 23' Termination of boring. 715 25

Remarks:

710

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-21


Project Name:	IP - Champaign Former MGP	Elevation: 738.00'	Datum:
Project Number:	17246	Coordinate X: 1012835.47	Coordinate Y: 1257236.32
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 23.00'	Borehole Dia.: 0.00in

Date Started: 12/12/91

Consultant:

Date Completed: 12/12/91

Township/Range: Sec 7; T19N; R9E

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-22** Project Name: IP - Champaign Former MGP Elevation: 738.70' Datum: Project Number: 17246 Coordinate X: 1012668.71 Coordinate Y: 1257252.57 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 23.00' Borehole Dia.: 0.00in Date Started: 12/12/91 Date Completed: 12/12/91 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Logged By: Scott Jander Drilling Method: CTS Sample Number & Depth Interval Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description Recovery CTS-1 0-3 100 0' FILL material FI Tan Silty CLAY, trace sand, soft, wet - Heavily staining with tar-like material to 6' CTS-2 100 3-8 3' 3.5' 25 735 6' - Strong tar-like odor CTS-3 8-10 100 30 730 CL CTS-4 0 10-13 CTS-5 60 725 13-18 15' Tan-Gray Clayey SAND, trace fine gravel, fine to medium grained sand, slight tar-like odor SC 17' Gray-Tan Silty CLAY, stiff, slightly damp CTS-6 100 18-20 720 CTS-7 20-23 CL 100 LAB Termination of boring. 715 25 710 Remarks:

Logged By: Scott Jander

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-23

Project Name:	IP - Champaign Former MGP	Elevation: 738,73'	Datum:
Project Number:	17246	Coordinate X: 1012740.71	Coordinate Y: 1257430.09
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 0.00in

Date Started: 12/14/91 Date Completed: 12/14/91 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By: Drilling Method: CTS

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		CTS-1 0-3	100		0.00	FI	0' FILL material 2' Tar-like staining	50		
735 -	-5	CTS-2 3-8	60				3' Black CLAY with fine to medium sand, heavy staining.	120		LAB
730 –	- 10	CTS-3 8-10					10' - Brown Silty CLAY with trace fine sand, strong tar-like odor, very soft, moist	120		
-		CTS-4 10-13	100				Down only obt i with trace line sand, strong tal-like odol, very soit, moist			
725 - -	-15	CTS-5 13-18	100			CL	13' - Black oily tar-like stringers throughout sample to 18 feet	75		
720 — -	-20	CTS-6 18-23	100				 - Gray Silty CLAY, trace sand, stiff, slightly damp - Tar-like staining along fractures to 23 feet 	70		
715 —	-25	CTS-7 23-28	100				24' - Gray CLAY, stiff, slightly damp	55		
- 710 —							 27' - Gray Sandy CLAY, medium stiff, sandy, no visible staining, moist 28' Termination of boring. 			LAB

Logged By: Scott Jander

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-24

Project Name:	IP - Champaign Former MGP	Elevation: 738.56'	Datum:
Project Number:	17246	Coordinate X: 1012839.89	Coordinate Y: 1257406.85
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 23.00'	Borehole Dia.: 0.00in

Date Started: 12/15/91 Date Completed: 12/15/91 Township/Range: Sec 7; T19N; R9E

CTS

Consultant: Drilled By:

Drilling Method:

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		CTS-1 0-3	100		0.0		0' FILL, black, tar-like oils	30		Ī
735 —	-5	CTS-2 3-8	100			FI	3.5' Black Silty CLAY with trace fine sand, soft, wet	90		
- - 730 –		CTS-3 8-10	100				7' - Heavy staining with tar-like oil. Water			LAB
	-10	CTS-4 10-12	100							
- - 725 —		CTS-5 12-13 CTS-6 13-18	100 100			CL	12' - Brown Silty CLAY with slight tar-like odor, stiff, slightly damp	10 8		
	-15						15' - Gray Silty CLAY, stiff, slightly damp with slight tar-like staining to 20 feet			
- 720 –		CTS-7 18-23	0					10		
	-20						20' - No tar-like staining noted			LAB
- 715 —							23' Termination of boring.			
-	- 25									
- 710 —										

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

UTB-25

Project Name:	IP - Champai	gn Former MGP	Elevation:	738.37'	Datum:		
Project Number:	17246		Coordinate X:	1012769.05	Coordinate Y: 1257341.16		
Location: 502 E. Hill St. Champaign, Illinois			Total Depth:	28.00'	Borehole Dla.: 0.00in		
Data Storted: 12/11/01 Data Completed: 12/11/01							

Date Started: 12/14/91 Date Completed: 12/14/91 Township/Range: Sec 7; T19N; R9E

Consultant: Drilled By:

Logged By: Scott Jander Drilling Method: CTS

Elevation (feet)	Depth (feet)	Sample Number & C	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
735 —	-5	CTS-1 0-3 CTS-2 3-8	100		00000	FI	0' FILL material 2.5' Black Silty CLAY with tar-like staining and odor, soft, moist	40		
- 730 — - -	-10	CTS-3 8-10 CTS-4 10-13					6' - Light brown-gray with moderate tar-like staining 9' - Brown CLAY with sand	30 50		LAE
- 725 – - -	- 15	CTS-5 13-18	100			CL	15' - Slight tar-like odor noted	45		
720 - - -	-20	CTS-6 18-23	100				 19' - Sand layer with tar-like staining 21' - Gray Silty CLAY, stiff, slightly damp 	5		
- 715 — - -	- 25	CTS-7 23-28	100							LAE
710 -							27.5' - Sand stringer, stiff, slightly damp 28' Termination of boring.			

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: **UTB-27** IP - Champaign Former MGP Project Name: Elevation: 739.40' Datum: Project Number: 17246 Coordinate X: 1012671.89 Coordinate Y: 1257480.61 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 23.00 Borehole Dia.: 0.00in Date Started: 12/16/91 Date Completed: 12/16/91 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Drilling Method: Logged By: Scott Jander CTS Sample Number & Depth Interval Recovery Percent PID Reading (ppm Elevation (feet) Graphic Log JSCS Code Material Description CTS-1 0-3 100 FILL material black-brown with tar-like staining, no odor FI CTS-2 100 Brown Sandy CLAY with dark tar-like staining throughout, very soft, moist 15 735 CTS-3 100 5-7 LAB 33 730 CTS-5 100 - Brown to black with tar-like staining, wet. Water 17 - Brown with no staining noted, stiff, slightly damp 725 15.5' Gray Silty CLAY, stiff, slightly damp CTS-8 100 18-23 0 720 20 23' Termination of boring. 715 25 710 Remarks: Page 1 of 1 710 Remarks:

Page 1 of 1

APPENDIX E

Phase II Well Construction Data

THE RESIDENCE OF THE PARTY OF T	RING WELL INSTALLATI	ON SERIAL NO. WI_ PAGE 1_OF 2
DATE/TIME STARTED 12-4-90		,
PROJECT NO. /22. BORING/WELL NO. UTB-01/ UMW-)		WAMPAIEN, ILL - PHASE IL-A

INCTALLATION CREW T BANKER

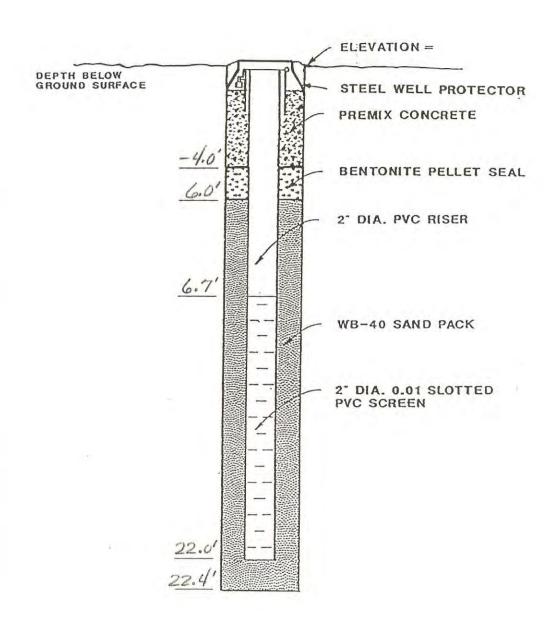
M. MARRIS

GEOLOGIST M. JEFFENES -WELL DIAGRAM

T	-	,	EPTH FT.	TITEM SKETCH
1			Ω	
-				
NA	-			
1	1			pps MX 5 0.7
	0.0			1.8
1	1.8			
-	1.8			
-	12.0			
-	2			CROUT
_	14.3			
				-12.
		-	-	
				-14.
		+	\dashv	-16.
	20.3	_		WB-40
		1		
	+	+	-	-26.
_	280	+	\dashv	17018 PLUS S
	×0.0	+		-28.0
+	+	+	-	
1	+	+	-	
+		+	-	
	± N/A G N/A	± Laga 0,0 - 0.7 N/A G N/A 1.8 - 1.8 - 12.0 - 16.3 - 12.0 - 14.6 - 14.6	Q Q Q Q Q Q Q Q Q Q	± \frac{12.0}{14.6} ± \frac{16.3}{14.6} - 14.6 - 14.6 - 14.6 - 14.6 - 14.6

CONSTRUCTION MATERIALS

SERIAL NO. WI


WELL PROTECTOR INSTALLED: (YES) NO		
MATERIAL: ALUMNUM ALLOY	LOCKING CAI	P: YES NO
DIAMETER (IN): 4"	PADLOCK NO. 233	
PERMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
MATERIAL MA		
DIAMETER (IN): N/A		
MONTHOD THE CHIEF MANDETERS A FROME		
MONITORING WELL MATERIALS/LENGTH		
WELL RISER: PVC/ 15.8" WELL SCREEN: PVC/ 10.2" (INCL CAP)		
	-	
WELL SCREEN SLOT SIZE: Q.O.		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO		
MATERIAL: NA		
NUMBER: NA	LEGEND:	
	0.1/01/2007/10 / 2007	
1	O MONITORING WELL	
D.K.	• BUMPER POSTS	
L. Commercial Control of the Control of the Commercial Control of the Commercial Control of the		
GRAVEL PACK INSTALLED: YES NO		
QUANTITY: 5.2 × 948 = . 488	<i>*</i>	No.
TYPE/SIZE WB-40 SAND-		
PELTONITE SEAL INSTALLED: (YES NO		1
QUANTITY: 2 x 50 % = 100 %	4 10 4	
SIZE BENFONITE CHIPS (HOB FLUG)		
SIZE DENOMINE SILE (ACK, 1880)		<i>j</i>
CONCRETE BACKFILL UTILIZED: (ES) NO	FUR PAD-	
QUANTITY: 2 × 80 % = 160 %		
MIX: POSNX + 160		
GROUT BACKFILL UTILIZED: YES NO		
QUANTITY: ZOOK PORTLAND CEMENT +	MA RESTRICTE POWDER	
MIX: (2 BACS)	(S- BA6)	
	(13 27.0)	
Pruin	INTRODUCTION	
Inoro	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CO		
QUANTITY:	QUANTITY: NONE	
TYPE:	TYPE:	
DEPTH INTERVAL OF LOCS	DFPTH INTERVAL OF	ross
COMMENTS:		
		*

MONITORING W	EL	LIN	IST	ALL	ATION SERIAL NO. WI
					PAGE_OF_
DATE/TIME STARTED 11/28/90 @ 1100					
PROJECT NO. /22765	PRO	JEC:	r na	ME_	I.P. Champaign
BORING/WELL NO-UTB-02/UMW-102				-	
NSTALLATION CREW HEBEL TOE	07	6		GI	EDLOGIST S. VANDER
					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUND	o st	JRFAC	Œ		INEM SKETCA
The state of the s	Г	H	T	E	
ITEM	±	EPTH FT.	±	EPTH FT.	
		Id	-	ā	
TOP OF PROTECTIVE CASING		0'			
BOTTOM OF PROTECTIVE CASING	-	.7	1		FAUSH MOUNT WELL COVER
TOP OF PERMANENT BOREHOLE CASING		MA			10D OF RISE
BOTTOM OF PERMANENT BOREHOLE CASING	-		-		
DOLLOW CHOING	_	WA			TOP OF :2.
TOP OF CONCRETE	-	-5			ENTIROPLAS (
BOTTOM OF CONCRETE	-	200	1	1	TOP OF PACK
TOP OF GROUT		MA			TOP OF PACK
BOTTOM OF GROUT		NA			
TOP OF WELL RISER	-	0.3	1		1
TOP OF COPPEN		-	,	-	: D a
TOP OF SCREEN	-	6.7			
BOTTOM OF SCREEN	_	22.0	,		
TOP OF PELTONITE SEAL		16	,		
TOT OF TENTONICES COME	-	4.0			
BOTTOM OF PELTONITE SEAL	-	60	1		5.
TOP OF GRAVEL PACK		6.0	,		# 10 m
				-	1 111 2 2
BOTTOM OF GRAVEL PACK	-	22.4	1		
TOP OF NATURAL CAVE IN ENVIROPLUS SEAL	-	22.4	11		
BOTTOM OF NATURAL CAVE IN	B.	264	5'		BOTTOM OF E BOKER 22
TOP OF GROUNDWATER					BOTTOM OF \$ - >-22.
TOTAL DEPTH OF BOREHOLE	-	265	1		ENVIROTEUS \$ >-26.
			-		700

NOTE: NOT TO SCALE

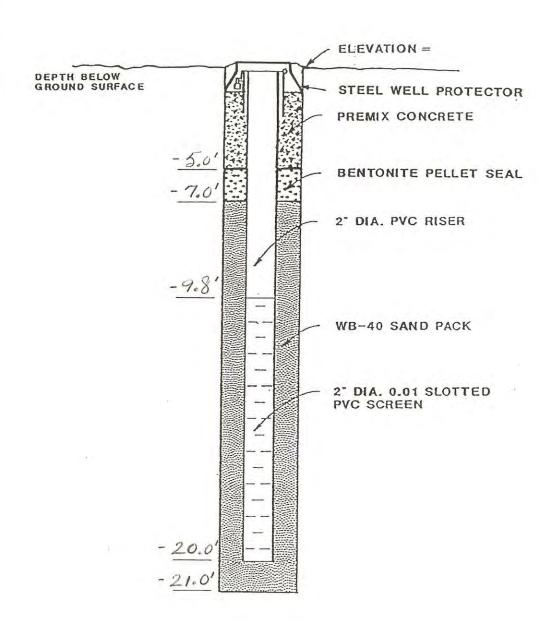
COMMENTS

MONITORING WELL NO. UMW - 102 DATE INSTALLED 11-28-90

NOT TO SCALE	
BOREHOLE DIAMETER	SANDPACK
SCREEN LENGTH	RISER LENGTH 6.4

TTYT	1
FIG	THE .
BEAUTIC DE LA CONTRACTION DEL CONTRACTION DE LA	
454 6 8410	A DESCRIPTION .

MONITORING WELL INSTALLATION SERIAL NO. WI____


project no. /22765 Boring/Well no. UTB-03 / UMW 103	PRO	JEC:	C NA	ME_	I.P. Champaign
BORING/WELL NO. UTB-03 / UMW 103	MAJ	OR T	ASK	_5	329 SUBTASK 77
INSTALLATION CREW HEBEL / TOED	TE	61		GI	BOLOGIST S. JANDER
					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUND	S	JRFAC	Œ		TITEM SKETCH
ITEM	<u>±</u>	DEPTH FT.	<u>+</u>	рертн ЕФ.	
TOP OF PROTECTIVE CASING		GR			
BOTTOM OF PROTECTIVE CASING	-	0.7	,		
TOP OF PERMANENT BOREHOLE CASING		NA			BOTION OF CONCRETE
BOTTOM OF PERMANENT BOREHOLE CASING	*	NA			SAND FILL
TOP OF CONCRETE		GR			
BOTTOM OF CONCRETE	-	0.5	,		TOP OF PECT
TOP OF GROUT		MA			TOP OF BRAVEL
BOTTOM OF GROUT	7	NA			TOP OF SCREEN
TOP OF WELL RISER	-	0.2			36
TOP OF SCREEN	-	9.8	,		
BOTTOM OF SCREEN	-	20.0	1		
TOP OF PELTONITE SEAL	-	5.0			
BOTTOM OF PELTONITE SEAL	-	7.0	,		1
TOP OF GRAVEL PACK	-	7.0	,		
BOTTOM OF GRAVEL PACK	-	21.0	'		BOTTOM OF SEREEN == 2
TOP OF NATURAL CAVE-IN	-	21.0	,		BUTTOM OF GRAVEL 2
BOTTOM OF MADURAL CAME IN	-	28.5	'		
TOP OF GROUNDWATER					
TOTAL DEPTH OF BOREHOLE	-	28.5	1		BOTTOM OF ENVIROPLUE2
-					
	7		-		
	1				NOTE: NOT TO SCALE

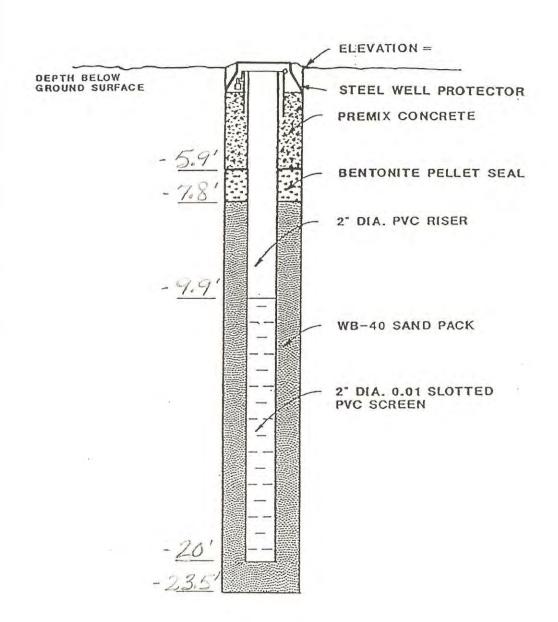
CONSTRUCTION MATERIALS SERIAL NO. WI_ PAGE_OF_ WELL PROTECTOR INSTALLED: (YES) NO MATERIAL ALUMINUM LOCKING CAP: (YES) NO PADLOCK NO. 2532 DIAMETER (IN):____ PERMANENT BOREHOLE CASING INSTALLED: YES (NO) MATERIAL___ DIAMETER (IN):_____ MONITORING WELL MATERIALS/LENGTH WELL RISER: 1- 2" X 9.6" WELL SCREEN: 2 - 2" y 5-1" WELL SCREEN SLOT SIZE: . 010 ORIENTATION: BUMPER POSTS INSTALLED: YES (NO MATERIAL:___ NUMBER: __ LEGEND: O MONITORING WELL • BUMPER POSTS GRAVEL PACK INSTALLED: (YES) NO OUANTITY: 4 - 10016 BAGS TYPE/SIZE MERAMEC / WB-40 PELTONITE SEAL INSTALLED: YES NO QUANTITY: 1- 5016. BACKET SIZE W" PELLETS CONCRETE BACKFILL UTILIZED: (YES) NO QUANTITY: 1 - 6016 BAL MIX: _ PREMIX GROUT BACKFILL UTILIZED: YES (NO) QUANTITY:____ MIX:-____ PLUID INTRODUCTION

TOTAL FLUIDS INTRODUCED DURING WELL CONSTRUCTION:

QUANTITY:	QUANTITY:							
TYPE:	TYPE:							
DEPTH INTERVAL OF LOSS	DFPTH INTERVAL OF LOSS							
COMMENTS: 5 BAGS OF ENVIROPLUC	USED TO BACKFILL HOLE FROM 21.0'-	28.5						

MONITORING WELL NO. UMW-103 DATE INSTALLED 11-30-90

NOT TO SCALE	"	
BOREHOLE DIAMETER	5SANDPACK_	14'
SCREEN LENGTH 10.2	RISER LENGT	H_9.6'


THE	107-
THE STATE OF THE S	
dod's seems	150/200

DATE/TIME STARTED 11-27-90/1400 PROJECT NO. /22765 BORING/WELL NO. UTB-04/UMW-104	PR	OJEC	r NA	ME_	I.P.	che	mp	2197)	
BORING/WELL NO. <u>UTB-04 JUMW-104</u> INSTALLATION CREW <u>HEBEL</u>	MA	JOR 7	ASK	_5	329	SUBTA:	SK.	77		
INC. ALIMITON CASH	-			6	EOLOGIST_	WELL				-
DEPTHS IN REFERENCE TO GROUN	D S	URFAC	CE		ITEM	<u> </u>	-	Line		
and the second	T	H.	T	晋.	1.1EM	<u></u>		SKETCH		
ITEM	±	DEPTH	±	DEPTH FT.						
TOP OF PROTECTIVE CASING		NA				<u> </u>				
BOTTOM OF PROTECTIVE CASING		NIA				100			797 0	FO
TOP OF PERMANENT BOREHOLE CASING	T	NA			FLUSH	MOUNT		d	ZKISEI	5
BOTTOM OF PERMANENT BOREHOLE CASING		NA					~)	1		
TOP OF CONCRETE		0			PREM	RORETE	_			5.
BOTTOM OF CONCRETE	-	5.9	r		PELTO	NITE	3			
TOP OF GROUT		NA			TOP OF	SAND	7			7.
BOTTOM OF GROUT		NA								
TOP OF WELL RISER	-	.5			TOP OF	SCREEN		=		9.0
TOP OF SCREEN	-	9.9	0	12)	TOTAL.	5000)	•			
BOTTOM OF SCREEN	***	20'			PACK =	15.7	7:			
TOP OF PELTONITE SEAL	Mor.	5.9	,				1			
BOTTOM OF PELTONITE SEAL	_	7.8	,		<u>a</u>		/. •			
TOP OF GRAVEL PACK	_	7.8	,		BOTION OF	SCREEN	17			20.
BOTTOM OF GRAVEL PACK	-	23.5	_		BUTTOM		-			23.
TOP OF NATURAL CAVE-IN		NA			SAN	D PACK				
BOTTOM OF NATURAL CAVE-IN		nila								
TOP OF GROUNDWATER	-	7.5	,						(4) (4) (4) (4)	
TOTAL DEPTH OF BOREHOLE		23.1	-1							
			-	\dashv						
		\vdash	+	\dashv		· · · · · · · · · · · · · · · · · · ·				
	-		-	\dashv						
						NOTE:	NOT	TO_SCA	IE.	

SERIAL NO. WI______ PAGE_OF__

WELL PROTECTOR INSTALLED: YES NO	100		NOTE:
MATERIAL ALUMINUM		KING CAP: YES	NO
DIAMETER (IN):	_ PADLOCK NO		
PERMANENT BOREHOLE CASING INSTALLED:	YES NO		
MATERIAL		÷*,	
DIAMETER (IN):			
MONITORING WELL MATERIALS/LENGTH			
WELL RISER: 1-2" X 10"1"			
WELL SCREEN: 2 - 2" X 5"/"			77
WELL SCREEN SLOT SIZE:			ORIENTATION:
BUMPER POSTS INSTALLED: YES NO			
MUTERIA			
NUMBER:	LEGEND:		$H_{1}H_{2}H_{3}$
•	O MONITORIN	IG WELL	
	• BUMPER PO		
GRAVEL PACK INSTALLED: (YES) NO		1	
QUANTITY: 4.3 BASS	1	- 4	
TYPE/SIZE MERANCE / WB-40		-	0
PELTONITE SEAL INSTALLED: (YES) NO			
QUANTITY: 1 BUCKET - 5616.		_	
SIZE 14" PELLETS		2	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: 2 BA65: 60 B5.			
MIX: PREMIX		-1	
MIX: /KENIX		8	
GROUT BACKFILL UTILIZED: YES NO QUANTITY:			¥-
MIX:		-	
		7	16
PLUI	D INTRODUCTION		
TOTAL FLUIDS INTRODUCED DURING WELL C	CONSTRUCTION:		
QUANTITY:	QUANTITY:_		
TYPE:	TYPE:		
DEPTH INTERVAL OF LOSS	DIPTH INTE	RVAL OF LOSS_	. +
COMMENTS:			

MONITORING WELL NO. UMW-104 DATE INSTALLED 11-27-96

NOT TO SCALE	
BOREHOLE DIAMETER 8.5	SANDPACK
SCREEN LENGTH	RISER LENGTH 9.3

MONITORING WELL INSTALLATION	SERIAL NO. WIPAGEOF
DATE/TIME STARTED 12-5-90: 1000 COMPLETED 12-5-90: 11 PROJECT NO. 122765 PROJECT NAME IP-CHAMPA BORING/WELL NO. UTB-05/UMW-105 MAJOR TASK 532 INCTALLATION CREW J. RANKER / M. MARKS GEOLOGIST	G SUBTASK 77
DEPTHS IN REFERENCE TO GROUND SURFACE	WELL DIAGRAM
	BREIGI

ITEM	±	DEPTH	±	DEPTH FT.			
OP OF PROTECTIVE CASING PENTECTUR		0.0					
OTTOM OF PROTECTIVE CASING PROTEC	TOP _	0.7					
OP OF PERMANENT BOREHOLE CASING	MA -		-			<u> </u>	
OTTOM OF PERMANENT BOREHOLE CAS:	ING N/A			-	X	JH-JH	
OP OF CONCRETE		0,0		-			= -1
OTTOM OF CONCRETE		1.5					
OP OF GROUT NA							
OTTOM OF GROUT NIA					Hotspile		
OP OF WELL RISER		-					
OP OF SCREEN	1	95	-				
OTTOM OF SCREEN		17.7				7:1111 - 11	
OP OF PELTONITE SEAL	~	63					
TTOM OF PELTONITE SEAL		7.7			PSUEIS		
P OF GRAVEL PACK	-	27		\Box			
TTOM OF GRAVEL PACK		19.7					
P OF NATURAL CAVE-IN NA NON		1.12.1		,	<u>y</u>		
TTOM OF NATURAL CAVE-IN NONE					10-40		
P OF GROUNDWATER		10.0			WB /		
TAL DEPTH OF BOREHOLE	1	19.7					
	1-1	1.]		-		7.42	

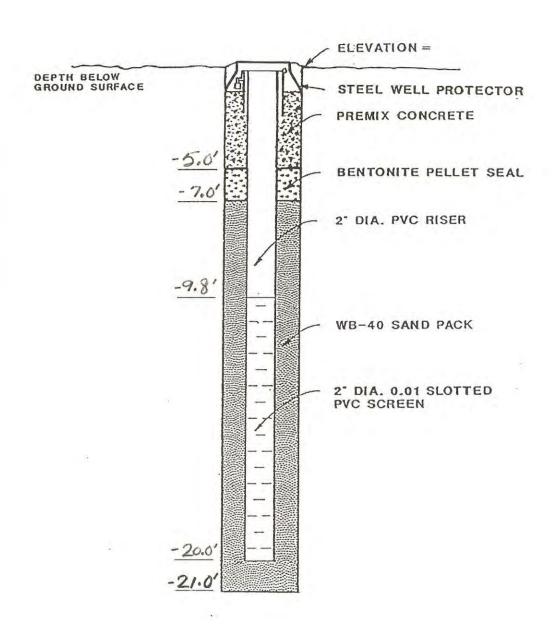
	++	+		-			
	-						

COMMENTS

SERIAL NO. WI

WELL PROTECTOR INSTALLED: (YES) NO		
MATERIAL - NEUMINUM ALLOT.	LOCKING CAL	YES NO
DIAMETER (IN): 4"	PADLOCK NO. 7532	
PERMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
MATERIAL MA		
DIAMETER (IN): NA		
MONITORING WELL MATERIALS/LENGTH		
WELL RISER: PVC / 9.1		
WELL SCREEN: PVC / 10.2 (INCL BOTTO	in PUINT)	
WELL SCREEN SLOT SIZE: 0.07"		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO	14	
MATERIAL: 1/19	 	
NUMBER:	LEGEND:	
	O MONITORING WELL	
	• BUMPER POSTS	
GRAVEL PACK INSTALLED: YES NO		
QUANTITY: 5 × 94 × 470 *		N
TYPE/SIZE_ WB-40		
PELTONITE SEAL INSTALLED: YES NO		
QUANTITY: 1850 * = 50 *	- 18	
SIZE 14" BIN BENTONITE PETETS		f.•
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:/.5 × 80 % = /20 %	FOR PROTECTOR	
MIX: PREMIX + 11 0		
GROUT BACKFILL UTILIZED: YES (NO	HULE PLUE USED.	2
QUANTITY: 2.5 × 50 × = 125 ×		
MIX: BENTONITE OHIPS		
Priitr	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CO	ONSTRUCTION:	WINS
QUANTITY: NONE	QUANTITY:	770 2
	TYPE:	
DEPTH INTERVAL OF LOSS	DFPTH INTERVAL OF	LOSS
COMMENTS:		

MONITORING W	ELI	LIN	ST	ALL	ATION SERIAL NO. WI
DATE/TIME STARTED 11-29-90 @ 1400 PROJECT NO. /22765	COM	PLET	ED /	11-2	7 P Champains
BORING/WELL NO. UTB-06/UMW/-106	PRO MAJ(OR T	ASK	ME_ 5	329 SUBTASK 77
NCTALLATION CREW HEBEL TOET					
					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUND	SU	RFAC	E		ITEM SKETCH
ITEM	±	DEPTH FT.	<u>±</u>	DEPTH FT.	
TOP OF PROTECTIVE CASING		0			
BOTTOM OF PROTECTIVE CASING		.7			FLUSH MOUNT COVERS O
TOP OF PERMANENT BOREHOLE CASING		MA			TOP OF RISER O.
BOTTOM OF PERMANENT BOREHOLE CASING	1 1	NA			
TOP OF CONCRETE		0'			70P OF PEIT -5
BOTTOM OF CONCRETE	-	5.0	1		TOP OF GRAVEL
TOP OF GROUT		MA			TOP OF SERBENT
BOTTOM OF GROUT		NA			


#	HILAGO O .7		DEPTH FT.	CONCRETE SIDEWAL
300	0			CONCRETE SIDEWAL
1	.7			CONCRETE SIDEWAL
-	1	-		
,	MA	1		FLUSH MOUNT COVERY
*	1	1		TOP OF RISER
+	NIA			
	0'			TOP OF PEIT
-	5.0	,		TOP OF GRAVEL
	MA			TOP OF SEREEN
	NA			
-				
-	1			
_		1		
_		,		
-		,		
-		,		1 50 00 00 00 00 00 00 00 00 00 00 00 00
		,		
	21.0	•		A AND THE STATE OF
_	240	,		BOTTOM OF SCREEN
				GOTTOM OF GRAVEL
_	24.0	,		BOTTON OF WIREPLUS
				NOTE: NOT TO SCALE
The same of the sa	-	- 5.0 MA - 0.6 - 9.8' - 20. - 5.0 - 7.0 - 21.0 - 24.0	- 5.0' MA - 0.6' - 9.8' - 20' - 7.0' - 7.0' - 21.0'	- 5.0' N/A - 0.6' - 9.8' - 20.' - 5.0' - 7.0' - 7.0' - 21.0' - 24.0'

COMMENTS

SERIAL NO. WI______ PAGE_OF__

WELL PROTECTOR INSTALLED: YES NO			
MATERIAL ALUMINUM		OCKING CAP:	YES NO
DIAMETER (IN):	PADLOCK NO.	6306	-
PERMANENT BOREHOLE CASING INSTALLED:	YES NO		
DIAMETER (IN):			
MONITORING WELL MATERIALS/LENGTH			
WELL RISER: 1 - 2" × 9.2"			÷ .
WELL SCREEN: 2 - 2" / 5./'	-		
WELL SCREEN SLOT SIZE: 0.010			ORIENTATION:
BUMPER POSTS INSTALLED: YES NO	W 7		
	LEGEND:		
NUMBER:	LEGEND:		
	O MONITO	RING WELL	
- A	• BUMPER	POSTS	
GRAVEL PACK INSTALLED: (YES NO			
QUANTITY: 5 BASS			N H H H H H H H H
TYPE/SIZE MERAMEC / WB-40			
PELTONITE SEAL INSTALLED: (YES) NO QUANTITY: 1-50 16 BUCKET SIZE 4" PELLETS		_	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: 2 60 16. 1345	4		
MIX: PREMIX			
GROUT BACKFILL UTILIZED: YES NO			
QUANTITY:			
MIX:			
PLUI	D INTRODUCTION	NO	
TOTAL FLUIDS INTRODUCED DURING WELL C	ONSTRUCTION:		
QUANTITY:		Y:	
TYPE:			
DEPTH INTERVAL OF LOSS			
DOLLAR ANADAYAN OF BOOK		State of the state	
COMMENTS: 3 BALS ENVIROPLUS	USED TO	BACK FILL	BOREHKLE FROM 21!-
			100

MONITORING WELL NO. UM WI- 106 DATE INSTALLED 11-29-90

NOT TO SCALE	Q.H		, ,	
BOREHOLE DIAMETER	8	_ SANDPACK	14.0	
SCREEN LENGTH	1.0.2'	RISER LENGTH _	9.2'	

1415	ILY
11/2	
Transpire Control	
the program	ON SECTIONS

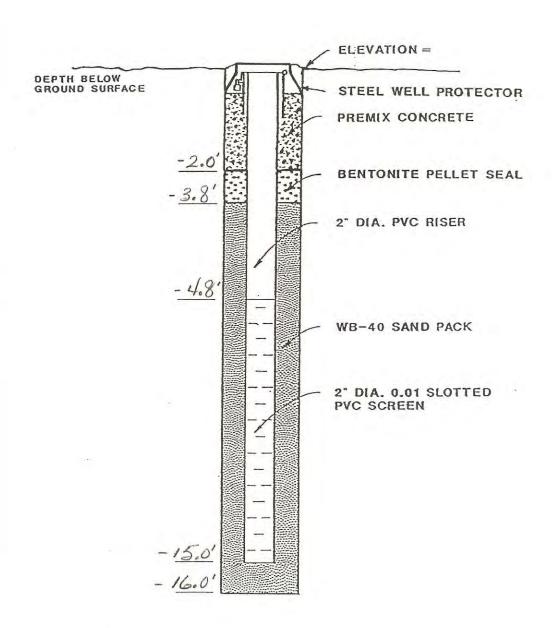
MONITORING WELL INSTALLATION SERIAL NO. WI_

DATE/TIME STARTED 12-5-90 1400 PROJECT NO. 122765 BORING/WELL NO. UTB-07/UMW-107 INCTALLATION CREW J. BANKER / M DEPTHS IN REFERENCE TO GROUN	PRO MAJ	OJEC TOR THE MERCAS URFACE	r na Pask	ME_Z	5329	SUBO M. JEI	ASK .Z	7	A	_
BORING/WELL NO. UTB-07/UMW-107 INCTALLATION CREW <u>J. RANKER</u> M DEPTHS IN REFERENCE TO GROUN	MAJ	OR THE	CE		5329	M. JUB	ASK . Z	7		
DEPTHS IN REFERENCE TO GROUN	ND SI	JRFA	CE	GI	EOLOGIST_			-		
	T	-	_			WEI	L DIA	GRAM		
	T	-	_							
ITEM	±	PTH		1000	ITEM	!		SKET		
	1	DE	±	DEPTH FT.						
TOP OF PROTECTIVE CASING PROTECTOR	-	0.0								
BOTTOM OF PROTECTIVE CASING PROTECTER	-	0.7					Hir		-	
TOP OF PERMANENT BOREHOLE CASING	NA	1 —		-		<u> </u>		ΓΞ:		=
BOTTOM OF PERMANENT BOREHOLE CASIN	GNA	-	-	-		DRENUX	1			0.7
TOP OF CONCRETE	-	0.0								/.1 -:
BOTTOM OF CONCRETE		1.2				10	. + -			=:
TOP OF GROUT NA		-	-							=
BOTTOM OF GROUT NA	-					EPTIE				
TOP OF WELL RISER				4						=
TOP OF SCREEN	-	9.5							-	
BOTTOM OF SCREEN	-	197								Ξ
TOP OF PELTONITE SEAL	-	5.9				PEULIT		. 1		<u>-5.9</u>
BOTTOM OF PELTONITE SEAL	-	7.5					- } !			- 7.5
TOP OF GRAVEL PACK	-	7.5								_ _ 95
BOTTOM OF GRAVEL PACK	-	19.7				140		1		
TOP OF NATURAL CAVE-IN NONE _						B-9	1	2	-	
BOTTOM OF NATURAL CAVE—IN NON 5		-				· · · · · · · · · · · · · · · · · · ·	:- }	1	+	
TOP OF GROUNDWATER	-	8.0				· · · · · · · · · · · · · · · · · · ·	(2	<u> </u>	
TOTAL DEPTH OF BOREHOLE		19.7					1		<i></i>	-19.7
										-
						er vila				<u>.</u> .
						NOTE	NOT	· CYT'	CALE	
MMENTS							=	= (

SERIAL NO. WI

WELL PROTECTOR INSTALLED: YES NO		
MATERIAL ALUMINUM ALTON	LOCKING C	AP: (YES) NO
DIAMETER (IN): 4"	PADLOCK NO. 25	
PERMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
MATERIAL MA		
DIAMETER (IN): NA		
MONITORING WELL MATERIALS/LENGTH		
WELL RISER: AVC/ 9		
WELL SCREEN: PVC/ 10.2 (INCL. CAP))	
WELL SCREEN SLOT SIZE: _ 0.01		OD TEAMOR MY ON A
BUMPER POSTS INSTALLED: YES NO		ORIENTATION:
MATERIAL: NA		
NUMBER: NA	LEGEND:	
	O MONITORING WELL	,
	• BUMPER POSTS	
GRAVEL PACK INSTALLED: YES NO QUANTITY: 5 × 94 × = 470 × TYPE/SIZE MB-40	-	N
DOLLAR CONT. TAXABLE DA MOC. NO.		
QUANTITY: (PELLETS' /X50 X) + (MOS)	1 - 70 ×	
SIZE Ky O DIA	- 307	-
SILE 14 VIA		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: 15 8 80 8 6 120 8	FUR PRUTECTOR	
MIX: PREMX + HO		
GROUT BACKFILL UTILIZED: YES NO US QUANTITY: 25 × 50 × 125 ×	ED HUEPLUS	
MIX: BENTOMITE CHIPS		
M. Asia, J.	. Lean Commission	
PLUID 1	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CON	STRUCTION:	
QUANTITY: NONE	QUANTITY:	en E
The state of the s	TYPE:	1
DEPTH INTERVAL OF LOSS	DFPTH INTERVAL O	F LOSS
COMMENTS:		*.

DATE/TIME STARTED 11-29-90@0845 PROJECT NO. 122765 BORING/WELL NO. UTB-08B/UMW/08B INSTALLATION CREW HEBEL/ TOEDS	COM PRO MAJ	PLET DECT	red_ r na ask	11 - ME_ 5	PAGE_OF
	-				WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUNI) SU	IRFAC	E		ITEM SKETCH
ITEM	±	DEPTH FT.	±	рертн	
TOP OF PROTECTIVE CASING		0:			CONCRETE SIDEWALK
BOTTOM OF PROTECTIVE CASING	-	.7			FLUSH MOUNT COVER
TOP OF PERMANENT BOREHOLE CASING		NA			- 70D OF KISER - 0.
BOTTOM OF PERMANENT BOREHOLE CASING		WA			TOP OF TELT -2
TOP OF CONCRETE		0:			BOHOM OF SKEEG
BOTTOM OF CONCRETE	-	2.0	,	1	TOP OF SCREEN: -4.
TOP OF GROUT		MA			
BOTTOM OF GROUT		NA			
TOP OF WELL RISER	-	0.3	1		
TOP OF SCREEN	-	4.8	,		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2


3 0000 BOTTOM OF SCREEN TOP OF PELTONITE SEAL BOTTOM OF PELTONITE SEAL 3.8' TOP OF GRAVEL PACK BOTTOM OF GRAVEL PACK 16. TOP OF NATURAL CAVE IN 16. BOTTOM OF NATURAL CAVE IN 24. TOP OF GROUNDWATER TOTAL DEPTH OF BOREHOLE 24. NOTE: NOT TO SCALE

COMMENTS

SERIAL NO. WI_____ PAGE_OF__

WELL PROTECTOR INSTALLED: YES NO		2000
MATERIAL ALUMINIUM		CAP: (YES) NO
DIAMETER (IN):	PADLOCK NO. 253	2
PERMANENT BOREHOLE CASING INSTALLED:	YES NO	
MATERIAL		
DIAMETER (IN):		
MONITORING WELL MATERIALS/LENGTH		
WELL RISER: 1-2" X 4.5"		10
WELL SCREEN: 2-2" X 5./		
WELL SCREEN SLOT SIZE: 0.010		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO		
MATERIAL:		
NUMBER:	LEGEND:	
**************************************	O MONITORING WEL	
	BUMPER POSTS	
*	W DOILDR 10313	
GRAVEL PACK INSTALLED: (YES) NO		
QUANTITY: 5 2 BALS		
TYPE/SIZE MERAMEC / WB-40		
PELTONITE SEAL INSTALLED: (YES) NO		
QUANTITY: 15016 BUCKET		
SIZE 4" PELLETS		VM ALL A HELL
		Francis Edward
CONCRETE BACKFILL UTILIZED: YES NO		APMINER OF THE
QUANTITY: 1 60 HB BAK	*	ASTRONOM STATES
MIX: PREMIX		
GROUT BACKFILL UTILIZED: YES NO		100
QUANTITY:		
MIX:		
	u +8°	
PLUI	DINTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL C	ONSTRUCTION:	
QUANTITY:		
TYPE:		
DEPTH INTERVAL OF LOSS	DIPTH INTERVAL	OF LOSS
W. T. C. T.	AN ALTERNATION STORY STORY	
1/ 0		1 1 21 1
COMMENTS: 4 BAGS ENVIROPLUS	USED FROM 1	5.024.0
		Decision -

MONITORING WELL NO. MMW-108B DATE INSTALLED 11-29-90

NOT TO SCALE	0 - "		5.5	
BOREHOLE DIAMETER	8.5"	SANDPACK	12.2'	
SCREEN LENGTH	10.2'	_ RISER LENGTH _	4.5'	_

SERIAL NO. WI_______PAGE OF _

ELL PROTECTOR INSTALLED: YES NO	TOMETHIC CAP	VES NO
AL. HAIRILI PM LITTER MEILS	PADLOCK NO. 2532	
IAMETER (IN): 8"	ADLOCK NO ZZZZZ	
ERMANENT BOREHOLE CASING INSTALLED: Y	es (NO)	
ATERIAL		
LAMETER (IN):		
ONITORING WELL MATERIALS/LENGTH	5	
ELL RISER: 9.5 - 2" # 304 5	5	
ELL SCREEN:		ORIENTATION:
TELL SCREEN SLOT SIZE: 00/0		ORIENTATION
SUMPER POSTS INSTALLED: YES NO	2.44	The APPHINA TOWN
MATERIAL:	LEGEND:	
TUMBER:	1 - Table 1 - Ta	51 : UMW-109
	O MONITORING WELL	21
	• BUMPER POSTS	
		70036
	4	
GRAVEL PACK INSTALLED: YES NO		N
MANTEY: 4 (100 16.) BAGS (11)		
TYPE/SIZE MEREMAC / WB-40	·	: 1:111 1:
PELTONITE SEAL INSTALLED: YES NO QUANTITY: 1 (50 16.) BAG (2') SIZE HOLE PLUG NULLETS		Instance in Side with
CONCRETE BACKFILL UTILIZED: YES NO		
QUANTITY: 1/2 BAG FOR FLUSH M	10	· A
MIX: PREMIX		
GROUT BACKFILL UTILIZED: YES NO		
		The state of property
QUANTITY: 25 BAL (6 M) MIX: 4 BAG BENTONITE GEL + 2	2 BALS PURTLAND	CEMENT
MIX: 14 BAL BENTER!		
PriiTn	INTRODUCTION	I to
The second secon		
TOTAL FLUIDS INTRODUCED DURING WELL CO	ONSTRUCTION:	
MONEY.	QUANTITI:	
DEPTH INTERVAL OF LOSS	DIPTH INTERVAL	OF LOSS
INCIDENT LIGHT CALL AND CO.		
DEFIN TRANSPORT		
COMMENTS:		1

DATE/TIME STARTED 12-4-90: 0800 COMPLETED 12-4-90: 0900 PROJECT NO 122765 PROJECT NAME IP-CHAMPAIGN, ILL:-PHASE IL-		3-3-4
PROJECT NO 122765 PROJECT NAME IP-CHAMPAIGN, ILL-PHASE IL-		SERIAL NO. WI_ PAGE 1_OF 2
	DATE/TIME STARTED 12-4-90. 0800 COMPLETED 12-4-90.	
	BORING/WELL NO. UTB-10/UMW-1/0 MAJOR TASK	5329 SUBTASK .77
INCTALLATION CREW T. BADKER / M. MARRIS GEOLOGIST M. TIFFERIS	INCTALLATION CREW T. BANKER M. MARKES GEOLOGI	

					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUN	D ST	JRFAC	E		ITEM SKETCH
ITEM	±	DEPTH FT.	±	DEPTH FT.	
TOP OF PROTECTIVE CASING PROTECTOR	-	0.0			
BOTTOM OF PROTECTIVE CASING PROTECTIVE	-	0.7			
TOP OF PERMANENT BOREHOLE CASING	NA				
BOTTOM OF PERMANENT BOREHOLE CASING	NA	-			
TOP OF CONCRETE		0.0			= PREMX.
BOTTOM OF CONCRETE		2.0			
TOP OF GROUT NA				-	
BOTTOM OF GROUT N/A		3			
TOP OF WELL RISER			1	3	
TOP OF SCREEN		10.8			HOLE-PLUG
BOTTOM OF SCREEN	1	21.6			
TOP OF PELTONITE SEAL	~	2.0			
SOTTOM OF PELTONITE SEAL	-	8.3			
TOP OF GRAVEL PACK	-	8.3			
BOTTOM OF GRAVEL PACK	-	21.0			
OP OF NATURAL CAVE-IN	_	21	-		WB-40
BOTTOM OF NATURAL CAVE-IN	-!	22.			
OP OF GROUNDWATER *	_	1.0			
TOTAL DEPTH OF BOREHOLE OPENALLY	-	22.0			SAND. CANT: IN S
	+	-	+	-	
	+	+	+		
	1	1	+	7	NOTE: NOT TO SCALE

SERIAL NO. WI

WELL PROTECTOR INSTALLED: (YES) NO		
MATERIAL ALUMINUM ALLO	LOCKING C	AP: YES NO
DIAMETER (IN): 4"	PADLOCK NO. 2532	
PERMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
MATERIAL NA		
DIAMETER (IN): N/A		
MONITORING WELL MATTILLS/LENGTH		
WELL RISER: PVC/10.3		
2 //	LCAP	
WELL SCREEN SLOT SIZE: 0.014		
BUMPER POSTS INSTALLED: YES (NO)		ORIENTATION:
MATERIAL: N/A		
NUMBER: N/A	LEGEND:	
	O MONITORING WELL	
•	• BUMPER POSTS	
GRAVEL PACK INSTALLED: (YES) NO		
QUANTITY: 5.3 x 94 - 500 7	*	Nath the state of
TYPE/SIZE WB-40 SAND -		
PELTONITE SEAL INSTALLED: (YES) NO		i i i i i i i i i i i i i i i i i i i
QUANTITY: 3×50* = 150*	- 4	
SIZE BENTONITE CHIPS (MUEFEUG)		
CONCRETE BACKFILL UTILIZED: (YES) NO	FOR PROTECUR	
QUANTITY: 15 × 80 # = 120 *		
MIX: PRIMX + H.G.		
GROUT BACKFILL UTILIZED: YES (NO		
QUANTITY: NA		
MIX: NA		
PLUII	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CO	ONSTRUCTION:	
QUANTITY: ADNE	QUANTITY: NON	1E
	TYPE:	
DEPTH INTERVAL OF LOSS	DFPTH INTERVAL O	F LOSS
COMMENTE		
COMMENTS:		· · · · · · · · · · · · · · · · · · ·
		

141	1LY-1-
THE	
	A STATE OF THE PARTY OF THE PAR
Brand Contraction in	THE RESERVE OF THE PARTY OF THE

MONITORING WELL INSTALLATION SERIAL NO. WI_PAGE 1 OF 2

DATE/TIME STARTED 12-7-90: 1000 PROJECT NO. 12765 BORING/WELL NO. UTB-17/UMW-114	CO	MPLE	red.	/) - T	7-90: 1030 P-CHAMPAIEN III DWALE TT-A
BORING/WELL NO. UTB-17/UNW-114	MAJ	IOR T	ASK	-S	3.29 SURTASK 77
INSTALLATION CREW T. BANKER / M.	h	neers		G	EDLOGIST M. JEFFERS -
					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUN	D SI	URFAC	Œ		1
	T	-	-	×	Trem skerch
ITEM	±	DEPTH FT.	±	DEPTH FT.	
TOP OF PROTECTIVE CASING PROTECTOR		0.0			
BOTTOM OF PROTECTIVE CASING PROTECTOR	_	0.7			
TOP OF PERMANENT BOREHOLE CASING	-				0,0
BOTTOM OF PERMANENT BOREHOLE CASING	NA			_	DOEMIX - 0.7
TOP OF CONCRETE	-	0.0			7.5
BOTTOM OF CONCRETE	_	1.5			
TOP OF GROUT N/A, USED HOLEPLUG	_	1.5			
BOTTOM OF GROUT N/A, USED HOLEPLUC	-	5.5			13015911/5
TOP OF WELL RISER					100
TOP OF SCREEN	-	9.1			
BOTTOM OF SCREEN	-	19.8			
TOP OF PELTONITE SEAL	-	5.5			
BOTTOM OF PELTONITE SEAL	-	7.5	-		-5.5
TOP OF GRAVEL PACK	, wast	7.5			-7.5
BOTTOM OF GRAVEL PACK	-	19.8			9.1
TOP OF NATURAL CAVE-IN NONE				-	WI TO THE REAL PROPERTY OF THE
BOTTOM OF NATURAL CAVE-IN NONE				_	
TOP OF GROUNDWATER					
TOTAL DEPTH OF BOREHOLE ORIG. 22'	_	19.8			19.8
19.8 W/ MOESPEUT-					-22.0
	1	1	1		
	1	1	+		
OMMENTS	!-				NOTE NOT TO SCALE
J. H. L.					

SERIAL NO. WI

WELL PROTECTOR INSTALLED: YES NO		
MATERIAL ALUMINUM ACCOR		IP: YES NO
DIAMETER (IN): 4	PADLOCK NO. 253	
PERMANENT BOREHOLE CASING INSTALLED:	YES NO	
MATERIAL N/A		
DIAMETER (IN): N/A		
MONITORING WELL MATERIALS/LENGTH	¥	
WELL RISER: 55/8.6'		
WELL SCREEN: 55/ 10.7' (INCL. BOTTOM	CAP	
WELL SCREEN SLOT SIZE: 0.0/"		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO		Lilling the second
MATERIAL: NA		
NUMBER: N/A	LEGEND:	
	O MONITORING WELL	
i and	• BUMPER POSTS	
,	4 DOLL DIC TOOLS	
GRAVEL PACK INSTALLED: (YES) NO		N
QUANTITY: 5×94= 470 *.		N-13
TYPE/SIZE WB-40		
PELTONITE SEAL INSTALLED: YES NO		
QUANTITY: 1×50 % = 50 %		
SIZE 14" DIA PELLETS		
CONCRETE BACKFILL UTILIZED: (YES) NO		
QUANTITY: 15 × 80 % = 120 %	4	
MIX: PREMIX + 10		
GROUT BACKFILL UTILIZED: YES NO	SED HURPLUG.	
QUANTITY: 2 x 50 % = 100 %		1.1
MIX: BENJONITE CHIFS		
7		
PLUID	INTRODUCTION	
<u>[1015</u>	INIMODOCITON	
TOTAL FLUIDS INTRODUCED DURING WELL CO		
QUANTITY: NONE	QUANTITY: NO	VE
TYPE:	TYPE:	
DEPTH INTERVAL OF LOSS	DIPTH INTERVAL O	F LOSS
COMMENTS:		
. 8	-	

7787	1
	III-
Character St. Character St.	
MICHIGAN CONTRACTOR	STATES .

MONITORING WELL INSTALLATION

SERIAL NO. WI_____PAGE__OF__

12-7-90	2.7			10	PAGE_OF
ATE/TIME STARTED 12-7-9 "	COM	PLET	ED_	10	T. P. Champaiga
ROJECT NO. 1227 6 5	PRO	JECI OD M	NA	ME	7 2 2 C CUDASY 7 7
DRING/WELL NO UTB-19 UMW-112 STALLATION CREW J. Ba-ker.	MAJ	OR T	ASK.	<u>ي</u>	Seg Subtask //
SMAILATION CREW J. BORREN		-		(GI	WELL DIAGRAM
					WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUND) SU	IRFAC	E		ITEM SKETCH
ITEM	±	DEPTH FT.	±	DEPTH FT.	
TOP OF PROTECTIVE CASING		0			/M)
BOTTOM OF PROTECTIVE CASING					Pte-mix
TOP OF PERMANENT BOREHOLE CASING		-			1.0-1.0
BOTTOM OF PERMANENT BOREHOLE CASING	-10				JAND
TOP OF CONCRETE		0		-	2.1
BOTTOM OF CONCRETE	-	1.0			Note Play
TOP OF GROUT play		2.0		-	RIS
BOTTOM OF GROUT No le pluy	-	5.0		-	
TOP OF WELL RISER	-				1/ 00 5 1
FOP OF SCREEN	-	9.9			1/4 Bertonte
BOTTOM OF SCREEN	_	50			7 : :
TOP OF PELTONITE SEAL	/	5	3		WB-40 - 9.9
SOTTOM OF PELTONITE SEAL	-	7			SAVD
TOP OF GRAVEL PACK	1	7.			
BOTTOM OF GRAVEL PACK	-	05			
TOP OF NATURAL CAVE-IN					
BOTTOM OF NATURAL CAVE-IN			-		
TOP OF GROUNDWATER					
TOTAL DEPTH OF BOREHOLE	_	20.0			20
					TOB@ 20'
					NOTE - NOT 1917 CONTE
					NOTE: NOT TO SCALE

MONITORING. WELL INSTALLATION

Borehole- UTB- 20

WELL NO. : 4MW/1/3

ROJECT NAME: IP-CHAMDAIGN

PHASE: 5336TASK: 77

DATE/TIME:

ROJECT NO. : 122765

STARTED: 12.11.91@1430 COMPLETED: 12.11.91@ 1630

NSTALLATION CREW: ORANK, THOMAS, SMITH, JANDER

DEPTHS IN REFERENCES TO GROUND SURFACE

WELL DIAGRAM

ПЕМ	+/-	DEPTH FT.		+3	TOP OF PROT.
TOP OF WELL PROTECTOR	+	3'		72.5	100 00 11.30
BOTTOM OF WELL PROTECTOR	~	2.5'		65	TOP OF GROOT
TOP OF PERMANENT BOREHOLE CASING			1		
BOTTOM OF PERMANENT BOREHOLE CASING		-			
TOP OF CONCRETE		G.S.	5' BROUT		
BOTTOM OF CONRETE		.5	5 2/10		
TOP OF GROUT	-	.5'			
BOTTOM OF GROUT	-	5.	1 , 1		
TOP OF WELL RISER	+	2.5	1	-	
TOP OF SCREEN	-	10'	3' SEAL	-5	TOP OF SLAL
BOTTOM OF SCREEN	-	20'	HOLE PLUS Y	-8'	TOP OF PACK
TOP OF PELTONITE SEAL	7	5'		-101	TOD OF POWER
BOTTOM OF PELTONITE SEAL	-	8'		-10°	TOP OF SEKEEN
TOP OF GRAVEL PACK	11-1	8'		_ 1	
BOTTOM OF GRAVEL PACK	-	20.5'	12' PACK	금	
BOTTOM OF NATURAL CAVE-IN		N/A	WB-40	-	
TOP OF NATURAL CAVE-IN		N/A	SILICA SAND		
TOP OF GROUNDWATER					
TOTAL DEPTH OF BOREHOLE	-	23'		_	
				-	
					BOTTOM OF PACK
				-20,5	BUNDAL OF PAC

COMMENTS: BACKFILLED FROM - 23' 70 20.5 WI BENTONITE HOLE TENS

GEOLOGIST SIGNATURE: Sull Gander

SERIAL NO. WI______PAGE__OF___

	PAGE TOT
WELL PROTECTOR INSTALLED: YES NO	AP: (TES NO
MATTER FALL	2 2321
DIAMETER (IN): 4" PADLOCK NO.	
PERMANENT BOREHOLE CASING INSTALLED: YES (NO)	
MATERIAL	
DIAMETER (IN):	
MONITORING WELL MATERIALS/LENGTH	
WELL RISER: 12.5' - 2" # 304 55	
WELL SCREEN:	TO THE PART OF THE
WELL SCREEN SLOT SIZE:	ORIENTATION:
BUMPER POSTS INSTALLED: (YES)	
MATERIAL: Steel - Cilled wo Sand repped w/ Premix.	Hilling
NUMBER: 3 LEGEND:	
O MONITORING WEL	r
BUMPER POSTS	The state of the s
• DUPPER POSIS	
GRAVEL PACK INSTALLED: (YES NO	N. I Dil
QUANTITY: 4.5 (100 tb) BA65 (121/2)	
TYPE/SIZE WB - 40 / SILICA SAND.	Alley
PELTONITE SEAL INSTALLED: YES NO	XXX - Perce
2 (30 fb.) BAGS (3)	
SIZE BENTONITE HOLE PLUS NUSCETS	
CONCRETE BACKFILL UTILIZED: YES (NO	
QUANTITY: YA Soot	4
MIX: Drewix	
GROUT BACKFILL UTILIZED: (YES NO	
QUANTITY: 13 GAL (5')	NT
QUANTITY: 13 DAC (S) MIX: 4 BAU BENTUNITE + 2 BAUS PORTLAND CEME.	
	3.
PLUID INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CONSTRUCTION:	
OUANTITY:	
TYPE:	
DEPTH INTERVAL OF LOSS DEPTH INTERVAL	OF LOSS
DEALU THIERAND OF BOOK	
COMMENTS:	

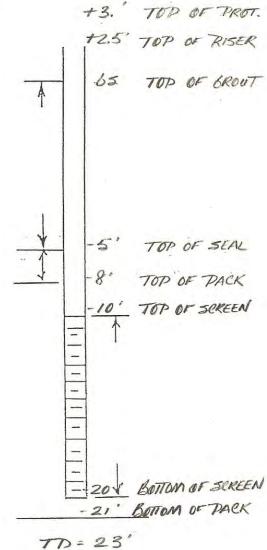
MONITORING. WELL INSTALLATION

ALABET.	IP-CHAMPAIGN		WELL	ио. :	UMW - 114
ROJECT NAME.	122765	PHASE: 5336TASK: 77	0 107	_	

PHASE: 5336TASK: 77

PHASE: 5336TASK: 77

STARTED: 12.12.91@0930COMPLETED: 12.12.91@1030


NSTALLATION CREW: CRANK, THOMAS, SMITH

DEPTHS IN REFERENCES TO GROUND SURFACE

ПЕМ	+/-	DEPTH FT.
TOP OF WELL PROTECTOR	+	3.
	-	2.5'
BOTTOM OF WELL PROTECTOR		
TOP OF PERMANENT BOREHOLE CASING		
BOTTOM OF PERMANENT BOREHOLE CASING		15
TOP OF CONCRETE		197
BOTTOM OF CONRETE	-	*5
TOP OF GROUT	-	.5'
BOTTOM OF GROUT	-	3
TOP OF WELL RISER	+	2.5
TOP OF SCREEN	-	10.
BOTTOM OF SCREEN	-	20'
TOP OF PELTONITE SEAL	-	5'
BOTTOM OF PELTONITE SEAL	-	8.
TOP OF GRAVEL PACK	-	8'
BOTTOM OF GRAVEL PACK	-	21'
BOTTOM OF NATURAL CAVE-IN		N/A
TOP OF NATURAL CAVE-IN		N/A
TOP OF GROUNDWATER		
TOTAL DEPTH OF BOREHOLE	-	23'
V v		

COMMENTS: BACKFILLED W/ HOLE DLUB FROM 23'

WELL DIAGRAM

GEOLOGIST SIGNATURE: Switt Janden

CONSTRUCTION	MATERIALS
--------------	-----------

SERIAL NO. WI_______PAGE_OF_

IL PROTECTOR INSTALLED: YES NO	LOCKING CAP	YES) NO
TOPAT STEEL / ABOVE ORGAND	PADLOCK NO. 7538	2321
AMETER (IN): 4	1100000	
RMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
ATERIAL		
AMETER (IN):		
NITORING WELL MATERIALS/LENGTH	· · ·	
17 2 - 1 301		
- concol.		
ELL SCREEN SLOT SIZE: . 010		ORIENTATION:
UMPER POSTS INSTALLED: (ES)		HETHER HE
ATERIAL: STEE!	LEGEND:	
OMBER: 3		
	O MONITORING WELL	1
	• BUMPER POSTS	
*		W Z Z
DUANTITY: 42 (100 15) BA65	13')	N: 1M
11 % (100 H) DHO3	/	The state of the s
UANTITY: 4 Z	1	** / · · · · · · · · · · · · · · · · · ·
CUANTITY: 42 (WB-40)	3 .	
TYPE/SIZE SILICA SAND / WAS TO		** - Gence
PELTONITE SEAL INSTALLED: YES NO)	** - Gence
TYPE/SIZE SILICA SAND / WAS TO)	** - Gence
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 1/2 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUS NO) 166ETS	** - Gence
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 1/2 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUS NO) 166ETS	*** - Gence
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE AGLE PLUG NO DUANTITY: YES) 166ETS	** Gence
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE AGLE PLUG NO DUANTITY: YES) 166ETS	** - Gence
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: THE MIXE YES NO) (6)ETS	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: THE MIXE YES NO) (6)ETS	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: THE MIXE YES NO) (6)ETS	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE AGLE PLUG NO DUANTITY: YES) (6)ETS	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NO DUANTITY: 12 SOOT CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 SOOT MIX: 14 BAG BENTONITE GEL +	2 BASS PORTLAND	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NO DUANTITY: 12 SOOT CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 SOOT MIX: 14 BAG BENTONITE GEL +) (6)ETS	
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB NO DUANTITY: Y2 SOOT CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: Y2 SOOT STATE BACKFILL UTILIZED: YES NO DUANTITY: Y2 SOOT GUANTITY: HAS BENTONITE SEL T	2 BASS PORTLAND IID INTRODUCTION CONSTRUCTION:	CEMENT
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUS NO DUANTITY: Y2 (50) CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: Y2 (50) WIX: Y3 (50) WIX: Y4 (50) WI	2 BASS PORTLAND IID INTRODUCTION CONSTRUCTION:	CEMENT
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: 14 BAG BENTONITE SEL T TOTAL FLUIDS INTRODUCED DURING WELL QUANTITY: NOME	2 BASS PORTLAND IID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE:	CEMENT
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') POURNTITY: 12 (50 16) BAGS (5') P	2 BASS PORTLAND IID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE:	CEMENT
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB / NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: 14 BAG BENTONITE GEL + PLU TOTAL FLUIDS INTRODUCED DURING WELL QUANTITY: NOME	2 BASS PORTLAND IID INTRODUCTION CONSTRUCTION: QUANTITY:	CEMENT
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') SIZE BENTONITE ADLE PLUB NU CONCRETE BACKFILL UTILIZED: YES NO DUANTITY: 12 FOOT WIX: 14 BAG BENTONITE SEL T TOTAL FLUIDS INTRODUCED DURING WELL QUANTITY: NONE TYPE: DEPTH INTERVAL OF LOSS	2 BASS TORTCAND IID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE: DIPTH INTERVAL	CEMENT DE LOSS
PELTONITE SEAL INSTALLED: YES NO DUANTITY: 12 (50 16) BAGS (3') POURNTITY: 12 (50 16) BAGS (5') P	2 BASS TORTCAND IID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE: DIPTH INTERVAL	CEMENT

MONITORING. WELL INSTALLATION

			WELL	NO. : UMW - 11:	5
PROJECT NAME:	IP- CHAMPAIGN				
PROJECT NO :	122765	PHASE: 533 TASK: 77			

PROJECT NO. : 122765 PHASE: 535 ASK: 11

DATE/TIME: STARTED: 12.12.91@ 1445 COMPLETED: 12.12.91@

INSTALLATION CREW: T. CRANK, T. THOMAS, D. S.MITH

DEPTHS IN REFERENCES TO GROUND SURFACE

ITEM	+/-	DEPTH FT.
	+	3'
TOP OF WELL PROTECTOR		THE STATE OF THE S
BOTTOM OF WELL PROTECTOR		
TOP OF PERMANENT BOREHOLE CASING		
BOTTOM OF PERMANENT BOREHOLE CASING		
TOP OF CONCRETE		
BOTTOM OF CONRETE		
TOP OF GROUT		65
BOTTOM OF GROUT	-	5
TOP OF WELL RISER	+	2.5
TOP OF SCREEN	-	10'
BOTTOM OF SCREEN	-	20"
TOP OF PELTONITE SEAL	-	5'
BOTTOM OF PELTONITE SEAL	-	8
TOP OF GRAVEL PACK	-	8
BOTTOM OF GRAVEL PACK	-	21'
BOTTOM OF NATURAL CAVE-IN		NIA
TOP OF NATURAL CAVE-IN	-	NIA
TOP OF GROUNDWATER		
TOTAL DEPTH OF BOREHOLE	-	23'
	-	

COMMENTS: BACKFILLED WI HOLE DLUG FROM 23'

WELL DIAGRAM

+	+3. TOP OF PROTECTURE +2.5' TOP OF RISER 65 TOP OF CROUT
	-5 TOP OF SEAL -8' TOP OF TACK -10 TOP OF SEKEEN
77	20' BOTTOM OF SEREEN -21' BOTTOM OF TACK = -23'

GEOLOGIST SIGNATURE: Sott Janes

		* **
CONCE	TRUCTION MATERIALS	SERIAL NO. WI
CONSI		PAGE OF
IL PROTECTOR INSTALLED: YES NO		
TERIAL STEEL ABOVE GROUNTS	LOCKING O	CAP: (YES NO
TERIAL STEEZ // "	PADLOCK NO. 233	21
TAMETER (IN): 4"		
RMANENT BOREHOLE CASING INSTALLED:	YES NO	, - 1
ATERIAL		
CAMETER (IN):		
ONITORING WELL MATERIALS/LENGTH		
ELL RISER: 12.5' - 2" # 304. ELL SCREEN: 10' - 2" # 304:	5.5	
SCREEN: 10' - 2" # 304:	55	
ELL SCREEN SLOT SIZE: . 010		ORIENTATION:
UMPER POSTS INSTALLED: YES NO	*	
ATERIAL: STEE(LEGEND:	
UMBER:		
	O MONITORING WE	
	• BUMPER POSTS	
		1 JMW-115
The Committee of the Co		1 4 2
RAVEL PACK INSTALLED: YES NO.		No.
DUANTITY: 2 (100 th.) BA65 (13')	All	
TYPE/SIZE SILIEA SAND / WB-	40	F-118
THE THE THE YES NO		XXX - Fence
11 120 10 1 2402 12	<u> </u>	location - 78 East of F
SIZE BENTONITE HOLE DEUG NUG	6E75	40'. North of Fa
CONCRETE BACKFILL UTILIZED: YES I	4O	
QUANTITY:	-	
MIX: I BAL DREMIX		
GROUT BACKFILL UTILIZED: YES NO		
GROOT BACKFILL OTTER		Control = 1
QUANTITY: 15 GAL MIX: "4 BAG BENTONITE GEL +	2 BAGS PORTLAND	CEMENT
MIX: 4 GAO GE		
PI	LUID INTRODUCTION	8
/5-		
TOTAL FLUIDS INTRODUCED DURING WEL	L CONSTRUCTION:	
Maria	Onuration-	
QUANTITY: NONG	2000 2	

COMMENTS:

SERIAL NO.	WI	
PAGE OF		

NOTE: NOT ITO SCALE

MB TO	מיף ס	SK	5	336 SUBTASK 77	
D SUI		2		13'5"	
±	DEPTH FT.	±	DEPTH FT.		
					-
				1 2000	7
1		_		TOP OF KIZER 1/2	7
IG .					
-		-	-	TOP OF SEAL 5	- 1
-	-	-	-		
-	1'	_	-		_
-	5	_	_	TOP OF PACK 8'	_
-	.5	1		1.	=
-	10	1	-		11
-	20	1	-		
-	5	0	1		ū.
-	8	1	1.		
-	-	1	-		
-	-	1	-		
	NI	9	-		
-	NI	9	-		
	-	1	+	AND DE SOUTH 2	0
	D SUI	MAJOR TA 5 , JAN D SURFACE ± GG 75 - 1' - 1' - 5' - 10 - 20 - 8 - 8 - 8	MAJOR TASK S	MAJOR TASK _ 5 S	D SURFACE # # # # # # # # #

COMMENTS

SERIAL NO. WI______PAGE OF

THE THE THE THE VES NO		
ELL PROTECTOR INSTALLED: YES NO	TOCKING CAP	YES NO
ATERIAL ALUMINUM FLUSH	PADLOCK NO.	2321
LAMETER (IN): 8		
ERMANENT BOREHOLE CASING INSTALLED:	YES NO	
ATERIAL		
IAMETER (IN):		
ONITORING WELL MATERIALS/LENGTH		
10 - 304 55 - 2	-	
TELL SCREEN: 10'- 504 35 - 2	4	
ELL SCREEN SLOT SIZE:		ORIENTATION:
	7-34	
SUMPER POSTS INSTALLED: YES (NO)	**	1002
MATERIAL:	LEGEND:	
IUMBER:		
	O MONITORING WELL	HANNAH TELEFOR
	• BUMPER POSTS	
GRAVEL PACK INSTALLED: (YES) NO	('2')	N
12 (100 10) BADS (2)	
TYPE/SIZE WB - 40 SILICA SAND		
PELTONITE SEAL INSTALLED: YES NO QUANTITY: 12 BAGS (50 Hb.) (3	1)	
QUANTITY: 17 BAGS (30)	11.18	
1-100000	06/3/	
QUANTITY: 12 SIZE BENTONITE HOLE PLUS (NUL)	DETS	
PACKETTI TETTIZED: (YES) NO		
PACKETTI TETTIZED: (YES) NO		
CONCRETE BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:		MENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:		MENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:		RENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLANTS CEN	MENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: WES NO QUANTITY: 12 BAL (4') MIX: MAN BENTONITE GEL + 2 E	BAGS PORTLAND CEN	MENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: WES NO QUANTITY: 12 GAL (4') MIX: MAG BENTONITE GEL + 2 G	BALS PORTLAND CENTILLIANS OF THE STRUCTION OF THE STRUCTURE OF THE STRUCTU	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAUS PORTLAND CEAU JID INTRODUCTION CONSTRUCTION: QUANTITY:	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLAND CENTILL INTRODUCTION CONSTRUCTION: QUANTITY:	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLAND CENTILL INTRODUCTION CONSTRUCTION: QUANTITY:	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLAND CENTILL INTRODUCTION CONSTRUCTION: QUANTITY:	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLAWN CENTILL OF THE INTERVAL OF	OF LOSS
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY:	BAGS PORTLAWN CENTILL OF THE INTERVAL OF	OF LOSS

Consideration of the last of t	of bed Speed and
6 10	一大
THE PERSON NAMED IN	STATE OF THE PARTY OF
April 1 Section	THE PERSON NAMED IN

MONITORING WELL INSTALLATION

SERIAL NO. WI______PAGE__OF__

ROJECT NO. 122765 ORING/WELL NO. UTB-11/UMW/401	PRO	JECT	NA	ME	329	Chi	ASK .			_
NETALLATION CREW HEBEL / TOED	75	-	A DAC	G	MIGGIST	5	JAN	DEI	0	-
A DATION CREW TO THE TOTAL OF T	- 60		-			WELI	DIA	GRAM		
DEPTHS IN REFERENCE TO GROUND	CI	IDEAC	·E		1			4		244722
DEPENS IN OUR ENGINEE TO GROUND	1	-	-	T-	TTEM	-	41	SKE	CH.	
ITEM	±	DEPTH	±	DEPTH FT.					<u>r. </u>	
TOP OF PROTECTIVE CASING		GR								
BOTTOM OF PROTECTIVE CASING		.7	1		TOPOF	GROW	7		7	= 6K
TOP OF PERMANENT BOREHOLE CASING	-	.7	1			!		#=	===	
BOTTOM OF PERMANENT BOREHOLE CASING	-	250	0'				1=	#=		
TOP OF CONCRETE		GR						#=		==:
BOTTOM OF CONCRETE	-	1.5	1				ļ	H		
TOP OF GROUT		GR					-			
BOTTOM OF GROUT	-	123	1							
TOP OF WELL RISER	-	-4	1							
TOP OF SCREEN	-	145	1	*			,			
BOTTOM OF SCREEN	-	175	.1							
TOP OF PELTONITE SEAL	-	123	1.							
BOTTOM OF PELTONITE SEAL	-	138	5		TOP OF	SEAL				-123
TOP OF GRAVEL PACK	2	138.	51							1
BOTTOM OF GRAVEL PACK	_	175			TOP OF C	RANEL				-13
TOP OF NATURAL CAVE-IN		NA			70P OF 3	SCREEN		1 3		-14
BOTTOM OF NATURAL CAVE-IN		NA						1,11,1		
TOP OF GROUNDWATER						Τ.,	-	A PARTIE		
TOTAL DEPTH OF BOREHOLE		175	01		BOTTONI	OFFICE	ļ	慧		
					\$	RAVEL	F	1		14 (1)
	-									
								1.		
			2							rege Source
								1		

CONSTRUCTION MATERIALS SERIAL NO. WI_____ PAGE_OF___

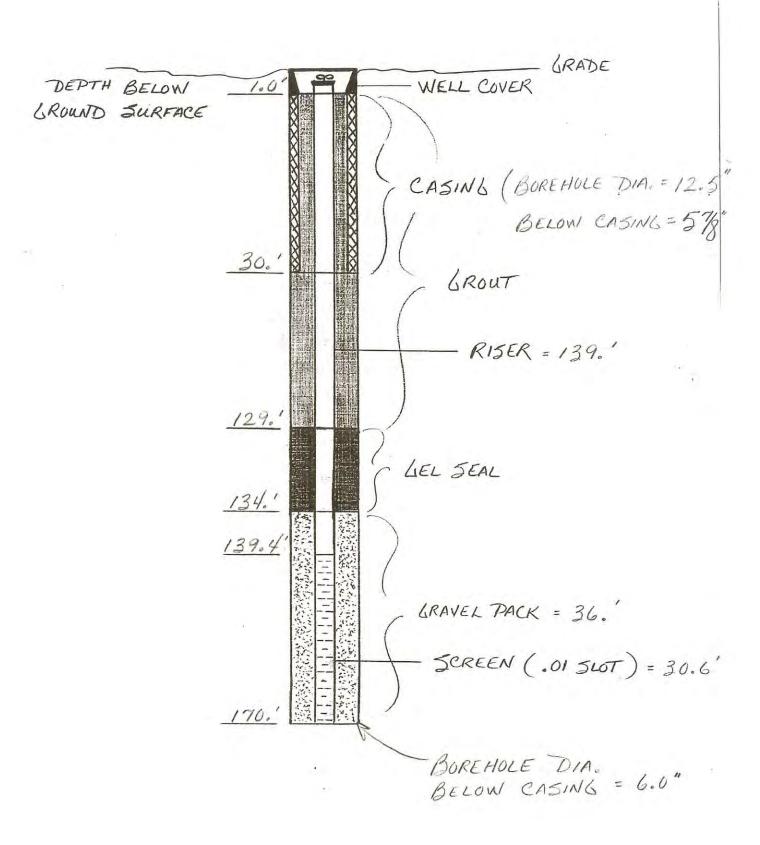
DIAMETER (IN):	PADLOCK NO. 2532	
PERMANENT BOREHOLE CASING INSTALLED: (VEC NO	
MATERIAL SEE CASING LOG	TLS NO	
DIAMETER (IN):		
MONITORING WELL MATERIALS/LENGTH WELL RISER: 14 - 2" × 10', 1 - WELL SCREEN: 6 - 2" × 5' = 30	2" x5' = 145.0'	PVC
WELL SCREEN SLOT SIZE: _ , 010		ORIENTATION:
	T A s	ORIENTATION:
BUMPER POSTS INSTALLED: YES (NO	4	
MATERIAL:	LEGEND:	
NUMBER:	PEGEND:	
	O MONITORING WELL	
	• BUMPER POSTS	
GRAVEL PACK INSTALLED: (YES NO BALS)	1.0	N. C.
TYPE/SIZE PEA GRAVEL		
PELTONITE SEAL INSTALLED: (YES) NO QUANTITY: 12 BAL GEL 30 BAL I	H ₂ 0	,
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: 4 - 616.865		
GROUT BACKFILL UTILIZED: (YES) NO QUANTITY: 12 13465 GEL 8 BAG MIX: 130 GAL.	15 CEMENT / 90 61	AL. H ₂ 0
PLUID	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CO	ONSTRUCTION:	
QUANTITY:		
TYPE:		
DEPTH INTERVAL OF LOSS		
		4

PROJECT # 122765 DRILLER HEBEL

MONITOR WELL # UMW-401 INSTALLED 12-4-90

DEPTH BELOW	0.7'	WELL COVER
GROUND SURFACE	X	
	Ŷ	
	X E	CASUAL CROTHUS TO - 15"
	Š	CASING (BOREHULE DIA. = 8.5")
		DELOW CASING = 2 8
	25.	
		GROUT
		RISER = 139.6'
	123.	
		LIEL SEAL
	138.5'	
	145.1	
	(A)	
		GRAVEL PACK = 36.5'
		SCREEN (.01 SLOT) = 30."
	175.	

PRO ZMAJ	TEC	r NB	ME	3-901 I.F	0	ham o	7	
CAMS	OR T						219	7
DIT	~	ASK	5	329	SUI	BTASK .	77	
	E		GI	COLOGIST_	5.	JANI	DER	
					WI	ELL DIAG	RAM	
ID SI	URFAC	Œ		Irre	M		SKETC	H
±	DEPTH	<u>+</u>	DEPTH FT.					
	6R							
-	-7	1						
-	.5	1		70	P OF	BROUT		=== 1.2
G -	30							_,
	GR							
-	100				-1			
-	1.0	'			$\dagger =$			
-	129.	"						
-	04	1		70	D. OF	RE1		- 129
-	139.	4'						
-	170.	0'			N			- 134
-	129.	1		701	OF OF	ORAVEC		
-	134.	1		TOP	OF 50	CREEN		
-	134.	1						
-	170.	'						
-	170.	,			1		挂	
-	174.	5'					1=1=	
				TOP OF	NATU	RAL AVE-INT		
-	174.	5'		70	TAL T	DEPTH		
	±	± EEE	6R7'5'5'6' - 1.0' - 1.0' - 129.' - 139.4' - 170.0' - 129.' - 134.' - 170.' - 170.'	# ### # ##############################	######################################	# ### ################################	# HE	# EEE


COMMENTS * BOREHOLE SQUEEZED OFF DURING
FIRST WELL INSTALLATION ATTEMPT. REEMED
OUT HOLE BETWEEN 30' & 175'. REINSTALLED WELL.

SERIAL NO. WI_____ PAGE_OF__

WELL PROTECTOR INSTALLED: YES NO	
MATERIAL ALUMINUM	LOCKING CAP: YES NO
DIAMETER (IN):PADI	OCK NO. 2532
PERMANENT BOREHOLE CASING INSTALLED: YES	NO
MATERIAL PVC	
DIAMETER (IN): 6	
MONITORING WELL, MATERIALS/LENGTH	01/2
MONITORING WELL MATERIALS/LENGTH WELL RISER: $\frac{14 - 2" \times 10.1}{2" \times 5} = 141.4$	PVC
WELL SCREEN: 9	PVC
WELL SCREEN SLOT SIZE:	ORIENTATION:
BUMPER POSTS INSTALLED: YES NO	
MATERIAL:	
NUMBER:L	EGEND:
	MONTENOD THE FIELD
	MONITORING WELL
a Milata	BUMPER POSTS
GRAVEL PACK INSTALLED: (YES NO	
QUANTITY: 9 BAGS - 5016.	
TYPE/SIZE PEA GRAVEL	
BENTUNITE SEAL INSTALLED: (YES NO	<u> </u>
QUANTITY: 25 16, BENT. BEL / 30 61	L. WATER
SIZE	
CONCRETE BACKFILL UTILIZED: YES NO	4.6
QUANTITY:	
MIX:	
GROUT BACKFILL UTILIZED: (YES NO	
OVERNOUS 150 AM.	
MIX: 1.5 BAGS BEL / 8 BAGS CO	EMENTT / 90 GAL. WATER
MA: The second s	
PLUID INT	RODUCTION
CONCERN CONCER	HOPLON.
TOTAL FLUIDS INTRODUCED DURING WELL CONSTR	OULD MINISTRY
QUANTITY:	WANTE TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO
TYPE:	DEDUM INTERNAL OF LOSS
DEPTH INTERVAL OF LOSS	DIFTH INTERVAL V. 1000
COMMENTS:	<u> </u>

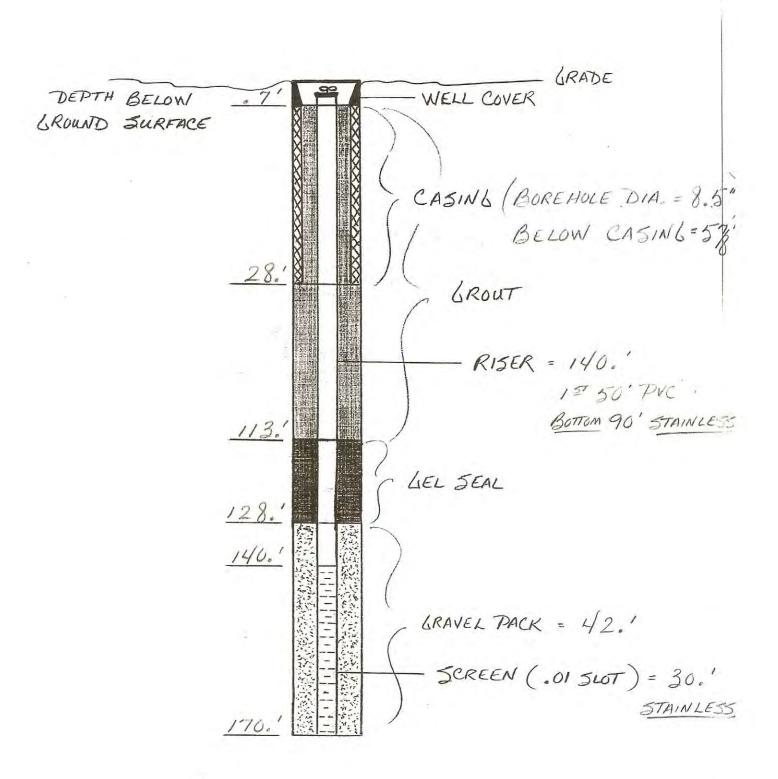
PROJECT # 122765 DRILLER HEBEL

MONITOR WELL # UMW-402 INSTALLED 12-3-90

7787	1
Carried Colors and Col	
	STREET.

MONITORING	G WEL	LIN	ST	ALL	ATION SERIAL NO. WI
DATE/TIME STARTED 12-7-90@13 PROJECT NO. 122765	PRO	JECT	NA	ME_	I.P. Champaign
BORING/WELL NO. <u>UTB-13/UMW</u> INCTALLATION CREW <u>HEBEL</u> / 7	403maj 0E 157	OR T	ASK	GE	OLOGIST S. JANDER WELL DIAGRAM
DEPTHS IN REFERENCE TO GE	ROUND ST	JRFAC	E		ITEM SKETCH
ITEM	<u>±</u>	PT.	±	FT.	

DEPTHS IN REFERENCE TO GROUND) 50	JRPAC	عام		TTEM SKETCH	-
ITEM	<u>±</u>	DEPTH FT.	±	DEPTH FT.		
TOP OF PROTECTIVE CASING		GR				
BOTTOM OF PROTECTIVE CASING	-	-7	1		TOP OF KROUT.	: ,
TOP OF PERMANENT BOREHOLE CASING	-	-7	1		TOP OF RISER	-0
BOTTOM OF PERMANENT BOREHOLE CASING	-	28.	'			
TOP OF CONCRETE		BR				
BOTTOM OF CONCRETE		100	1.			
TOP OF GROUT		GR				
BOTTOM OF GROUT	-	113.	1			
TOP OF WELL RISER	-	.4	,,,			
TOP OF SCREEN	***	140.	1			
BOTTOM OF SCREEN	-	170.	1			
TOP OF PESTONITE SEAL	-	113.	1		TOP OF SEAL	-11
BOTTOM OF PELTONITE SEAL		128.	,			
TOP OF GRAVEL PACK	-	128.	,		TOP OF KRAVEL	-12
BOTTOM OF GRAVEL PACK	-	170.	1		TOP OF SERECH	-14
TOP OF NATURAL CAVE-IN		NA				
BOTTOM OF NATURAL CAVE-IN		NA				
TOP OF GROUNDWATER						
TOTAL DEPTH OF BOREHOLE	-	170.	1		BOTTOM OF SEREN TO	17
		3				
					NOTE: NOT TO SCALE	


ASSEMBLED : 30' STAINLESS SCREEN : 90' " RISER 50' PVC RISER

170.0' WELL MAT.

SERIAL NO. WI______ PAGE_OF__

WELL PROTECTOR INSTALLED: (YES) NO	_	·
MATERIAL ALUMINUM FLUSH MOUNT	LOCKING CAP:	YES NO
DIAMETER (IN):PAI	DLOCK NO. 2532	
PERMANENT BOREHOLE CASING INSTALLED: (YES	NO	
MATERIAL SEE CASING LOG		
DIAMETER (IN): 6"		
MONITORING WELL MATERIALS/LENGTH	e ta	
WELL RISER: 90' - STAINLESS, 50'-7	PVC	-,
WELL SCREEN: 30'- STAINLESS		
WELL SCREEN SLOT SIZE: 0010		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO .	F	
MATERIAL:	1	
NUMBER:	LEGEND:	
	O MONITORING WELL	
	BUMPER POSTS	
-1		
,	<u> </u>	
GRAVEL PACK INSTALLED: YES NO QUANTITY: 5 - 50/6. BA65 / 2 -	100 H. BAGS	N
TYPE/SIZE TEA GRAVEL / WB	-40	
BENTONITE PELTONITE SEAL INSTALLED: (YES) NO	<u>.</u>	
QUANTITY: 13 BAG DEL / 30 GAL. H	20	
SIZE		
CONCRETE BACKFILL UTILIZED: YES NO		
QUANTITY: 4 - 6016. BAGS		
MIX: PREMIX		
QUANTITY: 2/3 BAG LEL 4 BAGS	CEMENT / 60 GA	L. H20
MIX:		
FLUID IN	TRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CONST	RUCTION:	
QUANTITY:	QUANTITY:	-
TYPE:		
DEPTH INTERVAL OF LOSS		
COMMENTS:	,	
		11.1

MONITOR WELL # UMW-403 INSTALLED 12-7-90

MONITORING WELL INSTALLATION	SERIAL NO. WI
DATE/TIME STARTED 12-6-90: 1100 COMPLETED 12-6-90: 114 PROJECT A 122765 PROJECT NAME IP CHAMPA BORING/WELL NO. UT8-14A / UPZ-101 MAJOR TASK 53:	IEN, ILL - PAINSE IL-A
INSTALLATION CREW T. BANKER M. MARRIS GEOLOGIST	M. SEFFERES - WELL DIAGRAM
DEPTHS IN REFERENCE TO GROUND SURFACE	M SKETCH
ITEM + 0 8 10	1 20

...

ITEM	<u>±</u>	101-210	100-201	UPZ:30	7.30
TOP OF PROTECTIVE CASING PROTECTOR	,	0.0	0.0	0.0	DPV III III
BOTTOM OF PROTECTIVE CASING PROTECTOR	_	0.7	0.7	0.7	
TOP OF PERMANENT BOREHOLE CASING N	4-	F		-	
BOTTOM OF PERMANENT BOREHOLE CASING	NA			_	
TOP OF CONCRETE	_				poźwi*
BOTTOM OF CONCRETE	-				
TOP OF GROUT NA					interprise }
BOTTOM OF GROUT N/A		-			
TOP OF WELL RISER	_				NB-40
OP OF SCREEN	_	5.0	13.0	-220	
BOTTOM OF SCREEN	7			-250	MOSPLOG SING
OP OF PELTONITE SEAL	-	2.0		-16.0	
SOTTOM OF PELTONITE SEAL	_	40		-21.0	1840
OP OF GRAVEL PACK	~	4.0	-12.0	-21.0	Mb
OTTOM OF GRAVEL PACK		8.0			Musture S
OP OF NATURAL CAVE-IN NA		_	-		
SOTTOM OF NATURAL CAVE-IN N/A			_		1000
OP OF GROUNDWATER	_	6.0-			WB /)
OTAL DEPTH OF BOREHOLE			>	25.0	
A.			-		
	1				NOTE: NOT TO SCA
MMENTS					

SERIAL NO. WI

WELL PROTECTOR INSTALLED: YES NO	
MATERIAL	LOCKING CAP: YES NO
DIAMETER (IN):	PADLOCK NO.
PERMANENT BOREHOLE CASING INSTALLE	TD. VEC NO
MATERIAL	
DIAMETER (IN): NA	
MONITORING WELL MATERIALS/LENGTH	
WELL RISER: V/391	
WELL SCREEN: PVC / 9 (INCL C	CAP.)
WELL SCREEN SLOT SIZE: 0.01"	ORIENTATION
DIMPED DOCTO THOMALLED - WEG NO	
BUMPER POSTS INSTALLED: YES NO	
MATERIAL: N/A	1:11:11:11:11:11:11:11:11:11:11:11:11:1
NUMBER:NA	LEGEND:
	O MONITORING WELL
I.e.	BUMPER POSTS
	BOFFER POSIS
GRAVEL PACK INSTALLED: YES NO	
QUANTITY: 5 x 94 x = 4.70	× N
TYPE/SIZE WB-40 SIND	
QUANTITY: 5.5 Y 50 × = 275 SIZE BLATONS CHIPS (HOL	*
SIZE BENJONE BILLS (AVE	27-100
CONCRETE BACKFILL UTILIZED: (YES	in FOR PROTECTOR
QUANTITY:	
MIX:	
GROUT BACKFILL UTILIZED: YES NO	3
QUANTITY: MA	
MIX:- NA	
P	LUID INTRODUCTION
A STATE OF THE STA	
TOTAL FLUIDS INTRODUCED DURING WEL	L CONSTRUCTION:
	QUANTITY:
	TYPE:
DEPTH INTERVAL OF LOSS	DIPTH INTERVAL OF LOSS
COMMENTS:	

MONITORING. WELL INSTALLATION

		RFACE		L	#20	2 -5'TOP OF SE
ПЕМ	+/-	DEPTH FT.		#	302	目-10'BOTTOM OF:
TOP OF WELL PROTECTOR			F			- 11/2'37' SANT
BOTTOM OF WELL PROTECTOR			*		1 11-1	-18% POP BF =
TOP OF PERMANENT BOREHOLE CASING				T		-1912 TUP OF PA
OTTOM OF PERMANENT BOREHOLE CASING					TANK B	- 20' TOP OF SCRE
TOP OF CONCRETE					THE PROPERTY OF THE PARTY.	
BOTTOM OF CONRETE						- 5 11 11 10 00 0
TOP OF GROUT						-25% Bottom of PA
BOTTOM OF GROUT				1	-	25 1' NOVE TE
TOP OF WELL RISER				+	-	262 7 13: SANT
TOP OF SCREEN			-	-	-:	28' TOP OF SEL
BOTTOM OF SCREEN				1	-	29' TOP OF PACE
TOP OF PELTONITE SEAL	14.		-		1 1	70.
BOTTOM OF PELTONITE SEAL			-			30 TOP OF SCHEE
TOP OF GRAVEL PACK					-	i
BOTTOM OF GRAVEL PACK			-			
BOTTOM OF NATURAL CAVE-IN			-		-	
TOP OF NATURAL CAVE-IN			-			
TOP OF GROUNDWATER			-			
TOTAL DEPTH OF BOREHOLE			-		-	
					-	
	1	1			1-1-3	BOTTOM OF SER

GEOLOGIST SIGNATURE: Swoth Gomes

SERIAL NO. WI_______PAGE_LOF_

		1		
ATERIAL ALUMINUM FLUSH MOUNT	TOCKI	NG CAP: Y	ES (NO)	
TERIAL PLUMINUM FLUSH MICHIE	ADLOCK NO. 2	321		
AMETER (IN):_0				
ERMANENT BOREHOLE CASING INSTALLED: YE	es (no)	3		
ATERIAL				
AMETER (IN):				
ONITORING WELL MATERIALS/LENGTH ELL RISER: 55' - 1" PVC				
ELL RISER: JA' - 1" DVC				
ELL SCREEN: 15'-1" DVC			ORIENTATI	ON:
ELL SCREEN SLOT SIZE: 0010		-		11
UMPER POSTS INSTALLED: YES (NO)	4 t	#	AXX	
ATERIAL:	LEGEND:			X
UMBER:				· · · · · · · · · · · · · · · · · · ·
	O MONITORING	1		4
	• BUMPER POS	STS :		1
\$r				1
		. =		
GRAVEL PACK INSTALLED: YES NO	10		N: !!!	
- Q (100 th.) 13A65		- =		
TYPE/SIZE SILICA SAND / WB-40		<u>i</u>	1 ::111	
		4	HIT - RRT	rucks.
PELTONITE SEAL INSTALLED: (YES) NO		.~	XX - Fenc	0
QUANTITY: 3 (50 Hb.) BAUS			007-	102, 202,302 100
SIZE NUGLETS (HOLE PLUB)		-		
		10	scation - 9	North of Fen
CONCRETE BACKFILL UTILIZED: YES NO			140'	from NW corr of Fencing.
QUANTITY: 1 (80 Hb) BAG		7		of fencing.
MIX: DREMIX				
GROUT BACKFILL UTILIZED: YES NO				
QUANTITY:				
MIX:				
2000	TAMBOOLICTYON	4		
PLUID	INTRODUCTION			
TOTAL FLUIDS INTRODUCED DURING WELL COM	NSTRUCTION:			
QUANTITY: None	QUANTITY:_	_		
	TYPE:	-		
TYPE:	DEDTH THUE	ERVAL OF L	oss	
DEPTH INTERVAL OF LOSS	DIATH ANAL			
COMMENTS:				
COMMENTS:				

DE MONITORING V	VEL	LI	TSV	AL	LATION	SERIA	AL NO. 1 OF 2	
12/-90: 1/20					1 0- 1-	7.00		
DATE/TIME STARTED 12-6-90: 1630 PROJECT NO. 132765	CO	MPLE	TED.	12-	7 P- CHAMON	160	·- DAIL	c Ttin
BORING/WELL NO. UTB-16/UPZ 103, 203	PRO	OR	T NA	ME_	(5)	9 SIIP	TASK	7
NCTALLATION CREW J. BANKER / MAR	c H	rees	5	- 0	EOLOGIST	M. JEI	FERIFS	_
				_	. Solar Falsa		LL DIAG	
DEPTHS IN REFERENCE TO GROUN	D ST	JRFA	CE		rri			<u> </u>
ITEM	±	162-	502-24	DEPTH		M :		SIGNAL 1.
TOP OF PROTECTIVE CASING PROTECTOR	-	0.0	6.0	1		1		
BOTTOM OF PROTECTIVE CASING PARKER	1_	0.0	0.7		1 ====		1/1	
TOP OF PERMANENT BOREHOLE CASING	MA	+		-			<u> </u>	E
BOTTOM OF PERMANENT BOREHOLE CASING	MA	-		-				TAKE
TOP OF CONCRETE		0.0				prepar		
BOTTOM OF CONCRETE	-	2.0				1		
TOP OF GROUT NA		_				DELLETS		
BOTTOM OF GROUT N/A								
TOP OF WELL RISER								
TOP OF SCREEN	-	6.5	12.0			BIFO	开	
BOTTOM OF SCREEN	-	9.5	15.0				¥ ;	
TOP OF PELTONITE SEAL	-	2,0	2.5			Ŭ.		
BOTTOM OF PELTONITE SEAL	-	4.5	11.5				4	
TOP OF GRAVEL PACK	-	4.5	11.5			LINGPLU	£ {.	
SOTTOM OF GRAVEL PACK		9.5	-15.0			Home		
OP OF NATURAL CAVE-IN NONE	MA			_		-R-40-	71:	丰丰
BOTTOM OF NATURAL CAVE—IN MONE	N/A-					V.,	-2	丰丰
COP OF GROUNDWATER FIRST ENCOUNTER DURING DRILLING	2	81				EPEU6	T Total	
POTAL DEPTH OF BOREHOLE	_	18.0				No.	->-	-

NOTE: NOT ITO SCALE

COMMENTS LOWER 3' BACKFILLED WITH HOLEPLUG

SERIAL NO. WI

WELL PROTECTOR INSTALLED: YES NO		
MATERIAL ACUMINUM ALLOT	LOCK	ING CAP: YES NO
DIAMETER (IN): 4	PADLOCK NO.	2.5.50
PERMANENT BOREHOLE CASING INSTALLED:	YES (NO)	
MATERIAL		
DIAMETER (IN): N/A		
MONITORING WELL MATERIALS/LENGTH		
WELL RISER: PVC		
WELL SCREEN: PVC/6		
WELL SCREEN SLOT SIZE: 0.0/		ORIENTATION:
BUMPER POSTS INSTALLED: YES NO		
MATERIAL: N/A		
NUMBER: NA	LEGEND:	
	O MONITORIN	G WELL
	BUMPER PO	
	• BUMPER PO	°'''
CONVET DACK INCRALLED. (VEC.) NO		
GRAVILLE FACE THOTALLISTS. (112) NO		
QUANTITY: 3.5×94% = 3.30 %		N
TYPE/SIZE WB-40 SAND		
		1
PELTONITE SEAL INSTALLED: (YES) NO		
QUANTITY: 3.73 X 50 x = 190 *		-
SIZE BLATONITE CHIPS (HUE PLUS		_
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: 2 x 80% = 160 %	FOR PROTECT	TOR
MIX: PREMX 4th O		
		- the second to second
GROUT BACKFILL UTILIZED: YES NO	BUJ LUNER	3 BACKFLICED W/ HOCEPIU
QUANTITY: 2.5 x 50 % = 125 *		
MIX: BENTONITE OHIFS		_
PLUIT	INTRODUCTION	
TOTAL FLUIDS INTRODUCED DURING WELL CO	ONSTRUCTION:	
QUANTITY: ADNIE	QUANTITY:	NONE
TYPE:	TYPE:	
DEPTH INTERVAL OF LOSS	DIPTH INTE	RVAL OF LOSS
COMMENTS:		

MONITORING. WELL INSTALLATION

ROJECT NAME: TP - CHAMDAIGA ROJECT NO.: 122765 ATE/TIME: STARTED: 12.1491 (ISTALLATION CREW: T. CRAMK, EPTHS IN REFERENCES TO GROUN	0154. T.THE	mens, Di	D: 12.14.9	WELL	DIAGRAM
ITEM	+/-	DEPTH FT.		20	
TOP OF WELL PROTECTOR			}		65 TOP OF KISE
BOTTOM OF WELL PROTECTOR					-Z'TOP OF SEA
TOP OF PERMANENT BOREHOLE CASING			1.	1	-4' TOD OF PACK
BOTTOM OF PERMANENT BOREHOLE CASING			4		= -5 TOP OF SEREE
TOP OF CONCRETE			4		
BOTTOM OF CONRETE					= -10 BOTTOM OF SCHOOL
TOP OF GROUT		• •			-11 BOTTOM OF THE
. BOTTOM OF GROUT			-		-12 BOTTOM OF SEA
TOP OF WELL RISER	-		-	4	(4' SAND FILL)
TOP OF SCREEN	-			1	-16' TOP OF SEAL
BOTTOM OF SCREEN			-	-4-	-17' TOP OF PACK
TOP OF PELTONITE SEAL	1		-		-18' TOP OF SCREEN
BOTTOM OF PELTONITE SEAL	-		-	F	= 1
TOP OF GRAVEL PACK	_		-	-	_
BOTTOM OF GRAVEL PACK	-		4	-	=
BOTTOM OF NATURAL CAVE-IN				-	-
TOP OF NATURAL CAVE-IN				-	
TOP OF GROUNDWATER	-		-	-	
TOTAL DEPTH OF BOREHOLE				1	
					23' BOTTOM OF SCREEN
			-	_	- 24' BOTTOM OF PACK
					-25' BOTTOM OF SEAL
COMMENTS:			_	TD	-28' BOTTOM OF SAND

CONSTRUCTION	MATERIALS
-	

VEC NO		
IL PROTECTOR INSTALLED: (YES NO	LOCKING CAP	YES NO
TERIAL STEEL ABOVE GROUND	PADLOCK NO. 2321	
AMETER (IN): 4"	PADIOCK NO.	
AMELIA (20)	VEC (NO	
RMANENT BOREHOLE CASING INSTALLED:	IES (NO	*
TERIAL		
AMETER (IN):		
	20	
NITORING WELL MATERIALS/LENGTH		
37 / 1941		
TE CODEEN.		
ELL SCREEN SLOT SIZE: .010		ORIENTATION:
UMPER POSTS INSTALLED: YES NO		
ATERIAL: STEEL		1111911
OMBER:3	LEGEND:	UP 100, 109
UMBER:	O MONITORING WELL	111919111
	BOMPER POSTS	
	BUMPER POSIS	
		0.14
RAVEL PACK INSTALLED: YES NO	1 2 (100 Hb.) BABS	N. A.
DUANTITY: 8 (100Hb.) BA65	2 1100 10.1 CV	
DUANTITY: 8 (10016.) BAGS TYPE/SIZE SUICA SAND/WB-40	SILIEN SAND IMPS 3	
TPE/SIAD		lecation: 80' North of E
PELTONITE SEAL INSTALLED: (YES) NO		16 WEST OF N
3 (30 MD.) DAUS		: Bldg Corn
THE HOLE PLUG NUMBETS		**
SIZE HOLE PLUE NUIGE 13		** *
SIZE HOLE PLUE NUIGE 13	0	
CONCRETE BACKFILL UTILIZED: YES NO	0	
CONCRETE BACKFILL UTILIZED: YES NO	0	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5' MIX: PREMIX	0	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: M BAB BENTONTE BEL +		
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 14 BAC BENTONITE BEL +	2 BASS PORTLAND	
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2' MIX: 14 BAS BENTONITE SEL +	2 BASS PORTLAND	CEMENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2' MIX: 14 BAG BENTONITE BEL + TOTAL FLUIDS INTRODUCED DURING WELL	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY:	CEMENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 4 BAS BENTONITE SEL + TOTAL FLUIDS INTRODUCED DURING WELL OUANTITY: Noric	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY:	CEMENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 4 BAS BENTONITE SEL + TOTAL FLUIDS INTRODUCED DURING WELL OUANTITY: Noric	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY:	CEMENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2' MIX: 14 BAG BENTONITE BEL + TOTAL FLUIDS INTRODUCED DURING WELL	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY:	CEMENT
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 14 BAC BENTONITE BEL + TOTAL FLUIDS INTRODUCED DURING WELL QUANTITY: North TYPE: DEPTH INTERVAL OF LOSS	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE: DIPTH INTERVAL	CEMENT OF LOSS
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 14 BAC BENTONITE BEL + TOTAL FLUIDS INTRODUCED DURING WELL QUANTITY: North TYPE: DEPTH INTERVAL OF LOSS	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE: DIPTH INTERVAL	CEMENT OF LOSS
CONCRETE BACKFILL UTILIZED: YES NO QUANTITY: .5 MIX: PREMIX GROUT BACKFILL UTILIZED: YES NO QUANTITY: 2 MIX: 4 BAS BENTONITE SEL + TOTAL FLUIDS INTRODUCED DURING WELL OUANTITY: Noric	2 BASS PORTLAND UID INTRODUCTION CONSTRUCTION: QUANTITY: TYPE: DIPTH INTERVAL	CEMENT OF LOSS

MONITORING. WELL INSTALLATION

EPTHS IN REFERENCES TO GROUND		nas, 5.Ja			DIAGRAM 5 195
ITEM	+/-	DEPTH FT.		F	- 12.131010F
TOP OF WELL PROTECTOR				J	1 +25 TOP OF 7
BOTTOM OF WELL PROTECTOR					-3 TOP OF S
TOP OF PERMANENT BOREHOLE CASING				1	-4 TOP OF 7
OTTOM OF PERMANENT BOREHOLE CASING					-5 TOP OF S
TOP OF CONCRETE					= 3 /6/5
BOTTOM OF CONRETE					
TOP OF GROUT "			1		- 10' BOTTOM OF
BOTTOM OF GROUT				1	-10/2' BOTTOM OF
TOP OF WELL RISER				+	(2' of SA
TOP OF SCREEN			-	1	-13' TOP OF 3
BOTTOM OF SCREEN			-	4	-14' TOP OF THE
TOP OF PELTONITE SEAL			4		-15' TOP OF 50
BOTTOM OF PELTONITE SEAL			-	-	A
TOP OF GRAVEL PACK			-		- 1
BOTTOM OF GRAVEL PACK	-		-	1-	-
BOTTOM OF NATURAL CAVE-IN				1	
TOP OF NATURAL CAVE-IN	-			-	
TOP OF GROUNDWATER				-	
TOTAL DEPTH OF BOREHOLE	1		-	-	
•	1		-		-201 Bers
	-	-			- 20% BOTTOM OF SEC - 20% BOTTOM OF THE
					-21' BOTTEN OF SO

GEOLOGIST SIGNATURE: Seott Jander

SERIAL NO. WI______PAGE_LOF_L

-			
IL PROTECTOR INSTALLED: YES NO	LOCKING CAP:	YES (NO	
STEEL HOUSE ONDERED	LOCK NO. 2321	_	
AMETER (IN): 4" PAD	LOCK NO.		
RMANENT BOREHOLE CASING INSTALLED: YES	NO	*	÷
ATERIAL			
TAMETER (IN):			
ONITORING WELL MATERIALS/LENGTH			
ELL RISER: 20' - I" PVC			
MI CCDEEN.		0071	ENTATION:
ELL SCREEN SLOT SIZE: ,010	 7	ORL	ENTATION.
UMPER POSTS INSTALLED: (YES) NO	.i		
OMPER POSTS INSTANTANT.		1	Z X X
ATERIAL: STEEL	LEGEND:		HH
UMBER:3			
	O MONITORING WELL		110
	• BUMPER POSTS		
			
RAVEL PACK INSTALLED: YES NO	2	N	
TYPE/SIZE SILICA SAND 20-40		1 : -: 1	1111:
PELTONITE SEAL INSTALLED: YES NO		* * * ×	- Gence
QUANTITY: 2 (5016.) BA65			pierometer leater
QUANTITY: 2 CONTINUE ACTION OF THE PROPERTY OF		location-	150' WEST of Fr
SIZE HOLE PLUG NUGBETS			80' South of Fi
CONCRETE BACKFILL UTILIZED: YES NO			
CONCRETE BACKFILL UTILITATES. TO SEETH QUANTITY: 1/2 SOUT GIVER GROWT SEETH	ed.		V _a
MIX: Premix.			Te
and the second s			
GROUT BACKFILL UTILIZED: YES NO			
QUANTITY: 2.5' 703'			
MIX: Bentonite & cement.			
147.62.2	TO THOUSAND AND A TO THE OWNER OF THE OWNER OWNE	2	
FLUID I	NTRODUCTION		
TOTAL FLUIDS INTRODUCED DURING WELL CONS	STRUCTION:		
TOTAL FLUIDS INTRODUCED DOICE	QUANTITY:		
NIALUK.	emen D		
QUANTITY: NOME	TYPE:		
QUANTITY: NOME	DIPTH INTERVAL O	F LOSS	
QUANTITY: NOME	DIPTH INTERVAL O	F LOSS	
QUANTITY:	_ DFPTH INTERVAL O		
NIGHE	_ DFPTH INTERVAL O		

MONITORING. WELL INSTALLATION

		RFACE	·		106
ITEM	+/-	DEPTH FT.		20	12.5 TCP OF
TOP OF WELL PROTECTOR			F		5 Fremix OF
BOTTOM OF WELL PROTECTOR			-	1	5
TOP OF PERMANENT BOREHOLE CASING		_		T	-5' TOP OF
OTTOM OF PERMANENT BOREHOLE CASING				-	
TOP OF CONCRETE		-GS		1	-7' TOP OF S
BOTTOM OF CONRETE	-	1.5'	-		
. TOP OF GROUT	-	.5	1		
BOTTOM OF GROUT	-	5.0	-	1	
TOP OF WELL RISER			4	4 -	13 BOTTOM OF
TOP OF SCREEN			-		-13/2 BOTTEM CF
BOTTOM OF SCREEN				-4	- 16' TOP CF
TOP OF PELTONITE SEAL		-	4		-18' TOP OF S
BOTTOM OF PELTONITE SEAL	-		-	-	三
TOP OF GRAVEL PACK	-		-	-	_ '
BOTTOM OF GRAVEL PACK	-	-	-		
BOTTOM OF NATURAL CAVE-IN	-		-		_
TOP OF NATURAL CAVE-IN	-	1-	-	1	
TOP OF GROUNDWATER	-	0-1	-	-	
TOTAL DEPTH OF BOREHOLE	-	28'	-	-	=
*	-		_		- 23' Betton of
			-	1	-23/2 Bottomer

GEOLOGIST SIGNATURE: Sent Gander

WELL NO. : UPZ - 106

SERIAL NO. WI_______PAGE_OF_

L PROTECTOR INSTALLED: YES NO	LOCKING CAP:	YES NO
	LOCK NO. 2321	
METER (IN): 4" PAD	LOCK NO OVO - 1	
RMANENT BOREHOLE CASING INSTALLED: YES	NO	in .
TERIAL		
AMETER (IN):		
NITORING WELL MATERIALS/LENGTH LL RISER: 26' - 1" PVC LL SCREEN: 10' - 1" PVC LL SCREEN SLOT SIZE:		ORIENTATION:
MPER POSTS INSTALLED: YES NO		
TERIAL: Stee!	LEGEND:	
MBER: 3		
	O MONITORING WELL	1 104 1 0 UPZ - 106 206
	• BUMPER POSTS	
4		
MAVEL PACK INSTALLED: YES NO		N. H.
1 1000 1 1300		
YPE/SIZE SILICA SAND / WB - 40		location: 10' South of Blog Con
UANTITY: 3 (50 Hb.) BAGS LIZE HOLE PLUS NUBBETS		25' East of Blug.
ONCRETE BACKFILL UTILIZED: YES WOUNTITY: 12 SOOT		
IX: Premix.		181
ROUT BACKFILL UTILIZED: (YES) NO		
DUANTITY: 4.5'	Tone ! Te.	
MIX: Cement & powdered Be	www.	
	antiomrou	6
PLUID I	NTRODUCTION	
STATE OF THE PARTY OF THE CONS	TRUCTION:	
COTAL FLUIDS INTRODUCED DURING WELL CONS	OUANTITY:	-
DUANTITY: NOME	TVPE-	
	_ Altu-	E LOSS —
QUANTITY:	DEDOUG TAPPEDUAT. O	
CYPE:	_ DIPTH INTERVAL O	
	_ DIPTH INTERVAL O	
COMMENTS:	DFPTH INTERVAL O	

APPENDIX F

Phase II Groundwater Analytical Data Sheets

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	19-DEC-90	A220595
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	11-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	12-JAN-91	17-DEC-90 12:45

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-101-1290 (GRAB) SAMPLE LOCATION:: UMW-101

Analysi: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analysis C. BOYLE Analysis Date: 21-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.07	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90	2.2	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units ML ML
PHENOLS 4AAP SW846-9066		7 - 0/05 7	C
Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	U
Prep: PHENOLS DISTILLATION SW846-9065 Parameter	Result 0.08	Det. Limit 0.01	Units mg/L
Prep: PHENOLS DISTILLATION SW846-9065	Result	Det. Limit	Units mg/L
Prep: PHENOLS DISTILLATION SW846-9065 Parameter PHENOLS SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90 Parameter	Result	Det. Limit 0.01	Units mg/L O Units
Prep: PHENOLS DISTILLATION SW846-9065 Parameter PHENOLS SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90	Result 0.08	Det. Limit 0.01 Test: G110.4. Det. Limit	Units mg/L 0 Units mg/L

EMS HERITAGE LABORATORIES, INC.	L	ab Sample ID: A220595
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEC-90 Prep: AMMONIA DISTILLATION EPA 350.3		Test: G203.4. 0
Parameter NITROGEN, AMMONIA	Result 2.0	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA 35 Analyst: C. BOYLE Analysis Date: 22-DEC-90		Test: G106.3. 0
Parameter NITROGEN, NITRATE	Result 0.04	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date: 02-JAN-91		Test: G108.5. 0
Parameter SULFATE	Result 140	Det. Limit Units 50 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-90		Test: G301.1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 840	Det. Limit Units 50 mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) AQU Analyst: C. THOMAS Analysis Date: 26-DEC-90	JEOUS SAMPLES SW846-300	5 Test: P132.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M104.3. 0 846-3005
Parameter BARIUM	Result	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M108.3. 0 846-3005
Parameter CADMIUM	Result BDL	Det. Limit Units 0.5 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M110,3. 0 846-3005
Parameter CHROMIUM	Result 0.86	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M112.3. 0 846-3005
Parameter COPPER	Result 0.79	Det. Limit Units 0.020 mg/L
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 31-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META		Test: M115.3. 0 846-3005
Parameter IRON	Result 1200	Det. Limit Units 0.02 mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID:	#22U59
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET	Instrument: ICP ALS) AQUEOUS SAMP	Test: M116.3. 0 LES SW846-3005	
Parameter LEAD	Result 0.65	Det. Limit 0.050 m	Units ng/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET	Instrument: ICP ALS) AQUEOUS SAMP	Test: M119.3. 0 LES SW846-3005	
Parameter MANGANESE	Result 20.	Det. Limit 0.010 n	Units ng/L
NICKEL ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET	Instrument: ICP ALS) AQUEOUS SAMP	Test: M122.3. 0 LES SW846-3005	
Parameter NICKEL	Result	Det. Limit 0.010 n	Units 1g/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET	Instrument: ICP ALS) AQUEOUS SAMP	Test: M139.3. 0 LES SW846-3005	
Parameter ZINC	Result 2.8	Det. Limit 0.020 n	Units ng/L
CVAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS Analyst: M. SCROGHAM Analysis Date: 09-JAN-91		O Test: P134.6. 0	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100		Units 1L 1L
MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Date: 10-JAN-91 Prep: CVAA ACID DIGESTION (DISSOLVED METALS) A	Instrument: CVAA QUEOUS SAMPLES SW	Test: M120.1, 0 846-7470	
Parameter MERCURY	Result BDL	Det. Limit 0.0005 m	Units 1g/L
GFAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS Analyst: B. HAHN Analysis Date: 21-DEC-90		O Test: P133.6. 0	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50		Units 1L 1L
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date: 21-DEC-90 Prep: GFAA ACID DIGESTION (DISSOLVED METALS) A	Instrument: GFAA QUEOUS SAMPLES SW	Test: M103.2. 0 846-3020	
Parameter ARSENIC	Result 0.058	Det. Limit 0.050 m	Units 1g/L
VOLATILE ORGANICS SW846-8240 Analyst: H. WILLIAMS Analysis Date: 20-DEC-90	Instrument: GC/MS VOA	Test: 0510.3. 0	
Parameter ACETONE ACEDOLETA	Result BDL		Units Ig/L
ACROLEIN ACRYLONITRILE BENZENE	BDL BDL * 1100	70 ι	ıg/L ıg/L ıg/L
BROMODICHLOROMETHANE BROMOFORM	BDL BDL	5 ι	ig/L ig/L

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A220595

EMS HERTIAGE LABORATORIES, INC.		Lab Sample 1	D: A220595
Parameter	Result	Det. Limit	Units
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
CHLOROMETHANE	BDL	10	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
DICHLORODIFLUOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL		ug/L
ETHYLBENZENE	* 790	50	ug/L
FLUOROTRICHLOROMETHANE	BDL	5	ug/L
2-HEXANONE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
METHYL ETHYL KETONE	BDL	10	ug/L
4-METHYL-2-PENTANONE	BDL	10	ug/L
STYRENE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLOROETHENE	BDL	5	ug/L
TETRAHYDROFURAN	BDL	25	ug/L
TOLUENE AND TOLUENE	* 470	50	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	Š	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
VINYL ACETATE	BDL	10	ug/L
VINYL CHLORIDE	BDL	10	ug/L
XYLENE (TOTAL)	* 850	50	ug/L
-9			- 37 -
SURROGATE RECOVERY			
DICHLOROETHANE-D4	106		0/ D
TOLUENE-D8			% Rec
	95		% Rec
	100		% Rec
BROMOFLUOROBENZENE NOTE: * RUN AT 1:10 DILUTION	100		% Rec % Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION SW846-3510				
Analyst: J. MINNIEAR, II Analysis Date: 20-DEC-90	T	Test: P233.4.	0	
Parameter INITIAL UFICUT OF VOLUME	Result	Det. Limit	Units	
INITIAL WEIGHT OR VOLUME	1000		mL	
ETHAL YOUUNE			mL	

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID Analyst: M. DONOFRIO Analysis Date: 7 Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQ	21-DEC-90 Instrument: GC/MS SVOA	Test: 0505.3. 0
Parameter ACENAPHTHENE	Result 110	Det. Limit Units
ACENAPHTHYLENE	58	10 ug/L
ANTHRACENE	16	10 ug/L
BENZ(A)ANTHRACENE	BDL	10 ug/L
BENZO(A)PYRENE	BDL	10 ug/L

	HERITAG				
⊢ M S	MERCIA		ADAN!	ITANTEC	TRIA
LUIS	THE RELIENCE	IF 1	ADUKA	1	INI

Lab Sample ID: A220595

			ab Sample I	D: A220595
	Parameter	Result	Det. Limit	Units
	BENZO(B) FLUORANTHENE	BDL	10	
	BENZO(G,H,I)PERYLENE	BDL		ug/L
١.	BENZO(K)FĹUÓRANTHENE	BDL	10	ug/L
	BENZYL ALCOHOL		10	ug/L
		BDL	10	ug/L
	BENZYLBUTYLPHTHALATE	BDL	10	ug/L
	BIS(2-CHLOROETHOXY)METHANE	BDL		
	BIS(2-CHLOROETHYL)ÉTHER	BDL	10	ug/L
	BIS(2-CHLOROISOPROPYL)ETHER		10	ug/L
	DIC/2 ETHYLHEVYL DUTHALATE	BDL	10	ug/L
П	BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
	4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
П	CARBAZOLE	BDL		
	4-CHLOROANILINE	BDL	10	ug/L
	2-CHLORONAPHTHALENE		10	ug/L
		BDL	10	ug/L
	4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
	CHRYSENE	BDL	10	ug/L
	DIBENZ (A, H) ANTHRACENE	BDL		
	DIBENZOFURAN	11	10	ug/L
	1,2-DICHLOROBENZENE		10	ug/L
		BDL	10	ug/L
	1,3-DICHLOROBENZENE	BDL	10	ug/L
П	1,4-DICHLOROBENZENE	BDL		
	3,3'-DICHLOROBENZIDINE	BDL		ug/L
	DIETHYLPHTHALATE	BDL	20	ug/L
	DIMETHYLPHTHALATE		10	ug/L
	DITE HILLING BUTUALATE	BDL	10	ug/L
	DI-N-BUTYLPHTHALATE	BDL		ug/L
1	DINITROBENZENES	BDL		
	2,4-DINITROTOLUENE	BDL		ug/L
	2,6-DINITROTOLUENE			ug/L
	DI-N-OCTYLPHTHALATE	BDL	10	ug/L
	FLOURANTHENE	BDL	10	ug/L
		EST 7		ug/L
	FLUORENE	54		ug/L
	HEXACHLOROBENZENE	BDL		
	HEXACHLOROBUTADIENE	BDL		ug/L
	HEXACHLOROCYCLOPENTADIENE			ug/L
	HEXACHLOROETHANE	BDL	10	ug/L
		BDL		ug/L
	INDENO(1,2,3-CD)PYRENE	BDL		ug/L
	ISOPHORONE	BDL		
	2-METHYLNAPHTHALENE			ug/L
	NAPHTHALENE	* 420		ug/L
	2-NITROANILINE	* 1500	100	ug/L
		BDL		ug/L
	3-NITROANILINE	BDL		ug/L
	4-NITROANILINE	BDL		
	NITROBENZENE	BDL		ug/L
	N-NITROSO-DIPHENYLAMINE			ug/L
	N-NITROSO-DI-N-PROPYLAMINE	BDL		ug/L
100	DUENANTIDENE	BDL		ug/L
	PHENANTHRENE	69		ug/L
	2-PICOLINE	BDL		
	PYRENE	10	1000	ug/L
	PYRIDINE			ug/L
		BDL	50 เ	ug/L
	TETRACHLOROBENZENES	BDL		ug/L
	TOLUENEDIAMINE	BDL		ug/L
	1,2,4-TRICHLOROBENZENE	BDL		
	BENZOIC ACID	BDL		ug/L
	1-CHLORO-3-METHYLPHENOL			ug/L
		BDL	10 ι	ug/L
	2-CHLOROPHENOL	BDL		ug/L
	2,4-DICHLOROPHENOL	BDL		
	2,4-DIMETHYLPHENOL	12		ug/L
	C DINITRO O METINA BUILDING	BDL		ıg/L
	- ILLINE IILINOL	DUL		ıg/L
			Г	2 000

Page 5

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A220595

Parameter	Result	Det. Limit	Units
,4-DINITROPHENOL	BDL	50	ug/L
-METHYLPHENOL	BDL	10	ug/L
-METHYLPHENOL	BDL	10	ug/L
-NITROPHENOL	BDL	$\tilde{10}$	ug/L
-NITROPHENOL	BDL	50	ug/L
ENTACHLOROPHENOL	BDL	50	ug/L
HENOL	EST 9	10	ug/L
ETRACHLOROPHENOL	BDL	10	ug/L
,4,5-TRICHLOROPHENOL	BDL	10	ug/L
,4,6-TRICHLOROPHENOL	BDL	10	ug/L
URROGATE RECOVERY			
FLUOROPHENOL			% Rec
HENOL-D5	33		% Rec
TROBENZENE-D5	96		% Rec
-FLUOROBIPHENYL	90		% Rec
4,6-TRIBROMOPHENOL	73	to be a contract to the contract of the contra	% Rec
ERPHENYL-D14 DTE: * RUN AT 1:10 DILUTION	93		% Rec

HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0. 0
Parameter GASOLINE DIESEL FUEL	Result BDL	Det. Limit Units 1.3 mg/L
OTHER HYDROCARBONS NOTE: UNIDENTIFIED PEAKS DETECTED	BDL	5.0 mg/L mg/L

Sample Comments

* See Note for Parameter BDL Below Detection Limit

EST Estimated Value

Sample chain of custody number 3404.

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	19-DEC-90	A220600
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	11-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	14-JAN-91	17-DEC-90 10:50

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-102-1290 (GRAB) SAMPLE LOCATION:: UMW-102

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P101.4. 0
Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME	250 Result	ml ml
FINAL VOLUME	250	1116
A.W.	!	
CYANIDE TOTAL (AUTOMATED) SW846-9012		
Analyst: C. BOYLE Analysis Date: 21-DEC-90	Instrument: AUTO-ANALYZER	Test: G101.4. 0
Prep: CYANIDE DISTILLATION SW846-9010		
Parameter	Result	Det. Limit Units
CYANIDE	BDL	0.01 mg/L
	7 億 議 (7	
PHENOLS DISTILLATION SW846-9065		2002
Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P405.7. 0
Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME	100	m <u>L</u>
FINAL VOLUME	100	mL
DUFNOLC ASSD CUDAC DOCC		
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90	Instrument: AUTO-ANALYZER	Test: 0405.7. 0
Prep: PHENOLS DISTILLATION SW846-9065	Tractument. Acto ANALIZER	rest. 0403.7. 0
Parameter	Result	Det. Limit Units
PHENOLS	BDL	0.01 mg/L
THEMOES	DDL	0.01 mg/ L
SULFIDE SW846-9030		
Analysis Date: 20-DEC-90		Test: G110.4. 0
Parameter	Result	Det. Limit Units
SULFIDE	BDL	1.0 mg/L
23,73,73,7		
AMMONIA DISTILLATION EPA 350.3		
Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4. 0
	Result	Det. Limit Units
Parameter	Result	
Parameter INITIAL WEIGHT OR VOLUME	200	mL

EMS HERITAGE	LABORATORIES, INC.		Lab Sample ID: A2206
Analyst: P. ANDER	OGEN EPA 350.3 SON Analysis Da IA DISTILLATION EPA 350.3	te: 31-DEC-90	Test: G203.4. 0
NITROGEN, AMM	Parameter ONIA	Result 0.2	Det. Limit Units 0.10 mg/L
NITROGEN-NIT Analyst: C. BOYLE	RATE (COLORIMETRIC AUTOMA Analysis Da	TED) EPA 353.2 te: 22-DEC-90 Instrument: AUTO-ANALY	ZER Test: G106.3. 0
NITROGEN, NIT	Parameter	Result 0.78	Det. Limit Units 0.10 mg/L
SULFATE TURB Analyst: D. JOSEP	IDIMETRIC EPA 375.4 H Analysis Da	te: 02-JAN-91	Test: G108.5. 0
SULFATE	Parameter	Result 260	Det. Limit Units 50 mg/L
	GEN DEMAND EPA 410.4 Analysis Da	te: 21-DEC-90	Test: G301.1. 0
CHEMICAL OXYG	Parameter EN DEMAND	Result BDL	Det. Limit Units
	CID DIGESTION (DISSOLVED I S Analysis Da	METALS) AQUEOUS SAMPLES SW84 te: 21-DEC-90	6-3005 Test: P132.4. 0
NITIAL WEIGH INAL VOLUME	Parameter T OR VOLUME	Result 50 50	Det. Limit Units ML ML
BARIUM ICP S Analyst: M. JAO Prep: FAA O	Analysis Da	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M104.3. 0 ES SW846-3005
ARIUM	Parameter	Result 0.16	Det. Limit Units 0.010 mg/L
CADMIUM ICP Analyst: M. JAO Prep: FAA O	Analysis Da	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M108.3. 0 ES SW846-3005
ADMIUM	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP Analyst: M. JAO Prep: FAA O	Analysis Da	ite: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M110.3. 0 ES SW846-3005
HROMIUM	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP S Analyst: M. JAO Prep: FAA O	Analysis Da	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M112.3, 0 ES SW846-3005
OPPER	Parameter	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW8 Analyst: M. JAO Prep: FAA O	Analysis Da	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M115.3. 0 ES SW846-3005
	Parameter	Result 6.3	Det. Limit Units 0.020 mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	ID: A22060
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Da Prep: FAA OR ICP ACID DIGESTION (DISS	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M116.3. ES SW846-3005	0
LEAD Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Dai Prep: FAA OR ICP ACID DIGESTION (DISS	te: 24-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M119.3. ES SW846-3005	0
MANGANESE Parameter	Result 2.1	Det. Limit 0.010	Units mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date Prep: FAA OR ICP ACID DIGESTION (DISS	te: 24-DEC-90 Instrument: ICP OLVED METALS) AQUEOUS SAMPL	Test: M122.3. ES SW846-3005	0
Parameter NICKEL	Result 0.017	Det. Limit 0.010	Units mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Dat Prep: FAA OR ICP ACID DIGESTION (DISS	re: 24-DEC-90 Instrument: ICP OLVED METALS) AQUEOUS SAMPLI Result	ES SW846-3005	
ZINC prep blank was 0.038 mg/l	0.066	Det. Limit 0.020	Units mg/L
	AQUEOUS SAMPLES SW846-7470 e: 09-JAN-91	Test: P134.6,	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	100 100	Det. Limit	Units mL mL
MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Dat Prep: CVAA ACID DIGESTION (DISSOLVED)	e: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW84	Test: M120.1. 16-7470	0
Parameter MERCURY SECOND RESULT WAS BDL	Result 0.0024	Det. Limit 0.0005	Units mg/L
TOOL! THO DUL	AOUFOUS SAMPLES SHOAS 2000		
GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Dat	AQUEUUS SAMPLES SW840-3UZU	Test: P133.6.	

Analyst: K. KEHOE Analysis Date: 21-DEC-90 Instrument: GFAA Prep: GFAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS SAMPLES SW846-3020

ARSENIC GFAA SW846-7060

ARSENIC

Parameter

Units

Test: M103.2. 0

0.0050 mg/L

Det. Limit

Result

BDL

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A220600

0 Instrument: GC/MS VOA		
	Test: 0510.3.	0
Result	Det. Limit	Units
		٠
	70	ug/L
		3,
		ug/L
		ug/L
		0,
		ug/L
		ug/L
	5	37
	10	ug/L
	5	ug/L
	10	ug/L
	5	ug/L
	10	ug/L
	10	
	5	ug/L
	5	ug/L
	5	ug/L
	25	ug/L
	5	ug/L
	5	ug/L
BDL		ug/L
BDL		ug/L
BDL	5	ug/L
		- J/ -
114		% Rec
		% Rec
		% Rec
	BDL BDL BDL BDL BDL	BDL 50 BDL 70 BDL 5 BD

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: J. MINNIEAR, II Analysis Date: 20-DEC-90	SW846-3510	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL VOLUME	1000		mL ml

Prep: GC/MS SEPARATORY FUNNEL LIQUID	EIQUID EXTRACTION SW040-3310		
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	10	ug/L
CENAPHTHYLENE	BDL	10	ug/L
NTHRACENE	BDL	10	ug/L
ENZ(A)ANTHRACENE	BDL	10	ug/L
ENZO(A)PYRENE	BDL	10	ug/L
ENZO(B)FLUORANTHENE	BDL	10	ug/L
ENZO(G,H,I)PERYLENE	BDL	10	ug/L
ENZO(K)FLUORANTHENE	BDL	10	
ENZYL ALCOHOL	BDL	10	ug/L
NZYLBUTYLPHTHALATE	BDL	10	ug/L
IS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
IS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
IS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
[S(2-ETHYLHEXYL)PHTHALATE	BDL	10	
BROMOPHENYLPHENYLETHER	BDL	10	ug/L
ARBAZOLE	BDL	10	
-CHLOROANILINE	BDL	10	ug/L
CHLORONAPHTHALENE	BDL	10	
CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
IRYSENE	BDL	Īŏ	
BENZ(A,H)ANTHRACENE	BDL	10	ug/L
BENZOFURAN	BDL	10	
2-DICHLOROBENZENE	BDL	10	ug/L
3-DICHLOROBENZENE	BDL	iŏ	
4-DICHLOROBENZENE	BDL	10	ug/L
3'-DICHLOROBENZIDINE	BDL	20	ug/L
ETHYLPHTHALATE	BDL	10	ug/L
METHYLPHTHALATE	BDL	10	
-N-BUTYLPHTHALATE	BDL	10	ug/L
NITROBENZENES	BDL		ug/L
4-DINITROTOLUENE	BDL	10	
6-DINITROTOLUENE	BDL	10	ug/L
-N-OCTYLPHTHALATE	BDL	10	ug/L
OURANTHENE	BDL		ug/L
UORENE	BDL	10 10	ug/L
XACHLOROBENZENE	BDL		ug/L
XACHLOROBUTADIENE	BDL	10	ug/L
XACHLOROCYCLOPENTADIENE	BDL	10	ug/L
XACHLOROETHANE	BDL	10	ug/L
DENO(1,2,3-CD)PYRENE	BDL	10	ug/L
OPHORONE	BDL	10	ug/L
METHYLNAPHTHALENE	BDL	10	ug/L
PHTHALENE	BDL	10	ug/L
NITROANILINE		10	ug/L
NITROANILINE	BDL BDI	50	ug/L
NITROANILINE	BDL	50	ug/L
TROBENZENE	BDL	50	ug/L
TROBENZENE NITROSO-DIPHENYLAMINE	BDL	10	ug/L
	BDL	10	ug/L
NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
ENANTHRENE DICOLINE	BDL	10	ug/L
PICOLINE	BDL	50	ug/L
RENE	BDL	10	ug/L
RIDINE	BDL	50	ug/L

Page 5

Result BDL BDL BDL BDL BDL BDL BDL	Det. Limit 10 50 10 50 10	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L
BDL BDL BDL BDL BDL	50 10 50 10	ug/L ug/L ug/L
BDL BDL BDL BDL	10 50 10	ug/L ug/L
BDL BDL BDL	50 10	ug/L
BDL BDL	10	
BDL		lua/l
I DDI	10	3,
		ug/L
		ug/L
		3,
		ug/L
	***************************************	ug/L
		ug/L
		ug/L
		3,
	10	ug/L
0		% Rec
0		% Rec
91		% Rec
86		% Rec
33		% Rec
95		% Rec
	0 91 86 33	BDL 10 50 BDL 50 BDL 10 BDL 10 BDL 10 BDL 50 BDL 50 BDL 50 BDL 50 BDL 10 BDL

Parameter Paralta Specific Spe	HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90			
DIESEL FUEL 1.3 mg/l	<i>,</i>	Instrument: GC/FID Result		0 Units
OTHER HYDROCARRONS	DIESEL FUEL OTHER HYDROCARBONS	BDL	5.0	mg/L mg/L

* See Note for Parameter BDL Below Detection Limit

Sample chain of custody number 3404.

Sample Comments

Quality Assurance Officer:

Dieterser

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	18-DEC-90	A220499
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	10-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	11-JAN-91	16-DEC-90 16:40

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-103-1290

LOCATION: UMW-103

PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.35	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: P. ANDERSON Analysis Date: 28-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 200	Det. Limit	Units

	LABORATORIES, INC.		Lab Sample 1	D: A2204
Analyst: P. ANDERS	GEN EPA 350.3 ON Analysis Date: 31-DEC-90 A DISTILLATION EPA 350.3		Test: G203,4.	0
NITROGEN, AMMO	Parameter NIA	Result	Det. Limit 0.10	Units mg/L
NITROGEN-NITE Analyst: L. MATTIN	ATE (COLORIMETRIC AUTOMATED) EPA 3 GLY Analysis Date: 18-DEC-90	53.2 Instrument: AUTO-ANALYZE	R Test: G106.3.	0
NITROGEN, NITE	Parameter	Result 0.03	Det. Limit 0.01	Units mg/L
SULFATE TURBI Analyst: T. BARNES	DIMETRIC EPA 375.4 Analysis Date: 26-DEC-90		Test: G108.5.	0
SULFATE	Parameter	Result 170	Det. Limit	Units
CHEMICAL OXYG	EN DEMAND EPA 410.4 TY Analysis Date: 21-DEC-90		Test: G301.1.	0
CHEMICAL OXYGE	Parameter	Result 82	Det. Limit	Units mg/L
FAA OR ICP AC	ID DIGESTION (DISSOLVED METALS) AQU Analysis Date: 20-DEC-90	JEOUS SAMPLES SW846	-3005 Test: P132.4.	0
	· · · · · · · · · · · · · · · · · · ·	Τ	rest. F132.4.	U
INITIAL WEIGHT FINAL VOLUME	Parameter OR VOLUME	Result 50 50	Det. Limit	Units ML ML
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO	OR VOLUME 846-6010 Analysis Date: 21-DEC-90	Instrument: ICP	Tost: M10/. 3	mL mL
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR	OR VOLUME 846-6010	Instrument: ICP	Tost: M10/. 3	mL mL 0
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR BARIUM CADMIUM ICP S Analyst: M. JAO	OR VOLUME 846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter W846-6010 Analysis Date: 21-DEC-90	Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.36	Test: M104.3. S SW846-3005 Det. Limit 0.010	mL mL 0 Units mg/L
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR BARIUM CADMIUM ICP S Analyst: M. JAO Prep: FAA OR	OR VOLUME 846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter W846-6010	Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.36	Test: M104.3. S SW846-3005 Det. Limit 0.010	mL mL 0 Units mg/L
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR BARIUM CADMIUM ICP S Analyst: M. JAO Prep: FAA OR CADMIUM CHROMIUM ICP Analyst: M. JAO	OR VOLUME 846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter W846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter SW846-6010 Analysis Date: 21-DEC-90	Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.36 Instrument: ICP ALS) AQUEOUS SAMPLES Result BDL	Test: M104.3. SW846-3005 Det. Limit 0.010 Test: M108.3. SW846-3005 Det. Limit 0.0050	mL mL 0 Units mg/L 0 Units mg/L
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR BARIUM CADMIUM ICP S Analyst: M. JAO Prep: FAA OR CADMIUM CHROMIUM ICP Analyst: M. JAO Prep: FAA OR	OR VOLUME 846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter W846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter SW846-6010	Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.36 Instrument: ICP ALS) AQUEOUS SAMPLES Result BDL	Test: M104.3. SW846-3005 Det. Limit 0.010 Test: M108.3. SW846-3005 Det. Limit 0.0050	mL mL 0 Units mg/L 0 Units mg/L
FINAL VOLUME BARIUM ICP SW Analyst: M. JAO Prep: FAA OR BARIUM CADMIUM ICP S Analyst: M. JAO Prep: FAA OR CADMIUM CHROMIUM ICP Analyst: M. JAO Prep: FAA OR CHROMIUM CHROMIUM COPPER ICP SW Analyst: M. JAO	OR VOLUME 846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter W846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter SW846-6010 Analysis Date: 21-DEC-90 ICP ACID DIGESTION (DISSOLVED META Parameter Parameter Parameter	Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.36 Instrument: ICP ALS) AQUEOUS SAMPLES Result BDL Instrument: ICP ALS) AQUEOUS SAMPLES Result BDL Instrument: ICP ALS) AQUEOUS SAMPLES Result 0.060	Test: M104.3. S SW846-3005 Det. Limit 0.010 Test: M108.3. S SW846-3005 Det. Limit 0.0050 Test: M110.3. S SW846-3005 Det. Limit 0.010	mL mL 0 Units mg/L 0 Units mg/L

IRON ICP S	GE LABORATORIES, INC.		Lab Sample ID: A220
		ate: 21-DEC-90 Instrument: ICP	Test: M115.3. 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	ate: 21-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	ES SW846-3005
	Parameter	Result	Det. Limit Units
I RON		58.	0.020 mg/L
LEAD ICP S	W846-6010		
Analyst M JA	O Analysis D	ste: 21-DEC-90 Instrument: ICP	Test: M116.3. 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPLE	ES SW846-3005
EAD	Parameter	Result	Det. Limit Units
.EAD		0.054	0.050 mg/L
MANGANESE	ICP SW846-6010		
Analyst M JA	Ο Analysis Dr	ate: 21-DEC-90 Instrument: ICP	Test: M119.3. 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPLE	ES SW846-3005
IANOBNECE	Parameter	Result	Det. Limit Units
ANGANESE		1.9	0.010 mg/L
NICKEL ICD	SW846-6010		
Analyst: M. JAG	O Analysis Da	ite: 21-DEC-90 Instrument: ICP	Test: M122.3. 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPLE	S SW846-3005
ITOKE	Parameter	Result	Det. Limit Units
IICKEL		0.080	0.010 mg/L
INC	Parameter	Result 0.25	Det. Limit Units 0.020 mg/L
CVAA ACID [DIGESTION (DISSOLVED METALS	AQUEOUS SAMPLES SW846-7470	
Analyst: M. SCF	ROGHAM Analysis Da	te: 07-JAN-91	Test: P134.6. 0
INITTAL WETA	Parameter GHT OR VOLUME	Result	Det. Limit Units
INTITAL WET		100 100	mL
THAT TOLOTA		100	mL
	NA SW846-7470		
Analyst: M. SCR	ROGHAM Analysis Da	te: 08-JAN-91 Instrument: CVAA	Test: M120.1. 0
rrep. CVA		METALS) AQUEOUS SAMPLES SW84	
IERCURY	Parameter	Result BDL	Det. Limit Units 0.0005 mg/L
		DUL	0.0005 mg/L
GFAA ACID D	IGESTION (DISSOLVED METALS)	AQUEOUS SAMPLES SW846-3020	
Analyst: B. HAH	N Analysis Da	te: 19-DEC-90	Test: P133.6. 0
NITIAL WEIG	Parameter GHT OR VOLUME	Result	Det. Limit Units
INAL VOLUME		50 50	l mL
			mL
	A SW846-7060		
Analyst: M. BAU	ER Analysis Da	te: 19-DEC-90 Instrument: GFAA	Test: M103.2. 0
rrep: GFAA		METALS) AQUEOUS SAMPLES SW840	6-3020
	Parameter	Result	Det. Limit Units
RSENIC		0.019	0.0050 mg/L

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A220499

Analyst: H. WILLIAMS Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
CETONE	BDL	20	ug/L
CROLEIN	BDL	50	ug/L
RYLONITRILE	BDL	70	ug/L
NZENE	120	5	ug/L
OMODICHLOROMETHANE	BDL	5	ug/L
OMOFORM	BDL	5	ug/L
OMOMETHANE	BDL	10	ug/L
RBON DISULFIDE	BDL	5	ug/L
RBON TETRACHLORIDE	BDL	5	ug/L
LOROBENZENE	BDL	5	ug/L
LOROETHANE	BDL	10	ug/L
LOROFORM	BDL	5	ug/L
LOROMETHANE	BDL	10	ug/L
BROMOCHLOROMETHANE	BDL	5	ug/L
S-1,3-DICHLOROPROPENE	BDL	5	ug/L
CHLORODIFLUOROMETHANE	BDL	5	ug/L
1-DICHLOROETHANE	BDL	5	ug/L
2-DICHLOROETHANE	BDL	5	ug/L
1-DICHLOROETHENE	BDL	5	ug/L
2-DICHLOROPROPANE	BDL	5	ug/L
HYLBENZENE	* 440	50	ug/L
UOROTRICHLOROMETHANE	BDL	5	ug/L
HEXANONE	BDL	10	ug/L
THYLENE CHLORIDE	BDL	5	ug/L
THYL ETHYL KETONE	BDL	10	ug/L
METHYL-2-PENTANONE	BDL	10	
YRENE	BDL	5	ug/L
1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TRACHLOROETHENE	BDL	5	ug/L
TRAHYDROFURAN	BDL	25	ug/L
LUENE	22	5	ug/L
2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
ANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1-TRICHLOROETHANE	BDL	5	ug/L
1,2-TRICHLOROETHANE	BDL	5	ug/L
TCHLOROETHENE	BDL	5	ug/L
NYL ACETATE	BDL	10	ug/L
NYL CHLORIDE	BDL	10	ug/L
LENE (TOTAL)	* 400	50	ug/L
			~ 3/ -
RROGATE RECOVERY			
CIII ODOETUANE DA	108		% Rec
CHLOROETHANE-D4			
DUENE-D8	104		% Rec
ROMOFLUOROBENZENE DTE: * RUN AT 1:10 DILUTION	105		% Rec

SEMI-VOLATILE ORGANICS (BASE/	NEUTRAL ACID FRACTIONS) SW846-8270		
	Analysis Date: 27-DEC-90 Instrument: GC/MS SVOA	Test: 0505.3.	0
Prep: GC/MS SEPARATORY FUNNE	L LIQUID-LIQUID EXTRACTION SW846-3510	_	
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	160	10	ug/L
ACENAPHTHYLENE	EST 6	10	ug/L
ANTHRACENE	14	10	ug/L

Page 4

ENS HERITAGE ENDORATORIES, THE.		Lab Sample 1	D: A220499
Parameter	Result	Det. Limit	Units
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A)PYRENE	BDL	10	ug/L
BENZO(B) FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ALCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ÉTHER	BDL	10	ug/L
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
DIBENZ(A, H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURAN	12	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
FLOURANTHENE	BDL	10	ug/L
FLUORENE	56	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	iŏ	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	EST 450	500	ug/L
NAPHTHALENE	* 2400	500	ug/L
2-NITROANILINE	BDL	50	ug/L
3-NITROANILINE	BDL	50	ug/L
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE	65	10	ug/L
2-PICOLINE	BDL	50	ug/L
PYRENE	EST 7	10	ug/L
PYRIDINE	BDL	50	ug/L
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BÉNZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
		10]	Page 5
			. ~5~ ~

EMS HERITAGE LABORATORIES, INC.

Lab Sample ID: A220499

Parameter	Result	Det. Limit	Units
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	ug/L
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
•			
SURROGATE RECOVERY			
2-FLUOROPHENOL	18		% Rec
PHENOL-D5	13		% Rec
NITROBENZENE-D5	210		% Rec
2-FLUOROBIPHENYL	81		% Rec
2,4,6-TRIBROMOPHENOL	38		% Rec
TERPHENYL-D14	88		% Rec

NOTE: * FROM 1:50 DILUTION

NOTE: 2-METHYLNAPHTHALENE FROM 1:50 DILUTION

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION	I SW846-3510			
Analyst: M. FRANK Analysis Date: 19-DEC-90		1	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	D	et. Limit	Units
ETNAL VOLUME	1000	.C		mL

HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
GASOLINE DIESEL EUEL	Result BDL	Det. Limit	Units mg/L
OTHER HYDROCARBONS NOTE: UNIDENTIFIED PEAKS DETECTED	BDL	5.0	mg/L mg/L

Sample Comments

* See Note for Parameter BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 3402.

Destinor

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC.	Received 18-DEC-90	Lab ID A220502
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 10-JAN-91	PO Number P0072488
(317)243-8305	Printed	Sampled
	11-JAN-91	16-DEC-90 10:15

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-104-1290 LOCATION: UMW-104

PROJECT: 122765 / I.P. CHAMPAIGN			
CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101,4.	0
Parameter CYANIDE	Result 0.03	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	Result 200 250	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A2	2050
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31 Prep: AMMONIA DISTILLATION EPA 350.3	-DEC-90	Test: G203.4. 0	
Parameter NITROGEN, AMMONIA	Result 0.6	Det. Limit Uni 0.10 mg/L	
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) Analyst: L. MATTINGLY Analysis Date: 18	EPA 353.2 -DEC-90 Instrument: AUTO-ANALYZE	FR Test: G106.3, 0	
Parameter NITROGEN, NITRATE	Result 0.19	Det. Limit Uni 0.01 mg/L	
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: T. BARNES Analysis Date: 26	-DEC-90	Test: G108.5. 0	
Parameter SULFATE	Result 96	Det. Limit Uni 25 mg/L	
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21		Test: 6301.1. 0	
Parameter CHEMICAL OXYGEN DEMAND	Result BDL	Det. Limit Uni 10 mg/L	
FAA OR ICP ACID DIGESTION (DISSOLVED METAL Analyst: C. THOMAS Analysis Date: 20		-3005 Test: P132.4. 0	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Uni mL mL	ts
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M104.3. 0 S SW846-3005	
Parameter BARIUM	Result 0.088	Det. Limit Uni 0.010 mg/L	
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M108.3. 0 S SW846-3005	
		the state of the s	
Parameter CADMIUM	Result BDL	Det. Limit Uni 0.0050 mg/L	
CADMIUM CHROMIUM ICP SW846-6010	Result BDL -DEC-90 Instrument: ICP	0.0050 mg/L Test: M110.3. 0	
CADMIUM CHROMIUM ICP SW846-6010 Analysis Date: 21 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	Result BDL -DEC-90 Instrument: ICP	0.0050 mg/L Test: M110.3. 0	its
CHROMIUM ICP SW846-6010 Analysis M. JAO Analysis Date: 21 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE Parameter CHROMIUM COPPER ICP SW846-6010	Result BDL -DEC-90 Instrument: ICP D METALS) AQUEOUS SAMPLE Result BDL -DEC-90 Instrument: ICP	0.0050 mg/L Test: M110.3. 0 S SW846-3005 Det. Limit Uni 0.010 mg/L Test: M112.3. 0	its

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A2205
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date:	21-DEC-90 Instrument: ICP	Test: M115.3. 0
Prep: FAA OR ICP ACID DIGESTION (DISSOL	VED METALS) AQUEOUS SAMPL	ES SW846-3005
Parameter RON	Result 0.37	Det. Limit Units 0.020 mg/L
LEAD ICP SW846-6010		
	21-DEC-90 Instrument: ICP	Test: M116.3. 0
Parameter	Result	Det. Limit Units
EAD Parameter	BDL	0.050 mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: 1CP VED METALS) AQUEOUS SAMPL	Test: M119.3. 0 ES SW846-3005
Parameter	Result 0.37	Det. Limit Units
MANGANESE	0.37	0.010 mg/L
NICKEL ICP SW846-6010	24 550 00 1 4 4 1 1 100	Taga 1100 7 0
Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	
Parameter	Result	Det. Limit Units
NICKEL	0.013	0.010 mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M139.3. 0 ES SW846-3005
Parameter ZINC	0.073	Det. Limit Units 0.020 mg/L
prep blank was 0.035 mg/l	0.073	0.020 IIIg/ L
CVAA ACID DIGESTION (DISSOLVED METALS) Analyst: M. SCROGHAM Analysis Date:		Test: P134.6. 0
Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME FINAL VOLUME	100	mL mL
TINAL VOLONE	100	
MERCURY CVAA SW846-7470 Analyst: M. SCROGHAM Analysis Date: Prep: CVAA ACID DIGESTION (DISSOLVED ME	08-JAN-91 Instrument: CVAA ETALS) AQUEOUS SAMPLES SW8	Test: M120.1. 0 46-7470
Parameter	Result	Det. Limit Units
MERCURY	BDL	0.0005 mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Date:		Test: P133.6. 0
Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME FINAL VOLUME	50 50	mL mL
	1.77	
ARSENIC GFAA SW846-7060 Analyst: M. BAUER ACID DIGESTION (DISSOLVED ME	19-DEC-90 Instrument: GFAA ETALS) AQUEOUS SAMPLES SW8	Test: M103.2. 0 46-3020
Parameter	Result	Det. Limit Units

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	20	ug/L
ACROLEIN	BDL	50	
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL	5	
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
CHLOROFORM	BDL		ug/L
CHLOROMETHANE	BDL	10	ug/L ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L ug/L
DICHLORODIFLUOROMETHANE	BDL		
1,1-DICHLOROETHANE	BDL	5	ug/L ug/L
1,2-DICHLOROETHANE	BDL	5	
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
ETHYLBENZENE	BDL		ug/L
FLUOROTRICHLOROMETHANE	BDL	5 5	ug/L
2-HEXANONE	BDL		ug/L
METHYLENE CHLORIDE	BDL	10	ug/L
METHYL ETHYL KETONE	BDL	5	ug/L
4-METHYL-2-PENTANONE	BDL	10	ug/L
STYRENE	BDL	10	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLOROETHENE		5	ug/L
TETRAHYDROFURAN	BDL	5	ug/L
TOLUENE	BDL	25	ug/L
	BDL	5	ug/L
I,2-DICHLOROETHENE (TOTAL)	BDL		ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	
TRICHLOROETHENE	BDL	5	ug/L
/INYL ACETATE	BDL	10	ug/L
/INYL_CHLORIDE	BDL	10	ug/L
(YLENE (TOTAL)	BDL	5	ug/L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	110		% Rec
TOLUENE-D8	98		% Rec
BROMOFLUOROBENZENE	112		% Rec

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACT Analyst: K. STONER Analysis Date: 27-DEC-90 Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EX	Instrument: GC/MS SVOA	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL		ug/L
ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L
BENZ(A)ANTHRACENE	BDL	10	ug/L
BENZO(A)PYRENE	BDL	10	ug/L

Lab Sample ID: A220502

		Lab Sample 1	D: MZZUSUZ
Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ALCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ÉTHER	BDL	10	ug/L ug/L
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	10	
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	
4-BROMOPHENYLPHENYLETHER	BDL	***************************************	ug/L
CARBAZOLE	BDL	10	3,
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE		10	J,
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURAN	BDL	10	ug/L
	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	0,
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
FLOURANTHENE	BDL	10	ug/L
FLUORENE	BDL	10	
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL		ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	BDL	10	ug/L
NAPHTHALENE	BDL		ug/L
2-NITROANILINE	BDL	50	ug/L ug/L
3-NITROANILINE	BDL	50	
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL		ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
2-PICOLINE		10	ug/L
PYRENE	BDL	50	ug/L
PYRIDINE	BDL	10	ug/L
TETRACHLOROBENZENES	BDL	50	ug/L
TOLUENEDIAMINE	BDL	10	ug/L
	BDL		ug/L
1,2,4-TRICHLOROBENZENE	BDL		ug/L
BENZOIC ACID	BDL		ug/L
4-CHLORO-3-METHYLPHENOL	BDL		ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL		ug/L
2,4-DIMETHYLPHENOL	BDL		ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL		ug/L
			Dago E

Page 5

Lab	Sample	ID:	A220502
-----	--------	-----	---------

,		Lab Sample ID: AZZUSUZ
Parameter	Result	Det. Limit Units
2,4-DINITROPHENOL	BDL	50 ug/L
2-METHYLPHENOL	BDL	10 ug/L
4-METHYLPHENOL	BDL	10 ug/L
2-NITROPHENOL	BDL	10 ug/L
4-NITROPHENOL	BDL	50 ug/L
PENTACHLOROPHENOL	BDL	50 ug/L
PHENOL	BDL	10 ug/L
TETRACHLOROPHENOL	BDL	10 ug/L
2,4,5-TRICHLOROPHENOL	BDL	10 ug/L
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L
SURROGATE RECOVERY		
2-FLUOROPHENOL		
PHENOL-D5	30	% Rec
	19	% Rec
NITROBENZENE-D5	7.0	% Rec
2-FLUOROBIPHENYL	62	% Rec
2,4,6-TRIBROMOPHENOL	42	% Rec
TERPHENYL-D14	98	% Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: J. MINNIEAR, II Analysis Date: 20-DEC-90	SW846-3510	Test: P23 3. 4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units mL
FILIVAL VOLUME			mL

HYDROCARBON SCAN SV	W846-8000		
Analyst: S. GATTO	Analysis D	Date: 21-DEC-90 Instrument: GC/FID	Test: 040 9. 0. 0
GASOLINE	Parameter	Result BDL	Det. Limit Units
OTHER HYDROCARBONS	7 華知 漫画	BDL BDL	5.0 mg/L mg/L

BDL Below Detection Limit

Sample chain of custody number 3402.

Sample Comments

Quality Assurance Officer:

181	ET
M	elesen

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	18-DEC-90	A220503
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	10-JAN-91	P0072488
(317)243-8305	Printed	Sampled
·	11-JAN-91	16-DEC-90 12:45

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-105-1290

LOCATION: UMW-105

PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010			
Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analysis C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.10	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units ML ML
PHENOLS 4AAP SW846-9066 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A220503
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEC-Prep: AMMONIA DISTILLATION EPA 350.3	90	Test: G203.4.	0
NITROGEN, AMMONIA	Result	Det. Limit 0.10	Units Mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA Analyst: L. MATTINGLY Analysis Date: 18-DEC-	353.2 90 Instrument: AUTO-ANALYZER	Test: G106.3.	0
Parameter NITROGEN, NITRATE	Result 15	Det. Limit	Units mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: T. BARNES Analysis Date: 26-DEC-	90	Test: G108.5.	0
Parameter SULFATE	Result 130	Det. Limit 125	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-	90	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result BDL	Det. Limit	Units mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) Analyst: C. THOMAS Analysis Date: 20-DEC-		05 Test: P132.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit	Units ML ML
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC- Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME	90 Instrument: ICP ETALS) AQUEOUS SAMPLES S	Test: M104.3. W846-3005	0
Parameter BARIUM	Result 0.12	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-1 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME	90 Instrument: ICP ETALS) AQUEOUS SAMPLES S	Test: M108.3. W846-3005	0
Parameter CADMIUM	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-1 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME		Test: M110.3. W846-3005	0
Parameter CHROMIUM	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-9 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME	90 Instrument: ICP ETALS) AQUEOUS SAMPLES S	Test: M112.3. W846-3005	0

EMS HERLIAG	E LABORATORIES, INC.		Lab Sample ID: A220503
IRON ICP SW Analyst: M. JAO Prep: FAA		ate: 21-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M115.3. 0 S SW846-3005
IRON	Parameter	Result 0.63	Det. Limit Units 0.020 mg/L
LEAD ICP SW Analyst: M. JAO Prep: FAA	Analysis Da	ate: 21-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M116.3. 0 S SW846-3005
LEAD	Parameter	Result BDL	Det. Limit Units 0.050 mg/L
Analyst: M. JAO	CP SW846-6010 Analysis Da OR ICP ACID DIGESTION (DIS	ate: 21-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M119.3. 0 S SW846-3005
MANGANESE	Parameter	Result 0.12	Det. Limit Units 0.010 mg/L
NICKEL ICP Analyst: M. JAO Prep: FAA	Analysis Da	ate: 21-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M122.3. 0 S SW846-3005
NICKEL	Parameter	Result 0.014	Det. Limit Units 0.010 mg/L
ZINC ICP SW	Analysis Da	ate: 21-DEC-90 Instrument: ICP	Test: M139,3, 0
Prep: FAA (ON TOT ACTO DIGESTION (DIS.	SOLVED METALS) AQUEOUS SAMPLE	S SW846-3005
ZINC	Parameter	Result 0.087	S SW846-3005 Det. Limit
ZINC prep blank wa	Parameter as 0.035 mg/l IGESTION (DISSOLVED METALS	Result	Det. Limit Units
ZINC prep blank wa CVAA ACID D Analyst: M. SCRO	Parameter as 0.035 mg/l IGESTION (DISSOLVED METALS	0.087 Result 0.087	Det. Limit Units 0.020 mg/L
ZINC prep blank was CVAA ACID D Analyst: M. SCRO INITIAL WEIGH FINAL VOLUME MERCURY CVAA Analyst: M. SCRO	Parameter as 0.035 mg/1 IGESTION (DISSOLVED METALS DIGHAM Analysis Da Parameter HT OR VOLUME A SW846-7470 DIGHAM Analysis Da Analysis Da Analysis Da) AQUEOUS SAMPLES SW846-7470 te: 07-JAN-91 Result	Det. Limit Units 0.020 mg/L Test: P134.6. 0 Det. Limit Units mL mL
ZINC prep blank was CVAA ACID DO Analyst: M. SCRO INITIAL WEIGH FINAL VOLUME MERCURY CVAA Analyst: M. SCRO	Parameter as 0.035 mg/1 IGESTION (DISSOLVED METALS DIGHAM Analysis Da Parameter HT OR VOLUME A SW846-7470 DIGHAM Analysis Da Analysis Da Analysis Da	Result 0.087) AQUEOUS SAMPLES SW846-7470 ite: 07-JAN-91 Result 100 100	Det. Limit Units 0.020 mg/L Test: P134.6. 0 Det. Limit Units mL mL
ZINC prep blank was CVAA ACID DO Analyst: M. SCRO INITIAL WEIGH FINAL VOLUME MERCURY CVAA Analyst: M. SCRO Prep: CVAA MERCURY	Parameter as 0.035 mg/1 IGESTION (DISSOLVED METALS) GHAM Analysis Da Parameter A SW846-7470 GHAM Analysis Da ACID DIGESTION (DISSOLVED) Parameter IGESTION (DISSOLVED METALS)	Result 0.087 AQUEOUS SAMPLES SW846-7470 ite: 07-JAN-91 Result 100 100 te: 08-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW844 Result	Test: P134.6. 0 Det. Limit Units mg/L Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0 6-7470 Det. Limit Units
ZINC prep blank was CVAA ACID DO Analyst: M. SCRO INITIAL WEIGH FINAL VOLUME MERCURY CVAA Analyst: M. SCRO Prep: CVAA MERCURY GFAA ACID DI	Parameter as 0.035 mg/1 IGESTION (DISSOLVED METALS) GHAM Analysis Da Parameter A SW846-7470 GHAM Analysis Da ACID DIGESTION (DISSOLVED Parameter IGESTION (DISSOLVED METALS) Analysis Da Parameter	Result 0.087 O.087 AQUEOUS SAMPLES SW846-7470 ite: 07-JAN-91 Result 100 100 RESULT 100 RESULT 100 RESULT 100 RETALS) AQUEOUS SAMPLES SW846 RESULT BDL RAMPLES SW846-3020	Test: P134.6. 0 Det. Limit
ZINC prep blank was CVAA ACID D: Analyst: M. SCRO INITIAL WEIGH FINAL VOLUME MERCURY CVAA Analyst: M. SCRO Prep: CVAA MERCURY GFAA ACID DI Analyst: B. HAHN INITIAL WEIGH FINAL VOLUME ARSENIC GFAA Analyst: M. BAUE	Parameter as 0.035 mg/1 IGESTION (DISSOLVED METALS) DIGHAM Analysis Da Parameter A SW846-7470 IGHAM Analysis Da ACID DIGESTION (DISSOLVED Parameter IGESTION (DISSOLVED METALS) Analysis Da Parameter A SW846-7060 R Analysis Da	O.087 Result O.087 AQUEOUS SAMPLES SW846-7470 Result 100 100 Result AQUEOUS SAMPLES SW846-7470 Result BDL Result BDL Result BDL Result BDL Result BDL Result BDL Result BDL	Det. Limit

Lab Sample ID: A220503

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3. 0	
Parameter	Result	Det. Limit	Units
ACETONE	BDL	20 u	g/L
CROLEIN	BDL		g/L
CRYLONITRILE	BDL		g/L
ENZENE	BDL		g/L
ROMODICHLOROMETHANE	BDL	1	g/L
ROMOFORM	BDL		g/L
ROMOMETHANE	BDL		g/L
ARBON DISULFIDE	BDL		g/L
ARBON TETRACHLORIDE	BDL		g/L
HLOROBENZENE	BDL		g/L
HLOROETHANE	BDL		g/L
HLOROFORM	BDL		g/L
HLOROMETHANE	BDL	, ,	g/L
IBROMOCHLOROMETHANE	BDL		57 − g/L
IS-1,3-DICHLOROPROPENE	BDL		g/L
ICHLORODIFLUOROMETHANE	BDL		g/L
,1-DICHLOROETHANE	BDL		g/L
,2-DICHLOROETHANE	BDL		g/L
,1-DICHLOROETHENE	BDL		g/L
,2-DICHLOROPROPANE	BDL		g/L
THYLBENZENE	BDL		g/L
LUOROTRICHLOROMETHANE	BDL		g/L
-HEXANONE	BDL		g/L
ETHYLENE CHLORIDE	BDL		g/L
ETHYL ETHYL KETONE	BDL		g/L
-METHYL-2-PENTANONE	BDL		g/L
TYRENE	BDL		g/L
,1,2,2-TETRACHLOROETHANE	BDL		,, − g/L
ETRACHLOROETHENE	BDL		g/L
ETRAHYDROFURAN	BDL		g/L
OLUENE	BDL		g/L
,2-DICHLOROETHENE (TOTAL)	BDL		j/L
RANS-1,3-DICHLOROPROPENE	BDL		g/L
,1,1-TRICHLOROETHANE	BDL		g/L
,1,2-TRICHLOROETHANE	BDL		g/L
RICHLOROETHENE	BDL		3/ <u> </u>
INYL ACETATE	BDL		3/L
INYL CHLORIDE	BDL		3/L
/LENE (TOTAL)	BDL		g/L
JRROGATE RECOVERY			u =
ICHLOROETHANE-D4	112	%	Rec
DLUENE-D8	100	%	Rec
ROMOFLUOROBENZENE	99	%	Rec

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analyst: K. STONER Analysis Date: 28-DEC-90 Instrument: GC/MS SVOA Test: 0505.3. 0 Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION SW846-3510					
Parameter	Result	Det. Limit	Units		
ACENAPHTHENE	BDL		ug/L		
ACENAPHTHYLENE	BDL	10	ug/L		
ANTHRACENE	BDL	10	ug/L		
BENZ(A)ANTHRACENE	BDL	10	ug/L		
BENZO(A)PYRENE	BDL	10	ug/L		

Page 4

Lab Sample ID: A220503

		Lab Sample 1	D. ALLUJUJ
Parameter PENZO(D) ELHODANTHENE	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ALCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ugʻ/L
BIS(2-CHLOROETHYL)ÉTHER	BDL	10	ug/L
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	
4-CHLOROPHENYLPHENYLETHER	BDL		ug/L
CHRYSENE	BDL	10	3/
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURAN	BDL	10	
1,2-DICHLOROBENZENE		10	ug/L
	BDL	10	37
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
FLOURANTHENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L
2-NITROANILINE	BDL	50	ug/L
3-NITROANILINE	BDL	50	
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL		ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
2-PICOLINE	BDL	10	ug/L
PYRENE		50	ug/L
PYRIDINE	BDL	10	ug/L
TETRACHLOROBENZENES	BDL	50	ug/L
TOLUENEDIAMINE	BDL	10	ug/L
	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL		ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL		ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL		ug/L
			Page 5

Page 5

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	D: A22050
Parameter	Result	Det. Limit	Units
2,4-DINITROPHENOL	BDL	50	
2=METHYLPHENOL	BDL	10	3/
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	- 44		% Rec
PHENOL-D5	29		% Rec
NITROBENZENE-D5	81		% Rec
2-FLUOROBIPHENYL	84		% Rec
2,4,6-TRIBROMOPHENOL	70		% Rec
TÉRPHENYL-D14	75		% Rec
GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: J. MINNIEAR, 11 Analysis Date: 20-DEC-90		Test: P233.4.	0
Parameter			
INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units
FINAL VOLUME	1000		mL
	· · · · · · · · · · · · · · · · · · ·		mL.
HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter	Result	Det. Limit	Units
GASOLINE	BDL	1.3	mg/L
DIESEL FUEL	BDL	5.0	mg/L
OTHER HYDROCARBONS			97.12

Sample Comments

Below Detection Limit BDL

Sample chain of custody number 3402.

Service Location EMS HERITAGE LABORATORIES, INC.	Received 18-DEC-90	Lab ID A220501
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 14-JAN-91	PO Number P0072488
(317)243-8305	Printed	Sampled
	15-JAN-91	16-DEC-90 16:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-106-1290

LOCATION: UMW-106

PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	250		mL
FINAL VOLUME	250		mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter	Result	Det. Limit 0.01	Units
CYANIDE	0.22		mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
INAL VOLUME	100		mL
PHENOLS 4AAP SW846-9066 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter	Result	Det. Limit 0.01	Units
PHENOLS	BDL		mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter	Result	Det. Limit	Units
SULFIDE	BDL		mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: P. ANDERSON Analysis Date: 28-DEC-90		Test: P203.4.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	200		mL
FINAL VOLUME	250		mL

AMMONTA NITROCEN EDA 250 2		
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEI Prep: AMMONIA DISTILLATION EPA 350.3	c-90	Test: G203.4. 0
Parameter ITROGEN, AMMONIA	Result 0.3	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EP Analyst: L. MATTINGLY Analysis Date: 18-DE	A 353.2 C-90 Instrument: AUTO-ANALYZE	R Test: G106.3. 0
Parameter ITROGEN, NITRATE	Result 0.04	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: T. BARNES Analysis Date: 26-DE	C-90	Test: G108.5, 0
Parameter ULFATE	Result 420	Det. Limit Units 125 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 27-DE	C-90	Test: G301.1. 0
Parameter HEMICAL OXYGEN DEMAND	Result 21	Det. Limit Units 10 mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) Analyst: C. THOMAS Analysis Date: 20-DE	AQUEOUS SAMPLES SW846	i-3005 Test: P132.4. 0
Parameter	Result	Det. Limit Units
	50 50	mL mL
INAL VOLUME BARIUM ICP SW846-6010 Apalysis Date: 21-DE	50 :C-90 Instrument: ICP	Test: M104,3. 0
INAL VOLUME BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter	50 :C-90 Instrument: ICP	Test: M104.3. 0
INAL VOLUME BARIUM ICP SW846-6010 Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter BARIUM CADMIUM ICP SW846-6010	C-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result 0.14	Test: M104.3. 0 S SW846-3005 Det. Limit Units 0.010 mg/L Test: M108.3. 0 S SW846-3005
INAL VOLUME BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ARIUM CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter	C-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result 0.14	Test: M104.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0
INAL VOLUME BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ARIUM CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ADMIUM CHROMIUM ICP SW846-6010	Result 0.14 CC-90 Instrument: ICP Result 0.14 CC-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result BDL Result Result BDL	Test: M104.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0 Test: M108.3. 0 Test: M108.3. 0
INAL VOLUME BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ARIUM CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ADMIUM CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter Analyst: M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED) Parameter	Result 0.14 CC-90 Instrument: ICP Result 0.14 CC-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result BDL Result Result BDL	Test: M104.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0 Test: M108.3. 0 Test: M108.3. 0
Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter BARIUM CADMIUM ICP SW846-6010 Analysis M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter CADMIUM CHROMIUM ICP SW846-6010 Analysis M. JAO Analysis Date: 21-DE Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter CHROMIUM COPPER ICP SW846-6010	Result O.14 CC-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result O.14 CC-90 Instrument: ICP METALS) AQUEOUS SAMPLE Result BDL Result BDL Result BDL Result BDL Result BDL Result Result BDL Result Result BDL	Test: M104.3. 0 S SW846-3005 Det. Limit Units mg/L Test: M108.3. 0 S SW846-3005 Det. Limit Units 0.0050 mg/L Test: M110.3. 0 ES SW846-3005 Det. Limit Units mg/L Test: M110.3. 0 Test: M110.3. 0 Test: M110.3. 0 Test: M110.3. 0 Test: M110.3. 0

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A22050
IRON ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOL)	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	S SW846-3005
Parameter IRON	Result 0.64	Det. Limit Units 0.020 mg/L
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOLV	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M116.3. 0 S SW846-3005
Parameter LEAD	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP SW846-6010 Analysis M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOLUTION)	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M119.3. 0 S SW846-3005
Parameter MANGANESE	Result 0.067	Det. Limit Units 0.010 mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOLU	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M122.3. 0 S SW846-3005
Parameter NICKEL	Result BDL	Det. Limit Units 0.010 mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M139.3. 0 S SW846-3005
Parameter ZINC	Result 0.069	Det. Limit Units 0.020 mg/L
prep blank was 0.035 mg/l		
CVAA ACID DIGESTION (DISSOLVED METALS) A Analyst: M. SCROGHAM Analysis Date:	QUEOUS SAMPLES SW846-7470 07-JAN-91	Test: P134.6. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	100 100	Det. Limit Units mL mL
MERCURY CVAA SW846-7470 Analyst: M. SCROGHAM Analysis Date: Prep: CVAA ACID DIGESTION (DISSOLVED ME	08-JAN-91 Instrument: CVAA TALS) AQUEOUS SAMPLES SW840	Test: M120.1. 0 6-7470
Parameter MERCURY	Result 0.00097	Det. Limit Units 0.0005 mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) A Analyst: B. HAHN Analysis Date:	QUEOUS SAMPLES SW846-3020	Test: P133.6. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date: Prep: GFAA ACID DIGESTION (DISSOLVED ME	19-DEC-90 Instrument: GFAA TALS) AQUEOUS SAMPLES SW84	Test: M103.2. 0
Parameter	Result	Det. Limit Units 0.0050 mg/L

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.0
Parameter	Result	Det. Limit Units
CETONE	BDL	20 ug/L
CROLEIN	BDL	50 ug/L
CRYLONITRILE	BDL	70 ug/L
ENZENE	BDL	5 ug/L
ROMODICHLOROMETHANE	BDL	5 ug/L
ROMOFORM	BDL	5 ug/L
ROMOMETHANE	BDL	10 ug/L
ARBON DISULFIDE	BDL	5 ug/L
ARBON TETRACHLORIDE	BDL	5 ug/L
HLOROBENZENE	BDL	5 ug/L
HLOROETHANE	BDL	10 ug/L
HLOROFORM	BDL	5 ug/L
HLOROMETHANE	BDL	10 ug/L
IBROMOCHLOROMETHANE	BDL	5 ug/L
IS-1,3-DICHLOROPROPENE	BDL	5 ug/L
ICHLORODIFLUOROMETHANE	BDL	5 ug/L
,1-DICHLOROETHANE	BDL	5 ug/L
,2-DICHLOROETHANE	BDL	5 ug/L
,1-DICHLOROETHENE	BDL	5 ug/L
,2-DICHLOROPROPANE	BDL	5 ug/L
THYLBENZENE	BDL	5 ug/L
LUOROTRICHLOROMETHANE	BDL	5 ug/L
-HEXANONE	BDL	10 ug/L
ETHYLENE CHLORIDE	BDL	5 ugʻ/L
IETHYL ETHYL KETONE	BDL	10 ug/L
-METHYL-2-PENTANONE	BDL	10 ug/L
TYRENE	BDL	5 ug/L
,1,2,2-TETRACHLOROETHANE	BDL	5 ug/L
ETRACHLOROETHENE	BDL	5 ug/L
ETRAHYDROFURAN	BDL	25 ug/L
OLUENE	BDL	5 ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/L
	BDL	5 ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5 ug/L
,1,1-TRICHLOROETHANE	BDL	5 ug/L
,1,2-TRICHLOROETHANE	BDL	5 ug/L
RICHLOROETHENE	BDL	10 ug/L
INYL ACETATE	BDL	
INYL CHLORIDE		
YLENE (TOTAL)	BDL	5 ug/L
SURROGATE RECOVERY		
DICHLOROETHANE-D4	109	% Rec
FOLUENE-D8	105	% Rec
BROMOFLUOROBENZENE	111	% Rec

Result Det. Limit Units	SEMI-VOLATILE ORGANICS Analyst: K. STONER Prep: GC/MS SEPARATORY	(BASE/NEUTRAL ACID FRAM Analysis Date: 27-DEC- FUNNEL LIQUID-LIQUID	90 Instrument: GC/MS SVOA	Test: 0505.3.	0
ACENAPHTHENE					Units
ACENAPHTHYLENE	ACENAPHTHENE		BDL	10	ug/L
ANTHRACENE	ACENAPHTHYLENE		BDL	10	ug/L
BENZ(A) ANTHRACENE BDL 10 ug/L BENZO(A) PYRENE BDL 10 ug/L	ANTHRACENE		BDL	10	ug/L
BENZÔ(A) PYRENE BDL 10 ug/L	BENZ(A)ANTHRACENE		BDL	10	ug/L
	BENZÔ(Á)PYRENE		BDL		ug/L

Lab Sample ID: A220501

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A220501
Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ALCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL BDL	10 10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L ug/L
BIS(2-CHLOROISOPROPYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE	EST 6	10	ug/L ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	ĪŎ	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURAN	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL BDL	10 10	ug/L
2,6-DINITROTOLUENE	BDL BDL	10	ug/L ug/L
DI-N-OCTYLPHTHALATE	BDL BDL	* 10	ug/L ug/L
FLOURANTHENE FLUORENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	
2-METHYLNAPHTHALENE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L
2-NITROANILINE	BDL	50	ug/L
3-NITROANILINE	BDL	50	ug/L
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL BDL	10 10	ug/L ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L ug/L
PHENANTHRENE 3 DICOLINE	BDL	50	ug/L ug/L
2-PICOLINE PYRENE	BDL	10	ug/L
PYRIDINE	BDL	50	ug/L
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	1.0	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	lug/L Page 5
			Page 5

Page 5

Lab Sample ID: A220501

Parameter	Result	Det. Limit Units
2,4-DINITROPHENOL	BDL	50 ug/L
2-METHYLPHENOL	BDL	10 ugʻ/L
4-METHYLPHENOL	BDL	10 ug/L
2-NITROPHENOL	BDL	10 ug/L
4-NITROPHENOL	BDL	50 ug/L
PENTACHLOROPHENOL	BDL	50 ug/L
PHENOL	BDL	10 ug/L
TETRACHLOROPHENOL	BDL	10 ug/L
2,4,5-TRICHLOROPHENOL	BDL	10 ug/L
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L
SURROGATE RECOVERY		
2-FLUOROPHENOL	37	% Rec
PHENOL-D5	24	% Rec
NITROBENZENE-D5	67	% Rec
2-FLUOROBIPHENYL	78	% Rec
2,4,6-TRIBROMOPHENOL	59	% Rec
TERPHENYL-D14	89	% Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analysis R. BRANCH Analysis Date: 19-DEC-90		Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units mL
FINAL VOLUME			mL

HYDROCARBON SCAN S	W846-8000			
Analyst: S. GATTO		Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0. 0
GASOLINE	Parameter		Result BDL	Det. Limit Units
DIESEL FUEL OTHER HYDROCARBONS		\$	BDL BDL	5.0 mg/L mg/l
NOTE: UNIDENTIFIED	PEAKS DET	ECTED		

Sample Comments

BDL Below Detection Limit

EST Estimated Value

Sample chain of custody number 3402.

Stelewon

Service Location EMS HERITAGE LABORATORIES, INC.	Received 18-DEC-90	Lab ID A220500
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231 (317)243-8305	Complete 10-JAN-91	PO Number P0072488
	Printed 11-JAN-91	Sampled 16-DEC-90 14:10

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-107-1290

LOCATION: UMW-107

PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units ML ML
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.97	Det. Limit 0.10	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result 0.05	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: P. ANDERSON Analysis Date: 28-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL

ANNOUND ANTHONORN FRA AFA A				
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEC-90 Prep: AMMONIA DISTILLATION EPA 350.3			Test: G203.4.	0
Parameter NITROGEN, AMMONIA	32	Result	Det. Limit	Units mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA 35 Analyst: L. MATTINGLY Analysis Date: 18-DEC-90	3.2 Instrum	ent: AUTO-ANALYZER	Test: G106.3.	0
Parameter NITROGEN, NITRATE	0.03	Result	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: T. BARNES Analysis Date: 26-DEC-90			Test: G108.5.	0
Parameter SULFATE	BDL	Result	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-90			Test: G301.1.	
Parameter CHEMICAL OXYGEN DEMAND	77	Result	Det. Limit	Units mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) AQU Analyst: C. THOMAS Analysis Date: 20-DEC-90	EOUS S	AMPLES SW846-30	005 Test: P132.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	50 50	Result	Det. Limit	Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrum LS) AQ	ent: ICP UEOUS SAMPLES S	Test: M104.3.	0
Parameter		Result	Det. Limit	Units
BARIUM	0.27		0.010	mg/L
CADMIUM ICP SW846-6010 Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrum	ent: ICP UEOUS SAMPLES S	Test: M108.3.	
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrum	ent: ICP UEOUS SAMPLES S Result	Test: M108.3.	
Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrum LS) AQ BDL	Result	Test: M108.3. SW846-3005 Det. Limit 0.0050 Test: M110.3.	0 Units mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META Parameter CADMIUM CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META Parameter	Instrum LS) AQ BDL	Result	Test: M108.3. SW846-3005 Det. Limit 0.0050 Test: M110.3.	0 Units mg/L 0 Units
CADMIUM ICP SW846-6010 Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META Parameter CADMIUM CHROMIUM ICP SW846-6010 Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrum LS) AQ BDL Instrum LS) AQ BDL	ent: ICP Result SAMPLES S Result Result ent: ICP	Test: M108.3. SW846-3005 Det. Limit 0.0050 Test: M110.3. SW846-3005 Det. Limit 0.010 Test: M112.3.	Units mg/L 0 Units mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A22050
IRON ICP SW846-6010	21-DEC-90 Instrument: ICP	Test: M115.3. 0
Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	VED METALS) AQUEOUS SAMPLE	S SW846-3005
Parameter	Result	Det. Limit Units
RON	2.1	0.020 mg/L
LEAD ICP SW846-6010		T + 101/ 7 0
Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	S SW846-3005
Parameter	Result	Det. Limit Units
EAD	BDL	0.050 mg/L
MANGANESE ICP SW846-6010		
Applyet: M IAO Applysis Date:	21-DEC-90 Instrument: ICP	Test: M119.3. 0
Prep: FAA OR ICP ACID DIGESTION (DISSOI		Det. Limit Units
Parameter IANGANESE	Result 0.19	0.010 mg/L
AMAAMESE	1 2.22	
NICKEL ICP SW846-6010	21-DEC-90 Instrument: ICP	Test: M122 3 0
Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO	_VED_METALS) AQUEOUS SAMPLE	ES SW846-3005
Parameter	Result	Det. Limit Units
IICKEL	0.013	0.010 mg/L
Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO) Parameter	Result	ES SW846-3005 Det. Limit Units
ZINC	0.087	0.020 mg/L
orep blank was 0.035 mg/l		
CVAA ACID DIGESTION (DISSOLVED METALS)	AQUEOUS SAMPLES SW846-7470	Test: P134.6. 0
Analyst: M. SCROGHAM Analysis Date: Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME	100	mL
FINAL VOLUME	100	m_
MERCURY CVAA SW846-7470		
Analyst M SCROGHAM Analysis Date	: 08-JAN-91 Instrument: CVAA	Test: M120.1. 0
Prep: CVAA ACID DIGESTION (DISSOLVED M	The state of the s	
Parameter MERCURY	0.00052	Det. Limit Units 0.0005 mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Date	AQUEOUS SAMPLES SW846-3020	Test: P133.6. 0
Parameter	Result	Det. Limit Units
INITIAL WEIGHT OR VOLUME	50	mL
FINAL VOLUME	50	mL mL
ARSENIC GFAA SW846-7060		
Analyst: M. BAUER Analysis Date Prep: GFAA ACID DIGESTION (DISSOLVED M	: 19-DEC-90 Instrument: GFAA ETALS) AQUEOUS SAMPLES SW8	Test: M103.2. 0 46-3020
Parameter	Result	Det. Limit Units
	BDL	0.0050 mg/L

Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
CETONE	BDL	20	ug/L
CROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
ENZENE	* 3600	250	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
CHLOROMETHANE	BDL	10	ug/L
)IBROMOCHLOROMETHANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
)ICHLÓRODIFLUOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
ETHYLBENZENE	56	5	ug/L
LUOROTRICHLOROMETHANE	BDL	5	ug/L
2-HEXANONE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
METHYL ETHYL KETONE	BDL	10	ug/L
4-METHYL-2-PENTANONE	BDL	10	ug/L
STYRENE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLOROETHENE	BDL	5	ug/L
TETRAHYDROFURAN	BDL	25	ug/L
TOLUENE	27	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
VINYL ACETATE	BDL	10	ug/L
VINYL CHLORIDE	BDL	10	ug/L
XYLENE (TOTAL)	80	5	ug/L
(ILLIIL (IVIAL)			3.7
SURROGATE RECOVERY			
	112		% Rec
DICHLOROETHANE-D4	98		% Rec
TOLUENE-D8	108		% Rec
BROMOFLUOROBENZENE NOTE: * RUN AT 1:50 DILUTION	100		1 /0 IVEC

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL A Analyst: K. STONER Analysis Da Prep: GC/MS SEPARATORY FUNNEL LIQUID-	te: 27-DEC-90 Instrument: GC/MS SVOA	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	10	ug/L
ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L

ENS HERITAGE LABORATORIES, TRO.			
Parameter	Result	Det. Limit	Units
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A)PYRENE	BDL		ug/L
BENZO(B)FLUORANTHENE	BDL		ug/L
BENZO(G,H,I)PERYLENE	BDL		ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ALCOHOL	BDL		ug/L
BENZYLBUTYLPHTHALATE	BDL		ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL		ug/L
BIS(2-CHLOROETHYL)ETHER	BDL		ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL		ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
DIBENZ(A, H) ANTHRACENE	BDL		ug/L
DIBENZOFURAN	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL		ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
FLOURANTHENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
1SOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	BDL	10	ug/L
NAPHTHALENE	17	10	ug/L
2-NITROANILINE	BDL	50	ug/L
3-NITROANILINE	BDL		ug/L
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL		ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL		ug/L
PHENANTHRENE	BDL	10	ug/L
2-PICOLINE	BDL	50	ug/L
PYRENE	BDL	10	ug/L
PYRIDINE	BDL		ug/L
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
			Page 5

Lab Sample ID: A220500

Parameter	Result	Det. Limit	Units
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	ug/L
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	40		% Rec
PHENOL-D5	27		% Rec
NITROBENZENE-D5	74		% Rec
2-FLUOROBIPHENYL	77		% Rec
2,4,6-TRIBROMOPHENOL	86		% Rec
TERPHENYL-D14	86		% Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION	N SW846-3510		
Analyst: R. BRANCH Analysis Date: 19-DEC-90		Test: P233.4.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1000		mL
FINAL VOLUME			mL_

HYDROCARBON SCAN SW846-80	000			
Analyst: S. GATTO	Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parame	ter	Result	Det. Limit	Units
GASOLINE	· · · · · · · · · · · · · · · · · · ·	BDL	1.3	mg/L
DIESEL FUEL		BDL	5.0	mg/L
OTHER HYDROCARBONS	9	BDL		mg/L
NOTE: UNIDENTIFIED PEAKS	DETECTED			

Sample Comments

See Note for Parameter BDL Below Detection Limit

Sample chain of custody number 3402.

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	19-DEC-90	A220596
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	11-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	12-JAN-91	17-DEC-90 15:35

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-108-B-1290 (GRAB) SAMPLE LOCATION:: UMW-108-B

INITIAL WEIGHT OR VOLUME

FINAL VOLUME

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 21-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.08	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90	411	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limít	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter	Result	Det. Limit	Units

200

250

mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A220596
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: Prep: AMMONIA DISTILLATION EPA 350.3	31-DEC-90	Test: G203.4. 0
Parameter NITROGEN, AMMONIA	Result 0.5	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED Analyst: C. BOYLE Analysis Date:) EPA 353.2 22-DEC-90 Instrument: AUTO-ANALYZER	R Test: G106.3. 0
Parameter NITROGEN, NITRATE	Result 0.07	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date:	02-JAN-91	Test: G108.5. 0
Parameter SULFATE	Result 92	Det. Limit Units 25 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date:	21-DEC-90	Test: G301.1 . 0
Parameter CHEMICAL OXYGEN DEMAND	Result 41	Det. Limit Units
FAA OR ICP ACID DIGESTION (DISSOLVED MET Analyst: C. THOMAS Analysis Date:	ALS) AQUEOUS SAMPLES SW846	-3005 Test: P132.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M104.3. 0 S SW846-3005
Parameter BARIUM	Result 0.23	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M108.3. 0 S SW846-3005
Parameter CADMIUM	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M110.3. 0 S SW846-3005
Parameter CHROMIUM	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analysi: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M112.3. 0 S SW846-3005
Parameter COPPER	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO	27-DEC-90 Instrument: ICP LVED METALS) AQUEOUS SAMPLE	Test: M115.3. 0 S SW846-3005
Parameter	Result 7.2	Det. Limit Units 0.020 mg/L

ARSENIC

	ESTION (DISSOLVED METALS) AC	Result	Det. Limit	Units
Parameter EAD	BDL	Result		
MANGANESE ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 27-DEC-90 Instru ESTION (DISSOLVED METALS) AC	nent: ICP QUEOUS SAMPLES SW	Test: M119.3. 846-3005	0
Parameter ANGANESE	0.89	Result	Det. Limit 0.010	Units mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 27-DEC-90 Instru ESTION (DISSOLVED METALS) AC	nent: ICP QUEOUS SAMPLES SW	Test: M122.3. 846-3005	0
Parameter	0.02	Result I	Det. Limit 0.010	Units mg/l
NICKEL brep blank was 0.013 mg/l	0.02		0.010	mg/ L
ZINC prep blank was 0.070 mg/l	0.13	Result	Det. Limit 0.020	Units mg/L
CVAA ACID DIGESTION (DISSO	LVED METALS) AQUEOUS SAMPLE: Analysis Date: 09-JAN-91	S SW846-7470	Test: P134.6.	0
Paramete INITIAL WEIGHT OR VOLUME FINAL VOLUME	100 100	Result	Det. Limit	Units ML ML
MERCURY CVAA SW846-7470 Analyst: M. BAUER Prep: CVAA ACID DIGESTION	Analysis Date: 10-JAN-91 Instru (DISSOLVED METALS) AQUEOUS	SAMPLES SW846-74	70	
Paramete MERCURY	BDL	Result	0.0005	Units mg/L
GFAA ACID DIGESTION (DISSO	LVED METALS) AQUEOUS SAMPLE Analysis Date: 26-DEC-90	S SW846-3020	Test: P133.6.	0
Paramete INITIAL WEIGHT OR VOLUME FINAL VOLUME	50 50	Result	Det. Limit	Units mL mL
ARSENIC GFAA SW846-7060 Analyst: S. GRAY Prep: GFAA ACID DIGESTION	Analysis Date: 03-JAN-91 Instru (DISSOLVED METALS) AQUEOUS	ment: GFAA SAMPLES SW846-30	Test: M103.2.)20	0
Paramete		Result	Det. Limit	Units

BDL

0.0050 mg/L

Analyst: H. WILLIAMS Parameter CETONE	Result		
CETONE		Det. Limit	Units
	BDL	20	ug/L
CROLEIN	BDL	50	ug/L
CRYLONITRILE	BDL	70	ug/L
ENZENE	BDL	5	ug/L
ROMODICHLOROMETHANE	BDL	5	ug/L
ROMOFORM	BDL	5	ug/L
ROMOMETHANE	BDL	10	ug/L
ARBON DISULFIDE	BDL	5	ug/L
ARBON TETRACHLORIDE	BDL	5	ug/L
HLOROBENZENE	BDL	5	ug/L
HLOROETHANE	BDL	10	ug/L
HLOROFORM	BDL	5	ug/L
HLOROMETHANE	BDL	10	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
IS-1,3-DICHLOROPROPENE	BDL	5	ug/L
OICHLORODIFLUOROMETHANE	BDL	5	ug/L
,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL	5	ug/L
,2-DICHLOROPROPANE	BDL	5	ug/L
	BDL	5	ug/L
THYLBENZENE LUOROTRICHLOROMETHANE	BDL	5	ug/L
	BDL	10	ug/L
2-HEXANONE	BDL	5	ug/L
METHYLENE CHLORIDE	BDL	10	ug/L ug/L
METHYL ETHYL KETONE	BDL		ug/L ug/L
I-METHYL-2-PENTANONE	BDL	5	ug/L ug/L
STYRENE	BDL	5	ug/L
I,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
FETRACHLOROETHENE	BDL	25	ug/L
TETRAHYDROFURAN	BDL *	5	ug/L ug/L
TOLUENE	BDL.	5	
I,2-DICHLOROETHENE (TOTAL)			ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL		ug/L
TRICHLOROETHENE	BDL		3,
/INYL ACETATE	BDL	10	ug/L
/INYL CHLORIDE	BDL	10	ug/L
(YLENE (TOTAL)	BDL	5	ug/L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	104		% Rec
TOLUENE-D8	102		% Rec
BROMOFLUOROBENZENE	100		% Rec
GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION	N SW846-3510	Test: P233.4.	n
Analyst: R. BRANCH Analysis Date: 20-DEC-90 Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME FINAL VOLUME	1000		mL mL

EMS HERITAGE LABORATORIES, INC.	Lab Sample I	D. ALL	
SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analysis Date: 21-DEC-90 Instrument: GC/MS SV0A Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION SW846-3510			0
		Dot limit	Unit
Parameter	Result BDL	Det. Limit	ug/L
CENAPHTHENE CENAPHTHYLENE	BDL	10	ug/L
CENAPHTHYLENE NTHRACENE	BDL	10	ug/L
ENZ (A) ANTHRACENE	BDL	10	ug/L
ENZO(A) PYRENE	BDL	10	ug/L
	BDL	10	ug/L
ENZO(B)FLUORANTHENE ENZO(G,H,I)PERYLENE	BDL	10	ug/L
ENZO(G, H, 1) FERTLENE ENZO(K) FLUORANTHENE	BDL	10	ug/L
ENZYL ALCOHOL	BDL	10	ug/L
ENZYLBUTYLPHTHALATE	BDL	10	
IS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
IS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
IS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
IS(2-CHLOROISOPROPYL)EITER IS(2-ETHYLHEXYL)PHTHALATE	BDL	10	
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
ARBAZOLE	BDL	10	
-CHLOROANILINE	BDL	10	ug/L
-CHLOROANTLINE -CHLORONAPHTHALENE	BDL	10	
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
	BDL	10	ug/L
HRYSENE TRENZIA UNANTURACENE	BDL	10	ug/L
IBENZ(A, H) ANTHRACENE	BDL	10	
IBENZOFURAN	BDL	10	ug/L
,2-DICHLOROBENZENE	BDL	10	
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	20	
,3'-DICHLOROBENZIDINE	BDL	10	ug/L
IETHYLPHTHALATE	BDL	10	ug/L
IMETHYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL	50	
INITROBENZENES	BDL	10	ug/L
,4-DINITROTOLUENE	BDL		ug/L
,6-DINITROTOLUENE	BDL	10	ug/L
I-N-OCTYLPHTHALATE	BDL	10	ug/L ug/L
LOURANTHENE	BDL	10	ug/L ug/L
LUORENE	BDL BDL	10	
IEXACHLOROBENZENE	BDL	10	ug/L
IEXACHLOROBUTADIENE	BDL	10	ug/L
IEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L ug/L
IEXACHLOROETHANE	BDL	10	
NDENO(1,2,3-CD)PYRENE			
SOPHORONE	BDL BDL	10 10	ug/L
-METHYLNAPHTHALENE			
IAPHTHALENE	BDL	10 50	ug/L
-NITROANILINE	BDL		0,
-NITROANILINE	BDL	50 50	ug/L
-NITROANILINE	BDL		37
ITROBENZENE	BDL	10	ug/L
-NITROSO-DIPHENYLAMINE	BDL	10) 0,
I-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE	BDL	10	
2-PICOLINE	BDL	50	ug/L
PYRENE	BDL	10	ug/L
PYRIDINE	BDL	50	ug/L
TETRACHLOROBENZENES	BDL	10	ug/L Page

EMS HERITAGE LABORATORIES,	INC.	Li	ab	Sample	ID:	A220596

Parameter	Result	Det. Limit	Units
TOLUENEDIAMINE	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	ug/L
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	28		% Rec
PHENOL-D5	17		% Rec
NITROBENZENE-D5	81		% Rec
2-FLUOROBIPHENYL	59		% Rec
2,4,6-TRIBROMOPHENOL	27		% Rec
TÉRPHENYL-D14	95		% Rec

HYDROCARBON SCAN SW8	46-8000			
Analyst: S. GATTO	Analysis Da	ate: 21-DEC-90 Instrument: GC/FID	Test: 0409.0.	0
	Parameter	Result	Det. Limit	Units
GASOLINE		BDL	1.3	mg/L
DIESEL FUEL		BDL	5.0	mg/L
OTHER HADDUCADBONS		I BOL		ma/l

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3404.

Service Location EMS HERITAGE LABORATORIES, INC.	Received 18-DEC-90	Lab ID A220498
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 10-JAN-91	PO Number P0072488
(317)243-8305	Printed	Sampled
(01./2.0 0000	11-JAN-91	16-DEC-90 09:30

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-110-1290 LOCATION: UMW-110

PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	250		mL
INAL VOLUME	250		mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter	Result	Det. Limit 0.10	Units
CYANIDE	0.86		mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL
PHENOLS 4AAP SW846-9066 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter	Result	Det. Limit 0.01	Units
PHENOLS	BDL		mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter	Result	Det. Limit	Units
SULFIDE	BDL		mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: P. ANDERSON Analysis Date: 28-DEC-90		Test: P203.4.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	200		mL
FINAL VOLUME	250		mL

Analyst: P. ANDERSON Prep: AMMONIA DI	Analysis Date: 31-DEC-90 STILLATION EPA 350.3			Test: G203.4.	U
NITROGEN, AMMONIA	Parameter	3.9	Result	Det. Limit 0.10	Units mg/L
NITROGEN-NITRATE Analyst: L. MATTINGLY	(COLORIMETRIC AUTOMATED) EPA 35 Analysis Date: 18-DEC-90	3.2 Instrum	ent: AUTO-ANALYZER	Test: G106.3.	0
NITROGEN, NITRATE	Parameter	0.05	Result	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIME	ETRIC EPA 375.4 Analysis Date: 26-DEC-90			Test: G108.5.	0
SULFATE	Parameter	270	Result	Det. Limit 125	Units mg/L
CHEMICAL OXYGEN D	DEMAND EPA 410.4 Analysis Date: 21-DEC-90			Test: G301.1.	0
CHEMICAL OXYGEN DE	Parameter EMAND	42	Result	Det. Limit	Units mg/L
FAA OR ICP ACID E	DIGESTION (DISSOLVED METALS) AQU Analysis Date: 20-DEC-90	IEOUS S	AMPLES SW846-300)5 Test: P132.4.	0
INITIAL WEIGHT OR FINAL VOLUME	Parameter VOLUME	50 50	Result	Det. Limit	Units ML ML
BARIUM ICP SW846-	- 6010 Analysis Date: 21-DEC-90 P ACID DIGESTION (DISSOLVED META	Instrum NLS) AQ	ent: ICP UEOUS SAMPLES SV	Test: M104.3. /846-3005	0
FIED. IAA ON IGI		1			
	Parameter	0.18	Result	Det. Limit 0.010	Units mg/L
BARIUM CADMIUM ICP SW840		Instrum	ment: ICP	0.010 Test: M108.3.	mg/L
BARIUM CADMIUM ICP SW840 Analyst: M. JAO Prep: FAA OR ICI	6-6010 Analysis Date: 21-DEC-90	Instrum	ment: ICP	0.010 Test: M108.3.	mg/L 0 Units
CADMIUM ICP SW840 Analyst: M. JAO Prep: FAA OR ICI CADMIUM CHROMIUM ICP SW840	Analysis Date: 21-DEC-90 P ACID DIGESTION (DISSOLVED META Parameter 46-6010 Analysis Date: 21-DEC-90	Instrum ALS) AQ BDL	nent: ICP UEOUS SAMPLES SW Result nent: ICP	0.010 Test: M108.3. 1846-3005 Det. Limit 0.0050 Test: M110.3.	mg/L Units mg/L
CADMIUM ICP SW840 Analyst: M. JAO Prep: FAA OR ICI CADMIUM CHROMIUM ICP SW840 Analyst: M. JAO Prep: FAA OR ICI	Analysis Date: 21-DEC-90 P ACID DIGESTION (DISSOLVED META Parameter 46-6010	Instrum ALS) AQ BDL	nent: ICP UEOUS SAMPLES SW Result nent: ICP	0.010 Test: M108.3. 1846-3005 Det. Limit 0.0050 Test: M110.3.	mg/L Units mg/L Units
CADMIUM ICP SW846 Analyst: M. JAO Prep: FAA OR ICI CADMIUM CHROMIUM ICP SW846 Analyst: M. JAO Prep: FAA OR ICI CHROMIUM COPPER ICP SW846	Analysis Date: 21-DEC-90 P ACID DIGESTION (DISSOLVED META Parameter 46-6010 Analysis Date: 21-DEC-90 P ACID DIGESTION (DISSOLVED META Parameter	Instrum ALS) AQ BDL Instrum ALS) AQ BDL	nent: ICP WEOUS SAMPLES SW Result nent: ICP WEOUS SAMPLES SW Result	0.010 Test: M108.3. V846-3005 Det. Limit 0.0050 Test: M110.3. V846-3005 Det. Limit 0.010 Test: M112.3.	mg/L Units mg/L Units mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A2204
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date:	21-DEC-90 Instrument: ICP	Test: M115.3. 0
Prep: FAA OR ICP ACID DIGESTION (DISSOL	LVED METALS) AQUEOUS SAMPLE	S SW846-3005
RON	Result 1.5	Det. Limit Units 0.020 mg/L
LEAD ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M116.3. 0 S SW846-3005
Parameter EAD	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M119.3. 0 S SW846-3005
Parameter IANGANESE	Result 3.7	Det. Limit Units 0.010 mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLE	Test: M122.3, 0 S SW846-3005
Parameter NICKEL	Result BDL	Det. Limit Units 0.010 mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP _VED METALS) AQUEOUS SAMPLE	Test: M139.3. 0 S SW846-3005
Parameter	Result 0.093	Det. Limit Units 0.020 mg/L
erep blank was 0.035 mg/l		
CVAA ACID DIGESTION (DISSOLVED METALS) Analyst: M. SCROGHAM Analysis Date:		Test: P134.6, 0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 100 100	Det. Limit Units mL
MERCURY CVAA SW846-7470		1
	08-JAN-91 Instrument: CVAA ETALS) AQUEOUS SAMPLES SW84	Test: M120.1. 0 6-7470
Parameter IERCURY	Result BDL	Det. Limit Units 0.0005 mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Date:		Test: P133.6. 0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 50 50	Det. Limit Units mL mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date: Prep: GFAA ACID DIGESTION (DISSOLVED ME	19-DEC-90 Instrument: GFAA ETALS) AQUEOUS SAMPLES SW84	Test: M103.2, 0 6-3020
	Result	Det. Limit Units

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
CETONE	BDL	20	ug/L
CROLEIN	BDL	50	ug/L
CRYLONITRILE	BDL	70	ug/L
ENZENE	83	5	ug/L
ROMODICHLOROMETHANE	BDL	5	ug/L
ROMOFORM	BDL	5	ug/L
ROMOMETHANE	BDL	10	ug/L
ARBON DISULFIDE	BDL	5	ug/L
ARBON TETRACHLORIDE	BDL	5	ug/L
HLOROBENZENE	BDL	5	ug/L
HLOROETHANE	BDL	10	ug/L
HLOROFORM	BDL	5	ug/L
HLOROMETHANE	BDL	10	ug/L
IBROMOCHLOROMETHANE	BDL	5	ug/L
IS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ICHLORODIFLUOROMETHANE	BDL	5	ug/L
,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL	5	ug/L
,2-DICHLOROPROPANE	BDL	5	ug/L
THYLBENZENE	150	5	ug/L
LUOROTRICHLOROMETHANE	BDL	5	ug/L
	BDL	10	ug/L
-HEXANONE	BDL	5	ug/L
METHYLENE CHLORIDE	BDL	10	ug/L
1ETHYL ETHYL KETONE	BDL		
I-METHYL-2-PENTANONE	BDL	5	ug/L
STYRENE	BDL	5	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L ug/L
TETRACHLOROETHENE	BDL	25	ug/L
TETRAHYDROFURAN	BDL	5	ug/L
TOLUENE			ug/L ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL		ug/L
I,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	10	ug/L
/INYL ACETATE	BDL	10	ug/L
/INYL CHLORIDE	BDL	10	ug/L
(YLENE (TOTAL)	120	5	ug/L
SURROGATE RECOVERY			
DICH ODOFTHANE DA	107		% Rec
DICHLOROETHANE-D4	100		% Rec
TOLUENE-D8	109		% Rec
BROMOFLUOROBENZENE			1 /0 /1.00
GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTIO Analyst: M. FRANK Analysis Date: 19-DEC-90	N SW846-3510	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units mL mL

EMS-HERITAGE LABORATORIES, INC.	L	ab Sample ID	: A220498
SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACT)	ONS) SW846-8270		
• Late K Groups Analysis Date: 27-DEC-90	Instrument: GC/MS SVUA	Test: 0505.3. ()
Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXT			
Parameter	Result	Det. Limit	Units ug/L
ACENAPHTHENE	52 93		ug/L
ACENAPHTHYLENE	11		ug/L
ANTHRACENE	BDL	10	ug/L
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL		ug/L
BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K) FLUORANTHENE	BDL		ug/L
BENZYL ALCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
CARBAZOLE	BDL		ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL		ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE	BDL	10	J
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZÒFÜRÁN	11	10	
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	U,
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	٥,
DI-N-BUTYLPHTHALATE	BDL	50	ug/L ug/L
DINITROBENZENES	BDL	10	ug/L
2,4-DINITROTOLUENE	BDL BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	iŏ	
FLOURANTHENE	51	10	ug/L
FLUORENE	BDL	ĪŎ	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	34	10	
NAPHTHALENE	* 630	50	ug/L
2-NITROANILINE	BDL	50	
3-NITROANILINE	BDL	50	ug/L
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE	56	10	
2-PICOLINE	BDL	50	ug/L
PYRENE	EST 7	10	ug/L
PYRIDINE	BDL	50	ug/L
TETRACHLOROBENZENES	BDL	10	ug/L
			Page 5

Service Location EMS HERITAGE LABORATORIES, INC.	Received 19-DEC-90	Lab ID A220597
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-JAN-91	PO Number P0072488
(317)243-8305	Printed	Sampled
,	12-JAN-91	17-DEC-90 16:10

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-111-1290 (GRAB) SAMPLE LOCATION:: UMW-111

FINAL VOLUME

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P101.4.	0
Parameter [NITIAL WEIGHT OR VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 21-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter YANIDE	Result BDL	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P405.7.	T
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 200	Det. Limit	Units ML

250

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A220597
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEC-	-90	Test: G203.4. 0
Prep: AMMONIA DISTILLATION EPA 350.3	D	Det. Limit Units
Parameter NITROGEN, AMMONIA	Result 0.3	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA Analyst: C. BOYLE Analysis Date: 22-DEC	353.2 -90 Instrument: AUTO-ANALYZER	Test: G106.3. 0
Parameter NITROGEN, NITRATE	Result 5.5	Det. Limit Units 1.0 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date: 02-JAN	-91	Test: G108.5. 0
Parameter SULFATE	Result 160	Det. Limit Units 50 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC	-90	Test: G301.1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 480	Det. Limit Units 30 mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) Analyst: C. THOMAS Analysis Date: 26-DEC	AQUEOUS SAMPLES SW846-3	3005 Test: P132.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC Prep: FAA OR ICP ACID DIGESTION (DISSOLVED M	:-90 Instrument: ICP METALS) AQUEOUS SAMPLES	Test: M104.3, 0 SW846-3005
Parameter BARIUM	Result 0.36	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC Prep: FAA OR ICP ACID DIGESTION (DISSOLVED N	:-90 Instrument: ICP METALS) AQUEOUS SAMPLES	Test: M108.3. 0 SW846-3005
Parameter CADMIUM	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLVED N	c-90 Instrument: ICP METALS) AQUEOUS SAMPLES	Test: M110.3. 0 SW846-3005
Parameter CHROMIUM	Result 0.11	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC Prep: FAA OR ICP ACID DIGESTION (DISSOLVED I	c-90 Instrument: ICP METALS) AQUEOUS SAMPLES	Test: M112.3. 0 SW846-3005
Parameter COPPER	Result 0.068	Det. Limit Units 0.020 mg/L
IRON ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC Prep: FAA OR ICP ACID DIGESTION (DISSOLVED)	c-90 Instrument: ICP METALS) AQUEOUS SAMPLES	Test: M115.3. 0 SW846-3005
Parameter IRON	Result 93.	Det. Limit Units 0.020 mg/L

nalyst: M. JAO Prep: FAA OR	ICP ACID DIGESTION (DIS	ate: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	S SW846-3005
EAD	Parameter	Result 0.083	Det. Limit Units 0.050 mg/L
MANGANESE ICP Analyst: M. JAO Prep: FAA OR	Analysis D	ate: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M119.3. 0 S SW846-3005
ANGANESE	Parameter	Result	Det. Limit Units 0.010 mg/L
NICKEL ICP SW8 Analyst: M. JAO Prep: FAA OR	Analysis D	ate: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE	Test: M122.3. 0 S SW846-3005
TOVEL	Parameter	Result 0.12	Det. Limit Units 0.010 mg/L
ICKEL rep blank was	0.013 mg/1	0.12	0.010 mg/ L
Analyst: M. JAO Prep: FAA OR	ICP ACID DIGESTION (DIS	ssolved Metals) Aqueous SAMPLE	
	Parameter	0.28	Det. Limit Units 0.020 mg/L
rep blank was	0.070 mg/1	0.28	0.020 mg/L
rep blank was CVAA ACID DIGE Analyst: M. SCROGHA	O.070 mg/1 STION (DISSOLVED METALS M Analysis D Parameter	e de la companya del companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya d	0.020 mg/L
CVAA ACID DIGE Analyst: M. SCROGHA NITIAL WEIGHT INAL VOLUME MERCURY CVAA S	O.070 mg/7 ESTION (DISSOLVED METALS M Analysis D Parameter OR VOLUME SW846-7470	0.28 S) AQUEOUS SAMPLES SW846-7470 Pate: 09-JAN-91 Result 100	0.020 mg/L Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0
CVAA ACID DIGE Analyst: M. SCROGHAI NITIAL WEIGHT INAL VOLUME MERCURY CVAA S Analyst: M. BAUER Prep: CVAA AC	O.070 mg/7 ESTION (DISSOLVED METALS M Analysis D Parameter OR VOLUME SW846-7470	0.28 S) AQUEOUS SAMPLES SW846-7470 Result 100 100 Date: 10-JAN-91 Instrument: CVAA	0.020 mg/L Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0
CVAA ACID DIGE Analyst: M. SCROGHAI NITIAL WEIGHT INAL VOLUME MERCURY CVAA S Analyst: M. BAUER Prep: CVAA AC	O.070 mg/7 ESTION (DISSOLVED METALS M Analysis D Parameter OR VOLUME SW846-7470 Analysis D Parameter Parameter ESTION (DISSOLVED METALS)	0.28 S) AQUEOUS SAMPLES SW846-7470 Result 100 100 Date: 10-JAN-91 Instrument: CVAA D METALS) AQUEOUS SAMPLES SW84 Result	Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0 Det. Limit Units
CVAA ACID DIGE Analyst: M. SCROGHAI NITIAL WEIGHT INAL VOLUME MERCURY CVAA S Analyst: M. BAUER Prep: CVAA ACID MERCURY GFAA ACID DIGE Analyst: B. HAHN	O.070 mg/7 ESTION (DISSOLVED METALS M Analysis D Parameter OR VOLUME SW846-7470 Analysis D Parameter ESTION (DISSOLVED METALS Analysis D Parameter	O.28 S) AQUEOUS SAMPLES SW846-7470 Pate: 09-JAN-91 Result 100 100 Pate: 10-JAN-91 Instrument: CVAA D METALS) AQUEOUS SAMPLES SW84 0.0022 S) AQUEOUS SAMPLES SW846-3020	Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0 46-7470 Det. Limit Units mL Test: M120.1. 0
Analyst: M. SCROGHA INITIAL WEIGHT INAL VOLUME MERCURY CVAA S Analyst: M. BAUER Prep: CVAA AC MERCURY GFAA ACID DIGE Analyst: B. HAHN INITIAL WEIGHT INAL VOLUME ARSENIC GFAA S Analyst: S. GRAY	O.070 mg/7 ESTION (DISSOLVED METALS M Analysis D Parameter OR VOLUME SW846-7470 Analysis D Parameter ESTION (DISSOLVED METALS Analysis D Parameter OR VOLUME SW846-7060 Analysis S	O.28 S) AQUEOUS SAMPLES SW846-7470 Pate: 09-JAN-91 Result 100 100 PATE 10-JAN-91 Instrument: CVAA D METALS) AQUEOUS SAMPLES SW846 Result 0.0022 S) AQUEOUS SAMPLES SW846-3020 Result 50	Test: P134.6. 0 Det. Limit Units mL mL Test: M120.1. 0 46-7470 Det. Limit Units mg/L Test: P133.6. 0 Det. Limit Units mL mL Test: M103.2. 0

Lab Sample ID: A220597

VOLATILE ORGANICS SW846-8240	24 DEC 00	Test: 0510.3.	n
	ate: 21-DEC-90 Instrument: GC/MS VOA	Det. Limit	Units
Parameter	Result BDL	Det. Limit 20	ug/L
CETONE	BDL	50	
CROLEIN	BDL	70	ug/L
CRYLONITRILE		5	ug/L ug/L
BENZENE	BDL	5	
BROMODICHLOROMETHANE	BDL		ug/L
BROMOFORM	BDL	5	
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL	5	
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	
CHLOROETHANE	BDL	10	
CHLOROFORM	BDL	5	1 01
CHLOROMETHANE	BDL	10	ug/L
OIBROMOCHLOROMETHANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
DICHLORODIFLUOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,1-DICHLOROPTHENE 1,2-DICHLOROPROPANE	BDL	5	ug/L
	BDL	5	ug/L
ETHYLBENZENE	BDL	5	ug/L
FLUOROTRICHLOROMETHANE	BDL	10	ug/L
2-HEXANONE	BDL	5	
METHYLENE CHLORIDE	* 27	10	ug/L
METHYL ETHYL KETONE	BDL	10	
4-METHYL-2-PENTANONE	BDL	5	ug/L
STYRENE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	5	ug/L ug/L
TETRACHLOROETHENE	BDL		
TETRAHYDROFURAN	BDL	25	ug/L
TOLUENE	* 7	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
VINYL ACETATE	BDL	10	ug/L
VINYL CHLORIDE	BDL	10	ug/L
XYLENE (TOTAL)	BDL	5	ug/L
Artene (101/16)			
SURROGATE RECOVERY			
DICH ODOCTHAND DA	109		% Rec
DICHLOROETHANE-D4			% Rec
TOLUENE-D8	105		% Rec
BROMOFLUOROBENZENE NOTF: * ALSO DETECTED IN THE BLANK	110		1 10 VEC

NOTE: * ALSO DETECTED IN THE BLANK

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: R. BRANCH Analysis Date: 20-DEC-90	SW846-3510	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units mL
FINAL VOLUME			mL

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL A	te: 21-DEC-90 Instrument: GC/MS SVOA	Test: 0505.3.	0
Prep: GC/MS SEPARATORY FUNNEL LIQUID-	LIQUID EXTRACTION SW846-3510 Result	Det. Limit	Units
CENAPHTHENE	BDL	10	ug/L
ENAPHTHYLENE	BDL	10	
	BDL	10	ug/L
ITHRACENE SUZVANANTUDACENE	BDL	10	ug/L
NZ(A)ANTHRACENE	BDL	10	ug/L
ENZO(A)PYRENE	BDL	10	
NZO(B)FLUORANTHENE	BDL	10	ug/L ug/L
NZO(G,H,I)PERYLENE		10	
NZO(K)FLUORANTHENE	BDL		ug/L
ENZYL ALCOHOL	BDL	10	ug/L
ENZYLBUTYLPHTHALATE	BDL	10	
[S(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
IS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
IS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
IS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
ARBAZOLE	BDL	10	ug/L
-CHLOROANILINE	BDL	10	ug/L
-CHLORONAPHTHALENE	BDL	10	ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
HRYSENE	BDL	10	ug/L
IBENZ(A,H)ANTHRACENE	BDL	10	ug/L
IBENZOFURAN	BDL	10	
	BDL	10	ug/L
, 2 - DICHLOROBENZENE	BDL	10	
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	20	
,3'-DICHLOROBENZIDINE	BDL	10	ug/L
IETHYLPHTHALATE		10	
IMETHYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL		ug/L
INITROBENZENES	BDL	50	ug/L
,4-DINITROTOLUENE	BDL	10	ug/L
,6-DINITROTOLUENE	BDL	10	ug/L
I-N-OCTYLPHTHALATE	BDL	10	ug/L
LOURANTHENE	BDL	10	
LUORENE	BDL	10	ug/L
EXACHLOROBENZENE	BDL	10	ug/L
EXACHLOROBUTAD I ENE	BDL	10	ug/L
EXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
EXACHLOROETHANE	BDL	10	
NDENO(1,2,3-CD)PYRENE	BDL	10	
SOPHORONE	BDL	10	
-METHYLNAPHTHALENE	BDL	10	
	BDL	10	- Q,
APHTHALENE	BDL	50	
-NITROANILINE	BDL	50	
-NITROANILINE	BDL	50	
-NITROANILINE		10	
ITROBENZENE	BDL		
-NITROSO-DIPHENYLAMINE	BDL	10	
-NITROSO-DI-N-PROPYLAMINE	BDL	10	
HENANTHRENE	BDL	10	
-PICOLINE	BDL	50	
YRENE	BDL	10	
YRIDINE	BDL	50	ug/L

Lab Sample ID: A220597

Parameter	Result	Det. Limit Units	
TETRACHLOROBENZENES	BDL	10 ug/L	
TOLUENEDIAMINE	BDL	50 ug/L	
1,2,4-TRICHLOROBENZENE	BDL	10 ug/L	
BENZOIC ACID	BDL	50 ug/L	
4-CHLORO-3-METHYLPHENOL	BDL	10 ug/L	
2-CHLOROPHENOL	BDL	10 ug/L	
2,4-DICHLOROPHENOL	BDL	10 ug/L	
2,4-DIMETHYLPHENOL	BDL	10 ug/L	
4,6-DINITRO-2-METHYLPHENOL	BDL	50 ug/L	
2,4-DINITROPHENOL	BDL	50 ug/L	
2-METHYLPHENOL	BDL	10 ug/L	
4-METHYLPHENOL	BDL	10 ug/L	
2-NITROPHENOL	BDL	10 ug/L	
4-NITROPHENOL	BDL	50 ug/L	
PENTACHLOROPHENOL	BDL	50 ug/L	
PHENOL	BDL	10 ug/L	
TETRACHLOROPHENOL	BDL	10 ug/L	
2,4,5-TRICHLOROPHENOL	BDL	10 ug/L	
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L	
SURROGATE RECOVERY			
SURRUGATE RECOVERT			
2-FLUOROPHENOL	39	% Rec	
PHENOL-D5	24	% Rec	
NITROBENZENE-D5	87	% Rec	
2-FLUOROBIPHENYL	69	% Rec	
2,4,6-TRIBROMOPHENOL	61	% Rec	
TÉRPHENYL-D14	83	% Rec	

HYDROCARBON SCAN SW846	-8000			
Analyst: S. GATTO	Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Par	ameter	Result	Det. Limit	Units
GASOLINE		BDL	1.3	mg/L
DIESEL FUEL		BDL	5.0	mg/L
OTHER HYDROCARBONS		BDL		mg/L

Sample Comments

* See Note for Parameter BDL Below Detection Limit

Sample chain of custody number 3404.

Dietura

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	18-DEC-90	A220504
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	10-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	11-MAR-91	16-DEC-90 11:15

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID #: UMW-112-1290

LOCATION: UMW-112 PROJECT: 122765 / I.P. CHAMPAIGN

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 19-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: S. RANKIN Analysis Date: 19-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analysis C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A22050
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 3 Prep: AMMONIA DISTILLATION EPA 350.3	11-DEC-90	Test: G203.4. 0
Parameter ITROGEN, AMMONIA	Result BDL	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) Analyst: L. MATTINGLY Analysis Date: 1	EPA 353.2 18-DEC-90 Instrument: AUTO-ANALYZ	ER Test: G106.3. 0
Parameter ITROGEN, NITRATE	Result BDL	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: 1. BARNES Analysis Date: 2	26-DEC-90	Test: G108.5. 0
Parameter ULFATE	Result 130	Det. Limit Units 125 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 2	21-DEC-90	Test: G301.1. 0
Parameter HEMICAL OXYGEN DEMAND	Result 46	Det. Limit Units 10 mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED META	ALS) AQUEOUS SAMPLES SW84	6-3005 Test: P132.4. 0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL)	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M104.3. 0 ES SW846-3005
Parameter ARIUM	Result 0.12	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL)	21-DEC-90 Instrument: ICP WED METALS) AQUEOUS SAMPL	Test: M108.3. 0 ES SW846-3005
Parameter ADMIUM	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL'	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M110.3. 0 ES SW846-3005
Parameter HROMIUM	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M112.3. 0 ES SW846-3005
Parameter COPPER	Result 0.025	Det. Limit Units 0.020 mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID	: A22050
IRON ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLUTION)	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M115.3. C ES SW846-3005	
Parameter RON	Result 0.88	Det. Limit 0.020	Units mg/L
LEAD ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSO	21-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPL	Test: M116.3. (ES SW846-3005)
Parameter EAD	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO	21-DEC-90 Instrument: ICP LVED METALS) AQUEOUS SAMPL	Test: M119.3. (ES SW846-3005)
Parameter MANGANESE	Result 0.43	Det. Limit 0.010	Units mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSO	21-DEC-90 Instrument: ICP LVED METALS) AQUEOUS SAMPL	Test: M122.3. (ES SW846-3005)
Parameter NICKEL	Result 0.029	Det. Limit 0.010	Units mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSO	: 21-DEC-90 Instrument: ICP LVED METALS) AQUEOUS SAMPL	Test: M139.3. ES SW846-3005)
Parameter ZINC	Result 0.10	Det. Limit 0.020	Units mg/L
MERCURY CVAA ACID DIGESTION (DISSOLVED Analyst: M. SCROGHAM Analysis Date	METALS) AQUEOUS SAMPLES SW : 07-JAN-91	1846-7470 Test: P134.6.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	100 100	Det. Limit	Units mL mL
MERCURY CVAA SW846-7470 Analyst: M. SCROGHAM Analysis Date Prep: MERCURY CVAA ACID DIGESTION (DIS	: 08-JAN-91 Instrument: CVAA SOLVED METALS) AQUEOUS SAM	Test: M120.1. 1PLES SW846-7470	0
Parameter MERCURY	Result BDL	Det. Limit 0.0005	Units mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Date	AQUEOUS SAMPLES SW846-3020 : 19-DEC-90) Test: P133.6.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	Result 50 50	Det. Limit	Units mL mL
ARSENIC GFAA SW846-7060 Analyst: M. BAUER Analysis Date Prep: GFAA ACID DIGESTION (DISSOLVED M	: 19-DEC-90 Instrument: GFAA ETALS) AQUEOUS SAMPLES SW8	Test: M103.2. 346-3020	0
	Result	Det. Limit	Units

Lab Sample ID: A220504

Analyst: R. SHAMP Analysis Date: 19-DEC-90	Result	Det. Limit	Units
Parameter	BDL	20	ug/L
CETONE CROLEIN	BDL	50	ug/L
CROLEIN	BDL	70	ug/L
CRYLONITRILE	BDL	5	ug/L
ENZENE ROMODICHLOROMETHANE	BDL	5	ug/L
	BDL	5	ug/L
ROMOFORM	BDL	10	ug/L
ROMOMETHANE	BDL	5	ug/L
ARBON DISULFIDE	BDL	5	ug/L
ARBON TETRACHLORIDE	BDL	5	ug/L
HLOROBENZENE	BDL	10	ug/L
HLOROETHANE	BDL	5	ug/L ug/L
HLOROFORM	BDL	10	ug/L ug/L
HLOROMETHANE	BDL	5	ug/L ug/L
IBROMOCHLOROMETHANE	BDL	5	ug/L
IS-1,3-DICHLOROPROPENE	BDL	5	ug/L ug/L
ICHLORODIFLUOROMETHANE	BDL	5	ug/L ug/L
,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
, 1 - DICHLOROETHENE	BDL	5	ug/L
,2-DICHLOROPROPANE	BDL	5	ug/L
THYLBENZENE	BDL	5	ug/L
LUOROTRICHLOROMETHANE	BDL	10	ug/L
-HEXANONE ETHYLENE CHLORIDE	BDL	5	ug/L
	BDL	10	ug/L
ETHYL ETHYL KETONE -METHYL-2-PENTANONE	BDL	10	
	BDL	5	ug/L
TYRENE ,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
,1,2,2-leikaunlukueinane	BDL	5	ug/L
ETRACHLOROETHENE ETRAHYDROFURAN	BDL	25	ug/L
	BDL	5	ug/L
OLUENE ,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
	BDL	5	ug/L
,1,1-TRICHLOROETHANE	BDL	5	ug/L
,1,2-TRICHLOROETHANE RICHLOROETHENE	BDL	Š.	ug/L
INYL ACETATE	BDL	10	ug/L
INYL ACETATE	BDL	iŏ	ug/L
	BDL	5	ug/L
YLENE (TOTAL)	DUC		M3/ L
URROGATE RECOVERY			
ICHLOROETHANE-D4	119		% Rec
	95		% Rec
FOLUENE-D8 BROMOFLUOROBENZENE	111		% Rec
NOPIOI LOUKODENZENE	1 + 1 + 1		1,

Analyst: K. STONER Analysis Date: 28-DEC-90 I Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRA	ACTION 3W040-3310		
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	BDL	10	ug/L
ACENAPHTHYLENE I	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L
BENZ(A)ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	ug/L

Page 4

Lab Sample ID: A220504

ENS HERITAGE EADORATORIES, TROS			
Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUÓRANTHENE	BDL	10	ug/L
BENZYL ÁLCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ÉTHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	
	BDL	10	ug/L
CHRYSENE	BDL	10	
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURAN	BDL	10	
1,2-DICHLOROBENZENE	BDL	10	ug/L ug/L
1,3-DICHLOROBENZENE		10	
1,4-DICHLOROBENZENE	BDL		
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	
DINITROBENZENES	BDL	50	
2,4-DINITROTOLUENE	BDL	10	
2,6-DINITROTOLUENE	BDL	10	ug/L
DÍ-N-OCTYLPHTHALATE	BDL	10	
FLOURANTHENE	BDL	10	1
FLUORENE	BDL	10	
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	BDL	10	
NAPHTHALENE	BDL	10	
2-NITROANILINE	BDL	50	ug/L
	BDL	50	
3-NITROANILINE	BDL	50	ug/L
4-NITROANILINE	BDL	10	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL	10	ug/L
PHENANTHRENE		50	ug/L ug/L
2-PICOLINE	BDL	10	
PYRENE	BDL	50	ug/L
PYRIDINE	BDL		
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	
1,2,4-TRICHLOROBENZENE	BDL	10	
BENZOIC ACID	BDL	50	
4-CHLORO-3-METHYLPHENOL	BDL	10	
2-CHLOROPHENOL	BDL	10	
2,4-DICHLOROPHENOL	BDL	10	
2,4-DIMETHYLPHENOL	BDL	10	
4,6-DINITRO-2-METHYLPHENOL	BDL	50	
17- 211111111111111111111111111111111111		-	Page 5

Page 5

Parameter	Result	Det. Limit Units
2,4-DINITROPHENOL	BDL	50 ug/L
2-METHYLPHENOL	BDL	10 ug/L
4-METHYLPHENOL	BDL	10 ug/L
2-NITROPHENOL	BDL	10 ug/L
4-NITROPHENOL	BDL	50 ug/L
PENTACHLOROPHENOL	BDL	50 ug/L
PHENOL	BDL	10 ug/L
TETRACHLOROPHENOL	BDL	10 ug/L
2,4,5-TRICHLOROPHENOL	BDL	10 ug/L
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L
•		
SURROGATE RECOVERY		
A. ELHODONIENOL		A/ D
2-FLUOROPHENOL	41	% Rec
PHENOL-D5	26	% Rec
NITROBENZENE-D5	93	% Rec
2-FLUOROBIPHENYL	96	% Rec
2,4,6-TRIBROMOPHENOL	86	% Rec
TERPHENYL-D14	93	% Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACT	ION SW846-3510		
Analyst: M. FRANK Analysis Date: 20-DEC-	90	Test: P233.4.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1000		mL
FINAL VOLUME			mL

HYDROCARBON SCAN S					
Analyst: S. GATTO	Analy	/sis Date: 21-DEC-	90 Instrument: GC/FID	Test: 0409.0.	0
	Parameter		Result	Det. Limit	Units
GASOLINE		· 海车会员代 全门多位 500	BDL more than the second	1.3	mg/L
DIESEL FUEL			BDL	5.0	mg/L
OTHER HYDROCARBONS	建 美 集		BDL was an arectical		mg/L

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 3402.

Destusan

Service Location EMS HERITAGE LABORATORIES, INC.	Received 19-DEC-90	Lab ID A220598
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-JAN-91	PO Number P0072488
(317)243-8305	Printed 12-JAN-91	Sampled 17-DEC-90 16:45

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-401-1290 (GRAB)

SAMPLE LOCATION:: UMW-401

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 21-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: J. GRIFFIN Analysis Date: 20-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 20-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: S. RANKIN Analysis Date: 29-DEC-90		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME -INAL VOLUME	Result 200 250	Det. Limit	Units mL mL

property and a second control of the second	ABORATORIES, INC.		Lab Sample ID: A2205
AMMONIA NITROGE Analyst: P. ANDERSON	Analysis Date	e: 31-DEC-90	Test: G203.4. 0
Prep: AMMONIA	DISTILLATION EPA 350.3	Result	Det. Limit Units
ITROGEN, AMMONI		2.3	0.10 mg/L
NITROGEN-NITRAT Analyst: C. BOYLE	E (COLORIMETRIC AUTOMATI Analysis Date	ED) EPA 353.2 e: 22-DEC-90 Instrument: AUTO-ANALYZ	ER Test: G106.3. 0
ITROGEN, NITRAT	Parameter	Result BDL	Det. Limit Units 0.01 mg/L
	METRIC EPA 375.4 Analysis Date	e: 02-JAN-91	Test: G108.5. 0
ULFATE	Parameter	Result 7	Det. Limit Units 5 mg/L
	DEMAND EPA 410.4 Analysis Date	e: 21-DEC-90	Test: G301.1. 0
HEMICAL OXYGEN	Parameter DEMAND	Result 49	Det. Limit Units 10 mg/L
FAA OR ICP ACID	DIGESTION (DISSOLVED MI	ETALS) AQUEOUS SAMPLES SW846	6-3005 Test: P132.4. 0
NITIAL WEIGHT C INAL VOLUME	Parameter	Result 50 50	Det. Limit Units ML ML
BARIUM ICP SW84 Analyst: M. JAO Prep: FAA OR I	Analysis Dat	e: 24-DEC-90 Instrument: ICP DLVED METALS) AQUEOUS SAMPLI	
ARIUM	Parameter	Result 0.14	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW8 Analyst: M. JAO Prep: FAA OR I	Analysis Date	e: 24-DEC-90 Instrument: ICP DLVED METALS) AQUEOUS SAMPLI	Test: M108.3. 0 ES SW846-3005
ADMIUM	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW Analyst: M. JAO Prep: FAA OR I	Analysis Date	e: 24-DEC-90 Instrument: ICP DLVED METALS) AQUEOUS SAMPLI	Test: M110.3. 0 ES SW846-3005
HROMIUM	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW84 Analyst: M. JAO Prep: FAA OR I	Analysis Date	e: 24-DEC-90 Instrument: ICP DLVED METALS) AQUEOUS SAMPLI	Test: M112.3. 0 ES SW846-3005
OPPER	Parameter	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW846- Analyst: M. JAO Prep: FAA OR I	Analysis Dat	e: 24-DEC-90 Instrument: ICP DLVED METALS) AQUEOUS SAMPLI	Test: M115.3, 0 ES SW846-3005
•	Parameter	Result	Det. Limit Units

EMS HERITAGE	E LABORATORIES, INC.		Lab Sample ID: A220598
LEAD ICP SWE Analyst: M. JAO Prep: FAA (Analysis	Date: 24-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	Test: M116.3, 0 S SW846-3005
LEAD	Parameter	Result BDL	Det. Limit Units 0.050 mg/L
Analyst: M. JAO	CP SW846-6010 Analysis OR ICP ACID DIGESTION (DI	Däte: 24-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	Test: M119.3. 0 S SW846-3005
MANGANESE	Paramete r	Result 0.34	Det. Limit Units 0.010 mg/L
NICKEL ICP S Analyst: M. JAO Prep: FAA C		Date: 24-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	Test: M122.3. 0 S SW846-3005
NICKEL	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
ZINC ICP SW8 Analyst: M. JAO Prep: FAA C	Analysis	Date: 24-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	Test: M139.3. 0 S SW846-3005
ZINC prep blank wa	Parameter 1.5 0.038 mg/1	Result 0.033	Det. Limit Units 0.020 mg/L
CVAA ACID DI Analyst: M. SCRO	GESTION (DISSOLVED METAL GHAM Analysis I	S) AQUEOUS SAMPLES SW846-7470 Date: 09-JAN-91	Test: P134.6. 0
INITIAL WEIGH FINAL VOLUME	Parameter T OR VOLUME	100 100	Det. Limit Units mL mL
MERCURY CVAA Analyst: M. BAUEF Prep: CVAA	Analysis I	Date: 10-JAN-91 Instrument: CVAA D METALS) AQUEOUS SAMPLES SW84	Test: M120.1. 0 6-7470
MERCURY	Parameter	Result BDL	Det. Limit Units 0.0005 mg/L
GFAA ACID DI Analyst: B. HAHN		S) AQUEOUS SAMPLES SW846-3020 Date: 20-DEC-90	Test: P133.6. 0
INITIAL WEIGH FINAL VOLUME	Parameter T OR VOLUME	Result 50 50	Det. Limit Units ML ML
ARSENIC GFAA Analyst: K. KEHOE Prep: GFAA	Analysis [Date: 21-DEC-90 Instrument: GFAA D METALS) AQUEOUS SAMPLES SW84	Test: M103.2. 0 6-3020
ARSENIC	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
VOLATILE ODG			
Analyst: H. WILLI	ANICS SW846-8240 AMS Analysis E Parameter	Date: 21-DEC-90 Instrument: GC/MS VOA	Test: 0510.3. 0

Lab Sample ID: A220598

Parameter	Result	Det. Limit Units
BROMODICHLOROMETHANE	BDL	5 ug/L
BROMOFORM	BDL	5 ug/L
BROMOMETHANE	BDL	10 ug/L
CARBON DISULFIDE	BDL	5 ug/L
CARBON TETRACHLORIDE	BDL	5 ug/L
CHLOROBENZENE	BDL	5 ug/L
CHLOROETHANE	BDL	10 ug/L
CHLOROFORM	BDL	5 ug/L
CHLOROMETHANE	BDL	10 ug/L
DIBROMOCHLOROMETHANE	BDL	5 ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5 ug/L
DICHLORODIFLUOROMETHANE	BDL	5 ug/L
,1-DICHLOROETHANE	BDL	5 ug/L
,2-DICHLOROETHANE	BDL	5 ug/L
1,1-DICHLOROETHENE	BDL	
,2-DICHLOROPROPANE	BDL	5 ug/L
THYLBENZENE	BDL	5 ug/L
LUOROTRICHLOROMETHANE	BDL	5 ug/L
?-HEXANONE	BDL	10 ug/L
IETHYLENE CHLORIDE	BDL	5 ug/L
METHYL ETHYL KETONE	* 35	10 ug/L
-METHYL-2-PENTANONE	BDL	10 ug/L
STYRENE	BDL	5 ug/L
,1,2,2-TETRACHLOROETHANE	BDL	5 ug/L
[ETRACHLOROETHENE	BDL	5 ug/L
ETRAHYDROFURAN	BDL	25 ug/L
TOLUENE TOLUENE	* 7	5 ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5 ug/L
,1,1-TRICHLOROETHANE	BDL	5 ug/L
,1,2-TRICHLOROETHANE	BDL	5 ug/L
RICHLOROETHENE	BDL	5 ug/L
INYL ACETATE	BDL	10 ug/L
INYL CHLORIDE	BDL	10 ug/L
YLENE (TOTAL)	BDL	5 ug/L
URROGATE RECOVERY		
ICHLOROETHANE-D4	106	% Rec
OLUENE-D8	101	% Rec
BROMOFLUOROBENZENE	101	
NOTE: * ALSO DETECTED IN THE BLANK	100	% Rec

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: J. MINNIEAR, II Analysis Date: 20-DEC-90	SW846-3510		
Parameter	Result	Test: P233.4. Det. Limit	Units
INITIAL WEIGHT OR VOLUME FINAL VOLUME	1000 1		mL ml

ACENAPHTHENE BDL Det. Limit Units ACENAPHTHYLENE BDL 10 ug/L ANTHRACENE BDL 10 ug/L	SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTI Analyst: M. DONOFRIO Analysis Date: 28-DEC-90 Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXT	Instrument: GC/MS SVOA	Test: 0505.3.	0
ACENAPHTHYLENE BDL 10 ug/L ANTHRACENE BDL 10 ug/L	Parameter ACENAPHTHENE	Result BDI	Det. Limit	Units
	ACENAPHTHYLENE ANTHRACENE	BDL BDL	10 10 10	ug/L ug/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A220598
Parameter Parameter	Result	Det. Limit	Units
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	ug/L
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE BENZYL ALCOHOL	BDL	10	ug/L
	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
SIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
ARBAZOLE	BDL	10	ug/L
CHLOROANILINE	BDL	10	ug/L
-CHLORONAPHTHALENE	BDL	10	ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
HRYSENE	BDL	10	ug/L
IBENZ(A,H)ANTHRACENE	BDL	10	ug/L
IBENZOFURAN	BDL	10	ug/L
,2-DICHLOROBENZENE	BDL	10	ug/L
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	10	ug/L
,3'-DICHLOROBENZIDINE	BDL	20	ug/L
IETHYLPHTHALATE	BDL	10	ug/L
IMETHYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL	10	ug/L
INITROBENZENES	BDL	50	ug/L
,4-DINITROTOLUENE	BDL	10	ug/L
,6-DINITROTOLUENE	BDL	10	ug/L
I-N-OCTYLPHTHALATE	BDL	10	ug/L
LOURANTHENE	BDL	10	ug/L
LUORENE	BDL	10	ug/L
EXACHLOROBENZENE	BDL	10	ug/L
EXACHLOROBUTADI ENE	BDL	10	ug/L
EXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
EXACHLOROETHANE	BDL	10	ug/L
NDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
SOPHORONE	BDL	10	ug/L
-METHYLNAPHTHALENE	BDL	10	ug/L
APHTHAL ENE	BDL	10	ug/L
-NITROANILINE	BDL	50	ug/L
-NITROANILINE	BDL	50	ug/L
-NITROANILINE	BDL	50	ug/L
ITTROBENZENE	RN	10	ug/L

BDL

BDL

BDL

BDL

BDL

BDL

NITROBENZENE

PHENANTHRENE

2-PICOLINE

PYRENE

PYRIDINE

N-NITROSO-DIPHENYLAMINE

TETRACHLOROBENZENES

1,2,4-TRICHLOROBENZENE

4-CHLORO-3-METHYLPHENOL

TOLUENEDIAMINE

2-CHLOROPHENOL

2,4-DICHLOROPHENOL

BENZOIC ACID

N-NITROSO-DI-N-PROPYLAMINE

BDL ug/L 50 **BDL** ug/L ug/L 10 BDL 50 BDL 10 ug/L ug/L BDL 50 BDL BDL ug/L 10 ug/L 10 BDL 10 ug/L

5 Page

10

10

10

10

50

10

ug/L

ug/L ug/L

ug/L ug/L

ug/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A220598
Parameter	Result	Det. Limit	Units
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	
4-METHYLPHENOL	BDL		ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL		10	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	50	ug/L
	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
•			u9/ L
SURROGATE RECOVERY			
2-FLUOROPHENOL	40		<i>0</i> / D.s.s
PHENOL-D5			% Rec
MITDODENZEME DE	23		% Rec

HYDROCARBON SCAN SI	M846-8000				
Analyst: S. GATTO	Ana	alysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
0.1.001.7115	Parameter		Result	Det. Limit	Units
GASOLINE	400		BDL	1.3	mg/L
DIESEL FUEL			BDL	5.0	mg/L
OTHER HYDROCARBONS		A Landa a territoria	BDL		mg/L

79

68

45

79

RT=2.56

Sample Comments See Note for Parameter

BDLBelow Detection Limit RT Retention Time

NITROBENZENE-D5

2-FLUOROBIPHENYL

TÉRPHENYL-D14

ALSO DETECTED

UNKNOWN

2,4,6-TRIBROMOPHENOL

Sample chain of custody number 3404.

% Rec

% Rec

% Rec

% Rec

Service Location		Received	Lab	ID
MS HERITAGE LABORATORIES, INC.		18-DEC-90	A220	
901 W. MORRIS ST.		Complete	PO Nu	
NDIANAPOLIS, IN 46231		10-JAN-91	P0072	2488
317)243-8305		Printed	Sampl	
		11-JAN-91	16-DEC-9	00 17:40
Report To		Bill T	o	
JOHN MATHES AND ASSOCIATES	ILLIN	OIS POWER CO	MPANY	
KATHLEEN A. BLAINE		NTS PAYABLE		
210 WEST SAND BANK ROAD		BOX 511		
P.O. BOX 330 COLUMBIA, IL 62236-0330	DECAI	UR, IL 62525		
COLONDIA, 11 02230-0330				
Sample Descri SAMPLE ID #: UMW-402-1290 LOCATION: UMW-402 PROJECT: 122765 / I.P. CHAMPAIGN	iption			
YANIDE DISTILLATION SW846-9010 nalyst: J. GRIFFIN Analysis Date: 19-DEC-90 Parameter			Test: P101.4.	0
		sult	Det. Limit	Units
NITIAL WEIGHT OR VOLUME	250 250	sult	Det. Limit	Units ML ML
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Tallyst: C. BOYLE Analysis Date: 20-DEC-90	250 250	AUTO-ANALYZER	Det. Limit Test: G101.4.	mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Halyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter	250 250 Instrument:		Test: G101.4.	mL mL 0
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Halyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter	250 250 Instrument:	AUTO÷ANALYZER	Test: G101.4.	mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Palyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065	250 250 Instrument:	AUTO÷ANALYZER	Test: G101.4.	mL mL 0
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065	250 250 Instrument:	AUTO÷ANALYZER	Test: G101.4.	mL mL 0 Units mg/L
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Analysis Date: 19-DEC-90 Parameter	250 250 Instrument:	AUTO÷ANALYZER	Test: G101.4. Det. Limit 0.01	mL mL 0 Units mg/L
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 BAILYST: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME	250 250 Instrument: Res BDL	AUTO÷ANALYZER sult	Test: G101.4. Det. Limit 0.01 Test: P405.7.	mL mL o Units mg/L o Units mL o
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Parameter ANIDE HENOLS DISTILLATION SW846-9010 Parameter Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME	250 250 Instrument:	AUTO÷ANALYZER sult	Test: G101.4. Det. Limit 0.01 Test: P405.7.	mL mL 0 Units mg/L
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 halyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 halyst: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME	250 250 Instrument: Res BDL	AUTO÷ANALYZER sult	Test: G101.4. Det. Limit 0.01 Test: P405.7.	mL mL o Units mg/L o Units mL o
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Palyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Palyst: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Palyst: C. BOYLE Analysis Date: 20-DEC-90	250 250 Instrument: Res BDL Res 100 100	AUTO÷ANALYZER sult	Test: G101.4. Det. Limit 0.01 Test: P405.7.	mL mL 0 Units mg/L 0 Units mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Paralyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Parameter Analysis Date: 20-DEC-90 Analysis Date: 20-DEC-90	250 250 Instrument: Res BDL Res 100 100	AUTO-ANALYZER Sult	Test: G101.4. Det. Limit 0.01 Test: P405.7. Det. Limit	mL mL 0 Units mg/L 0 Units mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Balyst: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Balyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065 Parameter	250 250 Instrument: Res BDL Res 100 100	AUTO-ANALYZER Sult	Test: G101.4. Det. Limit 0.01 Test: P405.7. Det. Limit Test: 0405.7.	mL mL Units mg/L O Units mL mL O Units
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Balyst: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Balyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065 Parameter	250 250 Instrument: Res BDL Res 100 100	AUTO÷ANALYZER Sult AUTO÷ANALYZER	Test: G101.4. Det. Limit	mL mL 0 Units mg/L 0 Units mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Paralyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Palyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065 Parameter ENOLS	250 250 Instrument: Res BDL Res 100 100	AUTO÷ANALYZER Sult AUTO÷ANALYZER	Test: G101.4. Det. Limit 0.01 Test: P405.7. Det. Limit Test: 0405.7.	mL mL Units mg/L O Units mL mL O Units
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Paralyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Palyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065 Parameter ENOLS ULFIDE SW846-9030	250 250 Instrument: Res BDL Res 100 100	AUTO÷ANALYZER Sult AUTO÷ANALYZER	Test: G101.4. Det. Limit 0.01 Test: P405.7. Det. Limit Test: 0405.7.	mL mL 0 Units mg/L Units mL mL mL Units mL mL
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 malyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 malyst: S. RANKIN Analysis Date: 19-DEC-90 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 malyst: C. BOYLE Analysis Date: 20-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065 Parameter ENOLS ULFIDE SW846-9030 malyst: S. HALLORAN Analysis Date: 20-DEC-90	250 250 Instrument: Res BDL Res 100 100 Instrument:	AUTO-ANALYZER Bult AUTO-ANALYZER AUTO-ANALYZER	Test: G101.4. Det. Limit	mL mL O Units mg/L O Units mL mL O Units mL o O O O O O O O O O O O O
ITIAL WEIGHT OR VOLUME NAL VOLUME YANIDE TOTAL (AUTOMATED) SW846-9012 Paralyst: C. BOYLE Prep: CYANIDE DISTILLATION SW846-9010 Parameter ANIDE HENOLS DISTILLATION SW846-9065 Parameter ITIAL WEIGHT OR VOLUME NAL VOLUME HENOLS 4AAP SW846-9066 Parameter Parameter HENOLS 4AAP SW846-9066 Parameter ENOLS Parameter ENOLS	250 250 Instrument: Res BDL Res 100 100 Instrument:	AUTO÷ANALYZER Sult AUTO÷ANALYZER	Test: G101.4. Det. Limit	mL mL 0 Units mg/L Units mL mL mL Units mL mL

Analysis Date: 29-DEC-90

Result

200 250

Parameter

Analyst: S. RANKIN

INITIAL WEIGHT OR VOLUME FINAL VOLUME Units

mL mL

Test: P203.4. 0

Det. Limit

EMS HERITAGE LABORATORIES, INC.		Lab Sample	ID: A220506
AMMONIA NITROGEN EPA 350.3 Analyst: P. ANDERSON Analysis Date: 31-DEC-90 Prep: AMMONIA DISTILLATION EPA 350.3		Test: G203.4.	. 0
NITROGEN, AMMONIA	Result 2.6	Det. Limit 0.10	Units mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA 3 Analyst: L. MATTINGLY Analysis Date: 18-DEC-90	53.2 Instrument: AUTO-ANALYZER	Test: G106.3.	0
Parameter NITROGEN, NITRATE	Result 0.39	Det. Limit	Units mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: T. BARNES Analysis Date: 26-DEC-90		Test: G108.5.	0
Parameter SULFATE	Result 50	Det. Limit 25	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-90		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 170	Det. Limit	Units mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) AQ Analyst: C. THOMAS Analysis Date: 20-DEC-90)5 Test: P132.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit	Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET,	Instrument: ICP ALS) AQUEOUS SAMPLES SV	Test: M104.3. V846-3005	0
Parameter BARIUM	Result 0.21	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M108.3. V846-3005	0
Parameter CADMIUM	Result BDL	Det. Limit 0.005	Units mg/L
CHROMIUM ICP SW846-6010 Analysi: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M110.3. /846-3005	0
Parameter CHROMIUM	Result BDL	Det. Limit 0.005	Units Mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 21-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrument: ICP ALS) AQUEOUS SAMPLES SW	Test: M112.3. 1846-3005	0
Parameter COPPER	Result BDL	Det. Limit 0.020	Units mg/L

	GE LABORATORIES, INC.		Lab Sample ID: A2205
IRON ICP S Analyst: M. JA		Date: 21-DEC-90 Instrument: ICP	Toote W11E 7 0
Prep: FAA	OR ICP ACID DIGESTION (DI	Date: 21-DEC-90	ES SW846-3005
	Parameter	Result	Det. Limit Units
IRON		2.8	0.020 mg/L
LEAD ICP S	W946 6010		
		Date: 21-DEC-90 Instrument: ICP	Test: M116 3 0
Prep: FAA	OR ICP ACID DIGESTION (DI	Date: 21-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	ES SW846-3005
	Parameter	Result	Det. Limit Units
_EAD		BDL	0.050 mg/L
MANGANESE	ICP SW846-6010		
Analyst: M. JA		Date: 21-DEC-90 Instrument: ICP	Tact: M110 3 N
Prep: FAA	OR ICP ACID DIGESTION (DI	SSOL <mark>VED METALS) AQUEOUS</mark> SAMPLE	ES SW846-3005
-	Parameter	Result	Det. Limit Units
IANGANESE		0.91	0.010 mg/L
NICKEL TOD	SW046 6010		
Analyst: M. JA	SW846-6010 Analysis E	Date: 21-DEC-90 Instrument: ICP	Test: M122 3 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	SSOL <mark>V</mark> ED METALS) AQUEOUS SAMPLE	S SW846-3005
	Parameter	Result	Det. Limit Units
ICKEL		BDL	0.010 mg/L
71NC 10D C	10.45 6010		
ZINC ICP SI Analyst: M. JAG		Date: 21-DEC-90 Instrument: ICP	Test: M139.3. 0
Prep: FAA	OR ICP ACID DIGESTION (DIS	SSOLVED METALS) AQUEOUS SAMPLE	S SW846-3005
	Parameter	Result	Det. Limit Units
ZINC	<u> </u>	0.06	0.020 mg/L
CVAA ACID I	NICECTION (DICCOLVED WETAL)	C) AQUEQUE CAMPLES QUOAS TATE	
Analyst: M. SCF		S) AQUEOUS SAMPLES SW846-7470 Date: 07-JAN-91	Test: P134.6. 0
	Parameter	Result	Det. Limit Units
NITIAL WEIG	GHT OR VOLUME	100	mL
INAL VOLUME		100	mL
MEDCUDY CV	A SUCAS 7470		
Malyst: M. SCF	NA SW846-7470	eate: 08-JAN-91 Instrument: CVAA	Test: M120.1. 0
Prep: CVA	ACID DIGESTION (DISSOLVED	METALS) AQUEOUS SAMPLES SW84	6-7470
	Parameter	Result	Det. Limit Units
ERCURY		BDL	0.0005 mg/L
AF11 1A15 F			<u> </u>
GFAA ACID L Analyst: B. HAH		AQUEOUS SAMPLES SW846-3020	
nuaryst. D. MAT	N Analysis D	ate: 19-DEC-90	Test: P133.6. 0
NITIAL WETG	GHT OR VOLUME	Result 50	Det. Limit Units mL
INAL VOLUME		50	mL
			111.0m
	A SW846-7060	22.22.2	
Analyst: M. BAU Prep: GFAA	Analysis D ACID DIGESTION (DISSOLVED	ate: 19-DEC-90	Test: M103.2. 0 6_3020
	Parameter		
RSENIC	rai ameter	Result BDL	Det. Limit Units 0.0050 mg/L
		UUL	J - 0000 III9/ L

Lab Sample ID: A220506

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 19-DEC-90	Instrument: GC/MS VOA	Test: 0 510. 3 .	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	20	ug/L
CROLEIN	BDL	50	ug/L
CRYLONITRILE	BDL	70	ug/L
ENZENE	BDL	5	ug/L
ROMODICHLOROMETHANE	BDL	5	ug/L
ROMOFORM	BDL	5	ug/L
ROMOMETHANE	BDL	10	ug/L
ARBON DISULFIDE	BDL	5	ug/L
ARBON TETRACHLORIDE	BDL	5	ug/L
HLOROBENZENE	BDL	5	ug/L
HLOROETHANE	BDL	10	ug/L
HLOROFORM	BDL	5	ug/L
HLOROMETHANE	BDL	10	ug/L
BROMOCHLOROMETHANE	BDL	5	ug/L
IS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ICHLORODIFLUOROMETHANE	BDL	5	ug/L
, 1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL	5	ug/L
2-DICHLOROPROPANE	BDL	5	ug/L
THYLBENZENE	BDL	5	ug/L
LUOROTRICHLOROMETHANE	BDL	5	ug/L
-HEXANONE	BDL	10	ug/L
ETHYLENE CHLORIDE	BDL	5	ug/L
ETHYL ETHYL KETONE	BDL	10	ug/L
-METHYL-2-PENTANONE	BDL	10	ug/L
ΓYRENE	BDL	5	ug/L
1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
ETRACHLOROETHENE	BDL	5	ug/L
TRAHYDROFURAN	BDL	25	ug/L
DLUENE	BDL	5	ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
,1,1-TRICHLOROETHANE	BDL	5	ug/L
,1,2-TRICHLOROETHANE	BDL	5	ug/L
RICHLOROETHENE	BDL	5	ug/L
INYL ACETATE	BDL	10	ug/L
INYL CHLORIDE	BDL	10	ug/L
LENE (TOTAL)	BDL	5	ug/L
· · · · · · · · · · · · · · · · · · ·			
JRROGATE RECOVERY			
I CHLOROETHANE - D4	108		% Rec
DLUENE-D8	97		% Rec
ROMOFLUOROBENZENE	105		% Rec
MINI LOVINODLIIZLIIL	100	1	70 NEC

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRAG Analyst: M. DONOFRIO Analysis Date: 21-DEC- Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID I	90 Instrument: GC/MS SVOA	Test: 0505.3. 0
Parameter	Result	Det. Limit Units
ACENAPHTHENE	BDL	10 ug/L
ACENAPHTHYLENE	BDL	10 ug/L
ANTHRACENE	BDL	10 ug/L
BENZ (A) ANTHRACENE	BDL	10 ug/L
BENZO(A)PYRENE	BDL	10 ug/L

Page 4

Lab Sample ID: A220506

EMS HERITAGE LABORATURIES, INC.		Lab Sample 1	D: AZZUSU0
Parameter	Result	Det. Limit	Units
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
BENZYL ÁLCOHOL	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
	BDL	10	
BIS(2-ETHYLHEXYL)PHTHALATE	BDL		ug/L
4-BROMOPHENYLPHENYLETHER		10	ug/L
CARBAZOLE	BDL	10	ug/L
4-CHLOROANILINE	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
DIBENZOFURÁN	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DINITROBENZENES	BDL	50	ug/L
2,4-DINITROTOLUENE	BDL	10	
			ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
FLOURANTHENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
2-METHYLNAPHTHALENE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L
2-NITROANILINE	BDL	50	ug/L
3-NITROANILINE	BDL	50	ug/L
4-NITROANILINE	BDL	50	ug/L
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L ug/L
N-NITROSO-DI-N-PROPYLAMINE			
	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
2-PICOLINE	BDL	50	ug/L
PYRENE	BDL	10	ug/L
PYRIDINE	BDL	50	ug/L
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
- 17 - DANATINO E REPRETENCE	1 001		Page 5

Page 5

EMS HERITAGE LABORATORIES, INC.		ab Sample I	D: A220506
Parameter	Result	Det. Limit	Units
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY			-
2-FLUOROPHENOL	40		% Rec
PHENOL-D5	23		% Rec
NITROBENZENE-D5	86		% Rec
2-FLUOROBIPHENYL	74		% Rec
2,4,6-TRIBROMOPHENOL	57		% Rec
TÉRPHENYL-D14	91		% Rec
GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: R. BRANCH Analysis Date: 20-DEC-90	Τ	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL VOLUME	1000		mL ml
# # # # # # # # # # # # # # # # # # #	Table Tabl		mL
HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	n
Parameter	Result	Det. Limit	Units
GASOLINE	BDL	1.3	mg/L
DIESEL FUEL	BDL	5.0	mg/L
OTHER HYDROCARBONS	BDL	U. U.	mq/L
THEN THE BOOK TO SEE A S			llig/ L

Sample Comments

Below Detection Limit BDL

Sample chain of custody number 3403.

Quality Assurance Officer:

Service Location EMS HERITAGE LABORATORIES, INC.	Received 20-DEC-90	Lab ID A220739
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 11-JAN-91	PO Number P0072488
(317)243-8305	Printed	Sampled
	12-JAN-91	19-DEC-90 11:20

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UMW-403-1290 DESCRIPTION: UMW-403 PROJECT NUMBER: 122765

FINAL VOLUME

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 21-DEC-90		Test: P101.4.	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 24-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: K. SMITH Analysis Date: 21-DEC-90		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 24-DEC-90		Test: G110.4,	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: K. RILEY Analysis Date: 02-JAN-91		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 200	Det. Limit	Units mL

250

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A220739
AMMONIA NITROGEN EPA 350.3 Analyst: K. RILEY Analysis Date: 04-JAN-91 Prep: AMMONIA DISTILLATION EPA 350.3		Test: G203.4. 0
NITROGEN, AMMONIA	Result 2.3	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA 3 Analyst: C. BOYLE Analysis Date: 22-DEC-90	353.2 Instrument: AUTO-ANALYZER	Test: G106.3. 0
Parameter NITROGEN, NITRATE	Result BDL	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date: 02-JAN-94		Test: G108.5. 0
Parameter SULFATE	Result 40	Det. Limit Units 25 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-90)	Test: G301.1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 130	Det. Limit Units
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) ACANALYSIS Date: 26-DEC-90		3005 Test: P132.4, 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME	Instrument: ICP FALS) AQUEOUS SAMPLES	Test: M104.3, 0 SW846-3005
Parameter BARIUM	Result 0.11	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME	Instrument: ICP TALS) AQUEOUS SAMPLES	Test: M108.3. 0 SW846-3005
Parameter CADMIUM	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED ME		Test: M110.3. 0 SW846-3005
Parameter CHROMIUM	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED MET	Instrument: ICP TALS) AQUEOUS SAMPLES	Test: M112.3. 0 SW846-3005
Parameter COPPER	Result BDL	Det. Limit Units 0.020 mg/L

THE RESERVE AND ADDRESS OF THE PROPERTY OF THE	GE LABORATORIES, INC.		Lab Sample I	ID: A22
Analyst: M. JAO	W846-6010 O Analysis D	pate: 27-DEC-90 Instrument: ICP	Test: M115.3,	n
Prep: FAA	OR ICP ACID DIGESTION (DIS	SSOLVED METALS) AQUEOUS SAMPLE	ES SW846-3005	Ų
IRON	Parameter	Result	Det. Limit	Units
IRON		1.4	0.020	mg/L
LEAD ICP SW				
Analyst: M. JAO Prep: FAA	OR ICP ACID DIGESTION (DIS	rate: 27-DEC-90 Instrument: ICP SSOLVED METALS) AQUEOUS SAMPLE	Test: M116.3. -S SW846-3005	0
	Parameter	Result	Det. Limit	Units
LEAD		BDL	0.050	1
MANGANESE J	ICP SW846-6010			
Analyst: M. JAO	O Analysis D	ate: 27-DEC-90 Instrument: ICP	Test: M119.3.	0
Prep: FAA		SSOLVED METALS) AQUEOUS SAMPLE		T
MANGANESE	Parameter	Result 0.31	Det. Limit 0.010	Units
		10.01	1 0.010] mg/ L
NICKEL ICP Analyst: M. JAO		ate: 27-DEC-90 Instrument: ICP	T 1 MAGG 7	
Prep: FAA	OR ICP ACID DIGESTION (DIS	SSOLVED METALS) AQUEOUS SAMPLE	Test: M122.3. ES SW846-3005	0
	Parameter	Result	Det. Limit	Units
NICKEL	vas 0.011 mg/l	0.010	0.010	mg/L
prep brank "	ras 0.011 mg/ r			
ZINC ICP SW		sta: 27-DEC-00. Instrument: ISD	Toote M170 7	0
Analyst: M. JAO Prep: FAA) Analysis D	ate: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPLE Result	S SW846-3005 Det. Limit	Units
Analyst: M. JAO Prep: FAA ZINC	OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPLE	S SW846-3005	Units
Analyst: M. JAO Prep: FAA ZINC	OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPLE Result	S SW846-3005 Det. Limit	Units
Analyst: M. JAO Prep: FAA ZINC prep blank w	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1	SOLVED METALS) AQUEOUS SAMPLE Result 0.11	S SW846-3005 Det. Limit	Units
Analyst: M. JAO Prep: FAA ZINC prep blank w	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS	SOLVED METALS) AQUEOUS SAMPLE Result 0.11 AQUEOUS SAMPLES SW846-7470	S SW846-3005 Det. Limit	Units mg/L
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCR	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS ROGHAM Analysis Da Parameter	Result 0.11 AQUEOUS SAMPLES AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result	Det. Limit 0.020	Units mg/L 0 Units
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCR	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis D. Parameter GHT OR VOLUME	Result O.11 AQUEOUS SAMPLES AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91	Det. Limit 0.020	Units mg/L 0 Units mL
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRO INITIAL WEIG FINAL VOLUME	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis D. Parameter CHT OR VOLUME	Result O.11 AQUEOUS SAMPLES AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100	Det. Limit 0.020	Units mg/L 0 Units
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRO INITIAL WEIG FINAL VOLUME MERCURY CVA	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis D. Parameter GHT OR VOLUME A SW846-7470	Result 0.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100 100	Det. Limit 0.020 Test: P134.6. Det. Limit	Units mg/L 0 Units mL mL
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRO INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAU	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis Di Parameter CHT OR VOLUME ANALYSIS DE ANALYSIS DE ANALYSIS DE	Result O.11 AQUEOUS SAMPLES AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100	Det. Limit 0.020 Test: P134.6. Det. Limit	Units mg/L 0 Units mL mL
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRI INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAUG Prep: CVAA	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis Di Parameter CHT OR VOLUME ANALYSIS DE ANALYSIS DE ANALYSIS DE	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100 100 ate: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW84	Test: P134.6. Det. Limit 0.020 Test: P134.6. Det. Limit Det. Limit	Units mg/L 0 Units mL 0 Units
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRO INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAU	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS Parameter Analysis D. Parameter SHT OR VOLUME A SW846-7470 ER Analysis D. ACID DIGESTION (DISSOLVED	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100 100 ate:: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW84	Det. Limit 0.020 Test: P134.6. Det. Limit 0.6-7470	Units mg/L O Units mL mL
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRI INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAUG Prep: CVAA	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis D. Parameter CHT OR VOLUME AA SW846-7470 ER Analysis D. ACID DIGESTION (DISSOLVED Parameter	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100 100 ate: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW84 Result BDL	Test: P134.6. Det. Limit 0.020 Test: P134.6. Det. Limit Det. Limit	Units mg/L 0 Units mL 0 Units
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRI INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAUG Prep: CVAA	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS COGHAM Analysis Da Parameter CHT OR VOLUME AA SW846-7470 ER Analysis Da Parameter ACID DIGESTION (DISSOLVED Parameter	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Result 100 100 ate: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW84	Test: P134.6. Det. Limit 0.020 Test: P134.6. Det. Limit Det. Limit	Units mg/L Units mL Units mL Units mL
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRI INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAUR Prep: CVAA MERCURY GFAA ACID D Analyst: B. HAHN	Analysis D. OR ICP ACID DIGESTION (DIS Parameter Vas 0.067 mg/1 DIGESTION (DISSOLVED METALS COGHAM Analysis Da Parameter AA SW846-7470 ER Analysis Da Parameter ACID DIGESTION (DISSOLVED Parameter DIGESTION (DISSOLVED METALS N Analysis Da Parameter	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW846 Result BDL AQUEOUS SAMPLES SW846-3020 Result BDL Result Result Result Result Result BDL	Test: P134.6. Det. Limit 0.020 Test: P134.6. Det. Limit 0.0005	Units mg/L Units mL Units mL Units mL Units mg/L
Analyst: M. JAO Prep: FAA ZINC prep blank w CVAA ACID D Analyst: M. SCRI INITIAL WEIG FINAL VOLUME MERCURY CVA Analyst: M. BAUR Prep: CVAA MERCURY GFAA ACID D Analyst: B. HAHN	Analysis D. OR ICP ACID DIGESTION (DIS Parameter /as 0.067 mg/1 DIGESTION (DISSOLVED METALS OGHAM Analysis Da Parameter GHT OR VOLUME AASW846-7470 Parameter ACID DIGESTION (DISSOLVED Parameter Parameter	Result O.11 AQUEOUS SAMPLES SW846-7470 ate: 09-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW846 Result BDL AQUEOUS SAMPLES SW846-3020 ate: 21-DEC-90	Test: M120.1. 6-7470 Det. Limit 0.020 Test: P134.6. Det. Limit 0.0005	Units mg/L Units mL Units mL Units mL

Lab Sample ID: A220739

ARSENIC GFAA SW846-7060

Analyst: M. BAUER Analysis Date: 21-DEC-90 Instrument: GFAA TO Prep: GFAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS SAMPLES SW846-3020

Parameter ARSENIC

Result BDL

Det. Limit

Test: M103.2. 0

Units $0.0050 \mid mg/L$

Analyst: A. WIDZISZ Analysis Date: 02		Test: 0510.3.	000000000000000000000000000000000000000
Parameter CETONE	Result 30	Det. Limit 20	Units ug/L
CROLEIN	BDL		
CRYLONITRILE	BDL	70	ug/L
ENZENE	BDL		ug/L
ROMODICHLOROMETHANE	BDL	5	ug/L
ROMOFORM	BDL		ug/L
ROMOMETHANE	BDL	10	ug/L
ARBON DISULFIDE	BDL		ug/L
ARBON TETRACHLORIDE	BDL		ug/L
HLOROBENZENE	BDL	5 5	ug/L
HLOROETHANE	BDL	1	ug/L
		10	ug/L
HLOROFORM HLOROMETHANE	BDL BDL		ug/L
I BROMOCHLOROMETHANE	BDL	10	ug/L
	BDL		ug/L
IS-1,3-DICHLOROPROPENE ICHLORODIFLUOROMETHANE	BDL	5 5	ug/L
,1-DICHLOROETHANE	BDL	5	ug/L
2-DICHLOROETHANE	BDL	4	ug/L
	BDL		ug/L
, 1-DICHLOROETHENE	BDL	5 5	ug/L
2-DICHLOROPROPANE HYLBENZENE			ug/L
	BDL	5	ug/L
UOROTRICHLOROMETHANE	BDL		ug/L
-HEXANONE	BDL	10	ug/L
THYLENE CHLORIDE	BDL		ug/L
THYL ETHYL KETONE	BDL	10	ug/L
METHYL-2-PENTANONE	BDL		ug/L
TYRENE	BDL	5	ug/L
1,2,2-TETRACHLOROETHANE	BDL		ug/L
TRACHLOROETHENE	BDL	5	ug/L
TRAHYDROFURAN	BDL		ug/L
DLUENE	BDL	5	ug/L
2-DICHLOROETHENE (TOTAL)	BDL		ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1-TRICHLOROETHANE	BDL	5	ug/L
1,2-TRICHLOROETHANE	BDL	5	ug/L
RICHLOROETHENE	BDL		ug/L
INYL ACETATE	BDL	10	ug/L
INYL CHLORIDE	BDL		ug/L
/LENE (TOTAL)	BDL	5	ug/L
JRROGATE RECOVERY			
ICHLOROETHANE-D4	104		% Rec
DLUENE-D8	100		% Rec
ROMOFLUOROBENZENE	112		% Rec

Lab Sample ID: A220739

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: T. BILLE Analysis Date: 22-DEC-90	SW846-3510	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1000	Det. Limit	Units ML
FINAL VOLUME	1		mL

Analyst: M. DONOFRIO Prep: GC/MS SEPARATORY FUNNEL LIQUID-L	: 02-JAN-91 Instrument: GC/MS SVOA IQUID EXTRACTION SW846-3510	Test: 0505.3.	0
Parameter	Result	Det. Limit	Units
CENAPHTHENE	BDL	10	ug/L
SENAPHTHYLENE	BDL	10	ug/L
NTHRACENE	BDL	10	ug/L
ENZ (A) ANTHRACENE	BDL	10	ug/L
ENZO(A)PYRENE	BDL	10	ug/L
ENZO(B)FLUORANTHENE	BDL	10	ug/L
ENZO(G,H,I)PERYLENE	BDL		ug/L
ENZO(K)FLUORANTHENE	BDL		ug/L
ENZYL ALCOHOL	BDL		ug/L
NZYLBUTYLPHTHALATE	BDL		ug/L
[S(2-CHLOROETHOXY)METHANE	BDL		ug/L
IS(2-CHLOROETHYL)ÉTHER	BDL		ug/L
IS(2-CHLOROISOPROPYL)ETHER	BDL		ug/L
[S(2-ETHYLHEXYL)PHTHALATE	BDL		ug/L
-BROMOPHENYLPHENYLETHER	BDL		ug/L
ARBAZOLE	BDL		ug/L
-CHLOROANILINE	BDL		ug/L
-CHLORONAPHTHALENE	BDL		ug/L
-CHLOROPHENYLPHENYLETHER	BDL		ug/L
IRYSENE	BDL		ug/L
[BENZ(A,H)ANTHRACENE	BDL		ug/L
BENZOFURAN	BDL		ug/L
2-DICHLOROBENZENE	BDL		ug/L
3-DICHLOROBENZENE	BDL		ug/L
4-DICHLOROBENZENE	BDL		ug/L
3'-DICHLOROBENZIDINE	BDL		ug/L
ETHYLPHTHALATE	BDL		ug/L
METHYLPHTHALATE	BDL		ug/L
-N-BUTYLPHTHALATE	BDL		ug/L
NITROBENZENES	BDL		ug/L
4-DINITROTOLUENE	BDL		ug/L
6-DINITROTOLUENE	BDL		ug/L
-N-OCTYLPHTHALATE	BDL		ug/L
OURANTHENE	BDL	10	na/
UORENE	BDL	10	ug/L
XACHLOROBENZENE	BDL		ug/L
XACHLOROBUTADIENE	BDL		ug/L
XACHLOROCYCLOPENTADIENE	BDL		ug/L
XACHLOROETHANE	BDL		ug/L
DENO(1,2,3-CD)PYRENE	BDL		ug/L ug/L
OPHORONE	BDL		ug/L ug/L
METHYLNAPHTHALENE	BDL		ug/L
PHTHALENE	BDL	1	ug/L ug/L
NITROANILINE	BDL		ug/L ug/L
NITROANILINE	BDL		ug/L ug/L
NITROANILINE	BDL		ug/L
TROBENZENE	BDL		ug/L ug/L
NITROSO-DIPHENYLAMINE	BDL		ug/L ug/L

Lab Sample ID: A220739

Denomination		Lab Sample II	
Parameter N-NITROSO-DI-N-PROPYLAMINE	Result BDL	Det. Limit	Units
PHENANTHRENE	BDL	10	ug/L
2-PICOLINE	BDL	10	ug/L
PYRENE		50	ug/L
PYRIDINE	BDL BDL	10	
TETRACHLOROBENZENES	BDL	50	ug/L
TOLUENEDIAMINE		10	3,
1,2,4-TRICHLOROBENZENE	BDL	50	ug/L
BENZOIC ACID	BDL	10	
4-CHLORO-3-METHYLPHENOL	BDL	50	ug/L
2-CHLOROPHENOL	BDL		ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
2-METHYLPHENOL	BDL	10	ug/L
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	57
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	· · · · · · · · · · · · · · · · · · ·
PHENOL	BDL	10	ug/L
TETRACHLOROPHENOL	BDL		ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY	The second secon		
2-FLUOROPHENOL	51		% Rec
PHENOL-D5	37		% Rec
NITROBENZENE-D5	58		% Rec
2-FLUOROBIPHENYL	54		% Rec
2,4,6-TRIBROMOPHENOL	80		% Rec
TERPHENYL-D14	68 6 68		% Rec

HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-4	70 In strument: GC/FID	Test: 0409.0.	0
Parameter CASOLINE	Result	Det. Limit	Units
DIESEL FUE	BDL	1.3	mg/L
OTHER HYDROCARBONS	BDL	5.0	mg/L

Sample Comments

BDL Below Detection Limit

Deleuson

CERTIFICATE O	F ANALYSIS	
Service Location EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST.	Received 20-DEC-90 Complete	Lab ID A220737
INDIANAPOLIS, IN 46231 (317)243-8305	11-JAN-91 Printed	PO Number P0072488 Sampled
	12-JAN-91	19-DEC-90 09:30
Report To	Bill T	.0
JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330	ILLINOIS POWER COI ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525	MPANY
Sample Descr SAMPLE NO.: UPZ-101-1290 DESCRIPTION: UPZ-101 PROJECT NUMBER: 122765	iption	
CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 21-DEC-90		Test: P101.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analysis C. BOYLE Analysis Date: 24-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4. 0
Parameter CYANIDE	Result 0.56	Det. Limit Units 0.01 mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: K. SMITH Analysis Date: 21-DEC-90		Test: P405.7. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7. 0
Parameter PHENOLS	Result 0.05	Det. Limit Units 0.01 mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 24-DEC-90		Test: G110.4. 0
Parameter SULFIDE	Result BDL	Det. Limit Units
AMMONIA DISTILLATION EPA 350.3 Analyst: K. RILEY Analysis Date: 02-JAN-91		Test: P203.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit Units mL mL

EMS HERITAGE LABORATORIES, INC.		Lab Sample ID: A220737
AMMONIA NITROGEN EPA 350.3 Analyst: K. RILEY Analysis Date: Prep: AMMONIA DISTILLATION EPA 350.3	04-JAN-91	Test: G203.4. 0
Parameter NITROGEN, AMMONIA	Result BDL	Det. Limit Units 0.10 mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATE Analyst: C. BOYLE Analysis Date:) EPA 353.2 22-DEC-90 Instrument: AUTO-ANALYZER	Test: G106.3. 0
Parameter NITROGEN, NITRATE	Result BDL	Det. Limit Units 0.01 mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date:	02-JAN-91	Test: G108.5. O
Parameter SULFATE	Result 350	Det. Limit Units 100 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date:	21-DEC-90	Test: G301.1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 110	Det. Limit Units 10 mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED MET Analyst: C. THOMAS Analysis Date:		3005 Test: P132.4. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AOUFOUS SAMPLES	Test: M104.3. 0 SW846-3005
Parameter BARIUM	Result 0.23	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M108.3, 0 SW846-3005
Parameter CADMIUM	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M110.3. 0 SW846-3005
Parameter CHROMIUM	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: Prep: FAA OR ICP ACID DIGESTION (DISSOL	27-DEC-90 Instrument: ICP VED METALS) AQUEOUS SAMPLES	Test: M112.3. 0 SW846-3005
Parameter COPPER	Result 0.021	Det. Limit Units 0.020 mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	D: A220
IRON ICP SW846-6010			
Analyst: M. JAO Analysis Da Prep: FAA OR ICP ACID DIGESTION (DIS	te: 27-DEC-90 Instrument: ICP SOLVED METALS) ANTIFOLIS SAMPL	Test: M115.3.	0
Parameter	Result	Det. Limit	Units
RON	8.8	0.020	
LEAD ICP SW846-6010 Analysi: M. JAO Analysis De Prep: FAA OR ICP ACID DIGESTION (DIS	te: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M116.3. ES SW846-3005	0
Parameter _EAD	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Da	te: 27-DEC-90 Instrument: ICP		
Prep: FAA OR ICP ACID DIGESTION (DIS	SOLVED METALS) AQUEOUS SAMPL	Test: M119.3. ES SW846-3005	U
Parameter	Result	Det. Limit	Units
MANGANESE	1.7	0.010	mg/L
Prep: FAA OR ICP ACID DIGESTION (DISS		Test: M122.3. ES SW846-3005	0
Parameter NICKEL	Result 0.011	Det. Limit 0.010	Units mg/L
orep blank was 0.011 mg/l			
Prep: FAA OR ICP ACID DIGESTION (DISS	te: 27-DEC-90 Instrument: ICP SOLVED METALS) AQUEOUS SAMPL	Test: M139.3. ES SW846-3005	0
Parameter	Result 0.12	Det. Limit	Units
rep blank was 0.067 mg/l	0.12	0.020	ma /I
			mg/L
			mg/L
CVAA ACID DIGESTION (DISSOLVED METALS)	AQUEOUS SAMPLES SW846-7470		mg/L
CVAA ACID DIGESTION (DISSOLVED METALS) Analyst: M. SCROGHAM Analysis Da	AQUEOUS SAMPLES SW846-7470	Test: P134.6.	
Analyst: M. SCROGHAM Analysis Da Parameter	te: 09-JAN-91 Result		0 Units
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME	te: 09-JAN-91	Test: P134.6.	0 Units mL
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	re: 09-JAN-91 Result 100	Test: P134.6.	0 Units
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470	Result 100 100	Test: P134.6. Det. Limit	O Units mL mL
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Da	Result 100 100 100 100	Test: P134.6. Det. Limit Test: M120.1	O Units mL mL
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analyst: M. BAUER Prep: CVAA ACID DIGESTION (DISSOLVED) Parameter	Result 100 100 100 :e: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW8	Test: P134.6. Det. Limit Test: M120.1. 16-7470 Det. Limit	O Units mL mL
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analyst: M. BAUER Prep: CVAA ACID DIGESTION (DISSOLVED) Parameter	Result 100 100 100 100 100 Result 100 100 Se: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW8	Test: P134.6. Det. Limit Test: M120.1. 16-7470	O Units mL mL
Analysis Da Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analysis Da Prep: CVAA ACID DIGESTION (DISSOLVED Parameter MERCURY GFAA ACID DIGESTION (DISSOLVED METALS)	Result 100 100 100 100 :e: 10-JAN-91 Instrument: CVAA METALS) AQUEOUS SAMPLES SW8- Result BDL	Test: P134.6. Det. Limit Test: M120.1. 16-7470 Det. Limit	Units mL mL Units mL
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analyst: M. BAUER Prep: CVAA ACID DIGESTION (DISSOLVED Parameter ERCURY GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Parameter	Result 100 100 100 100 Result 100 100 Result METALS) AQUEOUS SAMPLES SW8- Result BDL AQUEOUS SAMPLES SW846-3020 Result	Test: P134.6. Det. Limit Test: M120.1. 16-7470 Det. Limit 0.0005	O Units mL O Units mg/L O Units mg/L O Units
Analyst: M. SCROGHAM Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME MERCURY CVAA SW846-7470 Analyst: M. BAUER Prep: CVAA ACID DIGESTION (DISSOLVED Parameter ERCURY GFAA ACID DIGESTION (DISSOLVED METALS) Analyst: B. HAHN Analysis Dar	Result 100 100 100 100 Result 100 100 Result METALS) AQUEOUS SAMPLES SW8- Result BDL AQUEOUS SAMPLES SW846-3020 Result Company of the property of the prope	Test: P134.6. Det. Limit Test: M120.1. 46-7470 Det. Limit 0.0005 Test: P133.6.	O Units mL O Units mg/L

Lab Sample ID: A220737

ARSENIC GFAA SW846-7060

ARSENIC

Result

Test: M103.2. 0

Analysis Date: 07-JAN-91 Instrument: GFAA Prep: GFAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS SAMPLES SW846-3020

Parameter

BDL

Det. Limit $0.0050 \mid mg/L$

Units

	DDL	0.0030	III9/ L
VOLATILE ORGANICS SW846-8240			
Analyst: A. WIDZISZ Analysis Date: 28-DEC-90	Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	BDL	20	ug/L
ACROLEIN	BDL	50	
ACRYLONITRILE	BDL	70	ug/L
BENZENE	200	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
CHLOROFORM	BDL	5	
CHLOROMETHANE	BDL	10	ug/L
DIBROMOCHLOROMETHANE	BDL	5	
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L ug/L
DICHLORODIFLUOROMETHANE	BDL	5	
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	
ETHYLBENZENE	200	5	
FLUOROTRICHLOROMETHANE	BDL	5 5	ug/L
2-HEXANONE	BDL		37
METHYLENE CHLORIDE	BDL	10	ug/L
METHYL ETHYL KETONE	BDL	5	
4-METHYL-2-PENTANONE	BDL	10	
STYRENE	BDL	10	3,
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLOROETHENE	BDL	5	ug/L
TETRAHYDROFURAN	BDL	5	ug/L
TOLUENE	30	25	3,
1,2-DICHLOROETHENE (TOTAL)	BD	5	ug/L
TRANS-1,3-DICHLOROPROPENE		5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	
TRICHLOROETHENE	BDL	5_	ug/L
VINYL ACETATE	BDL	5	ug/L
VINYL CHLORIDE	BDL	10	ug/L
XYLENE (TOTAL)	BDL	10	
ATLENE (TOTAL)	200	5	ug/L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	107		% Rec
TOLUENE-D8	101		% Rec
BROMOFLUOROBENZENE	102		% Rec
ALSO DETECTED:			70 NCC
BENZOFURAN	RT=34.12		
UNKNOWN	RT=35.64		
ETHYL METHYL BENZENE	RT=36.62		

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analysis T. BILLE Analysis Date: 22-DEC-90	SW846-3510	Test: P233.4.	0
Parameter INITIAL WEIGHT OR VOLUME EINAL VOLUME	Result 1000	Det. Limit	Units ML

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL ACID FRACTIONS) SW846-8270 Analyst: M. DONOFRIO Analysis Date: 02-JAN-91 Instrument: GC/MS SVOA Prep: GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION SW846-3510		Test: 0505.3. 0	
Parameter	Result	Det. Limit	Units
ACENAPHTHENE	64	10	ug/L
ACENAPHTHYLENE	120	10	ug/L
NTHRACENE	12	10	ug/L
ENZ (A) ANTHRACENE	BDL	10	
ENZO(A)PYRENE	BDL	10	ug/L
ENZO(B)FLUORANTHENE	BDL	10	
SENZO(G,H,I)PERYLENE	BDL	10	ug/L
ENZO(K)FLUORANTHENE	BDL	10	
ENZYL ALCOHOL	BDL	10	ug/L
ENZYLBUTYLPHTHALATE	BDL	10	
IS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
IS(2-CHLOROETHYL)ÉTHER	BDL	10	
IS(2-CHLOROISOPROPYL)ETHER	BDL		ug/L
IS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
ARBAZOLE	BDL	10	ug/L
-CHLOROANILINE	BDL	10	ug/L
-CHLORONAPHTHALENE	eret e de entre el esta de de entre de de entre en	10	ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
HRYSENE	BDL	10	ug/L
	BDL	10	ug/L
IBENZ(A,H)ANTHRACENE	BDL	10	ug/L
IBENZOFURAN	15	10	ug/L
,2-DICHLOROBENZENE	BDL	10	ug/L
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	10	ug/L
,3'-DICHLOROBENZIDINE	BDL	20	ug/L
IETHYLPHTHALATE	BDL	10	ug/L
IMETHYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL	10	ug/L
INITROBENZENES	BDL	50	
,4-DINITROTOLUENE	BDL	10	ug/L
,6-DINITROTOLUENE	BDL		ug/L
I-N-OCTYLPHTHALATE	BDL	10	ug/L
LOURANTHENE	7	10	ug/L
LUORENE		10	ug/L
ZACHLOROBENZENE	43	10	ug/L
	BDL	10	ug/L
EXACHLOROBUTADIENE	BDL	10	ug/L
XACHLOROCYCLOPENTADIENE	BDL	10	ug/L
EXACHLOROETHANE	BDL	10	ug/L
IDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
SOPHORONE	BDL	10	ug/L
METHYLNAPHTHALENE	* 240	100	ug/L
APHTHALENE	* 1100	100	ug/L
NITROANILINE	BDL	50	ug/L
-NITROANILINE	BDL	50	ug/L
-NITROANILINE	BDL	50	ug/L ug/L
TROBENZENE	BDL	10	
	DUL	10	ug/L Page 5

Lab Sample ID: A220737

Parameter	Result	Det. Limit	Units
N-NITROSO-DIPHENYLAMINE	BDL	Det. Limit	ug/L
N-NITROSO-DI-N-PROPYLAMINE	BDL		ug/L ug/L
PHENANTHRENE	50	10	
2-PICOLINE	BDL	50	
PYRENE	EST 7	10	
PYRIDINE	BDL		ug/L ug/L
TETRACHLOROBENZENES	BDL	10	
TOLUENEDIAMINE	BDL	50	
1,2,4-TRICHLOROBENZENE	BDL	10	
BENZOIC ACID	BDL		ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	
2-CHLOROPHENOL	BDL		ug/L ug/L
2,4-DICHLOROPHENOL	BDL	10	
2,4-DIMETHYLPHENOL	EST 7	10	
4,6-DINITRO-2-METHYLPHENOL	BDL	50	
2,4-DINITROPHENOL	BDL	50	
2-METHYLPHENOL	BDL	10	
4-METHYLPHENOL	15	10	
2-NITROPHENOL	BDL	10	
4-NITROPHENOL	BDL	50	
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	
TETRACHLOROPHENOL	BDL	10	ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
•			~3/ -
SURROGATE RECOVERY	and the second		
2-FLUOROPHENOL	58	p ²	% Rec
PHENOL-D5	34		% Rec
NITROBENZENE-D5	61		% Rec
2-FLUOROBIPHENYL	49		% Rec
2,4,6-TRIBROMOPHENOL	30		% Rec
TERPHENYL-D14	61		% Rec

HYDROCARBON SCAN SW846-8000 Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter GASOLINE	Result BDL	Det. Limit	Units mg/L
DIESEL FUEL OTHER HYDROCARBONS	BDL BDL	5.0	mg/L mg/L
NOTE: UNIDENTIFIED PEAKS DETECTED			

Sample Comments

*	See Note for	Parameter
BDL	Below Detecti	
EST	Estimated Val	
RT	Retention Tim	ie

Quality Assurance Officer: __

Meterson

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	20-DEC-90	A220738
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	11-JAN-91	P0072488
(317)243-8305	Printed	Sampled
	12-JAN-91	19-DEC-90 09:50

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UPZ-301-1290 DESCRIPTION: UPZ-301 PROJECT NUMBER: 122765

Analyst: J. GRIFFIN Analysis Date: 21-DEC-90	The state of the s	Test: P101.4.	T
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 24-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 4.4	Det. Limit 0.01	Units mg/L
PHENOLS DISTILLATION SW846-9065			
Analyst: K. SMITH Analysis Date: 21-DEC-90	,	Test: P405.7.	T
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units ML ML
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result 0.05	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 24-DEC-90		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: K. RILEY Analysis Date: 02-JAN-91		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 200	Det. Limit	Units

AMMONIA NITEC	OGEN EPA 350.3		
Analyst: K. RILEY	Analysis Date: 04- [A DISTILLATION EPA 350.3	JAN-91	Test; G203.4. 0
ITROGEN, AMMO	Parameter ONIA	Result 32	Det. Limit Units
NITROGEN-NITF Analyst: C. BOYLE	RATE (COLORIMETRIC AUTOMATED) Analysis Date: 22-	EPA 353.2 DEC-90 Instrument: AUTO-ANALYZER	R Test: G106.3. O
ITROGEN, NITE	Parameter RATE	Result BDL	Det. Limit Units 0.01 mg/L
SULFATE TURB] Analyst: D. JOSEPH	DIMETRIC EPA 375.4 Analysis Date: 02-	JAN-91	Test: G108.5. 0
ULFATE	Parameter	Result 420	Det. Limit Units
CHEMICAL OXYO	GEN DEMAND EPA 410.4 TY Analysis Date: 21-	DEC-90	Test: G301.1. 0
HEMICAL OXYGE	Parameter N DEMAND	Result 5900	Det. Limit Units 100 mg/L
FAA OR ICP AC Analyst: C. THOMAS	ID DIGESTION (DISSOLVED METALS Analysis Date: 26-		-3005 Test: P132.4. 0
NITIAL WEIGHT INAL VOLUME	Parameter OR VOLUME	50 50	Det. Limit Units mL mL
BARIUM ICP SW Analyst: M. JAO Prep: FAA OF		DEC-90 Instrument: ICP DMETALS) AQUEOUS SAMPLES	Test: M104.3. 0 5 SW846-3005
ARIUM	Parameter	Result 4.3	Det. Limit Units 0.010 mg/L
CADMIUM ICP S Analyst: M. JAO Prep: FAA OF		DEC-90 Instrument: ICP) METALS) AQUEOUS SAMPLES	Test: M108.3. 0 5 SW846-3005
ADMIUM	Parameter	Result BDL	Det. Limit Units 0.5 mg/L
CHROMIUM ICP Analyst: M. JAO Prep: FAA OR		DEC-90 Instrument: ICP O METALS) AQUEOUS SAMPLES	Test: M110.3. 0 5 SW846-3005
HROMIUM	Parameter	Result	Det. Limit Units 0.010 mg/L
COPPER ICP SW Analyst: M. JAO Prep: FAA OR	/846-6010 Analysis Date: 27- LICP ACID DIGESTION (DISSOLVEI	DEC-90 Instrument: ICP O METALS) AQUEOUS SAMPLES	Test: M112.3, 0 S SW846-3005
	Parameter	Result	Det. Limit Units

IRON ICP SW846-6010		Lab Sample ID:	
	-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M115.3. 0 ES SW846-3005	
Parameter IRON	Result 2000	Det. Limit 2.00 n	Units ng/L
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 27 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	7-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M116.3, 0 ES SW846-3005	
Parameter L EAD	Result 1.5	Det. Limit 0.050 r	Units ng/L
MANGANESE ICP SW846-6010			
	'-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M119.3. 0 ES SW846-3005	
Parameter MANGANESE	Result 37.	Det. Limit 0.010 r	Units mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Analysis Date: 27 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	7-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M122.3. 0 ES SW846-3005	
Parameter NICKEL	Result 2.1	Det. Limit 0.010 r	Units mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 27 Prep: FAA OR ICP ACID DIGESTION (DISSOLVE	7-DEC-90 Instrument: ICP ED METALS) AQUEOUS SAMPLE	Test: M139.3. 0 ES SW846-3005	
Parameter ZINC	Result 6.2	Det. Limit 0.020 r	Units ng/L
CVAA ACID DIGESTION (DISSOLVED METALS) AQU Analyst: M. SCROGHAM Analysis Date: 05		Test: P134.6, 0	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 100		Units nL nL
MERCURY CVAA SW846-7470	0-JAN-91 Instrument: CVAA ALS) AQUEOUS SAMPLES SW84	Test: M120.1. 0 46-7470	
MERCURY CVAA SW846-7470 Analysis Date: 10 Prep: CVAA ACID DIGESTION (DISSOLVED META Parameter	0-JAN-91 Instrument: CVAA ALS) AQUEOUS SAMPLES SW84 Result 0.0030	46-7470 Det. Limit	Units ng/L
MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Date: 10 Prep: CVAA ACID DIGESTION (DISSOLVED META	ALS) AQUEOUS SAMPLES SW84 0.0030 JEOUS SAMPLES SW846-3020	46-7470 Det. Limit	
MERCURY CVAA SW846-7470 Analysis Date: 10 Prep: CVAA ACID DIGESTION (DISSOLVED META Parameter MERCURY GFAA ACID DIGESTION (DISSOLVED METALS) AQU Analyst: B. HAHN Parameter Parameter INITIAL WEIGHT OR VOLUME	ALS) AQUEOUS SAMPLES SW84 0.0030 JEOUS SAMPLES SW846-3020	Det. Limit 0.0010 r Test: P133.6. 0	
MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Date: 10 Prep: CVAA ACID DIGESTION (DISSOLVED META Parameter MERCURY GFAA ACID DIGESTION (DISSOLVED METALS) AQU Analyst: B. HAHN Analysis Date: 21 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME ARSENIC GFAA SW846-7060	ALS) AQUEOUS SAMPLES SW84 0.0030 JEOUS SAMPLES SW846-3020 -DEC-90 Result 50 50 1-DEC-90 Instrument: GFAA	Det. Limit 0.0010 r Test: P133.6. 0 Det. Limit r Test: M103.2. 0	ng/L Units nL

VOLATILE ORGANICS SW846-8240 Analysis A. WIDZISZ Analysis Date: 28-DEC-90)	Instruments COMC VOA Test 0510.7 0		
Parameter	Result	Test: 0510.3.	Units	
ACETONE	90	20	ug/L	
ACROLEIN	BDL	50		
CRYLONITRILE	BDL	70	ug/L	
ENZENE	150	Š	ug/L	
ROMODICHLOROMETHANE	BDL	5	ug/L	
ROMOFORM	BDL	5	ug/L	
ROMOMETHANE	BDL	10	ug/L	
ARBON DISULFIDE	BDL	5	ug/L	
ARBON TETRACHLORIDE	BDL	5	ug/L ug/L	
HLOROBENZENE	BDL	5	ug/L ug/L	
HLOROETHANE	BDL	10	ug/L ug/L	
HLOROFORM	BDL	5		
HLOROMETHANE	BDL	10	ug/L	
IBROMOCHLOROMETHANE	BDL	5	ug/L	
S-1,3-DICHLOROPROPENE	BDL	5	ug/L	
CHLORODIFLUOROMETHANE	BDL	5 5	ug/L	
1-DICHLOROETHANE	BDL		ug/L	
2-DICHLOROETHANE	BDL	5	ug/L	
,1-DICHLOROETHENE	BDL	5	ug/L	
2-DICHLOROPROPANE		5	ug/L	
THYLBENZENE	BDL	5	ug/L	
UOROTRICHLOROMETHANE	EST 210	5	ug/L	
	BDL	5	ug/L	
HEXANONE	BDL	10	ug/L	
THYLENE CHLORIDE	BDL	5	ug/L	
THYL ETHYL KETONE	BDL	10	ug/L	
METHYL-2-PENTANONE	BDL	10		
TYRENE	BDL	5	ug/L	
,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L	
ETRACHLOROETHENE	BDL	5	ug/L	
ETRAHYDROFURAN	BDL	25		
DLUENE (TOTAL)	30	5	ug/L	
,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L	
RANS-1,3-DICHLOROPROPENE	BDL	5	ug/L	
,1,1-TRICHLOROETHANE	BDL	5	ug/L	
1,2-TRICHLOROETHANE	BDL	5	ug/L	
RTCHLOROETHENE	BDL	5	ug/L	
INYL ACETATE	BDL	10	ug/L	
INYL CHLORIDE	BDL	10	ug/L	
(LENE (TOTAL)	200	5	ug/L	
JRROGATE RECOVERY			1	
ICHLOROETHANE-D4	104		% Doo	
DLUENE-D8	90		% Rec	
ROMOFLUOROBENZENE			% Rec	
SO DETECTED:	90		% Rec	
THYL ETHYL BENZENE	DT_25 54			
	RT=35.54			
ETHYL ETHYL BENZENE	RT=37.5			

GC/MS SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION Analyst: T. BILLE Analysis Date: 22-DEC-90		Test: P233.4.	n
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME EINAL VOLUME	1000		mL ml

Prep: GC/MS SEPARATORY FUNNEL LIQUID-	LIOUID EXTRACTION SW846-351	0	
Parameter	Result	Det. Limit	Units
CENAPHTHENE	48	10 ι	ıg/L
CENAPHTHYLENE	60		ıg/L
NTHRACENE	20		ıg/L
ENZ (A) ANTHRACENE	EST 10		ıg/L
ENZO(A)PYRENE	BDL		ıg/L
ENZO(B)FLUORANTHENE	EST 7	**************************************	ιg/L
ENZO(G,H,I)PERYLENE	BDL		ıg/L
ENZO(K)FLUORANTHENE	BDL		ig/L
ENZYL ALCOHOL	BDL		ıg/L
ENZYLBUTYLPHTHALATE	BDL		ig/L
IS(2-CHLOROETHOXY)METHANE	BDL	1	ıg/L
IS(2-CHLOROETHYL)ÉTHER	BDL		ig/L
IS(2-CHLOROISOPROPYL)ETHER	BDL		ig/L
IS(2-ETHYLHEXYL)PHTHÁLATE	BDL		ig/L
-BROMOPHENYLPHENYLETHER	BDL		ıg/L
ARBAZOLE	BDL		ig/ L
CHLOROANILINE	BDL		ıg/L
CHLORONAPHTHALENE	BDL		ig/L
CHLOROPHENYLPHENYLETHER	BDL		ıg/L
IRYSENE	EST 8		
BENZ(A,H)ANTHRACENE	BDL		ıg/L
BENZOFURAN	15		ıg/L
2-DICHLOROBENZENE	BDL		ıg/L
3-DICHLOROBENZENE	BDL		ıg/L
,4-DICHLOROBENZENE	BDL		ıg/L
3'-DICHLOROBENZIDINE			ıg/L
IETHYLPHTHALATE	BDL		g/L
IMETHYLPHTHALATE	BDL		g/L
I-N-BUTYLPHTHALATE	BDL		g/L
	BDL		g/L
INITROBENZENES	BDL		g/L
4-DINITROTOLUENE	BDL		g/L
6-DINITROTOLUENE	BDL		g/L
-N-OCTYLPHTHALATE	BDL		g/L
OURANTHENE	26	10 u	
UORENE	35	10 u	g/L
XACHLOROBENZENE	BDL	10 u	g/L
XACHLOROBUTADIENE	BDL		g/L
XACHLOROCYCLOPENTADIENE	BDL		g/L
XACHLOROETHANE	BDL		g/L
IDENO(1,2,3-CD)PYRENE	BDL		g/L
SOPHORONE	BDL		g/L
METHYLNAPHTHALENE	140		g/L
PHTHALENE	* 710	1	g/L
NITROANILINE	BDL		g/L
NITROANILINE	BDL		g/L
NITROANILINE	BDL		g/ L
TROBENZENE	BDL		g/L
NITROSO-DIPHENYLAMINE	BDL		g/L
NITROSO-DI-N-PROPYLAMINE	BDL		g/L
IENANTHRENE	71		g/L
PICOLINE	BDL	1	g/L
RENE	21		g/ L
'RIDINE	BDL		9/ L q/L

Page 5

Lab Sample ID: A220738

Parameter	Result	Det. Limit	Units
TETRACHLOROBENZENES	BDL	10	ug/L
TOLUENEDIAMINE	BDL	50	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
BENZOIC ACID	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	19	10	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL		ug/L
2-METHYLPHENOL	BDL	10	ug/L
4-METHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	13	10	ug/L
TETRACHLOROPHENOL	BDL		ug/L
2,4,5-TRICHLOROPHENOL	BDL	10	ug/L
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	60		% Rec
PHENOL-D5	47		% Rec
NITROBENZENE-D5	52		% Rec
2-FLUOROBIPHENYL	38		% Rec
2,4,6-TRIBROMOPHENOL	98		% Rec
TERPHENYL-D14	31		% Rec

HYDROCARBON SCAN SW846-8000			
Analyst: S. GATTO Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Parameter	Result	Det. Limit	Units
GASOLINE	BDL	1.3	mg/L
DIESEL FUEL	BDL	5.0	ma/I
OTHER HYDROCARBONS	BDI		ma/l

Sample Comments

*	See Note for Parameter
BDL	Below Detection Limit
EST	Estimated Value
RT	Retention Time

Meleson

12-JAN-91 19-DEC-90 14:00	Service Location EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST. INDIANAPOLIS, IN 46231 (317)243-8305	Received 20-DEC-90 Complete 11-JAN-91 Printed	Lab ID A220740 PO Number P0072488 Sampled
	(317)243-0303		

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE NO.: UPZ-303-1290 DESCRIPTION: UPZ-303 PROJECT NUMBER: 122765

CYANIDE DISTILLATION SW846-9010 Analyst: J. GRIFFIN Analysis Date: 21-DEC-90			Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	250 250	Result	Det. Limit	Units mL mL
CYANIDE TOTAL (AUTOMATED) SW846-9012 Analyst: C. BOYLE Analysis Date: 24-DEC-90 Prep: CYANIDE DISTILLATION SW846-9010	Instrumen	t: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	0.03	Result of the control	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: K. SMITH Analysis Date: 21-DEC-90	· · · · · · · · · · · · · · · · · · ·	19-110-27	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	100 100	Result	Det. Limit	Units mL mL
PHENOLS 4AAP SW846-9066 Analyst: J. GRIFFIN Analysis Date: 26-DEC-90 Prep: PHENOLS DISTILLATION SW846-9065	Instrumen	t: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	0.02	Result	Det. Limit 0.01	Units mg/L
SULFIDE SW846-9030 Analyst: S. HALLORAN Analysis Date: 24-DEC-90			Test: G110.4.	0
Parameter SULFIDE	BDL	Result	Det. Limit	Units mg/L
AMMONIA DISTILLATION EPA 350.3 Analyst: K. RILEY Analysis Date: 02-JAN-91			Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	200 250	Result	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES, INC.		L	ab Sample 1	D: A22074
AMMONIA NITROGEN EPA 350.3 Analyst: K. RILEY Analysis Date: 04-JAN-91 Prep: AMMONIA DISTILLATION EPA 350.3			Test: G203.4.	0
Parameter NITROGEN, AMMONIA	0.3	Result	Det. Limit	Units mg/L
NITROGEN-NITRATE (COLORIMETRIC AUTOMATED) EPA 39 Analyst: C. BOYLE Analysis Date: 22-DEC-90		ent: AUTO-ANALYZER	Test: G106.3.	0
Parameter NITROGEN, NITRATE	0.16	Result	Det. Limit	Units mg/L
SULFATE TURBIDIMETRIC EPA 375.4 Analyst: D. JOSEPH Analysis Date: 02-JAN-91			Test: G108.5.	0
Parameter SULFATE	120	Result	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: S. MCCROTTY Analysis Date: 21-DEC-90			Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	36	Result	Det. Limit	Units mg/L
FAA OR ICP ACID DIGESTION (DISSOLVED METALS) AQU Analyst: C. THOMAS Analysis Date: 26-DEC-90	JEOUS S	AMPLES SW846-300	5 Test: P132.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	50 50	Result	Det. Limit	Units ML ML
BARIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrume NLS) AQU	ent: ICP JEOUS SAMPLES SW	Test: M104.3. 846-3005	0
Parameter BARIUM	0.21	Result	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrume NLS) AQU	ent: ICP JEOUS SAMPLES SW	Test: M108.3. 846-3005	0
Parameter CADMIUM	BDL	Result	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrume NLS) AQU	ent: ICP JEOUS SAMPLES SW	Test: M110.3. 846-3005	0
Parameter CHROMIUM	BDL	Result	Det. Limit 0.010	Units mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-DEC-90 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED META	Instrume NLS) AQU	nt: ICP JEOUS SAMPLES SW	Test: M112.3. 846-3005	0
Parameter COPPER	BDL	Result	Det. Limit 0.020	Units mg/L

EMS HERITAGE LABORATORIES, INC.		lah Samala ID. 8000740
IRON ICP SW846-6010		Lab Sample ID: A220740
	DEC-90 Instrument: ICP D METALS) AQUEOUS SAMPLI	Test: M115.3. 0 ES SW846-3005
Parameter IRON	Result 2.3	Det. Limit Units 0.020 mg/L
LEAD ICP SW846-6010 Analyst: M. JAO Analysis Date: 27:1 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED	DEC-90 Instrument: ICP D METALS) AQUEOUS SAMPLE	Test: M116.3, 0 ES SW846-3005
Parameter LEAD	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-6 Prep: FAA OR ICP ACID DIGESTION (DISSOLVED	DEC-90 Instrument: ICP DETALS) AQUEOUS SAMPLE	Test: M119.3. 0 ES SW846-3005
Parameter MANGANESE	Result 0.21	Det. Limit Units 0.010 mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGESTION (DISSOLVED	DEC-90 Instrument: ICP METALS) AQUEOUS SAMPLE	Test: M122,3. 0 S SW846-3005
Parameter NICKEL prep blank was 0.011 mg/l	Result 0.010	Det. Limit Units 0.010 mg/L
ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 27-D Prep: FAA OR ICP ACID DIGESTION (DISSOLVED Parameter ZINC prep blank was 0.067 mg/l	METALS) AQUEOUS SAMPLE Result 0.11	Test: M139.3. 0 S SW846-3005 Det. Limit Units 0.020 mg/L
CVAA ACID DIGESTION (DISSOLVED METALS) AQUE	OUS SAMPLES SW846-7470	
Analyst: M. SCROGHAM Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME		Test: P134.6. 0 Det. Limit Units mL mL
MERCURY CVAA SW846-7470 Analyst: M. BAUER Analysis Date: 10-J Prep: CVAA ACID DIGESTION (DISSOLVED METAL	AN-91 Instrument: CVAA S) AQUEOUS SAMPLES SW84	Test: M120.1. 0 6-7470
Parameter MERCURY	Result BDL	Det. Limit Units 0.0005 mg/L
GFAA ACID DIGESTION (DISSOLVED METALS) AQUE Analyst: B. HAHN Analysis Date: 21-D		Test: P133.6. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 50 50	Det. Limit Units mL mL

Lab Sample ID: A220740

ARSENIC GFAA SW846-7060

Analyst: M. BAUER

Analysis Date: 21-DEC-90 Instrument: GFAA

Test: M103.2. 0

Prep: GFAA ACID DIGESTION (DISSOLVED METALS) AQUEOUS SAMPLES SW846-3020

Parameter ARSENIC

Result **BDL**

Det. Limit 0.0050 mg/L

Units

VOLATILE ORGANICS SW846-8240			
Analyst: H. WILLIAMS Ana	lysis Date: 03-JAN-91 Instrument: GC/MS VOA	Test: 0510.3.	0
Parameter	Result	Det. Limit	Units
ACETONE	140	20	ug/L
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	15		ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CARBON DISULFIDE	BDL		ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	Ť.	ug/L
CHLOROETHANE	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
CHLOROMETHANE	BDL	10	ug/L ug/L
DIBROMOCHLOROMETHANE	BDL		ug/L ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
DICHLORODIFLUOROMETHANE	BDL		ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL		ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L ug/L
1,2-DICHLOROPROPANE	BDL		ug/L ug/L
ETHYLBENZENE	7	5	ug/L ug/L
FLUOROTRICHLOROMETHANE	BDL		ug/L ug/L
2-HEXANONE	BDL	10	ug/L ug/L
METHYLENE CHLORIDE	BDL	5	
METHYL ETHYL KETONE	BDL	10	ug/L ug/L
4-METHYL-2-PENTANONE	BDL	10	
STYRENE	BDL		
1,1,2,2-TETRACHLOROETHANE	BDL	5 5	ug/L
TETRACHLOROETHENE	BDL	5	ug/L
TETRACHLOROETHENE	BDL		ug/L
	6	25	ug/L
TOLUENE	BDL	5	ug/L
1,2-DICHLOROETHENE (TOTAL)		5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL BDI	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
VINYL ACETATE	BDL	10	ug/L
VINYL CHLORIDE	BDL	10	ug/L
XYLENE (TOTAL)	55	5	ug/L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	102		% Rec
TOLUENE-D8	100		% Rec
BROMOFLUOROBENZENE	104		% Rec

Lab Sample ID: A220740

EMS HERITAGE LABURATURIES, INC.		Lab Sample 10: A220740	
Parameter	Result	Det. Limit Units	
N-NITROSO-DI-N-PROPYLAMINE	BDL	10 ug/L	
PHENANTHRENE	BDL	10 ug/L	
2-PICOLINE	BDL	50 ug/L	
PYRENE	BDL	10 ug/L	
PYRIDINE	BDL	50 ug/L	
TETRACHLOROBENZENES	BDL	10 ug/L	
TOLUENEDIAMINE	BDL	50 ug/L	
I,2,4-TRICHLOROBENZENE	BDL	10 ug/L	
BÉNZOIC ACID	BDL	50 ug/L	
1-CHLORO-3-METHYLPHENOL	BDL	10 ug/L	
2-CHLOROPHENOL	BDL	10 ug/L	
2,4-DICHLOROPHENOL	BDL	10 ug/L	
2,4-DIMETHYLPHENOL	BDL	10 ug/L	
4,6-DINITRO-2-METHYLPHENOL	BDL	50 ug/L	
2,4-DINITROPHENOL	BDL	50 ug/L	
2-METHYLPHENOL	BDL	10 ug/L	
4-METHYLPHENOL	BDL	10 ug/L	
2-NITROPHENOL	BDL	10 ug/L	
4-NITROPHENOL	BDL	50 ug/L	
PENTACHLOROPHENOL	BDL	50 ug/L	
PHENOL	BDL	10 ug/L	
TETRACHLOROPHENOL	BDL	10 ug/L	
2,4,5-TRICHLOROPHENOL	BDL	10 ug/L	
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L	
SURROGATE RECOVERY			
2-FLUOROPHENOL	58	% Rec	
PHENOL-D5	43	% Rec	
NITROBENZENE-D5	34	% Rec	
2-FLUOROBIPHENYL	31	% Rec	
2,4,6-TRIBROMOPHENOL	80	% Rec	
TERPHENYL-D14	46	% Rec	

HYDROCARBON SCAN SW846	5-8000			
Analyst: S. GATTO	Analysis Date: 21-DEC-90	Instrument: GC/FID	Test: 0409.0.	0
Pa	rameter	Result	Det. Limit	Units
GASOLINE		BDL	1.3	mg/L
DIESEL FUEL		BDL	5.0	mg/L
OTHER HYDROCARBONS		BDL		mg/L
NOTE: UNIDENTIFIED PEA	AKS DETECTED			

Sample Comments

BDL Below Detection Limit

Received Project Lab ID Service Location HERITAGE LABORATORIES, INC. 27-JAN-92 A246331 PO Number 7901 W. MORRIS ST. Complete INDIANAPOLIS, IN 46231 (317)243-8305 14-FEB-92 PO 099698 Printed Sampled 24-JAN-92 10:15 16-FEB-93

Report To

KATHLEEN A. BLAINE BURLINGTON ENVIRONMENTAL P.O. BOX 330 210 WEST SAND BANK ROAD COLUMBIA, IL 62236-0330 Bill To

ACCOUNTS PAYABLE
ILLINOIS POWER COMPANY
P.O. BOX 511
DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-101-0192 DESCRIPTION: WELL #UMW-101 LOCATION: IP CHAMPAIGN

VOLATILE ORGANICS SW846-8240 Analyst: R. SHAMP Analysis Date: 04-FEB-	92 Instrument: GC/MS VOA	Test: 0510.3.0
Parameter	THE STATE OF THE S	Det. Limit Units
ACETONE	BDL The second of the second o	48 mg/kg
ACROLEIN	BDL	120 mg/kg
ACRYLONITRILE	BDL STEEL STEEL STEEL	170 mg/kg
BENZENE	14	12 mg/kg
BROMODICHLOROMETHANE	BDL BDL	12 mg/kg
BROMOFORM	BDL.	12 mg/kg
BROMOMETHANE STATES OF THE PROPERTY OF THE PRO	BDL man and a final state of the state of th	25 mg/kg
CARBON DISULFIDE	BDL	12 mg/kg
CARBON TETRACHLORIDE	BDL	12 mg/kg
CHLOROBENZENE	BDL	12 mg/kg
CHLOROETHANE	BDL	25 mg/kg
CHLOROFORM	BDL	12 mg/kg
CHLOROMETHANE	BDL	25 mg/kg
DIBROMOCHLOROMETHANE	BDL	12 mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	12 mg/kg
DICHLORODIFLUOROMETHANE	BDL	12 mg/kg
1,1-DICHLOROETHANE	BDL	12 mg/kg
1,2-DICHLOROETHANE	BDL	12 mg/kg
1,1-DICHLOROETHENE	BDL	12 mg/kg
1,2-DICHLOROPROPANE	BDL	12 mg/kg
EŤHYLBENZENE	EST 560	12 mg/kg
FLUOROTRICHLOROMETHANE	BDL	12 mg/kg
2-HEXANONE	BDL	25 mg/kg
METHYLENE CHLORIDE	BDL	12 mg/kg
METHYL ETHYL KETONE	BDL	25 mg/kg
4-METHYL-2-PENTANONE	BDL	25 mg/kg
STYRENE	BDL	12 mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	12 mg/kg
TETRACHLOROETHENE	BDL	12 mg/kg
TETRAHYDROFURAN	BDL	60 mg/kg
TOLUENE	58	12 mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	12 mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	12 mg/kg

Page 1 (continued on next page)

Parameter	Result	Det. Limit	Units
1,1,1-TRICHLOROETHANE	BDL	12	mg/kg
1,1,2-TRICHLOROETHANE	BDL	12	mg/kg
TRICHLOROETHENE	BDL	12	mg/kg
VINYL ACETATE	BDL	25	mg/kg
VINYL CHLORIDE	BDL	25	mg/kg
XYLENE (TOTAL)	710	12	mg/kg
•••			
SURROGATE RECOVERY			
DICHLOROETHANE-D4	*		% Rec
TOLUENE-D8	*		% Rec
BROMOFLUOROBENZENE	*		% Rec
PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY			
CAPILLARY COLUMN METHOD 8260 ON THIS INSTRUMENT			
1.2500 DILUTION			

1:2500 DILUTION

^{*} SURROGATES DILUTED OUT.

Analyst: R. SHAMP Analysis Date: 05-FEB		Test: 0510.3.1
Parameter	Result	Det. Limit Units
ACETONE	BDL	
ACROLEIN CONTRACTOR CO	BDL	310 mg/kg
ACRYLONITRILE	BDL	440 mg/kg 31 mg/kg
BENZENE	BDL State of the S	
BROMODICHLOROMETHANE	BDL BDL	31 mg/kg 31 mg/kg
BROMOFORM SAME AND ASSESSED ASSESSEDA ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA		63 mg/kg
BROMOMETHANE	BDL at the state of the state o	
CARBON DISULFIDE	BDL PART AND ADDRESS OF THE BOOK AND ADDRESS OF THE BO	
CARBON TETRACHLORIDE	BDL BDL	31 mg/kg 31 mg/kg
CHLOROBENZENE	BU STANDARD STREET	63 mg/kg
CHLOROETHANE	BDL	31 mg/kg
CHLOROFORM	BDL	63 mg/kg
CHLOROMETHANE	BDL	31 mg/kg
DIBROMOCHLOROMETHANE	BDL	31 mg/kg
CIS-1,3-DICHLOROPROPENE	BDL	31 mg/kg
DICHLORODIFLUOROMETHANE	BDL	31 mg/kg
1,1-DICHLOROETHANE	BDL	31 mg/kg
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE	BDL	31 mg/kg
1,1-DICHLOROETHENE 1,2-DICHLOROPROPANE	BDL	31 mg/kg
ETHYLBENZENE	430	31 mg/kg
FLUOROTRICHLOROMETHANE	BDL	31 mg/kg
2-HEXANONE	BDL	63 mg/kg
Z-HEXANONE METHYLENE CHLORIDE	BDL	31 mg/kg
METHYL ETHYL KETONE	BDL	63 mg/kg
4-METHYL-2-PENTANONE	BDL	63 mg/kg
STYRENE	BDL	31 mg/kg
1,1,2,2-TETRACHLOROETHANE	BDL	31 mg/kg
TETRACHLOROETHENE	BDL	31 mg/kg
retrachedroethere retrahydrofuran	BDL	150 mg/kg
TOLUENE	61	31 mg/kg
1,2-DICHLOROETHENE (TOTAL)	BDL	31 mg/kg
TRANS-1,3-DICHLOROPROPENE	BDL	31 mg/kg
1,1,1-TRICHLOROETHANE	BDL	31 mg/kg
1,1,2-TRICHLOROETHANE	BDL	31 mg/kg

Page 2 (continued on next page)

^{**} SAMPLE WILL BE RERUN AT A DILUTION DUE TO HIGH TARGET COMPOUNDS.

Lab Sample ID: A246331

Parameter	Result	Det. Limit	Units
TRICHLOROETHENE	BDL	31	mg/kg
VINYL ACETATE	BDL	63	mg/kg
VINYL CHLORIDE	BDL	63	mg/kg
XYLENE (TOTAL)	590	31	mg/kg
•••			
SURROGATE RECOVERY			
DICHLOROETHANE-D4	*		% Rec
TOLUENE-D8	*		% Rec
BROMOFLUOROBENZENE	*		% Rec
PACKED COLUMN METHOD 8240 HAS BEEN REPLACED BY			
CAPILLARY COLUMN METHOD 8260 ON THIS INSTRUMENT			

1:6300 DILUTION

NOTE: SAMPLE WAS RERUN AT DILUTION DUE TO HIGH TARGET COMPOUNDS. NOTE: * SURROGATES DILUTED OUT

GC/MS WASTE DILUTION FOR ORGANICS SW846-3580			
Analyst: G. HUGHS Analysis Date: 31-JAN-92		Test: P237.4	.0
Parameter	Result	Det. Limit	Units
Parameter INITIAL WEIGHT OR VOLUME	0.117	Det. Limit	Units Grams

SEMI-VOLATILE ORGANICS (BASE/NEUTRAL/AC Analyst: M. FRANK Analysis Date: 08-FEB- Prep: GC/MS WASTE DILUTION FOR ORGANICS SW846-3580 P.	-92 Instrument: GC/MS SVOA	Test: 0505.3.0
Parameter	Result	Det. Limit Units
ACENAPHTHENE	EST 460	8.5 mg/kg
ACENAPHTHYLENE	EST 190	8.5 mg/kg
ANTHRACENE	EST 280	8.5 mg/kg
BENZ (A) ANTHRACENE	EST 260	8.5 mg/kg
BENZO(A)PYRENE	110	8.5 mg/kg
BENZO(B)FLUORANTHENE	100	8.5 mg/kg
BENZO(G,H,I)PERYLENE	97	8.5 mg/kg
BENZO(K)FLUORANTHENE	25	8.5 mg/kg
BENZYL ALCOHOL	BDL	8.5 mg/kg
BENZYLBUTYLPHTHALATE	BDL	8.5 mg/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	8.5 mg/kg
BIS(2-CHLOROETHYL)ETHER	BDL	8.5 mg/kg
BIS(2-CHLOROISOPROPYL)ETHER	BDL	8.5 mg/kg
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	8.5 mg/kg
1-BROMOPHENYLPHENYLETHER	BDL	8.5 mg/kg
CARBAZOLE	BDL	8.5 mg/kg
I-CHLOROANILINE	BDL	8.5 mg/kg
2-CHLORONAPHTHALENE	BDL	8.5 mg/kg
1-CHLOROPHENYLPHENYLETHER	BDL	8.5 mg/kg
CHRYSENE	EST 170	8.5 mg/kg
DIBENZ(A,H)ANTHRACENE	18	8.5 mg/kg
DIBENZÔFÚRÁN	63	8.5 mg/kg
l,2-DICHLOROBENZENE	BDL	8.5 mg/kg
L,3-DICHLOROBENZENE	BDL	8.5 mg/kg
1,4-DICHLOROBENZENE	BDL	8.5 mg/kg
3,3'-DICHLOROBENZIDINE	BDL	17 mg/kg
DIETHYLPHTHALATE	BDL	8.5 mg/kg
DIMETHYLPHTHALATE	BDL	8.5 mg/kg
OI-N-BUTYLPHTHALATE	BDL	8.5 mg/kg
DINITROBENZENES	BDL	8.5 mg/kg

Page 3 (continued on next page)

Lab Sample ID: A246331

	-92 Instrument: GC/MS SVOA	Test: 0505.3	.1
Prep: GC/MS WASTE DILUTION FOR ORGANICS SW846-3580 F		D.4 1::4	U-24-
Parameter ACENAPHTHENE	Result 15000	Det. Limit 6600	Units ug/kg
ACENAPHTHYLENE	EST 5000	6600	ug/kg
ANTHRACENE	10000	6600	ug/kg
BENZ(A)ANTHRACENE	BDL	6600	ug/kg
BENZO(A) PYRENE	BDL	6600	ug/kg
BENZO(B)FLUORANTHENE	BDL	6600	ug/kg
BENZO(G,H,I)PERYLENE	BDL	6600	ug/kg
BENZO(K)FLUORANTHENE	BDL	6600	ug/kg
BENZYL ALCOHOL	BDL	6600	ug/kg
BENZYLBUTYLPHTHALATE	BDL	6600	ug/kg
BIS(2-CHLOROETHOXY)METHANE	BDL	6600	ug/kg
BIS(2-CHLOROETHYL)ÉTHER	BDL	6600	ug/kg
BIS(2-CHLOROISOPRÓPYL)ETHER	BDL	6600	ug/kg
BIS(2-ETHYLHEXYL)PHTHÁLATE	BDL	6600	ug/kg
I-BROMOPHENYLPHENYLETHER	BDL	6600	ug/kg
CARBAZOLE	BDL	6600	ug/kg
I-CHLOROANILINE	BDL	6600	ug/kg
2-CHLORONAPHTHALENE	BDL	6600	ug/kg
1-CHLOROPHENYLPHENYLETHER	BDL	6600	ug/kg
CHRYSENE	BDL	6600	ug/kg
DIBENZ(A,H)ANTHRACENE	BDL	6600	ug/kg
DIBENZOFURAN	BDL	6600	ug/kg
1,2-DICHLOROBENZENE	BDL State St	6600	ug/kg
,3-DICHLOROBENZENE	BDL	6600	ug/kg
1,4-DICHLOROBENZENE	BDL	6600	ug/kg
3,3'-DICHLOROBENZIDINE	BDL	13000	ug/kg
DIETHYLPHTHALATE	BDL	6600	ug/kg
DIMETHYLPHTHALATE	BDL	6600	ug/kg
)I-N-BUTYLPHTHALATE	BDL	6600	ug/kg
DINITROBENZENES	BDL	6600	ug/kg
2,4-DINITROTOLUENE	BDL	6600	ug/kg
,6-DINITROTOLUENE	BDL	6600	ug/kg
DI-N-OCTYLPHTHALATE	BDL	6600	ug/kg
LUORANTHENE	14000	6600	
LUORENE	14000	6600	ug/kg
IEXACHLOROBENZENE	BDL	6600	ug/kg
IEXACHLOROBUTAD I ENE	BDL	6600	ug/kg
IEXACHLOROCYCLOPENTADIENE	BDL	6600	ug/kg
IEXACHLOROETHANE	BDL	6600	ug/kg
NDENO(1,2,3-CD)PYRENE	BDL	6600	ug/kg
SOPHORONE	BDL	6600	ug/kg
-METHYLNAPHTHALENE	51000	6600	ug/kg
IAPHTHALENE	77000	6600	ug/kg
-NITROANILINE	BDL	30000	ug/kg
-NITROANILINE	BDL	30000	ug/kg
-NITROANILINE	BDL	30000	ug/kg
ITROBENZENE NATALE	BDL	6600	ug/kg
-NITROSO-DIPHENYLAMINE	BDL	6600	ug/kg
I-NITROSO-DI-N-PROPYLAMINE	BDL	6600	ug/kg
HENANTHRENE	35000	6600	ug/kg
-PICOLINE	BDL	30000	ug/kg
YRENE	24000	6600	ug/kg
PYRIDINE	BDL	30000	ug/kg
TETRACHLOROBENZENES	BDL	6600	ug/kg

Page 5 (continued on next page)

500 SOUTH 2/TH STREET P.O. BOX 511, DECATUR, IL 62525

Quality Assurance Officer:

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246292
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	24-JAN-92 16:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-102-0192 DESCRIPTION: WELL UMW-102

LOCATION: CHAMPAIGN

SULFIDE

PH (AQUEOUS) SW846-9040 Analyst: H. RANDALL Analy	vsis Date: 25-JAN-92	Test: G607.5.	0
PH Parameter (1987)	6.6	Det. Limit	Units Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analy	vsis Date: 27-JAN-92	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 1300	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analy	rsis Date: 27-JAN-92	Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 8.6	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analy	rsis Date: 27-JAN-92	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 18	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846- Analyst: N. HEMMERLEIN Analy	8015 MOD rsis Date: 27-JAN-92 Instrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL GASOLINE OTHER HYDROCARBONS	Result BDL BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L mg/L
SULFIDE SW846-9030 Analyst: K. BLAHUT Analy	sis Date: 28-JAN-92	Test: G110.4.	0
Parameter	Result	Det. Limit	Units

BDL

mg/L

1.0

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	D: A246292
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result 0.5	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.37	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:25 DILUTION	Result 370	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065			
Analyst: M. GAUGHAN Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Test: P405.7.	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter ***********************************	BDL Result	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 31-JAN-92	346-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 50	Det. Limit	Units

	LABURATURIES, INC.		Lab Sample 1	D: AZ40Z3
BARIUM ICP SW Analyst: M. JAO	Analysis Date: 03-FEB-92	Instrument: ICP	Test: M104.3.	0
Prep: FAA OR	ICP ACID DIGESTION OF AQUEOUS SAMP	1		I
BARIUM	Parameter	Result 0.28	Det. Limit 0.010	Units mg/L
CADMIUM ICP S Analyst: M. JAO Prep: FAA OR	W846-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP	Instrument: ICP LES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP Analyst: M. JAO Prep: FAA OR	SW846-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP		Test: M110.3.	0
CHROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW Analyst: M. JAO Prep: FAA OR	846-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP	Instrument: ICP LES SW846-3010	Test: M112.3.	0
COPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW84 Analyst: M. JAO Prep: FAA OR	6-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP	Instrument: ICP LES SW846-3010	Test: M115.3.	0
IRON	Parameter	Result BDL	Det. Limit 0.025	Units mg/L
LEAD ICP SW84 Analyst: M. JAO Prep: FAA OR	6-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP	Instrument: ICP PLES SW846-3010	Test: M116.3.	0
LEAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP Analyst: M. JAO Prep: FAA OR	SW846-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP		Test: M119.3.	0
MANGANESE	Parameter	Result 5.8	Det. Limit 0.010	Units mg/L
NICKEL ICP SW Analyst: M. JAO Prep: FAA OR	846-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP		Test: M122.3.	0
NICKEL	Parameter	Result 0.012	Det. Limit 0.010	Units mg/L
ZINC ICP SW84 Analyst: M. JAO Prep: FAA OR	6-6010 Analysis Date: 03-FEB-92 ICP ACID DIGESTION OF AQUEOUS SAMP		Test: M139.3.	0
ZINC	Parameter 0.084 mg/1	Result 0.048	Det. Limit 0.020	Units mg/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	0		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Analysis Date: 04-FEB-92		Test: M103.2.	0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW	1846-3020		
Parameter	Result	Det. Limit	Units
ARSENIC	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES	SW846-7470		
Analyst: P. SIMS Analysis Date: 27-JAN-92		Test: P131.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL

MERCURY CVAA SW846-7	170			
Analyst: P. SIMS Prep: MERCURY CVAA	Analysis Dat ACID DIGESTION OF A	e: 28-JAN-92 Instrument: CVAA AQUEOUS SAMPLES SW846-7470	Test: M120.1.	0
F	Parameter	Result	Det. Limit	Units
MERCURY		BDL	0.0005	mg/L

Analysi: T. WIEGAND Analysis Date: 31-JAN-92	? Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYL V INYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L
TOLUENE	BDL	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
FRICHLOROETHENE	BDL	5	ug/L
RICHLOROFLUOROMETHANE	BDL	5	ug/L
VINYL CHLORIDE	BDL	10	ug/L

Parameter	Result	Det. Limit	Units
DIETHYLPHTHALATE	BDL	10 ug	/L
DIMETHYLPHTHALATE	BDL	10 ug	
BENZ(A)ANTHRACENE	BDL	10 ug	
BENZO(Á)PYRENE	BDL	10 ug	
BENZO(B)FLUORANTHENE	BDL	10 ug	
BENZO(K)FLUORANTHENE	BDL	10 ug	
CHRYSÈNÉ	BDL	10 ug	
ACENAPHTHYLENE	BDL	10 ug	
ANTHRACENE	BDL	10 ug	
BENZO(G,H,I)PERYLENE	BDL	10 ug	
FLUORENE	BDL	10 ug	
PHENANTHRENE	BDL	10 ug	
DIBENZ(A,H)ANTHRACENE	BDL	10 ug	
INDENO(1,2,3-CD) PYRENE	BDL		
PYRENE	BDL		
ALDRIN	BDL		
DIELDRIN	BDL	10 ug	
CHLORDANE	BDL	10 ug	
4,4'-DDD	BDL	50 ug	
4,4'-DDE		10 ug	
	BDL	10 ug	
4,4'-DDT	BDL	10 ug	
ALPHA-ENDOSULFAN	BDL	10 ug	
BETA-ENDOSULFAN	BDL	10 ug	
ENDOSULFAN SULFATE	BDL	10 ug	
ENDRIN	BDL	10 ug	
ENDRIN ALDEHYDE	BDL William	10 ug	
HEPTACHLOR	BDL	10 ug	
HEPTACHLOR EPOXIDE	BDL	10 ug	
ALPHA-BHC	BDL	10 ug	
BETA-BHC	BDL	10 ug	
DELTA-BHC	BDL	10 ug	
GAMMA-BHC (LINDANE)	BDL	10 ug	/L
PCB AROCHLOR 1016	BDL	50 ug	/L
PCB AROCHLOR 1221	BDL	50 ug	/L
PCB_AROCHLOR_1232	BDL	50 ug	/L
PCB AROCHLOR 1242	BDL	50 ug	
PCB AROCHLOR 1248	BDL	50 ug	
PCB AROCLOR 1254	BDL	50 ug	
PCB AROCHLOR 1260	BDL	50 ug	
TOXAPHENE	BDL	50 ug	
•			a
SURROGATE RECOVERY			
2-FLUOROPHENOL	30	%	Rec
PHENOL-D5	19		Rec
NITROBENZENE-D5	79		Rec
2-FLUOROBIPHENYL	97		Rec
2,4,6-TRIBROMOPHENOL	81		Rec
TERPHENYL-D14	89		Rec

001	0 7		
BDL	RALOW	Detection	limit

Sample chain of custody number 4725.

Quality Assurance Officer:

Sample Comments

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246293
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	24-JAN-92 15:05

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-103-0192 DESCRIPTION: WELL UMW-103

LOCATION: CHAMPAIGN

PH (AQUEOUS) SW846-9040			
Analyst: H. RANDALL Analysis Date: 25	5-JAN-92	Test: G607.5.	0
PH Parameter as the second of	Result 7.0	Det. Limit 0.1	Units Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analysis Date: 27	7-JAN-92	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 790	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analysis Date: 27	7-JAN-92	Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 8.4	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K, FULLMER Analysis Date: 27	r-JAN-92	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 12	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 MOD Analyst: N. HEMMERLEIN Analysis Date: 27	-JAN-92 Instrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL GASOLINE	Result BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L
OTHER HYDROCARBONS	* 3 6		ma/l

HYDROCARBON SCAN BY GC:FID SW846-8015 MOD			
Analyst: N. HEMMERLEIN Analysis Date: 27-	JAN-92 Instrument: GC/FID	Test: 040 9. 1.	0
Parameter	Result	Det. Limit	Units
DIESEL FUEL	BDL	1.25	mg/L
GASOLINE	BDL	0.25	mg/L
OTHER HYDROCARBONS	* 3.6		mg/L
NOTE: * UNKNOWN HYDROCARBON FRACTION IN THE	C-6 TO C-20 BOILING PO	INT RANGE.	
ESTIMATED DUANTIETCATION PASED ON DIESEL EUG	TI CTANDADD		

ESTIMATED QUANTIFICATION BASED ON DIESEL FUEL STANDARD.

SULFIDE SW846-9030			
		Test: G110.4.	0
Parameter	Result	Det. Limit	Units
SULFIDE	BDL	1.0	mg/L

Analyst: J. SMITH Analysis Date: 28-JAN-92			T	T
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	200 250	Result	Det. Limit	Units ML ML
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2			Test: G203.4.	0
Parameter WITROGEN, AMMONIA	2.9	Result	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrum	ent: AUTO-ANALYZER	Test: G113.3.	0
Parameter IITROGEN, NITRATE-NITRITE	0.27	Result	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92			Test: G108.6.	0
Parameter SULFATE :10 DILUTION	130	Result	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	100 100	Result	Test: P405.7. Det. Limit	Units mL mL
TIVIL YOLOIIL				I IIIL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	and the same	ent: AUTO-ANALYZER	Test: 0405.7.	0
	and the same	ent: AUTO-ANALYZER Result	Test: 0405.7. Det. Limit 0.01	0 Units mg/L
Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 Parameter HENOLS CYANIDE DISTILLATION SW846-9010	Instrum		Det. Limit	Units mg/L
Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 Parameter HENOLS CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter NITIAL WEIGHT OR VOLUME	Instrum		Det. Limit 0.01	Units mg/L
Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 Parameter HENOLS CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME CYANIDE, TOTAL (AUTOMATED) SW846-9012	Instrum BDL 250 250	Result	Det. Limit 0.01 Test: P101.4.	Units mg/L 0 Units mL mL
Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 Parameter HENOLS CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010 Parameter	Instrum BDL 250 250	Result	Det. Limit 0.01 Test: P101.4. Det. Limit	Units mg/L 0 Units mL mL
Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 Parameter HENOLS CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrum BDL 250 250 Instrum 0.27	Result Result ent: AUTO-ANALYZER Result	Det. Limit 0.01 Test: P101.4. Det. Limit Test: G101.4.	Units mg/L O Units mL mL O Units mL

Analyst: M. JAO	-6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAN	2 Instrument: ICP MPLES SW846-3010	Test: M104.3.	0
BARIUM	Parameter	Result 0.22	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW84 Analyst: M. JAO Prep: FAA OR IC	6-6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM	2 Instrument: ICP MPLES SW846-3010	Test: M108.3.	0
ADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SW8 Analyst: M. JAO Prep: FAA OR IC	46-6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM	2 Instrument: ICP MPLES SW846-3010	Test: M110.3.	0
HROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW846 Analyst: M. JAO Prep: FAA OR IC	- 6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM	? Instrument: ICP MPLES SW846-3010	Test: M112.3.	0
OPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846-6 Analyst: M. JAO Prep: FAA OR IC	O10 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM	? Instrument: ICP MPLES SW846-3010	Test: M115.3.	0
RON	Parameter	Result	Det. Limit 0.025	Units mg/L
L EAD ICP SW846-6 Analyst: M. JAO Prep: FAA OR IC	010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM		Test: M116.3.	0
EAD	Parameter ***********************************	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SW Analyst: M. JAO Prep: FAA OR IC	846-6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM		Test: M119.3.	0
ANGANESE	Parameter	Result 1.6	Det. Limit 0.010	Units mg/L
NICKEL ICP SW846	-6010 Analysis Date: 03-FEB-92 P ACID DIGESTION OF AQUEOUS SAM		Test: M122.3.	0

Parameter

ZINC prep blank was 0.084 mg/l

Units

0.020 mg/L

Det. Limit

Result

0.035

		Lab Campic 1	D. ALTOLOG
GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-30	20		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Analysis Date: 04-FEB-92	Instrument: GFAA	Test: M103.2.	0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW	846-3020		
Parameter	Result	Det. Limit	Units
ARSENIC	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS			
Analyst: P. SIMS Analysis Date:	27-JAN-92	Test: P131.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL

MERCURY CVAA SW846-7470		2		
Analyst: P. SIMS Prep: MERCURY CVAA ACI		PR-JAN-92 Instrument: CVAA EOUS SAMPLES SW846-7470	Test: M120.1.	0
Para	meter	Result	Det. Limit	Units
MERCURY		BDL	0.0005	mg/L

Analysi: T. WIEGAND Analysis Date: 31-JAN-92	Instrument: GC/MS VOA	Test: 0502.3. 0	
Parameter	Result	Det. Limit	Units
ACROLEIN AT ATTEMPT AT A	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE 選 意音音音音音音	88	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	EST 250	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L
TOLUENE	13	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE	BDL	5	ug/L
VINYL CHLORIDE	BDL	10	ug/L

SEMI-VOLATILE PRIORITY POLLUTANTS (BASE Analyst: J. MINNIEAR, II Analysis Date	: 31-JAN-92 Instrument: GC/MS SVOA	Test: 0501.3. 0	
Prep: SEMI-VOLATILE EXTRACTION (NEUTRA	L/BASE/ACID FRACTIONS) EPA Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL	10 ι	ıg/L
4-CHLORO-3-METHYLPHENOL	BDL	10 l	ıg/L
2-CHLOROPHENOL	BDL	10 ι	ıg/L
2,4-DICHLOROPHENOL	BDL	10 ι	ıg/L
2,4-DIMETHYLPHENOL	BDL		ıg/L
2-NITROPHENOL	BDL	10 L	ıg/L
4-NITROPHENOL	BDL		ıg/L
2,4-DINITROPHENOL	BDL		ıg/L
4,6-DINITRO-2-METHYLPHENOL	BDL		ıg/L
PENTACHLOROPHENOL	BDL		ıg/L
PHENOL	BDL		ıg/L
ACENAPHTHENE	140	10 υ	ıg/L
BENZIDINE	BDL		ıg/L
1,2,4-TRICHLOROBENZENE	BDL		ıg/L
HEXACHLOROBENZENE	BDL		ıg/L
HEXACHLOROETHANE	BDL		ıg/L
BIS(2-CHLOROETHYL)ETHER	BDL		ıg/L
2-CHLORONAPHTHALENE	BDL		ıg/L
1,2-DICHLOROBENZENE	BDL		ıg/L
1,3-DICHLOROBENZENE	BDL		ıg/L
1,4-DICHLOROBENZENE	BDL		ıg/L
3,3'-DICHLOROBENZIDINE	BDL		ıg/L
2,4-DINITROTOLUENE	BDL		ıg/L
2,6-DINITROTOLUENE	BDL		ıg/L
FLUORANTHENE	EST 7		ıg/L
4-CHLOROPHENYLPHENYLETHER	BDL	10 υ	ıg/L
4-BROMOPHENYLPHENYLETHER	BD Control of the state of the		ıg/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ıg/L
BIS(2-CHLOROETHOXY)METHANE	BDL and a second		ıg/L
HEXACHLOROBUTADIENE	BDL		ıg/L
HEXACHLOROCYCLOPENTADIENE	BDL	The state of the s	ıg/L
ISOPHORONE	BDL		ıg/L
NAPHTHALENE	EST 370	10 u	ıg/L
NITROBENZENE	BDL	10 U	
N-NITROSO-DIMETHYLAMINE	BDL		ıg/L
N-NITROSO-DIPROPYLAMINE	BDL		ıg/L
N-NITROSO-DIPHENYLAMINE	BDL		ıg/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL		ıg/L
BENZYLBUTYLPHTHALATE	BDL		ıg/L
DI-N-BUTYLPHTHALATE	BDL	10 u	ıg/L
DI-N-OCTYLPHTHALATE	BDL		ıg/L
DIETHYLPHTHALATE	BDL		ig/L
DIMETHYLPHTHALATE	BDL		ıg/L
BENZ (A) ANTHRACENE	BDL		ıg/L
BENZO(A)PYRENE	BDL		ıg/L
BENZO(B)FLUORANTHENE	BDL		ıg/L
BENZO(K)FLUORANTHENE	BDL		ıg/L
CHRYSENE	BDL		ıg/L
ACENAPHTHYLENE	EST 8		ıg/L
ANTHRACENE	17		ıg/L
BENZO(G,H,I)PERYLENE	BDL	10 u	ıg/L
FLUORENE	49		ıg/L
PHENANTHRENE	67	10 u	ıg/L
DIBENZ(A,H)ANTHRACENE	BDL	10 l u	ıg/L

Parameter	Result	Det. Limit Units
INDENO(1,2,3-CD)PYRENE	BDL	10 ug/L
PYRENE	.9	10 ug/L
ALDRIN	BDL	10 ug/L
DIELDRIN	BDL	10 ug/L
CHLORDANE	BDL	50 ug/L
4,4'-DDD	BDL	10 ug/L
4,4'-DDE	BDL	10 ug/L
4,4′-DDT	BDL	10 ug/L
AĹPHA-ENDOSULFAN	BDL	10 ug/L
BETA-ENDOSULFAN	BDL	10 ug/L
ENDOSULFAN SULFATE	BDL	10 ug/L
ENDRIN	BDL	10 ug/L
ENDRIN ALDEHYDE	BDL	10 ug/L
HEPTACHLOR	BDL	10 ug/L
HEPTACHLOR EPOXIDE	BDL	10 ug/L
ALPHA-BHC	BDL	10 ug/L
BETA-BHC	BDL	10 ug/L
DELTA-BHC	BDL	10 ug/L
GAMMA-BHC (LINDANE)	BDL	10 ug/L
PCB AROCHLÒR 1016	BDL	50 ug/L
PCB AROCHLOR 1221	BDL	50 ug/L
PCB AROCHLOR 1232	BDL	50 ug/L
PCB AROCHLOR 1242	BDL	50 ug/L
PCB AROCHLOR 1248	BDL	50 ug/L
PCB AROCLOR 1254	BDL	50 ug/L
PCB AROCHLOR 1260	BDL	50 ug/L
TOXAPHENE	BDL	50 ug/L
SURROGATE RECOVERY	i <i>n altaba.</i> V	
2-FLUOROPHENOL	48	% Rec
PHENOL-D5	38	% Rec
NITROBENZENE-D5	101	% Rec
2-FLUOROBIPHENYL	102	% Rec
2,4,6-TRIBROMOPHENOL	92	% Rec
TERPHENYL-D14	96	% Rec

SEMI-VOLATILE PRIORITY POLLUTANTS (BAS	SE/NEUTRAL ACID FRACTIONS) EPA te: 03-FEB-92 Instrument: GC/MS SVOA	V 625 Test: 0501.3.	1
Prep: SEMI-VOLATILE EXTRACTION (NEUTR	RAL/BASE/ACID FRACTIONS) EPA 6	525	
Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL	50	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	50	ug/L
2-CHLOROPHENOL	BDL	50	ug/L
2,4-DICHLOROPHENOL	BDL	50	ug/L
2,4-DIMETHYLPHENOL	BDL	50	ug/L
2-NITROPHENOL	BDL	50	ug/L
4-NITROPHENOL	BDL	250	ug/L
2,4-DINITROPHENOL	BDL	250	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	250	ug/L
PÉNTACHLOROPHENOL	BDL	250	ug/L
PHENOL	BDL	50	ug/L
ACENAPHTHENE	160	50	ug/L
BENZIDINE	BDL	100	ug/L
1,2,4-TRICHLOROBENZENE	BDL	50	ug/L
HÉXÁCHLOROBENZENE	BDL	50	ug/L
HEXACHLOROETHANE	BDL	50	ug/L

Lab Sample ID: A246293

Parameter	Result	Det. Limit	Units
PCB AROCHLOR 1016	BDL	250	ug/L
PCB AROCHLOR 1221		250	ug/L
PCB AROCHLOR 1232	BDL	250	ug/L
PCB AROCHLOR 1242	BDL	250	ug/L
PCB AROCHLOR 1248	BDL	250	ug/L
PCB AROCLOR 1254		250	ug/L
PCB AROCHLOR 1260	BDL	250	ug/L
TOXAPHENE	BDL	250	ug/L
•	BDL		
SURROGATE RECOVERY	BDL		
	BDL		
2-FLUOROPHENOL	44		% Rec
PHENOL-D5	29		% Rec
NITROBENZENE-D5			% Rec
2-FLUOROBIPHENYL	99		% Rec
2,4,6-TRIBROMOPHENOL	79		% Rec
TÉRPHENYL-D14	118		% Rec
1:5 DILUTION	and the second s		

Sample Comments

* See Note for Parameter BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 4726.

Parameter	Result	Det. Limit	Units
SURROGATE RECOVERY			
DICHLOROETHANE-D4	72		% Rec
TOLUENE-D8			
BROMOFLUOROBENZENE	96		% Rec

Analyst: T. WIEGAND Analysis Date: 04-FEB-92	Instrument: GC/MS VOA	Test: 0502.3.	I
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	100	ug/L
CRYLONITRILE	BDL	140	ug/L
ENZENE	83	10	ug/L
ROMOFORM	BDL	10	ug/L
ARBON TETRACHLORIDE	BDL	10	ug/L
HLOROBENZENE	BDL	10	ug/L
HLOROETHANE	BDL	20	ug/L
-CHLOROETHYLVINYLETHER	BDL	20	ug/L
HLOROFORM	BDL	10	ug/L
IBROMOCHLOROMETHANE	BDL	10	ug/L
ROMODICHLOROMETHANE	BDL	10	ug/L
,1-DICHLOROETHANE	BDL	10	ug/L
,2-DICHLOROETHANE	BDL	10	ug/L
,1-DICHLOROETHENE	BDL	10	ug/L
, 2-DICHLOROPROPANE	BDL	10	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	10	ug/L
IS-1,3-DICHLOROPROPENE	BDL	10	ug/L
THYLBENZENE	240	10	ug/L
ROMOMETHANE	BDL	20	ug/L
HLOROMETHANE	BDL	20	ug/L
ETHYLENE CHLORIDE	BDL	10	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	10	uq/L
ÉTŔAĆHLORETHENE	BDL	10	ug/L
OLUENE	14	10	ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	10	ug/L
,1,1-TRICHLOROETHANE	BDL	10	ug/L
,1,2-TRICHLOROETHANE	BDL	10	ug/L
RICHLOROETHENE	BDL	10	ug/L
RICHLOROFLUOROMETHANE	BDL	10	ug/L
INYL CHLORIDE	BDL	20	ug/L ug/L
THE CHEOKIDE		20	uy/ L
URROGATE RECOVERY			
ICHLOROETHANE-D4	97		% Rec
DLUENE-D8	98		% Rec
ROMOFLUOROBENZENE	95		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625					
Analysis G. HUGHS Analysis Date: 28-JAN-92		Test: P243.1.	0		
Parameter	Result	Det. Limit	Units		
INITIAL WEIGHT OR VOLUME	1		Liters		
FINAL VOLUME			mL		

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	23-JAN-92	A246071
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 16:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-105-0192 DESCRIPTION: WELL UMW-105

Parameter

SULFIDE

LOCATION: CHAMPAIGN

PH (AQUEOUS) SW846-9040 Analyst: H. RANDALL Analysis Date: 23-JAN-92		Test: G607.5. 0
Parameter PH	Result 7.1	Det. Limit Units 0.1 Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analysis Date: 23-JAN-92	**************************************	Test: G604.4. 0
Parameter CONDUCTIVITY	Result 840	Det. Limit Units 1.0 umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analysis Date: 23-JAN-92	25.57 25.57 25.57 25.57 25.57 25.57 25.57 25.57	Test: G800.0. 0
Parameter DISSOLVED OXYGEN	Result 9.4	Det. Limit Units 0.1 mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 24-JAN-92		Test: G301.1. 0
Parameter CHEMICAL OXYGEN DEMAND	Result 28	Det. Limit Units 10 mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 MOD Analyst: N. HEMMERLEIN Analysis Date: 31-JAN-92	Instrument: GC/FID	Test: 0409.1, 0
Parameter DIESEL FUEL GASOLINE OTHER HYDROCARBONS	Result BDL BDL BDL	Det. Limit Units 1.25 mg/L 0.25 mg/L mg/L
SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Date: 28-JAN-92		Test: G110.4. 0

Units

1.0 mg/L

Det. Limit

Result

BDL

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	D: A24607
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units ML ML
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result BDL	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 5.9	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K, RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE	Result 190	Det. Limit	Units mg/L
1:10 DILUTION			
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.06	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	46-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units mL mL

	ABORATORIES, INC.		Lab Sample ID: A2460
FAA OR ICP ACII Analyst: J. VANSKYOO	D DIGESTION OF AQUEOUS SAMPLES K Analysis Date: 31-JAN-		Test: P130.5, 1
INITIAL WEIGHT (FINAL WEIGHT OR		Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW84 Analyst: M. JAO Prep: FAA OR	46-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS SA	92 Instrument: ICP AMPLES SW846-3010	Test: M104.3. 0
BARIUM	Parameter	Result 0.059	Det. Limit Units 0.010 mg/L
CADMIUM ICP SWA Analyst: M. JAO Prep: FAA OR	846-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS S		Test: M108.3. 0
CADMIUM	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP SI Analyst: M. JAO Prep: FAA OR	N846-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS SA		Test: M110.3. 0
CHROMIUM	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW84 Analyst: M. JAO Prep: FAA OR	46-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS SA	92 Instrument: ICP AMPLES SW846-3010	Test: M112.3. 0
COPPER	Parameter	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW846 Analyst: M. JAO Prep: FAA OR	-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS SA	92 Instrument: ICP AMPLES SW846-3010	Test: M115.3. 0
I RON	Parameter Parameter (1997)	Result 0.054	Det. Limit Units 0.020 mg/L
LEAD ICP SW846 Analyst: M. JAO Prep: FAA OR	-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS SA	92 Instrument: ICP AMPLES SW846-3010	Test: M116.3. O
_EAD	Parameter	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP : Analyst: M. JAO Prep: FAA OR	SW846-6010 Analysis Date: 29-JAN- ICP ACID DIGESTION OF AQUEOUS S/		Test: M119.3. 0
MANGANESE	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
NICKEL ICP SW84 Analyst: M. JAO Prep: FAA OR	46-6010 Analysis Date: 03-FEB- ICP ACID DIGESTION OF AQUEOUS S/		Test: M122.3. 0
NICKEL	Parameter	Result BDL	Det. Limit Units 0.010 mg/L

Lab Sample ID: A246071

Analyst: M. JAO	Analysis Date:	29-JAN-92 Instrument: ICP	Test: M139.3.	0
Prep: FAA OR ICP ACI	D DIGESTION OF AQUI	EOUS SAMPLES SW846-3010		
Pa	arameter	Result	Det. Limit	Units
TNC.		0.045	0.020	mg/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302 Analyst: H. RANDALL Analysis Date: 25-JAN-92	20	Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		

ARSENIC GFAA SW846-7060						
Analyst: W. WATNESS Analysis Date: 29-JAN-92 Instrument: GFAA Test: M103.2. 0						
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-3020						
Parameter Result Det. Limit Units						
ARSENIC	BDL	0.0050	mg/L			

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-7470						
Analyst: P. SIMS Analysis Date: 27-JAN-92		Test: P131.6.	0			
Parameter	Result	Det. Limit	Units			
INITIAL WEIGHT OR VOLUME	100		mL			
FINAL VOLUME	100		mL			

MERCURY CVAA S	SW846-7470					
Analyst: P. SIMS Prep: MERCURY	Y CVAA ACID DIGE	Analysis Date: 28-JAN STION OF AQUEOUS	-92 Instrument: 0 S SAMPLES SW84	vaa 6-7470	Test: M120.1.	0
MERCURY	Parameter		BDL Resu	lt - Market State	Det. Limit 0.0005	Units mg/L

	te: 29-JAN-92 Instrument: GC/MS VOA	Test: 0502.3.	
Parameter ACROLEIN	Result BDL	Det. Limit 50	Units ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5_	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L

Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/L
1,1,1-TRICHLOROETHANE	BDL	5 ug/L
1,1,2-TRICHLOROETHANE	BDL	5 uq/L
TRICHLOROETHENE	BDL	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 ug/L
	BDL	
SURROGATE RECOVERY		
DICHLOROETHANE-D4	89	
TOLUENE-D8		% Rec
BROMOFLUOROBENZENE	95	% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACI	D FRACTIONS) EPA 625		
Analyst: N. ROHADFOX Analysis Date: 28	-JAN-92	Test: P243.1.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME	1		mL

Prep: SEMI-VOLATILE EXTRACTION (NEUTF	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL BDL and a separate supplies the separate supplies and the separate supplies the sepa	10	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BOL and the same and	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
1-NITROPHENOL	BDL Special and Sp	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
1,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
PÉNTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
ACENAPHTHENE	BDL	10	ug/L
BENZIDINE	BDL	20	ug/L
L,2,4-TRICHLOROBENZENE	BDL	10	ug/L
HÉXÁCHLOROBENZENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
I,2-DICHLOROBENZENE	BDL	10	ug/L
I,3-DICHLOROBENZENE	BDL	10	ug/L
I,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
LUORANTHENE	BDL	10	ug/L
I-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
I-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
HEXÀCHLOROBUTADIENÉ	BDL	10	ug/L
HEXACHLOROCYCLOPENTAD I ENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L

EMS HERITAGE LABORATURIES, INC.		ran Jamhie I	
Parameter	Result	Det. Limit	Units
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIMETHYLAMINE	BDL	10	ug/L
N-NITROSO-DIPROPYLAMINE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
BENŻYLBUTYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
BENZ(A)ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	ug/L
BENZO(A)FINENE BENZO(B)FLUORANTHENE	BDL	10	
			ug/L
BENZO(K) FLUORANTHENE	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	$\bar{1}$ 0	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4'-DDD	BDL	10	ug/L
4,4'-DDE	BDL	10	
	表表面是 · · · · · · · · · · · · · · · · · · ·		ug/L
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL ************************************	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L ug/L
	BDL	50	
PCB AROCHLOR 1242			ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	66		% Rec
PHENOL-D5	47		% Rec
NITROBENZENE-D5	85		% Rec
2-FLUOROBIPHENYL	78		% Rec
2,4,6-TRIBROMOPHENOL	90		% Rec
TERPHENYL-D14	96		% Rec

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4074.

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	23-JAN-92	A246069
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 14:43

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-106-0192 DESCRIPTION: WELL UMW-106

SULFIDE

LOCATION: CHAMPAIGN

PH (AQUEOUS) SW846-9040 Analyst: H. RANDALL Analysis Date: 23-JA	N-92	Test: G 607.5.	0
Parameter PH	Result 6.6	Det. Limit 0.1	Units Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analysis Date: 23-J/	N-92	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 2200	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analysis Date: 23-J/	N-92	Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 9.5	Det. Limit 0.1	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 24-JJ	N-92	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 65	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 MOD Analyst: N. HEMMERLEIN Analysis Date: 26-JJ	NN-92 Instrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL GASOLINE OTHER HYDROCARBONS	Result BDL BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L mg/L
SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Date: 28-Ja	in-92	Test: G110.4.	0
Parameter	Result	Det. Limit	Units

BDL

1.0 mg/L

EMS HERITAGE LABORATORIES, INC.		L	ab Sample I	D: A246069
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92			Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	200 250	Result	Det. Limit	Units ML ML
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2			Test: G203.4.	0
Parameter NITROGEN, AMMONIA	0.2	Result	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrum	ent: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	0.34	Result	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92			Test: G108.6.	0
Parameter SULFATE 1:25 DILUTION	290	Result	Det. Limit 125	Units mg/L
1.25 DILOTION				
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		77114	Test: P405.7.	T
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	100 100	Result	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrum	ent: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	BDL	Result	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92			Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	250 250	Result	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrum	ment: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	0.29	Result	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SWE Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	346-301	0	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	50 50	Result	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES,	INC.		Lab Sample 1	D: A246069
FAA OR ICP ACID DIGESTION (Analyst: J. VANSKYOCK	OF AQUEOUS SAMPLES SWE Analysis Date: 31-JAN-92	846-3010	Test: P130.5.	1
Parameter INITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME		Result 50 50	Det. Limit	Units mL mL
BARIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIGI	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAMI	Instrument: ICP PLES SW846-3010	Test: M104.3.	0
Parameter BARIUM		Result 0.060	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M108.3.	0
Parameter CADMIUM		Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M110.3.	0
Parameter CHROMIUM		Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	PLES SW846-3010	Test: M112.3.	
Parameter COPPER	Note 1984 625 7	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M115.3.	0
Parameter IRON	Tall and the second of the sec	Result 0.15	Det. Limit 0.020	Units mg/L
LEAD ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M116.3.	0
Parameter LEAD	٢	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 29-JAN-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M119.3.	0
Parametei MANGANESE		Result 0.36	Det. Limit 0.010	Units mg/L
NICKEL ICP SW846-6010 Analyst: M. JAO Prep: FAA OR ICP ACID DIG	Analysis Date: 03-FEB-92 ESTION OF AQUEOUS SAM	Instrument: ICP PLES SW846-3010	Test: M122.3.	0
	r	Result	Det. Limit	Units

Lab Sample ID: A246069

ZINC ICP SW846-6010 Analyst: M. JAO	Analysis Date: 29-JAN-92 Instrument: ICP	Test: M139.3.	0
Prep: FAA OR ICP ACID DIG	ESTION OF AQUEOUS SAMPLES SW846-3010		
Parameter	Result	Det. Limit	Units
INC	0.090	0.020	mq/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302 Analyst: H. RANDALL Analysis Date: 25-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060 Analyst: W. WATNESS Analysis Date: 29-JAN-92 Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES S	Instrument: GFAA W846-3020	Test: M103.2.	0
Parameter ARSENIC	Result	Det. Limit	Units
	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES		- 2474 /	
Analyst: P. SIMS Analysis Date: 27-JAN-1	92 Result	Test: P131.6.	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL

MERCURY CVAA S	SW846-7470					
Analyst: P. SIMS	V CUAA ACID DIC	Analysis Date: 28-JAN-92 ESTION OF AQUEOUS S	Instrument: CVAA	7470	Test: M120.1.	0
Prep: MERCUR	100	ESTIUN OF AQUEUUS .		7470	Det. Limit	Units
MERCURY	Parameter		BDL		0.0005	mg/L

Analyst: T. WIEGAND Analy	sis Date: 29-JAN-92 Instrument: GC/MS VOA	Test: 0502.3. 0	
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5 5	ug/L
CHLOROBENZENE	BDL		ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5 5	ug/L
DIBROMOCHLOROMETHANE	BDL		ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5 5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5 5	ug/L
ETHYLBENZENE	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TÉTRACHLORETHENE	BDL	5	ug/L

Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5 UQ/L
1,1,1-TRICHLOROETHANE	BDL	5 ug/L
1,1,2-TRICHLOROETHANE	BDL	
TRICHLOROETHENE	BDL	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 UQ/L
VINYL CHLORIDE	BDL	
SURROGATE RECOVERY		
DICHLOROETHANE-D4	84	
TOLUENE-D8	QR .	// Kec
BROMOFLUOROBENZENE	98	% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRAG	CTIONS) EPA 625		
Analyst: R. BRANCH Analysis Date: 26-JAN-92		Test: P243.1.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME	1		mL

SEMI-VOLATILE PRIORITY POLLUTANTS (BAS Analyst: J. MINNIEAR, II Analysis Da Prep: SEMI-VOLATILE EXTRACTION (NEUTR	te: 30-JAN-92 Instrument: GC/MS SVOA	Test: 0501.3.	0
Parameter Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL BDL	10	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
PÉNTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
ACENAPHTHENE	BDL	10	ug/L
BENZIDINE	BDL	20	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
HÉXÁCHLOROBENZENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
2-CHLORONAPHTHALEŃE	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
FLUORANTHENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
HEXÀCHLOROBUTADIENÉ	BDL	10	
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L

ERS HERTIAGE EADORATORIES, TRO.			
Parameter	Result	Det. Limit	Units
NITROBENZENE	BDL		ug/L
N-NITROSO-DIMETHYLAMINE	BDL		ug/L
N-NITROSO-DIPROPYLAMINE	BDL		ug/L
N-NITROSO-DIPHENYLAMINE	BDL		ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL		ug/L
BENZYLBUTYLPHTHALATE	BDL		ug/L
DI-N-BUTYLPHTHALATE	BDL		ug/L
DI-N-OCTYLPHTHALATE	BDL		ug/L
DIETHYLPHTHALATE	BDL		ug/L
DIMETHYLPHTHALATE	BDL		ug/L
BENZ (A) ANTHRACENE	BDL		ug/L
BENZO(A)PYRENE	BDL		ug/L
BENZO(B)FLUORANTHENE	BDL		ug/L
BENZO(K)FLUORANTHENE	BDL		ug/L
CHRYSÈNÉ	BDL		ug/L
ACENAPHTHYLENE	BDL		ug/L
ANTHRACENE	BDL		ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORÈNE	BDL	10	ug/L
PHENANTHRENE	BDL		ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL		ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4'-DDD	BDL	10	ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
AĹPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL		ug/L
ENDRIN	BDL		ug/L
ENDRIN ALDEHYDE	BDL		ug/L
HEPTACHLOR	BDL		ug/L
HEPTACHLOR EPOXIDE	BDL		ug/L
ALPHA-BHC	BDL		ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL		ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL		ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	56		% Rec
PHENOL-D5	36		% Rec
NITROBENZENE-D5	92		% Rec
2-FLUOROBIPHENYL	94		% Rec
2,4,6-TRIBROMOPHENOL	96		% Rec
TERPHENYL-D14	103		% Rec
ILMITENIE DIT	1 1 7 3		Pago 6

Lab Sample ID: A246069

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4072.

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246295
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	06-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	07-FEB-92	23-JAN-92 10:45

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-107-0192 DESCRIPTION: WELL UMW-107 LOCATION: CHAMPAIGN

PH (AQUEOUS) SW846-9	040			
Analyst: H. RANDALL	Analysis Date: 25-JAN-92		Test: G607.5.	0
	Parameter	Result	Det. Limit	Units
PH		7.4	0.1	Std. Units

SPECIFIC CONDUCTA Analyst: L. MATTINGLY	ANCE SW846-90	050 Analysis Date: 27-JAN-92			Test: G604.4.	0
CONDUCTIVITY	Parameter	# 1	Result 940	Company of the Compan	Det. Limit	Units umHOS/cm

DISSOLVED OXYGEN EPA 360.1			
Analyst: K. BLAHUT Analysis Date: 27-JAN-92		Test: G800.0.	0
Parameter	Result	Det. Limit	Units
DISSOLVED OXYGEN	6.4	0.1	mg/L

CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 27-JAN-92		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result	Det. Limit	Units
	80	10	mg/L

HYDROCARBON SCAN BY GC:FID) SW846-8015 MOD		
Analyst: N. HEMMERLEIN	Analysis Date: 27-JAN-92 Instrument: GC/FID	Test: 0409.1.	0
Paramete	er Result	Det. Limit	Units
DIESEL FUEL	BDL	1.25	mg/L
GASOLINE	BDL	0.25	mg/L
OTHER HYDROCARBONS	BDL	Accounts African	mg/L

SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Date: 28-JAN-92		Test: G110.4.	0
Parameter SULFIDE	Result BDL	Det. Limit	Units mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A246295
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA 1:10 DILUTION	Result 44	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.32	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	
Parameter SULFATE	Result BDL	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result 0.14	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result	Det. Limit 0.05	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 31-JAN-92	346-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units ML ML

346-6010			
Analysis Dat ICP ACID DIGESTION OF AQ	e: 03-FEB-92 Instrument: ICP UEOUS SAMPLES SW846-3010	Test: M104.3.	0
Parameter	Result 0.32	Det. Limit 0.010	Units mg/L
w846-6010 Analysis Dat ICP ACID DIGESTION OF AQ	e: 03-FEB-92 Instrument: ICP UEOUS SAMPLES SW846-3010	Test: M108.3.	0
Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
SW846-6010 Analysis Dat ICP ACID DIGESTION OF AQ	e: 03-FEB-92 Instrument: ICP UEOUS SAMPLES SW846-3010	Test: M110.3.	0
Parameter	Result BDL	Det. Limit 0.010	Units mg/L
8 46-6010 Analysis Dat ICP ACID DIGESTION OF AQ	e: 03-FEB-92 Instrument: ICP UEOUS SAMPLES SW846-3010	Test: M112.3.	0
Parameter	Result BDL	Det. Limit 0.020	Units mg/L
6-6010 Analysis Dat ICP ACID DIGESTION OF AQ	e: 03-FEB-92 Instrument: ICP UEOUS SAMPLES SW846-3010	Test: M115.3.	0
Parameter	Result 0.45	Det. Limit 0.025	Units mg/L
		Test: M116.3.	0
Parameter	Result BDL	Det. Limit 0.050	Units mg/L
SW846-6010 Analysis Dat	te: 03-FEB-92 Instrument: ICP	Test: M119.3.	0
Parameter	Result 0.66	Det. Limit 0.010	Units mg/L
		Test: M122.3.	0
Parameter	Result BDL	Det. Limit 0.010	Units mg/L
6-6010 Analysis Dat ICP ACID DIGESTION OF AQ	te: 03-FEB-92 Instrument: ICP DUEOUS SAMPLES SW846-3010	Test: M139.3.	0
Parameter	Result	Det. Limit	Units
	Analysis Dat ICP ACID DIGESTION OF AQ Parameter W846-6010 ICP ACID DIGESTION OF AQ Parameter SW846-6010 ICP ACID DIGESTION OF AQ Parameter 846-6010 ICP ACID DIGESTION OF AQ Parameter 6-6010 ICP ACID DIGESTION OF AQ Parameter SW846-6010 ICP ACID DIGESTION OF AQ Parameter 846-6010 ICP ACID DIGESTION OF AQ Parameter	Analysis Date: 03-FEB-92	Analysis Date: 03-FEB-92 Instrument: ICP Test: M104.3.

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	20		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Analysis Date: 04-FEB-92	Instrument: GFAA	Test: M103.2.	0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW	846-3020		
Parameter	Result	Det. Limit	Units
ARSENIC	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-7470			
Analyst: P. SIMS Analysis Date:	27-JAN-92	Test: P131.6	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		l mL

MERCURY CVAA SW846-7	470			
Analyst: P. SIMS Prep: MERCURY CVAA	Analysis Date: 28-JAN- ACID DIGESTION OF AQUEOUS		Test: M120.1.	0
	Parameter	Result	Det. Limit	Units
MERCURY		BDL	0.0005	mg/L

Analyst: T. WIEGAND Analysis Date: 31-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE 電影 新新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新 新	EST 1200	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYL V INYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
I,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL	5	ug/L
,2-DICHLOROPROPANE	BDL	5	ug/L
ÚS-1,3-DICHLOROPROPENE	BDL	5	ug/L
FRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
THYLBEŃZENE	60	5	ug/L
BROMOMETHANE	BDL	10	ug/L
HLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
ETRACHLORETHENE	BDL	5	ug/L
OLUENE	30	5	ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
,1,1-TRICHLOROETHANE	BDL	5	ug/L
,1,2-TRICHLOROETHANE	BDL	5	ug/L
RICHLOROETHENE	BDL	5	ug/L
RICHLOROFLUOROMETHANE	BDL	5	ug/L
/INYL_CHLORIDE	BDL	10	ug/L

Lab Sample ID: A246295

Parameter	Result	Det. Limit	Units
SURROGATE RECOVERY			
DAOU ODOSTUNIS DA	=		
DICHLORUE HANE-U4	00	, The second of	% Rec
TOLUENE-D8 BROMOFILIOROBENZENE			% Rec

Analyst: T. WIEGAND Analysis Date: 04-FEB-92		Test: 0502.3.	1
Parameter LCDOL FIN	Result BDL	Det. Limit 2500	Units ug/L
ACROLEIN	BDL	3500	ug/L ug/L
ACRYLONITRILE	4800	250	
BENZENE	BDL	250	ug/L
BROMOFORM CRIME			ug/L
ARBON TETRACHLORIDE	BDL	250 250	ug/L
HLOROBENZENE	BDL	1	ug/L
HLOROETHANE	BDL	500	ug/L
CHLOROETHYL V INYLETHER	BDL	500	ug/L
HLOROFORM	BDL	250	ug/L
IBROMOCHLOROMETHANE	BDL	250	ug/L
ROMODICHLOROMETHANE	BDL	250	ug/L
,1-DICHLOROETHANE	BDL	250	ug/L
,2-DICHLOROETHANE	BDL	250	ug/L
,1-DICHLOROETHENE	BDL	250	ug/L
,2-DICHLOROPROPANE	BDL	250	ug/L
IS-1,3-DICHLOROPROPENE	BDL	250	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	250	ug/L
THYLBENZENE	BDL	250	ug/L
BROMOMETHANE	BDL	500	ug/L
HLOROMETHANE	BDL	500	ug/L
METHYLENE CHLORIDE	BDL	250	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	250	ug/L
TÉTŔACHLORETHENE	BDL	250	ug/L
OLUENE	BDL	250	ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	250	ug/L
,1,1-TRICHLOROETHANE	BDL	250	ug/L
,1,2-TRICHLOROETHANE	BDL	250	ug/L
RICHLOROETHENE	BDL	250	ug/L
RICHLOROFLUOROMETHANE	BDL	250	ug/L
INYL CHLORIDE	BDL	500	ug/L
TIME SHEVIATUR	BDL		3/ -
SURROGATE RECOVERY	BDL		
OUNIOUATE NECOVERT	BDL		
)ICHLOROETHANE-D4	93		% Rec
	97		% Rec
OLUENE-D8 BROMOFLUOROBENZENE	90		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625			
Analyst: G. HUGHS Analysis Date		Test: P243.1	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME			mL

Parameter	Result	Det. Limit	Units
,4,6-TRICHLOROPHENOL	BDL	10	ug/L
-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
-CHLOROPHENOL	BDL	10	ug/L
,4-DICHLOROPHENOL	BDL	10	ug/L
,4-DIMETHYLPHENOL	BDL	10	ug/L
-NITROPHENOL	BDL	10	ug/L
-NITROPHENOL	BDL	50	ug/L
,4-DINITROPHENOL	BDL	50	ug/L
,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
ENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	59	10	ug/L
CENAPHTHENE	BDL	10	ug/L
BENZIDINE	BDL	20	ug/L
,2,4-TRICHLOROBENZENE	BDL	10	ug/L
EXACHLOROBENZENE	BDL	10	ug/L
IEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
-CHLORONAPHTHALENE	BDL	10	ug/L
,2-DICHLOROBENZENE	BDL	10	ug/L
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	10	ug/L
,3'-DICHLOROBENZIDINE	BDL	20	ug/L
,4-DINITROTOLUENE	BDL	10	ug/L
,6-DINITROTOLUENE	BDL	10	ug/L
LUORANTHENE	BDL	10	ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL CONTROL OF THE STATE OF THE	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL BDL	10	ug/L
IEXACHLOROBUTADIENE	BDL	10	ug/L
HEXACHLOROCYCLOPENTAD I ENE	BDL	10	ug/L
SOPHORONE	BDL	10	ug/L
NAPHTHALENE	63	10	ug/L
ITROBENZENE	BDL	10	
I-NITROSO-DIMETHYLAMINE	BDL	10	ug/L
I-NITROSO-DIPROPYLAMINE	BDL	10	ug/L
I-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
IS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
ENZYLBUTYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL	10	ug/L
I-N-OCTYLPHTHALATE	BDL	10	ug/L
IETHYLPHTHALATE	BDL	10	ug/L
IMETHYLPHTHALATE	BDL	10	ug/L
ENZ (A) ANTHRACENE	BDL	10	ug/L
ENZO(A)PYRENE	BDL	10	ug/L
ENZO (B) FLUORANTHENE	BDL	10	ug/L
ENZO(K)FLUORANTHENE	BDL	10	ug/L
HRYSENE	BDL	10	ug/L
CENAPHTHYLENE	BDL	10	ug/L
NTHRACENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
LUORENE	BDL	10	ug/L
HENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L

Lab Sample ID: A246295

Parameter	Result	Det. Limit	Units
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4'-DDD	BDL	10	ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	65		% Rec
PHENOL-D5	53		% Rec
NITROBENZENE-D5	88		% Rec
2-FLUOROBIPHENYL	85		% Rec
2,4,6-TRIBROMOPHENOL	94		% Rec
TERPHENYL-D14	95		% Rec
TEMPICALE DIT	JU		/0 IVEC

Sample Con	nmente

BDLBelow Detection Limit EST Estimated Value

Sample chain of custody number 4734.

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	23-JAN-92	A246066
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 17:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-108-0192 DESCRIPTION: WELL UMW-108

Parameter

SULFIDE 1:2 DILUTION

LOCATION: CHAMPAIGN

PH (AQUEOUS) Analyst: H. RANDAL		IAN-92	Test: G607.5.	0
PH	Parameter	Result 6.7	Det. Limit	Units Std. Unit
SPECIFIC COND	OUCTANCE SW846-9050 IGLY Analysis Date: 23	JAN-92	Test: G604.4.	0
CONDUCTIVITY	Parameter A A A A A A A A A A A A A A A A A A A	Result 1100	Det. Limit	Units umHOS/cm
DACCOLVED OV	(OFN FDA 260 1	d		
Analyst: K. BLAHU	(GEN EPA 360.1 r Analysis Date: 23-,	JAN-92	Test: G800.0.	0
DISSOLVED OXYO	Parameter GEN	Result 7.7	Det. Limit 0.1	Units mg/L
CHEMICAL OXYO	GEN DEMAND EPA 410.4 Analysis Date: 24-	JAN-92	Test: G30 1. 1.	0
CHEMICAL OXYGE	Parameter EN DEMAND	Result 46	Det. Limit	Units mg/L
HYDROCARBON S	SCAN BY GC:FID SW846-8015 MOD RLEIN Analysis Date: 31-	JAN-92 Instrument: GC/FID	Test: 0409.1.	0
	Parameter	Result	Det. Limit	Units
DIESEL FUEL		BDL		mg/L
GASOLINE OTHER HYDROCAL	RBONS	BDL BDL	0.25	mg/L mg/L

Units

Det. Limit

2.0 mg/L

Result

BDL

Inh Sample ID: #2/6066

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A246066
AMMONIA DISTILLATION EPA 350.2 Analysis J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result 0.4	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.38	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:5 DILUTION	Result 80	Det. Limit 25	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 0.07	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SWE Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	346-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units ML ML

EMS HERITAGE LAB	BORATORIES, INC.		Lab Sample I	D: A246066
FAA OR ICP ACID Analyst: J. VANSKYOCK	DIGESTION OF AQUEOUS SA Analysis Date		Test: P130.5.	1
INITIAL WEIGHT OF		Result 50	Det. Limit	Units ML
INAL WEIGHT OR V	/OLUME	50		mL
BARIUM ICP SW846 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	:: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M104.3.	0
BARIUM	Parameter	Result 0.26	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW84 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	:: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SW8 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M110.3.	0
CHROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW846 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M112.3.	Ó
COPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846-6 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M115.3.	0
IRON	Parameter	Result 0.054	Det. Limit 0.020	Units mg/L
LEAD ICP SW846-6 Analyst: M. JAO Prep: FAA OR IC	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M116.3.	0
LEAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP SV Analyst: M. JAO Prep: FAA OR IC	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M119.3.	0
MANGANESE	Parameter	Result 1.6	Det. Limit 0.010	Units mg/L
NICKEL ICP SW840 Analyst: M. JAO Prep: FAA OR IO	Analysis Date	e: 03-FEB-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M122.3.	0
NICKEL	Parameter	Result BDL	Det. Limit 0.010	Units mg/L

Lab Sample ID: A246066

Analyst: M. JAO	Analysis Date	e: 29-JAN-92 Instrument: ICP	Test: M139.3.	0
Prep: FAA OR ICP ACI	D DIGESTION OF AQU	JEOUS SAMPLES SW846-3010		
P	arameter	Result	Det. Limit	Units
TNC		0.046	0.020	mg/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302 Analyst: H. RANDALL Analysis Date: 25-JAN-92	0	Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060 Analyst: W. WATNESS Analysis Date: 2 Prep: GFAA ACID DIGESTION OF AQUEOUS SAM	9-JAN-92 Instrument: GFAA PLES SW846-3020	Test: M103.2.	0
Parameter	Result	Det. Limit	Units
ARSENIC	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-7470					
Analyst: P. SIMS Analysis Date: 27-JAN-92		Test: P131.6.	0		
Parameter	Result	Det. Limit	Units		
INITIAL WEIGHT OR VOLUME	100		mL		
FINAL VOLUME	100		l mL		

MERCURY CVAA SW8	346-7470	remove altable garden atta		0.10		
Analyst: P. SIMS	YAA ACID DIG	Analysis Date: 28-JAN-92 STION OF AQUEOUS S			Test: M120.1.	U
riep. menconi c		LOTTON OF AQUEUUS .	1	7.7.0	D. L. Linit	11-54-
MERCURY	Parameter		Result BDL		Det. Limit 0.0005	Units mg/L
	0.4.30 feet					

VOLATILE PRIORITY POLLUTANT	S EPA 624			
Analyst: T. WIEGAND	Analysis Date: 29-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter		Result	Det. Limit	Units
ACROLEIN		BDL	50	ug/L
ACRYLONITRILE		BDL	70	ug/L
BENZENE		BDL	5	ug/L
BROMOFORM		BDL	5	ug/L
CARBON TETRACHLORIDE	•	BDL	5	ug/L
CHLOROBENZENE		BDL	5	ug/L
CHLOROETHANE		BDL	10	ug/L
2-CHLOROETHYLVINYLETHER		BDL	10	ug/L
CHLOROFORM		BDL	5	ug/L
DIBROMOCHLOROMETHANE		BDL	5	ug/L
BROMODICHLOROMETHANE		BDL	5	ug/L
1,1-DICHLOROETHANE		BDL	5	ug/L
1,2-DICHLOROETHANE		BDL	5 5	ug/L
1,1-DICHLOROETHENE		BDL		ug/L
1,2-DICHLOROPROPANE		BDL	5	ug/L
CÍS-1,3-DICHLOROPROPENE		BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE		BDL	5 5	ug/L
ETHYLBENZENE		BDL	5	ug/L
BROMOMETHANE		BDL	10	ug/L
CHLOROMETHANE		BDL	10	ug/L
METHYLENE CHLORIDE		BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE		BDL	5	ug/L
TETRACHLORETHENE		BDL	5	ug/L

Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/L
1,1,1-TRICHLOROETHANE	BDL	5 ug/L
1,1,2-TRICHLOROETHANE	BDL	5 uq/L
TRICHLOROETHENE	BDL	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 ug/L
VINYL CHLORIDE		10 ug/L
SURROGATE RECOVERY		
DICHLOROETHANE-D4	82	% Rec
TOLUFNE-D8	Q3	% Rec
BROMOFLUOROBENZENE	92	% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625					
Analyst: R. BRANCH Analysis Date: 24-J	AN-92	Test: P243.1.	0		
Parameter	Result	Det. Limit	Units		
INITIAL WEIGHT OR VOLUME	1		Liters		
FINAL VOLUME			mL		

Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDT The state of t	10	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDE BDE	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL:	50	ug/L
PÉNTACHLOROPHENOL	BDL	50	
PHENOL	BDL	10	ug/L
ACENAPHTHENE	BDL	10	ug/L
BENZIDINE	BDL	20	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	
HÉXÁCHLOROBENZENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
2-CHLORONAPHTHALEŃE	BDL	10	
1,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	
FLUORANTHENE	BDL	10	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
HEXÀCHLOROBUTADIENÉ	BDL	10	
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
ISOPHORONE	BDL	10	ug/L
NAPHTHALENE	BDL	10	ug/L

	Result	Det. Limit Units
Parameter NITROBENZENE	BDL	10 ug/L
N-NITROSO-DIMETHYLAMINE	BDL	10 ug/L
N-NITROSO-DIPROPYLAMINE	BDL	10 ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10 ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10 ug/L
	BDL	10 ug/L
BENZYLBUTYLPHTHALATE	BDL	10 ug/L
DI-N-BUTYLPHTHALATE	BDL	
DI-N-OCTYLPHTHALATE		
DIETHYLPHTHALATE	BDL	1
DIMETHYLPHTHALATE	BDL	10 ug/L
BENZ (A) ANTHRACENE	BDL	10 ug/L
BENZO(A)PYRENE	BDL	10 ug/L
BENZO(B)FLUORANTHENE	BDL	10 ug/L
BENZO(K)FLUORANTHENE	BDL	10 ug/L
CHRYSENE	BDL	10 ug/L
ACENAPHTHYLENE	BDL	10 ug/L
ANTHRACENE	BDL	10 ug/L
BENZO(G,H,I)PERYLENE	BDL	10 ug/L
FLUORENE	BDL	10 ug/L
PHENANTHRENE	BDL	10 ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10 ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10 ug/L
PYRENE	BDL	10 ug/L
ALDRIN	BDL	10 ug/L
DIELDRIN	BDL	10 ug/L
CHLORDANE	BDL	50 ug/L
4,4'-DDD	BDL	10 ug/L
4,4'-DDE	BDL	10 ug/L
4,4'-DDT	BDL	10 ug/L
AĹPHA-ENDOSULFAN	BDL	10 ug/L
BETA-ENDOSULFAN	BDL	10 ug/L
ENDOSULFAN SULFATE	BDL	10 ug/L
ENDRIN	BDL	10 ug/L
ENDRIN ALDEHYDE	BDL	10 ug/L
HEPTACHLOR	BDL	10 ug/L
HEPTACHLOR EPOXIDE	BDL	10 ug/L
ALPHA-BHC	BDL	10 ug/L
BETA-BHC	BDL	10 ug/L
DELTA-BHC	BDL	10 ug/L
GAMMA-BHC (LINDANE)	BDL	10 ug/L
PCB AROCHLOR 1016	BDL	50 ug/L
PCB AROCHLOR 1221	BDL	50 ug/L
PCB AROCHLOR 1232	BDL	50 ug/L
PCB AROCHLOR 1242	BDL	50 ug/L
PCB AROCHLOR 1242	BDL	50 ug/L
PCB AROCHOR 1248 PCB AROCLOR 1254	BDL	50 ug/L
PCB AROCHLOR 1254	BDL	50 ug/L
TOXAPHENE	BDL	50 ug/L
LUAATTENE	DUL	Jo ug/L
SURROGATE RECOVERY		
2-FLUOROPHENOL	33	% Rec
PHENOL-D5	18	% Rec
NITROBENZENE-D5	93	% Rec
2-FLUOROBIPHENYL	89	% Rec
2,4,6-TRIBROMOPHENOL	94	% Rec
	100	% Rec
TERPHENYL-D14	100	

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4068.

CERTIFICATE OF ANALYSIS

Service Location EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST. INDIANAPOLIS, IN 46231 (317)243-8305	Received 23-JAN-92 Complete 05-FEB-92 Printed	Lab ID A246067 PO Number P0072488-CHAMPAIGN Sampled
	06-FEB-92	21-JAN-92 14:55

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-109-0192 DESCRIPTION: WELL UMW-109

LOCATION: CHAMPAIGN

SULFIDE

1:2 DILUTION

PH (AQUEOUS) SW846-9040 Analyst: H. RANDALL Analysis	Date: 23-JAN-92	Test: G607.5.	0
PH Parameter	7.3	Det. Limit	Units Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analysis I	Date: 23-JAN-92	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 1200	Det. Limit	Units
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analysis E	Pate: 23-JAN-92	Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 8.1	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis D	Date: 24-JAN-92	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 22	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 Analyst: N. HEMMERLEIN Analysis D	5 MOD nate: 31-JAN-92 Instrument: GC/FID	Test: 0409.1.	0
Parameter IESEL FUEL ASOLINE THER HYDROCARBONS	Result BDL BDL BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L mg/L
SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis D	ate: 28-JAN-92	Test: G110.4.	
Parameter GULFIDE	Result	Det. Limit	Units

BDL

2.0 mg/L

EMS HERITAGE LABORATORIES, INC.	Distriction of the second of t	Lab Sample	ID: A2460
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92			
Analyst: J. SMITH Analysis Date: 28-JAN-92 Parameter		Test: P203.4	. 0
INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter IITROGEN, AMMONIA	Result 0.2	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter IITROGEN, NITRATE-NITRITE	Result 3.2	Det. Limit	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:25 DILUTION	Result 290	Det. Limit 125	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92 Parameter NITIAL WEIGHT OR VOLUME	Result	Test: P405.7.	Units
INAL VOLUME	100		mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter HENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Analyst: J. GRIFFIN Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER Result 0.16	Test: G101.4. Det. Limit 0.01	Units mg/L
Prep: CYANIDE DISTILLATION SW846-9010 Parameter	Result 0.16	Det. Limit	Units mg/L

	ABORATORIES, INC.		Lab Sample	ID: A24606
FAA OR ICP ACI Analyst: J. VANSKYO	D DIGESTION OF AQUEOU CK Analysi	JS SAMPLES SW846-3010 s Date: 31-JAN-92	Test: P130.5.	1
INITIAL WEIGHT FINAL WEIGHT OR	Parameter OR VOLUME	Fesult 50 50	Det. Limit	Units mL mL
BARIUM ICP SW8 Analyst: M. JAO Prep: FAA OR	Analysi	s Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M104.3.	0
BARIUM	Parameter	Result 0.13	Det. Limit 0.010	Units mg/L
CADMIUM ICP SWA Analyst: M. JAO Prep: FAA OR	Analysis	s Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SA Analyst: M. JAO Prep: FAA OR	Analysis	s Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M110.3.	0
CHROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW84 Analyst: M. JAO Prep: FAA OR I	Analyeis	Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M112.3.	0
COPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846- Analyst: M. JAO Prep: FAA OR I	Analysis	Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M115.3.	0
RON	Parameter	Result 0.11	Det. Limit 0.020	Units mg/L
LEAD ICP SW846- Analyst: M. JAO Prep: FAA OR I	Analysis	Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M116.3.	0
EAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP S Analyst: M. JAO Prep: FAA OR I	Analysis	Date: 29-JAN-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M119.3.	0
ANGANESE	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
NICKEL ICP SW84 ^{Analyst: M. JAO} Prep: FAA OR I	Analysis	Date: 03-FEB-92 Instrument: ICP AQUEOUS SAMPLES SW846-3010	Test: M122.3.	0
ICKEL	Parameter	Result BDL	Det. Limit 0.010	Units mg/L

ZINC ICP SW846-6010 Analyst: M. JAO Analysis Date: 2 Prep: FAA OR ICP ACID DIGESTION OF AQUEO	9-JAN-92 Instrument: ICP US SAMPLES SW846-3010	Test: M139.3.	
Parameter INC rep blank was 0.041 mg/l	Result 0.096	Det. Limit	Units mg/L

Parame	eter	Result	Det. Limit	Units
NITIAL WEIGHT OR VOLUME		50		mL

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Analysis Date Prep: GFAA ACID DIGESTION OF AQUEOUS	te: 29-JAN-92 Instrument: GFAA SAMPLES SW846-3020	Test: M103.2.	0
Parameter ARSENIC	Result BDL	Det. Limit 0.0050	Units mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS S	AMPLES SW846-7470		
Analyst: P. SIMS Analysis Date:	27-JAN-92	Test: P131.6.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 100	Det. Limit	Units ml
INAL VOLUME	100		mL

MERCURY CVAA SI Analyst: P. SIMS Prep: MERCURY		Analysis Date: 28-JAN-92 ESTION OF AQUEOUS S	Instrument: CVA/ AMPLES SW846	v 7470	Test: M120.1.	0
MERCURY	Parameter		Result BDL	1 (- 11) (- 12) (Det. Limit 0.0005	Units mg/L

Analyst: T. WIEGAND Analysis Date	e: 29-JAN-92 Instrument: GC/MS VOA	Test: 0502.3.	0
ACDOL EIN	Result	Det. Limit	Units
ACROLEIN ACROLONITRILE	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5 5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYL V INYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
)IBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
,1-DICHLOROETHANE	BDL	5	ug/L
,2-DICHLOROETHANE	BDL	5	ug/L
,1-DICHLOROETHENE	BDL		ug/L ug/L
,2-DICHLOROPROPANE	BDL	5 5	
IS-1,3-DICHLOROPROPENE	BDL	5	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
THYLBENZENE	BDL	5	ug/L
ROMOMETHANE	BDL	10	ug/L
HLOROMETHANE	BDL		ug/L
ETHYLENE CHLORIDE	BDL	10	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
ETRACHLORETHENE		5	ug/L
I E I KACHLOKE I HENE	BDL	5	ug/L

Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	
1,1,1-TRICHLOROETHANE	BDL	5 ug/l
1,1,2-TRICHLOROETHANE	BDL	5 ua/l
TRICHLOROETHENE	BDI	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 ua/l
VINYL CHLORIDE	BDI	10 ug/L
•		
SURROGATE RECOVERY		
DICHLOROETHANE-D4	70	
TOLUENE-D8	06	% Rec
BROMOFLUOROBENZENE	96	% Rec
DIVOLIOI FOOKODENTENE	9/	% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRA Analyst: R. BRANCH Analysis Date: 24-JAN-92		Test: P243.1.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL VOLUME			Liters ml

Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
ACENAPHTHENE	BDL	10	ug/L
BENZIDINE	BDL	20	ug/L
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L ug/L
2-CHLORONAPHTHALENE	BDL	10	ug/L
1,2-DICHLOROBENZENE	BDL	10	ug/L ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	
2,4-DINITROTOLUENE	BDL	10	ug/L ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L ug/L
FLUORANTHENE	BDL	10	ug/L ug/L
1-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L ug/L
1-BROMOPHENYLPHENYLETHER	BDL	10	
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
HEXÀCHLOROBUTADIENÉ	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
I SOPHORONE	BDL	tinana and a sama and a	ug/L
SUPFICIONE	KIII	10	ug/L

ENS HERTIAGE EADORATORIES, INC.	<u>.</u>	ab Sample 1	D: A24606/
Parameter	Result	Det. Limit	Units
NITROBENZENE	BDL	10	ug/L
N-NITROSO-DIMETHYLAMINE	BDL	10	ug/L
N-NITROSO-DIPROPYLAMINE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
BENZ(A)ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	ug/L
BENZO(B) FLUORANTHENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
ACENAPHTHYLENE	BDL	$\bar{1}$ 0	uq/L
ANTHRACENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L ug/L
ALDRIN	BDL	10	ug/L ug/L
DIELDRIN	BDL	10	ug/L ug/L
CHLORDANE	BDL	50	ug/L ug/L
4,4'-DDD	BDL	10	ug/L ug/L
4,4'-DDE	BDL	10	
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	and the state of the second se	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	10	ug/L
PCB AROCHLOR 1221	BDL	50 50	ug/L
PCB AROCHLOR 1232	BDL		ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL		ug/L
PCB AROCHLOR 1260	BDL		ug/L
TOXAPHENE	BDL		ug/L
	DUL	50	ug/L
SURROGATE RECOVERY		7	
2-FLUOROPHENOL	52		o/ n
PHENOL-D5	37		% Rec
NITROBENZENE-D5	82		% Rec
2-FLUOROBIPHENYL	82		% Rec
2,4,6-TRIBROMOPHENOL	77		% Rec
TERPHENYL-D14			% Rec
TEMINEMIL DIT	105		% Rec

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4069.

CERTIFICATE OF ANALYSIS

Service Location HERITAGE LABORATORIES, INC.	Received 27-JAN-92	Project 638	Lab ID A246319
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231 (317)243-8305	Complete 11-FEB-92	PO N PO09	umber 9698
(317)243-0303	Printed	Samp	led
	10-FEB-93	25-JAN-	92 08:30

Report To

KATHLEEN A. BLAINE JOHN MATHES AND ASSOCIATES 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ACCOUNTS PAYABLE ILLINOIS POWER COMPANY P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-110-0192 DESCRIPTION: WELL # UMW-110

LOCATION: CHAMPAIGN

PH	Parameter	Result 6.3	Det. Limit	Units Std Units
PH (AQUEOUS) SW846 Analyst: A. HILSCHER	i-9040 Analysis Date: 27-JAN-	92	Test: G607.5	0

SPECIFIC CONDUCTA	ANCE SW846-90	50				
Analyst: L. MATTINGLY	Analysis	Date: 27-JAN-92			Test: G604.4	.0
CONDUCTIVITY	Parameter		1000	Result	Det. Limit	Units umHOS/cm

DISSOLVED OXYGEN EPA 360.1			
Analyst: K. BLAHUT Analysis Date: 27-JAN-92		Test: G800.0	.0
DISSOLVED OXYGEN	Result 9.6	Det. Limit	Units mg/L

CHEMICAL OXYGEN DEMAND EPA 410.4			
Analyst: K. FULLMER Analysis Date: 28-JAN-92		Test: G301.1	.0
Parameter CHEMICAL OXYGEN DEMAND	Result 50	Det. Limit	Units mg/L

HYDROCARBON SCAN BY GC:FID SW846-8015(MOD) Analyst: N. HEMMERLEIN Analysis Date: 30-JAN-92 In	nstrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL	Result BDL	Det. Limit	Units mg/L
GASOLINE UNKNOWN HYDROCARBON	BDL * 11	0.25	mg/L mg/L
NOTE: * UNKNOWN MULTICOMPONENT FRACTION IN T ESTIMATED QUANTIFICATION BASED ON DIESEL FUE	HE C-6 TO C-20 BOILING L STANDARD.	POINT RANGE.	mg/ L

SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Date: 28-JAN-92	2	Test: G110.4	: 0
Parameter SULFIDE	Result BDL	Det. Limit	Units
AMMONIA DISTILLATION EPA 350.2 Analyst: L. MATTINGLY Analysis Date: 29-JAN-92	2	Test: P203.4	. 0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 31-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2 P203.4.0		Test: G203.4	-0
Parameter NITROGEN, AMMONIA	Result 4.4	Det. Limit 0.10	Units mg/L
NITROGEN, NITRATE-NITRITE EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3	.0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.21	Det. Limit 0.01	Units mg/L
SULFATE (TURBIDIMETRIC) SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6	.0
Parameter SULFATE 1:25 DILUTION	Result 360	Det. Limit	Units
1.23 DILOTION			
PHENOLS DISTILLATION SW846-9065			
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 29-JAN-92		Test: P405.7	*********
Analyst: M. GAUGHAN Analysis Date: 29-JAN-92 Parameter INITIAL WEIGHT OR VOLUME	Result 100 100	Test: P405.7 Det. Limit	.0 Units ML ML
Analyst: M. GAUGHAN Analysis Date: 29-JAN-92 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100		Units ML ML
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Pers: PHENOLS DISTILLATION SW846-9065 P405.7.0 Parameter	Result 100 100	Det. Limit	Units mL mL
Analyst: M. GAUGHAN Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065 P405.7.0	Result 100 100 Instrument: AUTO-ANALYZER Result	Det. Limit Test: 0405.7.	Units mL mL .0 Units mg/L

Analysis Date: 29-JAN-92 Instrument: AUTO-ANALYZER

Result

0.62

CYANIDE, TOTAL (AUTOMATED) SW846-9012

Parameter

Prep: CYANIDE DISTILLATION SW846-9010 P101.4.0

Analyst: J. GRIFFIN

CYANIDE

Test: G101.4.0

0.02 mg/L

Units

Det. Limit

CONTRACTOR OF THE PROPERTY OF	RATORIES, INC.		Lab Sample ID: A246319
FAA OR ICP AC Analyst: J. VANSK	ID DIGESTION OF AQUEOUS S SYOCK Analysis Date: 05-FE	SAMPLES SW846-3010 B-92	Test: P130.5.0
INITIAL WEIGH FINAL WEIGHT		Result 50 50	Det. Limit Units mL mL
BARIUM ICP SW Analyst: A. HILSO Prep: FAA OR ICP		B-92 Instrument: ICP SW846-3010 P130.5.0	Test: M104.3.0
BARIUM	Parameter	Result 0.12	Det. Limit Units 0.010 mg/L
CADMIUM ICP S Analyst: A. HILSC Prep: FAA OR ICP		B-92 Instrument: ICP SW846-3010 P130.5.0	Test: M108.3.0
CADMIUM	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP : Analyst: A. HILSC Prep: FAA OR ICP		B-92 Instrument: ICP SW846-3010 P130:5.0	Test: M110.3.0
CHROMIUM	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SWE Analyst: A. HILSC Prep: FAA OR ICP		B-92 Instrument: ICP SW846-3010 P130.5.0	Test: M112.3.0
COPPER	Parameter	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW846 Analyst: A. HILSCI Prep: FAA OR ICP		3-92 Instrument: ICP SW846-3010 P130.5.0	Test: M115.3.0
IRON	Parameter	Result 0.77	Det. Limit Units 0.025 mg/L
LEAD ICP SW846 Analyst: A. HILSCH Prep: FAA OR ICP /		3-92 Instrument: ICP SW846-3010 P130.5.0	Test: M116.3.0
EAD	Parameter	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP Analyst: A. HILSCH Prep: FAA OR ICP A		1-92 Instrument: ICP SW846-3010 P130.5.0	Test: M119.3.0
1ANGANESE	Parameter	Result 4.4	Det. Limit Units 0.010 mg/L
VICKEL ICP SW8 Analyst: A. HILSCH Prep: FAA OR ICP A			Test: M122.3,0
	Parameter		

	-FEB-92 Instrument: ICP	Test: M139.3.0
Prep: FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPL		
INC rep blank was 0.052 mg/l	0.050	Det. Limit Units 0.020 mg/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-3020			
Analyst: E. MERRILL Analysis Date: 30-JAN-92		Test: P130.6	.0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL WEIGHT OR VOLUME	50		mL ml

ARSENIC GFAA SW846-7060			
Analyst: M. BAUER Analysis Date: 07-FEB-92 I	nstrument: GFAA	Test: M103.2	.0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-3020 P13	0.6.0		
Parameter	Result	Det. Limit	Units
ARSENIC	BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW Analyst: P. SIMS Analysis Date: 30-JAN-92	1846-7470	Test: P131.6	.0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL

Prep: MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-7470 P131.6.0 Parameter Result		
Poromoton 33 million 1 Page 1 District 1 Page 1		
Parameter Result	Det. Limit	Units

Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	120	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5 5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL		ug/L
CHLOROFORM	BDL		ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5 5 5 5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL		ug/L
ETHYLBENZENE	EST 250	5	ug/L
BROMOMETHANE	BDL		ug/L
CHLOROMETHANE	BDL		ug/L
METHYLENE CHLORIDE	BDL		ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL		ug/L

Parameter	Result	Det. Limit	Units
TOLUENE	8	5	na/I
1,2-DICHLOROETHENE (TOTAL)	BDL	, S	ug/L
1,1,1-TRICHLOROETHANE	BDI	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE	BDL		ug/L
VINYL CHLORIDE	RDI	10	ug/L
		10	ug/ L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	99		0/ 0
TOLUENE-D8	98		% Rec % Rec
BROMOFLUOROBENZENE	98		o
	70		% Rec

Analyst: T. WIEGAND Analysis Date: 05-FEB Parameter	-92 Instrument: GC/MS VOA	Test: 0502.3	T
ACROLEIN	BDL	loct. Limit	Units
ACRYLONITRILE	BDL	140	ug/L
BENZENE	120	10	ug/L ug/L
BROMOFORM	BDL	10	ug/L ug/L
CARBON TETRACHLORIDE	BDL	10	ug/L ug/L
CHLOROBENZENE	BDL	10	
CHLOROETHANE	BDL	20	ug/L
-CHLOROETHYLVINYLETHER	BDL	20	ug/L ug/L
CHLOROFORM	BDL	10	ug/L ug/L
)IBROMOCHLOROMETHANE	BDL	10	ug/L ug/L
ROMODICHLOROMETHANE	BDL	10	ug/L ug/L
,1-DICHLOROETHANE	BDL	10	ug/L ug/L
,2-DICHLOROETHANE	BDL	10	ug/L
,1-DICHLOROETHENE	BDL	10	ug/L ug/L
,2-DICHLOROPROPANE	BDL	10	ug/L
RANS-1,3-DICHLOROPROPENE	BDL	10	ug/L
IS-1,3-DICHLOROPROPENE	BDL	10	ug/L
THYLBENZENE	210	10	ug/L
ROMOMETHANE	BDL	20	ug/L
HLOROMETHANE	BDL	20	ug/L ug/L
ETHYLENE CHLORIDE	BDL	10	ug/L
,1,2,2-TETRACHLOROETHANE	BDL	10	ug/L
ÉTŔACHLORETHENE	BDL	10	ug/L
OLUENE	BDL	10	ug/L
,2-DICHLOROETHENE (TOTAL)	BDL	10	ug/L
,1,1-TRICHLOROETHANE	BDL	iŏ	ug/L
,1,2-TRICHLOROETHANE	BDL	10	ug/L
ŔĬĊĦĿŎŖŎĔŦĦĔŊĔ	BDL	10	ug/L
RICHLOROFLUOROMETHANE	BDL	10	ug/L
INYL CHLORIDE	BDL	20	ug/L
		20	49/ L
URROGATE RECOVERY			
ICHLOROETHANE-D4	95		% Rec
OLUENE-D8	85		% Rec
ROMOFLUOROBENZENE	82		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID Analyst: G. HUGHS Analysis Date: 29-JAN-92		Test: P243.1	.0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL VOLUME			mL

			1-4116	
SEMI-VOLATILE PRIORITY POLLUTANTS (BASE/NEUTRAL ACID) EPA 62 Analyst: J. MINNIEAR, II Analysis Date: 04-FEB-92 Instrument: GC/MS SVOA Prep: SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625 P243.1.0		Test: 0501.3.0		
Parameter	Result	Det. Limit	Units	
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L	
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L	
2-CHLOROPHENOL	BDL	10	ug/L	
2,4-DICHLOROPHENOL	BDL	10		
2,4-DIMETHYLPHENOL	BDL		ug/L	
2-NITROPHENOL		10	ug/L	
4-NITROPHENOL	BDL	10	ug/L	
	BDL	50	ug/L	
2,4-DINITROPHENOL	BDL	50	ug/L	
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L	
PENTACHLOROPHENOL	BDL	50	ug/L	
PHENOL	BDL	10	ug/L	
ACENAPHTHENE	64	10	ug/L	
BENZIDINE	BDL	20	ug/L	
1,2,4-TRICHLOROBENZENE	BDL	10	ug/L	
HÉXÁCHLOROBENZENE	BDL	10	ug/L ug/L	
HEXACHLOROETHANE	BDL	1 1		
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L	
2-CHLORONAPHTHALENE		10	ug/L	
	BDL	10	ug/L	
1,2-DICHLOROBENZENE	BDL	10	ug/L	
1,3-DICHLOROBENZENE	BDL	10	ug/L	
1,4-DICHLOROBENZENE	BDL	10	ug/L	
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L	
2,4-DINITROTOLUENE	BDL	10	ug/L	
2,6-DINITROTOLUENE	BDL	10	ug/L	
FLUORANTHENE	BDL	10	ug/L	
4-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L	
4-BROMOPHENYLPHENYLETHER	BDL	10		
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ug/L	
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L	
HEXACHLOROBUTADIENE		10	ug/L	
	BDL	10	ug/L	
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L	
ISOPHORONE	BDL	10	ug/L	
NAPHTHALENE	EST 2600	10	ug/L	
NITROBENZENE	BDL	10	ug/L	
N-NITROSO-DIMETHYLAMINE	BDL	10	ug/L	
N-NITROSO-DIPROPYLAMINE	BDL	10	ug/L	
N_NIIDOSO_NIDHENVIAMINE	I DDI	10	ug/L	
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L	
	BDL	10		
DI-N-BUTYLPHTHALATE	BDL		ug/L	
DI-N-OCTYLPHTHALATE	BDL	10	ug/L	
DIETHYLPHTHALATE		10	ug/L	
	BDL		ug/L	
DIMETHYLPHTHALATE	BDL	10	ug/L	
BENZ (A) ANTHRACENE			ug/L	
BENZO(A)PYRENE	BDL	10	ug/L	
BENZO(B)FLUORANTHENE	BDL		ug/L	
BENZO(K)FLUORANTHENE	BDL	1	ug/L	
CHRYSENE	BDL		ug/L	
		continued on n	ug/ L	

Parameter	Result	Lab Sample ID	
ACENAPHTHYLENE	100	Det. Limit	Units
ANTHRACENE	14	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	49	10	ug/L
PHENANTHRENE	57		ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN		10	ug/L
CHLORDANE	BDL	10	ug/L
4,4'-DDD	BDL	50	ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN ALDELYDE	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	33		% Rec
PHENOL-D5	23		
NITROBENZENE-D5	235		% Rec
2-FLUOROBIPHENYL	79		% Rec
2,4,6-TRIBROMOPHENOL	104		% Rec
TERPHENYL-D14			% Rec
ALUNE HEALT DES	87		% Rec

SEMI-VOLATILE PRIORITY POLLUTANTS (BASI Analyst: J. MINNIEAR, II Analysis Date: 04-FEB Prep: SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FR	-92 Instrument: GC/MS SVOA	Test: 0501.3.1
Parameter	Result	Det. Limit Units
2,4,6-TRICHLOROPHENOL	BDL	500 ug/L
4-CHLORO-3-METHYLPHENOL	BDL	500 ug/L
2-CHLOROPHENOL	BDL	500 ug/L
2,4-DICHLOROPHENOL	BDL	500 ug/L
2,4-DIMETHYLPHENOL	BDL	500 ug/L
2-NITROPHENOL	BDL	500 ug/L
4-NITROPHENOL	BDL	2500 ug/L
2,4-DINITROPHENOL	BDL	2500 ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	2500 ug/L
PÉNTACHLOROPHENOL	BDI	2500 ug/L

HERITAGE LABORATURIES, INC.	Lā	ib Sample ID	: A246319
Parameter PHENOL	Result BDL	Det. Limit	Units ug/L
ACENAPHTHENE	BDL	500	
BENZIDINE	BDL	1000	
1,2,4-TRICHLOROBENZENE	BDL		ug/L
HEXACHLOROBENZENE	BDL	500	
HEXACHLOROETHANE		500	ug/L
	BDL	500	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	500	ug/L
2-CHLORONAPHTHALENE	BDL	500	
1,2-DICHLOROBENZENE	BDL	500	ug/L
1,3-DICHLOROBENZENE	BDL	500	ug/L
1,4-DICHLOROBENZENE	BDL	500	ug/L
3,3'-DICHLOROBENZIDINE	BDL	1000	ug/L
2,4-DINITROTOLUENE	BDL	500	ug/L
2,6-DINITROTOLUENE	BDL	500	ug/L
FLUORANTHENE	BDL	500	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	500	
4-BROMOPHENYLPHENYLETHER	BDL	500	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	500	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	500	ug/L
HEXACHLOROBUTADIENÉ	BDL	500	
HEXACHLOROCYCLOPENTADIENE	BDL	500	
ISOPHORONE	BDL	500	ug/L
NAPHTHALENE	1900		ug/L
NITROBENZENE	BDL	500	ug/L
N-NITROSO-DIMETHYLAMINE		500	ug/L
	BDL	500	ug/L
N-NITROSO-DIPROPYLAMINE	BDL	500	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	500	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	500	ug/L
BENZYLBUTYLPHTHALATE	BDL	500	ug/L
DT-N-BUTYLPHTHALATE	BDL	500	
DI-N-OCTYLPHTHALATE	BDL	500	ug/L
DIETHYLPHTHALATE	BDL	500	ug/L
DIMETHYLPHTHALATE	BDL	500	ug/L
BENZ(A)ANTHRACENE	BDL	500	ug/L
BENZO(A)PYRENE	BDL	500	ug/L
BENZO(B) FLUORANTHENE	BDL	500	ug/L
BENZO(K)FLUORANTHENE	BDL	500	ug/L
CHRYSENE	BDL	500	ug/L
ACENAPHTHYLENE	BDL	500	ug/L
ANTHRACENE	BDL	500	ug/L
BENZO(G,H,I)PERYLENE	BDL	500	ug/L
FLUORÈNE	BDL	500	ug/L
PHENANTHRENE	BDL	500	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	500	
INDENO(1,2,3-CD)PYRENE	BDL		ug/L
PYRENE	BDL	500	ug/L
ALDRIN		500	ug/L
DIELDRIN	BDL	500	ug/L
	BDL	500	ug/L
CHLORDANE	BDL	2500	ug/L
4,4%-DDD	BDL	500	ug/L
4,4'-DDE	BDL	500	ug/L
4,4'-DDT	BDL	500	ug/L
ALPHA-ENDOSULFAN	BDL	500	ug/L
BETA-ENDOSULFAN	BDL	500	ug/L
ENDOSULFAN SULFATE	BDL	500	ug/L
ENDRIN	BDL	500	ug/L
ENDRIN ALDEHYDE	BDL		ug/L

Page 8 (continued on next page)

Lab Sample ID: A246319

Parameter	Result	Det. Limit	Units
HEPTACHLOR	BDL	500	ug/L
HEPTACHLOR EPOXIDE	BDL	500	ug/L
ALPHA-BHC	BDL	500	ug/L
BETA-BHC	BDL	500	ug/L
DELTA-BHC	BDL	500	ug/L
GAMMA-BHC (LINDANE)	BDL	500	ug/L
PCB AROCHLOR 1016	BDL	2500	ug/L
PCB AROCHLOR 1221	BDL	2500	ug/L
PCB AROCHLOR 1232	BDL	2500	ug/L
PCB AROCHLOR 1242	BDL	2500	ug/L
PCB AROCHLOR 1248	BDL	2500	ug/L
PCB AROCLOR 1254	BDL	2500	ug/L
PCB AROCHLOR 1260	BDL	2500	ug/L
TOXAPHENE	BDL	2500	ug/L
•	BDL		· ·
SURROGATE RECOVERY	BDL		
	BDL		
2-FLUOROPHENOL			% Rec
PHENOL-D5	**		% Rec
NITROBENZENE-D5			% Rec
2-FLUOROBIPHENYL	**		% Rec
2,4,6-TRIBROMOPHENOL	**		% Rec
TERPHENYL-D14	**		% Rec
** DILUTED OUT			
1:50 DILUTION			

Sample Comments

* See Note for Parameter ** See Note for Parameter BDL Below Detection Limit EST Estimated Value

Sample chain of custody number 4730.

IDEM Drinking Water Certification Number C-49-01 This Certificate shall not be reproduced, except in full, without the written approval of the lab.

Additional copies of this report sent to: NATALIE E. LOCKE, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

WILLIAM WITTS, ILLINOIS POWER COMPANY 500 SOUTH 27TH STREET P.O. BOX 511, DECATUR, IL 62525

Jollison

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	23-JAN-92	A246070
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 15:50

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-111-0192 DESCRIPTION: WELL UMW-111 LOCATION: CHAMPAIGN

LOCATION: CHAMPAIGN

SULFIDE

PH (AQUEOUS) SW846-9040 Analyst: H. RANDALL Analysis D	ate: 23-JAN-92	Test: G607.5.	0
Parameter	Result	Det. Limit	Units
PH PH	7.0	0.1	Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analyst: L. MATTINGLY Analysis D	ate: 23-JAN-92	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 1400	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K. BLAHUT Analysis D	ate: 23-JAN-92	Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 9.8	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis D	ate: 24-JAN-92	Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 61	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 Analyst: N. HEMMERLEIN Analysis D.	MOD ate: 26-JAN-92 Instrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL	Result BDL	Det. Limit	Units
GASOLINE	BDL	1.25	mg/L mg/L
OTHER HYDROCARBONS	BDL	0.23	mg/L
SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Da	ate: 28-JAN-92	Test: G110.4.	0
Parameter	Result	Det. Limit	Units

BDL

1.0 mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample	ID: A2460
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	n
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result BDL	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 2.7	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:5 DILUTION	Result 94	Det. Limit 25	Units
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92 Parameter INITIAL WEIGHT OR VOLUME	Result	Test: P405.7.	0 Units
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0 mL
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter YANIDE	Result BDL	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	346-3010	Test: P130.5.	0
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units ML ML

	LABORATORIES, INC.		Lab Sample	ID: A246070
FAA OR ICP AC Analyst: J. VANSKY	ID DIGESTION OF AQUEOUS SAM Analysis Date:	PLES SW846-3010 31-JAN-92	Test: P130.5.	1
INITIAL WEIGHT FINAL WEIGHT O		Result 50 50	Det. Limit	Units ML ML
BARIUM ICP SW Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP OUS SAMPLES SW846-3010	Test: M104.3.	0
BARIUM	Parameter	Result 0.099	Det. Limit 0.010	Units mg/L
CADMIUM ICP SI Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP OUS SAMPLES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP S Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP OUS SAMPLES SW846-3010	Test: M110.3.	0
CHROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW8 Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP OUS SAMPLES SW846-3010	Test: M112.3.	0
COPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846 Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP DUS SAMPLES SW846-3010	Test: M115.3.	0
IRON	Parameter	Result 0.023	Det. Limit 0.020	Units mg/L
LEAD ICP SW846 Analyst: M. JAO Prep: FAA OR		29-JAN-92 Instrument: ICP DUS SAMPLES SW846-3010	Test: M116.3.	0
LEAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP Analyst: M. JAO Prep: FAA OR	SW846-6010 Analysis Date: 1 ICP ACID DIGESTION OF AQUEO	29-JAN-92 Instrument: ICP DUS SAMPLES SW846-3010	Test: M119:3.	0
MANGANESE	Parameter	Result 0.046	Det. Limit 0.010	Units mg/L
NICKEL ICP SW8 Analyst: M. JAO Prep: FAA OR	46-6010 Analysis Date: 0 ICP ACID DIGESTION OF AQUEC	03-FEB-92 Instrument: ICP DUS SAMPLES SW846-3010	Test: M122.3.	0
NICKEL	Parameter	Result 0.017	Det. Limit 0.010	Units mg/L

ZINC ICP SW846-6010		20	
Analyst: M. JAO Dwan: EAA OD ICD ACID F	Analysis Date	: 29-JAN-92 Instrument: ICP	Test: M139.3. 0
Frep. FAA OK ICP ACID L	TIGESTION OF AUG	JEOUS SAMPLES SW846-3010	
Param	eter	Result	Det. Limit Units
INC .		0.059	0.020 mg/L
rep blank was 0.041 mg/l		1 0.003	0.020 1119/ [

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302 Analysis Date: 25-JAN-92		Test: P130.6.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 50	Det. Limit	Units ML
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Prep: GFAA ACID DIGESTION OF AQUEOUS	te: 29-JAN-92 Instrument: GFAA	Test: M103.2.	0
Parameter ARSENIC	Result BDL	Det. Limit 0.0050	Units mg/L

Analyst: P. SIMS Analy	vsis Date: 27-JAN-92	Test: P131.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
TNAL VOLUME			IIIL m

MERCURY CVAA S	W846-7470		
Analyst: P. SIMS Prep: MERCURY		Date: 28-JAN-92 Instrument: CVAA F AQUEOUS SAMPLES SW846-7470	Test: M120.1. 0
<u>I</u>	Parameter	Result	Det. Limit Units
MERCURY	# ### ### ### ### ### ### ### ### ###	BDE BOE	0.0005 mg/L

		0.0003 mg/ L
VOLATILE PRIORITY POLLUTANTS EPA 624	1	
Analyst: T. WIEGAND Analysis Date: 2	9-JAN-92 Instrument: GC/MS VOA	Test: 0502.3. 0
Parameter	Result	Det. Limit Units
ACROLEIN	BDL	50 ug/L
ACRYLONITRILE	BDL	70 ug/L
BENZENE	BDL	5 ug/L
BROMOFORM	BDL	5 ug/L
CARBON TETRACHLORIDE	BDL	5 ug/L
CHLOROBENZENE	BDL	5 ug/L
CHLOROETHANE	BDL	10 ug/L
2-CHLOROETHYLVINYLETHER	BDL	10 ug/L
CHLOROFORM	BDL	5 ug/L
DIBROMOCHLOROMETHANE	BDL	5 ug/L
BROMODICHLOROMETHANE	BDL	5 ug/L
1,1-DICHLOROETHANE	BDL	5 ug/L
1,2-DICHLOROETHANE	BDL	5 ug/L
1,1-DICHLOROETHENE	BDL	5 ug/L
1,2-DICHLOROPROPANE	BDL	5 ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5 ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	
ETHYLBENZENE	BDL	5 ug/L 5 ug/L
BROMOMETHANE	BDL	10 ug/L
CHLOROMETHANE	BDL	10 ug/L
METHYLENE CHLORIDE	BDL	5 ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5 ug/L
TETRACHLORETHENE	BDL	5 ug/L

		200 00mp10 1D: //2400/
Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/l
1,2-DICHLOROETHENE (TOTAL)	BDL	5 ua/l
1,1,1-TRICHLOROETHANE	BDI	5 ug/L
1,1,2-TRICHLOROETHANE	BDI	5 ug/l
TRICHLOROETHENE	BDL	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 119/1
VINYL CHLORIDE	BDL	10 ug/L
SURROGATE RECOVERY		
DICHLOROETHANE-D4	89	% Rec
TOLUENE-D8	93	% Rec
BROMOFLUOROBENZENE	95	% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRA Analyst: N. ROHADFOX Analysis Date: 28-JAN-92		Test: P243.1.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 1	Det. Limit	Units Liters
FINAL VOLUME	1		mL

Prep: SEMI-VOLATILE EXTRACTION (NEUT)	Result	Det. Limit	11
2,4,6-TRICHLOROPHENOL	BDL	Det. Limit	Units ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10	ug/L ug/L
2-CHLOROPHENOL	BDL	10	ug/L
2,4-DICHLOROPHENOL	BDL	10 l	ug/L
2,4-DIMETHYLPHENOL	BDL	10	ug/L
2-NITROPHENOL	BDL	10	ug/L
4-NITROPHENOL	BDL	50	ug/L
2,4-DINITROPHENOL	BDL	50	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
PENTACHLOROPHENOL	BDL	50	ug/L
PHENOL	BDL	10	ug/L
ACENAPHTHENE	BDL	10	ug/L
BENZ ID INE	BDL	20	ug/L
,2,4-TRICHLOROBENZENE	BDL	10	ug/L
HEXACHLOROBENZENE	BDL	10	ug/L
HEXACHLOROETHANE	BDL	10	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
2-CHLORONAPHTHALEŃE	BDL	10	ug/L
I,2-DICHLOROBENZENE	BDL	10	ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL		ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
LUORANTHENE	BDL	10	ug/L
I-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
IEXACHLOROBUTADI ENÉ	BDL	10	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
ISOPHORONE	BDL		ug/L
NAPHTHALENE	BDL		ug/L

LMS HERTTAGE LABORATURIES, INC.	L	ab Sample 1	D: A2400/0
Parameter NITROBENZENE	Result BDL	Det. Limit	Units
N-NITROSO-DIMETHYLAMINE	BDL	A	ug/L
N-NITROSO-DIPROPYLAMINE	BDL	10	ug/L
N-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
BENZYLBUTYLPHTHALATE	BDL	10	ug/L
DI-N-BUTYLPHTHALATE	BDL	10	0,
DI-N-OCTYLPHTHALATE	BDL	10	ug/L
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10 10	ug/L
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L ug/L
FLUORENE	BDL	10	ug/L ug/L
PHENANTHRENE	BDL	10	ug/L ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4'-DDD	BDL	10	ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHOR 1248	BDL	50	ug/L
PCB AROCLOR 1254 PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L
LOADITIENE	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	64		% Rec
PHENOL-D5	45		% Rec
NITROBENZENE-D5	85		% Rec
2-FLUOROBIPHENYL	83		% Rec
2,4,6-TRIBROMOPHENOL	85		% Rec
TERPHENYL-D14	95		% Rec
TENTILE DIT	1 23		/o REC

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4073.

Service Location EMS HERITAGE LABORATORIES, INC.	Received 23-JAN-92	Lab ID A246072
7901 W. MORRIS ST. INDIANAPOLIS, IN 46231	Complete 05-FEB-92	PO Number PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 17:35

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-112-0192 DESCRIPTION: WELL UMW-112 LOCATION: CHAMPAIGN

Parameter

SULFIDE

Analyst: H. RANDALL Analysis Date: 23-JAN-92		Test: G607.5.	0
Parameter PH	Result 6.6	Det. Limit	Units Std. Unit
SPECIFIC CONDUCTANCE SW846-9050 Analysis L. MATTINGLY Analysis Date: 23-JAN-92	Table 19	Test: G604.4.	0
Parameter CONDUCTIVITY	Result 980	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN EPA 360.1 Analyst: K, BLAHUT Analysis Date: 23-JAN-92		Test: G800.0.	0
Parameter DISSOLVED OXYGEN	Result 8.5	Det. Limit	Units mg/L
CHEMICAL OXYGEN DEMAND EPA 410.4 Analyst: K. FULLMER Analysis Date: 24-JAN-92		Test: G301.1.	0
Parameter CHEMICAL OXYGEN DEMAND	Result 26	Det. Limit	Units mg/L
HYDROCARBON SCAN BY GC:FID SW846-8015 MOD Analyst: N. HEMMERLEIN Analysis Date: 26-JAN-92	Instrument: GC/FID	Test: 0409.1.	0
Parameter DIESEL FUEL GASOLINE OTHER HYDROCARBONS	Result BDL BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L mg/L

Result

BDL

2.0 mg/L

Det. Limit

EMS HERITAGE LABORATORIES, INC.		Lab Sample	ID: A2460
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test- 0207 /	
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Test: P203.4 Det. Limit	Units mL
I-PIAC VOLUME	230		l mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	. 0
Parameter NITROGEN, AMMONIA	Result 0.2	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.55	Det. Limit	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE I:10 DILUTION	Result 140	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92 Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 100 100	Test: P405.7. Det. Limit	0 Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter NITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
YANIDE	Result BDL	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	346-3010	Test: P130.5.	0
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units mL mL

	LABORATORIES, INC.		Lab Sample	ID: A24607
FAA OR ICP AI Analyst: J. VANSK	CID DIGESTION OF AQUEOUS S. Analysis Dat		Test: P130.5.	1
INITIAL WEIGH FINAL WEIGHT (Result 50 50	Det. Limit	Units ML ML
BARIUM ICP SV Analyst: M. JAO Prep: FAA OF		e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M104.3.	
BARIUM	Parameter	Result 0.12	Det. Limit 0.010	Units mg/L
CADMIUM ICP S Analyst: M. JAO Prep: FAA OF		e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP Analyst: M. JAO Prep: FAA OF		e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M110.3.	0
HROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW Analyst: M. JAO Prep: FAA OR		e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M112.3.	0
OPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW84 Analyst: M. JAO Prep: FAA OR		:: 29-JAN-92 Instrument: ICP IEOUS SAMPLES SW846-3010	Test: M115.3.	0
RON	Parameter	Result 0.029	Det. Limit 0.020	Units mg/L
LEAD ICP SW84 Analyst: M. JAO Prep: FAA OR	6-6010 Analysis Date ICP ACID DIGESTION OF AQU	: 29-JAN-92 Instrument: ICP EOUS SAMPLES SW846-3010	Test: M116.3.	0
EAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP Analyst: M. JAO Prep: FAA OR		: 29-JAN-92 Instrument: ICP EOUS SAMPLES SW846-3010	Test: M119.3.	0
	Parameter	Result	Det. Limit	Units
ANGANESE		0.19	0.010	mg/L
ANGANESE NICKEL ICP SW Analyst: M. JAO Prep: FAA OR	846-6010	: 03-FEB-92 Instrument: ICP	Test: M122.3.	

Analyst: M. JAO Pren: FAA OR ICP ACID	Analysis Date	e: 29-JAN-92 Instrument: ICP JEOUS SAMPLES SW846-3010	Test: M139.3.	0
	ameter	Result	Det. Limit	Units
INC		0.045	0.020	mg/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	0		
Analyst: H. RANDALL Analysis Date: 25-JAN-92	and the second second	Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50 F0		mL
TIMAL WEIGHT ON YOUGH			mL

ARSENIC GFAA SW846-7060				
Analyst: W. WATNESS Prep: GFAA ACID DIGESTION	Analysis Date ON OF AQUEOUS S	e: 29-JAN-92 Instrument: GFAA SAMPLES SW846-3020	Test: M103.2.	0
ARSENIC	ter	Result BDL	Det. Limit 0.0050	Units mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES	SW846-7470		
Analyst: P. SIMS Analysis Date: 27-JAN-97		Test: P131.6.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 100	Det. Limit	Units ML
FINAL VOLUME	100		mL

MERCURY CVAA S	W846-7470					
Analyst: P. SIMS Prep: MERCURY	CVAA ACID DIG	Analysis Date: 28-JAN-92 ESTION OF AQUEOUS SA	Instrument: CVAA AMPLES SW846-7	7470	Test: M120.1.	0
MERCURY	Parameter		Result BDL	1	Det. Limit 0.0005	Units mg/L

VOLATILE PRIORITY POLLUTANTS EPA 624 Analyst: T. WIEGAND Analysis Date: 29-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter ACROLEIN	Result	Det. Limit	Units
ACRYLONITRILE	BDL	50	ug/L
BENZENE	BDL	70	ug/L
	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5 5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5 5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL		ug/L
ETHYLBENZENE	BDL	5 5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	
TETRACHLORETHENE	BDL	5	ug/L ug/L

Parameter		Lab Sample ID: A246072
TOLUENE	Result	Det. Limit Units
1,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/l
±5,±5,±= K1UHUKUE HANF		5 ug/L
1,1,2-TRICHIOROFTHANE		5 ug/L
TRICHLOROFTHENE	DUL	
TRICHLOROFLUOROMETHANE	BDL BDL	5 ug/L
TANTE CHECKIDE	DDI	5 110/1
SURROGATE RECOVERY		
SURRUGATE RECOVERY		
TO HENE DA	85	
TOLUENE-D8 BROMOELUOROBENZENE	1.00	
BROMOFLUOROBENZENE	94	% Kec
CENT		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/Analyst: G. HUGHS	ACID FRACTIONS) EPA 625 : 28-JAN-92	Test: P243.1.	0
INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units
FINAL VOLUME			Liters
			mL

Parameter	Parte: 30-JAN-92 Instrument: GC/MS SVOA	
2,4,6-TRICHLOROPHENOL	Result BDL	Det. Limit Units
4-CHLORO-3-METHYLPHENOI	BDL	10 ug/L
2-CHLOROPHENOL	BOL SHE SHE SHE SHE	10 ug/L
2,4-DICHLOROPHENOL	BDL	10 ug/L
2,4-DIMETHYLPHENOL	。""我们的我们的,我们就是我们的,我们就会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	10 ug/L
2-NITROPHENOL	BDL BDL	10 ug/L
4-NITROPHENOL		10 ug/L
2,4-DINITROPHENOL	BDL	50 ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL CONTROL ADDRESS DE PROPERTIES	50 ug/L
PENTACHLOROPHENOL	BDL BBL	50 ug/L
PHENOL	BDL	50 ug/L
ACENAPHTHENE	BDL	10 ug/L
BENZIDINE	BDL	10 ug/L
1,2,4-TRICHLOROBENZENE	BDL	20 ug/L
HEXACHLOROBENZENE	BDL	10 ug/L
HEXACHLOROETHANE	BDL	10 ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10 ug/L
2-CHLORONAPHTHALENE	BDL	10 ug/L
I,2-DICHLOROBENZENE	BDL	10 ug/L
1,3-DICHLOROBENZENE	BDL	10 ug/L
l,4-DICHLOROBENZENE	BDL	10 ug/L
3,3'-DICHLOROBENZIDINE	BDL	10 ug/L
2,4-DINITROTOLUENE	BDL	20 ug/L
P,6-DINITROTOLUENE	BDL	10 ug/L
FLUORANTHENE	BDL	10 ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10 ug/L
-BROMOPHENYLPHENYLETHER	BDL	10 ug/L
TC/2 CULADATCADDADALATED	BDL	10 ug/L
IS(2-CHLOROISOPROPYL)ETHER IS(2-CHLOROETHOXY)METHANE	BDL	10 ug/L
IS(Z-CHLOROETHOXY)METHANE IEXACHLOROBUTADIENE	BDL	10 ug/L
	BDL	10 ug/L
IEXACHLOROCYCLOPENTADIENE SOPHORONE	BDL	10 ug/L
	BDL	10 ug/L
APHTHALENE	BDL	10 ug/L

ENO HERITAGE EADORATORIES, INC.	L	ab Sample	ID: A246072
Parameter NITROBENZENE	Result	Det. Limit	Units
N-NITROSO-DIMETHYLAMINE	BDL	10	3/ -
N-NITROSO-DIPROPYLAMINE	BDL BDL	10	01
N-NITROSO-DIPHENYLAMINE	BDL	10	
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	10	
BENZYLBUTYLPHTHALATE	BDL	10 10	3/
DI-N-BUTYLPHTHALATE	BDL	10	31
DI-N-OCTYLPHTHALATE	BDL	10	.
DIETHYLPHTHALATE	BDL	10	
DIMETHYLPHTHALATE	BDL	10	3/
BENZ(A)ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	
BENZO(B) FLUORANTHENE	BDL	10	ug/L
BENZO(K) FLUORANTHENE	BDL	10	ug/L
CHRYSENE ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10 10	ug/L
CHLORDANE	BDL STATES	50	ug/L ug/L
4,4'-DDD	BDL see a second	10	ug/L ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL BDL	10	ug/L
ALPHA-BHC	BDL BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10 10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260 TOXAPHENE	BDL	50	ug/L
UNAPPENE	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	58		
PHENOL-D5	43		% Rec
NITROBENZENE-D5	85		% Rec
2-FLUOROBIPHENYL	84		% Rec
2,4,6-TRIBROMOPHENOL	69		% Rec
TERPHENYL-D14	101		% Rec % Rec
			/o REC

Sample Comments

BDL Below Detection Limit

Sample chain of custody number 4075.

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC. 7901 W. MORRIS ST.	25-JAN-92	A246296
	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	23-JAN-92 11:45

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-113-0192 DESCRIPTION: WELL UMW-113

LOCATION: CHAMPAIGN

Analyst: K. BLAHUT

SULFIDE

Analyst: H. RANDALL	Analysis Date: 25-JAN-92		Test: G607.5.	0
PH	Parameter	Result 6.9	Det. Limit 0.1	Units Std. Uni
SPECIFIC CONDUCT Analyst: L. MATTINGLY	ANCE SW846-9050 Analysis Date: 27-JAN-92		Test: G604.4.	0
CONDUCTIVITY	Parameter	Result 990	Det. Limit	Units umHOS/cm
DISSOLVED OXYGEN Analyst: K. BLAHUT	EPA 360.1 Analysis Date: 27-JAN-92	All and the	Test: G800.0.	0
DISSOLVED OXYGEN	Parameter	Result 8.2	Det. Limit	Units mg/L
CHEMICAL OXYGEN Analyst: K. FULLMER	DEMAND EPA 410.4 Analysis Date: 27-JAN-92		Test: G301.1.	0
CHEMICAL OXYGEN D	Parameter EMAND	Result 47	Det. Limit	Units mg/L
HYDROCARBON SCAN	BY GC:FID SW846-8015 MOD Analysis Date: 02-FEB-92	Instrument: GC/FID	Test: 0409.1.	0
DIESEL FUEL GASOLINE OTHER HYDROCARBON	Parameter S	Result BDL BDL BDL BDL	Det. Limit 1.25 0.25	Units mg/L mg/L mg/L

Result

BDL

Analysis Date: 28-JAN-92

Parameter

Units

Test: G110.4. 0

1.0 mg/L

Det. Limit

EMS HERITAGE LABORATORIES, INC.		Lab Sample	ID: A24629
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	n
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result 7.5	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.40	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:10 DILUTION	Result 160	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units ML ML
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result 1.5	Det. Limit 0.05	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 31-JAN-92	346-3010	Test: P130.5.	0
Parameter NITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units ML ML

		ab Jampic	1D. NETUESU
GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	20		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6	. 0
Parameter INITIAL WEIGHT OR VOLUME	Result 50	Det. Limit	Units
FINAL WEIGHT OR VOLUME	50		mL

04-FEB-92 Instrument: GFAA 1PLES SW846-3020	Test: M103.2.	0
Result	Det. Limit	Units
	04-FEB-92 Instrument: GFAA MPLES SW846-3020 Result BDL	1PLES SW846-3020 Result Det. Limit

MERCURY CVAA ACID DIGESTION OF AQUEOUS SA Analyst: P. SIMS Analysis Date:		Test: P131.6.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 100	Det. Limit	Units mL
FINAL VOLUME	100		

MERCURY CVAA SW846-7470				
Analyst: P. SIMS Prep: MERCURY CVAA ACID	Analysis Date: 28-JA DIGESTION OF AQUEOU	N-92 Instrument: CVAA	Test: M120.1.	0
MERCURY	er	Result BDL	Det. Limit 0.0005	Units mg/L

Analyst: T. WIEGAND Analysis Date: 04-F	FEB-92 Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	BDL	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L
TOLUENE	BDL	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL		ug/L
I,1,1-TRICHLOROETHANE	BDL	5 5	ug/L
I,1,2-TRICHLOROETHANE	BDL	5	ug/L
「ŔÍĆHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE	BDL	5	ug/L
/INYL_CHLORIDE	BDL	10	ug/L ug/L

Parameter	Result	Det. Limit	Unite
SURROGATE RECOVERY		27	Offics
	100000000000000000000000000000000000000		
DICHLOROFTHANE-DA	104		0/ D
TOUTENE DS			% Rec
TULUENE-U8	4 7		% Rec
BROMOFLUOROBENZENE	92		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625			
Analyst: G. HUGHS Analysis Date: 29-JAN-9		Test: P243.1.	0
Parameter INITIAL WEIGHT OR VOLUME	Result	Det. Limit	Units Liters
FINAL VOLUME			mL

Analyst: J. MINNIEAR, II Analysis Date: 31-JAN-92 Instrument: GC/MS SVOA Test: 0501.3. 0 Prep: SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRACTIONS) EPA 625				
Parameter	Result	Det. Limit Units		
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L		
4-CHLORO-3-METHYLPHENOL	BDL	10 ug/L		
2-CHLOROPHENOL	BDL	10 ug/L		
2,4-DICHLOROPHENOL	BDL	10 ug/L		
2,4-DIMETHYLPHENOL	BDL	10 ug/L		
2-NITROPHENOL	BDL	10 ug/L		
4-NITROPHENOL	BDL	50 ug/L		
2,4-DINITROPHENOL	BDL	50 ug/L		
4,6-DINITRO-2-METHYLPHENOL	BDL	50 ug/L		
PENTACHLOROPHENOL	BDL	50 ug/L		
PHENOL	BDL	10 ug/L		
ACENAPHTHENE	EST 6	10 ug/L		
BENZIDINE	BDL	20 ug/L		
L,2,4-TRICHLOROBENZENE	BDL	10 ug/L		
HEXACHLOROBENZENE	BDL	10 ug/L		
IEXACHLOROETHANE	BDL	10 ug/L		
BIS(2-CHLOROETHYL)ETHER	BDL BOLD BOLD BOLD BOLD BOLD BOLD BOLD B	10 ug/L		
2-CHLORONAPHTHALENE	BDL	10 ug/L		
,2-DICHLOROBENZENE	BDL	10 ug/L		
,3-DICHLOROBENZENE	BDL	10 ug/L		
,4-DICHLOROBENZENE	BDL	10 ug/L		
3,3'-DICHLOROBENZIDINE	BDL	20 ug/L		
?,4-DINITROTOLUENE	BDL	10 ug/L		
,6-DINITROTOLUENE	BDL	10 ug/L		
LUORANTHENE	BDL	10 ug/L		
-CHLOROPHENYLPHENYLETHER	BDL	10 ug/L		
-BROMOPHENYLPHENYLETHER	BDL	10 ug/L		
SIS(2-CHLOROISOPROPYL)ETHER	BDL	10 ug/L		
SIS(2-CHLOROETHOXY)METHANE	BDL	10 ug/L		
EXACHLOROBUTADIENE	BDL	10 ug/L		
EXACHLOROCYCLOPENTADIENE	BDL	10 ug/L		
SOPHORONE	BDL	10 ug/L		
APHTHALENE	BDL	10 ug/L		
ITROBENZENE	BDL			
-NITROSO-DIMETHYLAMINE	BDL	10 ug/L		
-NITROSO-DIPROPYLAMINE	BDL	10 ug/L		
-NITROSO-DIPHENYLAMINE	BDL	10 ug/L		
IS(2-ETHYLHEXYL)PHTHALATE	BDL	10 ug/L		
ENŻYLBUTYLPHTHALATE	BDL	10 ug/L		
I-N-BUTYLPHTHALATE	BDL			
I-N-OCTYLPHTHALATE	BDL	10 ug/L 10 ug/L		

Lab Sample ID: A246296

Sample Comments

Sample chain of custody number 4735.

Quality Assurance Officer:

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246300
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	07-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	08-FEB-92	23-JAN-92 13:15

Report To

Bill To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-114-0192 DESCRIPTION: WELL UMW-114

LOCATION: CHAMPAIGN

PH (AQUEOUS) SW Analyst: H. RANDALL	846-9040 Analysis Date: 25-JAN-92		Test: G607.5.	0
PH	Parameter	Result 7.2	Det. Limit	Units Std. Units
SPECIFIC CONDUC	TANCE SW846-9050 Analysis Date: 27-JAN-92	Teach	Test: G604.4.	0
CONDUCTIVITY	Parameter	Result 1100	Det. Limit	Units umHOS/cm
DISSOLVED OXYGE Analyst: K. BLAHUT	N EPA 360.1 Analysis Date: 27-JAN-92		Test: G800.0.	0
DISSOLVED OXYGEN	Parameter	Result 8.8	Det. Limit 0.1	Units mg/L
CHEMICAL OXYGEN Analyst: K. FULLMER	DEMAND EPA 410.4 Analysis Date: 29-JAN-92		Test: G301.1.	0
CHEMICAL OXYGEN	Parameter DEMAND	Result 200	Det. Limit	Units mg/L

Parameter	Result	Det. Limit	Units
IESEL FUEL	BDL	1.2	5 mg/L
ASOLINE	BDL	0.2	5 mg/L
THER HYDROCARBONS	* 10		mg/L

SULFIDE SW846-9030			
Analyst: K. BLAHUT Analysis Date: 28	- JAN-92	Test: G110.4.	0
Parameter	Result	Det. Limit	Units
SULFIDE	BDL	2.0	mg/L

1:2 DILUTION

AMMONIA DISTILLATION EPA 350.2			
Analyst: J. SMITH Analysis Date: 28-JAN-92	T	Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units ML ML
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA 1:10 DILUTION	Result	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.39	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:5 DILUTION	Result 29	Det. Limit	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92 Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Test: P405.7.	0 Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME INAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0

	ABORATORIES, INC. D DIGESTION OF AQUEOUS SAMPLE	S SW846-3010	Lab Sample 1	D: A24630
Analyst: J. VANSKYOC INITIAL WEIGHT (FINAL WEIGHT OR	K Analysis Date: 05- Parameter DR VOLUME		Test: P130.5. Det. Limit	O Units ML ML
BARIUM ICP SW84 Analyst: A. HILSCHER Prep: FAA OR		FEB-92 Instrument: ICP S SAMPLES SW846-3010	Test: M104.3.	0
BARIUM	Parameter	Result 0.48	Det. Limit 0.010	Units mg/L
CADMIUM ICP SW8 Analyst: A. HILSCHER Prep: FAA OR		FEB-92 Instrument: ICP S SAMPLES SW846-3010	Test: M108.3.	0
CADMIUM	Parameter	Result BDL	Det. Limit 0.0050	Units mg/L
CHROMIUM ICP SV Analyst: A. HILSCHER Prep: FAA OR		FEB-92 Instrument: ICP S SAMPLES SW846-3010	Test: M110.3.	0
CHROMIUM	Parameter	Result BDL	Det. Limit 0.010	Units mg/L
COPPER ICP SW84 Analyst: A. HILSCHER Prep: FAA OR		FEB-92 Instrument: ICP S SAMPLES SW846-3010	Test: M112.3.	Ō
OPPER	Parameter	Result BDL	Det. Limit 0.020	Units mg/L
IRON ICP SW846- Analyst: A. HILSCHER Prep: FAA OR J		FEB-92 Instrument: ICP SAMPLES SW846-3010	Test: M115.3.	0
RON	Parameter	Result 1.3	Det. Limit 0.025	Units mg/L
LEAD ICP SW846- Analyst: A. HILSCHER Prep: FAA OR J		FEB-92 Instrument: ICP SAMPLES SW846-3010	Test: M116.3.	0
EAD	Parameter	Result BDL	Det. Limit 0.050	Units mg/L
MANGANESE ICP S Analyst: A. HILSCHER Prep: FAA OR I		FEB-92 Instrument: ICP SAMPLES SW846-3010	Test: M119.3.	0
IANGANESE	Parameter	Result 0.70	Det. Limit 0.010	Units mg/L
NICKEL ICP SW84 Analyst: A. HILSCHER Prep: FAA OR I		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M122.3.	0
IICKEL	Parameter	Result 0.023	Det. Limit 0.010	Units mg/L

Analyst: A. HILSCHER		B-92 Instrument: ICP	Test: M139.3.	0
Prep: FAA OR ICP ACID DI	GESTION OF AQUEOUS	SAMPLES SW846-3010		
Paramet	er	Result	Det. Limit	Units
ZINC		0.058	0.020	ma/L

Parameter	Result	Det. Limit	Units
ITIAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-706	0			
Analyst: W. WATNESS Prep: GFAA ACID DIGES		: 04-FEB-92 Instrument: GFAA SAMPLES SW846-3020	Test: M103.2.	0
Pai	ameter	Result	Det. Limit	Units
ARSENIC		BDL	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES	SW846-7470		
Analyst: P. SIMS Analysis Date: 27-JAN-92		Test: P131.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL

MERCURY CVAA SI	w846-7470	534 and 51350 at 5351 at		The state of the s		
Analyst: P. SIMS Prep: MERCURY	CVAA ACID DIG	Analysis Date: 28-JAN- ESTION OF AQUEOUS	92 Instrument: CVAA SAMPLES SW846-	7470	Test: M120.1.	0
MERCURY	Parameter		Result		Det. Limit 0.0005	Units Mg/L

VOLATILE PRIORITY POLLUTANTS EPA 624 Analyst: T. WIEGAND Analysis Date: 31-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	EST 940	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5 5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	EST 1800	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L

Parameter	Result	Det. Limit	Units
TOLUENE	EST 320	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE		5	ug/L
VINYL CHLORIDE	BDL	10	ug/L
CUDDOCATE DECOVEDY			
SURROGATE RECOVERY			
DICHLOROETHANE-D4	70		% Rec
TOLUENE-D8			% Rec
BROMOFLUOROBENZENE	96		% Rec

Analyst: T. WIEGAND Analysis Date	e: 05-FEB-92 Instrument: GC/MS VOA	Test: 0502.3.	T
Parameter	Result	Det. Limit	Units
ACROLEIN	BDL	1000	ug/L
ACRYLONITRILE	BDL	1400	ug/L
BENZENE	3300	100	ug/L
BROMOFORM	BDL	100	ug/L
CARBON TETRACHLORIDE	BDL	100	ug/L
CHLOROBENZENE CHARACTER CONTROL CONTRO	BDL	100	ug/L
CHLOROETHANE	BDL The second of the second o	200	ug/L
2-CHLOROETHYLVINYLETHER	BDL	200	ug/L
CHLOROFORM	BDL Transfer of the second of	100	ug/L
DIBROMOCHLOROMETHANE	BDL	100	ug/L
BROMODICHLOROMETHANE	BDL	100	ug/L
1,1-DICHLOROETHANE	BDL	100	ug/L
1,2-DICHLOROETHANE	BDL COLOR	100	ug/L
1,1-DICHLOROETHENE	BDL	100	ug/L
1,2-DICHLOROPROPANE	BDL	100	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	100	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	100	ug/L
ETHYLBENZENE	1800	100	ug/L
BROMOMETHANE	BDL	200	ug/L
CHLOROMETHANE	BDL	200	ug/L
METHYLENE CHLORIDE	BDL	100	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	100	ug/L
TETRACHLORETHENE	BDL	100	ug/L
TOLUENE	400	100	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	100	ug/L
1,1,1-TRICHLOROETHANE	BDL	100	ug/L
1,1,2-TRICHLOROETHANE	BDL	100	ug/L
TŔIĆHLOROETHENE	BDL	100	ug/L
TRICHLOROFLUOROMETHANE	BDL	100	ug/L
VINYL CHLORIDE	BDL	200	ug/L
SURROGATE RECOVERY			
DICHLOROETHANE-D4	94		% Rec
TOLUENE-D8	98		% Rec
BROMOFLUOROBENZENE	101		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRAC	CTIONS) EPA 625		
Analyst: G. HUGHS Analysis Date: 29-JAN-92		Test: P243.1.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME			mL

SEMI-VOLATILE PRIORITY POLLUTANTS (BAS	E/NEUTRAL ACID FRACTIONS) EPA	
Analyst: J. MINNIEAR, II Analysis Dat Prep: SEMI-VOLATILE EXTRACTION (NEUTR	e: 31-JAN-92 Instrument: GC/MS SVOA AL/RASE/ACID FRACTIONS) FPA 6	Test: 0501.3. 0
Parameter	Result	Det. Limit Units
2,4,6-TRICHLOROPHENOL	BDL	10 ug/L
4-CHLORO-3-METHYLPHENOL	BDL	10 ug/L
2-CHLOROPHENOL	BDL	10 ug/L 10 ug/L
2,4-DICHLOROPHENOL	BDL	1 9
2,4-DIMETHYLPHENOL	BDL	,
-NITROPHENOL	BDL	
		10 ug/L
I-NITROPHENOL	BDL	50 ug/L
2,4-DINITROPHENOL	BDL	50 ug/L
1,6-DINITRO-2-METHYLPHENOL	BDL	50 ug/L
PENTACHLOROPHENOL	BDL	50 ug/L
PHENOL	BDL	10 ug/L
ACENAPHTHENE	73	10 ug/L
BENZIDINE	BDL	20 ug/L
,2,4-TRICHLOROBENZENE	BDL	10 ug/L
IEXACHLOROBENZENE	BDL before the first the f	10 ug/L
IEXACHLOROETHANE	BDL	10 ug/L
BIS(2-CHLOROETHYL)ETHER	BDL STATES	10 ug/L
2-CHLORONAPHTHALENE	BDL	10 ug/L
1,2-DICHLOROBENZENE	BDL	10 ug/L
,3-DICHLOROBENZENE	BDL	10 ug/L
1,4-DICHLOROBENZENE	BD Line Control of the control of th	10 ug/L
3,3'-DICHLOROBENZIDINE	BDL	20 ug/L
2,4-DINITROTOLUENE	BDL Commence of the commence o	10 ug/L
2,6-DINITROTOLUENE	BDL british Andreas Control	10 ug/L
LUORANTHENE	EST 8	10 ug/L
1-CHLOROPHENYLPHENYLETHER	BDL	10 ug/L
I-BROMOPHENYLPHENYLETHER	BDL	10 ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	10 ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	10 ug/L
IEXÀCHLOROBUTADIENÉ	BDL	10 ug/L
IEXACHLOROCYCLOPENTADIENE	BDL	10 ug/L
SOPHORONE	BDL	10 ug/L
IAPHTHALENE	EST 4400	10 ug/L
ITROBENZENE	BDL	10 ug/L
I-NITROSO-DIMETHYLAMINE	BDL	10 ug/L
I-NITROSO-DIPROPYLAMINE	BDL	10 ug/L
I-NITROSO-DIPHENYLAMINE	BDL	10 ug/L
IS(2-ETHYLHEXYL)PHTHALATE	BDL	
ENZYLBUTYLPHTHALATE	BDL	3,
	BDL	10 ug/L
I - N - BUTYL PHTHALATE I - N - OCTYL PHTHALATE		10 ug/L
	BDL	10 ug/L
IETHYL PHTHALATE	BDL	10 ug/L
IMETHYLPHTHALATE	BDL	10 ug/L
ENZ (A) ANTHRACENE	BDL	10 ug/L
ENZO(A)PYRENE	BDL	10 ug/L
BENZO(B)FLUORANTHENE	BDL	10 ug/L
SENZO(K) FLUORANTHENE	BDL	10 ug/L
HRYSENE	BDL	10 ug/L Page (

Parameter	Result	Det. Limit	Units
ACENAPHTHYLENE	58	10	ug/L
ANTHRACENE	13	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	36	10	ug/L
PHENANTHRENE	53	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	EST 9	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4'-DDD	BDL	10	ug/L
4,4'-DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L
TOXAFILINE	DDL	30	ug/ L
SURROGATE RECOVERY			
2-FLUOROPHENOL	52		% Rec
PHENOL-D5	48		% Rec
NITROBENZENE-D5	205		% Rec
2-FLUOROBIPHENYL	96		% Rec
2,4,6-TRIBROMOPHENOL	119		% Rec
TERPHENYL-D14	91		% Rec

SEMI-VOLATILE PRIORITY POLLUTANTS (BAS Analyst: J. MINNIEAR, II Analysis Dat Prep: SEMI-VOLATILE EXTRACTION (NEUTRA	e: 03-FEB-92 Instrument: GC/MS SVOA	Test: 0501.3.	1
Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL	500	ug/L
4-CHLORO-3-METHYLPHENOL	BDL	500	ug/L
2-CHLOROPHENOL	BDL	500	ug/L
2,4-DICHLOROPHENOL	BDL	500	ug/L
2,4-DIMETHYLPHENOL	BDL	500	ug/L
2-NITROPHENOL	BDL	500	ug/L
4-NITROPHENOL	BDL	2500	ug/L
2,4-DINITROPHENOL	BDL	2500	ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL	2500	ug/L
PENTACHLOROPHENOL	BDL	2500	ug/L

Parameter	Result	Det. Limit	Units
PHENOL	BDL	500	ug/L
ACENAPHTHENE	BDL	500	ug/L
BENZIDINE	BDL	1000	ug/L
1,2,4-TRICHLOROBENZENE	BDL	500	ug/L
HEXACHLOROBENZENE	BDL	500	ug/L
HEXACHLOROETHANE	BDL	500	ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	500	ug/L
2-CHLORONAPHTHALENE	BDL	500	ug/L
1,2-DICHLOROBENZENE	BDL	500	ug/L
1,3-DICHLOROBENZENE	BDL	500	ug/L
1,4-DICHLOROBENZENE	BDL	500	ug/L
3,3'-DICHLOROBENZIDINE	BDL	1000	ug/L
2,4-DINITROTOLUENE	BDL	500	ug/L
2,6-DINITROTOLUENE	BDL	500	ug/L
FLUORANTHENE	BDL	500	ug/L
4-CHLOROPHENYLPHENYLETHER	BDL	500	ug/L
4-BROMOPHENYLPHENYLETHER	BDL	500	ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL	500	ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL	500	ug/L
HEXACHLOROBUTADIENE	BDL	500	ug/L
HEXACHLOROCYCLOPENTADIENE	BDL	500	ug/L
ISOPHORONE	BDL	500	ug/L
NAPHTHALENE	6300	500	ug/L
NAFITTIALENE NITROBENZENE	BDL	500	ug/L
NITROSO-DIMETHYLAMINE	BDL	500	ug/L ug/L
N-NITROSO-DIPROPYLAMINE	BDL	500	ug/L ug/L
N-NITROSO-DIPHOPTEAMINE	BDL AT A TO	500	
	BDL	500	ug/L ug/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL	500	
BENZYLBUTYLPHTHALATE	NOT STATE OF THE PROOF TO SELECT AND A SECOND OF THE SECON	500	ug/L
DI-N-BUTYLPHTHALATE	BDL		ug/L
DI-N-OCTYLPHTHALATE	BDL ASSY	500 500	ug/L
DIETHYLPHTHALATE	BDL		ug/L
DIMETHYLPHTHALATE RENZ (A) ANTHRACENE	BDL	500	ug/L
BENZ (A) ANTHRACENE		500	ug/L
BENZO(A)PYRENE	BDL	500	ug/L
BENZO(B) FLUORANTHENE	BDL	500	ug/L
BENZO(K)FLUORANTHENE	BDL	500	ug/L
CHRYSENE	BDL	500	ug/L
ACENAPHTHYLENE	BDL	500	ug/L
ANTHRACENE	BDL	500	ug/L
BENZO(G,H,I)PERYLENE	BDL	500	ug/L
FLUORENE	BDL	500	ug/L
PHENANTHRENE	BDL	500	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	500	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	500	ug/L
PYRENE	BDL	500	ug/L
ALDRIN	BDL	500	ug/L
DIELDRIN	BDL	500	ug/L
CHLORDANE	BDL	2500	ug/L
4,4′-DDD	BDL	500	ug/L
4,4'-DDE	BDL	500	ug/L
4,4'-DDT	BDL	500	ug/L
ALPHA-ENDOSULFAN	BDL	500	ug/L
BETA-ENDOSULFAN	BDL	500	ug/L
ENDOSULFAN SULFATE	BDL	500	ug/L
ENDRIN	BDL	500	ug/L

Page 8

Lab Sample ID: A246300

Parameter	Result	Det. Limit	Units
HEPTACHLOR	BDL	500	ug/L
HEPTACHLOR EPOXIDE	BDL	500	ug/L
ALPHA-BHC	BDL	500	ug/L
BETA-BHC	BDL	500	ug/L
DELTA-BHC	BDL	500	ug/L
GAMMA-BHC (LINDANE)	BDL	500	ug/L
PCB AROCHLÒR 1016	BDL	2500	ug/L
PCB AROCHLOR 1221	BDL	2500	ug/L
PCB AROCHLOR 1232	BDL	2500	ug/L
PCB AROCHLOR 1242	BDL	2500	ug/L
PCB AROCHLOR 1248	BDL	2500	ug/L
PCB AROCLOR 1254	BDL	2500	ug/L
PCB AROCHLOR 1260	BDL	2500	ug/L
TOXAPHENE	BDL	2500	ug/L
•	BDL		3,
SURROGATE RECOVERY	BDL		
	BDL		
2-FLUOROPHENOL	**		% Rec
PHENOL-D5	**		% Rec
NITROBENZENE-D5	**		% Rec
2-FLUOROBIPHENYL	**		% Rec
2,4,6-TRIBROMOPHENOL	**		% Rec
TERPHENYL-D14	**		% Rec
1:50 DILUTION	Constitution of the second of		
** DILUTED OUT	The state of the s		

* See Note for Parameter
** See Note for Parameter
BDL Below Detection Limit

EST Estimated Value

Sample chain of custody number 4077.

Sample Comments

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246299
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	23-JAN-92 14:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-115-0192 DESCRIPTION: WELL UMW-115 LOCATION: CHAMPAIGN

Analyst: H. RANDALL Analysis Date: 25-JAN-92			
PH PH 6.7	Result De	et. Limit	Units Std Units

SPECIFIC CONDUCTAN	NCE SW846-90	050		100		
Analyst: L. MATTINGLY	.000	Analysis Date: 27-JAN-	92	61513	Test: G604.4.	0
	Parameter		Result		Det. Limit	Units
CONDUCTIVITY		49 AV AND 40 AP AP A	1800	457	1.0	umHOS/cm

DISSOLVED OXYGEN EPA 360.1 Analysis K. BLAHUT Analysis Date: 27-JAN-9	2	Test: G800.0. 0
Parameter	Result	Det. Limit Units
DISSOLVED OXYGEN	8.2	0.1 mg/L

CHEMICAL OXYGEN DEMAND EPA 410.4			
Analyst: K. FULLMER Analysis Date: 28-JAN-92	,	Test: G301.1.	0
Parameter	Result	Det. Limit	Units
CHEMICAL OXYGEN DEMAND	88	10	mg/L

HYDROCARBON SCAN BY (GC:FID SW846-8015 MOD			
Analyst: N. HEMMERLEIN	Analysis Date: 28-JAN-92	Instrument: GC/FID	Test: 0409.1.	0
F	Parameter	Result	Det. Limit	Units
DIESEL FUEL		BDL	1.25	mg/L
GASOLINE		BDL	0.25	mg/L
OTHER HYDROCARBONS		BDL		mg/L

SULFIDE SW846-9030				
Analyst: K. BLAHUT	Analysis Date: 28-JAN-92		Test: G110.4.	0
	Parameter	Result	Det. Limit	Units
SULFIDE		BDL	2.0	mg/L
1:2 DILUTION				

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A246299
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units ML ML
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA 1:10 DILUTION	Result 22	Det. Limit	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2			
Analyst: P. ANDERSON Analysis Date: 27-JAN-92 Parameter NITROGEN, NITRATE-NITRITE	Instrument: AUTO-ANALYZER Result 0.30	Test: G113.3. Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:50 DILUTION	Result 730	Det. Limit 250	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92	Control of the second of the s	Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units ML ML
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result 0.06	Det. Limit 0.01	Units
			mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	
	Result 250 250	Test: P101.4.	
Analyst: M. GAUGHAN Parameter INITIAL WEIGHT OR VOLUME	250		O Units mL mL
Analyst: M. GAUGHAN Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92	250 250	Det. Limit	0 Units mL mL
Analyst: M. GAUGHAN Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010 Parameter	250 250 Instrument: AUTO-ANALYZER Result 1.8	Det. Limit Test: G101.4.	O Units mL O Units mL

	ABORATORIES, INC.		Lab Sample ID: A246299
BARIUM ICP SW8 Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M104.3. 0
BARIUM	Parameter	Result 0.048	Det. Limit Units 0.010 mg/L
CADMIUM ICP SW Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M108.3. 0
CADMIUM	Parameter	Result BDL	Det. Limit Units 0.0050 mg/L
CHROMIUM ICP S Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M110.3. 0
CHROMIUM	Parameter	Result BDL	Det. Limit Units 0.010 mg/L
COPPER ICP SW8 Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M112.3. 0
COPPER	Parameter	Result BDL	Det. Limit Units 0.020 mg/L
IRON ICP SW846 Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M115.3. 0
IRON	Parameter	Result 8.0	Det. Limit Units 0.025 mg/L
LEAD ICP SW846 Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M116.3. 0
LEAD	Parameter	Result BDL	Det. Limit Units 0.050 mg/L
MANGANESE ICP Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M119.3. 0
MANGANESE	Parameter	Result 3.8	Det. Limit Units 0.010 mg/L
NICKEL ICP SW8 Analyst: M. JAO Prep: FAA OR		EB-92 Instrument: ICP SAMPLES SW846-3010	Test: M122.3, 0
NICKEL	Parameter	Result 0.030	Det. Limit Units 0.010 mg/L
ZINC ICP SW846 Analyst: M. JAO	-6010 Analysis Date: 03-F ICP ACID DIGESTION OF AQUEOUS		Test; M139.3. O
	TO THE DIGITAL OF MOLOUS	~ === ~	

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	20		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		

ARSENIC GFAA SW846-7060			
Analyst: W. WATNESS Analysis Date: 04-FEB-92		Test: M103.2.	0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAMPLES S	W846-3020		
Parameter	Result	Det. Limit	Units
ARSENIC	0.0055	0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES			_
Analyst: P. SIMS Analysis Date: 27-JAN-9 Parameter	2 Result	Test: P131.6.	0 Units
INITIAL WEIGHT OR VOLUME	100	Det. Elime	mL
FINAL VOLUME	100		mL

MERCURY CVAA SW846-7470 Analyst: P. SIMS Prep: MERCURY CVAA ACID DIGESTION OF AQUEO	JAN-92 Instrument: CVAA US SAMPLES SW846-7470	Test: M120.1.	0
Parameter	Result	Det. Limit	Units
MERCURY	DUL	0.0005	mg/L

Analyst: T. WIEGAND Analysis Date: 31-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter 200 April 1980 April 19	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE	9	5	ug/L
BROMOFORM	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL AND	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	7	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	ug/L
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L
TOLUENE	BDL	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TŔĪĆHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE	BDL	5	ug/L
VINYL CHLORIDE	BDL	10	ug/L

Parameter	Result	Det. Limit	Units
SURROGATE RECOVERY			
DICHLOROETHANE-D4	73		
TOLUENE-D8			% Rec
BROMOFLUOROBENZENE	92		% Rec

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACID FRAC	CTIONS) EPA 625		
Analyst: N. ROHADFOX Analysis Date: 29-JAN-92		Test: P243.1.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME			mL

Prep: SEMI-VOLATILE EXTRACTION (NEUTRAL	/BASE/ACID FRACTIONS) EPA	625	
Parameter	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL	10	ug/L
-CHLORO-3-METHYLPHENOL	BDL	10	ug/L
-CHLOROPHENOL	BDL	10	ug/L
,4-DICHLOROPHENOL	BDL	10	ug/L
,4-DIMETHYLPHENOL	BDL	10	ug/L
-NITROPHENOL	BDL	10	ug/L
-NITROPHENOL	BDL	50	ug/L
,4-DINITROPHENOL	BDL	50	ug/L
,6-DINITRO-2-METHYLPHENOL	BDL	50	ug/L
ENTACHLOROPHENOL	BDL	50	ug/L
HENOL	BDL	10	ug/L
CENAPHTHENE	BDL	10	ug/L
ENZIDINE	BDL	20	ug/L
,2,4-TRICHLOROBENZENE	BDL	10	ug/L
IÉXÁCHLOROBENZENE	BDL	10	ug/L
EXACHLOROETHANE	BDL	10	ug/L
IS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
-CHLORONAPHTHALENE	BDL	10	ug/L
, 2 - DICHLOROBENZENE	BDL	10	ug/L
,3-DICHLOROBENZENE	BDL	10	ug/L
,4-DICHLOROBENZENE	BDL	10	ug/L
, 4-DICHLOROBENZIDINE	BDL	20	ug/L
	BDL	10	ug/L ug/L
,4-DINITROTOLUENE	BDL	10	ug/L ug/L
,6-DINITROTOLUENE	BDL	10	
LUORANTHENE			ug/L
-CHLOROPHENYLPHENYLETHER	BDL	10	ug/L
-BROMOPHENYLPHENYLETHER	BDL	10	ug/L
IS(2-CHLOROISOPROPYL)ETHER	BDL	10	ug/L
IS(2-CHLOROETHOXY)METHANE	BDL	10	ug/L
EXACHLOROBUTAD I ENE	BDL	10	ug/L
EXACHLOROCYCLOPENTADIENE	BDL	10	ug/L
SOPHORONE	BDL	10	ug/L
APHTHALENE	BDL	10	ug/L
ITROBENZENE	BDL	10	ug/L
-NITROSO-DIMETHYLAMINE	BDL	10	ug/L
-NITROSO-DIPROPYLAMINE	BDL	10	ug/L
-NITROSO-DIPHENYLAMINE	BDL	10	ug/L
IS(2-ETHYLHEXYL)PHTHALATE	BDL	10	ug/L
ENŻYLBUTYLPHTHALATE	BDL	10	ug/L
I-N-BUTYLPHTHALATE	BDL	10	ug/L
DI-N-OCTYLPHTHALATE	BDL	10	ug/L

Lab Sample ID: A246299

Parameter	Result	Det. Limit	Units
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZO(A) PYRENE	BDL	10	ug/L
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L ug/L
ACENAPHTHYLENE	BDL	10	
ANTHRACENE	BDL	10	ug/L
	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL		ug/L
FLUORENE		10	ug/L
PHENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD)PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
4,4′-DDD	BDL	10	ug/L
4,4′-DDE	BDL	10	ug/L
4,4′-DDT	BDL	10	ug/L
ALPHA-ENDOSULFAN	BDL	10	ug/L
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN	BDL	10	ug/L
ENDRIN ALDEHYDE	BDL	10	ug/L
HEPTACHLOR 4	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BDL	10	ug/L
DELTA-BHC	BDL (STATE OF THE STATE OF THE	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	
	BDL	50	ug/L
PCB AROCHOR 1248	BDL	50	ug/L
PCB AROCLOR 1254			ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE .	BDL	50	ug/L
SURROGATE RECOVERY			
2-FLUOROPHENOL	4-1		% Rec
PHENOL-D5	28		% Rec
NITROBENZENE-D5	83		% Rec
2-FLUOROBIPHENYL	80		% Rec
2,4,6-TRIBROMOPHENOL	104		% Rec
TERPHENYL-D14	86		% Rec

Samo	0	Comm	er	t	<

BDL Below Detection Limit

Sample chain of custody number 4076

Quality Assurance Officer:

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	23-JAN-92	A246064
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	21-JAN-92 10:00

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-116-0192 DESCRIPTION: WELL UMW-116

Parameter

SULFIDE

1:2 DILUTION

LOCATION: CHAMPAIGN

Result O Result	Det. Limit	Units umHOS/cm
0	Det. Limit 1.0 Test: G800.0. Det. Limit	Units umHOS/cm O Units
0	1.0 Test: G800.0. Det. Limit	umHOS/cm 0 Units
Result	Det. Limit	Units
Result		
	Test: G301.1.	0
Result	Det. Limit	Units mg/L
rument: GC/FID	Test: 0409.1.	0
Result	Det. Limit 1.25 0.25	Units mg/L mg/L
		mg/L
		rument: GC/FID Test: 0409.1. Result Det. Limit

Result

BDL

Units

2.0 mg/L

Det. Limit

EMS HERITAGE LABORATORIES, INC.		Lab Sample 1	D: A24606
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result 0.2	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 24-JAN-92	Instrument: AUTO-ANALYZER	Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 2.4	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 26-JAN-92		Test: G108.6.	0
Parameter SULFATE 1:25 DILUTION	Result 240	Det. Limit 125	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 28-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-ANALYZER	Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 27-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 27-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-ANALYZER	Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 28-JAN-92	46-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME INAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units mL mL

	Lab Sample I	D: A246064
	Test: P130.5.	1
Result 25 25	Det. Limit	Units ML ML
IAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M104.3.	0
Result 0.11	Det. Limit 0.010	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M108.3.	0
Result BDL	Det. Limit 0.0050	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M110.3.	0
Result BDL	Det. Limit 0.010	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M112.3.	0
Result BDL	Det. Limit 0.020	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M115.3.	0
Result 0.022	Det. Limit 0.020	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M116.3.	0
Result BDL	Det. Limit 0.050	Units mg/L
JAN-92 Instrument: ICP SAMPLES SW846-3010	Test: M119.3.	0
Result 0.30	Det. Limit 0.010	Units mg/L
FEB-92 Instrument: ICP S SAMPLES SW846-3010	Test: M122.3.	0
Result BDL	Det. Limit 0.010	Units mg/L
	25 25 25 25 25 25 25 25	S SW846-3010 Test: P130.5.

Lab Sample ID: A246064

EMS HERITAGE LABORATORIES, INC.

Analyst: M. JAO	Analysis Dat	e: 29-JAN-92 Instrument: ICP	Test: M139.3.	0
Prep: FAA OR ICP ACID	DIGESTION OF AQ	UEOUS SAMPLES SW846-3010		
Par	rameter	Result	Det. Limit	Units
INC		0.045	0.020	mq/L

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302 Analyst: H. RANDALL Analysis Date: 25-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME	50		mL

ARSENIC GFAA SW846-7060 Analyst: W. WATNESS Analysis Date: 2' Prep: GFAA ACID DIGESTION OF AQUEOUS SAM	9-JAN-92 Instrument: GFAA PLES SW846-3020	Test: M103.2.	0
Parameter	Result 0.0056	Det. Limit	Units
ARSENIC		0.0050	mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES S Analyst: P. SIMS Analysis Date: 27-JAN-92	W846-7470	Test: P131.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	100		mL
FINAL VOLUME	100		mL
· · · · · · · · · · · · · · · · · · ·	A STATE OF THE STA		

				TION OF HOUSE OF	CVAA ACID DIGES	Prep: MERCURY
Units	Det. Limit	119 - 112 W. - 112 W.	Result	1	Parameter	
n		The second	BDL	The state of the s	Parameter	MERCURY

UOLITALE PRIORITY POLITANTO E	DA COA	· 李本本 華 東田 中華 美		
VOLATILE PRIORITY POLLUTANTS E Analyst: T. WIEGAND A	PA 624 nalysis Date: 29-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter		Result	Det. Limit	Units
ACROLEIN		BDL	50	ug/L
ACRYLONITRILE		BDL	70	ug/L
BENZENE		BDL	5	ug/L
BROMOFORM		BDL	5	ug/L
CARBON TETRACHLORIDE		BDL	5 5	ug/L
CHLOROBENZENE		BDL		ug/L
CHLOROETHANE		BDL	10	ug/L
2-CHLOROETHYLVINYLETHER		BDL	10	ug/L
CHLOROFORM		BDL	5 5	ug/L
DIBROMOCHLOROMETHANE		BDL		ug/L
BROMODICHLOROMETHANE		BDL	5	ug/L
1,1-DICHLOROETHANE		BDL	5	ug/L
1,2-DICHLOROETHANE		BDL	5	ug/L
1,1-DICHLOROETHENE		BDL	5	ug/L
1,2-DICHLOROPROPANE		BDL	5	ug/L
CIS-1,3-DICHLOROPROPENE		BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE		BDL	5 5	ug/L
ETHYLBENZENE		BDL		ug/L
BROMOMETHANE		BDL	10	ug/L
CHLOROMETHANE		BDL	10	ug/L
METHYLENE CHLORIDE		BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE		BDL	5	ug/L
TETRACHLORETHENE		BDL	5	ug/L

Parameter	Result	Det. Limit Units
TOLUENE	BDL	5 ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5 ug/L
1,1,1-TRICHLOROETHANE	BDL	5 ug/L
1,1,2-TRICHLOROETHANE		5 ug/L
TRICHLOROETHENE	BDL	5 ug/L
TRICHLOROFLUOROMETHANE	BDL	5 ug/L
VINYL CHLORIDE	BDL	10 ug/L
SURROGATE RECOVERY		
DICHLOROETHANE-D4	83	% Rec
TOLUENE-D8	95	% Rec
BROMOFLUOROBENZENE	97	

SEMI-VOLATILE EXTRACTION (NEUTRAL/BASE/ACI	D FRACTIONS) EPA 625		
Analyst: N. ROHADFOX Analysis Date: 24	-JAN-92	Test: P243.1.	. 0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	1		Liters
FINAL VOLUME	::-I		· ·

Prep: SEMI-VOLATILE EXTRACTION (NEUTR	Result	Det. Limit	Units
2,4,6-TRICHLOROPHENOL	BDL		ug/L
4-CHLORO-3-METHYLPHENOL	BDL		ug/L
2-CHLOROPHENOL	BDL		ug/L
2,4-DICHLOROPHENOL	BDL		ug/L
2,4-DIMETHYLPHENOL	BDL		ug/L
2-NITROPHENOL	BDL		ug/L
4-NITROPHENOL	BDL		ug/L
2,4-DINITROPHENOL	BDL		ug/L
4,6-DINITRO-2-METHYLPHENOL	BDL BDL STORES		ug/L
PÉNTACHLOROPHENOL	BDL		ug/L
PHENOL	BDL		ug/L
ACENAPHTHENE	BDL		ug/L
BENZIDINE	BDL		ug/L
1,2,4-TRICHLOROBENZENE	BDL		ug/L
HÉXÁCHLOROBENZENE	BDL		ug/L
HEXACHLOROETHANE	BDL		ug/L
BIS(2-CHLOROETHYL)ETHER	BDL	10	ug/L
2 - CHLORONAPHTHALEŃE	BDL		ug/L
1,2-DICHLOROBENZENE	BDL		ug/L
1,3-DICHLOROBENZENE	BDL	10	ug/L
1,4-DICHLOROBENZENE	BDL	10	ug/L
3,3'-DICHLOROBENZIDINE	BDL	20	ug/L
2,4-DINITROTOLUENE	BDL	10	ug/L
2,6-DINITROTOLUENE	BDL	10	ug/L
FLUORANTHENE	BDL		ug/L
4-CHLOROPHENYLPHENYLETHER	BDL		ug/L
4-BROMOPHENYLPHENYLETHER	BDL		ug/L
BIS(2-CHLOROISOPROPYL)ETHER	BDL		ug/L
BIS(2-CHLOROETHOXY)METHANE	BDL		ug/L
HEXACHLOROBUTADI ENE	BDL		ug/L
HEXACHLOROCYCLOPENTADIENE	BDL		ug/L
ISOPHORONE	BDL		ug/L
NAPHTHALENE	BDL	10	ug/L

EMS HERITAGE LABORATORIES, INC.

ENS HERITAGE EXPONITORIES, THE			
Parameter	Result	Det. Limit	Units
NITROBENZENE	BDL		g/L
N-NITROSO-DIMETHYLAMINE	BDL		g/L
N-NITROSO-DIPROPYLAMINE	BDL		g/L
N-NITROSO-DIPHENYLAMINE	BDL		g/L
BIS(2-ETHYLHEXYL)PHTHALATE	BDL		g/L
BENZYLBUTYLPHTHALATE	BDL	10 u	g/L
DI-N-BUTYLPHTHALATE	BDL		g/L
DI-N-OCTYLPHTHALATE	BDL		g/L
DIETHYLPHTHALATE	BDL		g/L
DIMETHYLPHTHALATE	BDL	10 u	g/L
BENZ (A) ANTHRACENE	BDL	10 u	g/L
BENZÒ(Á)PYRENE	BDL	10 u	g/L
BENZO(B)FLUORANTHENE	BDL		g/L
BENZO(K)FLUORANTHENE	BDL		g/L
CHRYSENE	BDL		g/L
ACENAPHTHYLENE	BDL		g/L
ANTHRACENE	BDL		g/L
BENZO(G,H,I)PERYLENE	BDL		g/L
FLUORENE	BDL		g/L
PHENANTHRENE	BDL		g/L
DIBENZ(A,H)ANTHRACENE	BDL		g/L
INDENO(1,2,3-CD) PYRENE	BDL		g/L
PYRENE	BDL		g/L
ALDRIN	BDL		9/ L g/L
DIELDRIN	BDL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		g/L g/L
	BDL		9/ L g/L
CHLORDANE STATE OF THE STATE OF	BDL		g/L g/L
4,4'-DDD	BDL		
4,4'-DDE	BDL		g/L
4,4'-DDT			g/L
ALPHA-ENDOSULFAN	BDL ASSESS	1	g/L
BETA-ENDOSULFAN	BDL		g/L
ENDOSULFAN SULFATE	BDL		g/L
ENDRIN ************************************	BDI APPLICATION OF THE PROPERTY OF THE PROPERT		g/L
ENDRIN ALDEHYDE	BDL		g/L
HEPTACHLOR	BDL		g/L
HEPTACHLOR EPOXIDE	BDL		g/L
ALPHA-BHC	BDL		g/L
BETA-BHC	BDL		g/L
DELTA-BHC	BDL		g/L
GAMMA-BHC (LINDANE)	BDL		g/L
PCB AROCHLOR 1016	BDL		g/L
PCB AROCHLOR 1221	BDL	50 u	g/L
PCB AROCHLOR 1232	BDL	50 u	g/L
PCB AROCHLOR 1242	BDL		g/L
PCB AROCHLOR 1248	BDL		g/L
PCB AROCLOR 1254	BDL		g/L
PCB AROCHLOR 1260	BDL		g/L
TOXAPHENE	BDL	50 u	g/L
. CURROCATE DECOVERY			
SURROGATE RECOVERY			
2-FLUOROPHENOL	49	%	Rec
PHENOL-D5	34		Rec
NITROBENZENE-D5	82		Rec
2-FLUOROBIPHENYL	92		Rec
2,4,6-TRIBROMOPHENOL	75		Rec
TERPHENYL-D14	99		Rec
			200 6

CERTIFICATE OF ANALYSIS

Service Location	Received	Lab ID
EMS HERITAGE LABORATORIES, INC.	25-JAN-92	A246297
7901 W. MORRIS ST.	Complete	PO Number
INDIANAPOLIS, IN 46231	05-FEB-92	PO072488-CHAMPAIGN
(317)243-8305	Printed	Sampled
	06-FEB-92	23-JAN-92 17:20

Report To

JOHN MATHES AND ASSOCIATES KATHLEEN A. BLAINE 210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330 Bill To

ILLINOIS POWER COMPANY ACCOUNTS PAYABLE P.O. BOX 511 DECATUR, IL 62525

Sample Description

SAMPLE ID: UMW-401-0192 DESCRIPTION: WELL UMW-401 LOCATION: CHAMPAIGN

PH (AQUEOUS) SW846-	9040			
Analyst: H. RANDALL	Analysis Date: 25-	JAN-92	Test: G607.5.	0
	Parameter Parameter	Result	Det. Limit	Units
PH	がある。 「一般では、大きない。 「一般では、一般では、 「一をは、 「一をは 「 「 「 「 「 「 「 「 「 「	7.4	0.1	Std. Units
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

SPECIFIC CONDUCTANCE Analyst: L. MATTINGLY	SW846-90	9 50 Analysis Date: 27-JA	N-92	Maria Sarah Sarah Maria Maria	1000	Test: G604.4.	0
	arameter	1997	121	Result 570	ののでは、 ののでは、ままり のでは、	Det. Limit	Units umHOS/cm

「中国 (本語)」 (日本) 日本 (日本) 日	,并是一个人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的		
DISSOLVED OXYGEN EPA 360.1			
Analyst: K. BLAHUT Analysis Date: 27-JAN-92	A STATE OF THE STA	Test: G800.0.	0
Parameter	Result	Det. Limit	Units
DISSOLVED OXYGEN	8.9	0.1	mg/L

CHEMICAL OXYGEN DEMAND EPA 410.4			
Analyst: K. FULLMER Analysis Date: 28-JAN-92		Test: G301.1.	0
Parameter	Result	Det. Limit	Units
CHEMICAL OXYGEN DEMAND	16	10	mg/L

HYDROCARBON SCAN BY GC:FI	D SW846-8015 MOD			
Analyst: N. HEMMERLEIN	Analysis Date: 28-JAN-92	Instrument: GC/FID	Test: 0409.1.	0
Paramete	er	Result	Det. Limit	Units
DIESEL FUEL		BDL	1.25	mg/L
GASOLINE		BDL	0.25	mg/L
OTHER HYDROCARBONS		BDL		mg/L

SULFIDE SW846-9030 Analyst: K. BLAHUT Analysis Date: 28-JAN-92		Test: G110.4.	0
Parameter	Result	Det. Limit	Units
SULFIDE	BDL	1.0	mg/L

EMS HERITAGE LABORATORIES, INC.		Lab Sample I	D: A246297
AMMONIA DISTILLATION EPA 350.2 Analyst: J. SMITH Analysis Date: 28-JAN-92		Test: P203.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 200 250	Det. Limit	Units mL mL
AMMONIA NITROGEN EPA 350.3 Analyst: L. MATTINGLY Analysis Date: 30-JAN-92 Prep: AMMONIA DISTILLATION EPA 350.2		Test: G203.4.	0
Parameter NITROGEN, AMMONIA	Result 3.1	Det. Limit 0.10	Units mg/L
NITRATE-NITRITE NITROGEN EPA 353.2 Analyst: P. ANDERSON Analysis Date: 27-JAN-92	Instrument: AUTO-AM	JALYZER Test: G113.3.	0
Parameter NITROGEN, NITRATE-NITRITE	Result 0.45	Det. Limit 0.01	Units mg/L
SULFATE TURBIDIMETRIC METHOD SW846-9038 Analyst: K. RILEY Analysis Date: 29-JAN-92		Test: G108.6.	0
Parameter SULFATE	Result BDL	Det. Limit 5	Units mg/L
PHENOLS DISTILLATION SW846-9065 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P405.7.	0
Parameter INITIAL WEIGHT OR VOLUME	Result 100 100	Det. Limit	Units mL mL
PHENOLS 4AAP (AUTOMATED) SW846-9066 Analyst: J. GRIFFIN Analysis Date: 30-JAN-92 Prep: PHENOLS DISTILLATION SW846-9065	Instrument: AUTO-AN	VALYZER Test: 0405.7.	0
Parameter PHENOLS	Result BDL	Det. Limit 0.01	Units mg/L
CYANIDE DISTILLATION SW846-9010 Analyst: M. GAUGHAN Analysis Date: 28-JAN-92		Test: P101.4.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL VOLUME	Result 250 250	Det. Limit	Units mL mL
CYANIDE, TOTAL (AUTOMATED) SW846-9012 Analyst: J. GRIFFIN Analysis Date: 29-JAN-92 Prep: CYANIDE DISTILLATION SW846-9010	Instrument: AUTO-A	NALYZER Test: G101.4.	0
Parameter CYANIDE	Result BDL	Det. Limit 0.01	Units mg/L
FAA OR ICP ACID DIGESTION OF AQUEOUS SAMPLES SW8 Analyst: J. VANSKYOCK Analysis Date: 31-JAN-92	46-3010	Test: P130.5.	0
Parameter INITIAL WEIGHT OR VOLUME FINAL WEIGHT OR VOLUME	Result 50 50	Det. Limit	Units mL mL

EMS HERITAGE LABORATORIES, INC.

GFAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-302	20		
Analyst: E. MERRILL Analysis Date: 29-JAN-92		Test: P130.6.	0
Parameter	Result	Det. Limit	Units
INITIAL WEIGHT OR VOLUME	50		mL
FINAL WEIGHT OR VOLUME			mL

ARSENIC GFAA SW846-7060		
Analyst: W. WATNESS Analysis Date: 0	04-FEB-92 Instrument: GFAA	Test: M103.2. 0
Prep: GFAA ACID DIGESTION OF AQUEOUS SAM	MPLES SW846-3020	
Parameter	Result	Det. Limit Units
ARSENIC	BDL	0.0050 mg/L

MERCURY CVAA ACID DIGESTION OF AQUEOUS SAMPLES SW846-7470						
Analyst: P. SIMS Analysis Date: 27-JAN-92		Test: P131.6.	0			
Parameter	Result	Det. Limit	Units			
INITIAL WEIGHT OR VOLUME	100		mL			
FINAL VOLUME	100					

MERCURY CVAA SW846-7470 Analyst: P. SIMS Analysis Date Prep: MERCURY CVAA ACID DIGESTION OF A	e: 28-JAN-92 Instrument: CVAA AOUEOUS SAMPLES SW846-7470	Test: M120.1.	0
Parameter MERCURY	Result BDL	Det. Limit 0.0005	Units mg/L

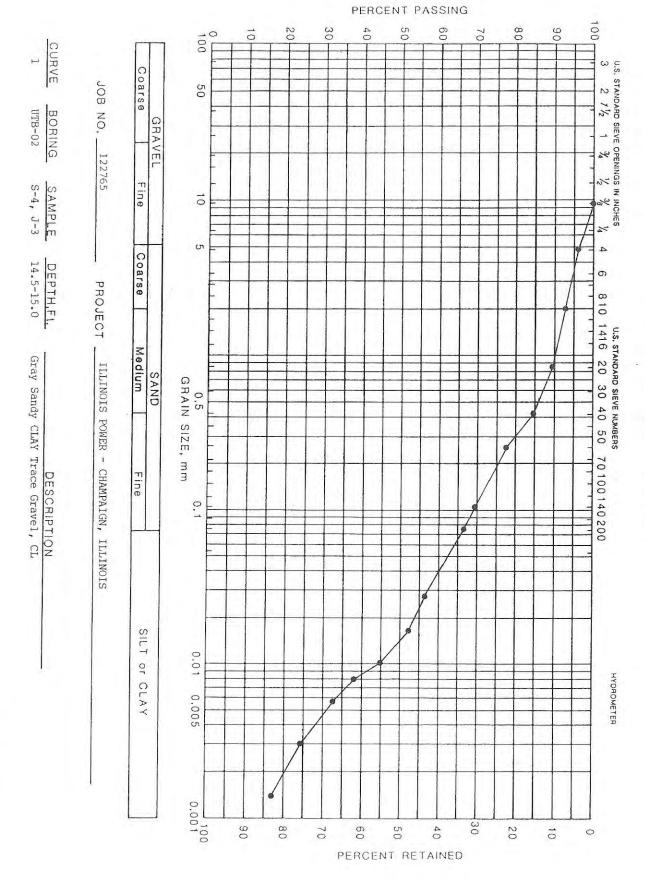
Analyst: T. WIEGAND Analysis Date: 31-JAN-92	Instrument: GC/MS VOA	Test: 0502.3.	0
Parameter 1521 (STANCE PARTETE AND ADDRESS OF THE PARTETE AND ADDRESS OF TH	Result	Det. Limit	Units
ACROLEIN	BDL	50	ug/L
ACRYLONITRILE	BDL	70	ug/L
BENZENE ### #############################	BDL	5	ug/L
BROMOFORM COMPANY CONTROL OF THE PROPERTY OF T	BDL	5	ug/L
CARBON TETRACHLORIDE	BDL	5	ug/L
CHLOROBENZENE	BDL	5	ug/L
CHLOROETHANE	BDL	10	ug/L
2-CHLOROETHYLVINYLETHER	BDL	10	ug/L
CHLOROFORM	BDL	5	ug/L
DIBROMOCHLOROMETHANE	BDL	5	ug/L
BROMODICHLOROMETHANE	BDL	5	ug/L
1,1-DICHLOROETHANE	BDL	5	ug/L
1,2-DICHLOROETHANE	BDL	5	ug/L
1,1-DICHLOROETHENE	BDL	5	ug/L
1,2-DICHLOROPROPANE	BDL	5	ug/L
CIS=1,3-DICHLOROPROPENE	BDL	5	ug/L
TRANS-1,3-DICHLOROPROPENE	BDL	5	ug/L
ETHYLBENZENE	BDL	5	ug/L
BROMOMETHANE	BDL	10	ug/L
CHLOROMETHANE	BDL	10	
METHYLENE CHLORIDE	BDL	5	ug/L
1,1,2,2-TETRACHLOROETHANE	BDL	5	ug/L
TETRACHLORETHENE	BDL	5	ug/L
TOLUENE	BDL	5	ug/L
1,2-DICHLOROETHENE (TOTAL)	BDL	5	ug/L
1,1,1-TRICHLOROETHANE	BDL	5	ug/L
1,1,2-TRICHLOROETHANE	BDL	5	ug/L
TRICHLOROETHENE	BDL	5	ug/L
TRICHLOROFLUOROMETHANE	BDL	5	ug/L
VINYL CHLORIDE	BDL	10	ug/L

Lab Sample ID: A246297

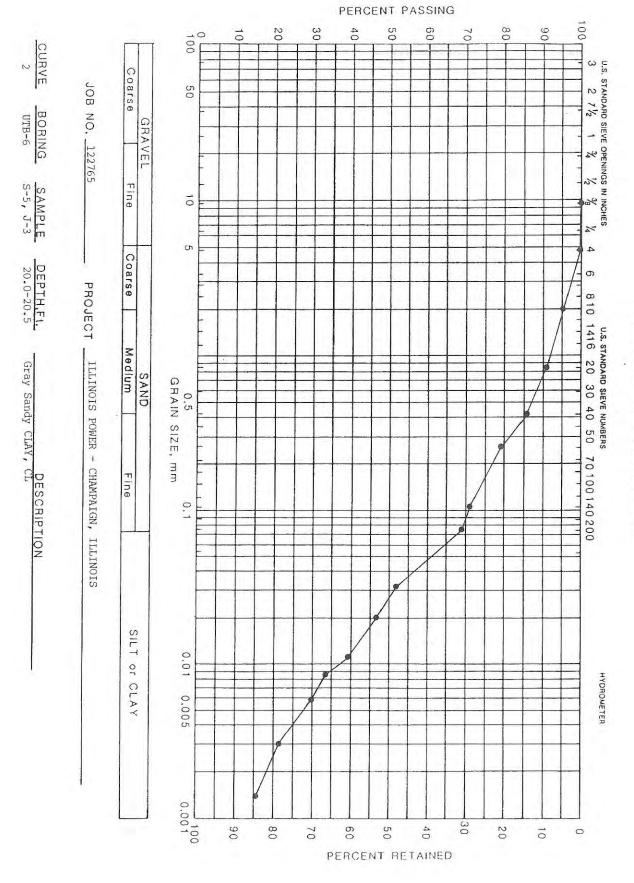
EMS HERITAGE LABORATORIES, INC.		Lab Sample II	
Parameter	Result	Det. Limit	Units
DIETHYLPHTHALATE	BDL	10	ug/L
DIMETHYLPHTHALATE	BDL	10	ug/L
BENZ (A) ANTHRACENE	BDL	10	ug/L
BENZÒ(Á) PYRENE	BDL	10	ug/L
BENZO(B)FLUORANTHENE	BDL	10	ug/L
BENZO(K)FLUORANTHENE	BDL	10	ug/L
CHRYSENE	BDL	10	ug/L
ACENAPHTHYLENE	BDL	10	ug/L
ANTHRACENE	BDL	10	ug/L
BENZO(G,H,I)PERYLENE	BDL	10	ug/L
FLUORENE	BDL	10	ug/L
PHENANTHRENE	BDL	10	ug/L
DIBENZ(A,H)ANTHRACENE	BDL	10	ug/L
INDENO(1,2,3-CD) PYRENE	BDL	10	ug/L
PYRENE	BDL	10	ug/L
ALDRIN	BDL	10	ug/L
DIELDRIN	BDL	10	ug/L
CHLORDANE	BDL	50	ug/L
	BDL	10	ug/L
4,4'-DDD	BDL	10	ug/L
4, 4' - DDE	BDL	10	ug/L
4,4'-DDT	BDL	10	ug/L ug/L
ALPHA - ENDOSULFAN		10	
BETA-ENDOSULFAN	BDL	10	ug/L
ENDOSULFAN SULFATE	BDL	10	ug/L
ENDRIN CONTROL OF THE PROPERTY	BDL		ug/L
ENDRIN ALDEHYDE	BDL AND	10	ug/L
HEPTACHLOR	BDL	10	ug/L
HEPTACHLOR EPOXIDE	BDL	10	ug/L
ALPHA-BHC	BDL	10	ug/L
BETA-BHC	BD	10	ug/L
DELTA-BHC	BDL SANGER	10	ug/L
GAMMA-BHC (LINDANE)	BDL	10	ug/L
PCB AROCHLOR 1016	BDL	50	ug/L
PCB AROCHLOR 1221	BDL	50	ug/L
PCB AROCHLOR 1232	BDL	50	ug/L
PCB AROCHLOR 1242	BDL	50	ug/L
PCB AROCHLOR 1248	BDL	50	ug/L
PCB AROCLOR 1254	BDL	50	ug/L
PCB AROCHLOR 1260	BDL	50	ug/L
TOXAPHENE	BDL	50	ug/L

SURROGATE RECOVERY			
2-FLUOROPHENOL	58		% Rec
PHENOL-D5	46		% Rec
NITROBENZENE-D5	89		% Rec
2-FLUOROBIPHENYL	93		% Rec
2,4,6-TRIBROMOPHENOL	82		% Rec
TERPHENYL-D14	102		% Rec
TEM HENTE DIT			

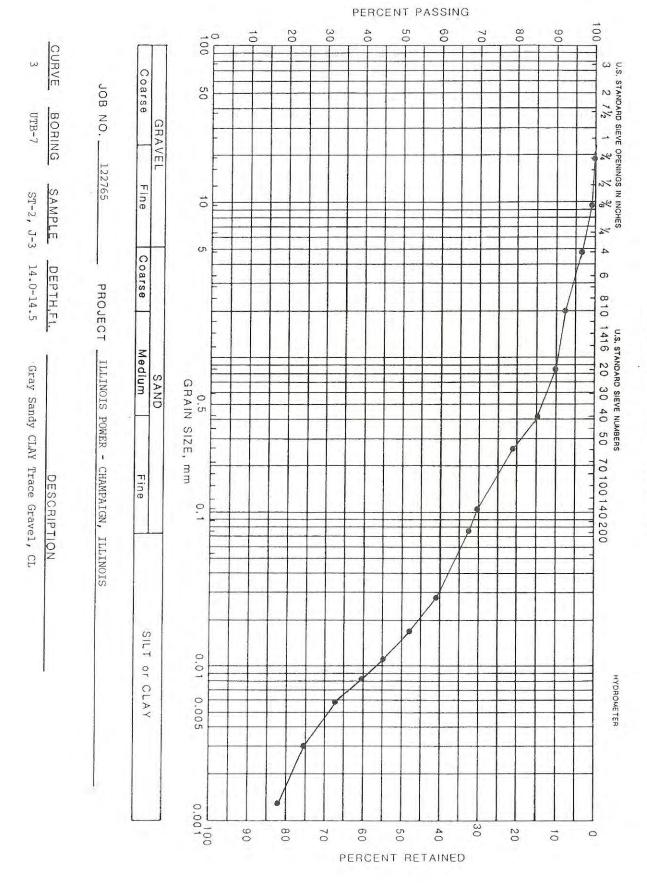
camp 2	Common	t	c

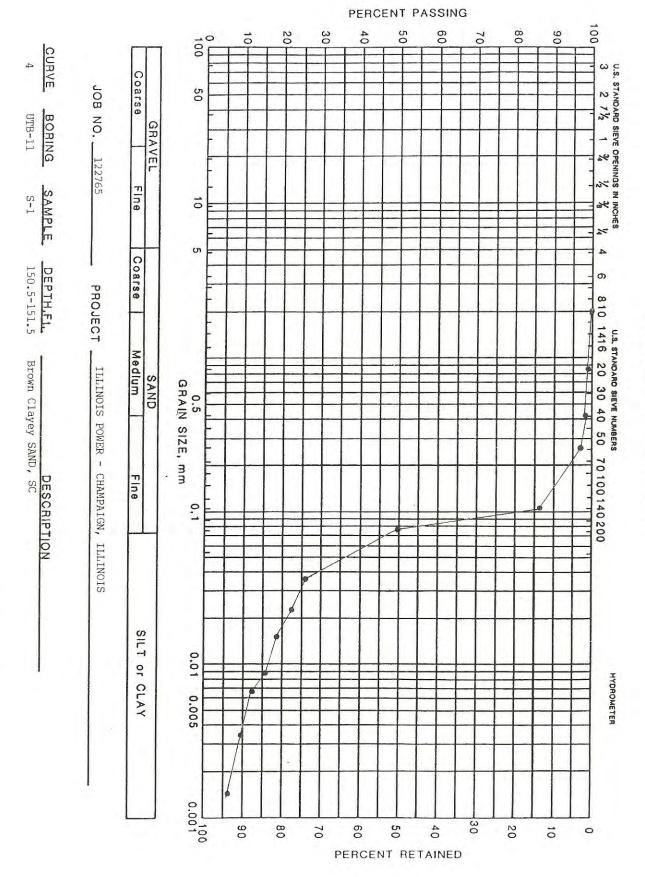

BDL Below Detection Limit

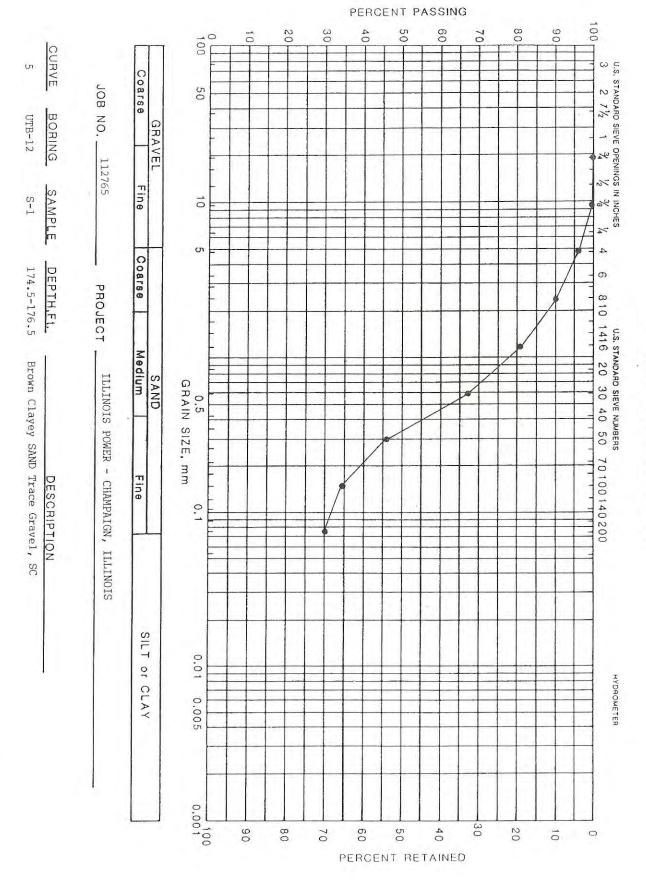
Sample chain of custody number 4736

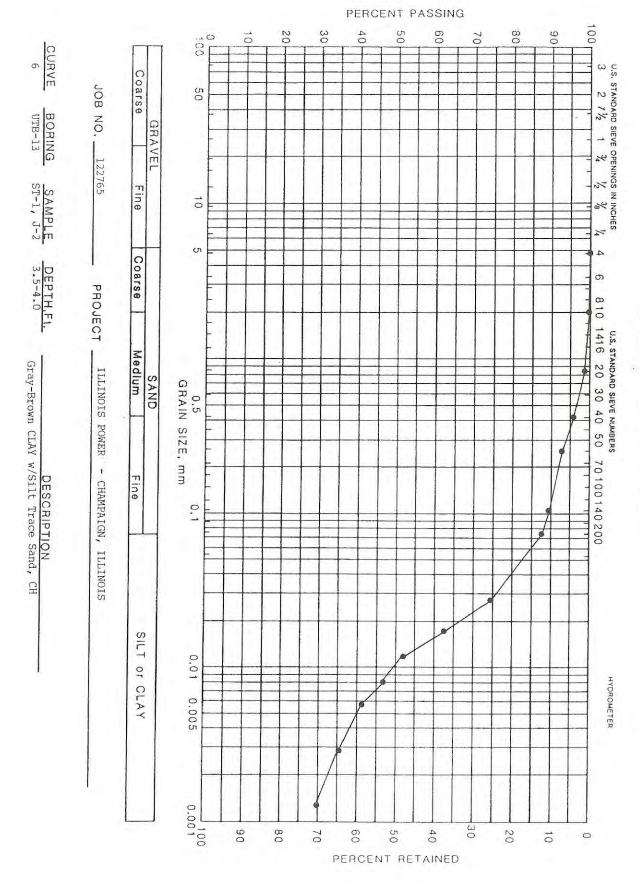

Quality Assurance Officer:

APPENDIX G

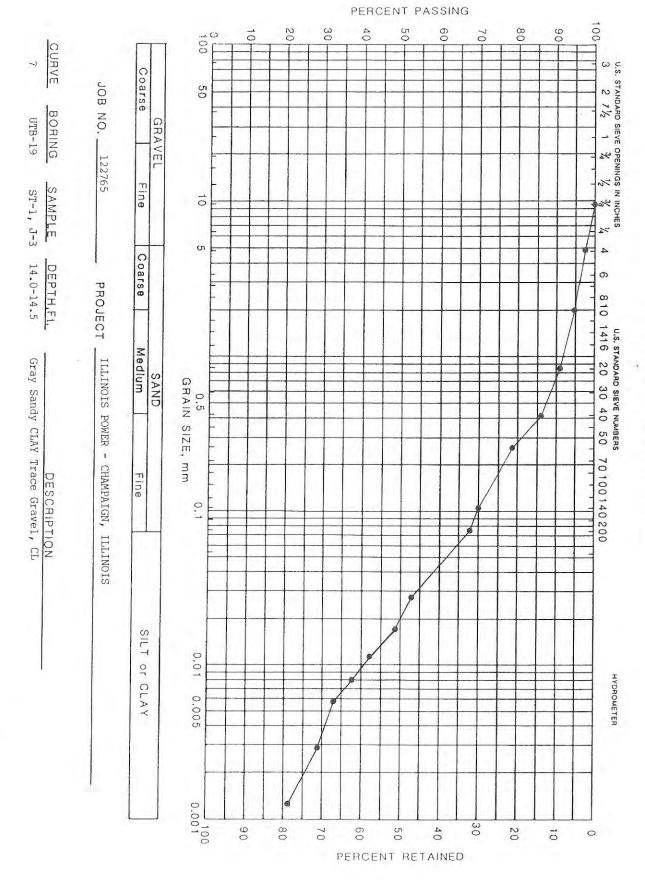

Physical Testing Laboratory Data




LIQUID LIMIT = 21 PLATIC LIMIT = 12



LIQUID LIMIT = 21 PLASTIC LIMIT = 12



LIQUID LIMIT = 50 PLASTIC LIMIT = 19

LIQUID LIMIT = 24 PLASTIC LIMIT = 13

APPENDIX H

Supplemental SI Boring and Test Pit Logs

			P	IRON	LIP	Borehole No.: CHPH-200			
Project Nam	e: IP	– C	hamp	aign Fo	ormer MGP	Ground Elev.: 0.00°	Datum: Not Surveyed		
Project Num	ber: 1	7324				X Coordinate: 2589.00	Y Coordinate: 4775.00		
ate(s) Drille		/17/9	06 - 12	2/17/96		Total Depth: 16.00'	Borehole Dia.: 1.00in		
onsultant:	14.000-040					Location: Southwest Corner of Sil	te		
orilled By:			mental			Drilling Method: RECON System			
ogged By:	S. Cra	vens		-					
Elevation (ft) Depth (ft)	Sample No. Depth Interval	Recovery	Water Level Graphic Loa	USCS Code		Material Description		PID Reading	Lob Sample
-5-5	CS-1 0-4 CS-2 4-8			FI	worm burrows, moist	AY with coal fragments, cinders			TOC
10 - 10	CS-3 8-12	_		SC CL	Brown Clayey SAND with g Light gray Silty CLAY, light Dark gray staining with sli	t brown iron—oxide mottling, we	et		
1	CS-4 12-16				Black petroleum—filled frac	gravel, light to medium brown sture present @ 12 — 12.5 fee	iron—oxide mottling t		
+		8			Dary gray Sandy CLAY troo	ce gravel, hard, stiff			TOC

Remarks:

C:\HILLBORO\BLOCK\BH-LOC.DWG

			Ī			d of Subsu	Borehole No.: CHPH-20				
Projec	l Name	: IP -	- Cho	ampai	gn Fo	ormer MGP	Ground Elev.: 0.00' Dalum: Not Surveyed				
Projec	t Numl	er: 17.	324				X Coordinate: 2953.00	Y Coordinate: 4791.00			
Date(s) Orille	d: 12/	7/96	- 12/	17/96		Total Depth: 16.00'	Borehole Dia: 1.00in			
Consu	itont:	Kelron					Location: Southeast Corner of	Site			
)rilled	ву: В	hilip Em	rironme	ental			Drilling Method: RECON System				
ogge	і Ву:	S. Crave	ns								
Elevation (fit)	Depth (R)	Sample No. Depth Interval	Woter Level	Graphic Log	USCS Code		Material Description		PID Reading	Lob Sample	
	- 10	CS-1 0-4 CS-2 4-8 CS-3 8-12			CL SC CL SP CL	Brown, FILL, Silty CLAY with Dark brown Silty CLAY, trace iron—oxide mottling light gray with brown mottlin Light brown Clayey SAND, trace if the sand brown mottling along fracture. Light gray Clayey SAND Light gray Clayey SAND Light gray CLAY with gravel of Gray fine to medium SAND Brown CLAY, trace sand and light gray with trace brown recommendations.	sand and gravel, roots, frog and iron—oxide staining ace gravel, wet and gravel, gray mottling as	ractures, on fractures		то	
- - 20 — -	- - - 20 -					Probehole Terminated - 16 I	Feet				

			12		R (a) A	IMENTAL .	Borehole	No.: HPH-20)2		
Projec	t Name	i IP -	- Cha	mpai	gn Fo	ormer MGP	Ground 1	Elev. 0.00*	Oatum: Not Surveyed		
Projec	Numl	per; 17.	324				X Coord	inate: 2970.00	Y Coordinate: 4984.00		
Date(s) Drille	d: 12/	17/96	- 12/	17/96		Total De	pth: 16.00°	Barehale Dia.: 1.00in		
Consul	tont:	Kelron					Location	Northeast Corner o	Site		
Drilled	By: 1	Philip Em	/ironme	ntal			Drilling A	lethod: RECON System	m		
Logged	By:	S. Crave	ins								
Elevation (fi)	Depth (E)		Recovery Water Level	Graptine Log	USCS Code		Material	Description		F 864	Lab Sample
-5-	-5	CS-1 0-4			СН	Brown, FILL, CINDER Brown-gray CLAY, v		and oil in frac	tures		тос
- - -10 - -		CS-3 8-12			CL	light gray with brow Light gray CLAY, tro brownish—green with	ice silt	The second second	sil		тос
-15- -	- - 15 - -	2	7			Light groy CLAY with		and gray—green	mottling		тос
-20 - -	- - 20 -										

Page 1 of 1

G:\HILLBORO\BLOCK\BH-LOG.DWG

					Date or as No			
		ENTI	RO I	inerpal.	CHPH-20.	3		
Proper C North	· P - C	hompoi	gn F	ormer MCP	Gimini Fine (100)	Datum: Not Surveyed		
Pare i Aum	late: 17324				X Coordinate: 2579.00	Y Coordinac 5096 00		
Tote(s) (vice	12/17/5	6 - 12/	17/96		Total Depth: 16.00'	Barehole No. 1 00in		
Tensalicis	177.7				Location, Northwest Comer of S	Sile		
	Philip Environ	menial			Drilling #4100 RECON System			
boger (i)	S. Gravens			T				T
Elevation 412 Dept. (E.)	Sample No Depth Interval Recovery	Woter Level	300 S.S.D		Anterial Description		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(d) Somple
-	CS-1 0-4		FI	Dark brown to black,	FILL, CINDERS, BRICK, COAL, CONC	RETE		тос
-5 - 5	CS-2 4-8			Block FILL, SAND, GRA	VEL, CINDERS, slight coal tar odor			
	CS-3 8-12		CL	Gray-black Silty CLAY	with brown mottling, slight coal to	ar odor		
10 - 10			SC	Light gray Sandy CLAY iron—oxide staining, sli	with gravel, extensive brown mot ght coal tar odor	tling and		TOC
	00 4							
	CS-4 12-16		CL	Green-gray Silty CLAY	with sand and gravel			

Remarks.

	RONMENTAL	CHPH-300)		
oject Name: IP — Champai	gn	Ground Elev.: Not Surveyed	Datum: Not Surveyed		
oject Number: 17246		X Coordinate: 3030.42	Y Coordinate: 4901.79		
nte(s) Drilled: 03/10/97 - 03/	10/97	Total Depth: 18.00'	Borehole Dia.: 1.00in		
onsultant: Philip Environmental		Location: Along Sixth Avenue Rig	ht of Way		
illed By: Philip Environmental		Drilling Method: RECON System			
gged By: S. Crovens					_
Depth (ft) Somple No. Depth Interval Recovery Water Level Graphic Log	USCS Code	Material Description		PID Reading	Lab Sample
CS-1 0-4 CS-2 4-6 CS-3 6-8 CS-4 8-10 CS-4 8-10 CS-6 12-14 CS-6 12-14 CS-8 16-18	CL Brown silty CLAY brown—gray with light gray with brown SP CL SP CL SP CL SP CL Light brown Silty coal tar in facture coal tar odors (n	ray—green mottling edium SAND and clayey SAND, trace gracecoarse SAND, wet—saturated, coal tar or or with gravel and coal tar ganglia @ 1 CLAY with sand, trace gravel, no coal to sesses to visible coal tar) edium SAND, 1/4—inch coal—tar saturate CLAY CLAY, stiff	vel dor 1.1 to 11.3 car odors		LAB

Remarks. LAB - Indicates sample collected for laboratory analysis.

CHPH-301

Ground Elev.: Not Surveyed	Datum: Not Surveyed	
X Coordinate: 3012.92	Y Coordinate: 4944.38	
Total Depth: 14,00'	Borehole Dia.: 1.00in	
Location: Along Sixth Avenue Right of Way		
Drilling Method: RECON System		

Depth (E)	Somple No. Depth Interval	Recovery	Water Level	Graphic Log	USCS Code	Material Description	PID Reading	*
	CS_1			11		Not sample collected to 6 feet		
 	CS-1 6-8 CS-2 8-10				CL	Light gray CLAY with brown mottling coal tar odor		
10	CS-3 10-12					Medium gray silty CLAY, trace gravel, coal tar odor two fine sand lenses present @ 11 feet (thickness less than 1/10-inch) gray-green with sand and gravel, very stiff		
15	CS-4 12-14					Probehole Terminated — 14 feet		
20								

Remarks.

CHPH-302

Ground Elev.: Not Surveyed Datum: Not Surveyed			
X Coordinate: 3007.81 Y Coordinate: 4944.35			
Total Depth: 16.00'	Borehole Dia.: 1.00in		
Lacation: Along Sixth Avenue Right of Way			
Drilling Method: RECON System			

Depth (E)	Sample No. Depth Interval	Recovery	Woler Level	Graphic Log	USOS Code	Moterial Description	PtD Reading	A Commission
-5	CS-1 0-4			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FI	Black FILL, silty clay, coal, high organics faint coal tar odor Light to medium gray CLAY, faint coal tar odor	6.	
10	CS-3 8-12	7				with brown mottling, no coal tar odor medium gray with faint coal tar odor CLAY with sand and gravel		
15	CS-4 12-16		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			Silty CLAY with sand and gravel, coal tar odor		
20						Probehole Terminated — 16 feet		

Remarks:

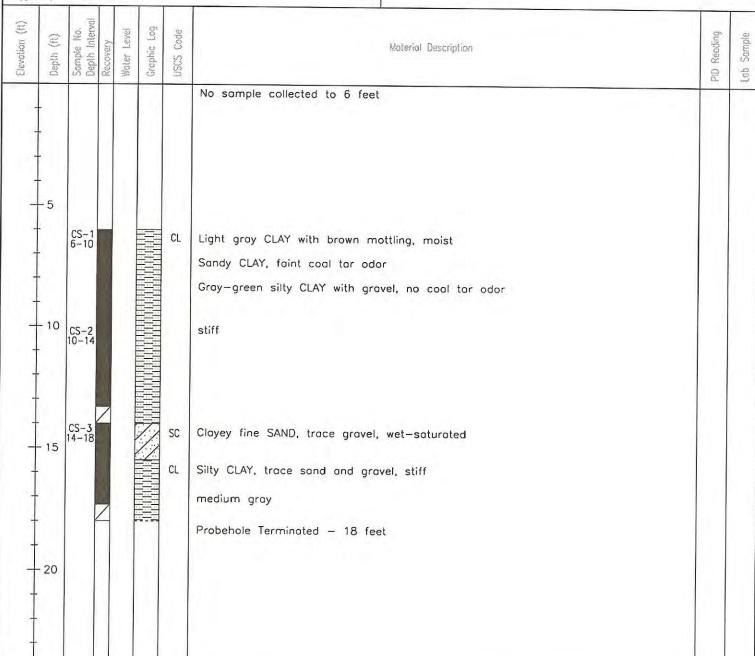
G:\CHAMPAIG\GEO\LOGS\CHPH-302.DWG

Probehole No.:

CHPH-303

	HORNERIAL	CHPH-303)		
Project Name: IP — Champaid	gn	Ground Elev.: Nol Surveyed	Datum: Not Surveyed		
Project Number: 17246		X Coordinate: 2998.89	Y Coordinate: 4966.81		
Date(s) Drilled 03/11/97 - 03/1	11/97	Total Depth: 16,00'	Borehole Dia.: 1.00in		
Consultant: Philip Environmental		Location: Along Sixth Avenue Righ	nt of Way		
Orilled By: Philip Environmental		Drilling Method: RECON System			
ogged By: S. Cravens					
Elevation (ft) Depth (ft) Sample No. Depth Interval Recovery Water Level	USCS Code	Material Description		PID Reading	Lab Sample
CS-1 0-4 	CL Medium gray silty C CLAY with silt, stiff light gray with mind SC Clayey SAND and GF Gray—green silty CLA no coal tar odor SP Fine to medium SAN Medium to coarse S	RAVEL with coal tar blebs AY with sand and gravel, faint coal ta ND, wet—saturated SAND and GRAVEL with coal tar ganglion brown mottling, no coal tar odor	ır odor		LAB

Remarks: LAB - Indicates sample collected for laboratory analysis.


PA		Probein e ver			
Parancae		CHPH-304			
Project North IP - Champaign		Ground Flay Not Surveyed	Datum, Not Surveyed		
Project Number 17246		X Guardinale 3021 27	Y Coordinate 1856-62		
Bole(s) Dollad 03/11/97 - 03/11/97	7	Total Depth 18.00'	Borehalis Dia 1 30in		
Consultoric Philip Environmental		Location Along Sixth Avenue Righ	t of Woy		
Chilled By Philip Environmental		Drilling Hervard RECON System			
Logged By S. Gravens					
Eleverien (ff) Schulc No Deptir intervol Recovery Water Level Graphic Log USCS Code		Motoriel Description		2	Leb Sumple
CL CS-2 6-10	Brown silty CLAY, trace	oy—green with brown mottling			
CS-3 10-14 - 15 CS-4 14-18	with sand and gravel, d	lry, stiff			
	Probehole Terminated —	18 feet			

Remarks Remarks:

CHPH-305

Project Name: IP — Champaign	Ground Elev.: Not Surveyed	Dotum: Not Surveyed		
Project Number: 17246	X Coordinate: 3027.14	Y Coordinate: 4876.24		
Date(s) Drilled: 03/11/97 - 03/11/97	Total Depth: 18.00'	Borehole Dia.: 1.00in		
Consultant: Philip Environmental	Lacation: Along Sixth Avenue Righ	t of Way		
Drilled By: Philip Environmental	Drilling Method: RECON System			
Logged By: S. Cravens				

Remarks.

G:\CHAMPAIG\GEO\LOGS\CHPH-305.DWG

CHPH-306

Ground Elev.: Not Surveyed	Datum: Not Surveyed	
X Coordinate: 3032.56	Y Coordinate: 4890.23	
Total Depth: 17.00'	Borehole Dia;: 1,00in	
Location: Along Sixth Avenue Right of Way		
Drilling Method: RECON System		
	X Coordinate: 3032.56 Total Depth: 17.00'	

Depth (II)	Sample No. Depth Interval	Recovery	Water Level	Graphic Log	USCS Code	Material Description	Pi) Reading	
						No sample collected to 6 feet		
- - - 5	CS-1 6-10			11 25	CL	Light gray CLAY with brown mottling, moist		
- - - 10	CS-2 10-14				SC CL	Gray—green clayey fine to medium SAND, trace gravel, wet—saturated, faint coal tar odor Medium SAND with clay, trace gravel Gray—green silty CLAY, trace sand and gravel, stiff, no coal tar odor		
15	CS-3 14-17			7	SC CL	Medium to coarse SAND with clay, trace gravel, wet-saturated, no coal tar odor Silty CLAY, trace sand and gravel, moist, stiff		
20				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Probehole Terminated - 17 feet		

Remarks. LAB - Indicates sample collected for laboratory analysis.

CHPH-307

Project Name: IP — Champaign	Ground Elev.: Not Surveyed	Datum: Not Surveyed
Project Number: 17246	X Coordinate: 2989.08	Y Coordinate: 4926.58
Dote(s) Drilled: 03/11/97 - 03/11/97	Total Depth: 6.00'	Borehole Diaz 1.00in
Consultant: Philip Environmental	Location: Along Sixth Avenue Righ	it of Way
Drilled By: Philip Environmental	Drilling Method: RECON System	
Logged By: S. Crovens		
n (ft) No. No. Log		mg ble

	Depth (ft)	Somple No. Depth Interval	Recovery	Water Level	Graphic Log	USCS Code	Material Description No sample collected to 4 feet	PID Reading	Lab Sample
+ + + + + + + + + + + + + + + + + + + +	.5	CS-1 4-6				CL	Light gray CLAY with brown mottling, moist, coal tar odor saturated with coal tar on half of sample closer to sewer coal tar odor Probehole Terminated — 6 feet		LAB
	10								
	20								

Remarks. LAB - indicates sample collected for laboratory analysis.

						LIP	Probehole No.:		
Projec	. Name	: IP	- Cho	ımpai	gn		Ground Elev.: Not Surveyed	Datum: Not Surveyed	
Projec	Numl	per: 1	7246				X Coordinate: 2987.80		
Ople(s) Drille	d: 03,	/11/97	- 03/	11/97		Total Depth: 6.00'	Borehole Dia : 1.00in	
Consul	lont:	Philip [nvironm	ental			Location: Along Sixth Avenue Right	t of Way	
				ntal			Drilling Method: RECON System		
Logge	By:	S. Crav	rens	T					
Elevation (III)	(iii) yudag	Sample No. Depth Interval	CHPH—308 Champaign Ground Elev.: Not Surveyed X Coordinate: 2987.80 Y Coordinate: 4922.56 Y Coordinate: 4922.56 Total Depth: 6.00' Borehole Dia.: 1.00in Invironmental Location: Along Sixth Avenue Right of Way Drilling Method: RECON System						
	-5 - -10 -15	CS-1 4-6		0.100		Light gray CLAY with brown r	mottling, viscous coal tar pre		

Probehole No.:

CHPH-309

Project Name: IP — Champaign

Bround Elev.: Not Surveyed

Datum: Not Surveyed

X Coordinate: 2987.57

Y Coordinate: 4917.17

Date(s) Drilled: 03/11/97 — 03/11/97

Total Depth: 8.00'

Borehole Dia.: 1.00in

Consultant: Philip Environmental

Drilled By: Philip Environmental

Drilling Method: RECON System

	(ft)	Somple No. Depth Interval	very	Water Level	Graphic Log	USCS Code	Malerial Description	PID Reading	Semole
1	Depth	Som	Reco	Wole	ā	505	No sample collected to 4 feet	8	5
	-5	CS-1 4-8			0-10	FI CL	FILL, sandy clay overlying 2—inches of solid brick VOID space — sampler dropped 6 inches Light gray CLAY with brown mottling, viscous coal tar in fractures estimated 4% of sample volume no visible coal tar, coal tar odor no coal tar odor		
+ + + + + + + + + + + + + + + + + + + +	10						Probehole Terminated — 8 feet		
+ + + + + + + + + + + + + + + + + + + +	15								
1	20								

Remarks.

Test Pit No

CHTP-01

Project Name: IP - Champaign Ground Elev.: Not Surveyed Dolum: Not Surveyed Project Number: 17246 X Coordinate: 2955.65 Y Coordinate: 4924.64 Oote(s) Drilled: 03/12/97 - 03/12/97 Total Depth: 7.00' Borehole Dia Consultant: Philip Environmental Location: West of Sixth Avenue Right of Way Excovoted By: Super-K Backhoe Bockhoe - Test Pit Method: Logged By: S. Cravens

Elevation (ff)	Depth (6)	Sample No. Depth Interva	Recovery	Water Level	Grophic Log	USCS Code	Material Description	PID Reading	Lab Sample
					0 0 0	FI	FILL, silty clay with brick		
					0:-0	FI/CL	Brown silty CLAY, perched groundwater seepage @ FILL-CLAY interface		

Clay—tile storm sewer, 8—inch pipe intercepted; approx. 100 gallons of water with minor coal tar impact drained from pipe
Light gray CLAY with extensive fractures, root fragments, and macropores, heavily impacted with viscous coal tar adjacent to and below sewer line

End of Test Pit — 7 feet

Remarks: LAB - Indicates sample collected for laboratory analysis.

10

- 15

20

LAB

CHTP-02

Project Name: IP - Champaign Ground Elev .: Not Surveyed Datum: Not Surveyed Project Number: 17246 X Coordinate: 2950.82 Y Coordinate: 4917.39 Oate(s) Orilled: 03/12/97 - 03/12/97 Total Depth: 7.00' Borehole Dia: Consultant: Philip Environmental Location: West of Sixth Avenue Right of Way

			ental		Location: West of Sixth Avenue Right of Way		
covoled By gged By:			ckhoe		Method: Backhoe - Test Pit		
	Somple No. Depth Interval Recovery	9	Grophic Log	USCS Code	Material Description	PID Reading	
- 15 - 20				FI	FILL, silty clay with brick Cast iron 8-inch pipe; east-west orientation; parallel and 4 feet south of sewer; invert at 56 inches; no apparent impact; filled with clear water Two metol 1.5-inch pipes; east-west orientation; parallel and 6 feet south of sewer inverts at 32 and 50 inches; lower pipe clad in concrete Brown silty CLAY Light gray CLAY with extensive fractures, root fragments, and macropores, heavily impacted with viscous coal tar End of Test Pit - 7 feet		

Remorks:

G:\CHAMPAIG\GEO\LOGS\CHTP-02.DWG

Record of Subsurface Exploration Test Pit No.:

CHTP-03

T Elev.: Not Surveyed Dolum: Not Surveyed rdinale: 2948.28 Y Coordinate: 4959.50			
rdinale: 2948.28 Y Coordinate: 4959.50			
Depth: 7.00' Borehole Dia.:			
Lacation: West of Sixth Avenue Right of Way			
Method: Backhoe - Test Pit			
n:			

isuntant. Frillip Environme	SUIGI	Location: West of Sixth Avenue Right of Way						
avated By: Super-K Ba	ackhoe	Method: Backhoe - Test Pit	Method: Backhoe - Test Pit					
ged By: S. Cravens								
Depth (ft) Somple No. Depth Interval Recovery Water Level	Grophic Log	Material Description	Reading					
	100 - 100 -	d groundwater seepage at FILL—CLAY interface ensive fractures, root fragments, and macropores, cous coal tar						

Remarks.

Probehole No.

CHTP-04

Project Name: IP — Champaign Ground Elev.: Not Surveyed Datum: Not Surveyed

Project Number: 17246 X Coordinate: 2707.32 Y Coordinate: 5041.43

Date(s) Drilled: 03/12/97 — 03/12/97

Total Depth: 3.00' Borehale Dia.:

Consultant: Philip Environmental Lacation: Northeast of Gas Holder GH—1

Excavated By: Super—K Backhoe Method: Backhoe — Test Pit

Logged By: S. Cravens

		Sup S. Crav			w 101 110 10-		Method: Backhoe - Test Pit		
Elevation (II)	Depth (fil)	Somple No. Depth Interval	Recovery	Water Level	Graphic Log	USCS Code	Material Description	PiD Reading	Inh Samole
	-5 -10				100100100100100100100100100100100100100	FI	FILL, silty clay, concrete, brick, high organics, moist, impacted with coal tar End of Test Pit — 3 feet		LA
-	- - - 20 -								

Remarks. LAB - Indicates sample collected for laboratory analysis.

APPENDIX I

CSI (2004) Geologic Logs

RECORD OF SUBSURFACE EXPLORATION

Logged By: S. Cravens

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-501

Project Name:	IP - Champaign For	mer MGP	Elevation:	738.60'	Datum:	Mean Sea Level
Project Number:	62400053		Coordinate X:	1012596.35	Coordinate Y:	1257400.40
Location:	502 E. Hill St. Char	npaign, Illinois	Total Depth:	24.00'	Borehole Dia.:	2.25in
Market Street	and the same of th	And the Market Black of the State of the Sta				

Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

GeoProbe

Drilling Method:

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample	
		MAC-1 0-4	48	-	0 0 0 0 0 0	FI	0' Silty CLAY w/coal, ash, cinders, roots, moist. (Fill). 1'4" - cinders ash, brick, fine gravel, dry-moist.	30.6 34.1	2.00		
735 –		MAC-2 4-8	100				2'10" - light brown to yellow-brown mottling (Natural material) No fill. 4'4" - trace sand, roots, high plasticity, yellow-orange.		1.25	LAB	
	-5	4-8					44 - trace sand, roots, high plasticity, yellow-orange.	16.8	0.75		
								6'5" - light gray mottling 7'1" Sandy CLAY with fine to coarse sand, brown-gray, wet.	17	0.75	
730 —		MAC-3 8-12	100	D		CL	7'5" - black 8' - few blebs of tar-like material with sheen, slight tar-like odor, black, wet.	29.6			
	-10					OL.	9'1" Silty CLAY with trace sand, high plasticity, tar-like odor, moist. 9'7" - greenish-gray	5.8	0.75		
								30.8	2.75 2.75		
			ьŁ				12' - trace sand and gravel, medium to high plasticity.	22,3		1	

Remarks:

RECORD OF SUBSURFACE EXPLORATION

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-501

Project Name:	IP - Champaign Former MGP	Elevation: 738.60'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012596.35	Coordinate Y: 1257400.40
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 24.00'	Borehole Dia.: 2.25in
The second second second			

Date Started: 07/13/04

Date Completed: 07/13/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: S. Cravens Drilling Method: GeoProbe

Logge	0 0)	y: S.C ∞x		ens			Drilling Method: GeoProbe	1 2		Т
Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	l ah Sample
		MAC-4 12-16	77							
						CL	13' - little sand and gravel (fine to coarse), medium plasticity, no hydro-carbon odor.	5.2	1.25	
725 -	-15			SC	14'4" Clayey SAND (fine to medium) with gravel (coarse < 1"), black. 14'5" - Photo #214 (heavily stained, tar-like material, wet). 14'7" Silty CLAY with trace sand and gravel (fine to coarse), medium gray with yellow-orange mottling, slight tar-like odor, moist.	47.6	>.75	LAE		
1							16' - no odor, moist		>4.5	
	ľ	MAC-5 16-20	100				16 - 10 odor, moist	36.6		
								13.2	>4.5	
700								2.8	>4.5	
720 —						CL		2.3	>4.5	
	-20	MAC-6 20-24	100					1.8		
							21' - little sand (fine to coarse), trace gravel (< 1").	1.6	1.75	
4								1.5	2.00	
								1.6	3.00	
715 —							24' - Termination of boring.	1.4		LAB

Remarks:

RECORD OF SUBSURFACE EXPLORATION

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-502

Project Name:IP - Champaign Former MGPElevation:738.30'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012599.30Coordinate Y:1257476.07Location:502 E. Hill St. Champaign, IllinoisTotal Depth:24.00'Borehole Dia.:2.25in

Date Started: 07/13/04

Consultant: Kelron

Date Completed: 07/13/04

To

Drilling Method:

GeoProbe

Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	77	70.5	0.0		0' Silty CLAY with few sand and fine gravel, roots, cinders, brick, no odor, moist. (Fill).			
	-				0000	F		3.4	2.50	
	-				0.0.0	FI		3.7	3.00	
735 -							3' SAND fine to coarse with few gravel (fine), brick, ash, moist. (Fill).	4.6	2.25	LAB
		MAC-2 4-8	100		0.0	FI	4' CLAY with sand and gravel, brick, ash, yellow-orange to light brown. (Fill).	10.6		
	-5	22			0.0		4'10" - brick layer (~80%) degraded.	9.9	3.50	
					1		5'5" CLAY, trace sand (fine to medium), medium plasticity, black, slight tar-like odor.	0.0		
								175	3.00	
						CL	7'1" - greenish-gray with black mottling; verticle fractures filled with tar-like material, tar-like odor, blocky fractures, moist.	217	2.25	LAB
730 -		MAC-3 8-12	100				8' Sand with gravel (fine to coarse), stained dark gray, wet.	216		
						sw	9' - tar-like odor.	21.6		
	-10						9'8" Silty CLAY with trace sand and gravel (fine), green-gray, black mottling, slight tar-like odor, moist.	115	1.00	
							10'6" - some sand, stained black, heavy tar-like staining.	110	1.00	
						CL	Added to the control of the control	389	0.50	
				1			 11'6" - trace sand and gravel, green-brown, no staining. 12' - few sand (fine to coarse), trace fine gravel, tar-like material in fractures and voids. Photo #212. 	400	0.75 >4.5	

Remarks:

Logged By:

S. Cravens

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-502 Project Name: IP - Champaign Former MGP Elevation: 738.30" Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012599,30 Coordinate Y: 1257476.07 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00" Borehole Dia.: 2.25in Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description Depth (MAC-4 12-16 100 13'1" - no staining or odor. 397 >4.5 725 >4.5 - trace sand and gravel (fine), medium gray with green-gray mottling, no odor. 15 108 >4.5 - trace fine to coarse sand and fine gravel, medium gray, no odor, moist. MAC-5 100 16-20 65.2 >4.5 42.1 >4.5 45.8 >4.5 720 >4.5 32.3 MAC-6 100 20-24 16.6 3.75 12.7 3.75 10.7 >4.5 4.50 9.5 715 Termination of boring. Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-503

Project Name:IP - Champaign Former MGPElevation:738.20'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012662.32Coordinate Y:1257523.54Location:502 E. Hill St. Champaign, IllinoisTotal Depth:28.00'Borehole Dia.:2.25in

Date Started: 07/13/04

Consultant: Kelron

Date Completed: 07/13/04

Drilled By: Transhield

Drilling Method:

GeoProbe

Logged By: S. Cravens

led By: Transhield Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	63		00000000		0' CLAY with silt, sand, and gravel, roots, moist. (Fill). 9" - sand and gravel. Photo #211. 1' - coal fines, ash, cinders, black.	4.9	<0.5	
735 -		MAC-2 4-8	50			FI	2'6" - wet.	100	0.75	LAB
	-5						6'5" CLAY, trace sand, high plasticity, green-gray w/black mottling, slight tar-like odor, moist. 7' - black, moist.	138	1,25 1.00	
730 —		MAC-3 8-12	56				8' - slight staining, yellowish with hydro-carbon/tar-like odor.	40.3	2.25	
÷	-10					CL	10' - dark gray with slight tar-like odor.	143	1.00	LAB
							12' - dark gray, moist.	156 150	1.75	LAB

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-503 Project Name: IP - Champaign Former MGP Elevation: 738.20' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012662.32 Coordinate Y: 1257523.54 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28.00' Borehole Dia.: 2,25in Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Material Description MAC-4 12-16 96 12'3" - <1/4" sand layer (fine to medium), black, heavy staining. 12'5" - <1/4" sand layer (fine to medium), black, heavy staining. 12'8" Silty CLAY with trace sand and fine gravel, green-gray, slight odor, moist. 4.25 38 725 14' - light gray with brown/yellow mottling. 32.1 3.50 14'2" - light gray, no odor. 14'8" - 1/8" silt seam, black, heavily stained, slight tar-like odor. 2.00 28.9 15'5" - greenish brown with black organics. 3.25 16' - light gray. MAC-5 100 29.2 3.50 720 18'5" - greenish-gray. 2.25 13.9 3.50 20' - medium gray MAC-6 20-24 11.4 2.50 6.7 3.25 0.7 3.75 4.2 715 3.00 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-503 Project Name: IP - Champaign Former MGP Elevation: 738.20' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012662.32 Coordinate Y: 1257523.54 Total Depth: Location: 502 E. Hill St. Champaign, Illinois 28.00' Borehole Dia.: 2.25in Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Lab Sample Depth (feet) Recovery Material Description MAC-7 24-28 100 3.50 25 3.50 3.00 1.6 4.50 Termination of boring. 1.1 710 -30 705 35 Remarks:

Page 3 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-504 Project Name: IP - Champaign Former MGP Elevation: 738.80 Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012758.32 Coordinate Y: 1257493.15 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7: T19N: R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Sample Depth (feet) Material Description 73 MAC-1 0-4 0' Silty CLAY with sand, gravel, and roots, moist. (Fill). 5.7 1'5" - clay, coal, cinders, ash, gravel, black, tar-like odor, moist. 2'3" - wet. 3.6 15.9 LAB 735 FI 4' - gravel, brick, ash, cinder, black, heavily stained tar-like material with strong tar-like odor, MAC-2 63 223 wet. (Fill). 4-8 5 LAB CLAY, green-gray, high plasticity, lightly stained w/tar-like material, slight odor, moist. 1.25 8' - dark gray with gray-green mottling, trace tar-like blebs in voids and fractures. MAC-3 8-12 43.7 88 730 56.5 2.00 9'4" - medium gray. 169 1.75

- medium gray with orange-brown mottling, few tar-like blebs and stringers in voids, strong odor,

Remarks:

11'

12'

- grey green.

moderately stained. Photo #210.

0.50

565 4.00

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-504

Project Name:	IP - Champaign Former MGP	Elevation: 738.80'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012758.32	Coordinate Y: 1257493.15
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/13/04

Consultant: Kelron

Date Completed: 07/13/04

Drilled By: Transhield

Logged By: S. Cravens Drilling Method: GeoProbe

Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	100			SC	 12'3" - Clayey SAND (fine), heavily stained with tar-like material. 13' Silty CLAY with trace sand and gravel, gray-green, heavily stained with tar-like material, strong tar-like odor. 	563	3.75	LAB
	- 15					CL	15' - no visible staining. slight tar-like odor.	763	4.00	LAC
		MAC-5 16-20	100				16'9" - little fine sand, trace gravel (fine to coarse), medium gray, moderate staining. Tar-like material in voids and fractures and around gravel (through 20' depth), strong odor.	159 357	4.50 4.50	
720 –								575 566	4.25	
1	-20	MAC-6 20-24	100			CL	20' - few sand and gravel (fine to coarse), medium gray.	175	>4.5	
						CL	20'11" - fine sand lense 1/2" thick, heavily impacted with tar-like material, black, strong tar-like odor.	1101	>4.5	LAE
								187	>4.5	
								742	>4.5	
715 –							- little sand and gravel (fine to coarse), no staining, slight odor.	310	>4.5	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-504 Project Name: IP - Champaign Former MGP Elevation: 738.80' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012758.32 Coordinate Y: 1257493.15 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/13/04 Date Completed: 07/13/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 100 25 85.6 >4.5 26' - no odor. >4.5 19 >4.5 - Termination of boring. 8.2 >4.5 LAB 710 -30 705 35 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-505 Project Name: IP - Champaign Former MGP Elevation: 738.60' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012765.45 Coordinate Y: 1257454.16 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/14/04 Date Completed: 07/14/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description MAC-1 0-4 92 Silty CLAY with trace sand and trace gravel, roots, trace brick, medium -dark brown, moist. (Fill). 1' - trace coal, cinders. 9.7 2' - 1 1/2" seam of cinders at 22". 6.9 2.00 2'6" - ash, sand (tan), fine gravel. 3' - ash, dark gray-black, moderate staining with tar-like material, wet. (Fill). 46.2 LAB 735 FI 4' - cinders, ash (very coarse), black, heavily stained tar-like material with strong tar-like odor. MAC-2 67 4-8 345 wet. (Fill). 5 249 393 Sandy CLAY, very soft, black, heavy staining. 7'3" - dark gray, high plasticity, moist. 1.50 8' CLAY, high plasticity, trace tar-like material in voids and fractures, moderate tar-like odor, MAC-3 8-12 75 155 1.75 occasional yellow-orange mottling, moist. 730 48.7 1.50 151 1.00

Remarks:

202 0.75 LAB

81.3

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-505

Project Name:	IP - Champaign Former MGP	Elevation: 738,60'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012765.45	Coordinate Y: 1257454.16
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
	1 Table 1 Table 2 Table 1 Tabl		

Date Started: 07/14/04 Date Completed: 07/14/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens

GeoProbe

Drilling Method:

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Mate	rial Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	100	The second secon		CL		rse),high plasticity, no staining or odor, moist. green, heavily stained with tar-like material, strong		1.50 4.25	
4	-15	MAC-5 16-20	100				- green-gray with little tar-like material in vo " - no staining, slight odor,	oids and fractures, slight tar-like odor.	11.2	2.75 >4.5	
720 -							- little sand and gravel (fine to coarse), tar-	like material in voids/fractures (trace-little).	82	1.50 3.75	
	-20	MAC-6 20-24	100			CL	 trace sand and gravel (fine to coarse), gr very moist. no staining or odor. 	een-gray w/trace tar-like material in voids, slight odor,	25.1	4.00 0.50 0.75 2.75	LAB
715 —							- trace-little sand and gravel (fine to coars	e), medium gray, medium-low plasticity, moist.		4.25	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-505 Project Name: IP - Champaign Former MGP Elevation: 738.60" Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012765.45 Coordinate Y: 1257454.16 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/14/04 Date Completed: 07/14/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 100 25 9.9 2.50 5.8 3.00 3.7 4.25 - Termination of boring. 5.8 3.25 LAB 710 30 705 35 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-506

Project Name:	IP - Champaign Former MGP	Elevation: 738.27'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012825.34	Coordinate Y: 1257384.15
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/22/04

Date Completed: 07/22/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Graphic Log	USCS Code	Material Description	PID Reading (ppm) Penetrometer (tsf) Lab Sample
		MAC-1 0-4	81			0' FILL, clay, gravel (fine-coarse), cinders, ash, roots, dark-brown to black, moist. (Fill)	1.1 3.50 1.7 0.75
735 –		MAC-2 4-8	83	00000000000	FI	3' - tar-like odor.	3.6 1.25 LAE
	-5				CL	5' Silty CLAY with trace gravel (fine), moderate staining, black . 5'6" - light gray/greenish gray with mottling.	138 1.75 348 0.75
4						7' - moderate staining with tar-like material in voids and fractures.	431 1.00 LAE
'30 -		MAC-3 8-12	31			8' Clayey SAND, heavily stained, wet.	218 1.25
	-10				SC		272
					CL SC CL SC	 10'7" Silty CLAY with trace roots. 11'2" Clayey SAND (fine to coarse) with gravel (fine to coarse). 11'6" Silty CLAY with few sand, heavily stained, black, wet. 11'10" Clayey SAND, dark gray to black. 	272

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-506

Project Name:	IP - Champai	gn Former MGP	Elevation: 738.27'	Datum: Mean Sea Level
Project Number	62400053		Coordinate X: 1012825.34	Coordinate Y: 1257384.15
Location:	502 E. Hill St	. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
Date Started: 07	7/22/04	Date Completed: 07/22/04	Township/Range: Sec 7; T19h	J: R9F

Consultant: Kelron Drilled By: Transhield Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Logge	u by	0.8		T	T		Drilling Method: GeoProbe	िहा	~	
Elevation (feet)	Depth (feet)	Sample Number Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm	Penetrometer (tsf)	Lab Sample
		MAC-4 12-16	100				 Silty CLAY with trace fine sand and trace fine gravel, greenish gray/brown, light tar-like odor, molst. - tar-like material in fractures. 	273		
725 — _							14'2" - no tar-like material, moderate odor, light brown to greenish gray.	1537		
	-15						14'9" - light to moderate staining. 15'5" SAND (fine to coarse) ~ 1/2" with trace gravel.	509		
		MAC-5 16-20	100	7		CL SC SP SC	15'5" SAND (fine to coarse) ~ 1/2" with trace gravel. 15'6" Silty CLAY, tar-like material in voids and fractures. 15'10" Clayey SAND (1" layer, fine to medium), poorly graded, heavily stained. 16' SAND (fine to coarse). 16'3" Sandy CLAY (fine to medium sand). 16'5" Silty CLAy	1557		
						CL		1865		LAE
20 –					7	SVV	17'10" SAND (fine to coarse) well graded with trace gravel, heavy staining. 18'5" Silty CLAY, medium gray.	1592		
							19' - No staining, no odor.	1752>	÷4.5	
	-20	MAC-6 20-24	100					29.6	•4.5	
						CL		5.5	*4.5	
4								5.6	3.25	
'15 –								12.3	1.25	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-506 Project Name: IP - Champaign Former MGP Elevation: 738.27' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012825.34 Coordinate Y: 1257384.15 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28,00" Borehole Dia.: 2.25in Date Started: 07/22/04 Date Completed: 07/22/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Recovery Material Description MAC-7 24-28 100 25 7.7 4.00 1.1 4.25 4.25 Termination of boring. 2.0 4.00 LAB 710 30 705 -35 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-507

Project Name:IP - Champaign Former MGPElevation:738.20'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012864.63Coordinate Y:1257412.37Location:502 E. Hill St. Champaign, IllinoisTotal Depth:28.00'Borehole Dia.:2.25in

Date Started: 07/21/04

Consultant: Kelron

Date Completed: 07/21/04

Drilled By: Transhield

Logged By: J. Scholbe Drilling Method: GeoProbe

Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	77		0.0		0'	Silty CLAY, gravel, brick, roots, dark brown, moist. (Fill)			
					0.0		10"	- 1.25" rock.	1.8	2.50	LAE
					0	FI	1'8"	- cinders.	1	21979	
					0.0.0		2'2"	- few fine to coarse gravel.	1.2	0.50	
735 -					00000	FI	3'	- trace >.75" gravel, light tar-like staining, wet.	1,6	3.25	
		MAC-2 4-8	96				4'2"	- dark gray-black with slight hydrocarbon/tar-like odor, moist.	45.6	1.25	
	-5						5'	- dark gray mottled with black and orange.	34.3	1.00	
						CL	5'6"	- tar-like material in voids and fractures, moderate staining.	1911		
									218	1.50	
									186	1.50	
730 –		MAC-3 8-12	90				8'	- trace fine sand and fine to coarse gravel, tar-like material in voids and fractures.	243	1.50	LAB
									24.7	0.75	
							9'6"	- no staining in voids and fractures, slight odor.			
	-10					CL	10'	- trace fine to medium gravel, yellow-orange to brown.	44	1.25	
									15	2,75	
			Н	7			11'9"	- tar-like material in voids and fractures.			

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-507

Project Name:	IP - Champaign Former MGP	Elevation: 738.20'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012864.63	Coordinate Y: 1257412.37
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/21/04

Consultant: Kelron

Drilled By: Transhield

Logged By: J. Scholbe

Drilling Method: GeoProbe

Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	
		MAC-4 12-16	100				12' - greenish gray.	23.8	>4.5	
725 -							12'10" - no staining, slight odor. 13' - tar-like material in fractures.	71.9	3.00	
	-					CL	14'4" - light-medium gray, no odor.	16.4	2.25	
	- 15					CL	14'10" - gravel layer, fine (1-2" thick), heavily stained. 15' - no staining.	9.3	2.75	ć
		MAC-5 16-20	81					35.9	3.40	Ç.
						00	17'4" SAND (12" layer) (fine-medium) with clay, poorly graded, heavily stained.	23.0		
720 -						sc	18'4" Silty CLAY with some sand, light gray, moist.	30.1	<0.5	
								2163	>4.5	LAB
	-20	MAC-6 20-24	100			CL	20'3" - trace coarse gravel, no staining, no odor.	20.5	>4.5	
							21'6" Clayey SAND (1/2" lens, fine-medium) poorly graded. 21'7" Silty CLAY, trace fine-medium sand and fine gravel.	1.5	1.75	
						CL	21'7" Silty CLAY, trace fine-medium sand and fine gravel.	1.2	2.00	
715 –						CL		1.3	2.00	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-507

Project Name:	IP - Champaign Former MGP	Elevation: 738.20'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012864.63	Coordinate Y: 1257412.37
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/21/04

Date Completed: 07/21/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Sonsweam. Neiron State By. Transmold

Logge	ed By	/: J.S	chol	be			Drilling Method: GeoProbe				
Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	1.2 PID Reading (npm)	Penetrometer (tsf)	Lab Sample
	-25	MAC-7 24-28	100							1.29	
						CL				2.50	
			÷	- Constitution of the Cons					0.4	2.50	0
710 -							28' Termination of boring.		0.5	3.50	D LAB
	-30										
705 –											
							χ.				
ļ.	-35										
	-35										

Logged By: J. Scholbe

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-508

IP - Champaign Former MGP	Elevation: 738.50'	Datum: Mean Sea Level
62400053	Coordinate X: 1012938.55	Coordinate Y: 1257433.70
502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
	62400053	62400053 Coordinate X: 1012938.55

Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	79		0 0 0 0 0 0		0' Silty CLAY w/gravel and roots, dark brown, moist. (Fill)	2.9	1.75	i
-					000000	FI	3' - cinders, brick, black.		2.75	5 LAE
735 -		MAC-2 4-8	71		000000		4' - coarse cinders and gravel, light odor, wet. (Fill)		1.75	
	-5						5'6" - dark gray-black, moderate tar-like staining in voids and fractures.	60.1	1.50	
						CL		121	2.00	ų,
30 —		MAC-3 8-12	100				8'10" - greenish gray with orange mottling.		2.50 1.25	
	-10					CL	10'4" Sandy CLAY (fine sand). 10'8" Silty CLAY, greenish gray.	410	2.00	-
							11'5" - heavy staining with tar-like material.	361	1.50	LAB

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-508 Project Name: IP - Champaign Former MGP Elevation: 738.50' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012938.55 Coordinate Y: 1257433.70 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log JSCS Code Material Description Lab MAC-4 12-16 100 106 3.25 12' Sandy CLAY with fine sand, trace gravel. 13' Silty CLAY, light brown. 9.7 3.75 725 - greenish gray 6.3 3.25 - with sand. 14'3" - medium gray. 15 5.3 4.50 MAC-5 100 16-20 16' Silty CLAY with trace gravel. 3.9 4.50 9.9 2.50 3.00 18' - trace fine sand. 720 19' - trace coarse gravel >.75". 2.3 >4.5 20' - olive gray. MAC-6 100 20-24 3.2 >4.5 3.4 2.75 5.6 3.00 5.2 4.25 715 - few fine sand and trace fine gravel, medium gray. 4.9 4.50

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-508 Project Name: IP - Champaign Former MGP Elevation: 738.50' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012938.55 Coordinate Y: 1257433.70 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Depth (feet) Lab Sample Material Description MAC-7 24-28 25 4.3 2.00 7.0 4.00 6.4 4.00 28' Termination of boring. 2.5 2.50 LAB 710 30 705 35 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-509

Project Name:	IP - Champaign Former MGP	Elevation: 738.20'	Datum: Mean Sea Level
Project Numbe	r: 62400053	Coordinate X: 1012918.26	Coordinate Y: 1257355.34
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
W 10 100 THE 9TE		A. The state of th	

Date Started: 07/21/04

Consultant: Kelron

Date Completed: 07/21/04

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	100		00000000		0' Silty CLAY with fine-coarse sand and little fine to coarse gravel, roots, dark brown, moist. (Fill)	0.5	<0.5	
					0.000	FI		0.7	<0.5	
'35 –					0 0 0 0		3'6" - no sand	0.9	<0.5	LAE
		MAC-2 4-8	83				4'5" - trace brick.	0.8	0.75	
	-5						5'5" - light brown with dark brown and orange mottling.	1.2	0.75	
							6' - greenish gray with dark brown and orange mottling.	1.0	1.50	
						CL	7' - light tar-like staining in fractures.	0,3	1.25	
30 —		MAC-3 8-12	100				8' - trace fine sand and little fine to coarse gravel, no staining, wet.	13.1	1.00	LAB
4							9' - tar-like material in fractures and voids, moist. 9'2" Clayey SAND (fine-medium) w/trace fine-coarse gravel, heavy staining w/tar-like material.	0.4	0.50	
4	-10					sc	10' - wet.	10.9	<0.5	
2						CL	10'10" Silty CLAY with trace fine-medium gravel, light orangish-brown, no odor. 11' - moist.	26.1	1.75	
					111	-		8.8	2.50	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-509

Project Name:	IP - Champaign Former MGP	Elevation: 738.20'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012918.26	Coordinate Y: 1257355.34
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
Location.	502 E. Hill St. Champaign, Illinois	Total Depth; 28.00	Borenole Dia.: 2.25in

Date Started: 07/21/04

Date Completed: 07/21/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & C	Recovery Percent	Recovery	Graphic Log	USCS Code	Drilling Method: GeoProbe Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	98					6.3	3.50	
								6.2	3.25	
	-15					CL	15' - light to medium gray.	3.7	4.00	
		MAC-5 16-20	100						3.25	
							17'4" SAND (2" layer) fine-medium, moist. 17'6" Silty CLAY with trace fine sand and fine to medium gravel, light brown, moist. 18' - medium gray.	41.1	>4.5	
20 -						SM	 18' - medium gray. 18'2" SAND, fine-medium, lightly stained, wet. 18'6" Silty CLAY, trace fine to medium sand, medium gray, moist. 	2.3	>4.5	LAE
	-20	MAC-6 20-24	100					19.3		
						CL	21' - some medium to coarse gravel.	11.7	3.75	
							21'7" - trace fine to medium gravel.	1.3	>4.5	
15 –								1.3	>4.5	
								0.6	2.75	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-509 Project Name: IP - Champaign Former MGP Elevation: 738.20' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012918.26 Coordinate Y: 1257355.34 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/21/04 Date Completed: 07/21/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval Recovery Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description Depth (MAC-7 24-28 88 CL -25 0.3 >4.5 25'8" SAND fine-medium, poorly graded, moist. 0.2 1.50 26'1" Silty CLAY with trace fine to medium gravel, light to medium gray, moist. CL 0.3 4.25 28' Termination of boring. 0.5 4.00 LAB 710 -30 705 -35

Remarks:

Page 3 of 3

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-510

Project Name:	IP - Champaign Former MGP	Elevation: 737.70'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012944.37	Coordinate Y: 1257255.84
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/12/04

Consultant: Kelron

Date Completed: 07/12/04

Township/Range: Sec 7; T19N; R9E

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
735 –		MAC-1 0-4	96			FI	0' SILTY CLAY with gravel and roots, dark brown, moist (Fill). 1'3" - cinders, ash, black, wet 1'7" - clay, cinders, black, moist. 2'10" - trace sand, black, medium plasticity, occasional fractures, moist. 3' - orange-brown mottling.	21	3.25 2.25 2.50	LAE
	-5	MAC-2 4-8	100			CL	4'3" - trace sand & fine gravel, olive gray.		2.50	
- 730 —		MAC-3 8-12	77				 6' - medium plasticity, greenish gray 7' - light gray with orange-brown mottling. 7'9" CLAYEY SAND, fine - coarse, greenish gray, wet 	2.5	1.75 1.75	
	-10					SC CL	11' CLAY, greenish gray, high plasticity, very soft. 11'5" SILTY CLAY, trace sand and gravel, yellow-orange w/light gray mottling, medium plasticity. 11'9" - little sand and gravel, very hard, green-brown, with gray mottling.	3.7 5.5	0.75	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-510

Project Name:IP - Champaign Former MGPElevation:737.70'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012944.37Coordinate Y:1257255.84Location:502 E. Hill St. Champaign, IllinoisTotal Depth:28.00'Borehole Dia.:2.25in

Date Started: 07/12/04

Date Completed: 07/12/04

Consultant: Kelron

Drilled By: Transhield

Drilling Method:

GeoProbe

Logged By: S. Cravens

d By: Transhield Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	92				12' - very soft, wet.	10.2		LAB
120						CL	13' - very hard, moist.	1.7	0.75	
							13'7" - light gray	1.9	>4.5	
	-15						15' - little sand and gravel (fine - coarse sand, fine gravel), medium gray, very hard, dry	3.6	>4.5	
		MAC-5 16-20	98			CL	16'2" - greenish brown, moist	3.3	>4.5 1.50	
							17' - medium gray	4.9	>4.5	
720 -	i							2.1	>4.5	
						CL		3.2	>4.5	
	-20	MAC-6 20-24	100			UL		3.8	>4.5	
								6.5	>4.5	
745								5.3	>4.5	
715 —						CL		4.2	>4.5	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-510 Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012944.37 Coordinate Y: 1257255.84 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/12/04 Date Completed: 07/12/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 81 24'3" - trace sand & gravel, soft, high plasticity, moist 25 7.7 1.75 25'8" - little to few sand (fine-coarse) and gravel (fine), medium plasticity, moist 8.1 < 0.3 3.1 1.50 710 28' Termination of boring. 5.5 0.75 LAB 30 705 35 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-512 Project Name: IP - Champaign Former MGP Elevation: 737.80 Datum: Project Number: Coordinate X: 1012745.98 Coordinate Y: 1257223.40 502 E. Hill St. Champaign, Illinois 24.00' Location: Total Depth: Borehole Dia.: 2.25in Date Started: 07/12/04 Date Completed: 07/12/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Depth Interval Graphic Log USCS Code Material Description MAC-1 0-4 73 0' FILL with silty clay, sand and gravel (fine gravel), roots, dark brown, moist. (Fill) CLAY with sand, gravel, slag, slight tar-like odor. 12.6 3.00 24 735 2'11" - trace sand black, high plasticity, moist, 27 MAC-2 100 4-8 3.00 4'5" Silty CLAY with trace sand and gravel, medium plasticity, medium gray, moist. 5 57 1.25 - greenish gray with brown and gray mottling, hydrocarbon odor, wet. 465 2.50 455 2.25 730 MAC-3 77 8-12 8'2" - high plasticity, dark gray, strong hydrocarbon odor, wet. 494 3.00 LAB 424 1.50 < 0.5 9'10" Clayey SAND seam (2"), fine to coarse, dark gray, wet 10' Silty CLAY, medium plasticity, greenish-brown with light gray mottling, moist. 10 440 0.75 265 0.75 LAB Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-512

Project Name	: IP - Champaign Former MGP	Elevation: 737.80'	Datum:		
Project Numb	er:	Coordinate X: 1012745.98	Coordinate Y: 1257223.40		
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 24.00'	Borehole Dia.: 2.25in		
San De G. F. Strate.					

Date Started: 07/12/04 Date Completed: 07/12/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

		y: S.C ∞					Drilling Method: GeoProbe		Ê	6	Т
Elevation (feet)	Depth (feet)		Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Jah Camplo
		MAC-4 12-16	92				12' - little sand (fine to coarse) and fi	ne gravel, greenish-brown, moist.	45.7	>4.5	T
725 –							13' - no odor.		22	1.25	
-							14'1" - 1/4" sand seam, wet.		12.3	4.50	
	- 15					CL	14'8" Silty CLAY with medium gray medium - trace sand and gravel, medium	ottling. gray with yellow-orange mottling along fractures.	13.6	4.50	
		MAC-5 16-20	75				16' - medium gray, moist.	-	9.4	>4.5	
							17' - trace sand and gravel (fine - coa	arse).	8.4		
'20 -									9.4	4.50	
Í									5.6	3.50	
	-20	MAC-6 20-24	54			CL	20' - low-medium plasticity		9.6	3.00	
1									8.4	2.00	
-							22'4" - 1.75" rock.			2.75	
15 –										2.75	
-				/			24' Termination of boring.		6.2		LAE

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-513

Project Name:	IP - Champaign Former MGP	Elevation: 738.30'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012634.48	Coordinate Y: 1257221.97
Location:	502 E. Hill St. Champaign, Illinois	Total Depth; 24.00'	Borehole Dia.: 2.25in
FY 63 V 3 - 1 - 1			

Date Started: 07/12/04

Date Completed: 07/12/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent		Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	88		0		0' Silty CLAY with trace sand and roots, dark brown, moist. (Fill).			
				and despite the	0.00	FI	1'4" - cinders, ash, brick, fine gravel, dry-moist.	3.9	1.75	
							2'2" Silty CLAY with trace sand, roots, low plasticity, black.	4.4	1.75	LA
35 -							2'9" - dark brown with light brown mottling, moist. 3'2" - medium brown with yellow-orange mottling.	3.7	2.00	i
		MAC-2 4-8	100				3'8" - yellow-orange with medium brown mottling, occasional roots vertically. 4'4" - light gray w/yellow-orange mottling, roots.	11	3.00	
4	-5					CL		7.7	2.00	
				***************************************			6' - trace sand and gravel, high plasticity, very moist. 6'5" - little sand and gravel (fine - coarse sand and fine gravel), wet.	5.4	1.25	
d							6'9" - few sand and gravel, strong hydrocarbon odor, wet. 7' - hydrocarbon odor.	6.2		
30 —		MAC-3 8-12	100				8' - yellow-orange. 8'4" Clayey SAND (fine - medium), strong hydrocarbon odor, black, wet.	420	0.75	LAE
				I Same		sc	9'4" Silty CLAY w/trace sand, very soft, high plasticity, greenish brown with light gray mottling, moist.	245	<0.3	
	-10			Total Samuel				178	0.50	
						CL		23.7	1.25	
								31.5	2.75	LAB

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-513 Project Name: IP - Champaign Former MGP Elevation: 738.30' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012634.48 Coordinate Y: 1257221.97 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 2.25in Date Started: 07/12/04 Date Completed: 07/12/04 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Kelron Transhield Drilling Method: GeoProbe S. Cravens Logged By: PID Reading (ppm Penetrometer (tsf) Sample Number & Depth Interval Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-4 - little sand and gravel (fine to coarse), medium plasticity, no hydrocarbon odor. 7.6 2.75 13' 725 8.3 2.75 - 1/8" sand seam (fine to coarse), wet. 2.6 2.75 15' - occasional yellow-orange mottling along fractures. 6.7 3.25 MAC-5 16-20 73 16' SAND seam (1/2") (fine to coarse), wet. Silty CLAY with trace fine to coarse sand and gravel, low plasticity, medium gray, moist. 4.5 3.8 3.75 720 8.0 3.75 MAC-6 20-24 >4.5 83 1.0 7.1 3.25 5.2 2.75 715 -24' Termination of boring 5.0 3.00 LAB Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-514 Project Name: IP - Champaign Former MGP Elevation: 738.30' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012723.21 Coordinate Y: 1257359.07 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Location: Date Started: 07/22/04 Date Completed: 07/22/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code -ab Sample Depth (feet) Material Description 50 CLAY, gravel (fine-coarse), brick slag, cinders, dark brown, moist. (Fill) 3.6 0.50 6.4 < 0.5 3' - dark gray to black. 19.7 0.50 LAB 735 3'6" - coarse gravel, heavy hydrocarbon staining, wet. MAC-2 69 4-8 7.9 1.25 4' - gravel (fine-coarse) 12.2 0.50 Silty CLAY with trace sand, dark gray-black, no staining, slight tar-like odor, moist. 22.4 1.75 - light gray turning greenish gray with black mottling. 38 1.50 MAC-3 8-12 1.75 LAB 52 730 1.00 10 - tar-like material in voids and fractures 174 1.00 10' 164 1.00

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-514 Project Name: IP - Champaign Former MGP Elevation: 738.30' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012723.21 Coordinate Y: 1257359.07 502 E. Hill St. Champaign, Illinois 28.00 Location: Total Depth: Borehole Dia.: 2.25in Date Started: 07/22/04 Date Completed: 07/22/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Percent Penetrometer (tsf) Elevation (feet) Graphic Log Sample USCS Code Material Description Recovery MAC-4 12-16 100 Clayey SAND (fine-coarse) with trace gravel, dark gray to black, heavily stained with tar-like 12' 248 0.50 SC material, wet. Silty CLAY with some sand, greenish gray 12'6" 464 0.50 725 13'10" - trace sand (fine) and gravel, moist. 632 3.50 332 3.00 15'4" - sand seam (1") (fine-coarse), poorly graded, heavily stained with tar-like material. 16' SAND with few clay, heavily stained with tar-like material. MAC-5 94 16-20 965 1.25 SP 17' Silty CLAY with Verticle sand seam 1021 0.75 LAB 17'6" - trace sand (fine) and gravel, moist. 662 3.25 720 419 3.75 20' MAC-6 100 20-24 - medium gray, moist. 7.8 >4.5 CL 1.5 2.75 1.2 3.00

Remarks:

715

0.9 4.00

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-514 Project Name: IP - Champaign Former MGP Elevation: 738.30' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012723.21 Coordinate Y: 1257359.07 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28,00" Borehole Dia.: 2.25in Date Started: 07/22/04 Date Completed: 07/22/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 98 25 25.9 2.75 34.8 2.50 9.7 3.50 28' Termination of boring. 11.7 2.50 LAB 710 -30 705 35 Remarks:

Logged By: S. Cravens

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-515

Project Name:IP - Champaign Former MGPElevation:738.40'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012777.17Coordinate Y:1257427.29Location:502 E. Hill St. Champaign, IllinoisTotal Depth:32.00'Borehole Dia.:2.25in

Date Started: 07/16/04 Date Completed: 07/16/04 Township/Range: Sec 7; T19N; R9E

GeoProbe

Consultant: Kelron Drilled By: Transhield

Drilling Method:

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	88		0 0 0 0 0		0' Silty CLAY with fine-coarse sand and fine-coarse gravel, medium brown, no odor, moist. (Fill)	15.2	2.25	
					0 0 0		2'2" - sand, silt, gravel, yellow-orange, dry.	7.7	1.50	LAB
735 —					0 0 0		3' - clay, ash, cinders, gravel, black. 3'4" - slight tar-like odor, wet.	2.2	1.50	
		MAC-2 4-8	33		0 0 0	FI		335		
-5	5				0 0 0			260		
1					0.0.0.0			319		
					0 0 0			333		LAB
					1		7'7" CLAY, high plasticity, dark gray, slight tar-like odor.			
730 -		MAC-3 8-12	73	R			8' Silty CLAY with trace fine sand and fine gravel, high plasticity, brown-green, tar-like material in voids and fractures, moderate tar-like odor.	92.3	1.75	
						CL		151	1.75	
-1	10					OL.		223	1.25	
				/				202	2.00	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-515

Project Name:IP - Champaign Former MGPElevation:738.40'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012777.17Coordinate Y:1257427.29Location:502 E. Hill St. Champaign, IllinoisTotal Depth:32.00'Borehole Dia.:2.25in

Date Started: 07/16/04 Date Completed: 07/16/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	100				 - little fine sand and fine gravel, brown-gray to green-brown, light staining with tar-like material in voids and fractures, moist. 		2.25 4.00	
								391	3.75	
	- 15					CL	14'10" - blocky structure, non plastic, dry. 15'3" - green-gray, moist.	549	3,50	
		MAC-5 16-20	100					853	4.50	
							16'8" - dark gray, moderate staining with tar-like material in voids and fractures; moderate odor.	1031	4.50	
720 -								1291	>4.5	
								1404	3.50	LAB
	-20	MAC-6 20-24	100			CL	20' Sandy CLAY, fine-medium, wet.	1348	4.50	
	-						21'3" Silty CLAY with little fine sand and fine gravel, medium gray, no tar-like material visible, slight odor, moist.	125	<0.5	
								461	>4.5	
715 -							23' - trace tar-like material in fracture.	241	>4.5	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-515 Elevation: 738.40 Datum: Mean Sea Level Project Name: IP - Champaign Former MGP Project Number: 62400053 Coordinate X: 1012777.17 Coordinate Y: 1257427.29 32.00' Borehole Dia.: 2.25in Location: 502 E. Hill St. Champaign, Illinois Total Depth: Date Started: 07/16/04 Date Completed: 07/16/04 Township/Range: Sec 7; T19N; R9E Consultant: Drilled By: Transhield Kelron Drilling Method: GeoProbe S. Cravens Logged By: Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 - little to few sand and gravel, medium plasticity, no visible tar-like material or odor. 377 >4.5 25 108 2.75 CL 82.6 3.25 72.1 3.00 1.4 3.00 MAC-8 100 28-32 710 0.7 2.50 CL 30 1.75 - little fine-coarse sand and gravel, medium gray, moist. 30' 0.5 1.50 31' - few fine-coarse sand and gravel, low-medium plasticity. 0.8 2.50 LAB 32' Termination of boring. 705 -35 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-516 Project Name: IP - Champaign Former MGP Elevation: 738.20' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012824.38 Coordinate Y: 1257345.84 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Borehole Dia.: 2.25in Date Started: 07/22/04 Date Completed: 07/22/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Recovery Percent PID Reading (ppm Penetrometer (tsf) Elevation (feet) Depth Interval Graphic Log USCS Code Sample Material Description 96 MAC-1 0-4 0' FILL, clay, silt, sand (fine-coarse), gravel (fine-coarse), crushed rock, roots, dark brown, moist. 1' - few sand (9" layer). 2.7 0.75 2' - cinders, light tar-like odor. 2.5 1.00 FI 2'9" - trace sand (fine) and trace gravel, trace brick, dark gray to black. 3.6 1.25 LAB 735 MAC-2 100 4-8 76.5 2.00 4'3" - moderate tar-like odor. 5 200 1.00 LAB - tar-like material in voids and fractures. 101 1.75 FI 120 0.75 Silty CLAY with little sand (fine), no visible contamination, light brown with light gray and MAC-3 8-12 34.8 1.00 75 730 yellowish-orange mottling, moist. 14.7 1.25 9'10" - tar-like material in voids and fractures. 36.9 3.00 10'3" SAND (4" layer) (fine-coarse) poorly graded, moist. 10'7" Silty CLAY with trace sand (fine), trace gravel (fine-coarse), little to no odor, no visible tar-like

material, greenish gray-light brown.

CL

Remarks:

5.5 3.75

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-516

Project Name:IP - Champaign Former MGPElevation:738.20'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012824.38Coordinate Y:1257345.84Location:502 E. Hill St. Champaign, IllinoisTotal Depth:24.00'Borehole Dia.:2.25in

Date Started: 07/22/04

Consultant: Kelron

Date Completed: 07/22/04

Drilled By: Transhield

Logged By: J. Scholbe Drilling Method: GeoProbe

Township/Range: Sec 7; T19N; R9E

Elevation (feet)	Depth (feet)	Sample Number & Company Compan	Recovery Percent	Recovery	Graphic Log	USCS Code	Drilling Method: GeoProbe Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 –		MAC-4 12-16	100				 12' - light staining along fractures 12'2" - no visible tar-like material or odor. 13'8" SAND seam (1/4-1/2") (fine-coarse), heavily stained. 13'8.5" Silty CLAY with trace fine sand, trace fine-coarse gravel, tar-like material in fracturesand voids. 14' - no staining or odor 	8.2	3.25 3.50 3.75	
	- 15	MAC-5 16-20	100			CL	16' - medium gray, moist.		4.00 4.25	
720 —									3.00	
	-20	MAC-6 20-24	100			CL			2.00 1.50	
246								12.9		
715 —							24' Termination of boring.		4.00	LAB

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-550

Project Name:	IP - Champaign Former MGP	Elevation: 737.30'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012670.00	Coordinate Y: 1257553.04
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in

Date Started: 07/20/04 Date Completed: 07/20/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhleld

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	67		0 0 0		0'	Silty CLAY with gravel, brick, roots, dark gray-black, moist. (Fill)	2.1	0.75	5
735 –					0 0 0 0 0	FI	2'4"	- fine-coarse gravel, petroleum odor, wet.	2.3	0.75	i
					0 0 0		3'4"	- dark gray-black mottled with greenish gray, tar-like odor.	53.8	1.00	LAB
		MAC-2 4-8	81		0		4'	- black mottled with light gray mottling, heavy staining with hydrocarbon like material (degraded).	84	1.00	
	-5				0.0		4'10" 5'	- fibrous material. (Fill) Silty CLAY	69.3	2.00	
									39.6	1.75	
730 –									65.6	1.75	
		MAC-3 8-12	96			CL	8' 8'2"	- roots, light staining tar-like material in voids and fractures.	18.3	2.00	
									105	<0.5	LAB
	-10						10'5"	- light gray-greenish gray with orange mottling, heavily stained.	75.8	0.75	
							100	ight gray groomen gray war orange motunig, neavity camea.	164	1.00	LAB

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-550 Elevation: 737.30' Datum: Mean Sea Level Project Name: IP - Champaign Former MGP Project Number: 62400053 Coordinate X: 1012670.00 Coordinate Y: 1257553.04 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/20/04 Date Completed: 07/20/04 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Kelron Transhield Drilling Method: GeoProbe J. Scholbe Logged By: PID Reading (ppm Penetrometer (tsf) Recovery Percent Sample Number 8 Depth Interval Elevation (feet) Graphic Log USCS Code Material Description Recovery 133 0.50 MAC-4 725 Sandy CLAY layer with fine-coarse sand and trace gravel, greenish gray, heavily stained, wet. Silty CLAY w/trace fine-coarse gravel. 125 0.50 13'7" - greenish gray with light gray and orange mottling. 13'11" - moist. 3.25 15 13.3 2.75 2.4 3.25 LAB MAC-5 16-20 94 - greenish gray with orange mottling and slight tar-like odor. 2.0 2.00 720 1.2 2.75 18' - no odor. 1.3 2.50 MAC-6 100 20-24 1.2 4.00 CL 0.5 1.25 - medium gray. 0.8 3.50 715 -0.3 3.75 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-550

Elevation: 737.30'	Datum: Mean Sea Level
Coordinate X: 1012670.00	Coordinate Y: 1257553.04
Total Depth: 28.00'	Borehole Dia.: 2.25in
	Coordinate X: 1012670.00

Date Started: 07/20/04 Date Completed: 07/20/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

.ogge	d By	: J. S	choir	је			Drilling Method: GeoProbe		13	1	<u></u>	
Elevation (feet)	Depth (feet)	PSW Sample Number & S-2 Depth Interval	Recovery Percen	Recovery	Graphic Log	USCS Code		Material Description		FID Reading (ppin)	Penetrometer (tsf)	Lab Sample
1		MAC-7 24-28	50						0.	.6 2	.75	
	- 25			Total State					0.	.6 2	.00	
			'n			CL			0.	.3 >	4.5	
710 -	-								o	.6 1	.75	
							28' Termination of boring.		0	.4 3	.00	LA
											h	
	-30											
05 -												
	-35											

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-551 IP - Champaign Former MGP Elevation: 737.90' Datum: Mean Sea Level Project Name: Project Number: 62400053 Coordinate X: 1012720.53 Coordinate Y: 1257553.39 28.00' Borehole Dia.: 2.25in Total Depth: Location: 502 E. Hill St. Champaign, Illinois Date Completed: 07/15/04 Date Started: 07/15/04 Township/Range: Sec 7; T19N; R9E Drilled By: Transhield Consultant: Kelron GeoProbe S. Cravens Drilling Method: Logged By: PID Reading (ppm) Sample Number & Depth Interval Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description Recovery FILL, coal and coal fines, brick, cinders, trace fine gravel, dark brown. (Fill) MAC-1 1.2 11.5 FI 735 16.4 2.25 LAB 3'3" - dark brown with black mottling, wet. MAC-2 4-8 - no recovery, wet. (Fill) 20.7 0 5 NR 730 -MAC-3 100 8-12 - cinders mixed w/black clay, high plasticity, slight tar-like odor, wet. 8' 60.2 1.50 CLAY, high plasticity, black. 9' - medium gray with black mottling, wet. 9'6" 10 146 1.50 LAB - trace fine sand, trace tar-like material in voids and fractures, slight odor. 11' 57.7 1.50 Sandy CLAY (fine to medium sand) with heavy staining, strong odor, wet. Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-551 Project Name: IP - Champaign Former MGP Elevation: 737.90' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012720.53 Coordinate Y: 1257553.39 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Percent PID Reading (ppm) Penetrometer (tsf) Elevation (feet) Depth Interval Graphic Log JSCS Code Lab Sample Material Description Recovery MAC-4 12-16 100 12' Silty CLAY with trace fine to coarse sand and fine gravel, green-gray with orange-brown 183 mottling, low-medium plasticity, trace tar-like material in voids and fractures, moist. 725 54.8 >4.5 - little sand and gravel, light gray with no tar-like material or odor, dry. 29.1 >4.5 -15 13.7 >4.5 MAC-5 16-20 79 16' 11.8 >4.5 LAB - trace fine to coarse sand and fine gravel, medium gray, slightly moist-dry. 3.2 >4.5 720 6.2 >4.5 3.3 >4.5 MAC-6 20-24 20' 100 - little fine to coarse sand and fine gravel, low plasticity, medium gray. 1.1 39.6 >4.5 17.3 >4.5 715 8.9 >4.5 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-551 Elevation: 737.90' Project Name: IP - Champaign Former MGP Datum: Mean Sea Level Coordinate X: 1012720.53 Coordinate Y: 1257553.39 Project Number: 62400053 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Elevation (feet) USCS Code Material Description MAC-7 24-28 100 4.4 >4.5 25 2.0 >4.5 3.6 3.50 3.0 4.00 Termination of boring. 710 -3.9 4.00 LAB 30 705 35 Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-553

IP - Champaign Former MGP	Elevation: 737.80'	Datum: Mean Sea Level
62400053	Coordinate X: 1012778.31	Coordinate Y: 1257534.21
502 E. Hill St. Champaign, Illinois	Total Depth: 32.00'	Borehole Dia.: 2.25in
	62400053	62400053 Coordinate X: 1012778.31

Date Started: 07/14/04

Date Completed: 07/14/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & 90 Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		ing Method: GeoProbe Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	85		0 0 0		0'	SAND, coal fines, cinders, fine-coarse gravel, dark brown, moist. (Fill).	3.1	<0.5	
35 -				An all the single and section to the		FI	1'11" 2'5" 3'	no sand, brick, black.slight tar-like odor, wet.sand, coal fines, cinders, black.	4.7	2.75	
	-5	MAC-2 4-8	100				5'3"	CLAY, high plasticity, black, heavily stained, strong tar-like odor, moist.	384		
									364	3.75	LA
							7'2"	- light gray along fractures.	308	2.75	
30 -		MAC-3 8-12	100			CL	8'	Silty CLAY with trace sand and gravel (fine), tar-like material in voids and fractures, moist.	86.7	2.75	
	-10								99.8	0.75	
				Townson.			11'6"	- green-gray.			

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-553

Project Name:	IP - Champaign Former MGP	Elevation: 737.80	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 10127	78.31 Coordinate Y: 1257534.21
Location:	502 E. Hill St. Champalgn, Illinois	Total Depth: 32.00'	Borehole Dia.: 2.25in
	And the second s	ACC 2027	

Date Started: 07/14/04

Date Completed: 07/14/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Ø Depth Interval	Recovery Percent		Graphic Log	USCS Code	Drilling Method: GeoProbe Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
ш	Ω	MAC-4 12-16	100	N.	77	ב	12' - 1/4" fine to medium sand seam, heavily stained.		-	-
725 -		12-10					12'6" - brown-gray, low plasticity.			
125							13' Silty CLAY w/trace to little sand and gravel, low plasticity, tar-like material in voids and fractures, moderately stained, moist.	225	4.00	
						CL		547	3.75	
	-15							545	>4.5	LAE
		MAC-5 16-20	100	/			15'6" - light gray mottling, light staining.	240	>4.5	
							17'6" - medium gray with occasional red-brown mottling, no tar-like material or staining.	131	>4.5	
720 -							18'3" - trace tar-like material in voids and fractures, moderate odor.	147	>4.5	
								414	>4.5	
	-20	MAC-6 20-24	100			CL	20' - trace fine to coarse sand and fine gravel	490	1.00	
								29.8	3,00	
								945	>4.5	
715 -						ML	22'10" SILT, black, heavily stained with tar-like material (strong odor).			
					7	CL	23'1" Silty CLAY w/trace fine-coarse sand and fine gravel, medium gray, non-plastic, light staining.	998	>4.5	
					11	SP CL	23'5" SAND (fine to coarse) with trace gravel, heavily stained, wet. 23'8.5" Silty CLAY (same as 23'1"description).		-	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-553

Project Name:	IP - Champaign	Former MGP	Elevation:	737.80'	Datum:	Mean Sea Level		
Project Number:	62400053		Coordinate X	: 1012778.31	Coordinate Y:	1257534.21		
Location:	502 E. Hill St. C	hampaign, Illinois	Total Depth:	32.00'	Borehole Dia.:	2.25in		
D-1- Ot-1-1-07/	4 4 10 4	Data Completed: 07/11/04						

Date Started: 07/14/04 Date Completed: 07/14/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

Logge (teet)		Sample Number & Depth Interval			.og	epo		ing Method: GeoProbe Material Description	PID Reading (ppm)	Penetrometer (tsf)	ple
Elevation (feet)	Depth (feet)	Sample N Depth Int	Recovery Percent	Recovery	Graphic Log	USCS Code				Penetron	F Lab Sample
	-25	MAC-7 24-28	100			SP	24' 25'2"	SAND (fine to coarse) with trace fine gravel, heavily stained, wet. Silty CLAY with trace fine gravel, low plasticity, light staining in voids and fractures, moist.	1963		LAE
									1558 374		
710 –		MAC-8 28-32	100			CL	28'4"	- little sand and gravel, no staining or tar-like material, slight odor.	19.6	3.50	
	-30								4.4		
			3				32'	Termination of boring.		>4.5 >4.5	
705 -											
	-35										

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-554 Elevation: 737.50' Datum: Mean Sea Level Project Name: IP - Champaign Former MGP 62400053 Coordinate X: 1012836.96 Coordinate Y: 1257519.32 Project Number: Borehole Dia.: 2.25in Location: 502 E. Hill St. Champaign, Illinois Total Depth: 32.00' Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Drilled By: Transhield Consultant: Kelron Drilling Method: GeoProbe Logged By: S. Cravens Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description MAC-1 Silty CLAY with roots, sand, trace gravel, coal, coal fines, no odor. (Fill) 0-4 3.0 < 0.5 3.3 735 - brick, degraded, wet. 2'8" 13.2 LAB 1.50 CLAY, high plasticity, black, moist. 3'6" 3'8" 4' - slight tar-like odor. - low plasticity. MAC-2 100 4-8 52.5 5 102 1.50 5' - dark gray, high plasticity, trace tar-like material in voids and fractures, moderate odor. - medium gray, tar-like material in voids and fractures. 132 1.75 6' 145 1.75 - green-gray, slight tar-like odor. 730 151 2.00 - high plasticity, heavily impacted with oily hydrocarbons, faint odor, trace tar-like material MAC-3 8-12 92 in voids and fractures. 105 10 156 1.25 LAB 10'6" - medium gray. 77.6 1.25 - little tar-like material in voids and fractures. 11' Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-554 Project Name: IP - Champaign Former MGP Elevation: 737.50 Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1012836.96 Coordinate Y: 1257519.32 502 E. Hill St. Champaign, Illinois Total Depth: 32.00 Borehole Dia.: 2.25in Location: Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-4 79 Silty CLAY with little fine to coarse sand and gravel (gravel 1.75" at 13'6" depth), low plasticity, 97.6 0.50 12-16 light brown, no staining or odor. 725 13' - medium gray. 42.9 3.25 - few fine to coarse sand and gravel, green-gray. 22.6 3.50 15 11.9 3.50 MAC-5 100 16-20 4.2 3.25 31.6 3.25 SAND (1" seam) (fine), heavily stained, strong odor. SP Sandy CLAY, green-gray. 720 17'3" Silty CLAY, few sand and gravel, brown-green, low plastic, tar-like material in voids and fractures, 17'6" 892 3.75 LAB 18' - little sand and gravel, no staining or odor. 32.4 3.75 MAC-6 100 20-24 28.5 3.50 30 3.00 21' - with trace-little fine to coarse sand and fine gravel, medium gray. 30.12.75 715 11.6 2.75 Remarks:

Logged By: S. Cravens

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-554

Project Name:	IP - Champaign Former MGP	Elevation: 737,50'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012836.96	Coordinate Y: 1257519.32
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 32.00'	Borehole Dia.: 2.25in

Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

GeoProbe

Drilling Method:

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	בות ואפמחווא (אלייו		Lab Sample
	-25	MAC-7 24-28	0			CL	 CLAY, very soft, green-gray, light staining and odor, wet. SAND (1" seam) (fine to medium), heavily stained. Silty CLAY with trace sand and gravel, green-gray, light staining. - little fine to coarse sand and fine gravel. 	47	6 4	0 .5	
710 -		MAC-8 28-32	54			CL	28' - medium gray, no staining or odor.	2.5	5 2	2.75	
705 -	-30						32' Termination of boring.	2.3	5 1 1 2 2 2 2		LAE
	-35										

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-556

Project Name:	IP - Champaign Fo	ormer MGP	Elevation:	737.40'	Datum:	Mean Sea Level
Project Number:	62400053		Coordinate X:	1012878.12	Coordinate Y:	1257486.11
Location:	502 E. Hill St. Cha	mpaign, Illinois	Total Depth:	28.00'	Borehole Dia.:	2.25in
D 1 01 1 1 07	00/04	D-1- C				

Date Started: 07/20/04

Date Completed: 07/20/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	90		0 0 0 0 0 0	FI	0'	FILL, clay, silt, some loose gravel (fine-coarse), ash cinders, dark gray to black, moist.	2.5	0.50	
735 -							3'	Silty CLAY (natural material) slight tar-like odor.		0.75 2.50	
		MAC-2 4-8	100				4'	- moderate staining	52.1	1.75	
	-5						5'6"	- greenish gray with dark gray to black mottling, visible tar-like material in fractures and voids.		1.50 1.75	
' 30 –						CL	7'	- no staining, slight tar-like odor.	184	1.50	
	_	MAC-3 8-12	98			O.L	8'	- greenish gray, tar-like material in fractures and voids.	119	1.75	
	-10						9'8"	- few sand, light gray/brown (mottled).		2.25	
							11'	- fine-coarse gravel, trace tar-like blebs, wet.		0.75	

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-556

Project Name:IP - Champaign Former MGPElevation:737.40'Datum:Mean Sea LevelProject Number:62400053Coordinate X:1012878.12Coordinate Y:1257486.11Location:502 E. Hill St. Champaign, IllinoisTotal Depth:28.00'Borehole Dia.:2.25in

Date Started: 07/20/04

Date Completed: 07/20/04

Consultant: Kelron

Drilled By: Transhield

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
725 -		MAC-4 12-16	96				12'	- few sand	66.2	2.50	
							13'	- light brown/greenish gray, no staining, slight odor, moist.	70.1	3.75	
									12.2	3.00	
	-15	-				CL	15'	- no odor	136	1.00	
		MAC-5 16-20	96	_			16'6"	- trace sand, gravel (fine-coarse), slight odor.	12.2	3.25	
720 -							17'	- heavy staining, tar-like material in fractures and voids.	11.7	3.25	
							18'6"	Silty CLAY	288	2.75	H
							22		500	2.50	
	-20	MAC-6 20-24	90	_		CL	20'	- no staining or odor.	518	4.00	LAB
						CL	21'6"	- trace sand, light gray.	1.5	3.00	
715 -									1.5	2.50	
, 10									1.3	3.25	
				/							

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-556

Project Name:	IP - Champaign Former MGP	Elevation: 737.40'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012878.12	Coordinate Y: 1257486.11
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dia.: 2.25in
DOWN THE WAY TO SERVE TO			

Date Started: 07/20/04 Date Completed: 07/20/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

_ogge	ea By	/: J. S)e		-	Drilling Method: GeoProbe	13	_	
Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-7 24-28	67					1.4	3.50	
	-25							3.4	2.25	
						CL		0.7	4.50	
710 -								2.4	>4.5	i
				_			28' Termination of boring.	2.3	>4.5	LAE
	-30									
	-									
705 -										
	-35									

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-557

737.40" Datum: Mean Sea Level Elevation: IP - Champaign Former MGP Project Name: Coordinate X: 1012955.23 Coordinate Y: 1257474.31 62400053 Project Number: Borehole Dia.: 2.25in 502 E. Hill St. Champaign, Illinois Total Depth: 24.00' Location:

Date Started: 07/20/04 Date Completed: 07/20/04 Township/Range: Sec 7; T19N; R9E

GeoProbe

Drilled By: Transhield Consultant: Kelron

Drilling Method: Logged By: J. Scholbe PID Reading (ppm Penetrometer (tsf) Sample Number & Depth Interval Recovery Percent Elevation (feet) -ab Sample Graphic Log **JSCS** Code Material Description MAC-1 0-4 69 FILL, clay, silt, gravel, roots, cinders, dark gray to black, moist. 3.4 1.25 LAB FI 1.0 1.75 735 Silty CLAY with trace sand, dark gray with greenish gray mottling. 0.6 1.25 0.9 1.00 MAC-2 100 4-8 - trace roots, trace gravel, greenish gray with orange mottling. -5 2.2 0.50 - slight tar-like odor. 1.9 1.25 2.2 1.25 730 2.2 1.50 MAC-3 100 8-12 - trace sand and gravel. 8' 8'6" - tar-like material in fractures and voids, 5.1 0.50 12.3 1.25 LAB 0.75 11'10" - fine-coarse sand and fine-coarse gravel, lightly stained.

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-557 Elevation: 737.40' Datum: Mean Sea Level IP - Champaign Former MGP Project Name: 1012955.23 1257474.31 Project Number: 62400053 Coordinate X: Coordinate Y: Total Depth: 24.00' Borehole Dia.: 2.25in Location: 502 E. Hill St. Champaign, Illinois Date Completed: 07/20/04 Date Started: 07/20/04 Township/Range: Sec 7; T19N; R9E Drilled By: Transhield Consultant: Kelron GeoProbe Drilling Method: J. Scholbe Logged By: Sample Number & Depth Interval PID Reading (ppm) (tsf) Recovery Percent Elevation (feet) Penetrometer Graphic Log USCS Code Material Description 1.50 LAB MAC-4 88 725 12'6" - trace fine sand, wet. 12'10" Clayey SAND with trace coarse gravel, greenish gray with tar-like blebs. 5.6 < 0.5 13'5" Silty CLAY with trace sand (fine-coarse) and gravel (fine-coarse), medium gray, moist. 40.8 >4.5 18.6 2.75 - three 1"layers of sand (fine-coarse), trace fine-coarse gravel. 16' MAC-5 100 16-20 6.8 >4.5 2.4 >4.5 720 3.4 4.50 - medium-dark gray. 18' 2.6 >4.5 -20 MAC-6 20-24 2.5 4.25 0.6 1.7 4.25 715 -1.8 Termination of boring. Remarks:

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-558

Project Name:	IP - Champaign Former MGP	Elevation: 737.70'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1013041.62	Coordinate Y: 1257433.54
Location:	502 E. Hill St. Champaign, Illinois	Total Depth; 28.00'	Borehole Dia.: 2.25in
and the second of the second o			

Date Started: 07/19/04

Consultant: Kelron

Date Completed: 07/19/04

Township/Range: Sec 7; T19N; R9E

Logged By: J. Scholbe Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-1 0-4	100		0.0.0		0' Silty CLAY with sand, gravel, ash, cinders, roots, dark gray-black, moist. (Fill)			
					0.0	FI		4.0	<0.5	
					0 0		2'2" - medium brown.	4.2	2.00	LAB
735 —							3'1" - dark brown.	1.2	2.00	
1		MAC-2 4-8	100				4' - light gray with brown mottling.	2.2	1.75	
3	-5							3.4	1.50	
						CL	5'10" - slight tar-like odor.	4.4	2.00	
							6'9" - tar-like material in fractures.	31.6	2.00	LAB
730 —		MAC-3 8-12	100					22.4	1.75	
		0 12						3.4	4.25	
	-10						10'1" SAND, 2" layer (fine-coarse), wet. 10'3" Clayey SAND with trace gravel, light brown-gray, no staining, moist.	4.8	4.25	
÷						SC		10.8	0.75	
4						CL	11'5" Silty CLAY, olive gray-dark gray w/yellow-orange mottling, tar-like material in fractures, slight odor. 12' Sandy CLAY with some gravel, brown-gray.	23.2	<0.5	LAB

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-558 737.70' Datum: Mean Sea Level Elevation: Project Name: IP - Champaign Former MGP Coordinate X: 1013041.62 Coordinate Y: 1257433.54 Project Number: 62400053 502 E. Hill St. Champaign, Illinois Total Depth: 28.00" Borehole Dia.: 2.25in Location: Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Kelron Transhield Drilling Method: GeoProbe Logged By: J. Scholbe PID Reading (ppm. Sample Number & Depth Interval Penetrometer (tsf) Recovery Percent Elevation (feet) USCS Code Material Description MAC-4 12-16 100 725 3.25 14' - slight tar-like odor. 3.75 15 4.8 2.25 16' Silty CLAY with few fine-coarse sand and gravel, medium gray. 3.50 MAC-5 16-20 88 17' - no odor. 4.0 >4.5 720 18' - tar-like material in fractures (1" section). 4.00 LAB 14.3 >4.5 20' -~1 1/2" rock. 8.2 3.75 MAC-6 20-24 83 CL 4.2 >4.5 3.1 >4.5 715 >4.5 Remarks:

Page 2 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-558 Project Name: IP - Champaign Former MGP Elevation: 737.70' Datum: Mean Sea Level 1013041.62 Project Number: 62400053 Coordinate X: Coordinate Y: 1257433.54 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00" Borehole Dia.: 2.25in Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm, Recovery Percent Elevation (feet) Graphic Log USCS Code Depth (feet) Material Description MAC-7 24-28 25 2.8 3.75 3.25 4.00 27'10"SAND (fine-medium) well graded, very loose, medium gray. 710 -28' Termination of boring. 0.8 LAB 30 705 35 Remarks:

Page 3 of 3

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-559 Project Name: IP - Champaign Former MGP Elevation: 736.40" Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1013034.71 Coordinate Y: 1257297.18 Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Logged By: J. Scholbe Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Material Description MAC-1 0-4 100 Silty CLAY with gravel, ash, loose cinders, roots, dark gray-black, moist. (Fill) - harder fill, some coal bits, dark brown-gray. 2.25 1.3 FI 735 1.5 2'2" - large coarse pieces of slag. 2'6" Silty CLAY, dark brown. 1.7 1.75 LAB 3'7" - medium gray-brown with black mottling. Sandy CLAY, medium gray. MAC-2 100 1.8 1.50 4'6" Silty CLAY with few fine gravel, greenish-gray mottled with orange mottling, moist. 5 2.9 2.00 3.2 1.75 730 2.6 2.00 7'4" - greenish gray-brown with black mottling.

7'8" - dark brown.

Remarks:

725

MAC-3 100 8-12 3.7 1.25 LAB

2.9 0.50

2.0 0.75

3.0 2.75

Logged By: J. Scholbe

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-559

Project Name:	IP - Champaign Former MGP	Elevation: 736.40'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1013034.71	Coordinate Y: 1257297.18
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 28.00'	Borehole Dla.: 2.25in

Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code	Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
		MAC-4 12-16	79					3.4	2.50	
							14' - trace fine gravel.	3.9	2.75	
	-15					CL		3.1	3.75	
720 -		MAC-5 16-20	100				16' - light gray.	3.2	>4.5	
								3.9	4.25	
	-							3.1	3.00	
							18'8" - coarse gravel	4.4	>4.5	LAB
	-20	MAC-6 20-24	88	Manhaman and			20' - medium gray.	3.1	>4.5	
715 -				1		CL		2.3	2.75	
	-			SOUTH PROPERTY.				2.5	2.75	
								2.6	3.25	

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-559 Project Name: IP - Champaign Former MGP Elevation: 736.40' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1013034.71 Coordinate Y: 1257297.18 Borehole Dia.: 2.25in 502 E. Hill St. Champaign, Illinois Total Depth: 28.00" Location: Date Started: 07/19/04 Date Completed: 07/19/04 Township/Range: Sec 7; T19N; R9E Drilled By: Consultant: Kelron Transhield Drilling Method: GeoProbe Logged By: J. Scholbe PID Reading (ppm) Sample Number & Depth Interval Recovery Percent Penetrometer (tsf) Elevation (feet) Graphic Log USCS Code Lab Sample Material Description MAC-7 24-28 90 24' Sandy CLAY (2" layer). 25' Sandy, Silty CLAY with some fine gravel. 25 4.0 >4.5 >4.5 3.9 710 -3.7 2.50 28' Termination of boring. 4.00 LAB 3.7 30 705 35 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-560 Elevation: 736.50 Datum: Mean Sea Level Project Name: IP - Champaign Former MGP 1257346.53 Project Number: 62400053 Coordinate X: 1013032.65 Coordinate Y: Total Depth: 28.00 Borehole Dia.: 2.25in Location: 502 E. Hill St. Champaign, Illinois Date Completed: Date Started: 07/15/04 07/15/04 Township/Range: Sec 7; T19N; R9E Transhield Drilled By: Consultant: Kelron GeoProbe S. Cravens Drilling Method: Logged By: PID Reading (ppm) Sample Number & Depth Interval Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code ab Sample Material Description MAC-1 0-4 FILL with silty clay, sand, gravel, ash, cinders, trace brick, moist. (Fill) 5.0 735 1.8 FI 9.0 LAB 0.6 3.25 MAC-2 100 4-8 CLAY, high plasticity, medium gray-black, moist. 4'3" - light gray with yellow-orange mottling. 5 1.3 1.50 LAB 0.5 2.25 730 0.5 1.25 - high plasticity, very soft. 0.8 1.75 MAC-3 100 8-12 0.6 0.50 10 0.6 Clayey SAND green-gray, wet. SAND (fine-coarse), no odor, wet. 10'4" CLAY with some sand. 0.5 SAND, same as above. 11'4" - light tar-like staining with slight odor. 725 SW 11'8" - moderate staining. Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-560 Project Name: IP - Champaign Former MGP Elevation: 736.50' Datum: Mean Sea Level Project Number: 62400053 Coordinate X: 1013032.65 Coordinate Y: 1257346.53 502 E. Hill St. Champaign, Illinois Location: Total Depth: 28.00 Borehole Dia.: 2.25in Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Transhield Consultant: Kelron Drilled By: Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Recovery Percent Elevation (feet) Code Graphic Log Depth (feet) Material Description uscs (MAC-4 12-16 81 SW - black with heavy staining, wet. Silty CLAY with trace sand, green-gray, medium plasticity, no staining or odor. 13' 333 LAB 13'1" 15.2 1.75 15 7.4 4.00 MAC-5 100 16-20 4.2 >4.5 720 17' - blocky structure, medium gray, low plasticity. 4.8 >4.5 - little fine-coarse sand and gravel. 4.00 >4.5 MAC-6 100 20-24 5.4 >4.5 LAB 2.6 >4.5 715 >4.5 2.2 1.5 >4.5 Remarks:

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-560 Project Name: IP - Champaign Former MGP Elevation: 736.50' Datum: Mean Sea Level 1257346.53 62400053 Coordinate X: 1013032.65 Coordinate Y: Project Number: Location: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00' Borehole Dia.: 2.25in Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Consultant: Kelron Drilled By: Transhield Drilling Method: GeoProbe S. Cravens Logged By: Sample Number & Depth Interval PID Reading (ppm) Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-7 24-28 24' - medium gray. 25 2.2 >4.5 CL 26" - little-few fine-coarse sand and gravel. 2.0 >4.5 710 2.3 >4.5 28' Termination of boring. 8.8 >4.5 LAB 30 705

Remarks:

35

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-561

Project Name:	IP - Champaign Former MGP	Elevation: 735.90'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012797.45	Coordinate Y: 1257572.41
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 32.00'	Borehole Dia.: 2.25in

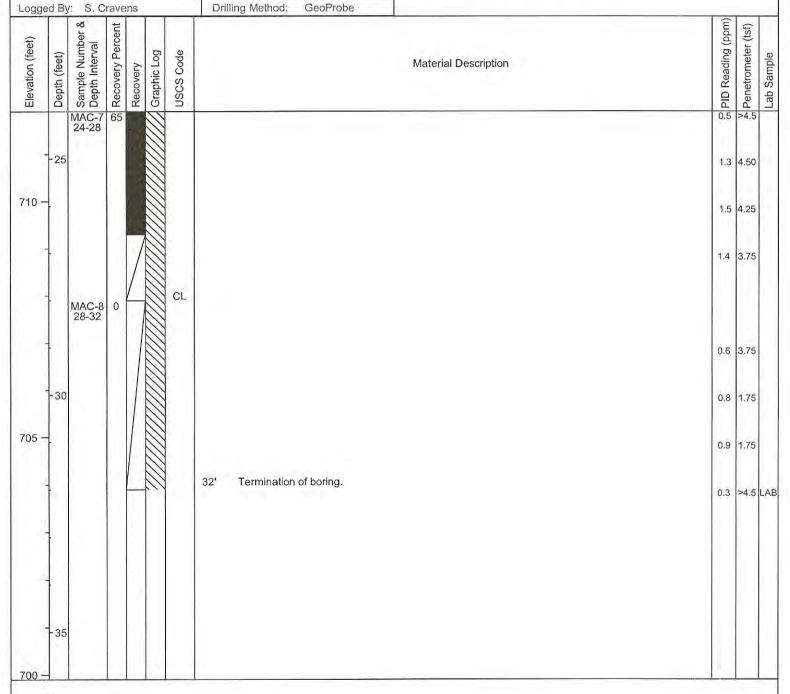
Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

Logged By: S. Cravens Drilling Method: GeoProbe

Elevation (feet)	Depth (feet)	Sample Number & Depth Interval	Recovery Percent	Recovery	Graphic Log	USCS Code		Material Description	PID Reading (ppm)	Penetrometer (tsf)	Lab Sample
735 —		MAC-1 0-4	69		000000		0'	FILL with silty clay, trace sand and fine gravel, roots, glass, trace coal pieces, dark brown to black, moist. (Fill)	3.0		LAB
H					0 0 0 0	FI			0.7	2.00	
-				/	0.0.0.0		3'	CLAY, trace sand and gravel, trace coal, high plasticity, dark brown. (Fill)	1.4	1.25	
		MAC-2 4-8	100	/	0.0		4'	- same as above with brick and shards of china.	0.3		
	-5				0.0		5'	Silty CLAY with trace fine sand, root channels, high plasticity, light gray w/orange-brown mottling.	1.6	1.00	
730 —									1.8	2.25	
1							7'	- trace tar-like material in voids and fractures; slight odor.	15.5	1.00	
-		MAC-3 8-12	100			CL	8'	- brown-gray, very soft, moderately stained with tar-like material in voids and fractures; moderate odor, wet.	34.3	0.50	
		120.10					8'9" 8'10"	 - some fine to medium sand, heavily stained (1" sand lens). - little sand. 			
	-10						9'3" 9'4" 9'5"	 lens of sand and fine gravel (1/4"). lenses of sand and fine gravel (1/4"). trace-little fine to coarse sand and fine gravel, brown-gray, trace tar-like material in voids and fractures, moist. 		<0.5	
	, 0								214	4.00	LAB
725 —							10'10"	Clayey SAND (fine-medium), trace fine gravel, four 1/4" thick layers over 7" interval, lightly stained, wet.	39.1		
						SC					

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-561 Elevation: 735.90' Datum: Mean Sea Level Project Name: IP - Champaign Former MGP Project Number: 62400053 Coordinate X: 1012797.45 Coordinate Y: 1257572.41 32.00 Borehole Dia.: 2.25in Location: 502 E. Hill St. Champaign, Illinois Total Depth: Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Transhield Consultant: Kelron Drilled By: Logged By: S. Cravens Drilling Method: GeoProbe Sample Number & Depth Interval PID Reading (ppm) Penetrometer (tsf) Recovery Percent Elevation (feet) Graphic Log USCS Code Material Description MAC-4 12-16 96 SAND (fine to medium, trace coarse), brown, light staining. 12' 12'6" Silty CLAY, trace sand and gravel, brown-gray, staining in voids and fractures, moist. 13' - no staining or odor. 356 4.00 LAB 1.1 >4.5 15 3.4 >4.5 - light gray mottling. 720 16' - medium-gray, trace tar-like material in occasional voids and fractures. MAC-5 16-20 15.2 96 17' - trace coarse gravel (1"). 98.3 >4.5 - no staining or odor. 84.5 >4.5 6.2 >4.5 LAB 20' - trace gravel (1.25"), low-medium plasticity. MAC-6 98 20-24 1.3 >4.5 715 0.6 >4.5 0.8 >4.5 1.3 3.50 Remarks:


BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-561

Project Name:	IP - Champaign Former MGP	Elevation: 735.90'	Datum: Mean Sea Level
Project Number:	62400053	Coordinate X: 1012797.45	Coordinate Y: 1257572.41
Location:	502 E. Hill St. Champaign, Illinois	Total Depth: 32.00'	Borehole Dia.: 2.25in

Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E

Consultant: Kelron Drilled By: Transhield

BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID:

B-562

								1	002				
Project Name: IP - Champaign Former MGP							IGP	Elevation:	735.50'	Datum: Mea	n Sea	Leve	
Projec	t Nu	mber:	624	00053	3			Coordinate X:	1012834.23	Coordinate Y: 1257	558.03	3	
Locati	on:		502	E. Hil	ll St. Ch	ampaigr	n, Illinois	Total Depth:	28.00'	Borehole Dia.: 2.25	n		
Date 5	Starte	ed: 07/1	5/04			Date	e Completed: 07/15/04	Townshin/Ran	ige: Sec 7; T19N; I	ROF			
Consu	iltant	t: Kelr	on			Drill	ed By: Transhield	- Townsingin car	igo. 000 7, 11011, 1	NO.			
Logge	d By	: S.C	rave	ns		Drill	ing Method: GeoProbe						
Elevation (feet)	Depth (feet)	Sample Number & Depth Interval		Recovery	USCS Code			Material Des			PID Reading (ppm)	Penetrometer (tsf)	elumeS. de l
735 -		MAC-1 0-4	58		FI	0,	FILL with silty clay, sand and	gravel, roots, glass	, brick, trace coal, da	rk brown, no odor, moist. (F	5.9 0.9		LA
730 —	-5	MAC-2 4-8	o	881111111111111111111111111111111111111		3'8"	CLAY, soft with fractures and - light gray with orange-brown		sticity, dark gray, mois	st . (Fill)	0.4	1.25 1.75	
					CL	8'	Silty CLAY with trace sand ar	d fine gravel, very s	soft high plasticity tr	ace tar-like material in voids	0.7	1.50	
	-10	MAC-3 8-12	0			9'3"	Silty CLAY with trace sand ar and fractures, slight odor, moi - little fine-medium sand and - few sand.				15.6	0.50	
725 -				<u> </u>	sw	10'5"	SAND (fine-coarse), some cla	y, trace fine gravel,	light gray with mode	rate staining, wet.	190		

RECORD OF SUBSURFACE EXPLORATION BOREHOLE/MONITORING WELL/PROBEHOLE/TEST PIT ID: B-562 Project Name: IP - Champaign Former MGP Elevation: 735.50' Datum: Mean Sea Level 1257558.03 Project Number: 1012834.23 Coordinate Y: 62400053 Coordinate X: 502 E. Hill St. Champaign, Illinois Total Depth: 28.00 Borehole Dia.: 2.25in Location: Date Started: 07/15/04 Date Completed: 07/15/04 Township/Range: Sec 7; T19N; R9E Drilled By: Transhield Consultant: Kelron Drilling Method: GeoProbe Logged By: S. Cravens PID Reading (ppm) Penetrometer (tsf) Recovery Percent Sample Number & Depth Interval Elevation (feet) Graphic Log USCS Code Lab Sample Depth (feet) Material Description MAC-4 0 Clayey SAND same as above, moderate staining. 12' 12-16 351 SC 509 AB Silty CLAY with trace-little fine-coarse sand and fine gravel, low plasticity, green-gray, little tar-like material in voids, fractures and sandy layers, moderate odor. 507 4.50 720 - medium-gray, no staining with slight odor. MAC-5 100 16-20 16' 482 >4.5 35.4 >4.5 18' - no odor. 44.8 >4.5 CL 36.9 >4.5 MAC-6 100 27.8 >4.5 715 >4.5 0.4 >4.5

Remarks:

1.3 >4.5

APPENDIX J

Monitoring Well Water Level Data

Table 1 Groundwater Elevation Data Annual Groundwater Monitoring Report: 1999

Illinois Power Company Champaign Former MGP Site Champaign, Illinois

Monitoring	Total	Monitored	Monitored Elevation (feet NGVD)		March 25, 1999		June 16, 1999		Sept. 14, 1999		December 8, 1999	
Well	Depth	Interval	Measuring	Land	Below MP	Elevation	Below MP	Elevation	Below MP	Elevation	Below MP	Elevation
Number	(feet)	(feet BLS)	Point (MP)	Surface (LS)	(feet)	(feet NGVD)	(feet)	(feet NGVD)	(feet)	(feet NGVD)		(feet NGVD)
	, , ,	,	Ì	` ′			, ,	,	, ,	,	, ,	
UMW-101 ¹	26.5	16.3 - 26.5	736.00	736.3					Removed			
UMW-102	22.0	6.7 - 22.0	737.44	737.8	6.2	731.24	4.85	732.59	6.68	730.76	6.71	730.73
UMW-103 ²	20.0	9.8 - 20.0	736.27	736.5					Removed			
UMW-104	20.0	9.9 - 20.0	736.02	736.5			1.92	734.1			3.19	732.83
UMW-105	19.7	9.5 - 19.7	737.45	737.8					7.22	730.23	6.50	730.95
UMW-106	20.0	9.8 - 20.0	737.12	737.7					10.13	726.99	9.50	727.62
UMW-107	19.7	9.5 - 19.7	736.98	737.3	6.4	730.58	4.88	732.1	6.05	730.93	7.50	729.48
UMW-108	15.0	4.8 - 15.0	736.95	737.2	5.825	731.125	4.99	731.96	7.25	729.70	7.46	729.49
UMW-109	20.0	10.0 - 20.0	735.22	735.7	8.75	726.47	6.82	728.4	7.28	727.94	7.15	728.07
UMW-110	21.0	10.8 - 21.0	736.88	737.4					3.89	732.99	4.04	732.84
UMW-111	19.8	9.1 - 19.8	735.72	736.1			4.32	731.4	Removed			
UMW-111A	22.8	9.0 - 22.8	736.90	737.2					17.52	719.38	15.22	721.68
UMW-112	20.0	9.9 - 20.0	737.61	737.9	3.85	733.76	2.5	735.11	4.84	732.77	4.71	732.90
UMW-113	20.0	10.0 - 20.0	740.19	738.0				740.19	7.96	732.23	7.27	732.92
UMW-114	20.0	10.0 - 20.0	740.31	738.2	6.2	734.11	5.34	734.97	7.81	732.50	6.10	734.21
UMW-115	20.0	10.0 - 20.0	740.20	738.1	5.775	734.425	5.12	735.08	7.30	732.90	7.99	732.21
UMW-116	20.0	10.0 - 20.0	736.77	737.2	5.15	731.62	4.67	732.1	7.25	729.52	7.69	729.08

⁻⁻ Not measured

¹ No groundwater level measurements due to tar in well.

² Coal tar thickness at base of well measured at approximately 0.4 feet on November 10, 1998.

Table 1 Groundwater Elevation Data Annual Groundwater Monitoring Report: 2000

Illinois Power Company Champaign Former MGP Site Champaign, Illinois

Monitoring	Total	Monitored	Elevation (fe	et NGVD)	March	2, 2000	June 1	15, 2000	Septemb	er 26, 2000	Decemb	er 27, 2000
Well Number	Depth (feet)	Interval (feet BLS)	Measuring Point (MP)	Land Surface (LS)	Below MP (feet)	Elevation (feet NGVD)						
UMW-101 ¹												
UMW-102	22.0	6.7 - 22.0	737.44	737.8	5.28	732.16	5.67	731.77	5.57	731.87	5.76	731.68
UMW-103 ¹												
UMW-104	20.0	9.9 - 20.0	736.02	736.5	2.35	733.67	2.49	733.53	2.57	733.45		
UMW-105	19.7	9.5 - 19.7	737.45	737.8	5.24	732.21	5.75	731.70	6.70	730.75		
UMW-106	20.0	9.8 - 20.0	737.12	737.7	8.45	728.67	8.63	728.49	10.36	726.76		
UMW-107	19.7	9.5 - 19.7	736.98	737.3	6.15	730.83	5.37	731.61	5.67	731.31	5.26	731.72
UMW-108	15.0	4.8 - 15.0	736.95	737.2	5.5	731.45	6.08	730.87	6.61	730.34	6.43	730.52
UMW-109	20.0	10.0 - 20.0	735.22	735.7	7.93	727.29	6.70	728.52	6.95	728.27	6.92	728.30
UMW-110	21.0	10.8 - 21.0	736.88	737.4	3.24	733.64						
UMW-111 ²												
UMW-111A	22.8	9.0 - 22.8	736.90	737.2	16.26	720.64	9.36	727.54	10.72	726.18	9.17	727.73
UMW-112	20.0	9.9 - 20.0	737.61	737.9	3.46	734.15	3.65	733.96	3.14	734.47	4.54	733.07
UMW-113	20.0	10.0 - 20.0	740.19	738.0			6.63	733.56			7.15	733.04
UMW-114	20.0	10.0 - 20.0	740.31	738.2	5.85	734.46	6.81	733.50	7.43	732.88	7.18	733.13
UMW-115	20.0	10.0 - 20.0	740.20	738.1	5.57	734.63	6.15	734.05	7.25	732.95	6.38	733.82
UMW-116	20.0	10.0 - 20.0	736.77	737.2	6.46	730.31	4.95	731.82	5.41	731.36	5.42	731.35

⁻⁻ Not measured

¹ Removed due to tar in well.

² Abandoned and replaced by UMW-111A

Table 1
Groundwater Elevation Data
Annual Groundwater Monitoring Report: 2001

Illinois Power Company Champaign Former MGP Site Champaign, Illinois

Monitoring	Total	Monitored	Elevation (feet NGVD)		March 8, 2001		June 25, 2001		September 6, 2001		December 27, 2000	
Well	Depth	Interval	Measuring	Land	Below MP	Elevation	Below MP	Elevation	Below MP	Elevation	Below MP	Elevation
Number	(feet)	(feet BLS)	Point (MP)	Surface (LS)	(feet)	(feet NGVD)	(feet)	(feet NGVD)	(feet)	(feet NGVD)	(feet)	(feet NGVD)
UMW-102	22.0	6.7 - 22.0	737.44	737.8	4.81	732.63	6.15	731.29	5.96	731.48	5.49	731.95
UMW-104	20.0	9.9 - 20.0	736.02	736.5	2.54	733.48	3.17	732.85	3.93	732.09	2.72	733.30
UMW-105	19.7	9.5 - 19.7	737.45	737.8	5.79	731.66	6.76	730.69	7.34	730.11	5.82	731.63
UMW-106	20.0	9.8 - 20.0	737.12	737.7	6.64	730.48	8.77	728.35	10.67	726.45	8.96	728.16
UMW-107	19.7	9.5 - 19.7	736.98	737.3	5.12	731.86	5.72	731.26	5.75	731.23	5.12	731.86
UMW-108	15.0	4.8 - 15.0	736.95	737.2	5.48	731.47	6.70	730.25	6.96	729.99	5.46	731.49
UMW-109	20.0	10.0 - 20.0	735.22	735.7	6.76	728.46	7.13	728.09	7.11	728.11	6.96	728.26
UMW-110	21.0	10.8 - 21.0	736.88	737.4	1.27	735.61	3.46	733.42	2.71	734.17	2.35	734.53
UMW-111A	22.8	9.0 - 22.8	736.90	737.2	9.03	727.87	9.16	727.74	9.56	727.34	8.65	728.25
UMW-112	20.0	9.9 - 20.0	737.61	737.9	3.52	734.09	4.42	733.19	4.02	733.59	3.88	733.73
UMW-113	20.0	10.0 - 20.0	740.19	738.0	5.77	734.42	7.52	732.67	7.22	732.97	6.47	733.72
UMW-114	20.0	10.0 - 20.0	740.31	738.2	5.91	734.40	7.57	732.74	7.48	732.83	6.46	733.85
UMW-115	20.0	10.0 - 20.0	740.20	738.1	5.47	734.73	6.94	733.26	7.38	732.82	5.74	734.46
UMW-116	20.0	10.0 - 20.0	736.77	737.2	5.12	731.65	5.47	731.30	5.62	731.15	5.21	731.56

⁻⁻ Not measured

2001 Elevations.xls Page 1

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-101							
	12/13/90	16.3 - 26.5	26.5	736.00	736.3	16.55	719.45
	12/20/90	16.3 - 26.5	26.5	736.00	736.3	25.12	710.88
	11/24/92	16.3 - 26.5	26.5	736.00	736.3	17.92	718.08
	01/04/93	16.3 - 26.5	26.5	736.00	736.3	17.95	718.05
_							
UMW-102							
	12/13/90	6.7 - 22.0	22	737.44	737.8	5.2	732.24
	12/20/90	6.7 - 22.0	22	737.44	737.8	4.65	732.79
	11/24/92	6.7 - 22.0	22	737.44	737.8	2.94	734.5
	01/04/93	6.7 - 22.0	22	737.44	737.8	1.90	735.54
	02/09/96	6.7 - 22.0	22	737.44	737.8	5.58	731.86
	05/07/96	6.7 - 22.0	22	737.44	737.8	4.18	733.26
	08/06/96	6.7 - 22.0	22	737.44	737.8	5.91	731.53
ĺ	11/05/96	6.7 - 22.0	22	737.44	737.8	6.73	730.71
	11/10/98	6.7 - 22.0	22	737.44	737.8	4.26	733.18
	03/25/99	6.7 - 22.0	22	737.44	737.8	6.20	731.24
	06/16/99	6.7 - 22.0	22	737.44	737.8	4.85	732.59
	09/14/99	6.7 - 22.0	22	737.44	737.8	6.68	730.76
	12/08/99	6.7 - 22.0	22	737.44	737.8	6.71	730.73
	03/02/00	6.7 - 22.0	22	737.44	737.8	5.28	732.16
	06/15/00	6.7 - 22.0	22	737.44	737.8	5.67	731.77
	09/26/00	6.7 - 22.0	22	737.44	737.8	5.57	731.87
	12/27/00	6.7 - 22.0	22	737.44	737.8	5.76	731.68
	03/08/01	6.7 - 22.0	22	737.44	737.8	4.81	732.63
	06/25/01	6.7 - 22.0	22	737.44	737.8	6.15	731.29
	09/06/01	6.7 - 22.0	22	737.44	737.8	5.96	731.48
	12/27/01	6.7 - 22.0	22	737.44	737.8	5.49	731.95
	03/06/02	6.7 - 22.0	22	737.44	737.8	4.62	732.82
	06/04/02	6.7 - 22.0	22	737.44	737.8	5.69	731.75
	09/04/02	6.7 - 22.0	22	737.44	737.8	5.77	731.67
	12/05/02	6.7 - 22.0	22	737.44	737.8	6.24	731.2
	3/12/03	6.7 - 22.0	22	737.44	737.8	5.43	732.01
	6/12/03	6.7 - 22.0	22	737.44	737.8	3.17	734.27
	9/23/03	6.7 - 22.0	22	737.44	737.8	5.99	731.45
	12/2/03	6.7 - 22.0	22	737.44	737.8	5.43	732.01
	3/2/04	6.7 - 22.0	22	737.44	737.8	5.79	731.65
	5/25/04	6.7 - 22.0	22	737.44	737.8	5.80	731.64
	7/26/04	6.7 - 22.0	22	737.44	737.8	6.02	731.42
	12/6/04	6.7 - 22.0	22	737.44	737.8	4.62	732.82
	3/15/05	6.7 - 22.0	22	737.44	737.8	5.95	731.49
	6/9/05	6.7 - 22.0	22	737.44	737.8	6.34	731.1
	9/27/05	6.7 - 22.0	22	737.44	737.8	5.14	732.3
	12/27/05	6.7 - 22.0	22	737.44	737.8	4.81	732.63
	3/30/06	6.7 - 22.0	22	737.44	737.8	5.46	731.98
	6/22/06	6.7 - 22.0	22	737.44	737.8	6.53	730.91
	9/19/06	6.7 - 22.0	22	737.44	737.8	6.33	731.11
	12/13/06	6.7 - 22.0	22	737.44	737.8	4.81	732.63

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-103							
	12/13/90	9.8 - 20.0	20	736.27	736.5	3.34	732.93
	12/20/90	9.8 - 20.0	20	736.27	736.5	3.25	733.02
	11/24/92	9.8 - 20.0	20	736.27	736.5	2.77	733.5
	01/04/93	9.8 - 20.0	20	736.27	736.5	3.12	733.15
	02/09/96	9.8 - 20.0	20	736.27	736.5	3.43	732.84
	05/07/96	9.8 - 20.0	20	736.27	736.5	3.01	733.26
	08/06/96	9.8 - 20.0	20	736.27	736.5	3.47	732.8
	11/05/96	9.8 - 20.0	20	736.27	736.5	3.58	732.69
	11/10/98	9.8 - 20.0	20	736.27	736.5	0.26	736.01
	11/10/30	3.0 - 20.0	20	7 00.27	700.0	0.20	700.01
UMW-104							
	12/13/90	9.9 - 20.0	20	736.02	736.5	3.35	732.67
	12/20/90	9.9 - 20.0	20	736.02	736.5	3.19	732.83
	11/24/92	9.9 - 20.0	20	736.02	736.5	3.15	732.87
	01/04/93	9.9 - 20.0	20	736.02	736.5	3.28	732.74
	02/09/96	9.9 - 20.0	20	736.02	736.5	3.36	732.66
	11/10/98	9.9 - 20.0	20	736.02	736.5	0.22	735.80
	06/16/99	9.9 - 20.0	20	736.02	736.5	1.92	734.10
	12/08/99	9.9 - 20.0	20	736.02	736.5	3.19	732.83
	03/02/00	9.9 - 20.0	20	736.02	736.5	2.35	733.67
	06/15/00	9.9 - 20.0	20	736.02	736.5	2.49	733.53
	09/26/00	9.9 - 20.0	20	736.02	736.5	2.57	733.45
	03/08/01	9.9 - 20.0	20	736.02	736.5	2.54	733.48
	06/25/01	9.9 - 20.0	20	736.02	736.5	3.17	732.85
	09/06/01	9.9 - 20.0	20	736.02	736.5	3.93	732.09
	12/27/01	9.9 - 20.0	20	736.02	736.5	2.72	733.30
	03/06/02	9.9 - 20.0	20	736.02	736.5	2.04	733.98
	06/04/02	9.9 - 20.0	20	736.02	736.5	2.83	733.19
	09/04/02	9.9 - 20.0	20	736.02	736.5	2.74	733.28
	12/05/02	9.9 - 20.0	20	736.02	736.5	3.27	732.75
	03/12/03	9.9 - 20.0	20	736.02	736.5	2.69	733.33
	06/12/03	9.9 - 20.0	20	736.02	736.5	0.79	735.23
	09/23/03	9.9 - 20.0	20	736.02	736.5	2.98	733.04
	12/02/03	9.9 - 20.0	20	736.02	736.5	2.66	733.36
	03/02/04	9.9 - 20.0	20	736.02	736.5	3.04	732.98
	05/25/04	9.9 - 20.0	20	736.02	736.5	2.79	733.23
	07/26/04	9.9 - 20.0	20	736.02	736.5	5.09	730.93
	12/06/04	9.9 - 20.0	20	736.02	736.5	1.63	734.39
	03/15/05	9.9 - 20.0	20	736.02	736.5	3.17	732.85
	06/09/05	9.9 - 20.0	20	736.02	736.5	3.42	732.60
	09/27/05	9.9 - 20.0	20	736.02	736.5	2.02	734.00
	12/27/05	9.9 - 20.0	20	736.02	736.5	2.84	733.18
	03/30/06	9.9 - 20.0	20	736.02	736.5	2.97	733.05
	06/22/06	9.9 - 20.0	20	736.02	736.5	3.56	732.46
	09/19/06	9.9 - 20.0	20	736.02	736.5	3.09	732.93
	12/13/06	9.9 - 20.0	20	736.02	736.5	2.40	733.62

ir							
		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-105							
	02/09/96	9.5 - 19.7	19.7	737.45	737.8	6.02	731.43
	11/10/98	9.5 - 19.7	19.7	737.45	737.8	4.64	732.81
	09/14/99	9.5 - 19.7	19.7	737.45	737.8	7.22	730.23
	12/08/99	9.5 - 19.7	19.7	737.45	737.8	6.50	730.95
	03/02/00	9.5 - 19.7	19.7	737.45	737.8	5.24	732.21
	06/15/00	9.5 - 19.7	19.7	737.45	737.8	5.75	731.70
	09/26/00	9.5 - 19.7	19.7	737.45	737.8	6.70	730.75
	03/08/01	9.5 - 19.7	19.7	737.45	737.8	5.79	731.66
	06/25/01	9.5 - 19.7	19.7	737.45	737.8	6.76	730.69
	09/06/01	9.5 - 19.7	19.7	737.45	737.8	7.34	730.11
	12/27/01	9.5 - 19.7	19.7	737.45	737.8	5.82	731.63
	03/06/02	9.5 - 19.7	19.7	737.45	737.8	5.51	731.94
	06/04/02	9.5 - 19.7	19.7	737.45	737.8	6.14	731.31
	09/04/02	9.5 - 19.7	19.7	737.45	737.8	6.32	731.13
	12/05/02	9.5 - 19.7	19.7	737.45	737.8	6.78	730.67
	3/12/03	9.5 - 19.7	19.7	737.45	737.8	5.73	731.72
	6/12/03	9.5 - 19.7	19.7	737.45	737.8	5.50	731.95
	9/23/03	9.5 - 19.7	19.7	737.45	737.8	6.69	730.76
	12/2/03	9.5 - 19.7	19.7	737.45	737.8	5.76	731.69
	3/2/04	9.5 - 19.7	19.7	737.45	737.8	6.01	731.44
	5/25/04	9.5 - 19.7	19.7	737.45	737.8	6.12	731.33
	7/26/04	9.5 - 19.7	19.7	737.45	737.8	6.55	730.90
	12/6/04	9.5 - 19.7	19.7	737.45	737.8	5.75	731.70
	3/15/05	9.5 - 19.7	19.7	737.45	737.8	7.55	729.90
	6/9/05	9.5 - 19.7	19.7	737.45	737.8	8.00	729.45
	9/27/05	9.5 - 19.7	19.7	737.45	737.8	6.66	730.79
	12/27/05	9.5 - 19.7	19.7	737.45	737.8	7.00	730.45
	3/30/06	9.5 - 19.7	19.7	737.45	737.8	7.27	730.18
	6/22/06	9.5 - 19.7	19.7	737.45	737.8	7.89	729.56
	9/19/06	9.5 - 19.7	19.7	737.45	737.8	7.52	729.93
	12/13/06	9.5 - 19.7	19.7	737.45	737.8	6.49	730.96

-							
		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-106							
	02/09/96	9.8 - 20.0	20	737.12	737.7	7.77	729.35
	11/10/98	9.8 - 20.0	20	737.12	737.7	9.4	727.72
	09/14/99	9.8 - 20.0	20	737.12	737.7	10.13	726.99
	12/08/99	9.8 - 20.0	20	737.12	737.7	9.5	727.62
	03/02/00	9.8 - 20.0	20	737.12	737.7	8.45	728.67
	06/15/00	9.8 - 20.0	20	737.12	737.7	8.63	728.49
	09/26/00	9.8 - 20.0	20	737.12	737.7	10.36	726.76
	03/08/01	9.8 - 20.0	20	737.12	737.7	6.64	730.48
	06/25/01	9.8 - 20.0	20	737.12	737.7	8.77	728.35
	09/06/01	9.8 - 20.0	20	737.12	737.7	10.67	726.45
	12/27/01	9.8 - 20.0	20	737.12	737.7	8.96	728.16
	03/06/02	9.8 - 20.0	20	737.12	737.7	7.15	729.97
	06/04/02	9.8 - 20.0	20	737.12	737.7	7.17	729.95
	09/04/02	9.8 - 20.0	20	737.12	737.7	9.82	727.30
	12/05/02	9.8 - 20.0	20	737.12	737.7	9.66	727.46
	3/12/03	9.8 - 20.0	20	737.12	737.7	8.78	728.34
	6/12/03	9.8 - 20.0	20	737.12	737.7	8.78	728.34
	9/23/03	9.8 - 20.0	20	737.12	737.7	9.77	727.35
	12/2/03	9.8 - 20.0	20	737.12	737.7	9.25	727.87
	3/2/04	9.8 - 20.0	20	737.12	737.7	8.36	728.76
	5/25/04	9.8 - 20.0	20	737.12	737.7	8.01	729.11
	7/26/04	9.8 - 20.0	20	737.12	737.7	9.39	727.73
	12/6/04	9.8 - 20.0	20	737.12	737.7	8.86	728.26
	3/15/05	9.8 - 20.0	20	737.12	737.7	7.22	729.90
	6/9/05	9.8 - 20.0	20	737.12	737.7	8.56	728.56
	9/27/05	9.8 - 20.0	20	737.12	737.7	11.14	725.98
	12/27/05	9.8 - 20.0	20	737.12	737.7	9.60	727.52
	3/30/06	9.8 - 20.0	20	737.12	737.7	8.74	728.38
	6/22/06	9.8 - 20.0	20	737.12	737.7	9.84	727.28
	9/19/06	9.8 - 20.0	20	737.12	737.7	11.63	725.49
	12/13/06	9.8 - 20.0	20	737.12	737.7	9.62	727.50

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-107							
	02/09/96	9.5 - 19.7	19.7	736.98	737.3	5.49	731.49
	05/07/96	9.5 - 19.7	19.7	736.98	737.3	4.73	732.25
	08/06/96	9.5 - 19.7	19.7	736.98	737.3	6.37	730.61
	11/05/96	9.5 - 19.7	19.7	736.98	737.3	8.25	728.73
	11/10/98	9.5 - 19.7	19.7	736.98	737.3	5.08	731.90
	03/25/99	9.5 - 19.7	19.7	736.98	737.3	6.4	730.58
	06/16/99	9.5 - 19.7	19.7	736.98	737.3	4.88	732.10
	09/14/99	9.5 - 19.7	19.7	736.98	737.3	6.05	730.93
	12/08/99	9.5 - 19.7	19.7	736.98	737.3	7.5	729.48
	03/02/00	9.5 - 19.7	19.7	736.98	737.3	6.15	730.83
	06/15/00	9.5 - 19.7	19.7	736.98	737.3	5.37	731.61
	09/26/00	9.5 - 19.7	19.7	736.98	737.3	5.67	731.31
	12/27/00	9.5 - 19.7	19.7	736.98	737.3	5.26	731.72
	03/08/01	9.5 - 19.7	19.7	736.98	737.3	5.12	731.86
	06/25/01	9.5 - 19.7	19.7	736.98	737.3	5.72	731.26
	09/06/01	9.5 - 19.7	19.7	736.98	737.3	5.75	731.23
	12/27/01	9.5 - 19.7	19.7	736.98	737.3	5.12	731.86
	03/06/02	9.5 - 19.7	19.7	736.98	737.3	4.82	732.16
	06/04/02	9.5 - 19.7	19.7	736.98	737.3	5.28	731.70
	09/04/02	9.5 - 19.7	19.7	736.98	737.3	5.26	731.72
	12/05/02	9.5 - 19.7	19.7	736.98	737.3	5.75	731.23
	3/12/03	9.5 - 19.7	19.7	736.98	737.3	5.26	731.72
	6/12/03	9.5 - 19.7	19.7	736.98	737.3	4.77	732.21
	9/23/03	9.5 - 19.7	19.7	736.98	737.3	5.13	731.85
	12/2/03	9.5 - 19.7	19.7	736.98	737.3	5.19	731.79
	3/2/04	9.5 - 19.7	19.7	736.98	737.3	5.46	731.52
	5/25/04	9.5 - 19.7	19.7	736.98	737.3	5.28	731.70
	7/26/04	9.5 - 19.7	19.7	736.98	737.3	5.21	731.77
	12/6/04	9.5 - 19.7	19.7	736.98	737.3	4.89	732.09
	3/15/05	9.5 - 19.7	19.7	736.98	737.3	5.45	731.53
	6/9/05	9.5 - 19.7	19.7	736.98	737.3	5.61	731.37
	9/27/05	9.5 - 19.7	19.7	736.98	737.3	5.45	731.53
	12/27/05	9.5 - 19.7	19.7	736.98	737.3	5.68	731.30
	3/30/06	9.5 - 19.7	19.7	736.98	737.3	5.90	731.08
	6/22/06	9.5 - 19.7	19.7	736.98	737.3	6.32	730.66
	9/19/06	9.5 - 19.7	19.7	736.98	737.3	5.76	731.22
	12/13/06	9.5 - 19.7	19.7	736.98	737.3	5.01	731.97

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-108							
	02/09/96	4.8 - 15.0	15	736.95	737.2	6.54	730.41
	05/07/96	4.8 - 15.0	15	736.95	737.2	5.04	731.91
	08/06/96	4.8 - 15.0	15	736.95	737.2	6.24	730.71
	11/05/96	4.8 - 15.0	15	736.95	737.2	8.11	728.84
	11/10/98	4.8 - 15.0	15	736.95	737.2	6.73	730.22
	03/25/99	4.8 - 15.0	15	736.95	737.2	5.83	731.12
	06/16/99	4.8 - 15.0	15	736.95	737.2	4.99	731.96
	09/14/99	4.8 - 15.0	15	736.95	737.2	7.25	729.70
	12/08/99	4.8 - 15.0	15	736.95	737.2	7.46	729.49
	03/02/00	4.8 - 15.0	15	736.95	737.2	5.50	731.45
	06/15/00	4.8 - 15.0	15	736.95	737.2	6.08	730.87
	09/26/00	4.8 - 15.0	15	736.95	737.2	6.61	730.34
	12/27/00	4.8 - 15.0	15	736.95	737.2	6.43	730.52
	03/08/01	4.8 - 15.0	15	736.95	737.2	5.48	731.47
	06/25/01	4.8 - 15.0	15	736.95	737.2	6.70	730.25
	09/06/01	4.8 - 15.0	15	736.95	737.2	6.96	729.99
	12/27/01	4.8 - 15.0	15	736.95	737.2	5.46	731.49
	03/06/02	4.8 - 15.0	15	736.95	737.2	4.97	731.98
	06/04/02	4.8 - 15.0	15	736.95	737.2	5.73	731.22
	09/04/02	4.8 - 15.0	15	736.95	737.2	5.71	731.24
	12/05/02	4.8 - 15.0	15	736.95	737.2	6.77	730.18
	03/12/03	4.8 - 15.0	15	736.95	737.2	6.18	730.77
	06/12/03	4.8 - 15.0	15	736.95	737.2	5.70	731.25
	09/23/03	4.8 - 15.0	15	736.95	737.2	6.18	730.77
	12/02/03	4.8 - 15.0	15	736.95	737.2	5.28	731.67
	03/02/04	4.8 - 15.0	15	736.95	737.2	5.89	731.06
	05/25/04	4.8 - 15.0	15	736.95	737.2	5.38	731.57
	07/26/04	4.8 - 15.0	15	736.95	737.2	5.40	731.55
	12/06/04	4.8 - 15.0	15	736.95	737.2	4.95	732.00
	03/15/05	4.8 - 15.0	15	736.95	737.2	6.28	730.67
	06/09/05	4.8 - 15.0	15	736.95	737.2	6.76	730.19
	09/27/05	4.8 - 15.0	15	736.95	737.2	4.69	732.26
	12/27/05	4.8 - 15.0	15	736.95	737.2	6.13	730.82
	03/30/06	4.8 - 15.0	15	736.95	737.2	5.94	731.01
	06/22/06	4.8 - 15.0	15	736.95	737.2	6.95	730.00
	09/19/06	4.8 - 15.0	15	736.95	737.2	6.78	730.17
	12/13/06	4.8 - 15.0	15	736.95	737.2	5.38	731.57

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-109							
	02/09/96	10.0 - 20.0	20	735.22	735.7	7.01	728.21
	11/10/98	10.0 - 20.0	20	735.22	735.7	6.81	728.41
	03/25/99	10.0 - 20.0	20	735.22	735.7	8.75	726.47
	06/16/99	10.0 - 20.0	20	735.22	735.7	6.82	728.40
	09/14/99	10.0 - 20.0	20	735.22	735.7	7.28	727.94
	12/08/99	10.0 - 20.0	20	735.22	735.7	7.15	728.07
	03/02/00	10.0 - 20.0	20	735.22	735.7	7.93	727.29
	06/15/00	10.0 - 20.0	20	735.22	735.7	6.70	728.52
	09/26/00	10.0 - 20.0	20	735.22	735.7	6.95	728.27
	12/27/00	10.0 - 20.0	20	735.22	735.7	6.92	728.30
	03/08/01	10.0 - 20.0	20	735.22	735.7	6.76	728.46
	06/25/01	10.0 - 20.0	20	735.22	735.7	7.13	728.09
	09/06/01	10.0 - 20.0	20	735.22	735.7	7.11	728.11
	12/27/01	10.0 - 20.0	20	735.22	735.7	6.96	728.26
	03/06/02	10.0 - 20.0	20	735.22	735.7	6.75	728.47
	06/04/02	10.0 - 20.0	20	735.22	735.7	6.99	728.23
	09/04/02	10.0 - 20.0	20	735.22	735.7	7.01	728.21
	12/05/02	10.0 - 20.0	20	735.22	735.7	7.07	728.15
	03/12/03	10.0 - 20.0	20	735.22	735.7	6.63	728.59
	06/12/03	10.0 - 20.0	20	735.22	735.7	6.80	728.42
	09/23/03	10.0 - 20.0	20	735.22	735.7	7.04	728.18
	12/02/03	10.0 - 20.0	20	735.22	735.7	7.06	728.16
	03/02/04	10.0 - 20.0	20	735.22	735.7	7.29	727.93
	05/25/04	10.0 - 20.0	20	735.22	735.7	7.09	728.13
	07/26/04	10.0 - 20.0	20	735.22	735.7	8.06	727.16
	12/06/04	10.0 - 20.0	20	735.22	735.7	6.52	728.70
	03/15/05	10.0 - 20.0	20	735.22	735.7	7.22	728.00
	06/09/05	10.0 - 20.0	20	735.22	735.7	7.25	727.97
	09/27/05	10.0 - 20.0	20	735.22	735.7	6.97	728.25
	12/27/05	10.0 - 20.0	20	735.22	735.7	6.82	728.40
	03/30/06	10.0 - 20.0	20	735.22	735.7	4.79	730.43
	06/22/06	10.0 - 20.0	20	735.22	735.7	7.01	728.21
	09/19/06	10.0 - 20.0	20	735.22	735.7	5.28	729.94
	12/13/06	10.0 - 20.0	20	735.22	735.7	6.63	728.59

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
WELL I.D.	DATE	INTERVAL	DEFIN	FOINT	JUNIACE	WATER	ELEVATION
UMW-110							
OWW-110	02/09/96	10.8 - 21.0	21	736.88	737.4	3.52	733.36
	11/10/98	10.8 - 21.0	21	736.88	737.4	1.37	735.51
	09/14/99	10.8 - 21.0	21	736.88	737.4	3.89	732.99
	12/08/99	10.8 - 21.0	21	736.88	737.4	4.04	732.84
	03/02/00	10.8 - 21.0	21	736.88	737.4	3.24	733.64
	03/08/01	10.8 - 21.0	21	736.88	737.4	1.27	735.61
	06/25/01	10.8 - 21.0	21	736.88	737.4	3.46	733.42
	09/06/01	10.8 - 21.0	21	736.88	737.4	2.71	734.17
	12/27/01	10.8 - 21.0	21	736.88	737.4	2.35	734.53
	03/06/02	10.8 - 21.0	21	736.88	737.4	1.33	735.55
	06/04/02	10.8 - 21.0	21	736.88	737.4	2.07	734.81
	09/04/02	10.8 - 21.0	21	736.88	737.4	2.44	734.44
	12/05/02	10.8 - 21.0	21	736.88	737.4	3.43	733.45
	03/12/03	10.8 - 21.0	21	736.88	737.4	2.07	734.81
	06/12/03	10.8 - 21.0	21	736.88	737.4	0.99	735.89
	09/23/03	10.8 - 21.0	21	736.88	737.4	2.73	734.15
	12/02/03	10.8 - 21.0	21	736.88	737.4	2.04	734.84
	03/02/04	10.8 - 21.0	21	736.88	737.4	2.10	734.78
	05/25/04	10.8 - 21.0	21	736.88	737.4	2.69	734.19
	07/26/04	10.8 - 21.0	21	736.88	737.4	2.36	734.52
	12/06/04	10.8 - 21.0	21	736.88	737.4	0.86	736.02
	03/15/05	10.8 - 21.0	21	736.88	737.4	1.69	735.19
	06/09/05	10.8 - 21.0	21	736.88	737.4	3.86	733.02
	09/27/05	10.8 - 21.0	21	736.88	737.4	1.74	735.14
	12/27/05	10.8 - 21.0	21	736.88	737.4	2.29	734.59
	03/30/06	10.8 - 21.0	21	736.88	737.4	2.26	734.62
	06/22/06	10.8 - 21.0	21	736.88	737.4	3.98	732.90
	09/19/06	10.8 - 21.0	21	736.88	737.4	3.51	733.37
	12/13/06	10.8 - 21.0	21	736.88	737.4	1.13	735.75
UMW-111							
	02/09/96	9.1 - 19.8	19.8	735.72	736.1	4.73	730.99
	11/10/98	9.1 - 19.8	19.8	735.72	736.1	4.16	731.56
	06/16/99	9.1 - 19.8	19.8	735.72	736.1	4.32	731.40

		SCREENED	TOTAL	MEASURING		DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
UMW-111A							
	09/14/99	9.0 - 22.8	22.8	736.90	737.2	17.52	719.38
	12/08/99	9.0 - 22.8	22.8	736.90	737.2	15.22	721.68
	03/02/00	9.0 - 22.8	22.8	736.90	737.2	16.26	720.64
	06/15/00	9.0 - 22.8	22.8	736.90	737.2	9.36	727.54
	09/26/00	9.0 - 22.8	22.8	736.90	737.2	10.72	726.18
	12/27/00	9.0 - 22.8	22.8	736.90	737.2	9.17	727.73
	03/08/01	9.0 - 22.8	22.8	736.90	737.2	9.03	727.87
	06/25/01	9.0 - 22.8	22.8	736.90	737.2	9.16	727.74
	09/06/01	9.0 - 22.8	22.8	736.90	737.2	9.56	727.34
	12/27/01	9.0 - 22.8	22.8	736.90	737.2	8.65	728.25
	03/06/02	9.0 - 22.8	22.8	736.90	737.2	9.35	727.55
	06/04/02	9.0 - 22.8	22.8	736.90	737.2	8.71	728.19
	09/04/02	9.0 - 22.8	22.8	736.90	737.2	8.85	728.05
	12/05/02	9.0 - 22.8	22.8	736.90	737.2	9.31	727.59
	03/12/03	9.0 - 22.8	22.8	736.90	737.2	9.15	727.75
	06/12/03	9.0 - 22.8	22.8	736.90	737.2	9.84	727.06
	09/23/03	9.0 - 22.8	22.8	736.90	737.2	8.31	728.59
	12/02/03	9.0 - 22.8	22.8	736.90	737.2	9.76	727.14
	03/02/04	9.0 - 22.8	22.8	736.90	737.2	9.55	727.35
	05/25/04	9.0 - 22.8	22.8	736.90	737.2	9.55	727.35
	07/26/04	9.0 - 22.8	22.8	736.90	737.2	10.26	726.64
	12/06/04	9.0 - 22.8	22.8	736.90	737.2	8.83	728.07
	03/15/05	9.0 - 22.8	22.8	736.90	737.2	9.73	727.17
	06/09/05	9.0 - 22.8	22.8	736.90	737.2	10.51	726.39
	09/27/05	9.0 - 22.8	22.8	736.90	737.2	9.26	727.64
	12/27/05	9.0 - 22.8	22.8	736.90	737.2	9.22	727.68
	03/30/06	9.0 - 22.8	22.8	736.90	737.2	9.15	727.75
	06/22/06	9.0 - 22.8	22.8	736.90	737.2	9.68	727.22
	09/19/06	9.0 - 22.8	22.8	736.90	737.2	9.18	727.72
	12/13/06	9.0 - 22.8	22.8	736.90	737.2	9.90	727.00

							1
WELL 15	DATE	SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
110004 440							
UMW-112	00/00/00	0.0.00	00	707.04	707.0	4.50	
	02/09/96	9.9 - 20.0	20	737.61	737.9	4.59	733.02
	11/05/96	9.9 - 20.0	20	737.61	737.9	4.99	732.62
	11/10/98	9.9 - 20.0	20	737.61	737.9	2.77	734.84
	03/25/99	9.9 - 20.0	20	737.61	737.9	3.85	733.76
	06/16/99	9.9 - 20.0	20	737.61	737.9	2.50	735.11
	09/14/99	9.9 - 20.0	20	737.61	737.9	4.84	732.77
	12/08/99	9.9 - 20.0	20	737.61	737.9	4.71	732.90
	03/02/00	9.9 - 20.0	20	737.61	737.9	3.46	734.15
	06/15/00	9.9 - 20.0	20	737.61	737.9	3.65	733.96
	09/26/00	9.9 - 20.0	20	737.61	737.9	3.14	734.47
	12/27/00	9.9 - 20.0	20	737.61	737.9	4.54	733.07
	03/08/01	9.9 - 20.0	20	737.61	737.9	3.52	734.09
	06/25/01	9.9 - 20.0	20	737.61	737.9	4.42	733.19
	09/06/01	9.9 - 20.0	20	737.61	737.9	4.02	733.59
	12/27/01	9.9 - 20.0	20	737.61	737.9	3.88	733.73
	03/06/02	9.9 - 20.0	20	737.61	737.9	3.16	734.45
	06/04/02	9.9 - 20.0	20	737.61	737.9	3.98	733.63
	09/04/02	9.9 - 20.0	20	737.61	737.9	3.79	733.82
	12/05/02	9.9 - 20.0	20	737.61	737.9	4.72	732.89
	03/12/03	9.9 - 20.0	20	737.61	737.9	3.92	733.69
	06/12/03	9.9 - 20.0	20	737.61	737.9	2.22	735.39
	09/23/03	9.9 - 20.0	20	737.61	737.9	4.19	733.42
	12/02/03	9.9 - 20.0	20	737.61	737.9	3.83	733.78
	03/02/04	9.9 - 20.0	20	737.61	737.9	4.31	733.30
	05/25/04	9.9 - 20.0	20	737.61	737.9	3.99	733.62
	07/26/04	9.9 - 20.0	20	737.61	737.9	4.26	733.35
	12/06/04	9.9 - 20.0	20	737.61	737.9	2.78	734.83
	03/15/05	9.9 - 20.0	20	737.61	737.9	4.44	733.17
	06/09/05	9.9 - 20.0	20	737.61	737.9	4.83	732.78
	09/27/05	9.9 - 20.0	20	737.61	737.9	2.51	735.10
	12/27/05	9.9 - 20.0	20	737.61	737.9	4.14	733.47
	03/30/06	9.9 - 20.0	20	737.61	737.9	4.10	733.51
	06/22/06	9.9 - 20.0	20	737.61	737.9	4.79	732.82
	09/19/06	9.9 - 20.0	20	737.61	737.9	4.22	733.39
	12/13/06	9.9 - 20.0	20	737.61	737.9	2.90	734.71

Ī r —							
		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
P							
UMW-113							
	02/09/96	10.0 - 20.0	20	740.19	738.0	7.77	732.42
	11/10/98	10.0 - 20.0	20	740.19	738.0	5.12	735.07
	09/14/99	10.0 - 20.0	20	740.19	738.0	7.96	732.23
	12/08/99	10.0 - 20.0	20	740.19	738.0	7.27	732.92
	06/15/00	10.0 - 20.0	20	740.19	738.0	6.63	733.56
	12/27/00	10.0 - 20.0	20	740.19	738.0	7.15	733.04
	03/08/01	10.0 - 20.0	20	740.19	738.0	5.77	734.42
	06/25/01	10.0 - 20.0	20	740.19	738.0	7.52	732.67
	09/06/01	10.0 - 20.0	20	740.19	738.0	7.22	732.97
	12/27/01	10.0 - 20.0	20	740.19	738.0	6.47	733.72
	03/06/02	10.0 - 20.0	20	740.19	738.0	5.27	734.92
	06/04/02	10.0 - 20.0	20	740.19	738.0	6.60	733.59
	09/04/02	10.0 - 20.0	20	740.19	738.0	6.21	733.98
	12/05/02	10.0 - 20.0	20	740.19	738.0	7.81	732.38
	03/12/03	10.0 - 20.0	20	740.19	738.0	6.70	733.49
	06/12/03	10.0 - 20.0	20	740.19	738.0	6.27	733.92
	09/23/03	10.0 - 20.0	20	740.19	738.0	7.07	733.12
	12/02/03	10.0 - 20.0	20	740.19	738.0	6.22	733.97
	03/02/04	10.0 - 20.0	20	740.19	738.0	6.78	733.41
	05/25/04	10.0 - 20.0	20	740.19	738.0	6.94	733.25
	07/26/04	10.0 - 20.0	20	740.19	738.0	6.67	733.52
	12/06/04	10.0 - 20.0	20	740.19	738.0	4.83	735.36
	03/15/05	10.0 - 20.0	20	740.19	738.0	6.96	733.23
	06/09/05	10.0 - 20.0	20	740.19	738.0	7.70	732.49
	09/27/05	10.0 - 20.0	20	740.19	738.0	6.23	733.96
	12/27/05	10.0 - 20.0	20	740.19	738.0	6.32	733.87
	03/30/06	10.0 - 20.0	20	740.19	738.0	6.64	733.55
	06/22/06	10.0 - 20.0	20	740.19	738.0	7.84	732.35
	09/19/06	10.0 - 20.0	20	740.19	738.0	7.44	732.75
	12/13/06	10.0 - 20.0	20	740.19	738.0	5.20	734.99

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
***************************************	DAIL	INTERVAL	D E		OUTH AGE	WAILK	LLLVATION
UMW-114							
	02/09/96	10.0 - 20.0	20	740.31	738.2	7.20	733.11
	05/07/96	10.0 - 20.0	20	740.31	738.2	5.96	734.35
	08/06/96	10.0 - 20.0	20	740.31	738.2	8.00	732.31
	11/05/96	10.0 - 20.0	20	740.31	738.2	9.04	731.27
	11/10/98	10.0 - 20.0	20	740.31	738.2	5.50	734.81
	03/25/99	10.0 - 20.0	20	740.31	738.2	6.20	734.11
	06/16/99	10.0 - 20.0	20	740.31	738.2	5.34	734.97
	09/14/99	10.0 - 20.0	20	740.31	738.2	7.81	732.50
	12/08/99	10.0 - 20.0	20	740.31	738.2	6.10	734.21
	03/02/00	10.0 - 20.0	20	740.31	738.2	5.85	734.46
	06/15/00	10.0 - 20.0	20	740.31	738.2	6.81	733.50
	09/26/00	10.0 - 20.0	20	740.31	738.2	7.43	732.88
	12/27/00	10.0 - 20.0	20	740.31	738.2	7.18	733.13
	03/08/01	10.0 - 20.0	20	740.31	738.2	5.91	734.40
	06/25/01	10.0 - 20.0	20	740.31	738.2	7.57	732.74
	09/06/01	10.0 - 20.0	20	740.31	738.2	7.48	732.83
	12/27/01	10.0 - 20.0	20	740.31	738.2	6.46	733.85
	03/06/02	10.0 - 20.0	20	740.31	738.2	5.34	734.97
	06/04/02	10.0 - 20.0	20	740.31	738.2	6.63	733.68
	09/04/02	10.0 - 20.0	20	740.31	738.2	6.34	733.97
	12/05/02	10.0 - 20.0	20	740.31	738.2	7.98	732.33
	03/12/03	10.0 - 20.0	20	740.31	738.2	6.91	733.40
	06/12/03	10.0 - 20.0	20	740.31	738.2	6.81	733.50
	09/23/03	10.0 - 20.0	20	740.31	738.2	7.13	733.18
	12/02/03	10.0 - 20.0	20	740.31	738.2	6.29	734.02
	03/02/04	10.0 - 20.0	20	740.31	738.2	6.79	733.52
	05/25/04	10.0 - 20.0	20	740.31	738.2	6.86	733.45
	07/26/04	10.0 - 20.0	20	740.31	738.2	6.54	733.77
	12/06/04	10.0 - 20.0	20	740.31	738.2	4.98	735.33
	03/15/05	10.0 - 20.0	20	740.31	738.2	6.92	733.39
	06/09/05	10.0 - 20.0	20	740.31	738.2	7.62	732.69
	09/27/05	10.0 - 20.0	20	740.31	738.2	6.87	733.44
	12/27/05	10.0 - 20.0	20	740.31	738.2	6.26	734.05
	03/30/06	10.0 - 20.0	20	740.31	738.2	6.81	733.50
	06/22/06	10.0 - 20.0	20	740.31	738.2	7.83	732.48
	09/19/06	10.0 - 20.0	20	740.31	738.2	7.39	732.92
	12/13/06	10.0 - 20.0	20	740.31	738.2	5.00	735.31

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
					-		
UMW-115							
	02/09/96	10.0 - 20.0	20	740.20	738.1	6.53	733.67
	05/07/96	10.0 - 20.0	20	740.20	738.1	4.90	735.30
	08/06/96	10.0 - 20.0	20	740.20	738.1	7.01	733.19
	11/05/96	10.0 - 20.0	20	740.20	738.1	9.43	730.77
	11/10/98	10.0 - 20.0	20	740.20	738.1	5.43	734.77
	03/25/99	10.0 - 20.0	20	740.20	738.1	5.78	734.42
	06/16/99	10.0 - 20.0	20	740.20	738.1	5.12	735.08
	09/14/99	10.0 - 20.0	20	740.20	738.1	7.30	732.90
	12/08/99	10.0 - 20.0	20	740.20	738.1	7.99	732.21
	03/02/00	10.0 - 20.0	20	740.20	738.1	5.57	734.63
	06/15/00	10.0 - 20.0	20	740.20	738.1	6.15	734.05
	09/26/00	10.0 - 20.0	20	740.20	738.1	7.25	732.95
	12/27/00	10.0 - 20.0	20	740.20	738.1	6.38	733.82
	03/08/01	10.0 - 20.0	20	740.20	738.1	5.47	734.73
	06/25/01	10.0 - 20.0	20	740.20	738.1	6.94	733.26
	09/06/01	10.0 - 20.0	20	740.20	738.1	7.38	732.82
	12/27/01	10.0 - 20.0	20	740.20	738.1	5.74	734.46
	03/06/02	10.0 - 20.0	20	740.20	738.1	4.99	735.21
	06/04/02	10.0 - 20.0	20	740.20	738.1	5.81	734.39
	09/04/02	10.0 - 20.0	20	740.20	738.1	5.78	734.42
	12/05/02	10.0 - 20.0	20	740.20	738.1	7.41	732.79
	03/12/03	10.0 - 20.0	20	740.20	738.1	5.89	734.31
	06/12/03	10.0 - 20.0	20	740.20	738.1	5.97	734.23
	09/23/03	10.0 - 20.0	20	740.20	738.1	6.26	733.94
	12/02/03	10.0 - 20.0	20	740.20	738.1	5.59	734.61
	03/02/04	10.0 - 20.0	20	740.20	738.1	6.04	734.16
	05/25/04	10.0 - 20.0	20	740.20	738.1	5.99	734.21
	07/26/04	10.0 - 20.0	20	740.20	738.1	5.79	734.41
	12/06/04	10.0 - 20.0	20	740.20	738.1	4.78	735.42
	03/15/05	10.0 - 20.0	20	740.20	738.1	6.07	734.13
	06/09/05	10.0 - 20.0	20	740.20	738.1	6.70	733.50
	09/27/05	10.0 - 20.0	20	740.20	738.1	6.70	733.50
	12/27/05	10.0 - 20.0	20	740.20	738.1	5.47	734.73
	03/30/06	10.0 - 20.0	20	740.20	738.1	5.74	734.46
	06/22/06	10.0 - 20.0	20	740.20	738.1	7.16	733.04
	09/19/06	10.0 - 20.0	20	740.20	738.1	6.95	733.25
	12/13/06	10.0 - 20.0	20	740.20	738.1	4.73	735.47

		SCREENED	TOTAL	MEASURING	GROUND	DEPTH TO	GW
WELL I.D.	DATE	INTERVAL	DEPTH	POINT	SURFACE	WATER	ELEVATION
WELL I.D.	DAIL	INTERVAL	DEFIII	FOINT	JUNI AUL	WAILK	LLLVATION
UMW-116							
OWW-110	02/09/96	10.0 - 20.0	20	736.77	737.2	5.52	731.25
	05/07/96 08/06/96	10.0 - 20.0	20	736.77	737.2	4.35	732.42 730.56
	11/10/98	10.0 - 20.0	20 20	736.77	737.2	6.21	732.29
	03/25/99	10.0 - 20.0 10.0 - 20.0	20	736.77	737.2	4.48 5.15	732.29
				736.77	737.2		
	06/16/99	10.0 - 20.0	20	736.77	737.2	4.67	732.10
	09/14/99	10.0 - 20.0	20	736.77	737.2	7.25	729.52
	12/08/99	10.0 - 20.0	20	736.77	737.2	7.69	729.08
	03/02/00	10.0 - 20.0	20	736.77	737.2	6.46	730.31
	06/15/00	10.0 - 20.0	20	736.77	737.2	4.95	731.82
	09/26/00	10.0 - 20.0	20	736.77	737.2	5.41	731.36
	12/27/00	10.0 - 20.0	20	736.77	737.2	5.42	731.35
	03/08/01	10.0 - 20.0	20	736.77	737.2	5.12	731.65
	06/25/01	10.0 - 20.0	20	736.77	737.2	5.47	731.30
	09/06/01	10.0 - 20.0	20	736.77	737.2	5.62	731.15
	12/27/01	10.0 - 20.0	20	736.77	737.2	5.21	731.56
	03/06/02	10.0 - 20.0	20	736.77	737.2	4.60	732.17
	06/04/02	10.0 - 20.0	20	736.77	737.2	5.62	731.15
	09/04/02	10.0 - 20.0	20	736.77	737.2	5.49	731.28
	12/05/02	10.0 - 20.0	20	736.77	737.2	5.60	731.17
	03/12/03	10.0 - 20.0	20	736.77	737.2	5.09	731.68
	06/12/03	10.0 - 20.0	20	736.77	737.2	3.42	733.35
	09/23/03	10.0 - 20.0	20	736.77	737.2	5.48	731.29
	12/02/03	10.0 - 20.0	20	736.77	737.2	5.17	731.60
	03/02/04	10.0 - 20.0	20	736.77	737.2	5.86	730.91
	05/25/04	10.0 - 20.0	20	736.77	737.2	5.43	731.34
	07/26/04	10.0 - 20.0	20	736.77	737.2	6.05	730.72
	12/06/04	10.0 - 20.0	20	736.77	737.2	5.00	731.77
	03/15/05	10.0 - 20.0	20	736.77	737.2	5.85	730.92
	06/09/05	10.0 - 20.0	20	736.77	737.2	6.39	730.38
	09/27/05	10.0 - 20.0	20	736.77	737.2	5.31	731.46
	12/27/05	10.0 - 20.0	20	736.77	737.2	5.69	731.08
	03/30/06	10.0 - 20.0	20	736.77	737.2	5.56	731.21
	06/22/06	10.0 - 20.0	20	736.77	737.2	6.53	730.24
	09/19/06	10.0 - 20.0	20	736.77	737.2	6.15	730.62
	12/13/06	10.0 - 20.0	20	736.77	737.2	5.58	731.19
UMW-401							
	01/93	138.5 - 175.0	175	738.20	738.7	121.12	617.08
UMW-402							
	01/93	134.0 - 170.0	170	737.56	737.6	120.78	616.78
UMW-403							
	01/93	128.0 - 170.0	170	737.02	737.5	120.60	616.42

Table 1 Groundwater Elevation Data Annual Groundwater Monitoring Report: 2003

Illinois Power Company Champaign Former MGP Site Champaign, Illinois

			Old Illinois F	Power Survey
Monitoring	Total	Monitored	Elevation (feet NGVD)
Well	Depth	Interval	Measuring	Land
Number	(feet)	(feet BLS)	Point (MP)	Surface (LS)
UMW-102	22.0	6.7 - 22.0	737.44	737.8
UMW-104	20.0	9.9 - 20.0	736.02	736.5
UMW-105	19.7	9.5 - 19.7	737.45	737.8
UMW-106	20.0	9.8 - 20.0	737.12	737.7
UMW-107	19.7	9.5 - 19.7	736.98	737.3
UMW-108	15.0	4.8 - 15.0	736.95	737.2
UMW-109	20.0	10.0 - 20.0	735.22	735.7
UMW-110	21.0	10.8 - 21.0	736.88	737.4
UMW-111A	22.8	9.0 - 22.8	736.90	737.2
UMW-112	20.0	10.0 - 20.0	737.61	737.9
UMW-113	20.0	10.0 - 20.0	740.19	738.0
UMW-114	20.0	10.0 - 20.0	740.31	738.2
UMW-115	20.0	10.0 - 20.0	740.20	738.1
UMW-116	20.0	10.0 - 20.0	736.77	737.2

Highlighted are those wells sampled quarterly.

APPENDIX K

CSI Analytical Chain-of-Custody Records

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

coc Serial No. B 7538

Temperature upon Receipt Receipt Temperature upon Temperature upon Temperature upon Temperature upon	(4.99)	(09E)	(231)	(305)	(45,3)	(22)			10 Days Other	Juck EAN 7/9 04
(1928) (1928) (1928) X318 (1928) Hd.L (1928) Hd.L (1928) SHYd	>		1		1	 - 			Lab Directives: Requested TAT: □ 1-3 Days □ 5 Days Fax and/or Mail Results to:	* Special: * 500 De parate 140, pur Acak
Water Air Wipes Air Other *	X	N X PS	1053 X 5201	rs X dhei	550 K 5V	130 X DE91		K X Sell	9 ====	-
Project Mg	TATA INIC	12		, i	7	18 Mgr	ASSOCIAL PROPERTY.	III MAZ	XYes \tag{A} \	Sodium hydroxide
oject Name CH 2004 S.L. oject Number 62402647 ampler(s) C 707615 / Scholbe aboratory Name 76klob Location Celliss Alle	Sample Number and (depth)			(/h) 805d.	503	1/20E) YEBY	72	20Mpd	Samples Iced: Preservatives (ONLY for Water Samples) X Volatile Organics □ TPH (8015) □ TPH (418.1) Metals	☐ Cyanide Other (Specify)

Carrier / Airbill No. Shipping

Shaded Areas to be Completed by Lab

GREEN to Sampler

PINK to QA/QC

CANARY to PM

Distribution: WHITE to Lab PE-179 (3/96)

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 3 7540

Project Name CH 2WH 51	Project Mgr. Gull	Godd	iners	Analyses	by Method Nam	Analyses by Method Name and Number			
Project Number 6240 2647	7 Phase • Task		istno	(VX)	(VZ			Tempe	Temperature upon
Gravens/	Scholbe	Matrix		2017	Sichter				Receipt
Name Teklub				(3) (14) (8) (8)	8) (8)	ani a		1	
Location Collinsille	R IG	Soil Soil Sir Sir	19d)	70, SXI	Hd.	H			
Sample Number and (depth)	Date Time	-		15/1/1/18/2	つWZ	1	Comments (Field PID)	Ωic	Lab ID #'s
BS10-2 (12)	1-1204 10S	X	∞	×××	メメ	×	(21)		64676277mi
BS10-5 (4-5	1123	كر	7	×			(5)	(5,9)	600-
BS10-12 (11-12)	2) 1225	X	7	×			(10,2	, (2)	90
1 - 28 (27-28	28) 1245	×	7	×			5,5)	1/2	1
B512-3 (2-3)	3) 1405	×	7	×	×	×	(3)	1)	3 /3
(7-8)	8) 1425	×	9	×	×	×	E	(464)	900-
111 (10-11)	11) 15/11	X	5	× ×		And the second s	(2)	265)	18,
-24 (23-24)	24 152	×	5	×			9)	(6,2)	. aos
12 (12)	2) 153	<u>بر</u> الم	9	· ×	×	×	(4)	(H/h)	- 609
) Q	2) \ 1600	x S	3,	X X 502 502	メメ	×	2	(h'h	200-
8-1)		x \	``````````````````````````````````````	X X X X			(h)	(02h)	110-
-12 (11-12)	12) 7-12-04 (21	×	9	× ×	×	×	(3	(50)	-013
Samples Iced:	X Yes	No		- N. C. C. S. C.		Lab Directives:	ives:		,
Preservatives (ONLY for Water Samples)	Samples) Hydrochloric acid			Requested TAT: 1-3 Fax and/or Mail Results to:	☐ 1-3 Days	60dd	□ 10 Days 万℃	POther Lume	Mul
TPH (8015)	Hydrochloric acid		-	Send Invoice to:	Chamble	n- I.P.			
TPH (418.1)	Hydrochloric acid	oid (HCI)		QC Deliverable Requested:	X;	Results + QC	□ Level 3	Other	
Wetals Cvanide	Nitric acid			Special Guidelines: //	VUCJ ANG	2000	an fill ray 2	240-14	XX
Other (Specify)				* Special:			TOTAL AND THE PROPERTY OF THE		

Shipping:

Relinquished by:

Signature	Date	Time		Si Si
egen X Khills	145/24	12 - Hall	2	Charlin.

7115lot asthur Bannes

37.75 Time

Date

Signature

Shaded Areas to be Completed by Lab

VI H on Natisay vial for B553-3212 broken in lab. 7/15/24 HAB

GREEN to Sampler

PINK to QA/QC

CANARY to PM

Distribution: WHITE to Lab

Record	0 00 000
Custody	
Chain of	
O	3

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. **□** 7541

20377 PAR

	Project Name CH 20	JY 2004 ST Proje	Project Mar. Gald	×	iers	Apalyses t	Apalyses by Method Name and Number	umber		
<u> </u>	1 2	1	١.		nistn	/t	(H)		i i	9
	Sampler(s) CAVIA	Chall		Matrix	0100	120	DV 6			Receipt
	Z.	1			-8) -8)	り	8) (8) (8)			
) l	7 . 1	Soil	Water Air Wipes	XJ XJ	מכי	Howard Hol			
-	Sample Number and (depth)	d (depth) Date	Time		10 B D	15	11011	Comments (Field PID)	(Field PID)	Lab ID #'s
2	13513-24	(23-24) Thelay	V 1720 V		XXX				(6.5)	-013
	6501-2	(1-2) 7/13/64	V 0480 W		×	-	×		(30,4)	力の一
	8-1058	(1-8)	0910		×				(29.4)	-0(5/
	BSD1 - 15	(14-12)	0930		×	X			(238)	910-
	BSO1 - 24	(23-24)	1 5460			×	×		(F.D)	100
	B502-3	(2-3)	10251		×		× ×		(10.6)	80,
	8502-7	((-9))	1105 1		×				(712)	-00
	8562-12	(11-12)	1125 1		×		×		(4/68)	-090
	\$502-24	(1324)	1143 1		×			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	-	H&C
3	3 8503-3	(2-3)	1300 1		X	X	×××		(00/)	1-69-
	B503-3D	(2-3)	1300 1		XXXX	+	× × ×		(001)	EEC-
ゴ	8503-10	4-10) 7/13/ay	pg 1330 J		$\frac{\times}{\times}$				(143)	-033
ene esta	Samples Iced:	XYes	ON 🗆					Lab Directives:		0
	Preservatives (ONLY for Water Samples)	or Water Samples)) Hydrochloric acid	(HCI)	Requested TAT: Fax and/or Mail	Resi	Days D	5 Days 10 Days	X Other Marka	Max
Long.)			1			1. 1613 170			

samples iced:	No		Lab Directives:			0
Preservatives (ONLY for Water Samples)		Requested TAT: 1-3 Days	ays 5 Days 10 Days	ays 🗴 Oth	X Other Asma	3
☐ Volatile Organics Hydrochloric acid	ic acid (HCI)	Fax and/or Mail Results to:	CIM COURS			
☐ TPH (8015) Hydrochloric acid		Send Invoice to: Chambill - 11	11 - 11 W			d
☐ TPH (418.1) Hydrochloric acid	ic acid (HCI)	QC Deliverable Requested:	QC Deliverable Requested: Results + QC	al 3	er Mush	ž
☐ Metals Nitric acid		Special Guidelines:	+ 51065 OR 1/11 PW	1740	Dx. A	
☐ Cyanide Sodium hydroxide		Reporting Limits:				
Other (Specify)		* Special:				THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN 1
Shipping:	Relinquished by:		Received by:			
Carrier / Airbill No.	// Signature	rre // Date Time	e Signature		Date	Time
	Lara X	1964 8.18A	A gostney Brings	6970	7/15/MU 1846	2000

If no Dample relevined per Garde Scholls Shaded Areas to be Completed by Lab

GREEN to Sampler

PINK to QA/QC

CANARY to PM

WHITE to Lab

Distribution: W PE-179 (3/96)

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 🖺 7543

Mater Wiles No	Matrix Matrix Matrix Matrix Matrix Matrix Milpes Oilingt * Note Log Comments (Field PID) Lab Directives: HCD Send Invoice to: CHAMBLIS - CP SEND IN SEND I	Marrix Ma	Maintx M	Maint Soil Wales (%) Soil Maint Soil Wales (%) Wales (%) Soil Maint Soil Wales (%) Wales (%) Wales (%) Soil Maint Soil Wales (%) (%) (HC)) Soil Maint Soil Wales (%) (HC)) Special Guidelines: \(\superigon C \cdot S \cdot	oer 6240 2647 Phase Task
Se We We We We We We We	A	A	A	(
(13c)	(+C) S	(+C)	(HCI)	(139) (140) (1	Time
					1340
(483) (483) (483) (4810) ((HC)) (K32) (K	(HCI) S	(HCI) S X X X X X X X X X X X X X X X X X X	(HCI) (HCI) (NaOH) (SXXX (SXX) (SXX) (SXX) (HCI) (HCI) (HCI) (HCI) (NaOH) (SXXX (HCI) (HCI) (HCI) (NaOH) (SXXX (SXX) (HCI)	1355
(33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33) (33)	(HCI) (SS) (SSO) (SO) (HCI) (HCI) (CHAMDILLO - LP (HCI) (CHAMDILLO - LP (HCI) (CCOeliverable Requested: M Results + OC Level 3	(HC)) S	(HCI) S	(HCI) S	1450
(\$30) (\$101)		(HCI) S	(HCI) S X X X X X X X X X X X X X X X X X X	(HCI) S	15051
(87) (87) (87) (87) (87) (87) (87) (87) (87) (87) (87)		(HCI) S X X X X X X X X X X	(HCI) (A X X X X X X X X X X X X (46.1)(44.3) (B 2) (C X X X X X X X X X X (46.1)(44.3) (C X X X X X X X X X X (46.1)(44.3) (C X X X X X X X X X X X (46.1)(44.3) (HCI) (HCI) (HCI) (HCI) (HCI) (C Deliverable Requested:	(HCI) (H	1505
(101) (82) (87) (407	(HCI) (A X X X X X X X X X X X X (46.2)(44.2)(44.2) (B X X X X X X X X X X (20.2) (B X X X X X X X X X X (20.2) (C X X X X X X X X X X X (20.2) (HCI) (HCI) (HCI) (HCI) (C X X X X X X X X X X X X X X X X X X X	(HCI) (HCI) (HCI) (HCI) (CO Deliverable Requested:	(HCI) (K	(HCI) (K	0791
(%2) (%2) (%2) (%3)	(HCI) (K21) (K	(HCI) (HCI) (HCI) (S X X X X X X X X X (46.1)(44.2) (AC Deliverable Requested: X Regults + QC Level 3 X Other Abus (HCI) (S C X X X X X X X X X X X X X X X X X X		(HCI) S X X X X X X X X X X X X X X X X X X	0060
(42)(443) (42)(443) (343) (262) (262)		(HCI) (HCI) (HCI) (Special Guidelines: VOC'S # SV		(HCI)	0930
X X X X X X X X X		C	C		1000
X X X X X		Company Comp		(HCI)	1030
			Company Comp		0011
	Lab Directives: Requested TAT: 1-3 Days 5 Days 10 Days	Lab Directives: Requested TAT: 1-3 Days 5 Days 10 Days	Lab Directives: Requested TAT: 1-3 Days 5 Days 10 Days	Lab Directives: Requested TAT: 1-3 Days 5 Days 10 Days	1230
	Send Invoice to: Chamblis - IP QC Deliverable Requested: X Regults + QC Level 3 X Other Ame.	Fax and/or Mail Results to: Chamblia - IP Send Invoice to: Chamblia - IP QC Deliverable Requested: X Results + QC Level 3 X Other Abara, Special Guidelines: VOC'S Y SUOC'S ARIZ FULL ARAR 740 - Ap	Fax and/or Mail Results to: Lim Ground. Send Involce to: Crhamblis - LP QC Deliverable Requested: Results + QC Level 3 Other Abord. Special Guidelines: VOC'S SVOC'S ARE Full AART 740 - App. Reporting Limits:	Fax and/or Mail Results to: Lim Growld. Send Involce to: Crhambli — LP QC Deliverable Requested: X Results + QC Special Guidelines: VOC'S & SVOC'S ARE Full part 740 - Ap Reporting Limits: * Special:	
☐ 1-3 Days ☐ 5 Days ☐ 10 Days	QC Deliverable Requested: X Results + QC	Special Guidelines: $VOC'S \neq SVOC'S$ ARE Full ARE 740 - PA	Special Guidelines: VOC'S # SVOC'S ARE FULL ARE THO - APPRENDED	Special Guidelines: VOC'S & Stock Control of Special Guidelines: VOC'S & Stock Control of Special Guidelines: VOC'S & Stock Control of Special Control of Control of Special Control of Control of Control	. Hydrochloric acid
Requested TAT: 1-3 Days 5 Days 10 Days Fax and/or Mail Results to: 10 Days		Special Guidelines: VOC'S & SVOC'S ARE FULL SART 740	Special Guidelines: VOC'S # SVOC'S PAE FUIL SART 740 Reporting Limits.	Special Guidelines: <u>VOC's 等 ふVOC's PAは Full paRT 74の</u> Reporting Limits: * Special:	Hydrochloric acid Hydrochloric acid
Hequested TAT: 1-3 Days 10 Days	(NaOH) Reporting Limits:	* Special:			

-	

Section of the section of			2	
_		7		
STATE STREET, STATE STATE STREET, STATE STAT	Time	434.5		
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	Date	16/1/2	,	
	/7 Signature	Resu. X Well	10	

	and the same that	the transfer	
Time	9569		
Date	7/155/04		
Signature	My a from Barres		

Shaded Areas to be Completed by Lab

H # 18 4 - leach set is one sample, written in duplicate on Cyll, per Opell Shothe, 7/15/104 HAS

GREEN to Sampler

PINK to QA/QC

CANARY to PM

WHITE to Lab

Distribution:

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone(618) 281-5120 Fax(618) 281-8933 Bulletin Board

COC Serial No. □ 7542

	Project Name CH 2004 SZ Pro	Project Mgr. 500/		Jers	Adalyses t	y Method I	dalyses by Method Name and Number	Jumber				
	7402647	Phase • Task		ontain	1/20/	N	(A)			<u>-</u>	Temperature upon	
	Sampler(s) Cravens/Schilbe	/be	Matrix	210	287	515	7				Receipt	
	Name Teklub		* .	iəqwi	4)	8] s _p 18]	PM	_				
	Laboratory Location Collaryle 72		Soil Wate TiA SqiW	77 by	570	14	40					
	Sample Number and (depth) Date	Time)	8	15/1	1	<i>-</i>		Comments (Field PID)	Field PID)	Lab ID #'s	
7	10/11/ (5-2) *** E-5038	1001 poli	7	XX		\searrow	×			(4w,2)	1634	(14A)
-) (7-5) 米林木9-5058	1030		X		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				(393)		
	(1-01) ***11-5058	00 11	,	9	×	×	×			(202)		
	BSOS-12 ### (21-22)	1230		X					,	(2.1)		
	(85-72) 82-289.	1300		X					-	(8:8)	à€0-	
	6553-3 (2-3)	1400	,	XX		×	×			(20.3)	180,	
	8553-6 (5-6)	U.F.1	ſ	XX5						(364)	-038	
	(14-16)	1445		× × +						(545)	-039	
	BSS3-24 (2324)	1510		×						(1/12)	040	
	8553-32 (31-32)	1530	\ \ \	V	×	· \	×			(3.4))70-	
	6553-32)+4 (31-32)	1530	/		×	\times	×			(3.4)	-049	
									PROSECULARIO DOS EMPROMENTARIOS COMPARADOS COMPANDOS COM			
	Samples Iced:	ON 🗆						Lab Directives:			0.000	
	Preservatives (ONLY for Water Samples)	Hydrochloric acid	(HCI)	Red	Requested TAT: 1-3 Fax and/or Mail Results to:	☐ 1-3 Days	J. W.	5 Days Gould	10 Days	Other 12	NO INC	
		, Hydrochloric acid	(HCI)	Sen	Send Invoice to:	5	ambly -	A	-	2		
	☐ TPH (418.1)	Hydrochloric acid Nitric acid	(HCI) (HNO3)	Spe	QC Deliverable Requested Special Guidelines:	$\mathcal{U}_{\mathcal{C}}$	THESUITS + COC +	8+5C 8/1 /8	Level 3	770-1	Apx. A	
_		Sodium hydroxide	(NaOH)	Rep	Reporting Limits:						,	
_	pecify)	And the second s		dS *	* Special:							

	Relinduished by:		Received by:
Carrier / Airbill No.	Signature, Date	Time	Signati
	Degut Dil May	9.16.27	of organies ?
	10		

Other (Specify)

Shipping:

* Special:

Shaded Areas to be Completed by Lab

CANARY to PM WHITE to Lab Distribution: W PE-179 (3/96)

PINK to QA/QC

GREEN to Sampler

7/15/04 6946 Barms

Time

Date

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 🔊 7544

	uodn ə	pt deed		2/2/02	Lab ID #'s	100304020010	600-	⁶	78	-003	700-	187	88	-00%	-010	110	600		٦				
	Temperature upon	C Receipt	Co			16.4) puoz	(146)	(11.8)	(3.9)	(13,2)	(13,2)	(18%)	(847)	(1,2)	(3,0)	(hr)	(356)		Other Minmo		Other Oxy		
					Comments (Field PID)	11)	0	1)		"	"	"	?)))	9)			☐ 10 Days		Level 3		
and Number				Ho	1	X				\ \					\ \	`		Lab Directives:	□ 5 Days	IP	SVOC3 ALP		
Analyses by Method Name and Number	VX.	18) (51)) 57 (8)	40/	10 1/4	×	\ \		-	×			<u> </u>		^ ×	X	X	A STATE OF THE PROPERTY OF THE	1-3 Days 1-3		+		
Analyses	(A:	KOY TOC	3)5 1/4) (8)	70) 52 54\	15 M	>	×	<u> </u>		×	~	>	\ \ \	>	\ \rangle	×	\ \ \		Requested TAT: 1-3 Fax and/or Mail Results to:	Send Invoice to: Chamb	OC Deliverable Requested:	Reporting Limits:	* Special:
	_		128		18	×	X	X	X	10	X	X	X	$\hat{\times}$	X		X		~ ~		Ğ 8		*
N. III	nistno	Matrix	* . Si	Soil Wate TiA Wipe Theil)	S	0	<u> </u>	<u> </u>	, M	V		,	<u>\</u>	5					(HC)	(HCI)	(NaOH)	
Mar. 50 60	l		-	lio2	Time	X 0840 X	0060	0460	0460	1025	1025	10501	1135	1180	1340	1410	1510	No		Hydrochloric acid Hydrochloric acid	Hydrochloric acid	Sodium hydroxide	
Project Mar.	Phase • Task			4	Date	7-1504	damento			Antonoversion							-	SS		Hydroc	Hydrochlor	Sodiun	:
IS K	2647	5 / Schilbe	Jeklob	Collos Me	id (depth)	(2-3)	(01.6)	(18-16)	(27-28)	(2-3)	(2-3)	(6-10)	(11-18)	(31-32)	(0-1)	(6-10)	(12-13)	X Yes	Preservatives (ONLY for Water Samples)	ics			γ(γ
Project Name CH 2004 S.T.	Project Number 6240 2647	Gravens	Name Jek	Ë	Sample Number and (depth)	~			80		9	6	00	7		01-	3	Samples Iced:	atives (ONLY for	Volatile Organics TPH (8015)	TPH (418.1) Metals	Cyanide	Other (Specify)
Project Nam	Project Num	Sampler(s)		Laboratory	Sam	8551-3	01-	-16	-78	B554-3	QE-	0/-	100	-32	8561-	1	1-	Sample	Preserve				

vicino.)	
Carrier / Airbill No.		

THE RESERVE THE PROPERTY OF TH	Carlotte Management of the Company o	The second secon
Signature/	Date	Lime
2 shall	1/16/04	0091

Thelor Date B

000

PINK to QA/QC

GREEN to Sampler

WHITE to Lab Distribution: W PE-179 (3/96)

CANARY to PM

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-8933 Bulletin Board (618) 281-7173 Phone (618) 281-5120 Fax

754 COC Serial No.

L()

1004 310 -023 710-000 680 上の一 -03 200-600 100 510 Lab ID #'s Temperature upon (509) (0,8) 0.4 333 1404 0.3 6.2 (8:4) 0.3 (497) 1:1 Comments (Field PID) Analyses by Method Name and Number 125 D SA 165 16. SE LES × Total Number of Containers 0 Soil Water Air Wipes Matrix Project Mgr. Jim Gud 0600 0860 1630 7-16-W 0840 0930 0845 538 1625 Time Phase • Task 7-82 7-16-04 たグイ Date 30mm H (61-81) (31-32)19-28 (18-19) (31-32) (31-32) 01-6 13-14 7-7 6-7 CH920H29 Location Collins Ville. 1-0 イロア Sample Number and (depth) Name Teklub でえるし 7 -320 -32 8561-19 -78 0/-Project Number 17 127 19 BS15-J Project Name Laboratory Sampler(s) 6562

Samples Iced:	No		Lab Directives:
Preservatives (ONLY for Water Samples)			Requested TAT: 1-3 Days Days Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other
Volatile Organics	Hvdrochloric acid	(HCl)	avla
	Aydrochloric acid	(HCI)	Send Invoice to: Chamblin - IP
·	Hydrochloric acid	(HCI)	QC Deliverable Requested: X Results + QC \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
:	Nitric acid	(HNO ₃)	Special Guidelines: VUCS + SVUCS - FULL INFT 140- AXA
	Sodium hydroxide	(NaOH)	Reporting Limits:
Other (Specify)			* Spacial

ζ	7
2	=
C	5
Š	2
7	=
u)

|--|

|--|

Received by:	S	Table .	
	Time	1600	
	Dațe ,	7///e/ou	
	111	B)

Time	1600		
Date	7/11/1/10/	•	-
Signature	deephon Carms		

GREEN to Sampler

PINK to QA/QC

CANARY to PM

WHITE to Lab

Distribution: W PE-179 (3/96)

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 🖻 7546

			1			n	و	-	>-	ъ	ρ					
	Temperature upon	Receipt			Lab ID #'s	260,	960	760-	800.	7029	-030					X Other Mirmed
					Field PID)	(9.0)	(1.3)	(333)	(5:4)	(4:5)	(8.8)				A Section 1	X Other
					Comments (Field PID)	- 1										/es: □ 10 Days
and Number		\h.		Fl	1	×										Lab Directives:
Analyses by Method Name and Number	(K)	(S)	18)	148/21/21/21/21/21/21/21/21/21/21/21/21/21/	WIT	×										1-3 Days
Analyses b	(V)	X4/1/2	15/	200	15/1			×								Requested TAT:
	1	192	875	91	8	×	×	×	×	XX	×					Redn
	ietno	Matrix of	¥.	Soi Nate TiA SqiW SqiPe Othe		8	8	9	7	5	2					
Project Mgr. JM 6040	Task				Time	chol	1100	1115	1135	1135	1200			And a second sec		No
	Phase • Task	be		177	Date	7-16-04	- Annual Control				7-11-04					XYes Samples)
アイクのアナブ	402647	Cravens/Schulbe	Teklah	O SAIR	and (depth)	(2-3)	(S-H)	(12-13)	(19-20)	(19-20)	(21-12)					Y for Water Sam
Project Name	Project Number 62402647	Sampler(s) CPAV	Name	, 	Sample Number and (depth)	B560-3	5	-13	200	-20D	-28					Samples Iced: XYes Preservatives (ONLY for Water Samples)

Date 7 Ualo	, SSS	Signature	Heary	7.09/ y	Date 7/14/6	Ny .	W Signature	<u> </u>		Carrier / Airbill No.	Carrie	
		l by:	Received by:				Relinquished by:	Relin				Shipping:
					al:	* Special:				Other (Specify)	Other (Sp	
4	110	114-5	+ 1100	VUCS.	Special Guidelines:	Special	(HNO ₃)	Nitric acid	Sodium bw	Metals	Metals	
	3 Other	QC Deliverable Requested: Results + QC	Results + QC	lested:	verable Requ	QC Deli	(HCI)	Hydrochloric acid	Hydro	TPH (418.1)	TPH (418.	
			n -IP	Send Invoice to: Chamblin - IP	voice to:	Send In	(HCI)	Hydrochloric acid	: :	TPH (8015)	TPH (801	
3	☐ 10 Days 🗙 Other 📈		Requested TAT: 1-3 Days 5 Days	☐ 1-3 Days	Requested TAT: Fax and/or Mail Besi	Reques Fax and	101	-	amples)	Y for Water S	Preservatives (ONLY for Water Samples)	Preser
		CIIVES:	Lab Directives.					NO	× yes		samples iced:	Samp

CANARY to PM WHITE to Lab Distribution: W PE-179 (3/96)

GREEN to Sampler PINK to QA/QC

000) H Time

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. **B** 7547

	Temperature upon	2,20C	S MALEO	40	Comments (Field PID) Lab ID #'s	(4,2) CH070U35-04	(31.6)	(23.2) -003	100 (20)	500- (8.0)	200- (1.1)	TOD- (1,62)	(3.1) -008	(HrH)	(3i)	(6,3), -011	(244) -OB
by meniod realing and realinger	(K)	5/02 5/02	50 S) (8)	How Holl	1 0 0 1	××××	٠ ١				×	×	×	×		× × ×	×
Aliaiyses Dy		28 (820)			_	×××	×××	×××	×	× × ×	×××	×	× ×	× ×	×	×	× λ
I'M GOVLO	and the second second	Matrix). S	IoS etsW iA eqiW		×	>	×	×	×	× ′′°	×	X	X	×	×	<i>S</i>
Project Mgr. JIM GOVL	Phase • Task	بو		26	Date Time	DHOI HO bIL	28	1254	13.18	13/5	MHS	1512	1524	1628	1640	\$171	779 W 1755
H 2004 SI	402647	Cravens/Scholbe	Teklob	Location Collinson R.	r and (depth)	(1-21)	(13)	(21-10)	(17-18")	(27-281)	(2-3)	(,8-4)	(184)	(18-19')	(27.28)	(2-3')	(8-41)
Project Name CH	Project Number 62H026H7	Sampler(s)	Na Na	Laboratory Location	Sample Number and (depth)	R558-2	R558-7	BS 58-12	R558-18	BS58-28	B554-3	8-45-8	B554-8D	B559-19	R554-28	RS08-3	B508-9

Samples Iced:	s leed:	XYes	No	Lab Directives:
				Requested TAT: 1-3 Days 5 Days 10 Days X Other
Preservat	Preservatives (ONLY for Water Samples)	er Samples)		7000
	Volatile Organics	Hydrochloric acid		rax alluvol Mail nesults to.
	TPH (8015)	TPH (8015) Hydrochloric acid		Send invoice to: Champlin 27
	TPH (418.1)	TPH (418.1) Hydrochloric acid	acid (HCI)	QC Deliverable Requested: X Results + QC Level 3 Other
	Metals	Nitric acid		Special Guidelines: VVC3 STOC5 VII 170 778 M
	Cyanide	Sodium hydroxide	oxide (NaOH)	Reporting Limits:
	Other (Specify)			* Special:
Shipping:			Relinquished by:	Received by:

Carrier / Airbill No.

CANARY to PM Distribution: WHITE to Lab PE-179 (3/96)

GREEN to Sampler PINK to QA/QC

Time	320	
Date	7/23/by	
Signature	Good Law Barnes	

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. **7548**

Project Name C. Y 2004 S.L.		Project Mar. Jim Covil			An	alyses b	y Methoc	Name	Analyses by Method Name and Number			
	1		T	_	_	(6	_	_	100	
Project Number 6240 264	/	Phase • Task	- Iuo			P B		Ty	_	_	ie L	Temperature upon
Sampler(s) Crayeas	ens/5challe		Matrix	790	06	ref	510.	אנר				Receipt
Name 70Kleb	98		¥ \$	8)	(8)	クか	8)	ابرو				
e e	Collision IL	1103	Soile Wate YiA Goile Soile Sil Nu	X3	57 SHV	721	40,	No h	A			
Sample Number and (depth)	d (depth) Date	Time)	18/	U U	ر ار ا	1	>	4	Comments (Field PID)	(Field PID)	Lab ID #'s
11-8 WSB	top-1 (11-01)	X 2081 4	7	X		^					(198)	210-
BS-28	My (18210)	1 1845 X	~ ~	×							(2,2)	700-
BSS7-1	1201 (1-0)	2480 Nove-1	×	× ×			×	×			(34)	200-
BSS7-110	1 (,01-6)	2915	×	×					- A		(12.3)	9)0
BSS7-12	(11-12)	SHOI	<i>y</i>		×	×	×	×			(1,55,1)	10-
BSS1-24	(23.24.)	1255	2	×					The state of the s		(3,0)	70(8
8556-3	(2-3/)	1255	7	<u>\</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		×	×		THE REPORT OF THE PROPERTY OF	(6,4)	-0(9
B556-6	(2-6)	1315	5	×	\						(245)	000,
BSS6-20	(19-20"/	MIS	(X	\(\frac{1}{2}\)	×					(5/8)	100-
BSS6-28	(228)	, M42)	5		×	X	X	\			(2,3)	-03J
B\$56-28D	V (18270)	(LAM	<i>></i>		×	×	×				0,3	-093
B550-3	(2-31) 720-04	X 1605	S	1	×	X	X	λ			(53,8)	hCO-
Samples Iced:	X Yes	oN 🗆							Lab Directives:	ives:		1.0.0
Preservatives (ONLY for Water Samples)	or Water Samples)			~ 3	Requested TAT: 1-3	TAT:	□ 1-3 Days	ays JIM	□ 5 Days	□ 10 Days	X Other // /	To May
☐ Volatile Organics ☐ TPH (8015)		Hydrochloric acid	(HCI)	Se	nd Invoic	e to:	Send Invoice to: Champin	13	0000			
TPH (418.1)	hydr Hydr	Hydrochloric acid	(HCI)	 	QC Deliverable Requested:	ble Requ	lested:	Z,	Results + QC	Level 3	Other	
☐ Metals	Nitric	Nitric acid	(HNO ₃)	ď	Special Guidelines:	delines:	70CS	1 27	165 - M	11 170 1/4	X. A	
Cyanide		Sodium hydroxide	(NaOH)	Re	Reporting Limits:	imits:						
Other (Specify)	(A	The second secon		*	* Special:							

	Relinquished by:		Received by:
bill No.	Signature / / /	Date Time /	Signat
	Sheet Hall	1220 1/23/89	Drought W

Other (Specify)

Carrier / Air

Shipping

* Special:

acel posce

KINNA

Time

Date

PINK to QA/QC

CANARY to PM

WHITE to Lab

PE-179 (3/96)

Distribution:

GREEN to Sampler

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No.

7549

Project Mgr. JIM GOULK Isiners	rainers	Ana	Analyses by Method Name and Number		11 (20) 12 (20
Phase • Task		To	かりん		Temperature upon
scho/be m	Matrix	1920	18/18/18/18/18/18/18/18/18/18/18/18/18/1		
) = I	Se		18)		
	odiW other		HA HA		
Date Time		7 7 7	1 10 1 12 1	Comments (Field PID)	Lab ID #'s
X Dal 1700-7		×××		(2012)	-035
1735 X		×××	×	(164)	200
X 0271		×××		(2.4)	-037
V 1820 X	•	×		(H°H)	-098
7-21-04 0920 X		X X V	× × ×	(0° 4)	-029
1 8950 X	24,3	×	×	(13.1)	~30
I BBK X		\ \ \	×	(13.1)	-03 (
N N N		×	×	(42.6)	. 33)
N 35 K		×		(5,0)	-633
1345 X		×	× × ×	(8.8)	-034
IMIS X		×		(2H3)	-035
X 5151 X		×	××××	(2,163)	~03k
X Yes			Lab Directives:		0 -
		Requested TAT:	Days 🗆	☐ 10 Days S Other MVFM	とこれで
Hydrochloric acid		Fax and/or Mail R Send Invoice to:	Send Invoice to:		
	3	QC Deliverable Req	QC Deliverable Requested: [XResults + QC Special Guidelines: 10c + 5Mc - Fig.	W 740 Ax, A	
Sodium hydroxide (Na	(NaOH)	Reporting Limits:	mits:		
		* Special:		EC STATEMENT OF THE PROPERTY O	
			Section of		

Carrier / Airbill No. Shipping:

	Date	1/2	
Relinduished by:	// / Signature /	Week Stroll	

1220 Time

Received by:

<u> </u>	Signature	Date	Time
THE PERSON NAMED IN	houshow Banus	Poser	1330

CANARY to PM

GREEN to Sampler

PINK to QA/QC

Shaded Areas to be Completed by Lab

WHITE to Lab Distribution: WI PE-179 (3/96)

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. ☐ 7550

Project Name CH 2004 ST		Project Mar.	Jun Gul		Analyses by	Method I	Analyses by Method Name and Number	er	
Project Number 624	1			ontair	(V)	1	(tr)		Temperature upon
Sampler(s) Grave	gavens/scholbe	39	Matrix	928	X4 Y4	210	512		Receipt
Name Teklab	a's		* S	7	クラフ	8)	Pris		
, uo	Collhank.	27	Soil Wate Air Wipe	XJI	אר אמר מרכ	HI	He		
Sample Number and (depth)		Date Time)	8	5	1	1	Comments (Field PID)	Lab ID #'s
BSØ7-28	40-128 (82-12)	SIL1 40-1	X 522 X	FX MSJ	.J			(0,6) 55c (160)	\$637
B502-24	(2324) 121	0061 HO-12-1	(F.	××				(10,2)	~-03%
13506-3	2-3) 12	7-22-44 18833	×	×		^ ×	×	900	-039
B506-7	(67)	DIPO HOSCI	×)	×				ich)	
BSQ6-17	(16.17)	pag!	×)	×	×			(598'()	
8506-28	(22%)	1030	X	×	×	×	×	(2°B)	e40- (4
BS16-3	(2-3')	MIND	>	×		X	×	(3.6)	
B516-5	(4-5")	1202	×	×	٨			(00%)	179-
B516-50	(H-5")	12005	×)	×	×			(200)) - ous
B516-14	(13-14")	1335	×	×				(891)	950- (
BS16-24	(2324)	1350	×	×				28	7)047
BS14-3 (2-3)	V 1420	×.	×	X	^ x	メメ	()40)	1) .c48
Samples Iced:	X Yes	ON	0				Lab Directives:	ctives:	

Samples Icea.	A IES	ONI					5	•	7
Preservatives (ONLY for Water Samples)	Samples)		Requested	Requested TAT: 1-3 Days 5 Days	3 Days		10 Days X Other //	Other	2
Volatile Organics Hydrochloric acid	Hydrochlori	ic acid (HCI)	Fax allu/or	Mall Results to		\$500 P			
TPH (8015)	Hydrochloric acid		Send Invoice to:	ce to:	Signary I	16			
TPH (418.1)			QC Deliver	QC Deliverable Requested:	X,	QC Deliverable Requested: Results + QC Level 3 Othe	☐ Level 3	Other	
Metals	Nitric acid	(HNO ₃)	Special Gu	idelines:	とってナリ	12 - 7/1	120 ADX		
□ Cyanide	Sodium hydroxide	droxide (NaOH)	Reporting Limits:	Limits:	,		/		
Other (Specify)			* Special:						
Shipping:		Relinquished by:				Received by:			
Carrier / Airbill No.		Signature	11011	- Ďate	Time	Sig	Signature		Date
		Inst John		THE IT	220	Weer the	every Barres	_	2015
			رم	15/13/hr		•			
				15/11/2	196				

Distribution: WHITE to Lab PE-179 (3/96)

CANARY to PM

PINK to QA/QC

GREEN to Sampler

000 Time

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 3 7551

Project Name CH 2004 ST		Project Mar. Jim Gall	Cost	Jeks	Analyses by M	Analyses by Method Name and Number	umber		
1 5		Phase • Task		ontain	(t)	(V)		ā	Temperature upon
Sampler(s) Croyens/Scholbe	cholbe		Matrix	977 (X	8 80			Receipt
S S	Ab dw		S	8);	りり	J. J.			
Location (Wille IL		Soil Wate Air Wipe	A) X SI L	HJ_ XVI SXO	Hd Note			
Sample Number and (depth)	n) (Date	Time	\	101 8	ISI	2	Comments (Field PID)	(Field PID)	Lab ID #'s
BSIM-3D (2-	(2-3) 122 W	1422	×	2	$\frac{\lambda}{\lambda}$	× × ×		12.31)	640
B514-8 (1-8)	1/8	153B	×	×				(251)	-050
11-11 (16-m	, //	16110	×	XXX	×			(1,021)	-05(
BSIM-28 (2128)	287 1	1848	×	×					-05A
									and a
	1 (A)								
									60 1277 273
Samples Iced:	X Yes	ON 🗆					ives		
Preservatives (ONLY for Water Samples)	r Samples) Hydrochloric acid	chloric point	(HCI)	Reques Fax and	Requested TAT:	□ 1-3 Days □ 5 Days ults to: 7 m GM	Days 🗆 10 Days	X Other Mulling	Se ma
TPH (8015)		Hydrochloric acid	(E (S)	Send Ir	Send Invoice to:	Chankin -	d H		
TPH (418.1)	Hydro	Hydrochloric acid	(HCI)	QC Del	OC Deliverable Requested	ed: X Results + QC	+ QC TH Level 3	Other	
Ovanide	Sodium hv	Nitric acid Sodium hydroxide	(NaOH)	Reporti	Special Guidelliles.				
Other (Specify)			(1)	* Special:					

Carrier / Airbill No.

Shipping:

- C	н	
-	臣	
2	Ħ	
	Ħ	
_	昙	
- 0	B	
+	B	
١.	H	
	Ħ	
Z	曹	
-	В	
п	S	
	B	
	н	
	н	
	麵	
	н	
	B	
_	H	
2	H	
~	Ħ	
-	H	
-	Ħ	
-	B	
	R	
-	ĸ	
α	Ħ	
-	ĸ	
_	Ħ	
_	Ħ	
4	ı	
\vec{c}	ı	
•	ı	

Date

Relinquished by:

(220 Time

2
0
Š
ē.
မ္မ
ď

1				
	Time	०६८।		
	Date	HOSEGIL		
	Signature	Heolether Barres)	

GREEN to Sampler

WHITE to Lab Distribution: W PE-179 (3/96)

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 7552

Project Name C.H. 20014 CL	Project Mar	Mar Goo	7,	GIS		Analyses by Method Name and Number	Number		
, ,		Tock		lietn	_				
	Puase	• lask		10(_			ם	inperature upon
Sampler(s) Cravens / Scholbe	Scholbe		Matrix					ALC III III	receipt
Name Teklab			J	¥					
Laboratory Location Collection	27		Soil Wate Air Wipe	al Nu	HV 91	570			
Sample Number and (depth)	Date	Time)	_		Comments (Field PID)	Field PID)	Lab ID #'s
112043	128岁	ON80	×	W					MATATAR - MAI
102043	-	8443	>-	N	d				70V
10043		10/13	5	w	4				W ()
11043		SHOL	>	3	4				***************************************
109 0 H3		1125	×	w	Ч				N N
104043		1127	>	w	1				3 3
108043		1483	×	r	7				S S
108943		1487	بح	∞	4				840
185843	\Rightarrow	1435	×	3	1				800
781	40-61-6	M3Ø	×	K	1				9 00
Samples Iced:	X Yes	% 				Lab	Lab Directives:		
Preservatives (ONLY for Water Samples)	nples) Hydro	s) . Hydrochloric acid	(HCI)		Requ Fax	Requested TAT: □ 1-3 Days □ 5 Days Fax and/or Mail Results to: ブル らいん	5 Days 10 Days	Other	hormod
TPH (8015)	Hvdro	Hydrochloric acid	(HC)		Senc	Invoice to: Champin - 15		-	

Samples Iced:	No		Lab Directives:	.S:		
Preservatives (ONLY for Water Samples)		Requested TAT: — 1-3 Days	5 Days	10 Days	Xother 12	hos
Volatile Organics Hydrochloric acid	loric acid (HCI)	Fax and/or Mail Results to:	N Godd	¥.		
		Send Invoice to: Chamblin - IP	IP		-	
		QC Deliverable Requested:	Results + QC	Level 3	Other	
☐ Metals Nitric acio		Special Guidelines:		The state of the s		
☐ Cyanide Sodium hydroxide		Reporting Limits:	* 1		-	
☐ Other (Specify)		* Special: Qhoodopace				
Shipping:	Relinquished by:		Received by:			
Carrier / Airbill No.	Signature	Date Time	Sig	Signature		Date
	Jakth	Jelle 1/2 8/04 1400	Spill John	10 Well	1/2	25.64
)				

GREEN to Sampler

KK 6-4-34 ded Areas to be Completed by Lab

Time 1400

> WHITE to Lab PE-179 (3/96)

CANARY to PM

PINK to QA/QC

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. 7600

Project Name CH 2004 ST	F Project Mgr. 600	~		Analyses by Method Name and Number	
9	7 Phase • Task		nistno		Temperature upon
Sampler(s) CTUVENS /SCI	11.11	Matrix			Receipt
Name 70K/50		× S			
o u	o Fe	Soil Wate Air Wipe	Vo Lg		
Sample Number and (depth)	/ Date Time)		Comments	Comments (Field PID) Lab ID #'s
106043	22604 HHG		321		110-1 APTATAN
EHACQ1	1520	1	- 4		2
187943	1523	7	- ×	The state of the s	200
116043	155B	r c	- 4		47
113043	8091	7	- ~		VIS VIE
IN BH3	BH91	8	7		
114543	17,05	6	~		LIO
115043	W 171B	8	7 2		
782	7-1944 H3B	8	1 7 7		619
Samples Iced:	Ø Yes □ No			Lab Directives:	
Preservatives (ONLY for Water Samples)	amples)	Į.	Requested TAT: 1-3 Days Fax and/or Mail Results to:	ays \Box 5 Days \Box 10 Days \mathcal{J} /m \mathcal{G} ould	Other Mynax
Volatile Organics TPH (8015)	Hydrochloric acid	(E) (E)	Send Invoice to:	Champling IP	
☐ TPH (418.1)	Hydrochloric acid	(HCI)	QC Deliverable Requested: Special Guidelines:	X Results + QC ☐ Level 3	Other
Cyanide	Sodium hydroxide	(NaOH)	Reporting Limits:		
1			opecial.		
Shipping:	Relin	Relinquished by:		Received by:	

Received by:

Signature	Date	Time
Girlet a. Make	40/86/1	(400)

GREEN to Sampler

WHITE to Lab Distribution: W PE-179 (3/96)

Carrier / Airbill No.

CANARY to PM

PINK to QA/QC

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

COC Serial No. $\mathbf{B}5109$

																							_
100 mm	n de la companya de l	Receipt 2.50	1年 1		Lab ID #'s	NYOBO14600											0 " 6	200					Time
100	Temperature upon	Yee Y	9		La	90) }										7.7	ar Tand					Date
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 1	7. 1 Miles 46. 1 17. 1		<u>Q</u>							A PARTICIPATION OF THE PARTICI		AL	2-6			O de	Other				
Company of the Control of the Contro					Comments (Field PID)									E-MAIL	18-01 8-13-01		ves:	Tham bin (IP) Could Charles	X Results + QC	amblin 145 AP		y:	Signature
and Number					\												Lab Directives:	ham ble (Results + QC	5 8 51		Received by:	
Analyses by Method Name and Number																	8	ays	3' -	Seald Pess			Time
yses by		5	104	2/0 0= 77	1	\searrow									and the second s			Hes (OC Deliverable Requested:	lines:i its:			Date
Anal	P	No	X	O=	7	×									Mary and a second of the secon	The state of the s		Requested TAT: Fax and/or Mail	ivoice liverabl	Special Guidelines:	al:		
	7	NE	d	תד ה	Z	×	:									Name of the last		Reques	Seria II	Special Reporti	* Special:		
				<u> </u>	-	入										and the second second second							
1619	nistno	O to	¥.	19dJC	OT	N							***************************************										Signature
		Matrix	S	۲iA eqiW												COMPLETE SECUTION	20	(T)	(HCI)	-INO3) VaOH)		Relinquished by:	Sign
100 D			15	ioS etsW ate		X		And the same										=	==	= =		quis	1
					Time	1515		Video	MANAGEMENT OF A RESIDENCE A ANALYSIS (ANALYSIS), AN								ON [hloric acid	hloric acid hloric acid	Nitric acid Sodium hydroxide		Relin	
Project Mar.	Phase • Task	(Kelpo		77	Date	8404											XYes	Samples) Hydrochloric acid	Hydrochloric acid Hydrochloric acid	Nitric acid			
72 HOC	102647	Straft Cravens (Kelivan)	Name Teklob, Inc.	Location Collingille,	Sample Number and (depth)												X	Water S	: :		ecify)		Carrier / Airbill No.
ne IP 2t	Project Number 62402647	Stra	Nar		nple Number	E JWO	_	-						MAY THE RESERVE OF THE PROPERTY OF THE PROPERT			Samples Iced:	ratives (ONLY for Warives Volatile Organics	TPH (8015) TPH (418.1)	Metals	Other (Specify)		Carrie
Project Nan	Project Nun	Sampler(s)	, aboroton	Laboratory	San	VO)				Control and the Control and th	chemical Annual Company of Company of the State of Philadelle						Sampl	Preserv				Shipping:	

WHITE to Lab

CANARY to PM

PINK to QA/QC

Time	1603		
Date	8664	, ,	
Signature	Sportest Alletter		

85 WH 1603

GREEN to Sampler

Shaded Areas to be Completed by Lab

PE-179 (3/96) Distribution:

210 West Sand Bank Road P.O. Box 230 Columbia, IL 62236-0230

(618) 281-7173 Phone (618) 281-5120 Fax (618) 281-8933 Bulletin Board

coc Serial No. 🖺 7539

to Internet			Analyses by Method Name and Number
Project Name CH 200H 52	Project Mgr. God		
Project Number 624026+7	Phase • Task	stno	Temperature
	76	Matrix of	THE ZWO
Name Teklab		¥ J Se	W 5 X
" Colonialle	77	Soi Wate TiA Wipe Othe	37. LAM (165) A (165)
Sample Number and (depth)	Date Time	oT	\rightarrow
COMPI (RolloH1)	7904 112B	X	V / / / / / / / / / / / / / / / / / / /
(R116#2+3)	7904 1145	X	(A)
			12- Sud Gendlin
			Please run 17CLP Pb+14, and learth CN+5
			on Sorth somether.
			Jan Cle 1/19/64
			4079/12
Samples Iced:	es 🗆 No		7 725
Preservatives (ONLY for Water Samples)	oles) Hydrochloric acid	(HCI)	
□ TPH (8015)	Hydrochloric acid	(HC)	questec
☐ Metals	Nitric acid Sodium hydroxide	(HNO3) (NaOH)	Special Guidemies
	Relingui	iquished by:	Received by:
			Signature. Date Time
Carrier / Airbill No.		1 / / /	20 163C D. 1. 19 16 1. 1/2/20 1.
-	>	acor ind	CAMBELL CAMBA

GREEN to Sampler

conton and week and Etry 7/12/04

CANARY to PM

PINK to QA/QC

Shaded Areas to be Completed by Lab

Distribution: WHITE to Lab PE-179 (3/96)

APPENDIX L

CSI Soil Analytical Data Sheets

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

August 11, 2004

Jim Gould Philip Environmental 210 West Sand Bank Road Columbia, IL 622360230

TEL: (618) 281-7173 FAX: (618) 281-5120 ACCORDANCE THE DIN ACCORDANCE

NELAP Accredited #100226

RE: A831-735002-012901-225/IP Champaign

OrderNo. 04070377

Dear Jim Gould:

TEKLAB, INC received 42 samples on 7/15/04 9:46:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP/Part 186 except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Philip Environmental

Project:

A831-735002-012901-225/IP Champaign

LabOrder:

04070377

Report Date: August 11, 2004

CASE NARRATIVE

This is a revised report. The list of VOC (8260) and SVOC(8270) compounds has been revised according to IEPA Title 35, Subtitle G, Chapter I, Part 740, Appendix A. Please replace your original report for this work order with this revised report.

Analytical Comments for METHODS V BTEX S & V 8260S S: SAMPLE 04070377-001E, 005E, 026D, 031D, 032D, 041D: Matrix interference present in sample. For SAMPLE 04070377-006E, 011D, 015D, 019D, 021D, 022D, 024D, 025D, 027D, 028D, 030E, 033D, 034E, 037D: Elevated reporting limit due to matrix interference.

Analytical Comments for METHODS SV 8270S S SIMS: SAMPLE 04070377-002AMS, 002AMSD: The recovery of Pyrene was lower than QC limits because of sample composition. For SAMPLE 04070377-019A, 025A, 026A, 029A, 030A, 032A, 033A, 037A, 038A, 039A: Elevated reporting limit due to matrix interference. For SAMPLE 04070377-029AMS, 029AMSD: Elevated reporting limit due to matrix interference. Matrix spike was diluted out. For SAMPLE 04070377-016A, 020A, 040A: Elevated reporting limit due to matrix interference. Surrogate was diluted out.

Analytical Comments for METHOD SV_8270S_S: SAMPLE 04070377-001A, 021A, 022A, 027A, 028A, 034A: Elevated reporting limit due to matrix interference. For SAMPLE 04070377-006A: Matrix interference present in sample. For SAMPLE 04070377-001AMS, 001AMSD: Elevated reporting limit due to matrix interference. Matrix spike recoveries were not within acceptable limits because of sample composition.

Analytical Comments for METHOD SV OA2 S: SAMPLE 04070377-001A, 024A: #: Unknown hydrocarbon. For SAMPLE 04070377-006A: #: Unknown hydrocarbon. Elevated reporting limit due to matrix interference. For SAMPLE 04070377-006AMS, 06AMSD: #: Unknown hydrocarbon. Matrix spike was diluted out. Elevated reporting limit due to matrix interference. For SAMPLE 04070377-011A, 016A, 026A, 030A, 033A, 040A: #: Unknown hydrocarbon. Surrogate was diluted out. Elevated reporting limit due to matrix interference.

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

1DPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

NELAP - IL ELAP and NELAP Accredited Field of Testing

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B510-2 (1-2)

Lab ID:

Collection Date: 7/12/04 10:55:00 AM

Report Date:

04070377-001 11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		24.5	%	4	7/16/04	JRS
STANDARD METHODS 18TH	1 ED. 2540 G							
Total Solids		0.1		75.5	%	1	7/16/04	JRS
SW-846 3050B, 6010B, MET.	ALS BY ICP							
Arsenic	NELAP	2.40		10.8	mg/Kg-dry	1	7/27/04 9:18:49 AM	JMW
Barium	NELAP	0.48		84.6	mg/Kg-dry	1	7/24/04 6:07:51 PM	SAM
Cadmium	NELAP	0.19		0.58	mg/Kg-dry	1	7/24/04 6:07:51 PM	SAM
Chromium	NELAP	0.96		16.0	mg/Kg-dry	1	7/26/04 12:05:36 PM	JMW
Lead	NELAP	3.85		128	mg/Kg-dry	1	7/24/04 6:07:51 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 6:07:51 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 6:07:51 PM	SAM
SW-846 3550B, 8015, TOTAL	PETROLEUM HYD	ROCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	6.57		50.9 #	mg/Kg-dry	1	7/21/04 9:22:00 PM	CJS
Kerosene	NELAP	6.57		ND	mg/Kg-dry	1	7/21/04 9:22:00 PM	CJS
Mineral Spirits	NELAP	6.57		ND	mg/Kg-dry	1	7/21/04 9:22:00 PM	CJS
Motor Oil	NELAP	6.57		97.9 #	mg/Kg-dry	1	7/21/04 9:22:00 PM	CJS
Surr: n-Tetracontane	NELAP	50.6-140		64.8	%REC	1	7/21/04 9:22:00 PM	CJS
SW-846 3550B, 8270C, SEM	I-VOLATILE ORGAN	IC COMP	OUNDS E	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
1,2-Dichlorobenzene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
1,3-Dichlorobenzene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
1,4-Dichlorobenzene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4,5-Trichlorophenol	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4,6-Trichlorophenol	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4-Dichlorophenol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4-Dimethylphenol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4-Dinitrophenol	NELAP	19.7		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2,4-Dinitrotoluene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2.6-Dinitrotoluene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2-Chloronaphthalene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2-Chlorophenol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2-Methylnaphthalene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2-Nitroaniline	NELAP	19.7		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
2-Nitrophenol	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
3.3´-Dichlorobenzidine	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
-,					0 0 ,	5	7/23/04 3:23:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-001

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B510-2 (1-2)

Collection Date: 7/12/04 10:55:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4,6-Dinitro-2-methylphenol	NELAP	19.7		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Bromophenyl phenyl ether	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Chloro-3-methylphenol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Chloroaniline	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Chlorophenyl phenyl ether	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Nitroaniline	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
4-Nitrophenol	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Acenaphthene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Acenaphthylene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Anthracene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Benzo(a)anthracene	NELAP	6.89	J	2.9	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Benzo(a)pyrene	NELAP	6.89	J	3.2	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Benzo(b)fluoranthene	NELAP	6.89	J	4.5	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Benzo(g,h,i)perylene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Benzo(k)fluoranthene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Bis(2-chloroethoxy)methane	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Bis(2-chloroethyl)ether	NELAP	8.98		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Bis(2-chloroisopropyl)ether	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Bis(2-ethylhexyl)phthalate	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Butyl benzyl phthalate	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Carbazole		9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Chrysene	NELAP	6.89	J	3.6	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Di-n-butyl phthalate	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Di-n-octyl phthalate	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Dibenzo(a,h)anthracene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Dibenzofuran	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Diethyl phthalate	NELAP	9,85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Dimethyl phthalate		6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Fluoranthene	NELAP	6.89	J	3.7	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Fluorene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Hexachlorobenzene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Hexachlorobutadiene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Hexachlorocyclopentadiene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Hexachloroethane	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Indeno(1,2,3-cd)pyrene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Isophorone	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
m,p-Cresol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-001

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B510-2 (1-2)

Collection Date: 7/12/04 10:55:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
N-Nitroso-di-n-propylamine	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
N-Nitrosodiphenylamine	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Naphthalene	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Nitrobenzene	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
o-Cresol	NELAP	9.85		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Pentachlorophenol	NELAP	39.4		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Phenanthrene	NELAP	6.89	J	2.0	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Phenol	NELAP	6.89		ND	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Pyrene	NELAP	9.85	J	5.8	mg/Kg-dry	5	7/23/04 3:23:00 AM	SML
Surr: 2,4,6-Tribromophenol		31-123		68.9	%REC	5	7/23/04 3:23:00 AM	SML
Surr: 2-Fluorobiphenyl		14.6-132	S	134	%REC	5	7/23/04 3:23:00 AM	SML
Surr: 2-Fluorophenol		27-111		92.4	%REC	5	7/23/04 3:23:00 AM	SML
Surr: Nitrobenzene-d5		28.9-113	S	118	%REC	5	7/23/04 3:23:00 AM	SML
Surr: p-Terphenyl-d14		25-144		130	%REC	5	7/23/04 3:23:00 AM	SML
Surr: Phenol-d5		33.7-123		114	%REC	5	7/23/04 3:23:00 AM	SML
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
1,1,1-Trichloroethane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,1,2-Trichloroethane	NELAP	6.1		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,1-Dichloroethane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,1-Dichloroethene	NELAP	6.1		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,2-Dichloroethane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
1,2-Dichloropropane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
2-Butanone	NELAP	60.8		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
2-Hexanone	NELAP	60.8		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
4-Methyl-2-pentanone	NELAP	60.8		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Acetone	NELAP	60.8	J	38	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Benzene	NELAP	1.2		31.2	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Bromodichloromethane	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Bromoform	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Bromomethane	NELAP	12.2		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Carbon disulfide	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Carbon tetrachloride	NELAP	6.1		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Chlorobenzene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Chloroethane	NELAP	12.2		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Chloroform	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Chloromethane	NELAP	12.2		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070377

Lab ID:

04070377-001

Report Date:

11-Aug-04

A831-735002-012901-225/IP Champa Client Project:

Client Sample ID: B510-2 (1-2)

Collection Date: 7/12/04 10:55:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
cis-1,2-Dichloroethene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	4.9		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Dibromochloromethane	NELAP	6.1		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Ethylbenzene	NELAP	6.1	J	2.2	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Methyl tert-butyl ether	NELAP	2.4		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Methylene chloride	NELAP	6.1		ND	µg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Styrene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Tetrachloroethene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Toluene	NELAP	6.1		7.6	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	4.9		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Trichloroethene	NELAP	6.1		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Vinyl chloride	NELAP	2.4		ND	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Xylenes, Total	NELAP	6.1		8.1	μg/Kg-dry	1	7/18/04 6:56:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		113	%REC	1	7/18/04 6:56:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	68.3	%REC	1	7/18/04 6:56:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		115	%REC	1	7/18/04 6:56:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		91.1	%REC	1	7/18/04 6:56:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.432	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	JS COMPOUNDS E	Y GC/FI	D					
n-Butanol		13		ND	mg/Kg-dry	1	7/23/04 3:54:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.63		6.43	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1_00		7.69		1	7/16/04 10:40:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B510-5 (4-5)

Lab ID:

Collection Date: 7/12/04 11:25:00 AM

Report Date:

11-Aug-04

04070377-002

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.2	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.8	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, SI		GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.313		ND	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Acenaphthylene	NELAP	0.313	J	0.15	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Anthracene	NELAP	0.313	J	0.067	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Benzo(a)anthracene	NELAP	0.313		0.498	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Benzo(a)pyrene	NELAP	0.313		0.509	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.313		0.707	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.313	J	0.28	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.313	J	0.22	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Chrysene	NELAP	0.313		0.589	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.313	J	0.074	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Fluoranthene	NELAP	0.313		0.652	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Fluorene	NELAP	0.313	J	0.048	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.313	J	0.23	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Naphthalene	NELAP	0.313	J	0.033	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Phenanthrene	NELAP	0.313	J	0.21	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Pyrene	NELAP	0.313		1.04	mg/Kg-dry	1	7/16/04 6:03:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.5	%REC	1	7/16/04 6:03:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		66.6	%REC	1	7/16/04 6:03:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		75.0	%REC	1	7/16/04 6:03:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	1.0		4.3	μg/Kg-dry	1	7/19/04 2:08:00 PM	HLR
Toluene	NELAP	4.9	J	1.7	μg/Kg-dry	1	7/19/04 2:08:00 PM	HLR
Ethylbenzene	NELAP	4.9		ND	μg/Kg-dry	1	7/19/04 2:08:00 PM	HLR
Xylenes, Total	NELAP	4.9	J	1.3	μg/Kg-dry	1	7/19/04 2:08:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	1	7/19/04 2:08:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		86.2	%REC	1	7/19/04 2:08:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.2	%REC	1	7/19/04 2:08:00 PM	HLR
Surr: Toluene-d8		2.8-112.8		97.8	%REC	1	7/19/04 2:08:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

Client Sample ID: B510-12 (11-12)

Lab ID:

04070377-003

Collection Date: 7/12/04 12:25:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.0	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		88.0	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUR	NDS BY GC	/MS			
Acenaphthene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Acenaphthylene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Anthracene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Benzo(a)anthracene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Benzo(a)pyrene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Chrysene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Fluoranthene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Fluorene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Naphthalene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Phenanthrene	NELAP	0.099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Pyrene	NELAP	0 099		ND	mg/Kg-dry	1	7/16/04 2:47:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		68.7	%REC	1	7/16/04 2:47:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		65.7	%REC	1	7/16/04 2:47:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		75.3	%REC	1	7/16/04 2:47:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COME	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		1.3	μg/Kg-dry	1	7/19/04 2:39:00 PM	HLR
Toluene	NELAP	3.9	J	1.8	μg/Kg-dry	1	7/19/04 2:39:00 PM	HLR
Ethylbenzene	NELAP	3.9		ND	μg/Kg-dry	1	7/19/04 2:39:00 PM	HLR
Xylenes, Total	NELAP	3.9	J	1.0	μg/Kg-dry	1	7/19/04 2:39:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	1	7/19/04 2:39:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.3	%REC	1	7/19/04 2:39:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		100	%REC	1	7/19/04 2:39:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	1	7/19/04 2:39:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070377

Lab ID:

04070377-004

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B510-28 (27-28)

Collection Date: 7/12/04 12:45:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		13.8	%	1	7/16/04	JRS
STANDARD METHODS 18TH B	D. 2540 G							
Total Solids		0.1		86.2	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Acenaphthylene	NELAP	0.097	J	0.010	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Anthracene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Benzo(a)anthracene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Benzo(a)pyrene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Chrysene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Fluoranthene	NELAP,	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Fluorene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Naphthalene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Phenanthrene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Pyrene	NELAP	0.097		ND	mg/Kg-dry	1	7/16/04 3:26:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		72.2	%REC	1	7/16/04 3:26:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		65.4	%REC	1	7/16/04 3:26:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		78.4	%REC	1	7/16/04 3:26:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.9		1.0	μg/Kg-dry	1	7/22/04 5:06:00 PM	HLR
Toluene	NELAP	4.3	J	1.2	μg/Kg-dry	1	7/22/04 5:06:00 PM	HLR
Ethylbenzene	NELAP	4.3		ND	μg/Kg-dry	1	7/22/04 5:06:00 PM	HLR
Xylenes, Total	NELAP	4.3	J	1.4	μg/Kg-dry	1	7/22/04 5:06:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		117	%REC	1	7/22/04 5:06:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		83.8	%REC	1	7/22/04 5:06:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		106	%REC	1	7/22/04 5:06:00 PM	HLR
Surr: Toluene-d8	82	2 8-112.8		96.0	%REC	1	7/22/04 5:06:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

A831-735002-012901-225/IP Champa **Client Project:**

WorkOrder:

04070377

Client Sample ID: B512-3 (2-3)

Lab ID:

04070377-005

Collection Date: 7/12/04 2:05:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.9	%	1	7/16/04	JRS
STANDARD METHODS 187	TH ED. 2540 G							
Total Solids		0.1		89.1	%	1	7/16/04	JRS
SW-846 3050B, 6010B, ME	TALS BY ICP							
Arsenic	NELAP	2.45		21.6	mg/Kg-dry	1	7/27/04 9:41:23 AM	JMW
Barium	NELAP	0.49		98.0	mg/Kg-dry	1	7/24/04 6:44:08 PM	SAM
Cadmium	NELAP	0.20		1.01	mg/Kg-dry	1	7/24/04 6:44:08 PM	SAM
Chromium	NELAP	0.98		26.7	mg/Kg-dry	1	7/26/04 5:33:12 PM	JMW
Lead	NELAP	3.92		158	mg/Kg-dry	1	7/24/04 6:44:08 PM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	7/24/04 6:44:08 PM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	7/24/04 6:44:08 PM	SAM
SW-846 3550B, 8270C SIM	S. SEMI-VOLATILE OR	GANIC (COMPOUR	DS BY GC	/MS			
Acenaphthene	NELAP	0.737	J	0.33	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Acenaphthylene	NELAP	0.737		1.23	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Anthracene	NELAP	0.737		1.74	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Benzo(a)anthracene	NELAP	0.737		2.87	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Benzo(a)pyrene	NELAP	0.737		2.94	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.737		4.31	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.737		1.34	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.737		1.50	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Chrysene	NELAP	0.737		3.23	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.737	J	0.43	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Fluoranthene	NELAP	0.737		7.83	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Fluorene	NELAP	0.737		1.07	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.737		1.62	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Naphthalene	NELAP	0.737	J	0.58	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Phenanthrene	NELAP	0.737		5.99	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Pyrene	NELAP	0.737		6.02	mg/Kg-dry	1	7/18/04 5:54:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		83.7	%REC	1	7/18/04 5:54:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		72.3	%REC	1	7/18/04 5:54:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		87.0	%REC	1	7/18/04 5:54:00 PM	DMH
SW-846 5035, 8260B, VOLA	ATILE ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	0.9		8.3	μg/Kg-dry	1	7/18/04 2:58:00 AM	HLR
Toluene	NELAP	4.6		4.9	μg/Kg-dry	1	7/18/04 2:58:00 AM	HLR
Ethylbenzene	NELAP	4.6	J	1.3	μg/Kg-dry	1	7/18/04 2:58:00 AM	HLR
Xylenes, Total	NELAP	4.6	J	3.8	μg/Kg-dry	1	7/18/04 2:58:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-005

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B512-3 (2-3)

Collection Date: 7/12/04 2:05:00 PM

Matrix:

SOLID

Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
	72.8-122		107	%REC	1	7/18/04 2:58:00 AM	HLR
	75.6-120	S	73.6	%REC	1	7/18/04 2:58:00 AM	HLR
	74.1-121		103	%REC	1	7/18/04 2:58:00 AM	HLR
82	2.8-112.8		89.1	%REC	1	7/18/04 2:58:00 AM	HLR
NELAP	0.011		0.291	mg/Kg-dry	1	7/22/04	SRS
NELAP	2.77		68.7	mg/kg-dry	5	7/26/04	ADH
NELAP	1.00		7.44		1	7/15/04 4:49:00 PM	EAW
	82 NELAP NELAP	72.8-122 75.6-120 74.1-121 82.8-112.8 NELAP 0.011 NELAP 2.77	72.8-122 75.6-120 S 74.1-121 82.8-112.8 NELAP 0.011 NELAP 2.77	72.8-122 107 75.6-120 S 73.6 74.1-121 103 82.8-112.8 89.1 NELAP 0.011 0.291 NELAP 2.77 68.7	72.8-122 107 %REC 75.6-120 S 73.6 %REC 74.1-121 103 %REC 82.8-112.8 89.1 %REC NELAP 0.011 0.291 mg/Kg-dry NELAP 2.77 68.7 mg/kg-dry	72.8-122 107 %REC 1 75.6-120 S 73.6 %REC 1 74.1-121 103 %REC 1 82.8-112.8 89.1 %REC 1 NELAP 0.011 0.291 mg/Kg-dry 1 NELAP 2.77 68.7 mg/kg-dry 5	72.8-122 107 %REC 1 7/18/04 2:58:00 AM 75.6-120 S 73.6 %REC 1 7/18/04 2:58:00 AM 74.1-121 103 %REC 1 7/18/04 2:58:00 AM 82.8-112.8 89.1 %REC 1 7/18/04 2:58:00 AM NELAP 0.011 0.291 mg/Kg-dry 1 7/22/04 NELAP 2.77 68.7 mg/kg-dry 5 7/26/04

IL ELAP and NELAP Accredited - Accreditation #100226

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B512-8 (7-8)

Lab ID:

04070377-006

Collection Date: 7/12/04 2:25:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		20.2	%	1	7/16/04	JRS
STANDARD METHODS 18T	H ED. 2540 G							
Total Solids		0.1		79.8	%	1	7/16/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.45		10.3	mg/Kg-dry	1	7/27/04 9:43:20 AM	JMW
Barium	NELAP	0.49		224	mg/Kg-dry	1	7/24/04 6:49:54 PM	SAM
Cadmium	NELAP	0.20		0.28	mg/Kg-dry	1	7/24/04 6:49:54 PM	SAM
Chromium	NELAP	0.98		18.8	mg/Kg-dry	1	7/26/04 5:42:08 PM	JMW
Lead	NELAP	3.92		15.0	mg/Kg-dry	1	7/24/04 6:49:54 PM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	7/24/04 6:49:54 PM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	7/24/04 6:49:54 PM	SAM
SW-846 3550B, 8015, TOTA	L PETROLEUM HYDI	ROCARB	ONS (OA-	2) BY GC/F	<u>ID</u>			
Diesel	NELAP	62.3		830 #	mg/Kg-dry	10	7/20/04 12:04:00 PM	CJS
Kerosene	NELAP	62.3		ND	mg/Kg-dry	10	7/20/04 12:04:00 PM	CJS
Mineral Spirits	NELAP	62.3		ND	mg/Kg-dry	10	7/20/04 12:04:00 PM	CJS
Motor Oil	NELAP	62.3		ND	mg/Kg-dry	10	7/20/04 12:04:00 PM	CJS
Surr: n-Tetracontane	NELAP	50.6-140		75.0	%REC	10	7/20/04 12:04:00 PM	CJS
SW-846 3550B, 8270C, SEN	II-VOLATILE ORGAN	C COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
1,2-Dichlorobenzene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
1,3-Dichlorobenzene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
1,4-Dichlorobenzene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4,5-Trichlorophenol	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4,6-Trichlorophenol	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4-Dichlorophenol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4-Dimethylphenol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4-Dinitrophenol	NELAP	1.26		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,4-Dinitrotoluene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2,6-Dinitrotoluene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2-Chloronaphthalene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2-Chlorophenol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2-Methylnaphthalene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2-Nitroaniline	NELAP	1.26		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
2-Nitrophenol	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
3,3'-Dichlorobenzidine	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
3-Nitroaniline	NELAP	1.26		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMF

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

04070377-006

Report Date:

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B512-8 (7-8)

Collection Date: 7/12/04 2:25:00 PM

Matrix:

Analyses	Certification	\mathbf{RL}	Qual	Result	Units	DF	Date Analyzed	Analys
4,6-Dinitro-2-methylphenol	NELAP	1.26		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Bromophenyl phenyl ether	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Chloro-3-methylphenol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Chloroaniline	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Chlorophenyl phenyl ether	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Nitroaniline	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
4-Nitrophenol	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Acenaphthene	NELAP	0.442	J	0.30	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Acenaphthylene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Anthracene	NELAP	0.442	J	0.15	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Benzo(a)anthracene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Benzo(a)pyrene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Bis(2-chloroethoxy)methane	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Bis(2-chloroethyl)ether	NELAP	0.575		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Bis(2-chloroisopropyl)ether	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Butyl benzyl phthalate	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Carbazole		0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Chrysene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Di-n-butyl phthalate	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Di-n-octyl phthalate	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Dibenzofuran	NELAP	0.442	J	0.30	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Diethyl phthalate	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Dimethyl phthalate		0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Fluoranthene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Fluorene	NELAP	0.442	J	0.31	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Hexachlorobenzene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Hexachlorobutadiene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Hexachlorocyclopentadiene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Hexachloroethane	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Isophorone	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
m,p-Cresol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-006

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B512-8 (7-8)

Collection Date: 7/12/04 2:25:00 PM

Matrix:

Report Date: 11-Aug-04				Matrix:				
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
N-Nitroso-di-n-propylamine	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
N-Nitrosodiphenylamine	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Naphthalene	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Nitrobenzene	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
o-Cresol	NELAP	0.631		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Pentachlorophenol	NELAP	2.52		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Phenanthrene	NELAP	0.442		0.644	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Phenol	NELAP	0.442		ND	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Pyrene	NELAP	0.631	J	0.15	mg/Kg-dry	1	7/20/04 8:51:00 AM	DMH
Surr: 2,4,6-Tribromophenol		31-123	S	126	%REC	1	7/20/04 8:51:00 AM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		79.1	%REC	1	7/20/04 8:51:00 AM	DMH
Surr: 2-Fluorophenol		27-111		81.0	%REC	1	7/20/04 8:51:00 AM	DMH
Surr: Nitrobenzene-d5	:	28.9-113		52.1	%REC	1	7/20/04 8:51:00 AM	DMH
Surr: p-Terphenyl-d14		25-144		78.2	%REC	1	7/20/04 8:51:00 AM	DMH
Surr: Phenol-d5	h	33.7-123		93.6	%REC	1	7/20/04 8:51:00 AM	DMH
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,1,2-Trichloroethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,1-Dichloroethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,1-Dichloroethene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,2-Dichloroethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
1,2-Dichloropropane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
2-Butanone	NELAP	1220	J	470	µg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
2-Hexanone	NELAP	1220		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
4-Methyl-2-pentanone	NELAP	1220		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Acetone	NELAP	1220		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Benzene	NELAP	24.4		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Bromodichloromethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Bromoform	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Bromomethane	NELAP	244		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Carbon disulfide	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Carbon tetrachloride	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Chlorobenzene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Chloroethane	NELAP	244		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Chloroform	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
					10000			

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-006

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B512-8 (7-8)

Collection Date: 7/12/04 2:25:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
cis-1,2-Dichloroethene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	97.6		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Dibromochloromethane	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Ethylbenzene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Methyl tert-butyl ether	NELAP	48.8		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Methylene chloride	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Styrene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Tetrachloroethene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Toluene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	97.6		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Trichloroethene	NELAP	122		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Vinyl chloride	NELAP	48.8		ND	μg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Xylenes, Total	NELAP	122		ND	µg/Kg-dry	12.5	7/18/04 7:27:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		99.2	%REC	12.5	7/18/04 7:27:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.9	%REC	12.5	7/18/04 7:27:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		91.0	%REC	12.5	7/18/04 7:27:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	12.5	7/18/04 7:27:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.037	mg/Kg-dry	1.	7/22/04	SRS
SW-846 8015, MISCELLANEOU	US COMPOUNDS E	Y GC/FII)					
n-Butanol		13		ND	mg/Kg-dry	1	7/23/04 4:10:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.56		1	7/15/04 4:50:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-007

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B512-11 (10-11)

Collection Date: 7/12/04 3:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		15.2	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		84.8	%	-1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.579	J	0.18	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Acenaphthylene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Anthracene	NELAP	0.579	J	0.083	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Benzo(a)anthracene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Benzo(a)pyrene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Chrysene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Fluoranthene	NELAP	0.579	J	0.066	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Fluorene	NELAP	0.579	J	0.16	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.579		ND	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Naphthalene	NELAP	0.579	J	0.10	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Phenanthrene	NELAP	0.579	J	0.32	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Pyrene	NELAP	0.579	J	0.087	mg/Kg-dry	1	7/16/04 4:05:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		76.6	%REC	1	7/16/04 4:05:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		72.1	%REC	1	7/16/04 4:05:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		81.1	%REC	1	7/16/04 4:05:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/N	S				
Benzene	NELAP	0.9		0.9	μg/Kg-dry	1	7/22/04 5:38:00 PM	HLR
Toluene	NELAP	4.4	J	1.1	μg/Kg-dry	1	7/22/04 5:38:00 PM	HLR
Ethylbenzene	NELAP	4.4		ND	μg/Kg-dry	1	7/22/04 5:38:00 PM	HLR
Xylenes, Total	NELAP	4.4	J	1.8	μg/Kg-dry	1	7/22/04 5:38:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		105	%REC	1	7/22/04 5:38:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.1	%REC	1	7/22/04 5:38:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		97.7	%REC	1	7/22/04 5:38:00 PM	HLR
Surr: Toluene-d8		2.8-112.8		98.4	%REC	1	7/22/04 5:38:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-008

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B512-24 (23-24)

Collection Date: 7/12/04 3:25:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.5	%	4	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.5	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOU	NDS BY GC				
Acenaphthene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Acenaphthylene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Anthracene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Benzo(a)anthracene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Benzo(a)pyrene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Chrysene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Fluoranthene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Fluorene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Naphthalene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Phenanthrene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Pyrene	NELAP	0.101		ND	mg/Kg-dry	1	7/16/04 4:45:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		71.6	%REC	1	7/16/04 4:45:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		70.4	%REC	1	7/16/04 4:45:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		76.3	%REC	1	7/16/04 4:45:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.7		1.2	μg/Kg-dry	1	7/18/04 4:01:00 AM	HLR
Toluene	NELAP	3.7	J	1.2	μg/Kg-dry	1	7/18/04 4:01:00 AM	HLR
Ethylbenzene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 4:01:00 AM	HLR
Xylenes, Total	NELAP	3.7	J	1.2	μg/Kg-dry	1	7/18/04 4:01:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	-	102	%REC	1	7/18/04 4:01:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		85.3	%REC	1	7/18/04 4:01:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		96.0	%REC	1	7/18/04 4:01:00 AM	HLR
Surr: Toluene-d8		2.8-112.8		96.8	%REC	1	7/18/04 4:01:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B513-2 (1-2)

Lab ID:

04070377-009

Collection Date: 7/12/04 3:55:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		19.6	%	1	7/16/04	JRS
STANDARD METHODS 18TH	HED. 2540 G							
Total Solids		0.1		80.4	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.50		13.6	mg/Kg-dry	1	7/26/04 5:45:08 PM	JMW
Barium	NELAP	0.50		129	mg/Kg-dry	1	7/24/04 6:54:57 PM	SAM
Cadmium	NELAP	0.20		0.36	mg/Kg-dry	1	7/24/04 6:54:57 PM	SAM
Chromium	NELAP	1.00		22.4	mg/Kg-dry	1	7/26/04 5:45:08 PM	JMW
Lead	NELAP	4.00		470	mg/Kg-dry	1	7/24/04 6:54:57 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 6:54:57 PM	SAM
Silver	NELAP	1,00		< 1.00	mg/Kg-dry	1	7/24/04 6:54:57 PM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC (OMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.121	J	0.052	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Acenaphthylene	NELAP	0.121	J	0.10	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Anthracene	NELAP	0.121		0.221	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Benzo(a)anthracene	NELAP	0.121		0.803	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Benzo(a)pyrene	NELAP	0.121		0.821	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.121		1.33	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.121		0.307	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.121		0.492	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Chrysene	NELAP	0.121		0.934	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.121	J	0.12	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Fluoranthene	NELAP	0.121		1.70	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Fluorene	NELAP	0.121	J	0.051	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.121		0.404	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Naphthalene	NELAP	0.121	J	0.052	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Phenanthrene	NELAP	0.121		0.837	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Pyrene	NELAP	0.121		1.34	mg/Kg-dry	1	7/18/04 6:33:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		78.3	%REC	1	7/18/04 6:33:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		68.0	%REC	1	7/18/04 6:33:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		81.8	%REC	1	7/18/04 6:33:00 PM	DMH
SW-846 5035, 8260B, VOLA	TILE ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	1.1		7.6	μg/Kg-dry	1	7/18/04 4:32:00 AM	HLR
Toluene	NELAP	5.4	J	3.2	μg/Kg-dry	1	7/18/04 4:32:00 AM	HLR
Ethylbenzene	NELAP	5.4		ND	μg/Kg-dry	1	7/18/04 4:32:00 AM	HLR
Xylenes, Total	NELAP	5.4	J	1.8	μg/Kg-dry	1	7/18/04 4:32:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-009

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-2 (1-2)

Collection Date: 7/12/04 3:55:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	1	7/18/04 4:32:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.4	%REC	1	7/18/04 4:32:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		97.6	%REC	1	7/18/04 4:32:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		99.4	%REC	1	7/18/04 4:32:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.352	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.60		17.0	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1,00		6.83		1	7/15/04 4:52:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder: 0407

04070377

Lab ID:

04070377-010

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-2D (1-2)

Collection Date: 7/12/04 4:00:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0_1		20.3	%	1	7/16/04	JRS
STANDARD METHODS 18TH	HED. 2540 G							
Total Solids		0.1		79.7	%	1	7/16/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.50		10.6	mg/Kg-dry	1	7/27/04 9:50:10 AM	JMW
Barium	NELAP	0.50		124	mg/Kg-dry	1	7/24/04 7:00:00 PM	SAM
Cadmium	NELAP	0.20	J	0.15	mg/Kg-dry	1	7/24/04 7:00:00 PM	SAM
Chromium	NELAP	1.00		19.2	mg/Kg-dry	1	7/26/04 5:48:14 PM	JMW
Lead	NELAP	4.00		83.6	mg/Kg-dry	1	7/24/04 7:00:00 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 7:00:00 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 7:00:00 PM	SAM
SW-846 3550B, 8270C SIMS	, SEMI-VOLATILE OR	GANIC (COMPOUR	DS BY GC	/MS			
Acenaphthene	NELAP	0.629		ND	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Acenaphthylene	NELAP	0.629		ND	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Anthracene	NELAP	0.629		ND	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Benzo(a)anthracene	NELAP	0.629	J	0.18	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Benzo(a)pyrene	NELAP	0.629	J	0.19	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.629	J	0.37	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.629	J	0.11	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.629	J	0.13	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Chrysene	NELAP	0.629	J	0.26	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.629		ND	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Fluoranthene	NELAP	0.629	J	0.33	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Fluorene	NELAP	0.629		ND	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.629	J	0.10	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Naphthalene	NELAP	0.629	J	0.096	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Phenanthrene	NELAP	0.629	J	0.14	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Pyrene	NELAP	0.629	J	0.34	mg/Kg-dry	1	7/16/04 7:59:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		70.7	%REC	1	7/16/04 7:59:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		65.3	%REC	1	7/16/04 7:59:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		74.7	%REC	1	7/16/04 7:59:00 PM	DMH
SW-846 5035, 8260B, VOLA	TILE ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	1.1		3.9	μg/Kg-dry	1.	7/18/04 5:03:00 AM	HLR
Toluene	NELAP	5.7	J	2.7	μg/Kg-dry	- 1	7/18/04 5:03:00 AM	HLR
Ethylbenzene	NELAP	5.7		ND	μg/Kg-dry	1	7/18/04 5:03:00 AM	HLR
Xylenes, Total	NELAP	5.7	J	1.2	μg/Kg-dry	1	7/18/04 5:03:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B513-2D (1-2)

Lab ID:

04070377-010

Collection Date: 7/12/04 4:00:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	1	7/18/04 5:03:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.8	%REC	1	7/18/04 5:03:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		98.2	%REC	-1	7/18/04 5:03:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		100	%REC	1	7/18/04 5:03:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.053	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.61		13.8	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		5.91		1	7/15/04 4:54:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B513-8 (7-8)

Lab ID:

04070377-011

Collection Date: 7/12/04 4:25:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974						5		
Percent Moisture		0.1		14.5	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		85.5	%	1	7/16/04	JRS
SW-846 3550B, 8015, TOTAL I			ONS (OA-		ID			
Diesel	NELAP	144		884 #	mg/Kg-dry	25	7/20/04 2:57:00 PM	CJS
Kerosene	NELAP	144		ND	mg/Kg-dry	25	7/20/04 2:57:00 PM	CJS
Mineral Spirits	NELAP	144		ND	mg/Kg-dry	25	7/20/04 2:57:00 PM	CJS
Motor Oil	NELAP	144		ND	mg/Kg-dry	25	7/20/04 2:57:00 PM	CJS
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	25	7/20/04 2:57:00 PM	CJS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OF	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.660		1.58	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Acenaphthylene	NELAP	0.660		2.04	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Anthracene	NELAP	0.660		2.78	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Benzo(a)anthracene	NELAP	0.660		1.15	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Benzo(a)pyrene	NELAP	0.660		0.954	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.660		0.822	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.660	J	0.42	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.660	J	0.28	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Chrysene	NELAP	0.660		1.09	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.660	J	0.11	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Fluoranthene	NELAP	0.660		2.07	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Fluorene	NELAP	0.660		4.23	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.660	J	0.43	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Naphthalene	NELAP	0.660		ND	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Phenanthrene	NELAP	0.660		9.26	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Pyrene	NELAP	0.660		3.17	mg/Kg-dry	1	7/18/04 3:53:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		81.2	%REC	1	7/18/04 3:53:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		60.0	%REC	1	7/18/04 3:53:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		71.2	%REC	1	7/18/04 3:53:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM		BY GC/N	IS				
Benzene	NELAP	20.2	21 00111	ND	μg/Kg-dry	12.5	7/22/04 6:09:00 PM	HLR
Toluene	NELAP	101		ND	μg/Kg-dry	12.5	7/22/04 6:09:00 PM	HLR
Ethylbenzene	NELAP	101	J	36	μg/Kg-dry	12.5	7/22/04 6:09:00 PM	HLR
Xylenes, Total	NELAP	101	J	44	μg/Kg-dry	12.5	7/22/04 6:09:00 PM	HLR
Surr: 1,2-Dichloroethane-d4	7 Table 11	72.8-122	•	97.0	%REC	12.5	7/22/04 6:09:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.2	%REC	12.5	7/22/04 6:09:00 PM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

Report Date:

04070377-011

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-8 (7-8)

Collection Date: 7/12/04 4:25:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			94.0	%REC	12.5	7/22/04 6:09:00 PM	HLR
Surr: Toluene-d8	82.8-112.8		100	%REC	12.5	7/22/04 6:09:00 PM	HLR	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-012

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-12 (11-12)

Collection Date: 7/12/04 5:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		10.9	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		89.1	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.50		4.07	mg/Kg-dry	1	7/27/04 10:24:25 AM	JMW
Barium	NELAP	0.50		33.1	mg/Kg-dry	1	7/24/04 7:05:03 PM	SAM
Cadmium	NELAP	0.20		< 0.20	mg/Kg-dry	1	7/24/04 7:05:03 PM	SAM
Chromium	NELAP	1.00		18.2	mg/Kg-dry	1	7/26/04 5:51:12 PM	JMW
Lead	NELAP	4.00		10.9	mg/Kg-dry	1	7/24/04 7:05:03 PM	SAM
Selenium	NELAP	4,00		< 4.00	mg/Kg-dry	1	7/24/04 7:05:03 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 7:05:03 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
1,2-Dichlorobenzene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
1,3-Dichlorobenzene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
1,4-Dichlorobenzene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2,4,5-Trichlorophenol	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
2,4,6-Trichlorophenol	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2,4-Dichlorophenol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2,4-Dimethylphenol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2,4-Dinitrophenol	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2,4-Dinitrotoluene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
2,6-Dinitrotoluene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
2-Chloronaphthalene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
2-Chlorophenol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2-Methylnaphthalene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
2-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
2-Nitrophenol	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
3,3'-Dichlorobenzidine	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
3-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
4,6-Dinitro-2-methylphenol	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
4-Bromophenyl phenyl ether	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
4-Chloro-3-methylphenol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMI
4-Chloroaniline	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
4-Chlorophenyl phenyl ether	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF
4-Nitroaniline	NELAP	0.557		NĐ	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMF

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070377

Lab ID:

04070377-012

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-12 (11-12)

Collection Date: 7/12/04 5:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Acenaphthene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Acenaphthylene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Anthracene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Benzo(a)anthracene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Benzo(a)pyrene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Bis(2-chloroethoxy)methane	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Bis(2-chloroethyl)ether	NELAP	0.508		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Bis(2-chloroisopropyl)ether	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Butyl benzyl phthalate	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Carbazole		0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Chrysene	NELAP	0.390		ND	mg/Kg-dry	.1	7/20/04 9:31:00 AM	DMH
Di-n-butyl phthalate	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Di-n-octyl phthalate	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Dibenzofuran	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Diethyl phthalate	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Dimethyl phthalate		0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Fluoranthene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Fluorene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Hexachlorobenzene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Hexachlorobutadiene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Hexachlorocyclopentadiene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Hexachloroethane	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Isophorone	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
m,p-Cresol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
N-Nitroso-di-n-propylamine	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
N-Nitrosodiphenylamine	NELAP	0,557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Naphthalene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Nitrobenzene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
o-Cresol	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Pentachlorophenol	NELAP	2.23		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

Client Sample ID: B513-12 (11-12)

Lab ID:

04070377-012

Collection Date: 7/12/04 5:10:00 PM

Report Date:

11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Phenol	NELAP	0.390		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Pyrene	NELAP	0.557		ND	mg/Kg-dry	1	7/20/04 9:31:00 AM	DMH
Surr: 2,4,6-Tribromophenol		31-123		105	%REC	1	7/20/04 9:31:00 AM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		82.8	%REC	1	7/20/04 9:31:00 AM	DMH
Surr: 2-Fluorophenol		27-111		74.1	%REC	1	7/20/04 9:31:00 AM	DMH
Surr: Nitrobenzene-d5		28.9-113		72.6	%REC	1	7/20/04 9:31:00 AM	DMH
Surr: p-Terphenyl-d14		25-144		94.1	%REC	1	7/20/04 9:31:00 AM	DMH
Surr: Phenol-d5		33.7-123		87.6	%REC	1	7/20/04 9:31:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMI	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	4.1		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,1,2-Trichloroethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,1-Dichloroethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,1-Dichloroethene	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,2-Dichloroethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
1,2-Dichloropropane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
2-Butanone	NELAP	40.7		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
2-Hexanone	NELAP	40.7		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
4-Methyl-2-pentanone	NELAP	40.7		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Acetone	NELAP	40.7	J	19	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Benzene	NELAP	0.8		1.8	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Bromodichloromethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Bromoform	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Bromomethane	NELAP	8.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Carbon disulfide	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Carbon tetrachloride	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Chlorobenzene	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Chloroethane	NELAP	8.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Chloroform	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Chloromethane	NELAP	8.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	3.3		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Dibromochloromethane	NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Ethylbenzene	NELAP	4.1	J	1.5	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Methyl tert-butyl ether	NELAP	1.6		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
Methylene chloride	NELAP	4.1	J	1.0	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

A831-735002-012901-225/IP Champa Client Project:

WorkOrder:

04070377

Lab ID:

Client Sample ID: B513-12 (11-12)

04070377-012

Collection Date: 7/12/04 5:10:00 PM

Report Date: 11-Aug-04

SOLID Matrix:

Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	4.1		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	4.1	J	3.7	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	4.1		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	3.3		ND	μg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	4.1		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	1.6		ND	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
NELAP	4.1	J	3.5	µg/Kg-dry	1	7/18/04 7:59:00 PM	HLR
-	72.8-122		103	%REC	1	7/18/04 7:59:00 PM	HLR
-	75.6-120		98.5	%REC	1	7/18/04 7:59:00 PM	HLR
-	74.1-121		95.6	%REC	1	7/18/04 7:59:00 PM	HLR
82	.8-112.8		101	%REC	1	7/18/04 7:59:00 PM	HLR
NELAP	0.011	J	0.006	mg/Kg-dry	1	7/22/04	SRS
COMPOUNDS B	Y GC/FI	D					
	11		ND	mg/Kg-dry	1	7/23/04 4:26:00 PM	SML
NELAP	1.00		7.97		1	7/15/04 4:56:00 PM	EAW
	NELAP	NELAP 4.1 NELAP 4.1 NELAP 4.1 NELAP 4.1 NELAP 3.3 NELAP 4.1 NELAP 1.6 NELAP 4.1 72.8-122 75.6-120 74.1-121 82.8-112.8 NELAP 0.011 COMPOUNDS BY GC/FI	NELAP 4.1 NELAP 4.1 NELAP 4.1 NELAP 4.1 NELAP 3.3 NELAP 4.1 NELAP 1.6 NELAP 1.6 NELAP 4.1 J 72.8-122 75.6-120 74.1-121 82.8-112.8 NELAP 0.011 J COMPOUNDS BY GC/FID	NELAP 4.1 ND NELAP 4.1 ND NELAP 4.1 J NELAP 4.1 ND NELAP 3.3 ND NELAP 4.1 ND NELAP 1.6 ND NELAP 4.1 J 3.5 72.8-122 103 75.6-120 98.5 74.1-121 95.6 82.8-112.8 101 NELAP 0.011 J 0.006 COMPOUNDS BY GC/FID 11 ND	NELAP 4.1 ND μg/Kg-dry NELAP 4.1 ND μg/Kg-dry NELAP 4.1 J 3.7 μg/Kg-dry NELAP 4.1 ND μg/Kg-dry NELAP 3.3 ND μg/Kg-dry NELAP 4.1 ND μg/Kg-dry NELAP 1.6 ND μg/Kg-dry NELAP 4.1 J 3.5 μg/Kg-dry 72.8-122 103 %REC 75.6-120 98.5 %REC 74.1-121 95.6 %REC 82.8-112.8 101 %REC NELAP 0.011 J 0.006 mg/Kg-dry COMPOUNDS BY GC/FID 11 ND mg/Kg-dry	NELAP 4.1 ND μg/Kg-dry 1 NELAP 4.1 ND μg/Kg-dry 1 NELAP 4.1 J 3.7 μg/Kg-dry 1 NELAP 4.1 ND μg/Kg-dry 1 NELAP 4.1 ND μg/Kg-dry 1 NELAP 1.6 ND μg/Kg-dry 1 NELAP 4.1 J 3.5 μg/Kg-dry 1 NELAP 4.1 J 3.5 μg/Kg-dry 1 72.8-122 103 %REC 1 75.6-120 98.5 %REC 1 74.1-121 95.6 %REC 1 82.8-112.8 101 %REC 1 NELAP 0.011 J 0.006 mg/Kg-dry 1 COMPOUNDS BY GC/FID 1 ND mg/Kg-dry 1	NELAP 4.1 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 J 3.7 µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 J 3.7 µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 3.3 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 3.3 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 1.6 ND µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 J 3.5 µg/Kg-dry 1 7/18/04 7:59:00 PM NELAP 4.1 J 3.5 µg/Kg-dry 1 7/18/04 7:59:00 PM 72.8-122 103 %REC 1 7/18/04 7:59:00 PM 75.6-120 98.5 %REC 1 7/18/04 7:59:00 PM 74.1-121 95.6 %REC 1 7/18/04 7:59:00 PM 82.8-112.8 101 %REC 1 7/18/04 7:59:00 PM NELAP 0.011 J 0.006 mg/Kg-dry 1 7/22/04 COMPOUNDS BY GC/FID 11 ND mg/Kg-dry 1 7/23/04 4:26:00 PM

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-013

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B513-24 (23-24)

Collection Date: 7/12/04 5:20:00 PM

Matrix:

Report Date. 11-Aug-04				matrix.				
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.5	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.5	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.307		ND	mg/Kg-dry	. 1	7/16/04 5:24:00 PM	DMH
Acenaphthylene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Anthracene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Benzo(a)anthracene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Benzo(a)pyrene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Chrysene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Fluoranthene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Fluorene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Naphthalene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Phenanthrene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Pyrene	NELAP	0.307		ND	mg/Kg-dry	1	7/16/04 5:24:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		61.6	%REC	1	7/16/04 5:24:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		60.0	%REC	1	7/16/04 5:24:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		68.8	%REC	1	7/16/04 5:24:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		1.0	μg/Kg-dry	1	7/18/04 6:06:00 AM	HLR
Toluene	NELAP	3.8	J	1.0	μg/Kg-dry	1	7/18/04 6:06:00 AM	HLR
Ethylbenzene	NELAP	3.8		ND	μg/Kg-dry	1	7/18/04 6:06:00 AM	HLR
Xylenes, Total	NELAP	3.8	J	1.0	μg/Kg-dry	4	7/18/04 6:06:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	7/18/04 6:06:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.2	%REC	1	7/18/04 6:06:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		97.1	%REC	1	7/18/04 6:06:00 AM	HLR
Surr: Toluene-d8		2.8-112.8		98.4	%REC	1	7/18/04 6:06:00 AM	HLR
Carr. , orderie do	0.			23	,,,,===			

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-014

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B501-2 (1-2)

Collection Date: 7/13/04 8:40:00 AM

Matrix:

Report Date. 11-Aug	•							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		19.9	%	1	7/16/04	JRS
STANDARD METHODS 18TI	H ED. 2540 G							
Total Solids		0.1		80.1	%	1	7/16/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.50		9.28	mg/Kg-dry	1	7/27/04 10:26:21 AM	JMW
Barium	NELAP	0.50		143	mg/Kg-dry	1	7/24/04 7:10:20 PM	SAM
Cadmium	NELAP	0.20		0.28	mg/Kg-dry	1	7/24/04 7:10:20 PM	SAM
Chromium	NELAP	1.00		19.6	mg/Kg-dry	1	7/26/04 5:54:12 PM	JMW
Lead	NELAP	4.00		58.0	mg/Kg-dry	1	7/24/04 7:10:20 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 7:10:20 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 7:10:20 PM	SAM
SW-846 3550B, 8270C SIMS	. SEMI-VOLATILE OR	GANIC C	OMPOU	IDS BY GC	/MS			
Acenaphthene	NELAP	0.124		ND	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Acenaphthylene	NELAP	0.124	J	0.078	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Anthracene	NELAP	0.124	J	0.041	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Benzo(a)anthracene	NELAP	0.124		0.272	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Benzo(a)pyrene	NELAP	0.124		0.365	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.124		0.491	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.124		0.210	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.124		0.189	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Chrysene	NELAP	0.124		0.323	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.124	J	0.061	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Fluoranthene	NELAP	0.124		0.445	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Fluorene	NELAP	0.124		ND	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.124		0.238	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Naphthalene	NELAP	0.124	J	0.033	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Phenanthrene	NELAP	0.124	·	0.172	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Pyrene	NELAP	0.124		0.439	mg/Kg-dry	1	7/18/04 5:15:00 PM	DMH
Surr: 2-Fluorobiphenyl	1422/11	10-130		76.3	%REC	1	7/18/04 5:15:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		64.7	%REC	1	7/18/04 5:15:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		81.2	%REC	1	7/18/04 5:15:00 PM	DMH
SW-846 5035, 8260B, VOLA	THE ORGANIC COME		BY CC/N		701120		77 1070 1 0.10,001 111	Divii
Benzene SW-846 5035, 8260B, VOLA	NELAP	1.1	DI GC/IV	1.9	μg/Kg-dry	1	7/18/04 6:37:00 AM	HLR
	NELAP	5.3		ND	μg/Kg-dry μg/Kg-dry	4	7/18/04 6:37:00 AM	HLR
Toluene	NELAP	5.3		ND	μg/Kg-dry μg/Kg-dry	1	7/18/04 6:37:00 AM	HLR
Ethylbenzene	NELAP	5.3		ND	μg/Kg-dry μg/Kg-dry	1	7/18/04 6:37:00 AM	HLR
Xylenes, Total	NELAP	5.3		ND	pg/Kg-ary	1	1/10/04 0.37.00 AIVI	ПЦК

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-014

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B501-2 (1-2)

Collection Date: 7/13/04 8:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		102	%REC	1	7/18/04 6:37:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.0	%REC	1	7/18/04 6:37:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		96.2	%REC	1	7/18/04 6:37:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		102	%REC	1	7/18/04 6:37:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.215	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.62		1.38	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C pH (1:1)	NELAP	1.00		7.76		1	7/16/04 10:43:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B501-8 (7-8)

Lab ID:

04070377-015

Collection Date: 7/13/04 9:10:00 AM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		19.7	%	1	7/16/04	JRS
STANDARD METHODS 18TH ED), 2540 G							
Total Solids		0.1		80.3	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, SE	MI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	MS			
Acenaphthene	NELAP	0.301	J	0.050	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Acenaphthylene	NELAP	0.301	J	0.24	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Anthracene	NELAP	0.301	J	0.18	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Benzo(a)anthracene	NELAP	0.301	J	0.18	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Benzo(a)pyrene	NELAP	0.301	J	0.27	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.301	J	0.25	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.301	J	0.063	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.301	J	0.097	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Chrysene	NELAP	0.301	J	0.17	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.301		ND	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Fluoranthene	NELAP	0.301		0.336	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Fluorene	NELAP	0.301		0.328	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
ndeno(1,2,3-cd)pyrene	NELAP	0.301	J	0.064	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Naphthalene Naphthalene	NELAP	0.301		ND	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Phenanthrene	NELAP	0.301	J	0.038	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Pyrene	NELAP	0.301		0.502	mg/Kg-dry	1	7/16/04 9:17:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.8	%REC	1	7/16/04 9:17:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		54.7	%REC	1	7/16/04 9:17:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		69.4	%REC	1	7/16/04 9:17:00 PM	DMH
SW-846 5035, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	24.6		183	μg/Kg-dry	12.5	7/18/04 7:08:00 AM	HLR
Toluene	NELAP	123		ND	μg/Kg-dry	12.5	7/18/04 7:08:00 AM	HLR
Ethylbenzene	NELAP	123	J	41	μg/Kg-dry	12.5	7/18/04 7:08:00 AM	HLR
Xylenes, Total	NELAP	123	J	41	μg/Kg-dry	12.5	7/18/04 7:08:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	12.5	7/18/04 7:08:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.2	%REC	12.5	7/18/04 7:08:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		93.5	%REC	12.5	7/18/04 7:08:00 AM	HLR
Surr: Toluene-d8		.8-112.8		101	%REC	12.5	7/18/04 7:08:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A83

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B501-15 (14-15)

Lab ID:

04070377-016

Collection Date: 7/13/04 9:30:00 AM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.3	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		88.7	%	1	7/16/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYD	ROCARBO	ONS (OA-	2) BY GC/F				
Diesel	NELAP	141		1050 #	mg/Kg-dry	25	7/21/04 4:47:00 AM	CJS
Kerosene	NELAP	141		ND	mg/Kg-dry	25	7/21/04 4:47:00 AM	CJS
Mineral Spirits	NELAP	141		ND	mg/Kg-dry	25	7/21/04 4:47:00 AM	CJS
Motor Oil	NELAP	141		388 #	mg/Kg-dry	25	7/21/04 4:47:00 AM	CJS
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	25	7/21/04 4:47:00 AM	CJS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	27.4		38.6	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Acenaphthylene	NELAP	27.4		57.7	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Anthracene	NELAP	27.4		130	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Benzo(a)anthracene	NELAP	27.4		66.8	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Benzo(a)pyrene	NELAP	27.4		68.4	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Benzo(b)fluoranthene	NELAP	27.4		72.5	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	27.4	J	22	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Benzo(k)fluoranthene	NELAP	27.4	J	21	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Chrysene	NELAP	27.4		63.5	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	27.4	J	7.3	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Fluoranthene	NELAP	27.4		162	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Fluorene	NELAP	27.4		124	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	27.4	J	24	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Naphthalene	NELAP	274		920	mg/Kg-dry	500	7/25/04 6:12:00 PM	DMH
Phenanthrene	NELAP	27.4		346	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Pyrene	NELAP	27.4		165	mg/Kg-dry	50	7/23/04 4:06:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/23/04 4:06:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/23/04 4:06:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/23/04 4:06:00 PM	DMH
SW-846 5035, 8260B, VOLATII	F ORGANIC COM		BY GC/N	IS				
Benzene	NELAP	160		16400	μg/Kg-dry	100	7/22/04 6:41:00 PM	HLR
Toluene	NELAP	801		6900	μg/Kg-dry	100	7/22/04 6:41:00 PM	HLR
Ethylbenzene	NELAP	801		2420	μg/Kg-dry	100	7/22/04 6:41:00 PM	HLR
Xylenes, Total	NELAP	801		16900	μg/Kg-dry	100	7/22/04 6:41:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		100	%REC	100	7/22/04 6:41:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.0	%REC	100	7/22/04 6:41.00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-016

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B501-15 (14-15)

Collection Date: 7/13/04 9:30:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			96.6	%REC	100	7/22/04 6:41:00 PM	HLR
Surr: Toluene-d8	82.8-112.8		100	%REC	100	7/22/04 6:41:00 PM	HLR	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

040/03//

Client Sample ID: B501-24 (23-24)

Lab ID:

04070377-017

Collection Date: 7/13/04 9:45:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		10.4	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		89.6	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.36		3.46	mg/Kg-dry	1	7/27/04 10:02:24 AM	JMW
Barium	NELAP	0.47		14.7	mg/Kg-dry	1	7/24/04 7:15:39 PM	SAM
Cadmium	NELAP	0.19	J	0.10	mg/Kg-dry	1	7/24/04 7:15:39 PM	SAM
Chromium	NELAP	0.94		13.6	mg/Kg-dry	1	7/26/04 5:57:12 PM	JMW
Lead	NELAP	3.77		8.07	mg/Kg-dry	1	7/24/04 7:15:39 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	7/24/04 7:15:39 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	7/24/04 7:15:39 PM	SAM
SW-846 3550B, 8270C, SEMI	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
1,2-Dichlorobenzene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
1,3-Dichlorobenzene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
1,4-Dichlorobenzene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4,5-Trichlorophenol	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4,6-Trichlorophenol	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4-Dichlorophenol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4-Dimethylphenol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4-Dinitrophenol	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,4-Dinitrotoluene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2,6-Dinitrotoluene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2-Chloronaphthalene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2-Chlorophenol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2-Methylnaphthalene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
2-Nitrophenol	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
3,3'-Dichlorobenzidine	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
3-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4,6-Dinitro-2-methylphenol	NELAP	1.11		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4-Bromophenyl phenyl ether	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4-Chloro-3-methylphenol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4-Chloroaniline	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4-Chlorophenyl phenyl ether	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
4-Nitroaniline	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-017

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B501-24 (23-24)

Collection Date: 7/13/04 9:45:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Acenaphthene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Acenaphthylene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Anthracene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Benzo(a)anthracene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Benzo(a)pyrene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Bis(2-chloroethoxy)methane	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Bis(2-chloroethyl)ether	NELAP	0.506		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Bis(2-chloroisopropyl)ether	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.388		0.836	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Butyl benzyl phthalate	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Carbazole		0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Chrysene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Di-n-butyl phthalate	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Di-n-octyl phthalate	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Dibenzofuran	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Diethyl phthalate	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Dimethyl phthalate		0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Fluoranthene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Fluorene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Hexachlorobenzene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Hexachlorobutadiene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Hexachlorocyclopentadiene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Hexachloroethane	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Isophorone	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
m,p-Cresol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
N-Nitroso-di-n-propylamine	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
N-Nitrosodiphenylamine	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Naphthalene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Nitrobenzene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
o-Cresol	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Pentachlorophenol	NELAP	2.22		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070377

Lab ID:

Report Date:

04070377-017

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B501-24 (23-24)

Collection Date: 7/13/04 9:45:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Phenol	NELAP	0.388		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Pyrene	NELAP	0.555		ND	mg/Kg-dry	1	7/20/04 10:09:00 AM	DMH
Surr: 2,4,6-Tribromophenol		31-123		85.9	%REC	1	7/20/04 10:09:00 AM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		84.9	%REC	1	7/20/04 10:09:00 AM	DMH
Surr: 2-Fluorophenol		27-111		75.6	%REC	1	7/20/04 10:09:00 AM	DMH
Surr: Nitrobenzene-d5		28.9-113		74.6	%REC	1	7/20/04 10:09:00 AM	DMH
Surr: p-Terphenyl-d14		25-144		90.8	%REC	1	7/20/04 10:09:00 AM	DMH
Surr: Phenol-d5		33.7-123		88.6	%REC	1	7/20/04 10:09:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMP	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,1,2-Trichloroethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,1-Dichloroethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,1-Dichloroethene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,2-Dichloroethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
1,2-Dichloropropane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
2-Butanone	NELAP	37.1		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
2-Hexanone	NELAP	37.1		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
4-Methyl-2-pentanone	NELAP	37.1		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Acetone	NELAP	37.1	J	8.3	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Benzene	NELAP	0.7		1.6	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Bromodichloromethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Bromoform	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Bromomethane	NELAP	7.4		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Carbon disulfide	NELAP	3.7		ND	µg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Carbon tetrachloride	NELAP	3.7		ND	µg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Chlorobenzene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Chloroethane	NELAP	7.4		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Chloroform	NELAP	3_7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Chloromethane	NELAP	7.4		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	3.0		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Dibromochloromethane	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Ethylbenzene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Methyl tert-butyl ether	NELAP	1.5		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Methylene chloride	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070377

Lab ID:

04070377-017

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B501-24 (23-24)

Collection Date: 7/13/04 9:45:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Tetrachloroethene	NELAP	3.7		ND	µg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Toluene	NELAP	3.7	J	1.6	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	3.7		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	3.0		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Trichloroethene	NELAP	3.7		ND	µg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Vinyl chloride	NELAP	1.5		ND	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Xylenes, Total	NELAP	3.7	J	2.0	μg/Kg-dry	1	7/18/04 8:30:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	7/18/04 8:30:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		88.7	%REC	1	7/18/04 8:30:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		96.8	%REC	1	7/18/04 8:30:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.4	%REC	1	7/18/04 8:30:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.011	J	0.009	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	S COMPOUNDS E	Y GC/FI	D					
n-Butanol		11		ND	mg/Kg-dry	1	7/23/04 4:42:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.00		1	7/16/04 10:45:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B502-3 (2-3)

Lab ID:

04070377-018

Collection Date: 7/13/04 10:25:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.0	%	1	7/16/04	JRS
STANDARD METHODS 18TH	1 ED. 2540 G							
Total Solids		0.1		91.0	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.40		58.5	mg/Kg-dry	1	7/26/04 6:00:11 PM	JMW
Barium	NELAP	0.48		58.3	mg/Kg-dry	1	7/24/04 7:20:56 PM	SAM
Cadmium	NELAP	0.19		0.50	mg/Kg-dry	1	7/24/04 7:20:56 PM	SAM
Chromium	NELAP	0.96		8.81	mg/Kg-dry	1	7/26/04 6:00:11 PM	JMW
Lead	NELAP	3.85		21.7	mg/Kg-dry	1	7/24/04 7:20:56 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 7:20:56 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 7:20:56 PM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC C	COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	0.290		ND	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Acenaphthylene	NELAP	0.290	J	0.034	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Anthracene	NELAP	0.290		ND	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Benzo(a)anthracene	NELAP	0.290	J	0.11	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Benzo(a)pyrene	NELAP	0.290	J	0.16	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.290	J	0.23	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.290	J	0.12	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.290	J	0.084	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Chrysene	NELAP	0.290	J	0.12	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.290		ND	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Fluoranthene	NELAP	0.290	J	0.11	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Fluorene	NELAP	0.290		ND	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.290	J	0.084	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Naphthalene	NELAP	0.290	J	0.12	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Phenanthrene	NELAP	0.290	J	0.078	mg/Kg-dry	1	7/16/04 9:56:00 PM	ÐMH
Pyrene	NELAP	0.290	J	0.14	mg/Kg-dry	1	7/16/04 9:56:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		79.3	%REC	1	7/16/04 9:56:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		67.1	%REC	1	7/16/04 9:56:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		80.6	%REC	1	7/16/04 9:56:00 PM	DMH
SW-846 5035, 8260B, VOLAT	THE ORGANIC COME		BY GC/M					
Benzene	NELAP	1.0	2. 00/14	3.4	μg/Kg-dry	1	7/22/04 7:13:00 PM	HLR
Toluene	NELAP	5.1		5.5	μg/Kg-dry	1	7/22/04 7:13:00 PM	HLR
Ethylbenzene	NELAP	5.1	J	2.1	μg/Kg-dry	1	7/22/04 7:13:00 PM	HLR
Xylenes, Total	NELAP	5.1	Ü	6.5	μg/Kg-dry	1	7/22/04 7:13:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-018

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B502-3 (2-3)

Collection Date: 7/13/04 10:25:00 AM

Matrix:

_								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		115	%REC	1	7/22/04 7:13:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.5	%REC	1	7/22/04 7:13:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		106	%REC	1	7/22/04 7:13:00 PM	HLR
Surr: Toluene-d8	82.8-112.8			98.8	%REC	1	7/22/04 7:13:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.011		0.037	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.55		1.02	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.09		1	7/19/04 11:23:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B502-7 (6-7)

Lab ID:

04070377-019

Collection Date: 7/13/04 11:05:00 AM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		18.8	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		81.2	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC (COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	8.98		15.5	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Acenaphthylene	NELAP	8.98	J	2.7	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Anthracene	NELAP	8.98		11.7	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Benzo(a)anthracene	NELAP	8.98	J	8.7	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Benzo(a)pyrene	NELAP	8.98	J	4.1	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Benzo(b)fluoranthene	NELAP	8.98		17.6	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	8.98	J	4.0	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Benzo(k)fluoranthene	NELAP	8.98	J	5.6	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Chrysene	NELAP	8.98		18.6	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	8.98	J	1.9	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Fluoranthene	NELAP	8.98		16.9	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Fluorene	NELAP	8.98		20.1	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	8.98	J	4.7	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Naphthalene	NELAP	8.98		59.4	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Phenanthrene	NELAP	8.98		49.6	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Pyrene	NELAP	8.98		24.9	mg/Kg-dry	25	7/21/04 4:52:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		79.8	%REC	25	7/21/04 4:52:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		64.8	%REC	25	7/21/04 4:52:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		99.7	%REC	25	7/21/04 4:52:00 AM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	52.6	7.7.9.4.4	10900	μg/Kg-dry	25	7/22/04 7:44:00 PM	HLR
Toluene	NELAP	263	J	220	µg/Kg-dry	25	7/22/04 7:44:00 PM	HLR
Ethylbenzene	NELAP	263		5660	µg/Kg-dry	25	7/22/04 7:44:00 PM	HLR
Xylenes, Total	NELAP	263		11000	μg/Kg-dry	25	7/22/04 7:44:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		102	%REC	25	7/22/04 7:44:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.7	%REC	25	7/22/04 7:44:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		96.9	%REC	25	7/22/04 7:44:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	25	7/22/04 7:44:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070377

11-Aug-04

Lab ID: Report Date: 04070377-020

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B502-12 (11-12)

Collection Date: 7/13/04 11:25:00 AM

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		19.6	%	1	7/16/04	JRS
STANDARD METHODS 18TH	I ED. 2540 G							
Total Solids		0.1		80.4	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.40		7.47	mg/Kg-dry	1	7/26/04 6:04:11 PM	JMW
Barium	NELAP	0.48		52.0	mg/Kg-dry	1	7/24/04 7:26:13 PM	SAM
Cadmium	NELAP	0.19	J	0.17	mg/Kg-dry	1	7/24/04 7:26:13 PM	SAM
Chromium	NELAP	0.96		11.8	mg/Kg-dry	1	7/26/04 6:04:11 PM	JMW
Lead	NELAP	3.85		12.3	mg/Kg-dry	1	7/24/04 7:26:13 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 7:26:13 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 7:26:13 PM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC C	COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	37.2	J	36	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Acenaphthylene	NELAP	37.2		50.3	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Anthracene	NELAP	37.2		64.5	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Benzo(a)anthracene	NELAP	37.2		54.5	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Benzo(a)pyrene	NELAP	37.2		48.3	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Benzo(b)fluoranthene	NELAP	37.2		56.0	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	37.2	J	13	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Benzo(k)fluoranthene	NELAP	37.2	J	17	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Chrysene	NELAP	37.2		55.7	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	37.2	J	5.5	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Fluoranthene	NELAP	37.2		144	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Fluorene	NELAP	37.2		115	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	37.2	J	17	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Naphthalene	NELAP	186		682	mg/Kg-dry	500	7/25/04 6:51:00 PM	DMH
Phenanthrene	NELAP	37.2		271	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Pyrene	NELAP	37.2		113	mg/Kg-dry	100	7/23/04 3:27:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	100	7/23/04 3:27:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	100	7/23/04 3:27:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	100	7/23/04 3:27:00 PM	DMH
SW-846 5035, 8260B, VOLAT	TILE ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	660		30300	μg/Kg-dry	250	7/22/04 8:16:00 PM	HLR
Toluene	NELAP	3300		108000	μg/Kg-dry	250	7/22/04 8:16:00 PM	HLR
Ethylbenzene	NELAP	3300		25300	μg/Kg-dry	250	7/22/04 8:16:00 PM	HLR
Xylenes, Total	NELAP	3300		226000	μg/Kg-dry	250	7/22/04 8:16:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-020

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B502-12 (11-12)

Collection Date: 7/13/04 11:25:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	250	7/22/04 8:16:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120			%REC	250	7/22/04 8:16:00 PM	HLR
Surr: Dibromofluoromethane	•	74.1-121		98.8	%REC	250	7/22/04 8:16:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	250	7/22/04 8:16:00 PM	HLR
<u>SW-846 7471A</u> Mercury	NELAP	0.012		0.050	mg/Kg-dry	1	7/22/04	SRS

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-7

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B503-3 (2-3)

Lab ID:

04070377-021

Collection Date: 7/13/04 1:00:00 PM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		19.4	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		80.6	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.50		8.31	mg/Kg-dry	1	7/27/04 10:30:14 AM	JMW
Barium	NELAP	0.50		99.6	mg/Kg-dry	1	7/24/04 7:31:31 PM	SAM
Cadmium	NELAP	0.20		0.30	mg/Kg-dry	1	7/24/04 7:31:31 PM	SAM
Chromium	NELAP	1.00		18.1	mg/Kg-dry	1	7/26/04 6:07:11 PM	JMW
Lead	NELAP	4.00		202	mg/Kg-dry	1	7/24/04 7:31:31 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 7:31:31 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 7:31:31 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
1,2-Dichlorobenzene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
1,3-Dichlorobenzene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
1,4-Dichlorobenzene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4,5-Trichlorophenol	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4,6-Trichlorophenol	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4-Dichlorophenol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4-Dimethylphenol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4-Dinitrophenol	NELAP	378		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,4-Dinitrotoluene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2,6-Dinitrotoluene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2-Chloronaphthalene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2-Chlorophenol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2-Methylnaphthalene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2-Nitroaniline	NELAP	378		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
2-Nitrophenol	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
3,3´-Dichlorobenzidine	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
3-Nitroaniline	NELAP	378		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4,6-Dinitro-2-methylphenol	NELAP	378		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4-Bromophenyl phenyl ether	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4-Chloro-3-methylphenol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4-Chloroaniline	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4-Chlorophenyl phenyl ether	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
4-Nitroaniline	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

Report Date:

04070377-021

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3 (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Acenaphthene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Acenaphthylene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Anthracene	NELAP	132	J	51	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Benzo(a)anthracene	NELAP	132	J	69	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Benzo(a)pyrene	NELAP	132	J	67	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Benzo(b)fluoranthene	NELAP	132	J	76	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Benzo(k)fluoranthene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Bis(2-chloroethoxy)methane	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Bis(2-chloroethyl)ether	NELAP	172		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Bis(2-chloroisopropyl)ether	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Butyl benzyl phthalate	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Carbazole		189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Chrysene	NELAP	132	J	62	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Di-n-butyl phthalate	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Di-n-octyl phthalate	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Dibenzofuran	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Diethyl phthalate	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Dimethyl phthalate		132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Fluoranthene	NELAP	132	J	120	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Fluorene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Hexachlorobenzene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Hexachlorobutadiene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Hexachlorocyclopentadiene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Hexachloroethane	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Isophorone	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
m,p-Cresol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
N-Nitroso-di-n-propylamine	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
N-Nitrosodiphenylamine	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Naphthalene	NELAP	132	J	71	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Nitrobenzene	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
o-Cresol	NELAP	189		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Pentachlorophenol	NELAP	757		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-021

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3 (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	132	J	130	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Phenol	NELAP	132		ND	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Pyrene	NELAP	189	J	110	mg/Kg-dry	50	7/20/04 4:03:00 PM	DMH
Surr: 2,4,6-Tribromophenol		31-123		55.6	%REC	50	7/20/04 4:03:00 PM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		81.7	%REC	50	7/20/04 4:03:00 PM	DMH
Surr: 2-Fluorophenol		27-111		52.4	%REC	50	7/20/04 4:03:00 PM	DMH
Surr: Nitrobenzene-d5		28.9-113		61.0	%REC	50	7/20/04 4:03:00 PM	DMH
Surr: p-Terphenyl-d14		25-144		73.0	%REC	50	7/20/04 4:03:00 PM	DMH
Surr: Phenol-d5		33.7-123		59.9	%REC	50	7/20/04 4:03:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,1,2-Trichloroethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,1-Dichloroethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,1-Dichloroethene	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,2-Dichloroethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
1,2-Dichloropropane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
2-Butanone	NELAP	8660		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
2-Hexanone	NELAP	8660		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
4-Methyl-2-pentanone	NELAP	8660		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Acetone	NELAP	8660		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Benzene	NELAP	173		13900	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Bromodichloromethane	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Bromoform	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Bromomethane	NELAP	1730		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Carbon disulfide	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Carbon tetrachloride	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Chlorobenzene	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Chloroethane	NELAP	1730		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Chloroform	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Chloromethane	NELAP	1730		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	866		NĐ	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	693		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Dibromochloromethane	NELAP	866		ND	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Ethylbenzene	NELAP	866		4240	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Methyl tert-butyl ether	NELAP	347		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Methylene chloride	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-021

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3 (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Tetrachloroethene	NELAP	866		ND	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Toluene	NELAP	866		6280	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	866		ND	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	693		ND	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Trichloroethene	NELAP	866		ND	μg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Vinyl chloride	NELAP	347		ND	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Xylenes, Total	NELAP	866		9920	µg/Kg-dry	50	7/18/04 9:01:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		97.3	%REC	50	7/18/04 9:01:00 PM	HLR
Surr: 4-Bromofluorobenzene	•	75.6-120		96.6	%REC	50	7/18/04 9:01:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		92.7	%REC	50	7/18/04 9:01:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		99.2	%REC	50	7/18/04 9:01:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.167	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	0					
n-Butanol		12		ND	mg/Kg-dry	1	7/23/04 4:58:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.61		11.7	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.68		1	7/19/04 11:25:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

11-Aug-04

Client Sample ID: B503-3D (2-3)

Lab ID:

04070377-022

Collection Date: 7/13/04 1:00:00 PM

Report Date:

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		47.8	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		52.2	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2 40		2.68	mg/Kg-dry	1	7/27/04 11:06:41 AM	JMW
Barium	NELAP	0.48		41.3	mg/Kg-dry	1	7/24/04 7:46:49 PM	SAM
Cadmium	NELAP	0.19		0.23	mg/Kg-dry	1	7/24/04 7:46:49 PM	SAM
Chromium	NELAP	0.96		17.2	mg/Kg-dry	1	7/26/04 6:10:11 PM	JMW
Lead	NELAP	3.85		67.6	mg/Kg-dry	1	7/24/04 7:46:49 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 7:46:49 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 7:46:49 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
1,2-Dichlorobenzene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
1,3-Dichlorobenzene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
1,4-Dichlorobenzene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4,5-Trichlorophenol	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4,6-Trichlorophenol	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4-Dichlorophenol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4-Dimethylphenol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4-Dinitrophenol	NELAP	582		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,4-Dinitrotoluene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2,6-Dinitrotoluene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2-Chloronaphthalene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2-Chlorophenol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2-Methylnaphthalene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2-Nitroaniline	NELAP	582		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
2-Nitrophenol	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
3,3´-Dichlorobenzidine	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
3-Nitroaniline	NELAP	582		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4,6-Dinitro-2-methylphenol	NELAP	582		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4-Bromophenyl phenyl ether	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4-Chloro-3-methylphenol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4-Chloroaniline	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4-Chlorophenyl phenyl ether	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
4-Nitroaniline	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070377

Lab ID:

04070377-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3D (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix:

Report Date. 11-Aug-04								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Acenaphthene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Acenaphthylene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Anthracene	NELAP	204	J	110	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Benzo(a)anthracene	NELAP	204	J	140	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Benzo(a)pyrene	NELAP	204	J	140	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Benzo(b)fluoranthene	NELAP	204	J	170	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Benzo(k)fluoranthene	NELAP	204	J	69	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Bis(2-chloroethoxy)methane	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Bis(2-chloroethyl)ether	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Bis(2-chloroisopropyl)ether	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Butyl benzyl phthalate	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Carbazole		291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Chrysene	NELAP	204	J	140	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Di-n-butyl phthalate	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Di-n-octyl phthalate	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Dibenzofuran	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Diethyl phthalate	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Dimethyl phthalate		204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Fluoranthene	NELAP	204		241	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Fluorene	NELAP	204	J	76	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Hexachlorobenzene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Hexachlorobutadiene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Hexachlorocyclopentadiene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Hexachloroethane	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Isophorone	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
m,p-Cresol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
N-Nitroso-di-n-propylamine	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
N-Nitrosodiphenylamine	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Naphthalene	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Nitrobenzene	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
o-Cresol	NELAP	291		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Pentachlorophenol	NELAP	1160		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070377

Lab ID:

04070377-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3D (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix:

Report Date: 11-Aug-04				112000222				
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	204		249	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Phenol	NELAP	204		ND	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Pyrene	NELAP	291	J	210	mg/Kg-dry	50	7/20/04 4:42:00 PM	DMH
Surr: 2,4,6-Tribromophenol		31-123		56.1	%REC	50	7/20/04 4:42:00 PM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		69.1	%REC	50	7/20/04 4:42:00 PM	DMH
Surr: 2-Fluorophenol		27-111		70.0	%REC	50	7/20/04 4:42:00 PM	DMH
Surr: Nitrobenzene-d5		28.9-113		62.9	%REC	50	7/20/04 4:42:00 PM	DMH
Surr: p-Terphenyl-d14		25-144		68.0	%REC	50	7/20/04 4:42:00 PM	DMH
Surr: Phenol-d5		33.7-123		75.7	%REC	50	7/20/04 4:42:00 PM	DMH
SW-846 5035, 8260B, VOLATILE	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
1,1,1-Trichloroethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,1,2-Trichloroethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,1-Dichloroethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,1-Dichloroethene	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,2-Dichloroethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
1,2-Dichloropropane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
2-Butanone	NELAP	11700		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
2-Hexanone	NELAP	11700		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
4-Methyl-2-pentanone	NELAP	11700		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Acetone	NELAP	11700		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Benzene	NELAP	233		11100	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Bromodichloromethane	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Bromoform	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Bromomethane	NELAP	2330		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Carbon disulfide	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Carbon tetrachloride	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Chlorobenzene	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Chloroethane	NELAP	2330		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Chloroform	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Chloromethane	NELAP	2330		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	1170		ND	µg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	932		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Dibromochloromethane	NELAP	1170		ND	µg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Ethylbenzene	NELAP	1170		4030	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Methyl tert-butyl ether	NELAP	466		NĐ	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Methylene chloride	NELAP	1170		ND	µg/Kg-dry	50	7/18/04 9:33:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-3D (2-3)

Collection Date: 7/13/04 1:00:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Tetrachloroethene	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Toluene	NELAP	1170		5670	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	1170		ND	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	932		ND	μg/Kg-d r y	50	7/18/04 9:33:00 PM	HLR
Trichloroethene	NELAP	1170		ND	µg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Vinyl chloride	NELAP	466		ND	µg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Xylenes, Total	NELAP	1170		8750	μg/Kg-dry	50	7/18/04 9:33:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		99.1	%REC	50	7/18/04 9:33:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.4	%REC	50	7/18/04 9:33:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		94.0	%REC	50	7/18/04 9:33:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		100	%REC	50	7/18/04 9:33:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.019		0.172	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	IS COMPOUNDS E	Y GC/FI	2					
n-Butanol		19		ND	mg/Kg-dry	1	7/23/04 5:14:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	4.68		63.3	mg/kg-dry	5	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.56		1	7/19/04 11:26:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-10 (9-10)

Collection Date: 7/13/04 1:30:00 PM

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		25.6	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		74.4	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.298		1.58	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Acenaphthylene	NELAP	0.298		0.316	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Anthracene	NELAP	0.298		1.38	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Benzo(a)anthracene	NELAP	0.298		0.630	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Benzo(a)pyrene	NELAP	0.298		0.515	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0,298		0.633	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.298	J	0.11	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.298	J	0.24	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Chrysene	NELAP	0.298		0.651	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.298	J	0.045	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Fluoranthene	NELAP	0.298		1.85	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Fluorene	NELAP	0.298		1.23	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.298	J	0.13	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Naphthalene	NELAP	4.01		16.0	mg/Kg-dry	10	7/18/04 2:34:00 PM	DMH
Phenanthrene	NELAP	0.298		3.48	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Pyrene	NELAP	0.298		1.52	mg/Kg-dry	1	7/16/04 10:35:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		75.5	%REC	1	7/16/04 10:35:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		63.1	%REC	1	7/16/04 10:35:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		69.5	%REC	1	7/16/04 10:35:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	59.6		534	μg/Kg-dry	25	7/22/04 8:47:00 PM	HLR
Toluene	NELAP	298		300	μg/Kg-dry	25	7/22/04 8:47:00 PM	HLR
Ethylbenzene	NELAP	298		523	μg/Kg-dry	25	7/22/04 8:47:00 PM	HLR
Xylenes, Total	NELAP	298		837	μg/Kg-dry	25	7/22/04 8:47:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		102	%REC	25	7/22/04 8:47:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.0	%REC	25	7/22/04 8:47:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		96.3	%REC	25	7/22/04 8:47:00 PM	HLR
Surr: Toluene-d8		2.8-112.8		102	%REC	25	7/22/04 8:47:00 PM	HLR
	02				,,			

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

WorkOrder:

Lab ID:

04070377-024

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-11 (10-11)

Collection Date: 7/13/04 1:40:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		26.6	%	1	7/16/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		73.4	%	1	7/16/04	JRS
SW-846 3550B, 8015, TOTAL F	ETROLEUM HYDE	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	6.78		222 #	mg/Kg-dry	1	7/23/04 11:12:00 AM	DMH
Kerosene	NELAP	6.78		ND	mg/Kg-dry	1	7/23/04 11:12:00 AM	DMH
Mineral Spirits	NELAP	6.78		ND	mg/Kg-dry	1	7/23/04 11:12:00 AM	DMH
Motor Oil	NELAP	6.78		87 #	mg/Kg-dry	1	7/23/04 11:12:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		97.8	%REC	1	7/23/04 11:12:00 AM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	GANIC C	COMPOU	IDS BY GC	/MS			
Acenaphthene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Acenaphthylene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Anthracene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Benzo(a)anthracene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Benzo(a)pyrene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Chrysene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Fluoranthene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Fluorene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Naphthalene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Phenanthrene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Pyrene	NELAP	0.421		ND	mg/Kg-dry	1	7/18/04 4:35:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		56.3	%REC	1	7/18/04 4:35:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		59.0	%REC	1	7/18/04 4:35:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		78.1	%REC	1	7/18/04 4:35:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	31.5	THE WAY	223	μg/Kg-dry	12.5	7/23/04 9:52:00 AM	HLR
Toluene	NELAP	157	J	120	μg/Kg-dry	12.5	7/23/04 9:52:00 AM	HLR
Ethylbenzene	NELAP	157		372	μg/Kg-dry	12.5	7/23/04 9:52:00 AM	HLR
Xylenes, Total	NELAP	157		458	μg/Kg-dry	12.5	7/23/04 9:52:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		92.4	%REC	12.5	7/23/04 9:52:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.1	%REC	12.5	7/23/04 9:52:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-024

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B503-11 (10-11)

Collection Date: 7/13/04 1:40:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			93.0	%REC	12.5	7/23/04 9:52:00 AM	HLR
Surr: Toluene-d8	82.8-112.8		101	%REC	12.5	7/23/04 9:52:00 AM	HLR	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B503-19 (18-19)

Lab ID:

Collection Date: 7/13/04 1:55:00 PM

Report Date:

04070377-025 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.8	%	1	7/16/04	JRS
STANDARD METHODS 18TH B	D. 2540 G							
Total Solids		0.1		88.2	%	1	7/16/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	3.25		5.43	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Acenaphthylene	NELAP	3.25		46.9	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Anthracene	NELAP	3.25		12.4	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Benzo(a)anthracene	NELAP	3.25		31.3	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Benzo(a)pyrene	NELAP	16.2		81.5	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Benzo(b)fluoranthene	NELAP	16.2		88.1	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	16.2		23.0	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Benzo(k)fluoranthene	NELAP	16.2		25.0	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Chrysene	NELAP	3.25		34.5	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	16.2	J	5.8	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Fluoranthene	NELAP	3.25		37.4	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Fluorene	NELAP	3.25		13.3	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	16.2		21.4	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Naphthalene	NELAP	3.25		7.71	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Phenanthrene	NELAP	3.25		17.9	mg/Kg-dry	10	7/21/04 1:09:00 PM	DMH
Pyrene	NELAP	16.2		59.8	mg/Kg-dry	50	7/26/04 1:59:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		51.9	%REC	10	7/21/04 1:09:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		35.9	%REC	10	7/21/04 1:09:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		65.7	%REC	10	7/21/04 1:09:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/N	IS				
Benzene	NELAP	106		3000	μg/Kg-dry	50	7/23/04 10:23:00 AM	HLR
Toluene	NELAP	528		835	μg/Kg-dry	50	7/23/04 10:23:00 AM	HLR
Ethylbenzene	NELAP	528		ND	μg/Kg-dry	50	7/23/04 10:23:00 AM	HLR
Xylenes, Total	NELAP	528		ND	μg/Kg-dry	50	7/23/04 10:23:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	50	7/23/04 10:23:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.3	%REC	50	7/23/04 10:23:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		98.9	%REC	50	7/23/04 10:23:00 AM	HLR
Surr: Toluene-d8		.8-112.8		102	%REC	50	7/23/04 10:23:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B504-3 (2-3)

Lab ID:

04070377-026

Collection Date: 7/13/04 2:50:00 PM

Report Date:

11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		26.0	%	1	7/16/04	JRS
STANDARD METHODS 18TI	H ED. 2540 G							
Total Solids		0.1		74.0	%	1	7/16/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.45		15.4	mg/Kg-dry	1	7/27/04 10:34:08 AM	JMW
Barium	NELAP	0.49		152	mg/Kg-dry	1	7/24/04 7:51:53 PM	SAM
Cadmium	NELAP	0.20		1.68	mg/Kg-dry	1	7/24/04 7:51:53 PM	SAM
Chromium	NELAP	0.98		13.6	mg/Kg-dry	1	7/26/04 6:19:08 PM	JMW
Lead	NELAP	3.92		221	mg/Kg-dry	1	7/24/04 7:51:53 PM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	7/24/04 7:51:53 PM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	7/24/04 7:51:53 PM	SAM
SW-846 3550B, 8015, TOTA	L PETROLEUM HYDI	ROCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	663		6720 #	mg/Kg-dry	5	7/23/04 11:41:00 AM	DMH
Kerosene	NELAP	663		ND	mg/Kg-dry	5	7/23/04 11:41:00 AM	DMH
Mineral Spirits	NELAP	663		ND	mg/Kg-dry	5	7/23/04 11:41:00 AM	DMH
Motor Oil	NELAP	663		13200#	mg/Kg-dry	5	7/23/04 11:41:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	5	7/23/04 11:41:00 AM	DMH
SW-846 3550B, 8270C SIMS	SEMI-VOLATILE OF	RGANIC (COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	0.131		0.613	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
Acenaphthylene	NELAP	0.131		0.152	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
Anthracene	NELAP	0.131		0.458	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
Benzo(a)anthracene	NELAP	0.131		0.251	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
Benzo(a)pyrene	NELAP	0.131		0.193	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.131		0.210	mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH
- ())	NEL AD		1					DMH
Benzo(q,h,ı)perylene	NELAP	0.131	J	0.064	mg/Kg-dry	1	7/18/04 3:13:00 PM	DIVII
Benzo(g,h,i)perylene Benzo(k)fluoranthene	NELAP NELAP	0.131 0.131	J	0.064 0.086	mg/Kg-dry mg/Kg-dry	1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene								DMF
Benzo(k)fluoranthene Chrysene	NELAP NELAP	0.131		0.086 0.242	mg/Kg-dry mg/Kg-dry	1	7/18/04 3:13:00 PM	DMH DMH
Benzo(k)fluoranthene	NELAP	0.131 0.131 0.131	J	0.086 0.242 0.025	mg/Kg-dry mg/Kg-dry mg/Kg-dry	1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	NELAP NELAP NELAP NELAP	0.131 0.131 0.131 0.131	J	0.086 0.242 0.025 0.678	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	DMH DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	NELAP NELAP NELAP	0.131 0.131 0.131	J	0.086 0.242 0.025 0.678 0.428	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	DMH DMH DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	NELAP NELAP NELAP NELAP NELAP	0.131 0.131 0.131 0.131 0.131	J	0.086 0.242 0.025 0.678	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	DMH DMH DMH DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	NELAP NELAP NELAP NELAP NELAP NELAP	0.131 0.131 0.131 0.131 0.131 0.131	J	0.086 0.242 0.025 0.678 0.428 0.081	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM	DMH DMH DMH DMH DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene	NELAP NELAP NELAP NELAP NELAP NELAP NELAP	0.131 0.131 0.131 0.131 0.131 0.131	J	0.086 0.242 0.025 0.678 0.428 0.081 6.79	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 4:13:00 PM 7/21/04 4:13:00 AM	DMH DMH DMH DMH DMH DMH DMH
Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	NELAP NELAP NELAP NELAP NELAP NELAP	0.131 0.131 0.131 0.131 0.131 0.131 1.31 0.131	J	0.086 0.242 0.025 0.678 0.428 0.081 6.79 1.14	mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 10 1	7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 3:13:00 PM 7/18/04 4:13:00 PM 7/18/04 3:13:00 PM	DMH DMH DMH DMH DMH DMH DMH DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B504-3 (2-3)

Lab ID:

04070377-026

Collection Date: 7/13/04 2:50:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: p-Terphenyl-d14	7 T - 1 T - 1 T - 1 T	10-130		83.6	%REC	1	7/18/04 3:13:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC CON	IPOUNDS	BY GC/MS					
Benzene	NELAP	1.7		87.7	µg/Kg-dry	1	7/23/04 9:20:00 AM	HLR
Toluene	NELAP	8.6		38.3	μg/Kg-dry	1	7/23/04 9:20:00 AM	HLR
Ethylbenzene	NELAP	8.6		32.1	µg/Kg-dry	1	7/23/04 9:20:00 AM	HLR
Xylenes, Total	NELAP	8.6		65.3	μg/Kg-dry	1	7/23/04 9:20:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	128	%REC	1	7/23/04 9:20:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	64.1	%REC	1	7/23/04 9:20:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	127	%REC	1	7/23/04 9:20:00 AM	HLR
Surr: Toluene-d8		82.8-112.8	S	75.1	%REC	1	7/23/04 9:20:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.338	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	3.16		55.5	mg/kg-dry	5	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.61		1	7/16/04 10:46:00 AM	EAW
P11 (1.1)	IVELA	1.00		7.01				_,

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

Work Order:

04070377

Client Sample ID: B504-7 (6-7)

Lab ID:

04070377-027

Collection Date: 7/13/04 3:05:00 PM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		29.9	%	1	7/16/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		70.1	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.31		< 2.31	mg/Kg-dry	1	7/27/04 11:11:28 AM	JMW
Barium	NELAP	0.46		63.8	mg/Kg-dry	1	7/24/04 7:57:10 PM	SAM
Cadmium	NELAP	0.19		0.31	mg/Kg-dry	1	7/24/04 7:57:10 PM	SAM
Chromium	NELAP	0.93		14.7	mg/Kg-dry	1	7/26/04 6:22:08 PM	JMW
Lead	NELAP	3.70		16.4	mg/Kg-dry	1	7/24/04 7:57:10 PM	SAM
Selenium	NELAP	3.70		< 3.70	mg/Kg-dry	1	7/24/04 7:57:10 PM	SAM
Silver	NELAP	0.93		< 0.93	mg/Kg-dry	1	7/24/04 7:57:10 PM	SAM
SW-846 3550B, 8270C, SEMI	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
1,2-Dichlorobenzene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
1,3-Dichlorobenzene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
1,4-Dichlorobenzene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4,5-Trichlorophenol	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4,6-Trichlorophenol	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4-Dichlorophenol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4-Dimethylphenol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4-Dinitrophenol	NELAP	456		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,4-Dinitrotoluene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2,6-Dinitrotoluene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2-Chloronaphthalene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2-Chlorophenol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2-Methylnaphthalene	NELAP	160		1180	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2-Nitroaniline	NELAP	456		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
2-Nitrophenol	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
3,3'-Dichlorobenzidine	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
3-Nitroaniline	NELAP	456		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4,6-Dinitro-2-methylphenol	NELAP	456		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4-Bromophenyl phenyl ether	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4-Chloro-3-methylphenol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4-Chloroaniline	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4-Chlorophenyl phenyl ether	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
4-Nitroaniline	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-027

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7 (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Acenaphthene	NELAP	160		594	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Acenaphthylene	NELAP	160	J	71	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Anthracene	NELAP	160		303	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Benzo(a)anthracene	NELAP	160		169	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Benzo(a)pyrene	NELAP	160	J	130	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Benzo(b)fluoranthene	NELAP	160	J	110	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Benzo(k)fluoranthene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Bis(2-chloroethoxy)methane	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Bis(2-chloroethyl)ether	NELAP	208		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Bis(2-chloroisopropyl)ether	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Butyl benzyl phthalate	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Carbazole		228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Chrysene	NELAP	160	J	150	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Di-n-butyl phthalate	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Di-n-octyl phthalate	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Dibenzofuran	NELAP	160	J	69	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Diethyl phthalate	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Dimethyl phthalate		160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Fluoranthene	NELAP	160		317	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Fluorene	NELAP	160		406	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Hexachlorobenzene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Hexachlorobutadiene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Hexachlorocyclopentadiene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Hexachloroethane	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Isophorone	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
m,p-Cresol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
N-Nitroso-di-n-propylamine	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
N-Nitrosodiphenylamine	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Naphthalene	NELAP	160		2000	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Nitrobenzene	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
o-Cresol	NELAP	228		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Pentachlorophenol	NELAP	912		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

WorkOrder:
Lab ID:

04070377

11-Aug-04

Report Date:

04070377-027

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7 (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	160		1120	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Phenol	NELAP	160		ND	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Pyrene	NELAP	228		436	mg/Kg-dry	50	7/20/04 2:04:00 PM	DMH
Surr: 2,4,6-Tribromophenol		31-123		45.4	%REC	50	7/20/04 2:04:00 PM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		73.0	%REC	50	7/20/04 2:04:00 PM	DMH
Surr: 2-Fluorophenol		27-111		55.9	%REC	50	7/20/04 2:04:00 PM	DMH
Surr: Nitrobenzene-d5		28.9-113		74.3	%REC	50	7/20/04 2:04:00 PM	DMH
Surr: p-Terphenyl-d14		25-144		67.8	%REC	50	7/20/04 2:04:00 PM	DMH
Surr: Phenol-d5		33.7-123		65.1	%REC	50	7/20/04 2:04:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
1,1,1-Trichloroethane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,1,2-Trichloroethane	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,1-Dichloroethane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,1-Dichloroethene	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,2-Dichloroethane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
1,2-Dichloropropane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
2-Butanone	NELAP	44100		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
2-Hexanone	NELAP	44100		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
4-Methyl-2-pentanone	NELAP	44100		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Acetone	NELAP	44100		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Benzene	NELAP	883		20800	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Bromodichloromethane	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Bromoform	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Bromomethane	NELAP	8830		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Carbon disulfide	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Carbon tetrachloride	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Chlorobenzene	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Chloroethane	NELAP	8830		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Chloroform	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Chloromethane	NELAP	8830		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	3530		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Dibromochloromethane	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Ethylbenzene	NELAP	4410		145000	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Methyl tert-butyl ether	NELAP	1770		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Methylene chloride	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-027

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7 (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Tetrachloroethene	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Toluene	NELAP	4410		10900	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	4410		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	3530		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Trichloroethene	NELAP	4410		ND	µg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Vinyl chloride	NELAP	1770		ND	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Xylenes, Total	NELAP	4410		140000	μg/Kg-dry	250	7/18/04 10:04:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		99.8	%REC	250	7/18/04 10:04:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.6	%REC	250	7/18/04 10:04:00 PM	HLR
Surr: Dibromofluoromethane	-	74.1-121		94.3	%REC	250	7/18/04 10:04:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	250	7/18/04 10:04:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.026	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	S COMPOUNDS B	Y GC/FIL	2					
n-Butanol		14		ND	mg/Kg-dry	1	7/23/04 5:30:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.74		1	7/16/04 10:47:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

11-Aug-04

WorkOrder: Lab ID:

Report Date:

04070377-028

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7D (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0,1		28.7	%	1	7/16/04	JRS
STANDARD METHODS 18TH	I ED. 2540 G							
Total Solids		0.1		71.3	%	1	7/16/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2 31		5.86	mg/Kg-dry	1	7/27/04 10:38:09 AM	JMW
Barium	NELAP	0.46		60.6	mg/Kg-dry	1	7/24/04 8:02:28 PM	SAM
Cadmium	NELAP	0.19		0.38	mg/Kg-dry	1	7/24/04 8:02:28 PM	SAM
Chromium	NELAP	0.93		11.7	mg/Kg-dry	1	7/26/04 6:25:15 PM	JMW
Lead	NELAP	3.70		22.0	mg/Kg-dry	1	7/24/04 8:02:28 PM	SAM
Selenium	NELAP	3.70		< 3.70	mg/Kg-dry	1	7/24/04 8:02:28 PM	SAM
Silver	NELAP	0.93		< 0.93	mg/Kg-dry	1	7/24/04 8:02:28 PM	SAM
SW-846 3550B, 8270C, SEMI	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
1,2-Dichlorobenzene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
1,3-Dichlorobenzene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
1,4-Dichlorobenzene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4,5-Trichlorophenol	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4,6-Trichlorophenol	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4-Dichlorophenol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4-Dimethylphenol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4-Dinitrophenol	NELAP	462		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,4-Dinitrotoluene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2,6-Dinitrotoluene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2-Chloronaphthalene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2-Chlorophenol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2-Methylnaphthalene	NELAP	162		1280	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2-Nitroaniline	NELAP	462		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
2-Nitrophenol	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
3,3'-Dichlorobenzidine	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
3-Nitroaniline	NELAP	462		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4,6-Dinitro-2-methylphenol	NELAP	462		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4-Bromophenyl phenyl ether	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4-Chloro-3-methylphenol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4-Chloroaniline	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4-Chlorophenyl phenyl ether	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
4-Nitroaniline	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B504-7D (6-7)

Lab ID:

04070377-028

Collection Date: 7/13/04 3:05:00 PM

Report Date:

11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Acenaphthene	NELAP	162		626	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Acenaphthylene	NELAP	162	J	72	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Anthracene	NELAP	162		317	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Benzo(a)anthracene	NELAP	162		170	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Benzo(a)pyrene	NELAP	162	J	140	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Benzo(b)fluoranthene	NELAP	162	J	110	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Benzo(k)fluoranthene	NELAP	162	J	44	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Bis(2-chloroethoxy)methane	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Bis(2-chloroethyl)ether	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Bis(2-chloroisopropyl)ether	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Butyl benzyl phthalate	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Carbazole		231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Chrysene	NELAP	162	J	150	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Di-n-butyl phthalate	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Di-n-octyl phthalate	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Dibenzofuran	NELAP	162	J	70	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Diethyl phthalate	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Dimethyl phthalate		162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Fluoranthene	NELAP	162		324	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Fluorene	NELAP	162		428	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Hexachlorobenzene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Hexachlorobutadiene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Hexachlorocyclopentadiene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Hexachloroethane	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Isophorone	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
m,p-Cresol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
N-Nitroso-di-n-propylamine	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
N-Nitrosodiphenylamine	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Naphthalene	NELAP	162		2150	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Nitrobenzene	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
o-Cresol	NELAP	231		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Pentachlorophenol	NELAP	925		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

WorkOrder: Lab ID:

04070377-028

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7D (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	162		1150	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Phenol	NELAP	162		ND	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Pyrene	NELAP	231		444	mg/Kg-dry	50	7/20/04 2:44:00 PM	DMH
Surr: 2,4,6-Tribromophenol		31-123		51.0	%REC	50	7/20/04 2:44:00 PM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		77.9	%REC	50	7/20/04 2:44:00 PM	DMH
Surr: 2-Fluorophenol		27-111		59.1	%REC	50	7/20/04 2:44:00 PM	DMH
Surr: Nitrobenzene-d5		28.9-113		66.9	%REC	50	7/20/04 2:44:00 PM	DMH
Surr: p-Terphenyl-d14		25-144		68.2	%REC	50	7/20/04 2:44:00 PM	DMH
Surr: Phenol-d5		33.7-123		69.2	%REC	50	7/20/04 2:44:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,1,2-Trichloroethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,1-Dichloroethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,1-Dichloroethene	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,2-Dichloroethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
1,2-Dichloropropane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
2-Butanone	NELAP	49100		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
2-Hexanone	NELAP	49100		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
4-Methyl-2-pentanone	NELAP	49100		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Acetone	NELAP	49100		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Benzene	NELAP	982		26300	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Bromodichloromethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Bromoform	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Bromomethane	NELAP	9820		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Carbon disulfide	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Carbon tetrachloride	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Chlorobenzene	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Chloroethane	NELAP	9820		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Chloroform	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Chloromethane	NELAP	9820		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	4910		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	3930		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Dibromochloromethane	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Ethylbenzene	NELAP	4910		203000	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Methyl tert-butyl ether	NELAP	1960		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Methylene chloride	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

11-Aug-04

Lab ID:

Report Date:

04070377-028

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-7D (6-7)

Collection Date: 7/13/04 3:05:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Tetrachloroethene	NELAP	4910		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Toluene	NELAP	4910		14800	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	4910		ND	μg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	3930		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Trichloroethene	NELAP	4910		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Vinyl chloride	NELAP	1960		ND	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Xylenes, Total	NELAP	4910		196000	µg/Kg-dry	250	7/20/04 2:54:00 PM	HLR
Surr: 1,2-Dichloroethane-d4	-	72.8-122		110	%REC	250	7/20/04 2:54:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.1	%REC	250	7/20/04 2:54:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		102	%REC	250	7/20/04 2:54:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		102	%REC	250	7/20/04 2:54:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.014		0.048	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	2					
n-Butanol		14		ND	mg/Kg-dry	1	7/23/04 5:46:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.52		1	7/16/04 10:51:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070377

WorkOrder: Lab ID:

11-Aug-04

Report Date:

04070377-029

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-14 (13-14)

Collection Date: 7/13/04 4:20:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.2	%	1	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		87.8	%	1	7/19/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	11.4		48.7	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Acenaphthylene	NELAP	11.4		19.8	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Anthracene	NELAP	11.4		33.5	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Benzo(a)anthracene	NELAP	11.4		16.6	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Benzo(a)pyrene	NELAP	11.4		15.8	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Benzo(b)fluoranthene	NELAP	11.4		11.9	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	11.4	J	4.9	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Benzo(k)fluoranthene	NELAP	11.4	J	4.0	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Chrysene	NELAP	11.4		16.2	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	11.4	J	1.4	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Fluoranthene	NELAP	11.4		36.3	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Fluorene	NELAP	11.4		47.9	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	11.4	J	4.7	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Naphthalene	NELAP	114		231	mg/Kg-dry	100	7/23/04 1:28:00 PM	DMH
Phenanthrene	NELAP	11.4		115	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Pyrene	NELAP	11.4		54.0	mg/Kg-dry	10	7/19/04 12:13:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		120	%REC	10	7/19/04 12:13:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	S	0	%REC	10	7/19/04 12:13:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		130	%REC	10	7/19/04 12:13:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	158		15100	μg/Kg-dry	100	7/22/04 10:53:00 PM	HLR
Toluene	NELAP	790		8240	μg/Kg-dry	100	7/22/04 10:53:00 PM	HLR
Ethylbenzene	NELAP	790		28500	μg/Kg-dry	100	7/22/04 10:53:00 PM	HLR
Xylenes, Total	NELAP	790		24000	μg/Kg-dry	100	7/22/04 10:53:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		91.9	%REC	100	7/22/04 10:53:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		92.2	%REC	100	7/22/04 10:53:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		91.6	%REC	100	7/22/04 10:53:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		99.9	%REC	100	7/22/04 10:53:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B504-21 (20-21)

Lab ID:

04070377-030

Collection Date: 7/14/04 9:00:00 AM

Report Date:

11-Aug-04

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.0	%	+	7/19/04	JRS
STANDARD METHODS 18TH EI	D. 2540 G							
Total Solids		0.1		91.0	%	1	7/19/04	JRS
SW-846 3550B, 8015, TOTAL PI	TROLEUM HYD	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	539		8550 #	mg/Kg-dry	100	7/23/04 12:10:00 PM	DMH
Kerosene	NELAP	539		ND	mg/Kg-dry	100	7/23/04 12:10:00 PM	DMH
Mineral Spirits	NELAP	539		ND	mg/Kg-dry	100	7/23/04 12:10:00 PM	DMH
Motor Oil	NELAP	539		2490 #	mg/Kg-dry	100	7/23/04 12:10:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	100	7/23/04 12:10:00 PM	DMH
SW-846 3550B, 8270C SIMS, SE	MI-VOLATILE OF	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	10.2		21.5	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Acenaphthylene	NELAP	10.2		148	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Anthracene	NELAP	10.2		107	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Benzo(a)anthracene	NELAP	10.2		58.8	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Benzo(a)pyrene	NELAP	10.2		66.5	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Benzo(b)fluoranthene	NELAP	10.2		50.4	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	10.2		15.2	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Benzo(k)fluoranthene	NELAP	10.2		15.7	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Chrysene	NELAP	10.2		62.3	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	10.2	J	4.6	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Fluoranthene	NELAP	10.2		122	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Fluorene	NELAP	10.2		123	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	10.2		15.0	mg/Kg-dry	10	7/19/04 2:10:00 AM	DMH
Naphthalene	NELAP	102		332	mg/Kg-dry	100	7/21/04 2:54:00 AM	DMH
Phenanthrene	NELAP	102		320	mg/Kg-dry	100	7/21/04 2:54:00 AM	DMH
Pyrene	NELAP	102		192	mg/Kg-dry	100	7/21/04 2:54:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130	S	150	%REC	10	7/19/04 2:10:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		39.9	%REC	10	7/19/04 2:10:00 AM	DMH
Surr: p-Terphenyl-d14		10-130	S	140	%REC	10	7/19/04 2:10:00 AM	DMH
SW-846 5035, 8260B, VOLATILI	ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	376		33100	μg/Kg-dry	250	7/23/04 3:35:00 AM	HLR
Toluene	NELAP	1880		8760	μg/Kg-dry	250	7/23/04 3:35:00 AM	HLR
Ethylbenzene	NELAP	1880	J	1100	μg/Kg-dry	250	7/23/04 3:35:00 AM	HLR
Xylenes, Total	NELAP	1880		3460	μg/Kg-dry	250	7/23/04 3:35:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		96.8	%REC	250	7/23/04 3:35:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		90.4	%REC	250	7/23/04 3:35:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-030

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B504-21 (20-21)

Collection Date: 7/14/04 9:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			98.4	%REC	250	7/23/04 3:35:00 AM	HLR
Surr: Toluene-d8	82.8-112.8			102	%REC	250	7/23/04 3:35:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B504-28 (27-28)

Lab ID:

04070377-031

Collection Date: 7/14/04 9:30:00 AM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		8.5	%	1	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		91.5	%	1	7/19/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.111	J	0.013	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Acenaphthylene	NELAP	0.111	J	0.014	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Anthracene	NELAP	0.111	J	0.022	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Benzo(a)anthracene	NELAP	0.111	J	0.019	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Benzo(a)pyrene	NELAP	0.111	J	0.019	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.111	J	0.015	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.111		ND	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Chrysene	NELAP	0.111	J	0.021	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Fluoranthene	NELAP	0.111	J	0.033	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Fluorene	NELAP	0.111	J	0.022	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Naphthalene	NELAP	0.111		0.155	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Phenanthrene	NELAP	0.111	J	0.072	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Pyrene	NELAP	0.111	J	0.051	mg/Kg-dry	1	7/18/04 10:16:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		94.6	%REC	1	7/18/04 10:16:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		82.8	%REC	4	7/18/04 10:16:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		101	%REC	1	7/18/04 10:16:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMI	POUNDS	BY GC/N	S				
Benzene	NELAP	0.7		9.1	μg/Kg-dry	1	7/23/04 4:07:00 AM	HLR
Toluene	NELAP	3.7		3.7	μg/Kg-dry	1	7/23/04 4:07:00 AM	HLR
Ethylbenzene	NELAP	3.7	J	2.0	μg/Kg-dry	1	7/23/04 4:07:00 AM	HLR
Xylenes, Total	NELAP	3.7	J	3.4	μg/Kg-dry	1	7/23/04 4:07:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		111	%REC	1	7/23/04 4:07:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	70.8	%REC	1	7/23/04 4:07:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	_	106	%REC	1	7/23/04 4:07:00 AM	HLR
Surr: Toluene-d8		2.8-112.8	S	82.7	%REC	1	7/23/04 4:07:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B505-3 (2-3)

Lab ID:

04070377-032

Collection Date: 7/14/04 10:00:00 AM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		15.2	%	1	7/20/04	JRS
STANDARD METHODS 18T	H ED. 2540 G							
Total Solids		0.1		84.8	%	1	7/20/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.50		4.50	mg/Kg-dry	1	7/27/04 10:40:06 AM	JMW
Barium	NELAP	0.50		27.1	mg/Kg-dry	1	7/24/04 8:07:47 PM	SAM
Cadmium	NELAP	0.20		0.58	mg/Kg-dry	1	7/24/04 8:07:47 PM	SAM
Chromium	NELAP	1.00		12.6	mg/Kg-dry	1	7/26/04 6:28:14 PM	JMW
Lead	NELAP	4.00		552	mg/Kg-dry	1	7/24/04 8:07:47 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 8:07:47 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 8:07:47 PM	SAM
SW-846 3550B, 8270C SIMS	S, SEMI-VOLATILE OR	GANIC C	COMPOUR	IDS BY GC	/MS			
Acenaphthene	NELAP	34.9	J	6.9	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Acenaphthylene	NELAP	34.9		70.0	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Anthracene	NELAP	34.9	J	15	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Benzo(a)anthracene	NELAP	34.9		44.9	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Benzo(a)pyrene	NELAP	34.9		137	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Benzo(b)fluoranthene	NELAP	34.9		123	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	34.9		38.4	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Benzo(k)fluoranthene	NELAP	34.9	J	33	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Chrysene	NELAP	34.9		46.8	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	34.9	J	13	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Fluoranthene	NELAP	34.9		37.2	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Fluorene	NELAP	34.9	J	9.9	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	34.9		41.2	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Naphthalene	NELAP	34.9	J	21	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Phenanthrene	NELAP	34.9	J	18	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Pyrene	NELAP	34.9		96.2	mg/Kg-dry	10	7/19/04 2:49:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		109	%REC	10	7/19/04 2:49:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	S	0	%REC	10	7/19/04 2:49:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		120	%REC	10	7/19/04 2:49:00 AM	DMH
SW-846 5035, 8260B, VOLA	TILE ORGANIC COMP	POUNDS	BY GC/N	S				
Benzene	NELAP	1.2	TY C	47.7	μg/Kg-dry	1.	7/23/04 4:38:00 AM	HLR
Toluene	NELAP	6.1		31.3	µg/Kg-dry	1	7/23/04 4:38:00 AM	HLR
Ethylbenzene	NELAP	6.1		149	μg/Kg-dry	1	7/23/04 4:38:00 AM	HLR
Xylenes, Total	NELAP	6.1		139	μg/Kg-dry	1	7/23/04 4:38:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-032

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B505-3 (2-3)

Collection Date: 7/14/04 10:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122	S	136	%REC	1	7/23/04 4:38:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	66.9	%REC	1	7/23/04 4:38:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	129	%REC	1	7/23/04 4:38:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8	S	81.3	%REC	1	7/23/04 4:38:00 AM	HLR
SW-846 7471A Mercury	NELAP	0.012		0.061	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014	NELA	0.012		0.001	mg/ng dry	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ONO
Cyanide	NELAP	2.78		25.2	mg/kg-dry	5	7/26/04	ADH
SW-846 9045C pH (1:1)	NELAP	1.00		7.75		1	7/19/04 11:27:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Project: A831-735002-**Client Sample ID:** B505-6 (5-6)

Lab ID:

04070377-033

Collection Date: 7/14/04 10:30:00 AM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		25.0	%	1	7/19/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		75.0	%	1	7/19/04	JRS
SW-846 3550B, 8015, TOTAL	PETROLEUM HYDE	ROCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	993		25600 #	mg/Kg-dry	50	7/23/04 12:39:00 PM	DMH
Kerosene	NELAP	993		ND	mg/Kg-dry	50	7/23/04 12:39:00 PM	DMH
Mineral Spirits	NELAP	993		ND	mg/Kg-dry	50	7/23/04 12:39:00 PM	DMH
Motor Oil	NELAP	993		5510#	mg/Kg-dry	50	7/23/04 12:39:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	50	7/23/04 12:39:00 PM	DMH
SW-846 3550B, 8270C SIMS, 5	SEMI-VOLATILE OF	RGANIC C	COMPOUR	NDS BY GC	/MS			
Acenaphthene	NELAP	36.9		540	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Acenaphthylene	NELAP	36.9		81.4	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Anthracene	NELAP	36.9		279	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Benzo(a)anthracene	NELAP	36.9		137	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Benzo(a)pyrene	NELAP	36.9		141	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Benzo(b)fluoranthene	NELAP	36.9		130	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	36.9	J	31	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Benzo(k)fluoranthene	NELAP	36.9		45.1	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Chrysene	NELAP	36.9		143	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	36.9	J	10	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Fluoranthene	NELAP	36.9		294	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Fluorene	NELAP	36.9		404	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	36.9	J	35	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Naphthalene	NELAP	369		2340	mg/Kg-dry	100	7/21/04 3:33:00 AM	DMH
Phenanthrene	NELAP	369		923	mg/Kg-dry	100	7/21/04 3:33:00 AM	DMH
Pyrene	NELAP	36.9		405	mg/Kg-dry	10	7/19/04 3:28:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130	S	180	%REC	10	7/19/04 3:28:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	S	160	%REC	10	7/19/04 3:28:00 AM	DMH
Surr: p-Terphenyl-d14		10-130	S	130	%REC	10	7/19/04 3:28:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	1250		14500	μg/Kg-dry	500	7/23/04 5:09:00 AM	HLR
Toluene	NELAP	6250	J	3800	μg/Kg-dry	500	7/23/04 5:09:00 AM	HLR
Ethylbenzene	NELAP	6250		79800	μg/Kg-dry	500	7/23/04 5:09:00 AM	HLR
Xylenes, Total	NELAP	6250		69900	μg/Kg-dry	500	7/23/04 5:09:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		113	%REC	500	7/23/04 5:09:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.0	%REC	500	7/23/04 5:09:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-033

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B505-6 (5-6)

Collection Date: 7/14/04 10:30:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74 1-121			102	%REC	500	7/23/04 5:09:00 AM	HLR
Surr: Toluene-d8	82.8-112.8			99.7	%REC	500	7/23/04 5:09:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B505-11 (10-11)

Lab ID:

04070377-034

Collection Date: 7/14/04 11:00:00 AM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		21.9	%	1	7/20/04	JRS
STANDARD METHODS 18TH	H ED. 2540 G							
Total Solids		0.1		78.1	%	1	7/20/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.40		10.1	mg/Kg-dry	1	7/27/04 10:16:12 AM	JMW
Barium	NELAP	0.48		77.2	mg/Kg-dry	1	7/24/04 8:13:02 PM	SAM
Cadmium	NELAP	0.19	J	0.16	mg/Kg-dry	1	7/24/04 8:13:02 PM	SAM
Chromium	NELAP	0.96		22.3	mg/Kg-dry	1	7/26/04 6:31:15 PM	JMW
Léad	NELAP	3.85		14.9	mg/Kg-dry	1	7/24/04 8:13:02 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 8:13:02 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 8:13:02 PM	SAM
SW-846 3550B, 8270C, SEM	I-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
1,2-Dichlorobenzene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
1,3-Dichlorobenzene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
1,4-Dichlorobenzene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4,5-Trichlorophenol	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4,6-Trichlorophenol	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4-Dichlorophenol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4-Dimethylphenol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4-Dinitrophenol	NELAP	32.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,4-Dinitrotoluene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2,6-Dinitrotoluene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2-Chloronaphthalene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2-Chlorophenol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2-Methylnaphthalene	NELAP	11.3	J	8.0	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2-Nitroaniline	NELAP	32.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
2-Nitrophenol	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMF
3,3'-Dichlorobenzidine	NELAP	11_3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
3-Nitroaniline	NELAP	32.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
4,6-Dinitro-2-methylphenol	NELAP	32.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
4-Bromophenyl phenyl ether	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
4-Chloro-3-methylphenol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
4-Chloroaniline	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMF
4-Chlorophenyl phenyl ether	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
4-Nitroaniline	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMF

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-034

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B505-11 (10-11)

Collection Date: 7/14/04 11:00:00 AM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Acenaphthene	NELAP	11.3		13.4	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Acenaphthylene	NELAP	11.3		13.8	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Anthracene	NELAP	11.3	J	11	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Benzo(a)anthracene	NELAP	11.3	J	7.5	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Benzo(a)pyrene	NELAP	11.3	J	7.0	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Benzo(b)fluoranthene	NELAP	11.3	J	5.4	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Benzo(k)fluoranthene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Bis(2-chloroethoxy)methane	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Bis(2-chloroethyl)ether	NELAP	14.7		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Bis(2-chloroisopropyl)ether	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Butyl benzyl phthalate	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Carbazole		16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Chrysene	NELAP	11.3	J	6.7	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Di-n-butyl phthalate	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Di-n-octyl phthalate	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Dibenzofuran	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Diethyl phthalate	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Dimethyl phthalate		11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Fluoranthene	NELAP	11.3		12.2	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Fluorene	NELAP	11.3		15.4	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Hexachlorobenzene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Hexachlorobutadiene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Hexachlorocyclopentadiene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Hexachloroethane	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Isophorone	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
m,p-Cresol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
N-Nitroso-di-n-propylamine	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
N-Nitrosodiphenylamine	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Naphthalene	NELAP	11.3		113	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Nitrobenzene	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
o-Cresol	NELAP	16.1		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Pentachlorophenol	NELAP	64.6		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-034

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B505-11 (10-11)

Collection Date: 7/14/04 11:00:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	11.3		38.6	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Phenol	NELAP	11.3		ND	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Pyrene	NELAP	16.1		19.7	mg/Kg-dry	25	7/20/04 3:23:00 PM	DMH
Surr: 2,4,6-Tribromophenol		31-123		62.6	%REC	25	7/20/04 3:23:00 PM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		82.4	%REC	25	7/20/04 3:23:00 PM	DMH
Surr: 2-Fluorophenol		27-111		69.5	%REC	25	7/20/04 3:23:00 PM	DMH
Surr: Nitrobenzene-d5		28.9-113		68.5	%REC	25	7/20/04 3:23:00 PM	DMH
Surr: p-Terphenyl-d14		25-144		79.6	%REC	25	7/20/04 3:23:00 PM	DMH
Surr: Phenol-d5		33.7-123		80.9	%REC	25	7/20/04 3:23:00 PM	DMH
SW-846 5035, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/MS					
1,1,1-Trichloroethane	NELAP	1050		ND	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,1,2-Trichloroethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,1-Dichloroethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,1-Dichloroethene	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,2-Dichloroethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
1,2-Dichloropropane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
2-Butanone	NELAP	10500		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
2-Hexanone	NELAP	10500		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
4-Methyl-2-pentanone	NELAP	10500		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Acetone	NELAP	10500		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Benzene	NELAP	211		5040	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Bromodichloromethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Bromoform	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Bromomethane	NELAP	2110		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Carbon disulfide	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Carbon tetrachloride	NELAP	1050		ND	μg/Kg-d r y	100	7/20/04 3:25:00 PM	HLR
Chlorobenzene	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Chloroethane	NELAP	2110		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Chloroform	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Chloromethane	NELAP	2110		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	1050		ND	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	844		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Dibromochloromethane	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Ethylbenzene	NELAP	1050		17700	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Methyl tert-butyl ether	NELAP	422		ND	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Methylene chloride	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-034

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B505-11 (10-11)

Collection Date: 7/14/04 11:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Styrene	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Tetrachloroethene	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Toluene	NELAP	1050	J	720	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	1050		ND	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	844		ND	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Trichloroethene	NELAP	1050		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Vinyl chloride	NELAP	422		ND	μg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Xylenes, Total	NELAP	1050		11200	µg/Kg-dry	100	7/20/04 3:25:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		110	%REC	100	7/20/04 3:25:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.1	%REC	100	7/20/04 3:25:00 PM	HLR
Surr: Dibromofluoromethane	•	74.1-121		101	%REC	100	7/20/04 3:25:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		103	%REC	100	7/20/04 3:25:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.043	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	D					
n-Butanol		13		ND	mg/Kg-dry	1	7/23/04 6:02:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.76		1	7/19/04 11:31:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-035

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B505-22 (21-22)

Collection Date: 7/14/04 12:30:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10	%	4	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.0	%	1	7/19/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Acenaphthylene	NELAP	0.109	J	0.012	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Anthracene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Benzo(a)anthracene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Benzo(a)pyrene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Chrysene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Fluoranthene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Fluorene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.109		ND	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Naphthalene	NELAP	0.109		0.160	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Phenanthrene	NELAP	0.109	J	0.020	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Pyrene	NELAP	0.109	J	0.011	mg/Kg-dry	1	7/18/04 10:55:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		80.8	%REC	1	7/18/04 10:55:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		76.9	%REC	1	7/18/04 10:55:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		94.0	%REC	1	7/18/04 10:55:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	0.7		1.6	μg/Kg-dry	1	7/23/04 5:41:00 AM	HLR
Toluene	NELAP	3.7		4.3	μg/Kg-dry	1	7/23/04 5:41:00 AM	HLR
Ethylbenzene	NELAP	3.7	J	1.5	μg/Kg-dry	1	7/23/04 5:41:00 AM	HLR
Xylenes, Total	NELAP	3.7		4.2	μg/Kg-dry	1	7/23/04 5:41:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		114	%REC	1	7/23/04 5:41:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.7	%REC	1	7/23/04 5:41:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		103	%REC	1	7/23/04 5:41:00 AM	HLR
Surr: Toluene-d8		2.8-112.8		99.2	%REC	1	7/23/04 5:41:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B505-28 (27-28)

Lab ID:

04070377-036

Collection Date: 7/14/04 1:00:00 PM

Report Date: 11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.3	%	1	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.7	%	1	7/19/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.112	J	0.020	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Acenaphthylene	NELAP	0.112	J	0.030	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Anthracene	NELAP	0.112	J	0.037	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Benzo(a)anthracene	NELAP	0.112	J	0.029	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Benzo(a)pyrene	NELAP	0.112	J	0.025	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.112	J	0.020	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.112		ND	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Chrysene	NELAP	0.112	J	0.026	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Fluoranthene	NELAP	0.112	J	0.051	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Fluorene	NELAP	0.112	J	0.044	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Naphthalene	NELAP	0.112		0.179	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Phenanthrene	NELAP	0.112		0.130	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Pyrene	NELAP	0.112	J	0.078	mg/Kg-dry	1	7/18/04 11:34:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		75.0	%REC	1	7/18/04 11:34:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		74.5	%REC	1	7/18/04 11:34:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		89.4	%REC	1	7/18/04 11:34:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		3.0	μg/Kg-dry	1	7/23/04 6:12:00 AM	HLR
Toluene	NELAP	3.8	J	2.5	μg/Kg-dry	1	7/23/04 6:12:00 AM	HLR
Ethylbenzene	NELAP	3.8	J	2.3	μg/Kg-dry	1	7/23/04 6:12:00 AM	HLR
Xylenes, Total	NELAP	3.8		4.0	μg/Kg-dry	1	7/23/04 6:12:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.4	%REC	1	7/23/04 6:12:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		78.3	%REC	1	7/23/04 6:12:00 AM	HLR
Surr: Dibromofluoromethane	,	74.1-121		97.7	%REC	1	7/23/04 6:12:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		93.5	%REC	1	7/23/04 6:12:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B553-3 (2-3)

Lab ID:

04070377-037

Collection Date: 7/14/04 2:00:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		20.2	%	1	7/19/04	JRS
STANDARD METHODS 18T	H ED. 2540 G							
Total Solids		0.1		79.8	%	1	7/19/04	JRS
SW-846 3050B, 6010B, MET	TALS BY ICP							
Arsenic	NELAP	2.40		< 2.40	mg/Kg-dry	1	7/27/04 11:00:01 AM	JMW
Barium	NELAP	0.48		20.1	mg/Kg-dry	1	7/24/04 8:18:06 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	7/24/04 8:18:06 PM	SAM
Chromium	NELAP	0.96		7.23	mg/Kg-dry	1	7/26/04 6:34:15 PM	JMW
Lead	NELAP	3.85		8.50	mg/Kg-dry	1	7/24/04 8:18:06 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/24/04 8:18:06 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/24/04 8:18:06 PM	SAM
SW-846 3550B, 8270C SIMS	S. SEMI-VOLATILE OR	GANIC C	COMPOU	IDS BY GC	/MS			
Acenaphthene	NELAP	7.90		8.53	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Acenaphthylene	NELAP	7.90		26.4	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Anthracene	NELAP	7.90		8.45	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Benzo(a)anthracene	NELAP	7.90		10.3	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Benzo(a)pyrene	NELAP	7.90		54.9	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Benzo(b)fluoranthene	NELAP	7.90		50.3	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	7.90		25.6	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Benzo(k)fluoranthene	NELAP	7.90		11.6	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Chrysene	NELAP	7.90		18.2	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	7.90	J	5.0	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Fluoranthene	NELAP	7.90		17.4	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Fluorene	NELAP	7.90	J	7.8	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	7.90		21.1	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Naphthalene	NELAP	7.90	J	2.2	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Phenanthrene	NELAP	7.90		9.37	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Pyrene	NELAP	7.90		26.8	mg/Kg-dry	2	7/21/04 12:29:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		102	%REC	2	7/21/04 12:29:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		71.8	%REC	2	7/21/04 12:29:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		110	%REC	2	7/21/04 12:29:00 PM	DMH
SW-846 5035, 8260B, VOLA	ATILE ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	90.0		195	μg/Kg-dry	25	7/23/04 6:44:00 AM	HLR
Toluene	NELAP	450	J	370	μg/Kg-dry	25	7/23/04 6:44:00 AM	HLR
Ethylbenzene	NELAP	450	J	200	μg/Kg-dry	25	7/23/04 6:44:00 AM	HLR
Xylenes, Total	NELAP	450		456	μg/Kg-dry	25	7/23/04 6:44:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-037

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B553-3 (2-3)

Collection Date: 7/14/04 2:00:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		95.8	%REC	25	7/23/04 6:44:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.3	%REC	25	7/23/04 6:44:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		94.9	%REC	25	7/23/04 6:44:00 AM	HLR
Surr: Toluene-d8	83	2.8-112.8		102	%REC	25	7/23/04 6:44:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012	J	0.005	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.62		1.81	mg/kg-dry	1	7/26/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.26		1	7/16/04 10:54:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B553-6 (5-6)

Lab ID:

04070377-038

Collection Date: 7/14/04 2:10:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		28.7	%	1	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		71.3	%	1	7/19/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC (COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	38.0		280	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Acenaphthylene	NELAP	38.0	J	27	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Anthracene	NELAP	38.0		166	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Benzo(a)anthracene	NELAP	38.0		119	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Benzo(a)pyrene	NELAP	38.0		125	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Benzo(b)fluoranthene	NELAP	38.0		131	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	38.0	J	29	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Benzo(k)fluoranthene	NELAP	38.0		50.5	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Chrysene	NELAP	38.0		116	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	38.0	J	9.7	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Fluoranthene	NELAP	38.0		302	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Fluorene	NELAP	38.0		179	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	38.0	J	34	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Naphthalene	NELAP	190		877	mg/Kg-dry	50	7/21/04 5:31:00 AM	DMH
Phenanthrene	NELAP	38.0		535	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Pyrene	NELAP	38.0		335	mg/Kg-dry	10	7/19/04 4:47:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		120	%REC	10	7/19/04 4:47:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		100	%REC	10	7/19/04 4:47:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		130	%REC	10	7/19/04 4:47:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	117		4050	μg/Kg-dry	50	7/23/04 7:15:00 AM	HLR
Toluene	NELAP	585		811	μg/Kg-dry	50	7/23/04 7:15:00 AM	HLR
Ethylbenzene	NELAP	585		20800	μg/Kg-dry	50	7/23/04 7:15:00 AM	HLR
Xylenes, Total	NELAP	585		19300	μg/Kg-dry	50	7/23/04 7:15:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		94.0	%REC	50	7/23/04 7:15:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		92.1	%REC	50	7/23/04 7:15:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		92.0	%REC	50	7/23/04 7:15:00 AM	HLR
Surr: Toluene-d8		.8-112.8		101	%REC	50	7/23/04 7:15:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-039

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B553-15 (14-15)

Collection Date: 7/14/04 2:45:00 PM

Matrix:

Percent Moisture	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Percent Moisture 0.1 11.0 % 11 7/19/04 7/19/04 XRS STANDARD METHODS 18TH ED. 2540 € 0.1 89.0 % 1 7/19/04 XRS Total Solidas 0.1 89.0 % 1 7/19/04 256.00 AM DMH Acenaphthene NELAP 5.47 15.7 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Acenaphthylene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Acenaphthylene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Anthracene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(s)(hi)perylene NELAP 5.47 50.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(s)(hi)perylene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(g)(hi)perylene	ASTM D2974								
Total Solids			0.1		11.0	%	1	7/19/04	JRS
Total Solids	STANDARD METHODS 18TH B	ED. 2540 G							
Acenaphthene NELAP 5.47 15.7 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Acenaphthylene NELAP 5.47 35.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Anthracene NELAP 5.47 77.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)anthracene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)pyrene NELAP 5.47 53.2 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(g),hilperylene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 J 40 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorence<	Total Solids		0.1		89.0	%	1	7/19/04	JRS
Acenaphthene NELAP 5.47 15.7 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Acenaphthylene NELAP 5.47 35.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Anthracene NELAP 5.47 77.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)anthracene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)pyrene NELAP 5.47 53.2 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(g),hilperylene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 J 40 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorence<	SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Anthracene NELAP 5.47 77.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)anthracene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(b)fluoranthene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(b)fluoranthene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 11.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 40.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 40.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene N							10	7/19/04 5:26:00 AM	DMH
Benzo(a)anthracene NELAP 5.47 50.8 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(a)pyrene NELAP 5.47 53.2 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(b)fluoranthene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 11.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 11.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 J 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 40.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorene NELAP 5.47 13.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH </td <td>Acenaphthylene</td> <td>NELAP</td> <td>5.47</td> <td></td> <td>35.6</td> <td>mg/Kg-dry</td> <td>10</td> <td>7/19/04 5:26:00 AM</td> <td>DMH</td>	Acenaphthylene	NELAP	5.47		35.6	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Benzo(a)pyrene NELAP 5.47 53.2 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH	Anthracene	NELAP	5.47		77.9	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Benzo(b)fluoranthene NELAP 5.47 56.1 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(g,h,i)perylene NELAP 5.47 11.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 40 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 40 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene NELAP 5.47 43.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Nephanathrene NELAP 54.7 224 mg/Kg-dry 10 7/21/04 9:14:00 AM <td< td=""><td>Benzo(a)anthracene</td><td>NELAP</td><td>5.47</td><td></td><td>50.8</td><td>mg/Kg-dry</td><td>10</td><td>7/19/04 5:26:00 AM</td><td>DMH</td></td<>	Benzo(a)anthracene	NELAP	5.47		50.8	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Benzo(g,h,i)perylene NELAP 5.47 11.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 4.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene NELAP 54.7 J 4.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorene NELAP 54.7 13.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH	Benzo(a)pyrene	NELAP	5.47		53.2	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 4.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene NELAP 54.7 133 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorene NELAP 54.7 64.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Phenanthrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Surr: 2-Fluorob	Benzo(b)fluoranthene	NELAP	5.47		56.1	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Benzo(k)fluoranthene NELAP 5.47 20.5 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 4.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene NELAP 54.7 133 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Fluorene NELAP 5.47 64.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Surr: 2-Fluorob	Benzo(g,h,i)perylene	NELAP	5.47		11.5	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Chrysene NELAP 5.47 47.3 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Dibenzo(a,h)anthracene NELAP 5.47 J 4.0 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluoranthene NELAP 54.7 133 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Fluorene NELAP 5.47 64.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 10 9 REC 10 7/19/04 5:26:00 AM DMH Surr: p-Terphenyl-d14 10		NELAP	5.47		20.5	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Fluoranthene NELAP 54.7 133 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Fluorene NELAP 5.47 64.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 \$ 160 %REC 10 7/19/04 5:26:00 AM DMH Swr8-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR		NELAP	5.47		47.3	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Fluoranthene NELAP 54.7 133 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Fluorene NELAP 5.47 64.9 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 10 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 \$ 160 %REC 10 7/19/04 5:26:00 AM DMH Swr-846 5035, 8260B. VOLATILE ORGANIC COMPOUNDS BY GC/MS 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP <t< td=""><td>Dibenzo(a,h)anthracene</td><td>NELAP</td><td>5.47</td><td>J</td><td>4.0</td><td>mg/Kg-dry</td><td>10</td><td>7/19/04 5:26:00 AM</td><td>DMH</td></t<>	Dibenzo(a,h)anthracene	NELAP	5.47	J	4.0	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Indeno(1,2,3-cd)pyrene NELAP 5.47 13.6 mg/Kg-dry 10 7/19/04 5:26:00 AM DMH Naphthalene NELAP 54.7 523 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 109 %REC 10 7/19/04 5:26:00 AM DMH Surr: p-Terphenyl-d14 10-130 S 160 %REC 10 7/19/04 5:26:00 AM DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluorometh		NELAP	54.7		133	mg/Kg-dry	100	7/21/04 9:14:00 AM	DMH
Naphthalene NELAP 54.7 523 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Phenanthrene NELAP 54.7 224 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Pyrene NELAP 54.7 138 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 109 %REC 10 7/19/04 5:26:00 AM DMH Sw-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS 8 160 %REC 10 7/19/04 5:26:00 AM DMH Ebrzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111	Fluorene	NELAP	5.47		64.9	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Phenanthrene NELAP 54.7 224 mg/Kg-dry mg/Kg-dry mg/Kg-dry 100 7/21/04 9:14:00 AM DMH DMH Pyrene NELAP 54.7 138 mg/Kg-dry mg/Kg-dry 100 7/21/04 9:14:00 AM DMH DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH DMH Surr: Nitrobenzene-d5 Surr: p-Terphenyl-d14 10-130 S 160 %REC 10 7/19/04 5:26:00 AM DMH DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR HLR Toluene NELAP 2560 NELAP 2560 10100 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR NELAP 2560 37300 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR HLR	Indeno(1,2,3-cd)pyrene	NELAP	5.47		13.6	mg/Kg-dry	10	7/19/04 5:26:00 AM	DMH
Pyrene NELAP 54.7 138 mg/Kg-dry 100 7/21/04 9:14:00 AM DMH Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 109 %REC 10 7/19/04 5:26:00 AM DMH Surr: p-Terphenyl-d14 10-130 \$ 160 %REC 10 7/19/04 5:26:00 AM DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS S 160 %REC 10 7/19/04 5:26:00 AM DMH Sw-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS S 160 %REC 10 7/19/04 5:26:00 AM DMH Sw-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS S 0 7/23/04 7:46:00 AM HLR Benzene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300	Naphthalene	NELAP	54.7		523	mg/Kg-dry	100	7/21/04 9:14:00 AM	DMH
Surr: 2-Fluorobiphenyl 10-130 120 %REC 10 7/19/04 5:26:00 AM DMH Surr: Nitrobenzene-d5 10-130 109 %REC 10 7/19/04 5:26:00 AM DMH Surr: p-Terphenyl-d14 10-130 \$ 160 %REC 10 7/19/04 5:26:00 AM DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 2-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluorometha	Phenanthrene	NELAP	54.7		224	mg/Kg-dry	100	7/21/04 9:14:00 AM	DMH
Surr: Nitrobenzene-d5 10-130 109 %REC 10 7/19/04 5:26:00 AM DMH Surr: p-Terphenyl-d14 10-130 S 160 %REC 10 7/19/04 5:26:00 AM DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS S 160 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Kylenes, Total NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Pyrene	NELAP	54.7		138	mg/Kg-dry	100	7/21/04 9:14:00 AM	DMH
Surr: p-Terphenyl-d14 10-130 S 160 %REC 10 7/19/04 5:26:00 AM DMH SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Surr: 2-Fluorobiphenyl		10-130		120	%REC	10	7/19/04 5:26:00 AM	DMH
SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Surr: Nitrobenzene-d5		10-130		109	%REC	10	7/19/04 5:26:00 AM	DMH
SW-846 5035, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS Benzene NELAP 513 3030 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Surr: p-Terphenyl-d14		10-130	S	160	%REC	10	7/19/04 5:26:00 AM	DMH
Benzene NELAP 513 3030 μg/Kg-dry μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Toluene NELAP 2560 16100 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Ethylbenzene NELAP 2560 10100 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR		E ORGANIC COM	POUNDS	BY GC/N	IS				
Ethylbenzene NELAP 2560 10100 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Xylenes, Total NELAP 2560 37300 μg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR						µg/Kg-dry	250	7/23/04 7:46:00 AM	HLR
Xylenes, Total NELAP 2560 37300 µg/Kg-dry 250 7/23/04 7:46:00 AM HLR Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Toluene	NELAP	2560		16100	μg/Kg-dry	250	7/23/04 7:46:00 AM	HLR
Surr: 1,2-Dichloroethane-d4 72.8-122 111 %REC 250 7/23/04 7:46:00 AM HLR Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Ethylbenzene	NELAP	2560		10100	μg/Kg-dry	250	7/23/04 7:46:00 AM	HLR
Surr: 4-Bromofluorobenzene 75.6-120 93.0 %REC 250 7/23/04 7:46:00 AM HLR Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Xylenes, Total	NELAP	2560		37300	µg/Kg-dry	250	7/23/04 7:46:00 AM	HLR
Surr: Dibromofluoromethane 74.1-121 101 %REC 250 7/23/04 7:46:00 AM HLR	Surr: 1,2-Dichloroethane-d4		72.8-122		111	%REC	250	7/23/04 7:46:00 AM	HLR
	Surr: 4-Bromofluorobenzene		75.6-120		93.0	%REC	250	7/23/04 7:46:00 AM	HLR
Surr: Toluene-d8 82.8-112.8 102 %REC 250 7/23/04 7:46:00 AM HLR	Surr: Dibromofluoromethane		74.1-121		101	%REC	250	7/23/04 7:46:00 AM	HLR
	Surr: Toluene-d8	8:	2.8-112.8		102	%REC	250	7/23/04 7:46:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B553-24 (23-24)

Lab ID:

04070377-040

Collection Date: 7/14/04 3:10:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		6.6	%	1	7/19/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		93.4	%	1	7/19/04	JRS
SW-846 3550B, 8015, TOTAL P	ETROLEUM HYD	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	1320		40400 #	mg/Kg-dry	25	7/21/04 3:49:00 AM	CJS
Kerosene	NELAP	1320		ND	mg/Kg-dry	25	7/21/04 3:49:00 AM	CJS
Mineral Spirits	NELAP	1320		ND	mg/Kg-dry	25	7/21/04 3:49:00 AM	CJS
Motor Oil	NELAP	1320		8910#	mg/Kg-dry	25	7/21/04 3:49:00 AM	CJS
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	25	7/21/04 3:49:00 AM	CJS
SW-846 3550B, 8270C SIMS, SI	EMI-VOLATILE OF	RGANIC C	ОМРОИ	NDS BY GO	/MS			
Acenaphthene	NELAP	52.1		101	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Acenaphthylene	NELAP	52.1		664	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Anthracene	NELAP	52.1		371	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Benzo(a)anthracene	NELAP	52.1		188	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Benzo(a)pyrene	NELAP	52.1		194	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Benzo(b)fluoranthene	NELAP	52.1		154	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	52.1		57.8	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Benzo(k)fluoranthene	NELAP	52.1	J	49	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Chrysene	NELAP	52.1		197	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	52.1	J	17	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Fluoranthene	NELAP	52.1		417	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Fluorene	NELAP	52.1		555	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	52.1	J	52	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Naphthalene	NELAP	521		2650	mg/Kg-dry	500	7/21/04 2:29:00 PM	DMH
Phenanthrene	NELAP	521		985	mg/Kg-dry	500	7/21/04 2:29:00 PM	DMH
Pyrene	NELAP	52.1		588	mg/Kg-dry	50	7/21/04 9:53:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/21/04 9:53:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/21/04 9:53:00 AM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/21/04 9:53:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	1630		97300	μg/Kg-dry	1000	7/23/04 10:55:00 AM	HLR
Toluene	NELAP	8140		164000	μg/Kg-dry	1000	7/23/04 10:55:00 AM	HLR
Ethylbenzene	NELAP	8140		32900	μg/Kg-dry	1000	7/23/04 10:55:00 AM	HLR
Xylenes, Total	NELAP	8140		155000	μg/Kg-dry	1000	7/23/04 10:55:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	1000	7/23/04 10:55:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.3	%REC	1000	7/23/04 10:55:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-040

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B553-24 (23-24)

Collection Date: 7/14/04 3:10:00 PM

Matrix:

SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121		99.9	%REC	1000	7/23/04 10:55:00 AM	HLR	
Surr: Toluene-d8	82.8-112.8		102	%REC	1000	7/23/04 10:55:00 AM	HLR	

IL ELAP and NELAP Accredited - Accreditation #100226

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

11-Aug-04

Client Sample ID: B553-32 (31-32)

Lab ID:

Collection Date: 7/14/04 3:30:00 PM

Report Date:

04070377-041

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		9.1	%	1	7/19/04	JRS
STANDARD METHODS 18TH	I ED. 2540 G							
Total Solids		0.1		90.9	%	1	7/19/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.50		5.46	mg/Kg-dry	1	7/26/04 6:37:15 PM	JMW
Barium	NELAP	0.50		14.6	mg/Kg-dry	1	7/24/04 8:23:12 PM	SAM
Cadmium	NELAP	0.20		< 0.20	mg/Kg-dry	1	7/24/04 8:23:12 PM	SAM
Chromium	NELAP	1.00		10.1	mg/Kg-dry	1	7/26/04 6:37:15 PM	JMW
Lead	NELAP	4.00		8.62	mg/Kg-dry	1	7/24/04 8:23:12 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/24/04 8:23:12 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/24/04 8:23:12 PM	SAM
SW-846 3550B, 8270C, SEMI	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
1,2-Dichlorobenzene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
1,3-Dichlorobenzene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
1,4-Dichlorobenzene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4,5-Trichlorophenol	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4,6-Trichlorophenol	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4-Dichlorophenol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4-Dimethylphenol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4-Dinitrophenol	NELAP	1.09		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,4-Dinitrotoluene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2,6-Dinitrotoluene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2-Chloronaphthalene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2-Chlorophenol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2-Methylnaphthalene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2-Nitroaniline	NELAP	1.09		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
2-Nitrophenol	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
3,3'-Dichlorobenzidine	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
3-Nitroaniline	NELAP	1.09		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4,6-Dinitro-2-methylphenol	NELAP	1.09		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4-Bromophenyl phenyl ether	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4-Chloro-3-methylphenol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4-Chloroaniline	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4-Chlorophenyl phenyl ether	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
4-Nitroaniline	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-041

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B553-32 (31-32)

Collection Date: 7/14/04 3:30:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
4-Nitrophenol	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Acenaphthene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Acenaphthylene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Anthracene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Benzo(a)anthracene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Benzo(a)pyrene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Bis(2-chloroethoxy)methane	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Bis(2-chloroethyl)ether	NELAP	0.497		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Bis(2-chloroisopropyl)ether	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.382	J	0.30	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Butyl benzyl phthalate	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Carbazole		0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Chrysene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Di-n-butyl phthalate	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Di-n-octyl phthalate	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Dibenzofuran	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Diethyl phthalate	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Dimethyl phthalate		0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Fluoranthene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Fluorene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Hexachlorobenzene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Hexachlorobutadiene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Hexachlorocyclopentadiene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Hexachloroethane	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Isophorone	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
m.p-Cresol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
N-Nitroso-di-n-propylamine	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
N-Nitrosodiphenylamine	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Naphthalene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Nitrobenzene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
o-Cresol	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Pentachlorophenol	NELAP	2.18		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-041

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B553-32 (31-32)

Collection Date: 7/14/04 3:30:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Phenol	NELAP	0.382		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Pyrene	NELAP	0.545		ND	mg/Kg-dry	1	7/20/04 10:48:00 AM	DMH
Surr: 2,4,6-Tribromophenol		31-123		94.5	%REC	1	7/20/04 10:48:00 AM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		87.4	%REC	1	7/20/04 10:48:00 AM	DMH
Surr: 2-Fluorophenol		27-111		77.7	%REC	1	7/20/04 10:48:00 AM	DMH
Surr: Nitrobenzene-d5		28.9-113		76.9	%REC	1	7/20/04 10:48:00 AM	DMH
Surr: p-Terphenyl-d14		25-144		95.6	%REC	1	7/20/04 10:48:00 AM	DMH
Surr: Phenol-d5		33.7-123		92.3	%REC	1	7/20/04 10:48:00 AM	DMH
SW-846 5035, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,1,2-Trichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,1-Dichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,1-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,2-Dichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
1,2-Dichloropropane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
2-Butanone	NELAP	36.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
2-Hexanone	NELAP	36.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
4-Methyl-2-pentanone	NELAP	36.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Acetone	NELAP	36.3		37.1	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Benzene	NELAP	0.7		3.5	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Bromodichloromethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Bromoform	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Bromomethane	NELAP	7.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Carbon disulfide	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Carbon tetrachloride	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Chlorobenzene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Chloroethane	NELAP	7.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Chloroform	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Chloromethane	NELAP	7.3		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	2.9		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Dibromochloromethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Ethylbenzene	NELAP	3.6	J	1.5	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Methyl tert-butyl ether	NELAP	1.5		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Methylene chloride	NELAP	3.6	J	0.8	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-041

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B553-32 (31-32)

Collection Date: 7/14/04 3:30:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Tetrachloroethene	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Toluene	NELAP	3.6		4.5	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	2.9		ND	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Trichloroethene	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Vinyl chloride	NELAP	1.5		ND	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Xylenes, Total	NELAP	3.6		3.6	µg/Kg-dry	1	7/20/04 5:00:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		112	%REC	1	7/20/04 5:00:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	73.8	%REC	1	7/20/04 5:00:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		106	%REC	1	7/20/04 5:00:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		88.7	%REC	1	7/20/04 5:00:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.010	J	0.009	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	0					
n-Butanol	200000000000000000000000000000000000000	11		ND	mg/Kg-dry	1	7/23/04 6:18:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.11		1	7/16/04 10:56:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070377

Client Sample ID: B553-32D (31-32)

Lab ID:

04070377-042

Collection Date: 7/14/04 3:30:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		8.4	%	1	7/19/04	JRS
STANDARD METHODS 18TH	I ED. 2540 G							
Total Solids		0.1		91.6	%	1	7/19/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.36		2.98	mg/Kg-dry	1	7/26/04 1:00:18 PM	JMW
Barium	NELAP	0.47		11.9	mg/Kg-dry	1	7/24/04 5:41:49 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	7/24/04 5:41:49 PM	SAM
Chromium	NELAP	0.94		10.5	mg/Kg-dry	1	7/26/04 1:00:18 PM	JMW
Lead	NELAP	3.77		6.92	mg/Kg-dry	1	7/24/04 5:41:49 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	7/24/04 5:41:49 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	7/24/04 5:41:49 PM	SAM
SW-846 3550B, 8270C, SEMI	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
1,2-Dichlorobenzene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
1,3-Dichlorobenzene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
1,4-Dichlorobenzene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4,5-Trichlorophenol	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4,6-Trichlorophenol	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4-Dichlorophenol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4-Dimethylphenol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4-Dinitrophenol	NELAP	1.08		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,4-Dinitrotoluene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2,6-Dinitrotoluene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
2-Chloronaphthalene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
2-Chlorophenol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2-Methylnaphthalene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2-Nitroaniline	NELAP	1.08		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
2-Nitrophenol	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
3,3'-Dichlorobenzidine	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
3-Nitroaniline	NELAP	1.08		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
4,6-Dinitro-2-methylphenol	NELAP	1.08		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
4-Bromophenyl phenyl ether	NELAP	0,376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
4-Chloro-3-methylphenol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
4-Chloroaniline	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
4-Chlorophenyl phenyl ether	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMF
4-Nitroaniline	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-042

Report Date:

11-Aug-04

A831-735002-012901-225/IP Champa **Client Project:**

Client Sample ID: B553-32D (31-32) **Collection Date:** 7/14/04 3:30:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Acenaphthene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Acenaphthylene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Anthracene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Benzo(a)anthracene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Benzo(a)pyrene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Bis(2-chloroethoxy)methane	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Bis(2-chloroethyl)ether	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Bis(2-chloroisopropyl)ether	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Bis(2-ethylhexyl)phthalate	NELAP	0.376		0.404	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Butyl benzyl phthalate	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Carbazole		0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Chrysene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Di-n-butyl phthalate	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Di-n-octyl phthalate	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Dibenzofuran	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Diethyl phthalate	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Dimethyl phthalate		0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Fluoranthene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Fluorene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Hexachlorobenzene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Hexachlorobutadiene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Hexachlorocyclopentadiene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Hexachloroethane	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Isophorone	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
m,p-Cresol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
N-Nitroso-di-n-propylamine	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
N-Nitrosodiphenylamine	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Naphthalene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Nitrobenzene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
o-Cresol	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Pentachlorophenol	NELAP	2.15		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070377

Lab ID:

04070377-042

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B553-32D (31-32)

Collection Date: 7/14/04 3:30:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Phenol	NELAP	0.376		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Pyrene	NELAP	0.538		ND	mg/Kg-dry	1	7/20/04 11:27:00 AM	DMH
Surr: 2,4,6-Tribromophenol		31-123		86.6	%REC	1	7/20/04 11:27:00 AM	DMH
Surr: 2-Fluorobiphenyl		14.6-132		83.9	%REC	1	7/20/04 11:27:00 AM	DMH
Surr: 2-Fluorophenol		27-111		72.3	%REC	1	7/20/04 11:27:00 AM	DMH
Surr: Nitrobenzene-d5		28.9-113		72.8	%REC	1	7/20/04 11:27:00 AM	DMH
Surr: p-Terphenyl-d14		25-144		88.9	%REC	1	7/20/04 11:27:00 AM	DMH
Surr: Phenol-d5		33.7-123		81.8	%REC	1	7/20/04 11:27:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,1,2-Trichloroethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,1-Dichloroethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,1-Dichloroethene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,2-Dichloroethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
1,2-Dichloropropane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
2-Butanone	NELAP	35.2		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
2-Hexanone	NELAP	35.2		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
4-Methyl-2-pentanone	NELAP	35.2		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Acetone	NELAP	35.2	J	19	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Benzene	NELAP	0.7		2.1	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Bromodichloromethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Bromoform	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Bromomethane	NELAP	7.0		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Carbon disulfide	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Carbon tetrachloride	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Chlorobenzene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Chloroethane	NELAP	7.0		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Chloroform	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Chloromethane	NELAP	7.0		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	2.8		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Dibromochloromethane	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Ethylbenzene	NELAP	3.5	J	0.9	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Methyl tert-butyl ether	NELAP	1.4		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Methylene chloride	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070377

Lab ID:

04070377-042

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Collection Date: 7/14/04 3:30:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Tetrachloroethene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Toluene	NELAP	3.5	J	3.0	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
rans-1,2-Dichloroethene	NELAP	3.5		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
rans-1,3-Dichloropropene	NELAP	2.8		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Frichloroethene	NELAP	3.5		ND	µg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
/inyl chloride	NELAP	1.4		ND	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Kylenes, Total	NELAP	3.5	J	3.1	μg/Kg-dry	1	7/20/04 5:31:00 PM	HLR
Surr: 1,2-Dichloroethane-d4	7	72.8-122		107	%REC	1	7/20/04 5:31:00 PM	HLR
Surr: 4-Bromofluorobenzene	7	75.6-120		92.3	%REC	1	7/20/04 5:31:00 PM	HLR
Surr: Dibromofluoromethane	ī	74.1-121		99.7	%REC	1	7/20/04 5:31:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		99.1	%REC	1	7/20/04 5:31:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.010	J	0.007	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII)					
n-Butanol		11		ND	mg/Kg-dry	1	7/23/04 3:05:00 PM	SML
SW-846 9045C								
DH (1:1)	NELAP	1.00		8.25		1	7/16/04 10:58:00 AM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

August 11, 2004

Jim Gould
Philip Environmental
210 West Sand Bank Road
Columbia, IL 622360230

TEL: (618) 281-7173 FAX: (618) 281-5120

NELAP Accredited #100226

RE: A831-735002-012901-225/IP Champaign

OrderNo. 04070448

Dear Jim Gould:

TEKLAB, INC received 30 samples on 7/16/04 4:00:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP/Part 186 except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Philip Environmental

CASE NARRATIVE

Project:

A831-735002-012901-225/IP Champaign

LabOrder:

04070448

Report Date: August 11, 2004

This is a revised report. The list of VOC (8260) and SVOC(8270) compounds has been revised according to IEPA Title 35, Subtitle G, Chapter I, Part 740, Appendix A. Please replace your original report for this work order with this revised report.

Analytical Comments for METHOD V_8260S_S, SAMPLE 04070448-005D, 011D, 018D: Elevated reporting limit due to matrix interference.

Analytical Comments for METHOD V_8260S_S, SAMPLE 04070448-023D: Matrix interference present in sample.

Analytical Comments for METHOD SV_OA2_S, SAMPLE 04070448-002A, 027A: Elevated reporting limit due to matrix interference. #: Unknown hydrocarbon.

Analytical Comments for METHOD SV_OA2_S, SAMPLE 04070448-002AMS, 002AMSD: Elevated reporting limit due to matrix interference. #: Unknown hydrocarbon. Matrix spike recovery exceeded QC limits because of sample composition. RPD was not within acceptable limits because of sample composition.

Analytical Comments for METHOD SV_OA2_S, SAMPLE 04070448-008A, 012A, 018A, 022A: Elevated reporting limit due to matrix interference. #: Unknown hydrocarbon. Surrogate was diluted out.

Analytical Comments for METHOD V_BTEX_S, SAMPLE 04070448-004D, 009D, 010D, 014D, 015D, 016D, 025D, 026D, 028D, 030D: Matrix interference present in sample.

Analytical Comments for METHOD V_BTEX_S, SAMPLE 04070448-002E, 012E, 027E: Elevated reporting limit due to matrix interference.

Analytical Comments for METHOD SV_8270S_S_SIMS, SAMPLE 04070448-001A, 002A, 006A, 012A, 016A, 020A, 025A, 026A, 027A: Elevated reporting limit due to matrix interference.

Analytical Comments for METHOD SV_8270S_S_SIMS, SAMPLE 04070448-001AMS, 001AMSD: Elevated reporting limit due to matrix interference. Matrix spike was diluted out.

Analytical Comments for METHOD SV_8270S_S_SIMS, SAMPLE 04070448-007A, 008A, 010A, 012A, 017A, 021A, 022A: Elevated reporting limit due to matrix interference. Surrogate was diluted out.

Analytical Comments for METHOD SV_8270S_S, SAMPLE 04070448-005A, 011A, 011AMS, 011AMSD, 018A: Elevated reporting limit due to matrix interference.

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

Surr - Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

NELAP - IL ELAP and NELAP Accredited Field of Testing

TEL: 618-344-1004 FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-001

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B551-3 (2-3)

Collection Date: 7/15/04 8:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.5	%	11	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		77.5	%	1	7/22/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.45		10.7	mg/Kg-dry	1	7/27/04 2:12:55 PM	JMW
Barium	NELAP	0.49		60.5	mg/Kg-dry	1	7/27/04 11:15:49 AM	SAM
Cadmium	NELAP	0.20		0.39	mg/Kg-dry	1	7/27/04 11:15:49 AM	SAM
Chromium	NELAP	0.98		10.3	mg/Kg-dry	1	7/26/04 4:21:10 PM	JMW
Lead	NELAP	3.92		50.6	mg/Kg-dry	1	7/27/04 11:15:49 AM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	7/27/04 11:15:49 AM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	7/27/04 11:15:49 AM	SAM
SW-846 3550B, 8270C SIMS, 5	SEMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	6.54	J	3.7	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Acenaphthylene	NELAP	6.54		14.2	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Anthracene	NELAP	6.54		20.2	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Benzo(a)anthracene	NELAP	32.7		51.7	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Benzo(a)pyrene	NELAP	32.7		67.5	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Benzo(b)fluoranthene	NELAP	32.7		83.2	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	32.7	J	28	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Benzo(k)fluoranthene	NELAP	32.7	J	25	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Chrysene	NELAP	32.7		51.2	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	32.7	J	9.0	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Fluoranthene	NELAP	6.54		93.0	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Fluorene	NELAP	6.54		7.06	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	32.7		32.8	mg/Kg-dry	50	7/23/04 4:46:00 PM	DMH
Naphthalene	NELAP	6.54		8.45	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Phenanthrene	NELAP	6.54		46.8	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Pyrene	NELAP	6.54		76.4	mg/Kg-dry	10	7/26/04 2:38:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		79.8	%REC	10	7/26/04 2:38:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		60.1	%REC	10	7/26/04 2:38:00 AM	DMH
Surr: p-Terphenyl-d14		10-130	S	150	%REC	10	7/26/04 2:38:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMP	POUNDS	BY GC/N	IS				
Benzene	NELAP	39.8		972	μg/Kg-dry	12.5	7/23/04 2:55:00 PM	HLR
Toluene	NELAP	199		244	μg/Kg-dry	12.5	7/23/04 2:55:00 PM	HLR
Ethylbenzene	NELAP	199		282	μg/Kg-dry	12.5	7/23/04 2:55:00 PM	HLR
Xylenes, Total	NELAP	199		276	µg/Kg-dry	12.5	7/23/04 2:55:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-001

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B551-3 (2-3)

Collection Date: 7/15/04 8:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		107	%REC	12.5	7/23/04 2:55:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.0	%REC	12.5	7/23/04 2:55:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		97.0	%REC	12.5	7/23/04 2:55:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		99.5	%REC	12.5	7/23/04 2:55:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.281	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.64		3.00	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.72		1	7/19/04 1:32:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B551-10 (9-10)

11-Aug-04

Collection Date: 7/15/04 9:00:00 AM

Lab ID: Report Date: 04070448-002

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		27.1	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		72.9	%	4	7/22/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYDR	COCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	68.0		699 #	mg/Kg-dry	5	7/23/04 1:08:00 PM	DMH
Kerosene	NELAP	68.0		ND	mg/Kg-dry	5	7/23/04 1:08:00 PM	DMH
Mineral Spirits	NELAP	68.0		ND	mg/Kg-dry	5	7/23/04 1:08:00 PM	DMH
Motor Oil	NELAP	68.0		139 #	mg/Kg-dry	5	7/23/04 1:08:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		85.2	%REC	5	7/23/04 1:08:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOU	IDS BY GC	/MS			
Acenaphthene	NELAP	6.56		23.3	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Acenaphthylene	NELAP	6.56	J	3.0	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Anthracene	NELAP	6.56		13.3	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Benzo(a)anthracene	NELAP	6.56		9.62	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Benzo(a)pyrene	NELAP	6.56		12.3	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Benzo(b)fluoranthene	NELAP	6.56		11.0	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	6.56	J	3.5	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Benzo(k)fluoranthene	NELAP	6.56	J	4.2	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Chrysene	NELAP	6.56		10.1	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	6.56	J	1.0	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Fluoranthene	NELAP	6.56		20.5	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Fluorene	NELAP	6.56		15.2	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	6.56	J	3.7	mg/Kg-dry	5	7/27/04 11:28:00 AM	DMH
Naphthalene	NELAP	6.56		46.3	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Phenanthrene	NELAP	6.56		40.8	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Pyrene	NELAP	6.56		21.4	mg/Kg-dry	5	7/27/04 1:43:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		69.9	%REC	5	7/27/04 1:43:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	S	0	%REC	5	7/27/04 1:43:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		84.9	%REC	5	7/27/04 1:43:00 AM	DMH
SW-846 5035, 8260B, VOLATII	LE ORGANIC COMI	POUNDS	BY GC/N	S				
Benzene	NELAP	58.8		1260	μg/Kg-dry	25	7/23/04 3:27:00 PM	HLR
Toluene	NELAP	294	J	69	μg/Kg-dry	25	7/23/04 3:27:00 PM	HLR
Ethylbenzene	NELAP	1180		13600	μg/Kg-dry	100	7/24/04 11:39:00 PM	HLR
Xylenes, Total	NELAP	294		5720	μg/Kg-dry	25	7/23/04 3:27:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	25	7/23/04 3:27:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.2	%REC	25	7/23/04 3:27:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-002

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B551-10 (9-10)

Collection Date: 7/15/04 9:00:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			96.9	%REC	25	7/23/04 3:27:00 PM	HLR
Surr: Toluene-d8	82	82.8-112.8			%REC	25	7/23/04 3:27:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-003

Report Date:

11-Aug-04

Client Project:

A831--735002--012901--225/IP Champa

Client Sample ID: B551-16 (15-16)

Collection Date: 7/15/04 9:40:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.0	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0_113	J	0.013	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Acenaphthylene	NELAP	0.113	J	0.080	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Anthracene	NELAP	0.113	J	0.021	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Benzo(a)anthracene	NELAP	0.113	J	0.027	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Benzo(a)pyrene	NELAP	0.113	J	0.023	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.113	J	0.020	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Chrysene	NELAP	0.113	J	0.026	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Fluoranthene	NELAP	0.113	J	0.040	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Fluorene	NELAP	0.113	J	0.019	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Naphthalene	NELAP	0.113		1.51	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Phenanthrene	NELAP	0.113	J	0.066	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Pyrene	NELAP	0.113	J	0.058	mg/Kg-dry	1	7/22/04 12:22:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		33.9	%REC	1	7/22/04 12:22:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		19.6	%REC	1	7/22/04 12:22:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		60.3	%REC	1	7/22/04 12:22:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	0.8		14.8	μg/Kg-dry	1	7/23/04 3:58:00 PM	HLR
Toluene	NELAP	3.8		73.6	μg/Kg-dry	4	7/23/04 3:58:00 PM	HLR
Ethylbenzene	NELAP	3.8		42.0	μg/Kg-dry	1	7/23/04 3:58:00 PM	HLR
Xylenes, Total	NELAP	3.8		128	μg/Kg-dry	1	7/23/04 3:58:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		107	%REC	1	7/23/04 3:58:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		82.3	%REC	1	7/23/04 3:58:00 PM	HLR
Surr: Dibromofluoromethane		74,1-121		98.1	%REC	1	7/23/04 3:58:00 PM	HLR
Surr: Toluene-d8		2.8-112.8		98.1	%REC	1	7/23/04 3:58:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B551-28 (27-28)

Lab ID:

04070448-004

Collection Date: 7/15/04 9:40:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.5	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		90.5	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOUR	IDS BY GC	/MS			
Acenaphthene	NELAP	0.112	J	0.038	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Acenaphthylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Anthracene	NELAP	0.112	J	0.037	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Benzo(a)anthracene	NELAP	0.112	J	0.032	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Benzo(a)pyrene	NELAP	0.112	J	0.029	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.112	J	0.027	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.112	J	0.013	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Chrysene	NELAP	0.112	J	0.031	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Fluoranthene	NELAP	0.112	J	0.058	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Fluorene	NELAP	0.112	J	0.036	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Naphthalene	NELAP	0.112	J	0.082	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Phenanthrene	NELAP	0.112		0.121	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Pyrene	NELAP	0.112	J	0.076	mg/Kg-dry	1	7/22/04 2:21:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		36.4	%REC	1	7/22/04 2:21:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		21.9	%REC	1	7/22/04 2:21:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		69.0	%REC	1	7/22/04 2:21:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	1.2		2.6	μg/Kg-dry	1	7/23/04 4:30:00 PM	HLR
Toluene	NELAP	5.8	J	3.4	μg/Kg-dry	1	7/23/04 4:30:00 PM	HLR
Ethylbenzene	NELAP	5.8	J	3.3	μg/Kg-dry	1	7/23/04 4:30:00 PM	HLR
Xylenes, Total	NELAP	5 8	J	5.6	μg/Kg-dry	1	7/23/04 4:30:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	126	%REC	1	7/23/04 4:30:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	72.6	%REC	1	7/23/04 4:30:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		111	%REC	1	7/23/04 4:30:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		87.0	%REC	1	7/23/04 4:30:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070448

11-Aug-04

Lab ID:

Report Date:

04070448-005

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B554-3 (2-3)

Collection Date: 7/15/04 10:25:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.0	%	1	7/22/04	JRS
STANDARD METHODS 18TH I	ED, 2540 G							
Total Solids		0.1		78.0	%	1	7/22/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.27		19.3	mg/Kg-dry	1	7/26/04 4:24:16 PM	JMW
Barium	NELAP	0.45		207	mg/Kg-dry	1	7/27/04 11:31:25 AM	SAM
Cadmium	NELAP	0.18		0.97	mg/Kg-dry	1	7/27/04 11:31:25 AM	SAM
Chromium	NELAP	0.91		16.3	mg/Kg-dry	1	7/26/04 4:24:16 PM	JMW
Lead	NELAP	3.64		252	mg/Kg-dry	1	7/27/04 11:31:25 AM	SAM
Selenium	NELAP	3.64		< 3.64	mg/Kg-dry	1	7/27/04 11:31:25 AM	SAM
Silver	NELAP	0.91		< 0.91	mg/Kg-dry	1	7/27/04 11:31:25 AM	SAM
SW-846 3550B, 8270C, SEMI-\	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
1,2-Dichlorobenzene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
1,3-Dichlorobenzene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
1,4-Dichlorobenzene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4,5-Trichlorophenol	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4,6-Trichlorophenol	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4-Dichlorophenol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4-Dimethylphenol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4-Dinitrophenol	NELAP	25.8		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,4-Dinitrotoluene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2,6-Dinitrotoluene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2-Chloronaphthalene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2-Chlorophenol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2-Methylnaphthalene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2-Nitroaniline	NELAP	25.8		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
2-Nitrophenol	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
3-Nitroaniline	NELAP	25.8		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	25.8		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4-Chloro-3-methylphenol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4-Chloroaniline	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
4-Nitroaniline	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-005

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B554-3 (2-3)

Collection Date: 7/15/04 10:25:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Acenaphthene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Acenaphthylene	NELAP	9.02		9.15	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Anthracene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Benzo(a)anthracene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Benzo(a)pyrene	NELAP	9.02	J	8.5	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Benzo(b)fluoranthene	NELAP	9.02	J	8.2	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Benzo(g,h,i)perylene	NELAP	9.02	J	8.5	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Benzo(k)fluoranthene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	11.8		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Butyl benzyl phthalate	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Carbazole		12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Chrysene	NELAP	9.02	J	4.3	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Di-n-butyl phthalate	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Di-n-octyl phthalate	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Dibenzofuran	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Diethyl phthalate	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Dimethyl phthalate		9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Fluoranthene	NELAP	9.02	J	4.6	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Fluorene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Hexachlorobenzene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Hexachlorobutadiene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Hexachlorocyclopentadiene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Hexachloroethane	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	9.02	J	4.4	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Isophorone	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
m,p-Cresol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
N-Nitrosodiphenylamine	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Naphthalene	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Nitrobenzene	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
o-Cresol	NELAP	12.9		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Pentachlorophenol	NELAP	51.6		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B554-3 (2-3)

Lab ID:

Collection Date: 7/15/04 10:25:00 AM

Report Date:

04070448-005 11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	9.02	J	3.3	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Phenol	NELAP	9.02		ND	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Pyrene	NELAP	12.9	J	8.5	mg/Kg-dry	10	7/23/04 3:02:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		66.2	%REC	10	7/23/04 3:02:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		95.6	%REC	10	7/23/04 3:02:00 PM	SML
Surr: 2-Fluorophenol		27-111		51.6	%REC	10	7/23/04 3:02:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		83.3	%REC	10	7/23/04 3:02:00 PM	SML
Surr: p-Terphenyl-d14		25-144		102	%REC	10	7/23/04 3:02:00 PM	SML
Surr: Phenol-d5		33.7-123		64.7	%REC	10	7/23/04 3:02:00 PM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	S				
1,1,1-Trichloroethane	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,1,2-Trichloroethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,1-Dichloroethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,1-Dichloroethene	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,2-Dichloroethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
1,2-Dichloropropane	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
2-Butanone	NELAP	1800	J	720	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
2-Hexanone	NELAP	1800		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
4-Methyl-2-pentanone	NELAP	1800		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Acetone	NELAP	1800		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Benzene	NELAP	36.0		180	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Bromodichloromethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Bromoform	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Bromomethane	NELAP	360		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Carbon disulfide	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Carbon tetrachloride	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Chlorobenzene	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Chloroethane	NELAP	360		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Chloroform	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Chloromethane	NELAP	360		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	144		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Dibromochloromethane	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Ethylbenzene	NELAP	180		256	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Methyl tert-butyl ether	NELAP	72.0		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Methylene chloride	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-005

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B554-3 (2-3)

Collection Date: 7/15/04 10:25:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	180		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Tetrachloroethene	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Toluene	NELAP	180		211	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	144		ND	µg/Kg-dry	12 5	7/20/04 6:03:00 PM	HLR
Trichloroethene	NELAP	180		ND	µg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Vinyl chloride	NELAP	72.0		ND	μg/Kg-dry	12.5	7/20/04 6:03:00 PM	HLR
Xylenes, Total	NELAP	180		624	μg/Kg-dry	12,5	7/20/04 6:03:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	12.5	7/20/04 6:03:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.2	%REC	12.5	7/20/04 6:03:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		93.9	%REC	12.5	7/20/04 6:03:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		100	%REC	12.5	7/20/04 6:03:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.076	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	2					
n-Butanol		13		ND	mg/Kg-dry	1	7/23/04 6:34:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.64		3.01	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.62		1	7/19/04 1:34:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B554-3D (2-3)

Lab ID:

Collection Date: 7/15/04 10:25:00 AM

Report Date:

04070448-006 11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		23.3	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		76.7	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, \$	SEMI-VOLATILE OR	GANIC C	COMPOUR	IDS BY GC	/MS			
Acenaphthene	NELAP	3.28	J	0.62	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Acenaphthylene	NELAP	3.28		11.7	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Anthracene	NELAP	3.28	J	3.1	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Benzo(a)anthracene	NELAP	3.28		11.1	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Benzo(a)pyrene	NELAP	3.28		20.9	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Benzo(b)fluoranthene	NELAP	3.28		22.4	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	3.28		7.15	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Benzo(k)fluoranthene	NELAP	3.28		7.71	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Chrysene	NELAP	3.28		16.7	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	3.28	J	1.6	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Fluoranthene	NELAP	3.28		18.5	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Fluorene	NELAP	3.28	J	2.3	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	3.28		6.22	mg/Kg-dry	5	7/27/04 12:07:00 PM	DMH
Naphthalene	NELAP	3.28	J	3.1	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Phenanthrene	NELAP	3.28		10.7	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Pyrene	NELAP	3.28		33.1	mg/Kg-dry	5	7/26/04 11:08:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		74.9	%REC	5	7/26/04 11:08:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		59.8	%REC	5	7/26/04 11:08:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		99.5	%REC	5	7/26/04 11:08:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	36.1		147	μg/Kg-dry	12.5	7/23/04 5:02:00 PM	HLR
Toluene	NELAP	180		261	μg/Kg-dry	12.5	7/23/04 5:02:00 PM	HLR
Ethylbenzene	NELAP	180		247	µg/Kg-dry	12.5	7/23/04 5:02:00 PM	HLR
Xylenes, Total	NELAP	180		668	μg/Kg-dry	12.5	7/23/04 5:02:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		112	%REC	12.5	7/23/04 5:02:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.6	%REC	12.5	7/23/04 5:02:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		97.2	%REC	12,5	7/23/04 5:02:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	12.5	7/23/04 5:02:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B554-10 (9-10)

Lab ID:

04070448-007

Collection Date: 7/15/04 10:50:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		33.1	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		66.9	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOU	IDS BY GC	/MS			
Acenaphthene	NELAP	7.60		77.4	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Acenaphthylene	NELAP	7.60	J	7.3	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Anthracene	NELAP	7.60		29.4	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Benzo(a)anthracene	NELAP	7.60		12.8	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Benzo(a)pyrene	NELAP	7.60		14.5	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Benzo(b)fluoranthene	NELAP	7.60		12.8	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	7.60	J	2.2	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Benzo(k)fluoranthene	NELAP	7.60	J	4.7	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Chrysene	NELAP	7.60		13.8	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	7.60	J	0.79	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Fluoranthene	NELAP	7.60		31.9	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Fluorene	NELAP	7.60		41.7	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	7.60	J	1.9	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Naphthalene	NELAP	7.60	J	1.8	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Phenanthrene	NELAP	7.60		90.7	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Pyrene	NELAP	7.60		42.4	mg/Kg-dry	50	7/27/04 2:51:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/27/04 2:51:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/27/04 2:51:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/27/04 2:51:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/N	S				
Benzene	NELAP	292		765	µg/Kg-dry	100	7/23/04 5:33:00 PM	HLR
Toluene	NELAP	1460		2700	µg/Kg-dry	100	7/23/04 5:33:00 PM	HLR
Ethylbenzene	NELAP	1460		3910	µg/Kg-dry	100	7/23/04 5:33:00 PM	HLR
Xylenes, Total	NELAP	1460		6120	µg/Kg-dry	100	7/23/04 5:33:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		115	%REC	100	7/23/04 5:33:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.2	%REC	100	7/23/04 5:33:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	100	7/23/04 5:33:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		99.3	%REC	100	7/23/04 5:33:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

11-Aug-04

Client Sample ID: B554-18 (17-18)

Lab ID:

Collection Date: 7/15/04 11:35:00 AM

Report Date:

04070448-008

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.4	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		89.6	%	1	7/22/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYDI	ROCARBO	ONS (OA-	2) BY GC/F				
Diesel	NELAP	279		5480 #	mg/Kg-dry	50	7/23/04 1:36:00 PM	DMH
Kerosene	NELAP	279		ND	mg/Kg-dry	50	7/23/04 1:36:00 PM	DMH
Mineral Spirits	NELAP	279		ND	mg/Kg-dry	50	7/23/04 1:36:00 PM	DMH
Motor Oil	NELAP	279		1190#	mg/Kg-dry	50	7/23/04 1:36:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	50	7/23/04 1:36:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	50.9		98.9	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Acenaphthylene	NELAP	50.9		230	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Anthracene	NELAP	50.9		172	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Benzo(a)anthracene	NELAP	50.9		78.2	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Benzo(a)pyrene	NELAP	50.9		86.0	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Benzo(b)fluoranthene	NELAP	50.9		73.5	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	50.9	J	13	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Benzo(k)fluoranthene	NELAP	50.9	J	26	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Chrysene	NELAP	50.9		79.1	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	50.9		ND	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Fluoranthene	NELAP	50.9		173	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Fluorene	NELAP	50.9		241	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	50.9	J	14	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Naphthalene	NELAP	509		1070	mg/Kg-dry	500	7/27/04 2:13:00 PM	DMH
Phenanthrene	NELAP	50.9		593	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Pyrene	NELAP	50.9		242	mg/Kg-dry	50	7/27/04 12:46:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/27/04 12:46:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/27/04 12:46:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/27/04 12:46:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	F ORGANIC COM	POUNDS	BY GC/N	is				
Benzene	NELAP	389	D 1 00///	5620	μg/Kg-dry	250	7/23/04 6:05:00 PM	HLR
Toluene	NELAP	1950		7780	μg/Kg-dry	250	7/23/04 6:05:00 PM	HLR
Ethylbenzene	NELAP	1950		9020	μg/Kg-dry	250	7/23/04 6:05:00 PM	HLR
Xylenes, Total	NELAP	1950		13000	μg/Kg-dry	250	7/23/04 6:05:00 PM	HLR
Surr: 1,2-Dichloroethane-d4	7 Year har 11	72.8-122		116	%REC	250	7/23/04 6:05:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.8	%REC	250	7/23/04 6:05:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder: Lab ID:

04070448-008

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B554-18 (17-18)

Collection Date: 7/15/04 11:35:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			102	%REC	250	7/23/04 6:05:00 PM	HLR
Surr: Toluene-d8	82.8-112.8			101	%REC	250	7/23/04 6:05:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B554-32 (31-32)

Lab ID:

04070448-009

Collection Date: 7/15/04 11:50:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.8	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.2	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE O	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Acenaphthylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Benzo(a)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Benzo(a)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0,112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0,112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Chrysene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Fluorene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Naphthalene	NELAP	0.112	J	0.057	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Phenanthrene	NELAP	0.112	J	0.025	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Pyrene	NELAP	0.112	J	0.011	mg/Kg-dry	1	7/22/04 3:02:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		37.4	%REC	1	7/22/04 3:02:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		27.3	%REC	1	7/22/04 3:02:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		66.3	%REC	1	7/22/04 3:02:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.7		3.7	μg/Kg-dry	1	7/23/04 6:36:00 PM	HLR
Toluene	NELAP	3.7		9.5	μg/Kg-dry	1	7/23/04 6:36:00 PM	HLR
Ethylbenzene	NELAP	3.7		4.8	μg/Kg-dry	1	7/23/04 6:36:00 PM	HLR
Xylenes, Total	NELAP	3.7		17.8	μg/Kg-dry	1	7/23/04 6:36:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	124	%REC	1	7/23/04 6:36:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	70.9	%REC	1	7/23/04 6:36:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		110	%REC	1	7/23/04 6:36:00 PM	HLR
Surr: Toluene-d8	3	32.8-112.8		88.1	%REC	1	7/23/04 6:36:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B561-1 (0-1)

Lab ID:

04070448-010

Collection Date: 7/15/04 1:40:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.7	%	1	7/22/04	JRS
STANDARD METHODS 18TH	I ED. 2540 G							
Total Solids		0.1		78.3	%	1	7/22/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.45		37.2	mg/Kg-dry	1	7/26/04 4:33:11 PM	JMW
Barium	NELAP	0.49		135	mg/Kg-dry	1	7/27/04 11:36:43 AM	SAM
Cadmium	NELAP	0.20		1.59	mg/Kg-dry	1	7/27/04 11:36:43 AM	SAM
Chromium	NELAP	0.98		19.4	mg/Kg-dry	1	7/26/04 4:33:11 PM	JMW
Lead	NELAP	3.92		358	mg/Kg-dry	1	7/27/04 11:36:43 AM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	7/27/04 11:36:43 AM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	7/27/04 11:36:43 AM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC C	COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	3.20		ND	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Acenaphthylene	NELAP	3.20	J	1.1	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Anthracene	NELAP	3.20	J	0.57	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Benzo(a)anthracene	NELAP	3.20	J	2.3	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Benzo(a)pyrene	NELAP	3.20		4.11	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Benzo(b)fluoranthene	NELAP	3.20		5.54	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	3.20	J	2.1	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Benzo(k)fluoranthene	NELAP	3.20	J	2.0	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Chrysene	NELAP	3.20		3.35	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	3.20	J	0.61	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Fluoranthene	NELAP	3.20		4.67	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Fluorene	NELAP	3.20	J	0.34	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	3.20	J	2.2	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Naphthalene	NELAP	3.20	J	0.45	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Phenanthrene	NELAP	3.20	J	2.1	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Pyrene	NELAP	3.20		4.20	mg/Kg-dry	5	7/26/04 7:15:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		85.0	%REC	5	7/26/04 7:15:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		59.8	%REC	5	7/26/04 7:15:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		110	%REC	5	7/26/04 7:15:00 PM	DMH
SW-846 5035, 8260B, VOLAT	TILE ORGANIC COME	POUNDS	BY GC/M	S				
Benzene	NELAP	1.4		4.6	μg/Kg-dry	1	7/23/04 7:08:00 PM	HLR
Toluene	NELAP	6.8	J	4.4	μg/Kg-dry	1	7/23/04 7:08:00 PM	HLR
Ethylbenzene	NELAP	6.8	J	3.2	μg/Kg-dry	1	7/23/04 7:08:00 PM	HLR
Xylenes, Total	NELAP	6.8		8.6	μg/Kg-dry	1	7/23/04 7:08:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-010

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-1 (0-1)

Collection Date: 7/15/04 1:40:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122	S	133	%REC	1	7/23/04 7:08:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	67.4	%REC	1	7/23/04 7:08:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121	S	121	%REC	1	7/23/04 7:08:00 PM	HLR
Surr: Toluene-d8	82.8-112.8			90.9	%REC	1	7/23/04 7:08:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.344	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0 63		0.64	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.32		1	7/19/04 1:37:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder:

Lab ID:

04070448-011

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-10 (9-10)

Collection Date: 7/15/04 2:10:00 PM

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0_1		17.8	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		82.2	%	1	7/22/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.40		15.2	mg/Kg-dry	1	7/27/04 1:41:58 PM	JMW
Barium	NELAP	0.48		55.2	mg/Kg-dry	1	7/27/04 11:42:01 AM	SAM
Cadmium	NELAP	0.19		0.45	mg/Kg-dry	1	7/27/04 11:42:01 AM	SAM
Chromium	NELAP	0.96		15.3	mg/Kg-dry	1	7/26/04 4:36:10 PM	JMW
Lead	NELAP	3.85		14.1	mg/Kg-dry	1	7/27/04 11:42:01 AM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/27/04 11:42:01 AM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/27/04 11:42:01 AM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
1,2-Dichlorobenzene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
1,3-Dichlorobenzene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
1,4-Dichlorobenzene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4,5-Trichlorophenol	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4,6-Trichlorophenol	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4-Dichlorophenol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4-Dimethylphenol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4-Dinitrophenol	NELAP	5.98		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,4-Dinitrotoluene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2,6-Dinitrotoluene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2-Chloronaphthalene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2-Chlorophenol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2-Methylnaphthalene	NELAP	2.09		6.67	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2-Nitroaniline	NELAP	5.98		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
2-Nitrophenol	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
3-Nitroaniline	NELAP	5.98		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	5.98		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4-Chloro-3-methylphenol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4-Chloroaniline	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
4-Nitroaniline	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070448

Lab ID:

04070448-011

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-10 (9-10)

Collection Date: 7/15/04 2:10:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Acenaphthene	NELAP	2.09		9.11	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Acenaphthylene	NELAP	2.09	J	1.6	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Anthracene	NELAP	2.09		4.77	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Benzo(a)anthracene	NELAP	2.09		2.46	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Benzo(a)pyrene	NELAP	2.09	J	2.0	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Benzo(b)fluoranthene	NELAP	2.09	J	1.4	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Benzo(g,h,i)perylene	NELAP	2.09	J	0.85	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Benzo(k)fluoranthene	NELAP	2.09	J	0.59	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	2.73		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	2.09	J	1.7	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Butyl benzyl phthalate	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Carbazole		2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Chrysene	NELAP	2.09		2.38	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Di-n-butyl phthalate	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Di-n-octyl phthalate	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Dibenzofuran	NELAP	2.09	J	0.77	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Diethyl phthalate	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Dimethyl phthalate		2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Fluoranthene	NELAP	2.09		4.97	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Fluorene	NELAP	2.09		6.33	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Hexachlorobenzene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Hexachlorobutadiene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Hexachlorocyclopentadiene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML.
Hexachloroethane	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Isophorone	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
m,p-Cresol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
N-Nitrosodiphenylamine	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Naphthalene	NELAP	2.09		22.8	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Nitrobenzene	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
o-Cresol	NELAP	2.99		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Pentachlorophenol	NELAP	12.0		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B561-10 (9-10)

Lab ID:

04070448-011

Collection Date: 7/15/04 2:10:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	2.09		13.9	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Phenol	NELAP	2.09		ND	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Pyrene	NELAP	2.99		7.38	mg/Kg-dry	5	7/23/04 12:26:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		79.1	%REC	5	7/23/04 12:26:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		89.0	%REC	5	7/23/04 12:26:00 PM	SML
Surr: 2-Fluorophenol		27-111		81.9	%REC	5	7/23/04 12:26:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		85.5	%REC	5	7/23/04 12:26:00 PM	SML
Surr: p-Terphenyl-d14		25-144		95.5	%REC	5	7/23/04 12:26:00 PM	SML
Surr: Phenol-d5		33.7-123		98.7	%REC	5	7/23/04 12:26:00 PM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	5				
1,1,1-Trichloroethane	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,1,2-Trichloroethane	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,1-Dichloroethane	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,1-Dichloroethene	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,2-Dichloroethane	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
1,2-Dichloropropane	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
2-Butanone	NELAP	4210		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
2-Hexanone	NELAP	4210		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
4-Methyl-2-pentanone	NELAP	4210		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Acetone	NELAP	4210		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Benzene	NELAP	84.1		1250	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Bromodichloromethane	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Bromoform	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Bromomethane	NELAP	841		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Carbon disulfide	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Carbon tetrachloride	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Chlorobenzene	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Chloroethane	NELAP	841		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Chloroform	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Chloromethane	NELAP	841		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	337		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Dibromochloromethane	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Ethylbenzene	NELAP	421		1380	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Methyl tert-butyl ether	NELAP	168		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Methylene chloride	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070448

Lab ID:

04070448-011

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-10 (9-10)

Collection Date: 7/15/04 2:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Tetrachloroethene	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Toluene	NELAP	421	J	110	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	421		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	337		ND	µg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Trichloroethene	NELAP	421		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Vinyl chloride	NELAP	168		ND	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Xylenes, Total	NELAP	421		3540	μg/Kg-dry	50	7/20/04 6:35:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72,8-122		101	%REC	50	7/20/04 6:35:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		98.6	%REC	50	7/20/04 6:35:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		95.2	%REC	50	7/20/04 6:35:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		100	%REC	50	7/20/04 6:35:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.018	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	US COMPOUNDS E	Y GC/FI	D					
n-Butanol		12		ND	mg/Kg-dry	1	7/23/04 6:51:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.78		1	7/19/04 1:39:00 PM	EAW

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B561-13 (12-13)

Lab ID:

11-Aug-04

Collection Date: 7/15/04 3:10:00 PM

Report Date:

04070448-012

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.3	%	1	7/22/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		89.7	%	1	7/22/04	JRS
SW-846 3550B, 8015, TOTAL I	PETROLEUM HYDR	OCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	137		648 #	mg/Kg-dry	25	7/21/04 6:42:00 AM	CJS
Kerosene	NELAP	137		ND	mg/Kg-dry	25	7/21/04 6:42:00 AM	CJS
Mineral Spirits	NELAP	137		ND	mg/Kg-dry	25	7/21/04 6:42:00 AM	CJS
Motor Oil	NELAP	137		ND	mg/Kg-dry	25	7/21/04 6:42:00 AM	CJS
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	25	7/21/04 6:42:00 AM	CJS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	2.75		26.6	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Acenaphthylene	NELAP	2.75		3.34	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Anthracene	NELAP	2.75		11.4	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Benzo(a)anthracene	NELAP	2.75		5.32	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Benzo(a)pyrene	NELAP	2.75		5.54	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Benzo(b)fluoranthene	NELAP	2.75		3.93	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	2.75	J	1.5	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Benzo(k)fluoranthene	NELAP	2.75	J	1.2	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Chrysene	NELAP	2.75		5.89	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	2.75	J	0.43	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Fluoranthene	NELAP	2.75		9.38	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Fluorene	NELAP	2.75		15.2	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	2.75	J	1.3	mg/Kg-dry	5	7/26/04 7:54:00 PM	DMH
Naphthalene	NELAP	2.75		28.9	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Phenanthrene	NELAP	2.75		37.2	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Pyrene	NELAP	2.75		13.9	mg/Kg-dry	5	7/26/04 1:20:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		70.1	%REC	5	7/26/04 1:20:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		45.1	%REC	5	7/26/04 1:20:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		79.9	%REC	5	7/26/04 1:20:00 AM	DMH
SW-846 5035, 8260B, VOLATII	LE ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	86.6		204	μg/Kg-dry	50	7/25/04 12:10:00 AM	HLR
Toluene	NELAP	433		ND	μg/Kg-dry	50	7/25/04 12:10:00 AM	HLR
Ethylbenzene	NELAP	433		1600	μg/Kg-dry	50	7/25/04 12:10:00 AM	HLR
Xylenes, Total	NELAP	433		2060	μg/Kg-dry	50	7/25/04 12:10:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		116	%REC	50	7/25/04 12:10:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.5	%REC	50	7/25/04 12:10:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder: Lab ID:

Report Date:

04070448-012 11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-13 (12-13)

Collection Date: 7/15/04 3:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		98.4	%REC	50	7/25/04 12:10:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	50	7/25/04 12:10:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B561-19 (18-19)

Lab ID:

04070448-013

Collection Date: 7/15/04 3:25:00 PM

Report Date:

11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		8.5	%	1	7/22/04	JRS
STANDARD METHODS 18TH B	ED. 2540 G							
Total Solids		0.1		91.5	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.106	J	0.020	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Acenaphthylene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Anthracene	NELAP	0.106	J	0.016	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Benzo(a)anthracene	NELAP	0.106	J	0.012	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Benzo(a)pyrene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Chrysene	NELAP	0.106	J	0.013	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Fluoranthene	NELAP	0.106	J	0.020	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Fluorene	NELAP	0.106	J	0.018	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.106		ND	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Naphthalene	NELAP	0.106		0.106	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Phenanthrene	NELAP	0.106	J	0.051	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Pyrene	NELAP	0.106	J	0.029	mg/Kg-dry	1	7/22/04 3:42:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		36.2	%REC	1	7/22/04 3:42:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		26.6	%REC	1	7/22/04 3:42:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		61.6	%REC	1	7/22/04 3:42:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		3.3	μg/Kg-dry	1	7/24/04 3:28:00 AM	HLR
Toluene	NELAP	3.8	J	2.8	μg/Kg-dry	1	7/24/04 3:28:00 AM	HLR
Ethylbenzene	NELAP	3.8		3.9	μg/Kg-dry	1	7/24/04 3:28:00 AM	HLR
Xylenes, Total	NELAP	3.8		5.6	μg/Kg-dry	1	7/24/04 3:28:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		117	%REC	1	7/24/04 3:28:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		86.8	%REC	1	7/24/04 3:28:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		102	%REC	1	7/24/04 3:28:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.7	%REC	1	7/24/04 3:28:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B561-32 (31-32)

Lab ID:

04070448

Collection Date: 7/15/04 3:35:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.2	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		88.8	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Acenaphthylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Benzo(a)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Benzo(a)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Chrysene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Fluorene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Naphthalene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Phenanthrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 5:09:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		39.0	%REC	1	7/22/04 5:09:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		19.3	%REC	1	7/22/04 5:09:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		71.1	%REC	1	7/22/04 5:09:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		1.5	µg/Kg-dry	1	7/24/04 3:59:00 AM	HLR
Toluene	NELAP	3.9	J	1.7	μg/Kg-dry	1	7/24/04 3:59:00 AM	HLR
Ethylbenzene	NELAP	3.9		ND	μg/Kg-dry	1	7/24/04 3:59:00 AM	HLR
Xylenes, Total	NELAP	3.9	J	1.7	μg/Kg-dry	1	7/24/04 3:59:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	128	%REC	1	7/24/04 3:59:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	70.9	%REC	1	7/24/04 3:59:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		112	%REC	1	7/24/04 3:59:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		87.5	%REC	1	7/24/04 3:59:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-015

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B561-32D (31-32) **Collection Date:**

7/15/04 3:35:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.5	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.5	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Acenaphthylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Benzo(a)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Benzo(a)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Chrysene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Fluorene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Naphthalene	NELAP	0.112	J	0.020	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Phenanthrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/22/04 6:30:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		49.7	%REC	1	7/22/04 6:30:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		30.5	%REC	1	7/22/04 6:30:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		76.5	%REC	1	7/22/04 6:30:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	1S				
Benzene	NELAP	0.8		1.4	µg/Kg-dry	1	7/24/04 4:30:00 AM	HLR
Toluene	NELAP	4.1	J	1.8	μg/Kg-dry	1	7/24/04 4:30:00 AM	HLR
Ethylbenzene	NELAP	4.1		ND	µg/Kg-dry	1	7/24/04 4:30:00 AM	HLR
Xylenes, Total	NELAP	4.1	J	1.8	µg/Kg-dry	1	7/24/04 4:30:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	125	%REC	1	7/24/04 4:30:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	72.1	%REC	1	7/24/04 4:30:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		108	%REC	1	7/24/04 4:30:00 AM	HLR
Surr: Toluene-d8	8	82.8-112.8		89.3	%REC	1	7/24/04 4:30:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder: Lab ID:

04070448-016

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B562-1 (0-1)

Collection Date: 7/15/04 4:25:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		23.7	%	1	7/22/04	JRS
STANDARD METHODS 18TH	D. 2540 G							
Total Solids		0.1		76.3	%	1	7/22/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.50		31.7	mg/Kg-dry	1	7/26/04 4:45:12 PM	JMW
Barium	NELAP	0.50		212	mg/Kg-dry	1	7/27/04 11:57:54 AM	SAM
Cadmium	NELAP	0.20		2.00	mg/Kg-dry	1	7/27/04 11:57:54 AM	SAM
Chromium	NELAP	1.00		19.1	mg/Kg-dry	1	7/26/04 4:45:12 PM	JMW
Lead	NELAP	4.00		390	mg/Kg-dry	1	7/27/04 11:57:54 AM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/27/04 11:57:54 AM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/27/04 11:57:54 AM	SAM
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	0.666	J	0.076	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Acenaphthylene	NELAP	0.666	J	0.51	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Anthracene	NELAP	0.666	J	0.26	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Benzo(a)anthracene	NELAP	0.666		1.38	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Benzo(a)pyrene	NELAP	0.666		2.33	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.666		3.66	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.666	J	0.54	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.666		1.36	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Chrysene	NELAP	0.666		1.71	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.666	J	0.18	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Fluoranthene	NELAP	0.666		2.37	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Fluorene	NELAP	0.666	J	0.093	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.666	J	0.64	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Naphthalene	NELAP	0.666	J	0.23	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Phenanthrene	NELAP	0.666		0.855	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Pyrene	NELAP	0.666		2.22	mg/Kg-dry	5	7/27/04 1:25:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		57.8	%REC	5	7/27/04 1:25:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		48.9	%REC	5	7/27/04 1:25:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		66.8	%REC	5	7/27/04 1:25:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	1.3		8.7	μg/Kg-dry	1	7/24/04 5:01:00 AM	HLR
Toluene	NELAP	6.5		8.6	μg/Kg-dry	1	7/24/04 5:01:00 AM	HLR
Ethylbenzene	NELAP	6.5	J	3.7	μg/Kg-dry	1	7/24/04 5:01:00 AM	HLR
Xylenes, Total	NELAP	6.5		9.9	μg/Kg-dry	1	7/24/04 5:01:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-016

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B562-1 (0-1)

Collection Date: 7/15/04 4:25:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122	S	136	%REC	1	7/24/04 5:01:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	65.2	%REC	1	7/24/04 5:01:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		120	%REC	1	7/24/04 5:01:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		90.6	%REC	1	7/24/04 5:01:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.227	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.65		0.81	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.56		1	7/19/04 1:40:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B562-10 (9-10)

Lab ID:

Collection Date: 7/15/04 4:30:00 PM

Report Date:

04070448-017 11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.4	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.6	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	6.33		28.2	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Acenaphthylene	NELAP	6.33	J	3.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Anthracene	NELAP	6.33		13.8	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Benzo(a)anthracene	NELAP	6.33	J	6.1	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Benzo(a)pyrene	NELAP	6.33	J	6.1	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Benzo(b)fluoranthene	NELAP	6.33	J	4.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	6.33	J	1.6	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Benzo(k)fluoranthene	NELAP	6.33	J	1.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Chrysene	NELAP	6.33	J	6.0	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	6.33		ND	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Fluoranthene	NELAP	6.33		13.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Fluorene	NELAP	6.33		18.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	6.33	J	1.5	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Naphthalene	NELAP	6.33		38.9	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Phenanthrene	NELAP	6.33		45.0	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Pyrene	NELAP	6.33		20.0	mg/Kg-dry	50	7/26/04 9:11:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/26/04 9:11:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/26/04 9:11:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/26/04 9:11:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/N	IS				
Benzene	NELAP	53.7		286	μg/Kg-dry	25	7/25/04 12:41:00 AM	HLR
Toluene	NELAP	269		726	μg/Kg-dry	25	7/25/04 12:41:00 AM	HLR
Ethylbenzene	NELAP	269		1590	μg/Kg-dry	25	7/25/04 12:41:00 AM	HLR
Xylenes, Total	NELAP	269		1660	μg/Kg-dry	25	7/25/04 12:41:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		113	%REC	25	7/25/04 12:41:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.7	%REC	25	7/25/04 12:41:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		96.6	%REC	25	7/25/04 12:41:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		100	%REC	25	7/25/04 12:41:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B562-14 (13-14)

Lab ID:

04070448-018

Collection Date: 7/15/04 5:15:00 PM

Report Date:

11-Aug-04

Analyses	Certification	\mathbf{RL}	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.9	%	-4	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.1	%	.1	7/22/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.50		< 2.50	mg/Kg-dry	1	7/26/04 4:48:11 PM	JMW
Barium	NELAP	0.50		18.8	mg/Kg-dry	1	7/27/04 12:03:11 PM	SAM
Cadmium	NELAP	0.20		< 0.20	mg/Kg-dry	1	7/27/04 12:03:11 PM	SAM
Chromium	NELAP	1.00		7.18	mg/Kg-dry	1	7/26/04 4:48:11 PM	JMW
Lead	NELAP	4.00		7.92	mg/Kg-dry	1	7/27/04 12:03:11 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	7/27/04 12:03:11 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	7/27/04 12:03:11 PM	SAM
SW-846 3550B, 8015, TOTAL P	PETROLEUM HYD	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	281		5190 #	mg/Kg-dry	50	7/23/04 2:05:00 PM	DMH
Kerosene	NELAP	281		ND	mg/Kg-dry	50	7/23/04 2:05:00 PM	DMH
Mineral Spirits	NELAP	281		ND	mg/Kg-dry	50	7/23/04 2:05:00 PM	DMH
Motor Oil	NELAP	281		1030 #	mg/Kg-dry	50	7/23/04 2:05:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	50	7/23/04 2:05:00 PM	DMH
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGAN	IC COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
1,2-Dichlorobenzene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
1,3-Dichlorobenzene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
1,4-Dichlorobenzene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4,5-Trichlorophenol	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4,6-Trichlorophenol	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4-Dichlorophenol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4-Dimethylphenol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4-Dinitrophenol	NELAP	31.0		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,4-Dinitrotoluene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2,6-Dinitrotoluene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2-Chloronaphthalene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2-Chlorophenol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2-Methylnaphthalene	NELAP	27.2		190	mg/Kg-dry	25	8/10/04 12:58:00 PM	SML
2-Nitroaniline	NELAP	31.0		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
2-Nitrophenol	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
3,3´-Dichlorobenzidine	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
3-Nitroaniline	NELAP	31.0		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-018

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B562-14 (13-14)

Collection Date: 7/15/04 5:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4,6-Dinitro-2-methylphenol	NELAP	31.0		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Chloro-3-methylphenol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Chloroaniline	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Nitroaniline	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
4-Nitrophenol	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Acenaphthene	NELAP	10.9		93.3	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Acenaphthylene	NELAP	10.9		12.0	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Anthracene	NELAP	10.9		51.6	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Benzo(a)anthracene	NELAP	10.9		26.5	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Benzo(a)pyrene	NELAP	10.9		21.8	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Benzo(b)fluoranthene	NELAP	10.9		17.5	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Benzo(g,h,i)perylene	NELAP	10.9	J	6.2	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Benzo(k)fluoranthene	NELAP	10.9	J	6.0	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	14.2		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Butyl benzyl phthalate	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Carbazole		15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Chrysene	NELAP	10.9		25.5	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Di-n-butyl phthalate	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Di-n-octyl phthalate	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Dibenzofuran	NELAP	10.9	J	8.8	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Diethyl phthalate	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Dimethyl phthalate		10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Fluoranthene	NELAP	10.9		54.1	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Fluorene	NELAP	10.9		65.6	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Hexachlorobenzene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Hexachlorobutadiene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Hexachlorocyclopentadiene	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Hexachloroethane	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	10.9	J	5.2	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Isophorone	NELAP	10.9	-	ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
m,p-Cresol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder: Lab ID:

04070448-018

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B562-14 (13-14)

Collection Date: 7/15/04 5:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
N-Nitroso-di-n-propylamine	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
N-Nitrosodiphenylamine	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Naphthalene	NELAP	27.2		321	mg/Kg-dry	25	8/10/04 12:58:00 PM	SML
Nitrobenzene	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
o-Cresol	NELAP	15.5		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Pentachlorophenol	NELAP	62,1		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Phenanthrene	NELAP	27.2		174	mg/Kg-dry	25	8/10/04 12:58:00 PM	SML
Phenol	NELAP	10.9		ND	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Pyrene	NELAP	15.5		78.1	mg/Kg-dry	10	7/23/04 2:23:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		67.1	%REC	10	7/23/04 2:23:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		103	%REC	10	7/23/04 2:23:00 PM	SML
Surr: 2-Fluorophenol		27-111		77.8	%REC	10	7/23/04 2:23:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		86.3	%REC	10	7/23/04 2:23:00 PM	SML
Surr: p-Terphenyl-d14		25-144		108	%REC	10	7/23/04 2:23:00 PM	SML
Surr: Phenol-d5		33.7-123		95.3	%REC	10	7/23/04 2:23:00 PM	SML
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,1,2-Trichloroethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,1-Dichloroethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,1-Dichloroethene	NELAP	831		ND	µg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,2-Dichloroethane	NELAP	831		ND	µg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
1,2-Dichloropropane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
2-Butanone	NELAP	8310		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
2-Hexanone	NELAP	8310		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
4-Methyl-2-pentanone	NELAP	8310		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Acetone	NELAP	8310		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Benzene	NELAP	166		6260	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Bromodichloromethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Bromoform	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Bromomethane	NELAP	1660		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Carbon disulfide	NELAP	831		ND	µg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Carbon tetrachloride	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Chlorobenzene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Chloroethane	NELAP	1660		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Chloroform	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Chloromethane	NELAP	1660		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

WorkOrder: Lab ID:

04070448-018

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B562-14 (13-14)

Collection Date: 7/15/04 5:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
cis-1,2-Dichloroethene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	665		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Dibromochloromethane	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Ethylbenzene	NELAP	4160		58500	μg/Kg-dry	500	7/21/04 11:31:00 PM	HLR
Methyl tert-butyl ether	NELAP	333		ND	µg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Methylene chloride	NELAP	831		ND	µg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Styrene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Tetrachloroethene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Toluene	NELAP	831	J	500	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	665		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Trichloroethene	NELAP	831		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Vinyl chloride	NELAP	333		ND	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Xylenes, Total	NELAP	831		54300	μg/Kg-dry	100	7/20/04 7:06:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		102	%REC	100	7/20/04 7:06:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		98.0	%REC	100	7/20/04 7:06:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		97.1	%REC	100	7/20/04 7:06:00 PM	HLR
Surr: Toluene-d8	82	2_8-112.8		100	%REC	100	7/20/04 7:06:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.011	J	0.007	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	US COMPOUNDS E	Y GC/FII	D					
n-Butanol		11		ND	mg/Kg-dry	1	7/23/04 7:07:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.15		1	7/19/04 1:41:00 PM	EAW

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B562-28 (27-28)

Lab ID:

04070448-019

Collection Date: 7/15/04 5:35:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		8.9	%	1	7/22/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		91.1	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOUR	NDS BY GC	/MS			
Acenaphthene	NELAP	0.110	J	0.014	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Acenaphthylene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Anthracene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Benzo(a)anthracene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Benzo(a)pyrene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Chrysene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Fluoranthene	NELAP	0.110	J	0.012	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Fluorene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.110		ND	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Naphthalene	NELAP	0.110	J	0.041	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Phenanthrene	NELAP	0.110	J	0.037	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Pyrene	NELAP	0.110	J	0.019	mg/Kg-dry	1	7/22/04 7:09:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		50.0	%REC	1	7/22/04 7:09:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		32.6	%REC	1	7/22/04 7:09:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		77.7	%REC	1	7/22/04 7:09:00 PM	DMH
SW-846 5035, 8260B, VOLATII	LE ORGANIC COMP	OUNDS	BY GC/N	IS				
Benzene	NELAP	0.7		2.0	μg/Kg-dry	1	7/24/04 6:04:00 AM	HLR
Toluene	NELAP	3.7		4.1	μg/Kg-dry	1	7/24/04 6:04:00 AM	HLR
Ethylbenzene	NELAP	3.7	J	1.1	μg/Kg-dry	1	7/24/04 6:04:00 AM	HLR
Xylenes, Total	NELAP	3.7	J	3.6	μg/Kg-dry	1	7/24/04 6:04:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72 8-122		120	%REC	1	7/24/04 6:04:00 AM	HLR
Surr: 4-Bromofluorobenzene	,	75.6-120		80.5	%REC	1	7/24/04 6:04:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		104	%REC	1	7/24/04 6:04:00 AM	HLR
Surr: Toluene-d8		2.8-112.8		96.2	%REC	1	7/24/04 6:04:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-020

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-2 (1-2)

Collection Date: 7/16/04 8:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		15.3	%	4	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		84.7	%	1	7/22/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.36		11.5	mg/Kg-dry	1	7/26/04 4:51:10 PM	JMW
Barium	NELAP	0.47		136	mg/Kg-dry	1	7/27/04 12:08:30 PM	SAM
Cadmium	NELAP	0.19		0.36	mg/Kg-dry	1	7/27/04 12:08:30 PM	SAM
Chromium	NELAP	0.94		14.0	mg/Kg-dry	1	7/26/04 4:51:10 PM	JMW
Lead	NELAP	3.77		36.1	mg/Kg-dry	1	7/27/04 12:08:30 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	7/27/04 12:08:30 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	7/27/04 12:08:30 PM	SAM
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	OMPOU	DS BY GC	/MS			
Acenaphthene	NELAP	0.575		1.14	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Acenaphthylene	NELAP	0.575		1.93	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Anthracene	NELAP	0.575		1.03	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Benzo(a)anthracene	NELAP	0.575		2.20	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Benzo(a)pyrene	NELAP	0.575		4.01	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.575		4.45	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.575		1.28	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.575		1.31	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Chrysene	NELAP	0.575		2.75	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.575	J	0.35	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Fluoranthene	NELAP	0.575		3.29	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Fluorene	NELAP	0.575		0.717	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.575		1.23	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Naphthalene	NELAP	0.575		1.82	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Phenanthrene	NELAP	0.575		3.32	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Pyrene	NELAP	0.575		5.74	mg/Kg-dry	5	7/25/04 8:09:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		56.8	%REC	5	7/25/04 8:09:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		46.9	%REC	5	7/25/04 8:09:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		75.0	%REC	5	7/25/04 8:09:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COME		BY GC/N					
Benzene	NELAP	0.9	2.0/11	4.3	μg/Kg-dry	1	7/24/04 6:35:00 AM	HLR
Toluene	NELAP	4.6	J	3.0	μg/Kg-dry	1	7/24/04 6:35:00 AM	HLR
Ethylbenzene	NELAP	4.6	·	21.3	μg/Kg-dry	1	7/24/04 6:35:00 AM	HLR
Xylenes, Total	NELAP	4.6		26.4	μg/Kg-dry	1	7/24/04 6:35:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-020

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-2 (1-2)

Collection Date: 7/16/04 8:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		119	%REC	1.7	7/24/04 6:35:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		85.8	%REC	1	7/24/04 6:35:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		105	%REC	1	7/24/04 6:35:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		100	%REC	1	7/24/04 6:35:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.091	mg/Kg-dry	1	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.54		3.68	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.91		1	7/19/04 1:42:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-021

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-7 (6-7)

Collection Date: 7/16/04 8:45:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		32.1	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		67.9	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	GANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	20.8		268	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Acenaphthylene	NELAP	20.8		34.2	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Anthracene	NELAP	20.8		103	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Benzo(a)anthracene	NELAP	20.8		64.7	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Benzo(a)pyrene	NELAP	20.8		88.2	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Benzo(b)fluoranthene	NELAP	20.8		66.3	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	20.8		25.9	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Benzo(k)fluoranthene	NELAP	20.8		24.9	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Chrysene	NELAP	20.8		73.8	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	20.8	J	11	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Fluoranthene	NELAP	20.8		148	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Fluorene	NELAP	20.8		146	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	20.8		26.7	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Naphthalene	NELAP	104		509	mg/Kg-dry	250	7/27/04 8:54:00 AM	DMH
Phenanthrene	NELAP	20.8		341	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Pyrene	NELAP	20.8		192	mg/Kg-dry	50	7/26/04 5:56:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/26/04 5:56:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/26/04 5:56:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/26/04 5:56:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	317		9030	μg/Kg-dry	100	7/24/04 7:06:00 AM	HLR
Toluene	NELAP	1590		2450	μg/Kg-dry	100	7/24/04 7:06:00 AM	HLR
Ethylbenzene	NELAP	1590		59100	µg/Kg-dry	100	7/24/04 7:06:00 AM	HLR
Xylenes, Total	NELAP	1590		40700	μg/Kg-dry	100	7/24/04 7:06:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		117	%REC	100	7/24/04 7:06:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.8	%REC	100	7/24/04 7:06:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		102	%REC	100	7/24/04 7:06:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		99.4	%REC	100	7/24/04 7:06:00 AM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B515-19 (18-19)

Lab ID:

04070448-022

Collection Date: 7/16/04 9:40:00 AM

Report Date:

11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		7.0	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		93.0	%	1	7/22/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYD	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	134		811 #	mg/Kg-dry	25	7/21/04 6:14:00 AM	CJS
Kerosene	NELAP	134		ND	mg/Kg-dry	25	7/21/04 6:14:00 AM	CJS
Mineral Spirits	NELAP	134		ND	mg/Kg-dry	25	7/21/04 6:14:00 AM	CJS
Motor Oil	NELAP	134		ND	mg/Kg-dry	25	7/21/04 6:14:00 AM	CJS
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	25	7/21/04 6:14:00 AM	CJS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE O	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	5.51	J	3.0	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Acenaphthylene	NELAP	5.51		26.5	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Anthracene	NELAP	5.51		11.0	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Benzo(a)anthracene	NELAP	5.51		5.77	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Benzo(a)pyrene	NELAP	5.51		6.48	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Benzo(b)fluoranthene	NELAP	5.51	J	4.5	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	5.51	J	2.1	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Benzo(k)fluoranthene	NELAP	5.51	J	1.6	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Chrysene	NELAP	5.51		5.93	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	5.51	J	0.57	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Fluoranthene	NELAP	5.51		12.9	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Fluorene	NELAP	5.51		16.1	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	5.51	J	1.9	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Naphthalene	NELAP	5.51		86.0	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Phenanthrene	NELAP	5.51		38.1	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Pyrene	NELAP	5.51		19.7	mg/Kg-dry	50	7/26/04 6:36:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	50	7/26/04 6:36:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	50	7/26/04 6:36:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	50	7/26/04 6:36:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC CON	POUNDS	BY GC/N	IS				
Benzene	NELAP	364		29300	μg/Kg-dry	250	7/24/04 7:37:00 AM	HLR
Toluene	NELAP	1820		35100	μg/Kg-dry	250	7/24/04 7:37:00 AM	HLR
Ethylbenzene	NELAP	1820		5730	μg/Kg-dry	250	7/24/04 7:37:00 AM	HLR
Xylenes, Total	NELAP	1820		27600	μg/Kg-dry	250	7/24/04 7:37:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		121	%REC	250	7/24/04 7:37:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.1	%REC	250	7/24/04 7:37:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-19 (18-19)

Collection Date: 7/16/04 9:40:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	-	74.1-121		103	%REC	250	7/24/04 7:37:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	250	7/24/04 7:37:00 AM	HLR

TEL: 618-344-1004 FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070448

Lab ID:

04070448-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-32 (31-32)

Collection Date: 7/16/04 9:50:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		8.7	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		91.3	%	1	7/22/04	JRS
SW-846 3050B, 6010B, METAI	LS BY ICP							
Arsenic	NELAP	2.40		7.64	mg/Kg-dry	1	7/27/04 1:47:56 PM	JMW
Barium	NELAP	0.48		13.3	mg/Kg-dry	1	7/27/04 12:13:49 PM	SAM
Cadmium	NELAP	0.19		0.23	mg/Kg-dry	1	7/27/04 12:13:49 PM	SAM
Chromium	NELAP	0.96		9.04	mg/Kg-dry	1	7/26/04 4:54:09 PM	JMW
Lead	NELAP	3.85		8.93	mg/Kg-dry	1	7/27/04 12:13:49 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	7/27/04 12:13:49 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/27/04 12:13:49 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
1,2-Dichlorobenzene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
1,3-Dichlorobenzene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
1,4-Dichlorobenzene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4,5-Trichlorophenol	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4,6-Trichlorophenol	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4-Dichlorophenol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4-Dimethylphenol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4-Dinitrophenol	NELAP	1.07		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,4-Dinitrotoluene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2,6-Dinitrotoluene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2-Chloronaphthalene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2-Chlorophenol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2-Methylnaphthalene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2-Nitroaniline	NELAP	1.07		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
2-Nitrophenol	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
3,3'-Dichlorobenzidine	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
3-Nitroaniline	NELAP	1.07		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.07		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4-Bromophenyl phenyl ether	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4-Chloro-3-methylphenol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4-Chloroaniline	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4-Chlorophenyl phenyl ether	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
4-Nitroaniline	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-32 (31-32)

Collection Date: 7/16/04 9:50:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Acenaphthene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Acenaphthylene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Anthracene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Benzo(a)anthracene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Benzo(a)pyrene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Benzo(b)fluoranthene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Benzo(g,h,i)perylene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Benzo(k)fluoranthene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Bis(2-chloroethoxy)methane	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Bis(2-chloroethyl)ether	NELAP	0.486		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.373		0.667	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Butyl benzyl phthalate	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Carbazole		0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Chrysene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Di-n-butyl phthalate	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Di-n-octyl phthalate	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Dibenzo(a,h)anthracene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Dibenzofuran	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Diethyl phthalate	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Dimethyl phthalate		0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Fluoranthene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Fluorene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Hexachlorobenzene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Hexachlorobutadiene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Hexachlorocyclopentadiene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Hexachloroethane	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Isophorone	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
m,p-Cresol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
N-Nitroso-di-n-propylamine	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
N-Nitrosodiphenylamine	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Naphthalene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Nitrobenzene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
o-Cresol	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Pentachlorophenol	NELAP	2.13		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-32 (31-32)

Collection Date: 7/16/04 9:50:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Phenol	NELAP	0.373		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Pyrene	NELAP	0.533		ND	mg/Kg-dry	1	7/23/04 6:37:00 AM	SML
Surr: 2,4,6-Tribromophenol		31-123		70.4	%REC	1	7/23/04 6:37:00 AM	SML
Surr: 2-Fluorobiphenyl		14.6-132		80.3	%REC	1	7/23/04 6:37:00 AM	SML
Surr: 2-Fluorophenol		27-111		77.5	%REC	1	7/23/04 6:37:00 AM	SML
Surr: Nitrobenzene-d5		28.9-113		80.9	%REC	1	7/23/04 6:37:00 AM	SML
Surr: p-Terphenyl-d14		25-144		86.5	%REC	1	7/23/04 6:37:00 AM	SML
Surr: Phenol-d5		33.7-123		93.2	%REC	1	7/23/04 6:37:00 AM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,1,2-Trichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,1-Dichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,1-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,2-Dichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
1,2-Dichloropropane	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
2-Butanone	NELAP	36.0		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
2-Hexanone	NELAP	36.0		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
4-Methyl-2-pentanone	NELAP	36.0		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Acetone	NELAP	36.0	J	32	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Benzene	NELAP	0.7		2.0	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Bromodichloromethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Bromoform	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Bromomethane	NELAP	7.2		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Carbon disulfide	NELAP	3.6		ND	μg/Kg-dry	3	7/20/04 7:38:00 PM	HLR
Carbon tetrachloride	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Chlorobenzene	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Chloroethane	NELAP	7.2		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Chloroform	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Chloromethane	NELAP	7.2		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
cis-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
cis-1,3-Dichloropropene	NELAP	2.9		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Dibromochloromethane	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Ethylbenzene	NELAP	3.6	J	1.4	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Methyl tert-butyl ether	NELAP	1.4		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Methylene chloride	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B515-32 (31-32)

Collection Date: 7/16/04 9:50:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Tetrachloroethene	NELAP	3.6		ND	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Toluene	NELAP	3,6	J	2.2	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
trans-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
trans-1,3-Dichloropropene	NELAP	2.9		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Trichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Vinyl chloride	NELAP	1.4		ND	μg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Xylenes, Total	NELAP	3.6	J	2.4	µg/Kg-dry	1	7/20/04 7:38:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72,8-122		119	%REC	1	7/20/04 7:38:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	73.9	%REC	1	7/20/04 7:38:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		111	%REC	1	7/20/04 7:38:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		88.3	%REC	1	7/20/04 7:38:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.010	J	0.007	mg/Kg-dry	1	7/22/04	SRS
SW-846 8015, MISCELLANEOU	JS COMPOUNDS I	BY GC/FII	D					
n-Butanol		11		ND	mg/Kg-dry	1	7/23/04 2:17:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.89		1	7/19/04 1:44:00 PM	EAW
pH (1:1)	NELAP	1.00		7.89		1	7/19/04 1:44:00 PM	EA

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-024

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B505-Grab

Collection Date: 7/16/04 9:30:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		5.8	%	1	7/22/04	JRS
STANDARD METHODS 18T	H ED. 2540 G							
Total Solids		0.1		94.2	%	1	7/22/04	JRS
SW-846 9010, 9014								
Cyanide	NELAP	2.65		39.6	mg/kg-dry	5	7/27/04	ADH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-025

Report Date:

11-Aug-04

Client Project:

Project: A831-7

A831-735002-012901-225/IP Champa

Client Sample ID: B560-3 (2-3)

Collection Date: 7/16/04 10:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		19.2	%	1	7/22/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		80.8	%	- 1	7/22/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.40		12.5	mg/Kg-dry	1	7/27/04 2:21:55 PM	JMW
Barium	NELAP	0.48		177	mg/Kg-dry	1	7/27/04 12:19:08 PM	SAM
Cadmium	NELAP	0.19		1.38	mg/Kg-dry	1	7/27/04 12:19:08 PM	SAM
Chromium	NELAP	0.96		16.7	mg/Kg-dry	1	7/26/04 4:57:10 PM	JMW
Lead	NELAP	3.85		110	mg/Kg-dry	1	7/27/04 12:19:08 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	110	7/27/04 12:19:08 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	7/27/04 12:19:08 PM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.617	J	0.18	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Acenaphthylene	NELAP	0.617		8.41	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Anthracene	NELAP	0.617		1.32	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Benzo(a)anthracene	NELAP	0.617		8.58	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Benzo(a)pyrene	NELAP	6.17		36.4	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Benzo(b)fluoranthene	NELAP	6.17		27.0	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	6.17		13.3	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Benzo(k)fluoranthene	NELAP	6.17		7.89	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Chrysene	NELAP	6.17		11.1	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	6.17	J	4.2	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Fluoranthene	NELAP	6.17		10.6	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Fluorene	NELAP	0.617		0.978	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	6.17		11.8	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Naphthalene	NELAP	0.617		1.89	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Phenanthrene	NELAP	0.617		3.02	mg/Kg-dry	5	7/27/04 1:04:00 AM	DMH
Pyrene	NELAP	6.17		32.4	mg/Kg-dry	50	7/27/04 9:32:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		54.9	%REC	5	7/27/04 1:04:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		42.7	%REC	5	7/27/04 1:04:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		78.6	%REC	5	7/27/04 1:04:00 AM	DMH
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COMP		BY GC/N	IS				
Benzene	NELAP	1.1		61.9	μg/Kg-dry	1	7/24/04 8:09:00 AM	HLR
Toluene	NELAP	5.7		12.6	μg/Kg-dry	1	7/24/04 8:09:00 AM	HLR
Ethylbenzene	NELAP	5.7	J	2.3	μg/Kg-dry	1	7/24/04 8:09:00 AM	HLR
Xylenes, Total	NELAP	5.7		6.7	μg/Kg-dry	1	7/24/04 8:09:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070448

Lab ID:

04070448-025

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-3 (2-3)

Collection Date: 7/16/04 10:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122	S	141	%REC	1	7/24/04 8:09:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	62.0	%REC	1	7/24/04 8:09:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	128	%REC	1	7/24/04 8:09:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		90.2	%REC	1	7/24/04 8:09:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.210	mg/Kg-dry	(1)	7/22/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.58		2.47	mg/kg-dry	1	7/27/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1_00		7.62		1	7/19/04 1:45:00 PM	EAW

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070448

Lab ID:

04070448-026

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-5 (4-5)

Collection Date: 7/16/04 11:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.0	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		80.0	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	1.21	J	0.38	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Acenaphthylene	NELAP	1.21		6.06	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Anthracene	NELAP	1.21		1.24	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Benzo(a)anthracene	NELAP	1.21		7.20	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Benzo(a)pyrene	NELAP	6.03		24.7	mg/Kg-dry	25	7/27/04 10:11:00 AM	DMH
Benzo(b)fluoranthene	NELAP	6.03		20.1	mg/Kg-dry	25	7/27/04 10:11:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	1.21		6.72	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.21		7.54	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Chrysene	NELAP	1.21		8.95	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.21		1.73	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Fluoranthene	NELAP	1.21		7.48	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Fluorene	NELAP	1.21	J	0.55	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.21		5.95	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Naphthalene	NELAP	1_21		2.59	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Phenanthrene	NELAP	1.21		3.15	mg/Kg-dry	5	7/25/04 10:44:00 PM	DMH
Pyrene	NELAP	6.03		22.7	mg/Kg-dry	25	7/27/04 10:11:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		75.9	%REC	5	7/25/04 10:44:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		72.9	%REC	5	7/25/04 10:44:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		88.8	%REC	5	7/25/04 10:44:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/N	IS				
Benzene	NELAP	1.0		12.0	μg/Kg-dry	1	7/24/04 8:40:00 AM	HLR
Toluene	NELAP	5.1	J	3.9	µg/Kg-dry	1	7/24/04 8:40:00 AM	HLR
Ethylbenzene	NELAP	5.1	J	1.9	μg/Kg-dry	1	7/24/04 8:40:00 AM	HLR
Xylenes, Total	NELAP	5.1	J	3.9	µg/Kg-dry	1	7/24/04 8:40:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	126	%REC	1	7/24/04 8:40:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	74.9	%REC	1	7/24/04 8:40:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		111	%REC	1	7/24/04 8:40:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		97.1	%REC	1	7/24/04 8:40:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070448

Lab ID:

04070448-027

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-13 (12-13)

Collection Date: 7/16/04 11:15:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0_1		16.8	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D, 2540 G							
Total Solids		0.1		83.2	%	1	7/22/04	JRS
SW-846 3550B, 8015, TOTAL P	ETROLEUM HYDI	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	174		2560 #	mg/Kg-dry	5	7/23/04 2:34:00 PM	DMH
Kerosene	NELAP	174		ND	mg/Kg-dry	5	7/23/04 2:34:00 PM	DMH
Mineral Spirits	NELAP	174		ND	mg/Kg-dry	5	7/23/04 2:34:00 PM	DMH
Motor Oil	NELAP	174		633 #	mg/Kg-dry	5	7/23/04 2:34:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	37.0	%REC	5	7/23/04 2:34:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	17.7		71.5	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Acenaphthylene	NELAP	1.77		6.33	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Anthracene	NELAP	17.7		37.4	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Benzo(a)anthracene	NELAP	1.77		17.2	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Benzo(a)pyrene	NELAP	1.77		21.7	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.77		15.5	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.77		4.85	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.77		5.11	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Chrysene	NELAP	1.77		17.6	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.77	J	1.3	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Fluoranthene	NELAP	17.7		41.2	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Fluorene	NELAP	17.7		44.1	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.77		4.43	mg/Kg-dry	5	7/25/04 7:30:00 PM	DMH
Naphthalene	NELAP	17.7		292	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Phenanthrene	NELAP	17.7		120	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Pyrene	NELAP	17.7		62.9	mg/Kg-dry	50	7/27/04 10:49:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		70.9	%REC	5	7/25/04 7:30:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		50.9	%REC	5	7/25/04 7:30:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		78.8	%REC	5	7/25/04 7:30:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	1S				
Benzene	NELAP	46.2		86.8	μg/Kg-dry	25	7/25/04 1:12:00 AM	HLR
Toluene	NELAP	231	J	150	μg/Kg-dry	25	7/25/04 1:12:00 AM	HLR
Ethylbenzene	NELAP	2310		18600	μg/Kg-dry	250	7/26/04 6:32:00 AM	HLR
Xylenes, Total	NELAP	231		19100	μg/Kg-dry	25	7/25/04 1:12:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		113	%REC	25	7/25/04 1:12:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.9	%REC	25	7/25/04 1:12:00 AM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070448

Lab ID:

04070448-027

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-13 (12-13)

Collection Date: 7/16/04 11:15:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		97.0	%REC	25	7/25/04 1:12:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		100	%REC	25	7/25/04 1:12:00 AM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070448

Lab ID:

04070448-028

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-20 (19-20)

Collection Date: 7/16/04 11:35:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.7	%	1	7/22/04	JRS
STANDARD METHODS 18TH ED	D. 2540 G							
Total Solids		0.1		89.3	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, SE	MI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.113	J	0.014	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Acenaphthylene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Anthracene	NELAP	0.113	J	0.014	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Benzo(a)anthracene	NELAP	0.113	J	0.019	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Benzo(a)pyrene	NELAP	0.113	J	0.018	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.113	J	0.015	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	.0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Chrysene	NELAP	0.113	J	0.019	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Fluoranthene	NELAP	0.113	J	0.029	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Fluorene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Naphthalene	NELAP	0.113	J	0.057	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Phenanthrene	NELAP	0.113	J	0.050	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Pyrene	NELAP	0.113	J	0.044	mg/Kg-dry	1	7/22/04 10:58:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		65.6	%REC	1	7/22/04 10:58:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		48.1	%REC	1	7/22/04 10:58:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		80.4	%REC	1	7/22/04 10:58:00 PM	DMH
SW-846 5035, 8260B, VOLATILE	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		10.4	μg/Kg-dry	ì	7/24/04 9:42:00 AM	HLR
Toluene	NELAP	3.9		6.1	μg/Kg-dry	1	7/24/04 9:42:00 AM	HLR
Ethylbenzene	NELAP	3.9	J	2.1	μg/Kg-dry	1	7/24/04 9:42:00 AM	HLR
Xylenes, Total	NELAP	3.9		4.5	μg/Kg-dry	1	7/24/04 9:42:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	131	%REC	1	7/24/04 9:42:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	68.6	%REC	1	7/24/04 9:42:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		114	%REC	1	7/24/04 9:42:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		85.3	%REC	1	7/24/04 9:42:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070448

Client Sample ID: B560-20D (19-20)

Lab ID:

Collection Date: 7/16/04 11:35:00 AM

Report Date:

11-Aug-04

04070448-029

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.2	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		87.8	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.115	J	0.028	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Acenaphthylene	NELAP	0.115		ND	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Anthracene	NELAP	0.115	J	0.027	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Benzo(a)anthracene	NELAP	0.115	J	0.028	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Benzo(a)pyrene	NELAP	0.115	J	0.030	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.115	J	0.023	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.115	J	0.015	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.115		ND	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Chrysene	NELAP	0.115	J	0.026	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.115		ND	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Fluoranthene	NELAP	0.115	J	0.043	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Fluorene	NELAP	0.115	J	0.017	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.115		ND	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Naphthalene	NELAP	0.115	J	0.10	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Phenanthrene	NELAP	0.115	J	0.085	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Pyrene	NELAP	0.115	J	0.067	mg/Kg-dry	1	7/23/04 12:09:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		63.0	%REC	1	7/23/04 12:09:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		59.4	%REC	1	7/23/04 12:09:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		71.9	%REC	1	7/23/04 12:09:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	15				
Benzene	NELAP	0.8		2.6	μg/Kg-dry	1	7/24/04 10:13:00 AM	HLR
Toluene	NELAP	4.1	J	2.0	μg/Kg-dry	1	7/24/04 10:13:00 AM	HLR
Ethylbenzene	NELAP	4.1	J	1.0	µg/Kg-dry	1	7/24/04 10:13:00 AM	HLR
Xylenes, Total	NELAP	4.1	J	1.6	µg/Kg-dry	1	7/24/04 10:13:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		118	%REC	1	7/24/04 10:13:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		81.5	%REC	1	7/24/04 10:13:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		103	%REC	1	7/24/04 10:13:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		97.8	%REC	1	7/24/04 10:13:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070448

11-Aug-04

WorkOrder:

Report Date:

Lab ID:

04070448-030

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B560-28 (27-28)

Collection Date: 7/16/04 12:00:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		8.6	%	1	7/22/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		91.4	%	1	7/22/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.109	J	0.065	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Acenaphthylene	NELAP	0.109	J	0.011	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Anthracene	NELAP	0.109	J	0.065	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Benzo(a)anthracene	NELAP	0.109	J	0.068	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Benzo(a)pyrene	NELAP	0.109	J	0.055	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.109	J	0.051	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.109	J	0.024	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.109	J	0.012	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Chrysene	NELAP	0.109	J	0.048	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.109		ND	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Fluoranthene	NELAP	0.109	J	0.091	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Fluorene	NELAP	0.109	J	0.059	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.109	J	0.016	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Naphthalene	NELAP	0.109		0.197	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Phenanthrene	NELAP	0.109		0.205	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Pyrene	NELAP	0.109		0.136	mg/Kg-dry	1	7/23/04 12:49:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		60.4	%REC	1	7/23/04 12:49:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		43.4	%REC	1	7/23/04 12:49:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		72.5	%REC	1	7/23/04 12:49:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	1S				
Benzene	NELAP	0.7		2.3	μg/Kg-dry	1	7/24/04 10:44:00 AM	HLR
Toluene .	NELAP	3.7	J	2.8	μg/Kg-dry	1	7/24/04 10:44:00 AM	HLR
Ethylbenzene	NELAP	3.7	J	2.2	μg/Kg-dry	1	7/24/04 10:44:00 AM	HLR
Xylenes, Total	NELAP	3.7		3.9	μg/Kg-dry	1	7/24/04 10:44:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	127	%REC	1	7/24/04 10:44:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	72.7	%REC	1	7/24/04 10:44:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		111	%REC	1	7/24/04 10:44:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		89.6	%REC	1	7/24/04 10:44:00 AM	HLR
22/11 10/00/10 00	Ĭ							

TEL: 618-344-1004

FAX: 618-344-1005

August 11, 2004

Jim Gould
Philip Environmental
210 West Sand Bank Road
Columbia, IL 622360230

TEL: (618) 281-7173 FAX: (618) 281-5120

THE IN ACCORDANCE

NELAP Accredited #100226

RE: A831-735002-012901-225/IP Champaign

OrderNo. 04070635

Dear Jim Gould:

TEKLAB, INC received 52 samples on 7/23/04 12:20:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP/Part 186 except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client:

Philip Environmental

.

Project:

A831-735002-012901-225/IP Champaign

LabOrder:

04070635

Report Date: August 11, 2004

CASE NARRATIVE

This is a revised report. The list of VOC (8260) and SVOC(8270) compounds has been revised according to IEPA Title 35, Subtitle G, Chapter I, Part 740, Appendix A. Please replace your original report for this work order with this revised report.

Analytical Comments for METHOD SV_OA2_S: SAMPLE 04070635-002A, -013A, -017A, -017AMS/MSD, -021A, -026A, -045A: Elevated reporting limit due to matrix interference. #: Unknown hydrocarbon. MS/MSD:Matrix spike was diluted out. SAMPLE 04070635-032A: #: Unknown hydrocarbon. SAMPLE 04070635-036A, -041A, -044A, -045A, -051A: Elevated reporting limit due to matrix interference. #: Unknown hydrocarbon. Surrogate was diluted out.

Analytical Comments for METHOD SV_8270S_S_SIMS: SAMPLE 04070635-002A, -006A, -011A, -015A - 019A, -021A, -025A, -026A, -029A, -034A, -035A, -039A, -040A, -041A, -044A, -045A, -046A, -050A: Elevated reporting limit due to matrix interference. SAMPLE 04070635-002AMS/MSD: Elevated reporting limit due to matrix interference. Sample concentration was greater than 5 times the spike concentration. SAMPLE 04070635-013A, -020A, -026A, -043A, -051A: Elevated reporting limit due to matrix interference. Surrogate was diluted out. SAMPLE 04070635-029AMS/MSD: Elevated reporting limit due to matrix interference. Matrix spike recoveries exceeded QC limits because of sample composition.

Analytical Comments for METHOD SV_8270S_S: SAMPLE 04070635-001A, -012A, -017A, -024A, -031A, -030A, -036A, -048A, -049A: Elevated reporting limit due to matrix interference. SAMPLE 04070635-017AMS & 017AMSD: Elevated reporting limit due to matrix interference. Acenaphthene recovery exceeded QC limits because of sample composition.

Analytical Comments for METHOD V_BTEX_S: SAMPLE 04070635-002D, -013D, -020D, -025D, -026D, -032D, -035D, -038D, -040D: Elevated reporting limit due to matrix interference. SAMPLE 04070635-005D, -011D, -015D, -019D, -029D: Matrix interference present in sample.

Analytical Comments for METHOD V_8260S_S: SAMPLE 04070635-001D, -024D, -042D, -048D, -049D: Matrix interference present in sample. SAMPLE 04070635-007C, -012D, -036D: Elevated reporting limit due to matrix interference.

Analytical Comments for METHOD I TCN S MT, SAMPLE 04070635-043A: Non-homogenious sample.

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

Surr - Surrogate Standard added by lab
TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

NELAP - IL ELAP and NELAP Accredited Field of Testing

TEL: 618-344-1004 FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-001

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-2 (1-2')

Collection Date: 7/19/04 10:40:00 AM

ASTM D2974 Percent Moisture								
Percent Moisture								
		0.1		21.9	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.1	%	1	7/26/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.45		12.6	mg/Kg-dry	1	8/4/04 11:12:12 AM	JMW
Barium	NELAP	0.49		164	mg/Kg-dry	1	8/2/04 4:45:22 PM	SAM
Cadmium	NELAP	0.20		0.64	mg/Kg-dry	1	8/2/04 4:45:22 PM	SAM
Chromium	NELAP	0.98		16.9	mg/Kg-dry	1	8/2/04 4:19:26 PM	JMW
Lead	NELAP	3.92		48.6	mg/Kg-dry	1	8/2/04 4:45:22 PM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	8/2/04 4:45:22 PM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	8/2/04 4:45:22 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
1,2-Dichlorobenzene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
1,3-Dichlorobenzene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
1,4-Dichlorobenzene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4,5-Trichlorophenol	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4,6-Trichlorophenol	NELAP	1 36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4-Dichlorophenol	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4-Dimethylphenol	NELAP	1 94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4-Dinitrophenol	NELAP	3.87		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,4-Dinitrotoluene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2,6-Dinitrotoluene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2-Chloronaphthalene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2-Chlorophenol	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2-Methylnaphthalene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2-Nitroaniline	NELAP	3.87		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
2-Nitrophenol	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
3-Nitroaniline	NELAP	3.87		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	3.87		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4-Chloro-3-methylphenol	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4-Chloroaniline	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
4-Nitroaniline	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Report Date:

Philip Environmental

04070635

11-Aug-04

WorkOrder:

Lab ID:

04070635-001

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-2 (1-2')

7/19/04 10:40:00 AM Collection Date:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Acenaphthene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Acenaphthylene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Anthracene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Benzo(a)anthracene	NELAP	1.36	J	0.45	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Benzo(a)pyrene	NELAP	1.36	J	0.50	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Benzo(b)fluoranthene	NELAP	1.36	J	0.61	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Benzo(g,h,i)perylene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Benzo(k)fluoranthene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	1.77		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Butyl benzyl phthalate	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Carbazole		1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Chrysene	NELAP	1.36	J	0.45	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Di-n-butyl phthalate	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Di-n-octyl phthalate	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Dibenzofuran	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Diethyl phthalate	NELAP	1,94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Dimethyl phthalate		1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Fluoranthene	NELAP	1.36	J	0.69	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Fluorene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Hexachlorobenzene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Hexachlorobutadiene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Hexachlorocyclopentadiene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Hexachloroethane	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Isophorone	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
m,p-Cresol	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
N-Nitrosodiphenylamine	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Naphthalene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Nitrobenzene	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
o-Cresol	NELAP	1.94		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Pentachlorophenol	NELAP	7.74		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-001

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-2 (1-2')

Collection Date: 7/19/04 10:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Phenol	NELAP	1.36		ND	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Pyrene	NELAP	1.94	J	0.65	mg/Kg-dry	1	7/30/04 6:14:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		65.5	%REC	1	7/30/04 6:14:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		65.8	%REC	1	7/30/04 6:14:00 PM	SML
Surr: 2-Fluorophenol		27-111		52.2	%REC	1	7/30/04 6:14:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		59.5	%REC	1	7/30/04 6:14:00 PM	SML
Surr: p-Terphenyl-d14		25-144		72.8	%REC	1	7/30/04 6:14:00 PM	SML
Surr: Phenol-d5		33.7-123		63.6	%REC	1	7/30/04 6:14:00 PM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	7.0		ND	µg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
1,1,2-Trichloroethane	NELAP	7.0		ND	µg/Kg-d r y	1	8/1/04 1:00:00 AM	HLR
1,1-Dichloroethane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
1,1-Dichloroethene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
1,2-Dichloroethane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
1,2-Dichloropropane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
2-Butanone	NELAP	70.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
2-Hexanone	NELAP	70.0		ND	µg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
4-Methyl-2-pentanone	NELAP	70.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Acetone	NELAP	70.0		91.6	µg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Benzene	NELAP	1.4		2.3	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Bromodichloromethane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Bromoform	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Bromomethane	NELAP	14.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Carbon disulfide	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Carbon tetrachloride	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Chlorobenzene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Chloroethane	NELAP	14.0		ND	µg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Chloroform	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Chloromethane	NELAP	14.0		ND	µg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	5.6		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Dibromochloromethane	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Ethylbenzene	NELAP	7.0	J	4.5	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Methyl tert-butyl ether	NELAP	2.8		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Methylene chloride	NELAP	7.0	J	1.5	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-001

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-2 (1-2')

Collection Date: 7/19/04 10:40:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Tetrachloroethene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Toluene	NELAP	7.0		7.2	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	5.6		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Trichloroethene	NELAP	7.0		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Vinyl chloride	NELAP	2.8		ND	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Xylenes, Total	NELAP	7.0		11.8	μg/Kg-dry	1	8/1/04 1:00:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		115	%REC	1	8/1/04 1:00:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	65.7	%REC	1	8/1/04 1:00:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	122	%REC	1	8/1/04 1:00:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		89.3	%REC	1	8/1/04 1:00:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.082	mg/Кg-dгу	1	7/27/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS E	Y GC/FII	2					
n-Butanol		13		ND	mg/Kg-dry	1	7/30/04 1:04:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.64		1.37	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		6.65		1	7/26/04 3:41:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B558-7 (6-7')

Lab ID:

Collection Date: 7/19/04 11:20:00 AM

Report Date:

04070635-002 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.0	%	1	7/26/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		78.0	%	1	7/26/04	JRS
SW-846 3550B, 8015, TOTAL I	PETROLEUM HYDR	OCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	65.5		946 #	mg/Kg-dry	10	7/27/04 11:05:00 AM	DMH
Kerosene	NELAP	65.5		ND	mg/Kg-dry	10	7/27/04 11:05:00 AM	DMH
Mineral Spirits	NELAP	65.5		ND	mg/Kg-dry	10	7/27/04 11:05:00 AM	DMH
Motor Oil	NELAP	65.5		ND	mg/Kg-dry	10	7/27/04 11:05:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		86.4	%REC	10	7/27/04 11:05:00 AM	DMH
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GO	/MS			
Acenaphthene	NELAP	1.27		8.14	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Acenaphthylene	NELAP	1.27		2.41	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Anthracene	NELAP	1.27		6.82	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Benzo(a)anthracene	NELAP	1.27		3.21	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Benzo(a)pyrene	NELAP	1.27		3.49	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.27		2.76	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.27	J	0.93	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.27	J	0.82	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Chrysene	NELAP	1.27		3.14	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.27	J	0.36	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Fluoranthene	NELAP	1.27		7.34	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Fluorene	NELAP	1.27		8.87	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.27	J	0.86	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Naphthalene	NELAP	1.27		ND	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Phenanthrene	NELAP	3.18		21.6	mg/Kg-dry	25	8/2/04 9:46:00 AM	DMH
Pyrene	NELAP	1.27		11.5	mg/Kg-dry	10	7/30/04 8:47:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		70.0	%REC	10	7/30/04 8:47:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		55.9	%REC	10	7/30/04 8:47:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		77.9	%REC	10	7/30/04 8:47:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	24.5		52.5	μg/Kg-dry	12.5	7/30/04 2:25:00 AM	HLR
Toluene	NELAP	123		134	μg/Kg-dry	12.5	7/30/04 2:25:00 AM	HLR
Ethylbenzene	NELAP	123	J	66	μg/Kg-dry	12.5	7/30/04 2:25:00 AM	HLR
Xylenes, Total	NELAP	123		221	μg/Kg-dry	12.5	7/30/04 2:25:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		95.1	%REC	12.5	7/30/04 2:25:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.9	%REC	12.5	7/30/04 2:25:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-002

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-7 (6-7')

Collection Date: 7/19/04 11:20:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		94.3	%REC	12.5	7/30/04 2:25:00 AM	HLR
Surr: Toluene-d8	82.8-112.8		100	%REC	12.5	7/30/04 2:25:00 AM	HLR	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070635

11-Aug-04

Lab ID:

Report Date:

04070635-003

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-12 (11-12')

Collection Date: 7/19/04 12:54:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.0	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.0	%	1	7/26/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.125		0.817	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Acenaphthylene	NELAP	0.125		0.323	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Anthracene	NELAP	0.125		0.191	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Benzo(a)anthracene	NELAP	0.125		0.139	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Benzo(a)pyrene	NELAP	0.125		0.129	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.125	J	0.10	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.125	J	0.047	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.125	J	0.032	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Chrysene	NELAP	0.125		0.139	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.125	J	0.015	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Fluoranthene	NELAP	0.125		0.433	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Fluorene	NELAP	0.125		0.323	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.125	J	0.039	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Naphthalene	NELAP	0.125	J	0.028	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Phenanthrene	NELAP	0.624		2.13	mg/Kg-dry	5	7/29/04 1:19:00 PM	DMH
Pyrene	NELAP	0.125		0.628	mg/Kg-dry	1	7/28/04 10:07:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		63.0	%REC	1	7/28/04 10:07:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		56.2	%REC	1	7/28/04 10:07:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		76.9	%REC	1	7/28/04 10:07:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	1.2		9.5	μg/Kg-dry	-1	7/30/04 2:56:00 AM	HLR
Toluene	NELAP	5.9	J	2.5	µg/Kg-dry	1	7/30/04 2:56:00 AM	HLR
Ethylbenzene	NELAP	5.9	J	5.0	µg/Kg-dry	1	7/30/04 2:56:00 AM	HLR
Xylenes, Total	NELAP	5.9		52.1	μg/Kg-dry	1	7/30/04 2:56:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		111	%REC	1	7/30/04 2:56:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		80.7	%REC	1	7/30/04 2:56:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		114	%REC	1	7/30/04 2:56:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		91.4	%REC	1	7/30/04 2:56:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B558-18 (17-18')

Lab ID:

04070635-004

Collection Date: 7/19/04 1:10:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.9	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.1	%	1	7/26/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.108	J	0.042	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Acenaphthylene	NELAP	0.108		0.397	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Anthracene	NELAP	0.108	J	0.019	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Benzo(a)anthracene	NELAP	0.108	J	0.017	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Benzo(a)pyrene	NELAP	0.108	J	0.015	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.108		ND	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.108		ND	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.108		ND	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Chrysene	NELAP	0.108	J	0.017	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.108		ND	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Fluoranthene	NELAP	0.108	J	0.029	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Fluorene	NELAP	0.108	J	0.062	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.108		ND	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Naphthalene	NELAP	0.539		2.54	mg/Kg-dry	5	7/29/04 1:57:00 PM	DMH
Phenanthrene	NELAP	0.108	J	0.069	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Pyrene	NELAP	0.108	J	0.044	mg/Kg-dry	1	7/28/04 9:28:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		67.2	%REC	1	7/28/04 9:28:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		57.2	%REC	1	7/28/04 9:28:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		78.9	%REC	1	7/28/04 9:28:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.7		90.5	µg/Kg-dry	1	7/30/04 3:27:00 AM	HLR
Toluene	NELAP	3.6		71.3	µg/Kg-dry	1	7/30/04 3:27:00 AM	HLR
Ethylbenzene	NELAP	3.6		20.9	µg/Kg-dry	1	7/30/04 3:27:00 AM	HLR
Xylenes, Total	NELAP	3.6		82.1	µg/Kg-dry	1	7/30/04 3:27:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.9	%REC	1	7/30/04 3:27:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		85.4	%REC	1	7/30/04 3:27:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		100	%REC	1	7/30/04 3:27:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		95.8	%REC	1	7/30/04 3:27:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-005

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B558-28 (27-28')

Collection Date: 7/19/04 1:15:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		7.5	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		92.5	%	1	7/26/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	0.105	J	0.012	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Acenaphthylene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Anthracene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Benzo(a)anthracene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Benzo(a)pyrene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Chrysene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Fluoranthene	NELAP	0.105	J	0.015	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Fluorene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.105		ND	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Naphthalene	NELAP	0.105	J	0.031	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Phenanthrene	NELAP	0.105	J	0.033	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Pyrene	NELAP	0.105	J	0.022	mg/Kg-dry	1	7/28/04 10:46:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.8	%REC	1	7/28/04 10:46:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		51.7	%REC	1	7/28/04 10:46:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		73.9	%REC	1	7/28/04 10:46:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8		1.6	μg/Kg-dry	1	7/30/04 3:59:00 AM	HLR
Toluene	NELAP	4.1	J	2.2	μg/Kg-dry	1	7/30/04 3:59:00 AM	HLR
Ethylbenzene	NELAP	4.1	J	1.0	μg/Kg-dry	1	7/30/04 3:59:00 AM	HLR
Xylenes, Total	NELAP	4.1	J	2.8	μg/Kg-dry	1	7/30/04 3:59:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		107	%REC	1	7/30/04 3:59:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	74.9	%REC	1	7/30/04 3:59:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		109	%REC	1	7/30/04 3:59:00 AM	HLR
Surr: Toluene-d8		2.8-112.8		86.5	%REC	1	7/30/04 3:59:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

11-Aug-04

WorkOrder: Lab ID:

Report Date:

04070635-006

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-3 (2-3')

Collection Date: 7/19/04 2:45:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.5	%	1	7/26/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		79.5	%	1	7/26/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.27		9.93	mg/Kg-dry	1	8/4/04 11:16:05 AM	JMW
Barium	NELAP	0.45		139	mg/Kg-dry	1	8/2/04 4:50:40 PM	SAM
Cadmium	NELAP	0.18	J	0.15	mg/Kg-dry	1	8/2/04 4:50:40 PM	SAM
Chromium	NELAP	0.91		16.0	mg/Kg-dry	1	8/2/04 4:22:24 PM	JMW
Lead	NELAP	3.64		56.7	mg/Kg-dry	1	8/2/04 4:50:40 PM	SAM
Selenium	NELAP	3.64		< 3.64	mg/Kg-dry	1	8/2/04 4:50:40 PM	SAM
Silver	NELAP	0.91		< 0.91	mg/Kg-dry	1	8/2/04 4:50:40 PM	SAM
SW-846 3550B, 8270C SIMS,	SEMI-VOLATILE OR	GANIC (COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.239		ND	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Acenaphthylene	NELAP	0.239		ND	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Anthracene	NELAP	0.239		ND	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Benzo(a)anthracene	NELAP	0.239	J	0.14	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Benzo(a)pyrene	NELAP	0.239	J	0.19	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.239		0.269	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.239	J	0.11	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.239	J	0.088	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Chrysene	NELAP	0.239	J	0.15	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.239	J	0.042	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Fluoranthene	NELAP	0.239	J	0.19	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Fluorene	NELAP	0.239		ND	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.239	j	0.11	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Naphthalene	NELAP	0.239	J	0.037	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Phenanthrene	NELAP	0.239	J	0.067	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Pyrene	NELAP	0.239	J	0.17	mg/Kg-dry	1	7/28/04 11:25:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		65.4	%REC	1	7/28/04 11:25:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		55.4	%REC	1	7/28/04 11:25:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		76.4	%REC	1	7/28/04 11:25:00 PM	DMH
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM		BY GC/N	IS				
Benzene	NELAP	1.0	J	0.7	μg/Kg-dry	1	7/30/04 4:30:00 AM	HLR
Toluene	NELAP	5.2	-	ND	μg/Kg-dry	1	7/30/04 4:30:00 AM	HLR
Ethylbenzene	NELAP	5.2		ND	μg/Kg-dry	1	7/30/04 4:30:00 AM	HLR
Xylenes, Total	NELAP	5.2	J	2.0	μg/Kg-dry	1	7/30/04 4:30:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-006

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-3 (2-3')

Collection Date: 7/19/04 2:45:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		98.5	%REC	1	7/30/04 4:30:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.8	%REC	1	7/30/04 4:30:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		98.5	%REC	1	7/30/04 4:30:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		99.8	%REC	1	7/30/04 4:30:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.058	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.63	J	0.46	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.12		1	7/26/04 3:42:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-007

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8 (7-8')

Collection Date: 7/19/04 3:12:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.5	%	1	7/26/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		78.5	%	1	7/26/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.50		14.5	mg/Kg-dry	1	8/4/04 10:46:24 AM	JMW
Barium	NELAP	0.50		226	mg/Kg-dry	1	8/2/04 4:55:58 PM	SAM
Cadmium	NELAP	0.20		0.54	mg/Kg-dry	1	8/2/04 4:55:58 PM	SAM
Chromium	NELAP	1.00		23.5	mg/Kg-dry	1.	8/2/04 4:25:22 PM	JMW
Lead	NELAP	4.00		18.7	mg/Kg-dry	1	8/2/04 4:55:58 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 4:55:58 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 4:55:58 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANI	CCOMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
1,2-Dichlorobenzene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
1,3-Dichlorobenzene	NELAP	0 640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
1,4-Dichlorobenzene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4-Dichlorophenol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4-Dimethylphenol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4-Dinitrophenol	NELAP	1.28		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2-Chloronaphthalene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2-Chlorophenol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2-Methylnaphthalene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2-Nitroaniline	NELAP	1.28		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
2-Nitrophenol	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
3-Nitroaniline	NELAP	1.28		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.28		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	
4-Chloro-3-methylphenol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	
4-Chloroaniline	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	
4-Chlorophenyl phenyl ether	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	
4-Nitroaniline	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-007

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B559-8 (7-8')

Collection Date: 7/19/04 3:12:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Acenaphthene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Acenaphthylene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Anthracene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Benzo(a)anthracene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Benzo(a)pyrene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	0.583		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.448	J	0.43	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Butyl benzyl phthalate	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Carbazole		0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Chrysene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Di-n-butyl phthalate	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Di-n-octyl phthalate	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	0,448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Dibenzofuran	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Diethyl phthalate	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Dimethyl phthalate		0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Fluoranthene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Fluorene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Hexachlorobenzene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Hexachlorobutadiene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Hexachlorocyclopentadiene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Hexachloroethane	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Isophorone	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
m,p-Cresol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	0,640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
N-Nitrosodiphenylamine	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Naphthalene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Nitrobenzene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
o-Cresol	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Pentachlorophenol	NELAP	2.56		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder:

Report Date:

04070033

11-Aug-04

Lab ID:

04070635-007

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8 (7-8')

Collection Date: 7/19/04 3:12:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Phenol	NELAP	0.448		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Pyrene	NELAP	0.640		ND	mg/Kg-dry	1	7/30/04 3:03:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		79.8	%REC	1	7/30/04 3:03:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		72.9	%REC	1	7/30/04 3:03:00 PM	SML
Surr: 2-Fluorophenol		27-111		75.1	%REC	1	7/30/04 3:03:00 PM	SML
Surr: Nitrobenzene-d5	;	28.9-113		75.7	%REC	1	7/30/04 3:03:00 PM	SML
Surr: p-Terphenyl-d14		25-144		86.4	%REC	1	7/30/04 3:03:00 PM	SML
Surr: Phenol-d5		33.7-123		87.8	%REC	1	7/30/04 3:03:00 PM	SML
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,1,2-Trichloroethane	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,1-Dichloroethane	NELAP	128		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,1-Dichloroethene	NELAP	128		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,2-Dichloroethane	NELAP	128		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
1,2-Dichloropropane	NELAP	128		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
2-Butanone	NELAP	1280	J	460	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
2-Hexanone	NELAP	1280		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
4-Methyl-2-pentanone	NELAP	1280		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Acetone	NELAP	1280	J	460	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Benzene	NELAP	25.6		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Bromodichloromethane	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Bromoform	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Bromomethane	NELAP	256		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Carbon disulfide	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Carbon tetrachloride	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Chlorobenzene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Chloroethane	NELAP	256		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Chloroform	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Chloromethane	NELAP	256		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	102		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Dibromochloromethane	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Ethylbenzene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Methyl tert-butyl ether	NELAP	51.1		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Methylene chloride	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-007

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8 (7-8')

Collection Date: 7/19/04 3:12:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Tetrachloroethene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Toluene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	102		ND	µg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Trichloroethene	NELAP	128		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Vinyl chloride	NELAP	51.1		ND	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Xylenes, Total	NELAP	128	J	46	μg/Kg-dry	12.5	8/1/04 8:48:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		97.7	%REC	12.5	8/1/04 8:48:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.9	%REC	12.5	8/1/04 8:48:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		96.1	%REC	12.5	8/1/04 8:48:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	12.5	8/1/04 8:48:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.049	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOU	JS COMPOUNDS E	BY GC/FII	2					
n-Butanol		13		ND	mg/Kg-dry	1	7/30/04 1:20:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.20		1	7/26/04 3:44:00 PM	JLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070635

Lab ID:

04070635-008

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8D (7-8')

Collection Date: 7/19/04 3:24:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.2	%	1	7/26/04	JRS
STANDARD METHODS 18TH B	ED. 2540 G							
Total Solids		0.1		79.8	%	1	7/26/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.36		8.95	mg/Kg-dry	1	8/4/04 11:24:53 AM	JMW
Barium	NELAP	0.47		147	mg/Kg-dry	1	8/2/04 5:01:00 PM	SAM
Cadmium	NELAP	0.19		0.44	mg/Kg-dry	1	8/2/04 5:01:00 PM	SAM
Chromium	NELAP	0.94		24.2	mg/Kg-dry	1	8/2/04 4:28:19 PM	JMW
Lead	NELAP	3.77		20.6	mg/Kg-dry	1	8/2/04 5:01:00 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	8/2/04 5:01:00 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	8/2/04 5:01:00 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS E	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
1,2-Dichlorobenzene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
1,3-Dichlorobenzene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
1,4-Dichlorobenzene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4-Dichlorophenol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4-Dimethylphenol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4-Dinitrophenol	NELAP	1.22		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2-Chloronaphthalene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2-Chlorophenol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2-Methylnaphthalene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2-Nitroaniline	NELAP	1.22		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
2-Nitrophenol	NELAP	0 428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
3-Nitroaniline	NELAP	1,22		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.22		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4-Chloro-3-methylphenol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4-Chloroaniline	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
4-Nitroaniline	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-008

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8D (7-8')

Collection Date: 7/19/04 3:24:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Acenaphthene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Acenaphthylene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Anthracene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Benzo(a)anthracene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Benzo(a)pyrene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	0.558		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.428	J	0.28	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Butyl benzyl phthalate	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Carbazole		0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Chrysene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Di-n-butyl phthalate	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Di-n-octyl phthalate	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Dibenzofuran	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Diethyl phthalate	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Dimethyl phthalate		0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Fluoranthene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Fluorene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Hexachlorobenzene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Hexachlorobutadiene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Hexachlorocyclopentadiene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Hexachloroethane	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Isophorone	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
m,p-Cresol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
N-Nitrosodiphenylamine	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Naphthalene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Nitrobenzene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
o-Cresol	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Pentachlorophenol	NELAP	2.45		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-008

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8D (7-8')

Collection Date: 7/19/04 3:24:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Phenol	NELAP	0.428		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Pyrene	NELAP	0.612		ND	mg/Kg-dry	1	7/30/04 3:41:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		80.3	%REC	1	7/30/04 3:41:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		72.5	%REC	1	7/30/04 3:41:00 PM	SML
Surr: 2-Fluorophenol		27-111		74.4	%REC	1	7/30/04 3:41:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		74.0	%REC	1	7/30/04 3:41:00 PM	SML
Surr: p-Terphenyl-d14		25-144		85.3	%REC	1	7/30/04 3:41:00 PM	SML
Surr: Phenol-d5		33.7-123		87.0	%REC	1	7/30/04 3:41:00 PM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,1,2-Trichloroethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,1-Dichloroethane	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,1-Dichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,2-Dichloroethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
1,2-Dichloropropane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
2-Butanone	NELAP	47.6	J	18	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
2-Hexanone	NELAP	47.6		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
4-Methyl-2-pentanone	NELAP	47.6		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Acetone	NELAP	47.6		129	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Benzene	NELAP	1.0		2.2	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Bromodichloromethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Bromoform	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Bromomethane	NELAP	9.5		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Carbon disulfide	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Carbon tetrachloride	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Chlorobenzene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Chloroethane	NELAP	9.5		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Chloroform	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Chloromethane	NELAP	9.5		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	3.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Dibromochloromethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Ethylbenzene	NELAP	4.8	J	1.7	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Methyl tert-butyl ether	NELAP	1.9		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Methylene chloride	NELAP	4.8	J	1.6	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

Report Date:

04070635-008 11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-8D (7-8')

Collection Date: 7/19/04 3:24:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Tetrachloroethene	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Toluene	NELAP	4.8		5.5	µg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	3.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Trichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Vinyl chloride	NELAP	1.9		ND	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Xylenes, Total	NELAP	4.8		5.2	μg/Kg-dry	1	8/1/04 1:31:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	1	8/1/04 1:31:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.6	%REC	1	8/1/04 1:31:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		106	%REC	1	8/1/04 1:31:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	1	8/1/04 1:31:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.056	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	2					
n-Butanol		13		ND	mg/Kg-dry	1	7/30/04 1:36:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.28		1	7/26/04 3:45:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

11-Aug-04

Report Date:

Lab ID:

04070635-009

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-19 (18-19')

Collection Date: 7/19/04 4:28:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.8	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		90.2	%	1	7/26/04	JRS
SW-846 3550B, 8015, TOTAL F			ONS (OA-	2) BY GC/F				
Diesel	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:29:00 PM	DMH
Kerosene	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:29:00 PM	DMH
Mineral Spirits	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:29:00 PM	DMH
Motor Oil	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:29:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		95.9	%REC	1	7/26/04 5:29:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Acenaphthylene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Benzo(a)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Benzo(a)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Chrysene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Fluorene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Naphthalene	NELAP	0.111	J	0.013	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Phenanthrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12:04:00 AM	DMH
Pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 12 04:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		57.8	%REC	1	7/29/04 12:04:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		47.6	%REC	1	7/29/04 12 04:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		69.7	%REC	1	7/29/04 12 04:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	F ORGANIC COM	POUNDS	BY GC/A	IS				
Benzene	NELAP	0.8		1.4	μg/Kg-dry	1	7/30/04 5:02:00 AM	HLR
Toluene	NELAP	3.8	J	2.1	μg/Kg-dry	1	7/30/04 5:02:00 AM	HLR
Ethylbenzene	NELAP	3.8	J	0.8	μg/Kg-dry	1	7/30/04 5:02:00 AM	HLR
Xylenes, Total	NELAP	3.8	J	2.2	µg/Kg-dry	1	7/30/04 5:02:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	-	94.8	%REC	1	7/30/04 5:02:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		82.8	%REC	1	7/30/04 5:02:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070635

Lab ID:

04070635-009

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-19 (18-19')

Collection Date: 7/19/04 4:28:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	-	74.1-121		101	%REC	1	7/30/04 5:02:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		90.6	%REC	1	7/30/04 5:02:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: 040° Lab ID: 040°

04070635-010

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B559-28 (27-28')

Collection Date: 7/19/04 4:40:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.7	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		88.3	%	1	7/26/04	JRS
SW-846 3550B, 8270C SIMS, SI	EMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.112	J	0.025	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Acenaphthylene	NELAP	0.112	J	0.029	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Benzo(a)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Benzo(a)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Chrysene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Fluoranthene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Fluorene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Naphthalene	NELAP	0.112	J	0.016	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Phenanthrene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Pyrene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 12:43:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		58.8	%REC	1	7/29/04 12:43:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		48.1	%REC	1	7/29/04 12:43:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		73.3	%REC	1	7/29/04 12:43:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	0.7	7-1-1-1	0.9	μg/Kg-dry	1	7/30/04 5:34:00 AM	HLR
Toluene	NELAP	3.6	J	1.3	μg/Kg-dry	1	7/30/04 5:34:00 AM	HLR
Ethylbenzene	NELAP	3.6		ND	μg/Kg-dry	1	7/30/04 5:34:00 AM	HLR
Xylenes, Total	NELAP	3.6	J	1.3	μg/Kg-dry	1	7/30/04 5:34:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		97.2	%REC	1	7/30/04 5:34:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.6	%REC	1	7/30/04 5:34:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		99.2	%REC	1	7/30/04 5:34:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		97.2	%REC	1	7/30/04 5:34:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B508-3 (2-3')

Lab ID:

04070635-011

Collection Date: 7/19/04 5:15:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.7	%	1	7/26/04	JRS
STANDARD METHODS 18TH	HED. 2540 G							
Total Solids		0.1		79.3	%	1	7/26/04	JRS
SW-846 3050B, 6010B, MET	ALS BY ICP							
Arsenic	NELAP	2.40		22.5	mg/Kg-dry	1	8/4/04 10:54:11 AM	JMW
Barium	NELAP	0.48		96.4	mg/Kg-dry	1	8/2/04 5:16:07 PM	SAM
Cadmium	NELAP	0.19		0.55	mg/Kg-dry	1	8/2/04 5:16:07 PM	SAM
Chromium	NELAP	0.96		13.2	mg/Kg-dry	1	8/2/04 4:37:22 PM	JMW
Lead	NELAP	3.85		49.8	mg/Kg-dry	1	8/2/04 5:16:07 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 5:16:07 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 5:16:07 PM	SAM
SW-846 3550B, 8270C SIMS	SEMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	1.93	J	0.39	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Acenaphthylene	NELAP	1.93		5.39	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Anthracene	NELAP	1.93	J	1.7	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Benzo(a)anthracene	NELAP	1.93		5.92	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Benzo(a)pyrene	NELAP	1.93		23.0	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.93		18.6	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.93		7.35	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.93		4.47	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Chrysene	NELAP	1.93		8.09	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.93	J	1.8	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Fluoranthene	NELAP	1.93		8.15	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Fluorene	NELAP	1.93	J	0.75	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.93		6.28	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Naphthalene	NELAP	1.93	J	1.2	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Phenanthrene	NELAP	1.93		2.90	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Pyrene	NELAP	1.93		16.3	mg/Kg-dry	5	7/29/04 5:10:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		58.9	%REC	5	7/29/04 5:10:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		49.9	%REC	5	7/29/04 5:10:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		65.9	%REC	5	7/29/04 5:10:00 PM	DMH
SW-846 5035, 8260B, VOLA	TILE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	1.6		28.2	μg/Kg-dry	1	7/30/04 6:05:00 AM	HLR
Toluene	NELAP	8.2	J	7.1	μg/Kg-dry	1	7/30/04 6:05:00 AM	HLR
Ethylbenzene	NELAP	8.2	J	1.8	μg/Kg-dry	1	7/30/04 6:05:00 AM	HLR
Xylenes, Total	NELAP	8.2	J	6.3	μg/Kg-dry	1	7/30/04 6:05:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-011

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B508-3 (2-3')

Collection Date: 7/19/04 5:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Surr: 1,2-Dichloroethane-d4		72.8-122		110	%REC	1	7/30/04 6:05:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	68.7	%REC	1	7/30/04 6:05:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	122	%REC	1	7/30/04 6:05:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		87.2	%REC	1	7/30/04 6:05:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.174	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.60		2.51	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.60		1	7/26/04 4:02:00 PM	JLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B508-9 (8-9')

Lab ID:

Collection Date: 7/19/04 5:55:00 PM

Report Date:

04070635-012 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.1	%	1	7/26/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		79.9	%	1	7/26/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.40		13.0	mg/Kg-dry	1	8/4/04 10:56:16 AM	JMW
Barium	NELAP	0.48		126	mg/Kg-dry	1	8/2/04 5:21:26 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	8/2/04 5:21:26 PM	SAM
Chromium	NELAP	0.96		21.9	mg/Kg-dry	1	8/2/04 4:40:21 PM	JMW
Lead	NELAP	3.85		17.9	mg/Kg-dry	1	8/2/04 5:21:26 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 5:21:26 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 5:21:26 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
1,2-Dichlorobenzene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
1,3-Dichlorobenzene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
1,4-Dichlorobenzene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4,5-Trichlorophenol	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4,6-Trichlorophenol	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4-Dichlorophenol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4-Dimethylphenol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4-Dinitrophenol	NELAP	31.8		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,4-Dinitrotoluene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2,6-Dinitrotoluene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2-Chloronaphthalene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2-Chlorophenol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2-Methylnaphthalene	NELAP	11.1		75.9	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2-Nitroaniline	NELAP	31.8		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
2-Nitrophenol	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
3-Nitroaniline	NELAP	31.8		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	31.8		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4-Chloro-3-methylphenol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4-Chloroaniline	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
4-Nitroaniline	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

11-Aug-04

Client Sample ID: B508-9 (8-9')

Lab ID: Report Date: 04070635-012

Collection Date: 7/19/04 5:55:00 PM Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Acenaphthene	NELAP	11.1		50.9	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Acenaphthylene	NELAP	11.1	J	5.8	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Anthracene	NELAP	11.1		22.3	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Benzo(a)anthracene	NELAP	11.1		11.8	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Benzo(a)pyrene	NELAP	11.1	J	10	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Benzo(b)fluoranthene	NELAP	11.1	J	7.9	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Benzo(g,h,i)perylene	NELAP	11.1	J	4.5	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Benzo(k)fluoranthene	NELAP	11.1	J	3.1	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	14.5		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Butyl benzyl phthalate	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Carbazole		15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Chrysene	NELAP	11.1	J	11	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Di-n-butyl phthalate	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Di-n-octyl phthalate	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Dibenzofuran	NELAP	11.1	J	4.1	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Diethyl phthalate	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Dimethyl phthalate		11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Fluoranthene	NELAP	11.1		23.1	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Fluorene	NELAP	11.1		29.5	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Hexachlorobenzene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Hexachlorobutadiene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Hexachlorocyclopentadiene	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Hexachloroethane	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	11.1	J	3.5	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Isophorone	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
m,p-Cresol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
N-Nitrosodiphenylamine	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Naphthalene	NELAP	11.1		143	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Nitrobenzene	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
o-Cresol	NELAP	15.9		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Pentachlorophenol	NELAP	63.5		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

11-Aug-04

WorkOrder:

Lab ID: Report Date: 04070635-012

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B508-9 (8-9')

Collection Date: 7/19/04 5:55:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	11.1		63.6	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Phenol	NELAP	11.1		ND	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Pyrene	NELAP	15.9		32.9	mg/Kg-dry	25	8/2/04 5:54:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		82.7	%REC	25	8/2/04 5:54:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		105	%REC	25	8/2/04 5:54:00 PM	SML
Surr: 2-Fluorophenol		27-111		90.3	%REC	25	8/2/04 5:54:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		92.9	%REC	25	8/2/04 5:54:00 PM	SML
Surr: p-Terphenyl-d14		25-144		105	%REC	25	8/2/04 5:54:00 PM	SML
Surr: Phenol-d5		33.7-123		105	%REC	25	8/2/04 5:54:00 PM	SML
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	5				
1,1,1-Trichloroethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,1,2-Trichloroethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,1-Dichloroethane	NELAP	520		ND	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,1-Dichloroethene	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,2-Dichloroethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
1,2-Dichloropropane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
2-Butanone	NELAP	5200		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
2-Hexanone	NELAP	5200		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
4-Methyl-2-pentanone	NELAP	5200		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Acetone	NELAP	5200	J	2500	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Benzene	NELAP	104		2080	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Bromodichloromethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Bromoform	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Bromomethane	NELAP	1040		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Carbon disulfide	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Carbon tetrachloride	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Chlorobenzene	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Chloroethane	NELAP	1040		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Chloroform	NELAP	520		ND	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Chloromethane	NELAP	1040		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	520		ND	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	416		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Dibromochloromethane	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Ethylbenzene	NELAP	2600		33100	μg/Kg-dry	250	8/1/04 12:41:00 PM	HLR
Methyl tert-butyl ether	NELAP	208		ND	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Methylene chloride	NELAP	520	J	200	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-012

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B508-9 (8-9')

Collection Date: 7/19/04 5:55:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Tetrachloroethene	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Toluene	NELAP	520		575	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	520		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	416		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Trichloroethene	NELAP	520		ND	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Vinyl chloride	NELAP	208		ND	μg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Xylenes, Total	NELAP	520		24300	µg/Kg-dry	50	8/1/04 2:02:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		105	%REC	50	8/1/04 2:02:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.6	%REC	50	8/1/04 2:02:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		103	%REC	50	8/1/04 2:02:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	50	8/1/04 2:02:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.036	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FII	2					
n-Butanol		13		ND	mg/Kg-dry	1	7/30/04 1:52:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.60		1	7/26/04 4:03:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B508-11 (10-11')

Lab ID:

0.4050635.01

Collection Date: 7/19/04 6:07:00 PM

Report Date:

04070635-013 11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.9	%	1	7/26/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		78.1	%	1	7/26/04	JRS
SW-846 3550B, 8015, TOTAL I	PETROLEUM HYDI	ROCARBO	ONS (OA-					
Diesel	NELAP	64.7		1510#	mg/Kg-dry	10	7/27/04 11:34:00 AM	DMH
Kerosene	NELAP	64.7		ND	mg/Kg-dry	10	7/27/04 11:34:00 AM	DMH
Mineral Spirits	NELAP	64.7		ND	mg/Kg-dry	10	7/27/04 11:34:00 AM	DMH
Motor Oil	NELAP	64.7		ND	mg/Kg-dry	10	7/27/04 11:34:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		96.6	%REC	10	7/27/04 11:34:00 AM	DMH
SW-846 3550B, 8270C SIMS, \$	SEMI-VOLATILE OF	RGANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	24.6		47.7	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Acenaphthylene	NELAP	24.6	J	8.1	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Anthracene	NELAP	18.4		24.1	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Benzo(a)anthracene	NELAP	24.6	J	13	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Benzo(a)pyrene	NELAP	24.6	J	13	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Benzo(b)fluoranthene	NELAP	24.6	J	11	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	24.6	J	4.9	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Benzo(k)fluoranthene	NELAP	24.6	J	3.3	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Chrysene	NELAP	24.6	J	12	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	24 6		ND	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Fluoranthene	NELAP	24.6		27.0	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Fluorene	NELAP	24.6		35.0	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	24.6	J	4.3	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Naphthalene	NELAP	24.6		193	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Phenanthrene	NELAP	24.6		78.3	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Pyrene	NELAP	24,6		38.8	mg/Kg-dry	100	7/30/04 6:50:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	100	7/30/04 6:50:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	100	7/30/04 6:50:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	100	7/30/04 6:50:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	103		2580	μg/Kg-dry	50	7/30/04 6:37:00 AM	HLR
Toluene	NELAP	517	J	220	μg/Kg-dry	50	7/30/04 6:37:00 AM	HLR
Ethylbenzene	NELAP	3080		37100	μg/Kg-dry	250	8/1/04 7:45:00 AM	HLR
Xylenes, Total	NELAP	517		19000	μg/Kg-dry	50	7/30/04 6:37:00 AM	HLR
Surr: 1,2-Dichloroethane-d4	,	72.8-122		94.4	%REC	50	7/30/04 6:37:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		102	%REC	50	7/30/04 6:37:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-013

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B508-11 (10-11')

Collection Date: 7/19/04 6:07:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			95.1	%REC	50	7/30/04 6:37:00 AM	HLR
Surr: Toluene-d8	82.8-112.8			100	%REC	50	7/30/04 6:37:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B508-28 (27-28')

Lab ID:

Report Date:

04070635-014

Collection Date: 7/19/04 6:45:00 PM

Report Date: 11-Aug-04	1			Matrix:	SC	DLID		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10	%	1	7/26/04	JRS
STANDARD METHODS 18TH I	D. 2540 G							
Total Solids		0.1		90.0	%	1	7/26/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOU	NDS BY GC	MS			
Acenaphthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Acenaphthylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Benzo(a)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Benzo(a)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Chrysene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Fluorene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Naphthalene	NELAP	0.113	J	0.030	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Phenanthrene	NELAP	0.113	J	0.019	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 1:23:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		53.4	%REC	1	7/29/04 1:23:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		40.2	%REC	1	7/29/04 1:23:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		75.1	%REC	1	7/29/04 1:23:00 AM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8	-	1.4	μg/Kg-dry	1	7/30/04 7:09:00 AM	HLR
Toluene	NELAP	4.2	J	1.7	μg/Kg-dry	1	7/30/04 7:09:00 AM	HLR
Ethylbenzene	NELAP	4.2	J	1.0	μg/Kg-dry	1	7/30/04 7:09:00 AM	HLR
Xylenes, Total	NELAP	4.2	J	1.7	μg/Kg-dry	1	7/30/04 7:09:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		94.2	%REC	1	7/30/04 7:09:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		94.0	%REC	1	7/30/04 7:09:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		99.5	%REC	1	7/30/04 7:09:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.1	%REC	1	7/30/04 7:09:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B557-1 (0-1')

Lab ID:

Collection Date: 7/20/04 8:45:00 AM

Report Date:

04070635-015 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		18.8	%	10	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		81.2	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.40		9.68	mg/Kg-dry	1	8/4/04 11:05:02 AM	JMW
Barium	NELAP	0.48		102	mg/Kg-dry	1	8/2/04 5:26:29 PM	SAM
Cadmium	NELAP	0.19		0.59	mg/Kg-dry	1	8/2/04 5:26:29 PM	SAM
Chromium	NELAP	0.96		15.6	mg/Kg-dry	1	8/2/04 4:49:19 PM	JMW
Lead	NELAP	3.85		184	mg/Kg-dry	1	8/2/04 5:26:29 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 5:26:29 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 5:26:29 PM	SAM
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC (COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	0.388	J	0.17	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Acenaphthylene	NELAP	0.388		0.876	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Anthracene	NELAP	0.388		0.616	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Benzo(a)anthracene	NELAP	0.388		3.55	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Benzo(a)pyrene	NELAP	1.94		5.24	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.94		6.00	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.94		2.66	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.94	J	1.9	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Chrysene	NELAP	0.388		3.82	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.94	J	0.72	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Fluoranthene	NELAP	0.388		6.31	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Fluorene	NELAP	0.388	J	0.11	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.94		2.53	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Naphthalene	NELAP	0.388		0.982	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Phenanthrene	NELAP	0.388		2.83	mg/Kg-dry	1	7/29/04 6:27:00 PM	DMH
Pyrene	NELAP	1.94		6.02	mg/Kg-dry	5	7/30/04 1:20:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		59.3	%REC	1	7/29/04 6:27:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		51.5	%REC	1	7/29/04 6:27:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		72.2	%REC	1	7/29/04 6:27:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	F ORGANIC COME	OUNDS	BY GC/N	IS				
Benzene	NELAP	1.4		5.3	μg/Kg-dry	1	7/30/04 7:41:00 AM	HLR
Toluene	NELAP	7.1	J	3.6	μg/Kg-dry	1	7/30/04 7:41:00 AM	HLR
Ethylbenzene	NELAP	7.1	J	2.1	μg/Kg-dry	9	7/30/04 7:41:00 AM	HLR
Xylenes, Total	NELAP	7.1	J	5.2	μg/Kg-dry	1	7/30/04 7:41:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-015

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B557-1 (0-1')

Collection Date: 7/20/04 8:45:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		118	%REC	1	7/30/04 7:41:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	66.1	%REC	1	7/30/04 7:41:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	132	%REC	1	7/30/04 7:41:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8	S	79.9	%REC	1	7/30/04 7:41:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.133	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.58		1.01	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.95		1	7/26/04 4:05:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B557-10 (9-10')

Lab ID:

04070635-016

Collection Date: 7/20/04 9:15:00 AM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.7	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.3	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, SE	MI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.127		0.319	mg/Kg-dry	3.	7/29/04 2:02:00 AM	DMH
Acenaphthylene	NELAP	0.127	J	0.13	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Anthracene	NELAP	0.127		0.183	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Benzo(a)anthracene	NELAP	0.127		0.141	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Benzo(a)pyrene	NELAP	0.127		0.163	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.127		0.133	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.127	J	0.054	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.127	J	0.039	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Chrysene	NELAP	0.127		0.142	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.127	J	0.020	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Fluoranthene	NELAP	0.127		0.334	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Fluorene	NELAP	0.127		0.199	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.127	J	0.048	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Naphthalene	NELAP	0.127	J	0.014	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Phenanthrene	NELAP	0.127		1.11	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Pyrene	NELAP	0.127		0.499	mg/Kg-dry	1	7/29/04 2:02:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		34.0	%REC	1	7/29/04 2:02:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		35.8	%REC	1	7/29/04 2:02:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		74.1	%REC	1	7/29/04 2:02:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	1.1		7.1	μg/Kg-dry	1	7/30/04 8:12:00 AM	HLR
Toluene	NELAP	5.5	J	2.0	μg/Kg-dry	4	7/30/04 8:12:00 AM	HLR
Ethylbenzene	NELAP	5.5		7.4	μg/Kg-dry	1	7/30/04 8:12:00 AM	HLR
Xylenes, Total	NELAP	5.5		13.4	μg/Kg-dry	1	7/30/04 8:12:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		96.5	%REC	1	7/30/04 8:12:00 AM	
Surr: 4-Bromofluorobenzene		75.6-120		99.1	%REC	1	7/30/04 8:12:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		99.8	%REC	1	7/30/04 8:12:00 AM	
Surr: Toluene-d8		2.8-112.8		99.6	%REC	1	7/30/04 8:12:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder:

Lab ID: Report Date: 04070635-017 11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B557-12 (11-12')

Collection Date: 7/20/04 10:40:00 AM

Matrix:

Report Date.	,							
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
ASTM D2974								
Percent Moisture		0.1		18.5	%	1	7/27/04	JRS
STANDARD METHODS 18T	H ED. 2540 G							
Total Solids		0.1		81.5	%	1	7/27/04	JRS
SW-846 3050B, 6010B, MET	TALS BY ICP							
Arsenic	NELAP	2.50		12.4	mg/Kg-dry	1	8/4/04 11:06:58 AM	JMW
Barium	NELAP	0.50		109	mg/Kg-dry	1	8/2/04 5:31:46 PM	SAM
Cadmium	NELAP	0.20		< 0.20	mg/Kg-dry	1	8/2/04 5:31:46 PM	SAM
Chromium	NELAP	1.00		23.3	mg/Kg-dry	1	8/2/04 4:52:18 PM	JMW
Lead	NELAP	4.00		19.1	mg/Kg-dry	1	8/2/04 5:31:46 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 5:31:46 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 5:31:46 PM	SAM
SW-846 3550B, 8015, TOTA	L PETROLEUM HYD	ROCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	62.0		467 #	mg/Kg-dry	10	7/27/04 12:02:00 PM	DMH
Kerosene	NELAP	62.0		ND	mg/Kg-dry	10	7/27/04 12:02:00 PM	DMH
Mineral Spirits	NELAP	62.0		ND	mg/Kg-dry	10	7/27/04 12:02:00 PM	DMH
Motor Oil	NELAP	62.0		ND	mg/Kg-dry	10	7/27/04 12:02:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		86.7	%REC	10	7/27/04 12:02:00 PM	DMH
SW-846 3550B, 8270C, SEM	II-VOLATILE ORGAN	IC COMP	OUNDS E	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
1,2-Dichlorobenzene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
1,3-Dichlorobenzene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
1,4-Dichlorobenzene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4-Dichlorophenol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4-Dimethylphenol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4-Dinitrophenol	NELAP	2.47		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2-Chloronaphthalene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2-Chlorophenol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2-Methylnaphthalene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2-Nitroaniline	NELAP	2.47		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
2-Nitrophenol	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
·		2.47		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
3-Nitroaniline	NELAP	2.47		ND	mg/ng-ury	196	7700704 0.00.00 F W	SIVIL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-017

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B557-12 (11-12')

Collection Date: 7/20/04 10:40:00 AM

Matrix:

Report Date. 11-Aug-04								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
4,6-Dinitro-2-methylphenol	NELAP	2.47		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Chloro-3-methylphenol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Chloroaniline	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Nitroaniline	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
4-Nitrophenol	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Acenaphthene	NELAP	0.865		6.22	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Acenaphthylene	NELAP	0.865		1.49	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Anthracene	NELAP	0.865		4.24	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Benzo(a)anthracene	NELAP	0.865		2.30	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Benzo(a)pyrene	NELAP	0.865		1.90	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.865		1.55	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.865	J	0.50	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.865	J	0.45	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	1.13		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Butyl benzyl phthalate	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Carbazole		1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Chrysene	NELAP	0.865		2.09	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Di-n-butyl phthalate	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Di-n-octyl phthalate	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Dibenzo(a,h)anthracene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Dibenzofuran	NELAP	0.865	J	0.54	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Diethyl phthalate	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Dimethyl phthalate		0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Fluoranthene	NELAP	0.865		4.25	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Fluorene	NELAP	0.865		5.26	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Hexachlorobenzene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Hexachlorobutadiene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Hexachlorocyclopentadiene	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Hexachloroethane	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Indeno(1,2,3-cd)pyrene	NELAP	0.865	J	0.41	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
Isophorone	NELAP	0.865	Ü	ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SMI
m,p-Cresol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML

A831-735002-012901-225/IP Champa

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

Report Date:

04070635

11-Aug-04

Lab ID:

04070635-017

Client Sample ID: B557-12 (11-12')

Collection Date: 7/20/04 10:40:00 AM

SOLID Matrix:

Client Project:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
N-Nitroso-di-n-propylamine	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
N-Nitrosodiphenylamine	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Naphthalene	NELAP	0.865	J	0.45	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Nitrobenzene	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
o-Cresol	NELAP	1.24		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Pentachlorophenol	NELAP	4.94		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Phenanthrene	NELAP	0.865		11.5	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Phenol	NELAP	0.865		ND	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Pyrene	NELAP	1.24		6.40	mg/Kg-dry	1	7/30/04 6:53:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		73.5	%REC	1	7/30/04 6:53:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		73.1	%REC	1	7/30/04 6:53:00 PM	SML
Surr: 2-Fluorophenol		27-111		63.4	%REC	1	7/30/04 6:53:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		66.8	%REC	1	7/30/04 6:53:00 PM	SML
Surr: p-Terphenyl-d14		25-144		81.8	%REC	1	7/30/04 6:53:00 PM	SML
Surr: Phenol-d5		33.7-123		73.6	%REC	1	7/30/04 6:53:00 PM	SML
SW-846 5035, 8260B, VOLATILE	ORGANIC COME	POUNDS	BY GC/M	<u>S</u>				
1,1,1-Trichloroethane	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,1,2-Trichloroethane	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,1-Dichloroethane	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,1-Dichloroethene	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,2-Dichloroethane	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
1,2-Dichloropropane	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
2-Butanone	NELAP	90.1		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
2-Hexanone	NELAP	90.1		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
4-Methyl-2-pentanone	NELAP	90.1		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Acetone	NELAP	90.1	J	67	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Benzene	NELAP	1.8		30.8	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Bromodichloromethane	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Bromoform	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Bromomethane	NELAP	18.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Carbon disulfide	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Carbon tetrachloride	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Chlorobenzene	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Chloroethane	NELAP	18.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Chloroform	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Chłoromethane	NELAP	18.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-017

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B557-12 (11-12')

Collection Date: 7/20/04 10:40:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
cis-1,2-Dichloroethene	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	7.2		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Dibromochloromethane	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Ethylbenzene	NELAP	113		1030	μg/Kg-dry	12.5	8/1/04 1:13:00 PM	HLR
Methyl tert-butyl ether	NELAP	3.6		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Methylene chloride	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Styrene	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Tetrachloroethene	NELAP	9.0		ND	µg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Toluene	NELAP	9.0		9.9	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	7.2		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Trichloroethene	NELAP	9.0		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Vinyl chloride	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 2:34:00 AM	HLR
Xylenes, Total	NELAP	113		532	μg/Kg-dry	12.5	8/1/04 1:13:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	8/1/04 2:34:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		86.8	%REC	1	8/1/04 2:34:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		104	%REC	1	8/1/04 2:34:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.2	%REC	1	8/1/04 2:34:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012	J	0.009	mg/Kg-dry	1	8/2/04	JMW
SW-846 8015, MISCELLANEOUS	COMPOUNDS E	Y GC/FIL)					
n-Butanol		12		ND	mg/Kg-dry	1	7/30/04 5:05:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.80		1	7/27/04 4:00:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B557-24 (23-24')

11-Aug-04

Lab ID: Report Date: 04070635-018

Collection Date: 7/20/04 10:55:00 AM Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.2	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1		88.8	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.113	J	0.023	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Acenaphthylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Anthracene	NELAP	0.113	J	0.023	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Benzo(a)anthracene	NELAP	0.113	J	0.017	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Benzo(a)pyrene	NELAP	0.113	J	0.014	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.113	J	0.012	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Chrysene	NELAP	0.113	J	0.016	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Fluoranthene	NELAP	0.113	J	0.027	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Fluorene	NELAP	0.113	J	0.020	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 2:36:00 PM	DMH
Naphthalene	NELAP	0.113	J	0.053	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Phenanthrene	NELAP	0.113	J	0.070	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Pyrene	NELAP	0.113	J	0.040	mg/Kg-dry	1	7/29/04 5:55:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		47.9	%REC	1	7/29/04 5:55:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		39.4	%REC	1	7/29/04 5:55:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		66.0	%REC	1	7/29/04 5:55:00 AM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	0.9		0.9	μg/Kg-dry	1	8/1/04 8:16:00 AM	HLR
Toluene	NELAP	4.3	J	1.1	μg/Kg-dry	1	8/1/04 8:16:00 AM	HLR
Ethylbenzene	NELAP	4.3		ND	μg/Kg-dry	1	8/1/04 8:16:00 AM	HLR
Xylenes, Total	NELAP	4.3	J	1.2	μg/Kg-dry	1	8/1/04 8:16:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	8/1/04 8:16:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.9	%REC	1	8/1/04 8:16:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	1	8/1/04 8:16:00 AM	HLR
Surr: Toluene-d8	8:	2.8-112.8		99.5	%REC	1	8/1/04 8:16:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-019

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-3 (2-3')

Collection Date: 7/20/04 12:55:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		25.5	%	4	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		74.5	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.40	J	2.2	mg/Kg-dry	1	8/3/04 12:32:15 PM	JMW
Barium	NELAP	0.48		59.8	mg/Kg-dry	1	8/2/04 3:43:50 PM	SAM
Cadmium	NELAP	0.19	J	0.13	mg/Kg-dry	1	8/2/04 3:43:50 PM	SAM
Chromium	NELAP	0.96		9.54	mg/Kg-dry	1	8/2/04 5:01:22 PM	JMW
Lead	NELAP	3.85		55.7	mg/Kg-dry	1	8/2/04 3:43:50 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 3:43:50 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 3:43:50 PM	SAM
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC (COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	1.96	J	1.4	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Acenaphthylene	NELAP	1.96		5.90	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Anthracene	NELAP	1.96		4.44	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Benzo(a)anthracene	NELAP	1.96		6.39	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Benzo(a)pyrene	NELAP	1.96		17.7	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.96		13.4	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.96		6.11	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.96		3.67	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Chrysene	NELAP	1.96		7.88	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.96	J	1.5	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Fluoranthene	NELAP	1.96		9.16	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Fluorene	NELAP	1.96		3.91	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.96		5.29	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Naphthalene	NELAP	1.96		5.27	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Phenanthrene	NELAP	1.96		9.93	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Pyrene	NELAP	1 96		18.3	mg/Kg-dry	5	7/29/04 3:15:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		61.8	%REC	5	7/29/04 3:15:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		56.9	%REC	5	7/29/04 3:15:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		71.9	%REC	5	7/29/04 3:15:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM		BY GC/N					
Benzene	NELAP	1.6		10.3	μg/Kg-dry	1	7/30/04 8:07:00 PM	HLR
Toluene	NELAP	8,2		26.2	μg/Kg-dry	1	7/30/04 8:07:00 PM	
Ethylbenzene	NELAP	8.2		11.5	μg/Kg-dry	1	7/30/04 8:07:00 PM	
Xylenes, Total	NELAP	8.2		41.6	μg/Kg-dry	1	7/30/04 8:07:00 PM	

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-019

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-3 (2-3')

Collection Date: 7/20/04 12:55:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		111	%REC	1	7/30/04 8:07:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	67.9	%REC	1	7/30/04 8:07:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121	S	121	%REC	1	7/30/04 8:07:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		84.9	%REC	1	7/30/04 8:07:00 PM	HLR
SW-846 7471A Mercury	NELAP	0.013		0.075	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014 Cyanide	NELAP	0.66		2.98	mg/kg-dry	1	8/2/04	ADH
<u>SW-846 9045C</u> pH (1:1)	NELAP	1.00		5.26		1	7/26/04 4:07:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B556-6 (5-6')

Lab ID:

04070635-020

Collection Date: 7/20/04 1:15:00 PM

Report Date:

11-Aug-04

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		77.1	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	12.6		63.9	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Acenaphthylene	NELAP	12.6	J	4.2	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Anthracene	NELAP	12.6		27.7	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Benzo(a)anthracene	NELAP	9.46		12.1	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Benzo(a)pyrene	NELAP	9.46		12.3	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Benzo(b)fluoranthene	NELAP	12.6	J	8.7	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	12.6	J	5.0	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Benzo(k)fluoranthene	NELAP	12.6	J	2.4	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Chrysene	NELAP	12.6	J	13	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	12.6	J	1.3	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Fluoranthene	NELAP	12.6		27.3	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Fluorene	NELAP	12.6		26.4	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	12.6	J	4.3	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Naphthalene	NELAP	12.6		205	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Phenanthrene	NELAP	12.6		90.0	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Pyrene	NELAP	12.6		40.4	mg/Kg-dry	100	7/30/04 10:45:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	100	7/30/04 10:45:00 AM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	100	7/30/04 10:45:00 AM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	100	7/30/04 10:45:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	206		2770	μg/Kg-dry	100	7/30/04 8:39:00 PM	HLR
Toluene	NELAP	1030		ND	μg/Kg-dry	100	7/30/04 8:39:00 PM	HLR
Ethylbenzene	NELAP	1030		19900	μg/Kg-dry	100	7/30/04 8:39:00 PM	HLR
Xylenes, Total	NELAP	1030		12200	μg/Kg-dry	100	7/30/04 8:39:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.1	%REC	100	7/30/04 8:39:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.0	%REC	100	7/30/04 8:39:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		98.1	%REC	100	7/30/04 8:39:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	100	7/30/04 8:39:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder: 04070635

Client Sample ID: B556-20 (19-20') Collection Date: 7/20/04 2:15:00 PM

Lab ID: 04070635-021 **Report Date:** 11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		11.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		88.1	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL	PETROLEUM HYDR	OCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	56.8		1010#	mg/Kg-dry	10	7/27/04 12:31:00 PM	DMH
Kerosene	NELAP	56.8		ND	mg/Kg-dry	10	7/27/04 12:31:00 PM	DMH
Mineral Spirits	NELAP	56.8		ND	mg/Kg-dry	10	7/27/04 12:31:00 PM	DMH
Motor Oil	NELAP	56.8		ND	mg/Kg-dry	10	7/27/04 12:31:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		90.8	%REC	10	7/27/04 12:31:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	OMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	1.14		11.7	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Acenaphthylene	NELAP	28.6		51.8	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Anthracene	NELAP	21 4		27.7	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Benzo(a)anthracene	NELAP	1.14		13.3	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Benzo(a)pyrene	NELAP	1.14		17.3	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.14		10.7	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.14		3.01	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.14		3.31	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Chrysene	NELAP	1-14		13.5	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1_14	J	0.96	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Fluoranthene	NELAP	28.6		30.5	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Fluorene	NELAP	28.6		30.9	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.14		2.82	mg/Kg-dry	10	7/29/04 4:32:00 PM	DMH
Naphthalene	NELAP	28.6		239	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Phenanthrene	NELAP	28.6		90.0	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Pyrene	NELAP	28.6		47.3	mg/Kg-dry	250	7/30/04 11:23:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		61.8	%REC	10	7/29/04 4:32:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		47.6	%REC	10	7/29/04 4:32:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		81.7	%REC	10	7/29/04 4:32:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	160		3350	μg/Kg-dry	100	7/31/04 3:32:00 AM	HLR
Toluene	NELAP	798		10400	μg/Kg-dry	100	7/31/04 3:32:00 AM	HLR
Ethylbenzene	NELAP	798		4510	μg/Kg-dry	100	7/31/04 3:32:00 AM	HLR
Xylenes, Total	NELAP	798		13900	μg/Kg-dry	100	7/31/04 3:32:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		90.4	%REC	100	7/31/04 3:32:00 AM	HLR
Surr: 4-Bromofluorobenzene	_	75.6-120		105	%REC	100	7/31/04 3:32:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

Lab ID:

04070635

Report Date:

04070635-021

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-20 (19-20')

Collection Date: 7/20/04 2:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		94.7	%REC	100	7/31/04 3:32:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		99.2	%REC	100	7/31/04 3:32:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28 (27-28')

Collection Date: 7/20/04 2:42:00 PM

Matrix:

	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.1	%	1	7/27/04	JRS
STANDARD METHODS 18TH ED.	2540 G							
Total Solids		0.1		90.9	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METALS	BY ICP							
Arsenic	NELAP	2.36		3.69	mg/Kg-dry	1	8/3/04 12:34:13 PM	JMW
Barium	NELAP	0.47		17.2	mg/Kg-dry	1	8/2/04 3:48:54 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	8/2/04 3:48:54 PM	SAM
Chromium	NELAP	0.94		11.4	mg/Kg-dry	1	8/2/04 5:04:20 PM	JMW
Lead	NELAP	3.77		9.94	mg/Kg-dry	1	8/2/04 3:48:54 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	8/2/04 3:48:54 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	8/2/04 3:48:54 PM	SAM
SW-846 3550B, 8270C. SEMI-VOI	ATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
1,2-Dichlorobenzene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
1,3-Dichlorobenzene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
1,4-Dichlorobenzene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4-Dichlorophenol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4-Dimethylphenol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4-Dinitrophenol	NELAP	1.07		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2-Chloronaphthalene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2-Chlorophenol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2-Methylnaphthalene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2-Nitroaniline	NELAP	1.07		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
2-Nitrophenol	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
3-Nitroaniline	NELAP	1.07		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.07		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4-Chloro-3-methylphenol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4-Chloroaniline	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
4-Nitroaniline	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML

A831-735002-012901-225/IP Champa

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-022

Report Date: 11-Aug-04 **Client Project:**

Client Sample ID: B556-28 (27-28')

Collection Date: 7/20/04 2:42:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Acenaphthene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Acenaphthylene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Anthracene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Benzo(a)anthracene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Benzo(a)pyrene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	0.489		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.375	J	0.25	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Butyl benzyl phthalate	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Carbazole		0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Chrysene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Di-n-butyl phthalate	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Di-n-octyl phthalate	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Dibenzofuran	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Diethyl phthalate	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Dimethyl phthalate		0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Fluoranthene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Fluorene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Hexachlorobenzene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Hexachlorobutadiene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Hexachlorocyclopentadiene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Hexachloroethane	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Isophorone	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
m,p-Cresol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
N-Nitrosodiphenylamine	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Naphthalene	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Nitrobenzene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
o-Cresol	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Pentachlorophenol	NELAP	2.15		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-022

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28 (27-28')

Collection Date: 7/20/04 2:42:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
Phenanthrene	NELAP	0,375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Phenol	NELAP	0.375		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Pyrene	NELAP	0.536		ND	mg/Kg-dry	1	7/30/04 4:19:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		81.2	%REC	1	7/30/04 4:19:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		84.4	%REC	1	7/30/04 4:19:00 PM	SML
Surr: 2-Fluorophenol		27-111		78.2	%REC	1	7/30/04 4:19:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		80.4	%REC	1	7/30/04 4:19:00 PM	SML
Surr: p-Terphenyl-d14		25-144		86.6	%REC	1	7/30/04 4:19:00 PM	SML
Surr: Phenol-d5		33.7-123		91.0	%REC	1	7/30/04 4:19:00 PM	SML
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.9		DN	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,1,2-Trichloroethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,1-Dichloroethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,1-Dichloroethene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,2-Dichloroethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
1,2-Dichloropropane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
2-Butanone	NELAP	39.0		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
2-Hexanone	NELAP	39.0		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
4-Methyl-2-pentanone	NELAP	39.0		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Acetone	NELAP	39.0	J	31	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Benzene	NELAP	0.8		2.1	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Bromodichloromethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Bromoform	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Bromomethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Carbon disulfide	NELAP	3.9		ND	µg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Carbon tetrachloride	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Chlorobenzene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Chloroethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Chloroform	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Chloromethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	3.1		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Dibromochloromethane	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Ethylbenzene	NELAP	3.9	J	2.3	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Methyl tert-butyl ether	NELAP	1.6		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Methylene chloride	NELAP	3.9	J	1.1	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID: Report Date: 04070635-022 11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28 (27-28')

Collection Date: 7/20/04 2:42:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Tetrachloroethene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Toluene	NELAP	3.9		5.0	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	3.9		ND	µg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	3.1		ND	µg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Trichloroethene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Vinyl chloride	NELAP	1.6		ND	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Xylenes, Total	NELAP	3.9		4.6	μg/Kg-dry	1	8/1/04 3:05:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	8/1/04 3:05:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		76.7	%REC	1	8/1/04 3:05:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		105	%REC	1	8/1/04 3:05:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		90.3	%REC	1	8/1/04 3:05:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.011	J	0.008	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOU	US COMPOUNDS B	Y GC/FII	2					
n-Butanol	TH - 7 July - 1 - 1 - 1 - 2	11		ND	mg/Kg-dry	1	7/30/04 2:08:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.15		1	7/27/04 3:09:00 PM	JLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28D (27-28')

Collection Date: 7/20/04 2:47:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.2	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.8	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	SBYICP							
Arsenic	NELAP	2.31	J	2.2	mg/Kg-dry	1	8/3/04 12:10:06 PM	JMW
Barium	NELAP	0.46		16.8	mg/Kg-dry	1	8/2/04 3:54:12 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	8/2/04 3:54:12 PM	SAM
Chromium	NELAP	0.93		11.2	mg/Kg-dry	1	8/2/04 5:08:18 PM	JMW
Lead	NELAP	3.70		9.49	mg/Kg-dry	1	8/2/04 3:54:12 PM	SAM
Selenium	NELAP	3.70		< 3.70	mg/Kg-dry	1	8/2/04 3:54:12 PM	SAM
Silver	NELAP	0.93		< 0.93	mg/Kg-dry	1	8/2/04 3:54:12 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
1,2-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
1,3-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
1,4-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4-Dichlorophenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4-Dimethylphenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4-Dinitrophenol	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2-Chloronaphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2-Chlorophenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2-Methylnaphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
2-Nitrophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
3-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4-Chloro-3-methylphenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4-Chloroaniline	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
4-Nitroaniline	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28D (27-28')

Collection Date: 7/20/04 2:47:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
4-Nitrophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Acenaphthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Acenaphthylene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Benzo(a)anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Benzo(a)pyrene	NELAP	0.387		ND	mg/Kg-dry	1.	7/30/04 4:58:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	0.505		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.387	J	0.23	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Butyl benzyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Carbazole		0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Chrysene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Di-n-butyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Di-n-octyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Dibenzofuran	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Diethyl phthalate	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Dimethyl phthalate		0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Fluorene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Hexachlorobenzene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Hexachlorobutadiene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Hexachlorocyclopentadiene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Hexachloroethane	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Isophorone	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
m,p-Cresol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
N-Nitrosodiphenylamine	NELAP	0.553		ПD	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Naphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Nitrobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
o-Cresol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Pentachlorophenol	NELAP	2.21		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B556-28D (27-28')

Lab ID:

Collection Date: 7/20/04 2:47:00 PM

Report Date:

04070635-023 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Phenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Pyrene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 4:58:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		82.3	%REC	1	7/30/04 4:58:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		84.9	%REC	1	7/30/04 4:58:00 PM	SML
Surr: 2-Fluorophenol		27-111		78.5	%REC	1	7/30/04 4:58:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		80.0	%REC	1	7/30/04 4:58:00 PM	SML
Surr: p-Terphenyl-d14		25-144		88.1	%REC	1	7/30/04 4:58:00 PM	SML
Surr: Phenol-d5		33.7-123		90.2	%REC	1	7/30/04 4:58:00 PM	SML
SW-846 5035, 8260B, VOLAT	LE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,1,2-Trichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,1-Dichloroethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,1-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,2-Dichloroethane	NELAP	3.6		ND	µg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
1,2-Dichloropropane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
2-Butanone	NELAP	36.4		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
2-Hexanone	NELAP	36.4		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
4-Methyl-2-pentanone	NELAP	36.4		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Acetone	NELAP	36.4	J	26	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Benzene	NELAP	0.7		1.1	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Bromodichloromethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Bromoform	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Bromomethane	NELAP	7.3		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Carbon disulfide	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Carbon tetrachloride	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Chlorobenzene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Chloroethane	NELAP	7.3		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Chloroform	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Chloromethane	NELAP	7.3		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	2.9		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Dibromochloromethane	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Ethylbenzene	NELAP	3.6	J	0.8	µg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Methyl tert-butyl ether	NELAP	1.5		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Methylene chloride	NELAP	3.6		ND	µg/Kg-dry	1	8/1/04 3:36:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-023

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B556-28D (27-28')

Collection Date: 7/20/04 2:47:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Tetrachloroethene	NELAP	3.6		ND	µg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Toluene	NELAP	3.6	J	2.3	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	2.9		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Trichloroethene	NELAP	3.6		ND	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Vinyl chloride	NELAP	1.5		ND	µg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Xylenes, Total	NELAP	3.6	J	2.2	μg/Kg-dry	1	8/1/04 3:36:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	8/1/04 3:36:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		90.7	%REC	1	8/1/04 3:36:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	1	8/1/04 3:36:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		99.2	%REC	1	8/1/04 3:36:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.011	J	0.009	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOU	JS COMPOUNDS E	Y GC/FI	D					
n-Butanol		11		ND	mg/Kg-dry	1	7/30/04 2:24:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		8.23		1	7/27/04 3:12:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

11-Aug-04

WorkOrder: Lab ID:

04070635-024

Report Date:

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B550-3 (2-3')

Collection Date: 7/20/04 4:05:00 PM

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0_1		29.0	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		71.0	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.50		11.6	mg/Kg-dry	1	8/3/04 12:12:03 PM	JMW
Barium	NELAP	0.50		45.6	mg/Kg-dry	1	8/2/04 3:59:29 PM	SAM
Cadmium	NELAP	0.20		2.04	mg/Kg-dry	1	8/2/04 3:59:29 PM	SAM
Chromium	NELAP	1.00		22.3	mg/Kg-dry	1	8/2/04 5:11:17 PM	JMW
Lead	NELAP	4.00		32.1	mg/Kg-dry	1	8/2/04 3:59:29 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 3:59:29 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 3:59:29 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
1,2-Dichlorobenzene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
1,3-Dichlorobenzene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
1,4-Dichlorobenzene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4,5-Trichlorophenol	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4,6-Trichlorophenol	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4-Dichlorophenol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4-Dimethylphenol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4-Dinitrophenol	NELAP	98.6		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,4-Dinitrotoluene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2,6-Dinitrotoluene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2-Chloronaphthalene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2-Chlorophenol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2-Methylnaphthalene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2-Nitroaniline	NELAP	98.6		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
2-Nitrophenol	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
3-Nitroaniline	NELAP	98.6		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	98.6		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4-Chloro-3-methylphenol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4-Chloroaniline	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
4-Nitroaniline	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B550-3 (2-3')

Lab ID:

Collection Date: 7/20/04 4:05:00 PM

Report Date:

04070635-024 11-Aug-04

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Acenaphthene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Acenaphthylene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Anthracene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Benzo(a)anthracene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Benzo(a)pyrene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Benzo(b)fluoranthene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Benzo(g,h,i)perylene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Benzo(k)fluoranthene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	45.0		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Butyl benzyl phthalate	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Carbazole		49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Chrysene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Di-n-butyl phthalate	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Di-n-octyl phthalate	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Dibenzofuran	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Diethyl phthalate	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Dimethyl phthalate		34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Fluoranthene	NELAP	34.5	J	19	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Fluorene	NELAP	34.5	J	12	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Hexachlorobenzene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Hexachlorobutadiene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Hexachlorocyclopentadiene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Hexachloroethane	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Isophorone	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
m,p-Cresol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
N-Nitrosodiphenylamine	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Naphthalene	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Nitrobenzene	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
o-Cresol	NELAP	49.3		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Pentachlorophenol	NELAP	197		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070635 Client Sample ID: B550-3 (2-3')

Collection Date: 7/20/04 4:05:00 PM

Lab ID: 04070635-024 **Report Date:** 11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	34.5	J	14	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Phenol	NELAP	34.5		ND	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Pyrene	NELAP	49.3	J	21	mg/Kg-dry	25	8/2/04 4:38:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		107	%REC	25	8/2/04 4:38:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		130	%REC	25	8/2/04 4:38:00 PM	SML
Surr: 2-Fluorophenol		27-111		96.2	%REC	25	8/2/04 4:38:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113	S	119	%REC	25	8/2/04 4:38:00 PM	SML
Surr: p-Terphenyl-d14		25-144		131	%REC	25	8/2/04 4:38:00 PM	SML
Surr: Phenol-d5		33.7-123		111	%REC	25	8/2/04 4:38:00 PM	SML
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,1,2-Trichloroethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,1-Dichloroethane	NELAP	7.8		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,1-Dichloroethene	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,2-Dichloroethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
1,2-Dichloropropane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
2-Butanone	NELAP	77.7	J	31	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
2-Hexanone	NELAP	77,7		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
4-Methyl-2-pentanone	NELAP	77.7		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Acetone	NELAP	77.7		212	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Benzene	NELAP	1.6		5.8	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Bromodichloromethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Bromoform	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Bromomethane	NELAP	15.5		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Carbon disulfide	NELAP	7.8		11.1	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Carbon tetrachloride	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Chlorobenzene	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Chloroethane	NELAP	15.5		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Chloroform	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Chloromethane	NELAP	15.5		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	6.2		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Dibromochloromethane	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Ethylbenzene	NELAP	7.8		13.6	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Methyl tert-butyl ether	NELAP	3.1		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Methylene chloride	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B550-3 (2-3')

Lab ID:

04070635-024

Collection Date: 7/20/04 4:05:00 PM

Report Date:

11-Aug-04

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	7.8		ND	μg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Tetrachloroethene	NELAP	7.8		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Toluene	NELAP	7.8	J	3.8	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	7.8		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	6.2		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Trichloroethene	NELAP	7.8		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Vinyl chloride	NELAP	3.1		ND	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Xylenes, Total	NELAP	7.8		25.9	µg/Kg-dry	1	8/1/04 4:07:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122	S	126	%REC	1	8/1/04 4:07:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	63.6	%REC	1	8/1/04 4:07:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	126	%REC	1	8/1/04 4:07:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8	S	79.0	%REC	1	8/1/04 4:07:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.014		0.076	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOUS	S COMPOUNDS I	BY GC/FI	2					
n-Butanol		14		ND	mg/Kg-dry	1	7/30/04 3:13:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.70		9.82	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		5.26		1	7/27/04 3:15:00 PM	JLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B550-9 (8-9')

Lab ID:

Collection Date: 7/20/04 5:00:00 PM

Report Date:

11-Aug-04

04070635-025

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		25.2	%	1	7/27/04	JRS
STANDARD METHODS 18TH B	ED. 2540 G							
Total Solids		0.1		74.8	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	0.680		5.33	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Acenaphthylene	NELAP	0.680		0.791	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Anthracene	NELAP	0.680		2.63	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Benzo(a)anthracene	NELAP	0.680		1.57	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Benzo(a)pyrene	NELAP	0.680		1.83	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.680		1.39	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.680	J	0.41	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.680	J	0.41	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Chrysene	NELAP	0.680		1.58	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.680	J	0.16	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Fluoranthene	NELAP	0.680		2.60	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Fluorene	NELAP	0.680		4.35	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.680	J	0.37	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Naphthalene	NELAP	0.680		2.70	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Phenanthrene	NELAP	0.680		9.57	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Pyrene	NELAP	0.680		3.85	mg/Kg-dry	5	7/30/04 7:29:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		44.1	%REC	5	7/30/04 7:29:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		44.1	%REC	5	7/30/04 7:29:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		59.9	%REC	5	7/30/04 7:29:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMI	POUNDS	BY GC/N	IS				
Benzene	NELAP	30.9		610	μg/Kg-dry	12.5	7/31/04 4:05:00 AM	HLR
Toluene	NELAP	154	J	55	µg/Kg-dry	12.5	7/31/04 4:05:00 AM	HLR
Ethylbenzene	NELAP	154		1260	μg/Kg-dry	12.5	7/31/04 4:05:00 AM	HLR
Xylenes, Total	NELAP	154		623	μg/Kg-dry	12.5	7/31/04 4:05:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		85.2	%REC	12.5	7/31/04 4:05:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		101	%REC	12.5	7/31/04 4:05:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		91.0	%REC	12.5	7/31/04 4:05:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.1	%REC	12.5	7/31/04 4:05:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B550-11 (10-11')

Lab ID:

04070635-026

Collection Date:

7/20/04 5:35:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		23.7	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		76.3	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYDE	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	63.9		1540 #	mg/Kg-dry	10	7/27/04 12:59:00 PM	DMH
Kerosene	NELAP	63.9		ND	mg/Kg-dry	10	7/27/04 12:59:00 PM	DMH
Mineral Spirits	NELAP	63.9		ND	mg/Kg-dry	10	7/27/04 12:59:00 PM	DMH
Motor Oil	NELAP	63.9		ND	mg/Kg-dry	10	7/27/04 12:59:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		97.7	%REC	10	7/27/04 12:59:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	13.0		35.6	mg/Kg-dry	100	7/30/04 8:08:00 PM	DMH
Acenaphthylene	NELAP	1.30		4.66	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Anthracene	NELAP	1.30		18.4	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Benzo(a)anthracene	NELAP	1.30		6.74	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Benzo(a)pyrene	NELAP	1.30		7.48	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.30		4.89	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.30		2.05	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.30		1.42	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Chrysene	NELAP	1.30		6.49	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.30	J	0.61	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Fluoranthene	NELAP	1.30		16.4	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Fluorene	NELAP	13.0		24.3	mg/Kg-dry	100	7/30/04 8:08:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.30		1.81	mg/Kg-dry	10	7/30/04 12:02:00 PM	DMH
Naphthalene	NELAP	13.0		35.4	mg/Kg-dry	100	7/30/04 8:08:00 PM	DMH
Phenanthrene	NELAP	13.0		49.0	mg/Kg-dry	100	7/30/04 8:08:00 PM	DMH
Pyrene	NELAP	13.0		20.0	mg/Kg-dry	100	7/30/04 8:08:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		65.9	%REC	10	7/30/04 12:02:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		53.9	%REC	10	7/30/04 12:02:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		73.7	%REC	10	7/30/04 12:02:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	108		1240	μg/Kg-dry	50	7/31/04 4:37:00 AM	HLR
Toluene	NELAP	542	J	150	μg/Kg-dry	50	7/31/04 4:37:00 AM	HLR
Ethylbenzene	NELAP	542		4020	μg/Kg-dry	50	7/31/04 4:37:00 AM	HLR
Xylenes, Total	NELAP	542		1930	μg/Kg-dry	50	7/31/04 4:37:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		87.0	%REC	50	7/31/04 4:37:00 AM	HLR
Surr: 4-Bromofluorobenzene		75:6-120		103	%REC	50	7/31/04 4:37:00 AM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-026

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B550-11 (10-11')

Collection Date: 7/20/04 5:35:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			95.2	%REC	50	7/31/04 4:37:00 AM	HLR
Surr: Toluene-d8	82.8-112.8			99.4	%REC	50	7/31/04 4:37:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

Work Order:

04070635

Client Sample ID: B550-16 (15-16')

Lab ID:

04070635-027

Collection Date: 7/20/04 5:50:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.1	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		87.9	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC (COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.111	J	0.050	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Acenaphthylene	NELAP	0.111	J	0.020	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Anthracene	NELAP	0.111	J	0.054	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Benzo(a)anthracene	NELAP	0.111	J	0.040	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Benzo(a)pyrene	NELAP	0.111	J	0.034	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.111	J	0.032	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.111	J	0.011	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Chrysene	NELAP	0.111	J	0.040	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Fluoranthene	NELAP	0.111	J	0.077	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Fluorene	NELAP	0.111	J	0.050	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Naphthalene	NELAP	0.111		0.258	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Phenanthrene	NELAP	0.111		0.170	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Pyrene	NELAP	0.111	J	0.10	mg/Kg-dry	1	7/29/04 2:40:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		61.8	%REC	1	7/29/04 2:40:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		50.0	%REC	1	7/29/04 2:40:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		74.2	%REC	1.	7/29/04 2:40:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	89.0		5810	μg/Kg-dry	50	8/2/04 10:57:00 AM	HLR
Toluene	NELAP	111		798	µg/Kg-dry	12.5	8/1/04 1:44:00 PM	HLR
Ethylbenzene	NELAP	111		1440	μg/Kg-dry	12.5	8/1/04 1:44:00 PM	HLR
Xylenes, Total	NELAP	111		1430	µg/Kg-dry	12.5	8/1/04 1:44:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72,8-122		93.7	%REC	12.5	8/1/04 1:44:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.1	%REC	12.5	8/1/04 1:44:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		95.5	%REC	12.5	8/1/04 1:44:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	12.5	8/1/04 1:44:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

11-Aug-04

Lab ID:

04070635-028

Report Date:

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B550-28 (27-28')

Collection Date: 7/20/04 6:20:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.6	%	4	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.4	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Acenaphthylene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Benzo(a)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Benzo(a)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Chrysene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Fluoranthene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Fluorene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Naphthalene	NELAP	0.111	J	0.061	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Phenanthrene	NELAP	0.111	J	0.021	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Pyrene	NELAP	0.111		ND	mg/Kg-dry	1	7/29/04 3:19:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.5	%REC	1	7/29/04 3:19:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		53.8	%REC	1	7/29/04 3:19:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		81.7	%REC	1	7/29/04 3:19:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/N	S				
Benzene	NELAP	0.8		1.1	µg/Kg-dry	1	8/1/04 2:16:00 PM	HLR
Toluene	NELAP	3.9	J	1.8	μg/Kg-dry	1	8/1/04 2:16:00 PM	HLR
Ethylbenzene	NELAP	3.9		ND	μg/Kg-dry	1	8/1/04 2:16:00 PM	HLR
Xylenes, Total	NELAP	3.9	J	1.4	μg/Kg-dry	1	8/1/04 2:16:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		99.0	%REC	1	8/1/04 2:16:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		93.0	%REC	1	8/1/04 2:16:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.7	%REC	1	8/1/04 2:16:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		98.2	%REC	1	8/1/04 2:16:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder:

Report Date:

11-Aug-04

Lab ID:

04070635-029

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-3 (2-3')

Collection Date: 7/21/04 9:20:00 AM

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		18.6	%	.1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		81.4	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.50		13.0	mg/Kg-dry	1	8/3/04 12:14:01 PM	JMW
Barium	NELAP	0.50		184	mg/Kg-dry	1	8/2/04 4:04:32 PM	SAM
Cadmium	NELAP	0.20		1.03	mg/Kg-dry	1	8/2/04 4:04:32 PM	SAM
Chromium	NELAP	1.00		18.3	mg/Kg-dry	1	8/2/04 5:14:17 PM	JMW
Lead	NELAP	4.00		164	mg/Kg-dry	1	8/2/04 4:04:32 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 4:04:32 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 4:04:32 PM	SAM
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	1.18		ND	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Acenaphthylene	NELAP	1.18		1.18	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Anthracene	NELAP	1.18	J	0.33	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Benzo(a)anthracene	NELAP	1.18		1.47	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Benzo(a)pyrene	NELAP	1.18		3.31	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Benzo(b)fluoranthene	NELAP	1.18		3.46	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	1.18		1.65	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Benzo(k)fluoranthene	NELAP	1.18	J	1.0	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Chrysene	NELAP	1.18		2.02	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	1.18	J	0.41	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Fluoranthene	NELAP	1.18		2.03	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Fluorene	NELAP	1.18	J	0.12	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.18		1.40	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Naphthalene	NELAP	1.18	J	0.29	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Phenanthrene	NELAP	1.18	J	0.82	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Pyrene	NELAP	1.18		3.12	mg/Kg-dry	5	7/30/04 2:06:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		60.9	%REC	5	7/30/04 2:06:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		58.9	%REC	5	7/30/04 2:06:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		66.0	%REC	5	7/30/04 2:06:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	OUNDS	BY GC/M	S				
Benzene	NELAP	1.1		14.2	μg/Kg-dry	1	7/31/04 6:14:00 AM	HLR
Toluene	NELAP	5.4		11.2	μg/Kg-dry	1	7/31/04 6:14:00 AM	HLR
Ethylbenzene	NELAP	5.4	J	4.0	μg/Kg-dry	1	7/31/04 6:14:00 AM	HLR
Xylenes, Total	NELAP	5.4		11.2	μg/Kg-dry	1	7/31/04 6:14:00 AM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-029

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-3 (2-3')

Collection Date: 7/21/04 9:20:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122	S	67.3	%REC	1	7/31/04 6:14:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		85.7	%REC	1	7/31/04 6:14:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		87.9	%REC	1	7/31/04 6:14:00 AM	HLR
Surr: Toluene-d8	8	2.8-112.8		93.0	%REC	1	7/31/04 6:14:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.252	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.59		2.74	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.69		1	7/27/04 3:18:00 PM	JLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-030

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-8 (7-8')

Collection Date: 7/21/04 9:50:00 AM

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.2	%	1	7/27/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		77.8	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL	S BY ICP							
Arsenic	NELAP	2.45		12.7	mg/Kg-dry	1.	8/3/04 12:16:06 PM	JMW
Barium	NELAP	0.49		117	mg/Kg-dry	1	8/2/04 4:09:50 PM	SAM
Cadmium	NELAP	0.20	J	0.10	mg/Kg-dry	1	8/2/04 4:09:50 PM	SAM
Chromium	NELAP	0.98		16.8	mg/Kg-dry	1	8/2/04 5:23:14 PM	JMW
Lead	NELAP	3.92		13.8	mg/Kg-dry	1	8/2/04 4:09:50 PM	SAM
Selenium	NELAP	3.92		< 3.92	mg/Kg-dry	1	8/2/04 4:09:50 PM	SAM
Silver	NELAP	0.98		< 0.98	mg/Kg-dry	1	8/2/04 4:09:50 PM	SAM
SW-846 3550B, 8270C, SEMI-V	OLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
1,2-Dichlorobenzene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
1,3-Dichlorobenzene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
1,4-Dichlorobenzene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4,5-Trichlorophenol	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4,6-Trichlorophenol	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4-Dichlorophenol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4-Dimethylphenol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4-Dinitrophenol	NELAP	6.43		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,4-Dinitrotoluene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2,6-Dinitrotoluene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2-Chloronaphthalene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2-Chlorophenol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2-Methylnaphthalene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2-Nitroaniline	NELAP	6.43		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
2-Nitrophenol	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
3-Nitroaniline	NELAP	6.43		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	6.43		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4-Chloro-3-methylphenol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4-Chloroaniline	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
4-Nitroaniline	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-030

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B509-8 (7-8')

Collection Date: 7/21/04 9:50:00 AM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Acenaphthene	NELAP	2.25		9.76	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Acenaphthylene	NELAP	2.25		4.69	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Anthracene	NELAP	2.25		7.21	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Benzo(a)anthracene	NELAP	2.25		9.37	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Benzo(a)pyrene	NELAP	2.25		8.67	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Benzo(b)fluoranthene	NELAP	2.25		6.81	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Benzo(g,h,i)perylene	NELAP	2.25		2.85	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Benzo(k)fluoranthene	NELAP	2.25		2.54	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	2.93		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Butyl benzyl phthalate	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Carbazole		3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Chrysene	NELAP	2.25		8.96	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Di-n-butyl phthalate	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Di-n-octyl phthalate	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Dibenzofuran	NELAP	2.25	J	1.6	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Diethyl phthalate	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Dimethyl phthalate		2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Fluoranthene	NELAP	2.25		17.8	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Fluorene	NELAP	2.25		12.7	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Hexachlorobenzene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Hexachlorobutadiene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Hexachlorocyclopentadiene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Hexachloroethane	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	2.25		2.36	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Isophorone	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
m,p-Cresol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
N-Nitrosodiphenylamine	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML.
Naphthalene	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Nitrobenzene	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
o-Cresol	NELAP	3.22		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Pentachlorophenol	NELAP	12.9		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070033

11-Aug-04

Report Date:

04070635-030

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-8 (7-8')

Collection Date: 7/21/04 9:50:00 AM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	4.50		37.4	mg/Kg-dry	10	8/10/04 1:36:00 PM	SML
Phenol	NELAP	2.25		ND	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Pyrene	NELAP	3.22		25.2	mg/Kg-dry	5	8/2/04 7:11:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		103	%REC	5	8/2/04 7:11:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		113	%REC	5	8/2/04 7:11:00 PM	SML
Surr: 2-Fluorophenol		27-111		97.7	%REC	5	8/2/04 7:11:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		100	%REC	5	8/2/04 7:11:00 PM	SML
Surr: p-Terphenyl-d14		25-144		114	%REC	5	8/2/04 7:11:00 PM	SML
Surr: Phenol-d5		33.7-123		113	%REC	5	8/2/04 7:11:00 PM	SML
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM	POUNDS	BY GC/M	<u>S</u>				
1,1,1-Trichloroethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,1,2-Trichloroethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,1-Dichloroethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,1-Dichloroethene	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,2-Dichloroethane	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
1,2-Dichloropropane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
2-Butanone	NELAP	51.6		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
2-Hexanone	NELAP	51.6		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
4-Methyl-2-pentanone	NELAP	51.6		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Acetone	NELAP	51.6	J	31	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Benzene	NELAP	1.0		4.6	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Bromodichloromethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Bromoform	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Bromomethane	NELAP	10.3		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Carbon disulfide	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Carbon tetrachloride	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Chlorobenzene	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Chloroethane	NELAP	10.3		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Chloroform	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Chloromethane	NELAP	10.3		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	4.1		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Dibromochloromethane	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Ethylbenzene	NELAP	5.2	J	3.8	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Methyl tert-butyl ether	NELAP	2.1		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Methylene chloride	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

Report Date:

04070635

Lab ID:

11-Aug-04

04070635-030

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-8 (7-8')

Collection Date: 7/21/04 9:50:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Tetrachloroethene	NELAP	5.2		ND	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Toluene	NELAP	5.2	J	1.4	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	4.1		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Trichloroethene	NELAP	5.2		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Vinyl chloride	NELAP	2.1		ND	µg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Xylenes, Total	NELAP	5.2		12.0	μg/Kg-dry	1	8/1/04 4:38:00 AM	HLR
Surr: 1,2-Dichloroethane-d4	-	72.8-122		104	%REC	1	8/1/04 4:38:00 AM	HLR
Surr: 4-Bromofluorobenzene	-	75.6-120		96.1	%REC	1	8/1/04 4:38:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	1	8/1/04 4:38:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		99.8	%REC	1	8/1/04 4:38:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.013		0.028	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOUS	COMPOUNDS B	Y GC/FI	D					
n-Butanol	20722000	13		ND	mg/Kg-dry	1	7/30/04 3:29:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.33		1	7/27/04 3:19:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B509-8D (7-8')

Lab ID:

Collection Date: 7/21/04 10:00:00 AM

Report Date:

04070635-031 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		23.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		76.1	%	1	7/27/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2 50		16.5	mg/Kg-dry	1	8/3/04 9:57:28 AM	JMW
Barium	NELAP	0.50		165	mg/Kg-dry	1	8/2/04 5:57:14 PM	SAM
Cadmium	NELAP	0.20		0.33	mg/Kg-dry	1	8/2/04 5:57:14 PM	SAM
Chromium	NELAP	1.00		20.0	mg/Kg-dry	1	8/2/04 5:38:17 PM	JMW
Lead	NELAP	4.00		19.1	mg/Kg-dry	1	8/2/04 5:57:14 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 5:57:14 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 5:57:14 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
1,2-Dichlorobenzene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
1,3-Dichlorobenzene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
1,4-Dichlorobenzene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4,5-Trichlorophenol	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4,6-Trichlorophenol	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4-Dichlorophenol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4-Dimethylphenol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4-Dinitrophenol	NELAP	32.5		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,4-Dinitrotoluene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2,6-Dinitrotoluene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2-Chloronaphthalene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2-Chlorophenol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2-Methylnaphthalene	NELAP	11_4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2-Nitroaniline	NELAP	32.5		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
2-Nitrophenol	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
3,3´-Dichlorobenzidine	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
3-Nitroaniline	NELAP	32.5		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	32.5		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4-Chloro-3-methylphenol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4-Chloroaniline	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
4-Nitroaniline	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-031

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-8D (7-8')

Collection Date: 7/21/04 10:00:00 AM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Acenaphthene	NELAP	11.4	J	7.9	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Acenaphthylene	NELAP	11.4	J	4.6	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Anthracene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Benzo(a)anthracene	NELAP	11.4		11.7	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Benzo(a)pyrene	NELAP	11.4	J	11	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Benzo(b)fluoranthene	NELAP	11.4	J	8.3	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Benzo(g,h,i)perylene	NELAP	11.4	J	5.7	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Benzo(k)fluoranthene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	14.8		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Butyl benzyl phthalate	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Carbazole		16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Chrysene	NELAP	11.4	J	11	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Di-n-butyl phthalate	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Di-n-octyl phthalate	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Dibenzofuran	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Diethyl phthalate	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Dimethyl phthalate		11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Fluoranthene	NELAP	11.4		21.0	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Fluorene	NELAP	11.4	J	11	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Hexachlorobenzene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Hexachlorobutadiene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Hexachlorocyclopentadiene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Hexachloroethane	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	11.4	J	4.1	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Isophorone	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
m,p-Cresol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
N-Nitrosodiphenylamine	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Naphthalene	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Nitrobenzene	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
o-Cresol	NELAP	16.3		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Pentachlorophenol	NELAP	65.0		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-031

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-8D (7-8')

Collection Date: 7/21/04 10:00:00 AM

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	11.4		39.8	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Phenol	NELAP	11.4		ND	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Pyrene	NELAP	16.3		30.0	mg/Kg-dry	25	8/2/04 5:16:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		90.1	%REC	25	8/2/04 5:16:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		109	%REC	25	8/2/04 5:16:00 PM	SML
Surr: 2-Fluorophenol		27-111		92.6	%REC	25	8/2/04 5:16:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		104	%REC	25	8/2/04 5:16:00 PM	SML
Surr: p-Terphenyl-d14		25-144		109	%REC	25	8/2/04 5:16:00 PM	SML
Surr: Phenol-d5		33.7-123		110	%REC	25	8/2/04 5:16:00 PM	SML
SW-846 5035, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
1,1,2-Trichloroethane	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
1,1-Dichloroethane	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
1,1-Dichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
1,2-Dichloroethane	NELAP	4.8		ND	μg/Kg-d r y	1	8/1/04 5:09:00 AM	HLR
1,2-Dichloropropane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
2-Butanone	NELAP	48.0		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
2-Hexanone	NELAP	48.0		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
4-Methyl-2-pentanone	NELAP	48.0		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Acetone	NELAP	48.0	J	43	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Benzene	NELAP	1.0		4.7	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Bromodichloromethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Bromoform	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Bromomethane	NELAP	9.6		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Carbon disulfide	NELAP	4.8	J	4.7	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Carbon tetrachloride	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Chlorobenzene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Chloroethane	NELAP	9.6		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Chloroform	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Chloromethane	NELAP	9.6		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	3.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Dibromochloromethane	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Ethylbenzene	NELAP	4.8	J	3.5	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Methyl tert-butyl ether	NELAP	1.9		NĐ	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Methylene chloride	NELAP	4.8	J	1.7	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

11-Aug-04

Client Sample ID: B509-8D (7-8')

Lab ID:

Report Date:

04070635-031

Collection Date: 7/21/04 10:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	4.8	J	1.4	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Tetrachloroethene	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Toluene	NELAP	4.8		6.9	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	3.8		ND	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Trichloroethene	NELAP	4.8	J	1.0	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Vinyl chloride	NELAP	1.9		ND	μg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Xylenes, Total	NELAP	4.8		13.8	µg/Kg-dry	1	8/1/04 5:09:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		106	%REC	1	8/1/04 5:09:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		86.2	%REC	1	8/1/04 5:09:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		107	%REC	1	8/1/04 5:09:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		95.6	%REC	1	8/1/04 5:09:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.041	mg/Kg-dry	1	7/27/04	SRS
SW-846 8015, MISCELLANEOU	JS COMPOUNDS B	Y GC/FI	D					
n-Butanol		13		ND	mg/Kg-dry	1	7/30/04 3:45:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.12		1	7/27/04 3:21:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

11-Aug-04

Client Sample ID: B509-18 (17-18')

Lab ID:

Collection Date: 7/21/04 11:10:00 AM

Report Date:

04070635-032

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.3	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.7	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL P	ETROLEUM HYDI	ROCARB	ONS (OA-	2) BY GC/F	ID .			
Diesel	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:58:00 PM	DMH
Kerosene	NELAP	5.44		8.58 #	mg/Kg-dry	1	7/26/04 5:58:00 PM	DMH
Mineral Spirits	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:58:00 PM	DMH
Motor Oil	NELAP	5.44		ND	mg/Kg-dry	1	7/26/04 5:58:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		101	%REC	1	7/26/04 5:58:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC (COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.113	J	0.086	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Acenaphthylene	NELAP	0.113		0.263	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Anthracene	NELAP	0.113	J	0.091	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Benzo(a)anthracene	NELAP	0.113	J	0.066	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Benzo(a)pyrene	NELAP	0.113	J	0.074	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.113	J	0.053	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.113	J	0.036	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.113	J	0.016	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Chrysene	NELAP	0.113	J	0.066	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Fluoranthene	NELAP	0.113		0.125	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Fluorene	NELAP	0.113		0.113	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113	J	0.027	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Naphthalene	NELAP	1.13		7.94	mg/Kg-dry	10	7/30/04 1:59:00 PM	DMH
Phenanthrene	NELAP	0.113		0.298	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Pyrene	NELAP	0.113		0.194	mg/Kg-dry	1	7/29/04 10:44:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		69.8	%REC	1	7/29/04 10:44:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		59.8	%REC	1	7/29/04 10:44:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		78.8	%REC	1	7/29/04 10:44:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	322		6250	μg/Kg-dry	250	8/1/04 2:47:00 PM	HLR
Toluene	NELAP	1610	J	550	μg/Kg-dry	250	8/1/04 2:47:00 PM	HLR
Ethylbenzene	NELAP	1610		11400	μg/Kg-dry	250	8/1/04 2:47:00 PM	HLR
Xylenes, Total	NELAP	1610		6630	μg/Kg-dry	250	8/1/04 2:47:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		95.7	%REC	250	8/1/04 2:47:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		101	%REC	250	8/1/04 2:47:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-032

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-18 (17-18')

Collection Date: 7/21/04 11:10:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		98.1	%REC	250	8/1/04 2:47:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		99.4	%REC	250	8/1/04 2:47:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Report Date:

Lab ID:

Philip Environmental

04070635

WorkOrder:

04070635-033

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B509-28 (27-28')

Collection Date: 7/21/04 11:35:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.7	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		89.3	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, 5	SEMI-VOLATILE OR	GANIC (COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.112	J	0.022	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Acenaphthylene	NELAP	0.112	J	0.11	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Anthracene	NELAP	0.112	J	0.098	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Benzo(a)anthracene	NELAP	0.112	J	0.072	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Benzo(a)pyrene	NELAP	0.112	J	0.079	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.112	J	0.058	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.112	J	0.039	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.112	J	0.017	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Chrysene	NELAP	0.112	J	0.072	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.112		ND	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Fluoranthene	NELAP	0.112		0.142	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Fluorene	NELAP	0.112	J	0.090	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.112	J	0.028	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Naphthalene	NELAP	0.112		0.466	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Phenanthrene	NELAP	0.112		0.311	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Pyrene	NELAP	0.112		0.223	mg/Kg-dry	1	7/29/04 10:05:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.0	%REC	1	7/29/04 10:05:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		54.8	%REC	1	7/29/04 10:05:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		72.6	%REC	1	7/29/04 10:05:00 AM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	0.8	J	0.7	μg/Kg-dry	1	8/1/04 3:19:00 PM	HLR
Toluene	NELAP	4.0	J	2.0	μg/Kg-dry	1	8/1/04 3:19:00 PM	HLR
Ethylbenzene	NELAP	4.0		ND	μg/Kg-dry	1	8/1/04 3:19:00 PM	HLR
Xylenes, Total	NELAP	4.0	J	2.7	μg/Kg-dry	1	8/1/04 3:19:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.3	%REC	1	8/1/04 3:19:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.5	%REC	1	8/1/04 3:19:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.3	%REC	1	8/1/04 3:19:00 PM	HLR
Surr: Toluene-d8		2.8-112.8		98.8	%REC	1	8/1/04 3:19:00 PM	HLR

TEL: 618-344-1004 FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-034

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-1 (0-1')

Collection Date: 7/21/04 1:45:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		14.5	%	1	7/27/04	JRS
STANDARD METHODS 18TH	HED. 2540 G							
Total Solids		0.1		85.5	%	1	7/27/04	JRS
SW-846 3050B, 6010B, MET.	ALS BY ICP							
Arsenic	NELAP	2.40		10.1	mg/Kg-dry	1	8/3/04 10:42:59 AM	JMW
Barium	NELAP	0.48		141	mg/Kg-dry	1	8/2/04 6:12:22 PM	SAM
Cadmium	NELAP	0.19		0.22	mg/Kg-dry	1	8/2/04 6:12:22 PM	SAM
Chromium	NELAP	0.96		16.0	mg/Kg-dry	1	8/2/04 5:47:15 PM	JMW
Lead	NELAP	3.85		60.8	mg/Kg-dry	1	8/2/04 6:12:22 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 6:12:22 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 6:12:22 PM	SAM
SW-846 3550B, 8270C SIMS	SEMI-VOLATILE OR	GANIC C	COMPOUR	NDS BY GC	/MS			
Acenaphthene	NELAP	0.343	J	0.11	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Acenaphthylene	NELAP	0.343		1.05	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Anthracene	NELAP	0.343		0.512	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Benzo(a)anthracene	NELAP	0.343		0.951	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Benzo(a)pyrene	NELAP	0.343		1.97	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.343		1.73	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.343		0.651	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.343		0.528	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Chrysene	NELAP	0.343		1.09	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.343	J	0.17	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Fluoranthene	NELAP	0.343		1.49	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Fluorene	NELAP	0.343	J	0.25	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.343		0.611	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Naphthalene	NELAP	0.343		0.599	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Phenanthrene	NELAP	0.343		1.76	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Pyrene	NELAP	0.343		2.33	mg/Kg-dry	1	7/30/04 4:41:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		70.3	%REC	1	7/30/04 4:41:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		67.4	%REC	1	7/30/04 4:41:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		79.1	%REC	1	7/30/04 4:41:00 AM	DMH
SW-846 5035, 8260B, VOLA	TILE ORGANIC COMP	POUNDS	BY GC/N	IS				
Benzene	NELAP	1.0		5.0	μg/Kg-dry	1	8/1/04 3:51:00 PM	HLR
Toluene	NELAP	4.8	J	3.9	μg/Kg-dry	1	8/1/04 3:51:00 PM	HLR
Ethylbenzene	NELAP	4.8	J	1.1	μg/Kg-dry	1	8/1/04 3:51:00 PM	HLR
Xylenes, Total	NELAP	4.8	J	3.2	μg/Kg-dry	1	8/1/04 3:51:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-034

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-1 (0-1')

Collection Date: 7/21/04 1:45:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		94.6	%REC	1.	8/1/04 3:51:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		91.9	%REC	1	8/1/04 3:51:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.8	%REC	1	8/1/04 3:51:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		97.9	%REC	1	8/1/04 3:51:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.010		0.084	mg/Kg-dry	1	7/27/04	SRS
SW-846 9010, 9014								
Cyanide	NELAP	0.55		2.15	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.62		1	7/27/04 3:23:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder:
Lab ID:

04070635-035

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-8 (7-8')

Collection Date: 7/21/04 2:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.7	%	1	7/27/04	JRS
STANDARD METHODS 18TH B	ED. 2540 G							
Total Solids		0.1		78.3	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	32.1		52.9	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Acenaphthylene	NELAP	1.29		3.58	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Anthracene	NELAP	24.1		24.2	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Benzo(a)anthracene	NELAP	1.29		9.46	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Benzo(a)pyrene	NELAP	1.29		11.6	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.29		7.86	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.29		2.41	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.29		2.32	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Chrysene	NELAP	1.29		8.79	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.29	J	0.72	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Fluoranthene	NELAP	24.1		26.5	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Fluorene	NELAP	32.1		34.6	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.29		2.31	mg/Kg-dry	10	7/30/04 2:38:00 PM	DMH
Naphthalene	NELAP	32.1		171	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Phenanthrene	NELAP	32.1		77.2	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Pyrene	NELAP	32.1		37.0	mg/Kg-dry	250	7/30/04 10:42:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		65.6	%REC	10	7/30/04 2:38:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		46.0	%REC	10	7/30/04 2:38:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		69.8	%REC	10	7/30/04 2:38:00 PM	DMH
SW-846 5035, 8260B, VOLATII	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	274		3510	μg/Kg-dry	125	8/1/04 4:23:00 PM	HLR
Toluene	NELAP	1370	J	280	μg/Kg-d r y	125	8/1/04 4:23:00 PM	HLR
Ethylbenzene	NELAP	1370		22200	μg/Kg-dry	125	8/1/04 4:23:00 PM	HLR
Xylenes, Total	NELAP	1370		16600	μg/Kg-dry	125	8/1/04 4:23:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		92.8	%REC	125	8/1/04 4:23:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		101	%REC	125	8/1/04 4:23:00 PM	HLR
Surr: Dibromofluoromethane	•	74.1-121		97.8	%REC	125	8/1/04 4:23:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		100	%REC	125	8/1/04 4:23:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-036

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-19 (18-19')

Collection Date: 7/21/04 3:15:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		18.0	%	1	7/27/04	JRS
STANDARD METHODS 18TH EL	D. 2540 G							
Total Solids		0.1		82.0	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METALS	BY ICP							
Arsenic	NELAP	2.36		< 2.36	mg/Kg-dry	1	8/3/04 11:06:19 AM	JMW
Barium	NELAP	0.47		4.88	mg/Kg-dry	1	8/2/04 6:17:39 PM	SAM
Cadmium	NELAP	0.19		< 0.19	mg/Kg-dry	1	8/2/04 6:17:39 PM	SAM
Chromium	NELAP	0.94		2.49	mg/Kg-dry	1	8/2/04 5:56:21 PM	JMW
Lead	NELAP	3.77	J	3.2	mg/Kg-dry	1	8/2/04 6:17:39 PM	SAM
Selenium	NELAP	3.77		< 3.77	mg/Kg-d r y	1	8/2/04 6:17:39 PM	SAM
Silver	NELAP	0.94		< 0.94	mg/Kg-dry	1	8/2/04 6:17:39 PM	SAM
SW-846 3550B, 8015, TOTAL PE	ETROLEUM HYD	ROCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	3620		23200 #	mg/Kg-dry	100	7/28/04 10:24:00 AM	DMH
Kerosene	NELAP	3620		ND	mg/Kg-dry	100	7/28/04 10:24:00 AM	DMH
Mineral Spirits	NELAP	3620		ND	mg/Kg-dry	100	7/28/04 10:24:00 AM	DMH
Motor Oil	NELAP	3620		ND	mg/Kg-dry	100	7/28/04 10:24:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	100	7/28/04 10:24:00 AM	DMH
SW-846 3550B, 8270C, SEMI-VO	DLATILE ORGAN	IC COMP	OUNDS E	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
1,2-Dichlorobenzene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
1,3-Dichlorobenzene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
1,4-Dichlorobenzene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4,5-Trichlorophenol	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4,6-Trichlorophenol	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4-Dichlorophenol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4-Dimethylphenol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4-Dinitrophenol	NELAP	155		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,4-Dinitrotoluene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2,6-Dinitrotoluene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2-Chloronaphthalene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2-Chlorophenol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2-Methylnaphthalene	NELAP	217		1440	mg/Kg-dry	100	8/10/04 2:14:00 PM	SML
2-Nitroaniline	NELAP	155		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
2-Nitrophenol	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
-,		155		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-036

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B507-19 (18-19')

Collection Date: 7/21/04 3:15:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4,6-Dinitro-2-methylphenol	NELAP	155		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Chloro-3-methylphenol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Chloroaniline	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Nitroaniline	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
4-Nitrophenol	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Acenaphthene	NELAP	54.3		115	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Acenaphthylene	NELAP	217		697	mg/Kg-dry	100	8/10/04 2:14:00 PM	SML
Anthracene	NELAP	54.3		406	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Benzo(a)anthracene	NELAP	54.3		257	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Benzo(a)pyrene	NELAP	54.3		237	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Benzo(b)fluoranthene	NELAP	54.3		170	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Benzo(g,h,i)perylene	NELAP	54.3		80.0	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Benzo(k)fluoranthene	NELAP	54.3		69.6	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	70.7		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Butyl benzyl phthalate	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Carbazole		77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Chrysene	NELAP	54.3		239	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Di-n-butyl phthalate	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Di-n-octyl phthalate	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Dibenzofuran	NELAP	54.3		86.2	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Diethyl phthalate	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Dimethyl phthalate		54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Fluoranthene	NELAP	54.3		485	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Fluorene	NELAP	54.3		547	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Hexachlorobenzene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Hexachlorobutadiene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Hexachlorocyclopentadiene	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Hexachloroethane	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	54.3		64.0	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Isophorone	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
m,p-Cresol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-036

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-19 (18-19')

Collection Date: 7/21/04 3:15:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
N-Nitroso-di-n-propylamine	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
N-Nitrosodiphenylamine	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Naphthalene	NELAP	543		4620	mg/Kg-dry	250	8/10/04 2:52:00 PM	SML
Nitrobenzene	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
o-Cresol	NELAP	77.5		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Pentachlorophenol	NELAP	310		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Phenanthrene	NELAP	217		935	mg/Kg-dry	100	8/10/04 2:14:00 PM	SML
Phenol	NELAP	54.3		ND	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Pyrene	NELAP	77.5		713	mg/Kg-dry	25	8/2/04 6:33:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		67.0	%REC	25	8/2/04 6:33:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		113	%REC	25	8/2/04 6:33:00 PM	SML
Surr: 2-Fluorophenol		27-111		76.2	%REC	25	8/2/04 6:33:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		97.1	%REC	25	8/2/04 6:33:00 PM	SML
Surr: p-Terphenyl-d14		25-144		97.1	%REC	25	8/2/04 6:33:00 PM	SML
Surr: Phenol-d5		33.7-123		95.1	%REC	25	8/2/04 6:33:00 PM	SML
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMP	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1,1,2-Trichloroethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1,1-Dichloroethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1.1-Dichloroethene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1,2-Dichloroethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
1,2-Dichloropropane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
2-Butanone	NELAP	52200		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
2-Hexanone	NELAP	52200		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
4-Methyl-2-pentanone	NELAP	52200		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Acetone	NELAP	52200	J	20000	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Benzene	NELAP	10400		659000	μg/Kg-dry	5000	8/1/04 9:19:00 AM	HLR
Bromodichloromethane	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Bromoform	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Bromomethane	NELAP	10400		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Carbon disulfide	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Carbon tetrachloride	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Chlorobenzene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Chloroethane	NELAP	10400		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Chloroform	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Chloromethane	NELAP	10400		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-036

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-19 (18-19')

Collection Date: 7/21/04 3:15:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
cis-1,2-Dichloroethene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	4180		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Dibromochloromethane	NELAP	5220		ND	µg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Ethylbenzene	NELAP	5220		141000	µg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Methyl tert-butyl ether	NELAP	2090		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Methylene chloride	NELAP	5220	J	1300	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Styrene	NELAP	52200		938000	µg/Kg-dry	5000	8/1/04 9:19:00 AM	HLR
Tetrachloroethene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Toluene	NELAP	52200		1540000	μg/Kg-dry	5000	8/1/04 9:19:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	4180		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Trichloroethene	NELAP	5220		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Vinyl chloride	NELAP	2090		ND	μg/Kg-dry	500	8/1/04 5:41:00 AM	HLR
Xylenes, Total	NELAP	52200		1300000	μg/Kg-dry	5000	8/1/04 9:19:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.1	%REC	500	8/1/04 5:41:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.5	%REC	500	8/1/04 5:41:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	500	8/1/04 5:41:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		103	%REC	500	8/1/04 5:41:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		< 0.012	mg/Kg-dry	1	8/2/04	JMW
SW-846 8015, MISCELLANEOU	S COMPOUNDS E	BY GC/FI	D					
n-Butanol		12		15	mg/Kg-dry	1	7/30/04 4:49:00 PM	SML
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.92		1	7/27/04 4:24:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070033

11-Aug-04

Report Date:

04070635-037

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B507-28 (27-28')

Collection Date: 7/21/04 5:15:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.6	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.4	%	1	7/27/04	JRS
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	0.8		6.1	μg/Kg-dry	1	8/1/04 4:54:00 PM	HLR
Toluene	NELAP	4.2		14.3	μg/Kg-dry	1	8/1/04 4:54:00 PM	HLR
Ethylbenzene	NELAP	4.2	J	3.4	μg/Kg-d r y	1	8/1/04 4:54:00 PM	HLR
Xylenes, Total	NELAP	4.2		9.1	μg/Kg-dry	1	8/1/04 4:54:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		100	%REC	1	8/1/04 4:54:00 PM	HLR
Surr: 4-Bromofluorobenzene	•	75.6-120		83.5	%REC	1	8/1/04 4:54:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		103	%REC	1	8/1/04 4:54:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		92.9	%REC	1	8/1/04 4:54:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070635

Lab ID:

04070635-038

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B502-24 (23-24')

7/21/04 7:00:00 PM **Collection Date:**

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.1	%	4	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.9	%	7	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Acenaphthylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Benzo(a)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Benzo(a)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Benzo(b)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	0.113		NĐ	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Chrysene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Fluorene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Naphthalene	NELAP	0.113	J	0.026	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Phenanthrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 11:22:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		68.1	%REC	1	7/29/04 11:22:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		63.3	%REC	1	7/29/04 11:22:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		77.7	%REC	1	7/29/04 11:22:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/N	<u>IS</u>				
Benzene	NELAP	19.2		423	μg/Kg-dry	12.5	8/2/04 11:29:00 AM	HLR
Toluene	NELAP	95.9		ND	μg/Kg-dry	12.5	8/2/04 11:29:00 AM	HLR
Ethylbenzene	NELAP	95.9		ND	μg/Kg-dry	12.5	8/2/04 11:29:00 AM	HLR
Xylenes, Total	NELAP	95.9		ND	μg/Kg-dry	12.5	8/2/04 11:29:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		93.4	%REC	12.5	8/2/04 11:29:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		100	%REC	12.5	8/2/04 11:29:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		94.9	%REC	12.5	8/2/04 11:29:00 AM	HLR
Surr: Toluene-d8	82	8-112.8		100	%REC	12.5	8/2/04 11:29:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B506-3 (2-3')

Lab ID:

Collection Date: 7/22/04 8:33:00 AM

Report Date:

11-Aug-04

04070635-039

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.2	%	1	7/27/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		79.8	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METAL								
Arsenic	NELAP	2.40		14.7	mg/Kg-dry	1	8/3/04 10:29:02 AM	JMW
Barium	NELAP	0.48		113	mg/Kg-dry	1	8/2/04 6:33:35 PM	SAM
Cadmium	NELAP	0.19	J	0.14	mg/Kg-dry	1	8/2/04 6:33:35 PM	SAM
Chromium	NELAP	0.96		15.7	mg/Kg-dry	1	8/2/04 6:05:20 PM	JMW
Lead	NELAP	3.85		177	mg/Kg-dry	1	8/2/04 6:33:35 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 6:33:35 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 6:33:35 PM	SAM
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC (COMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	3.86	J	1.3	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Acenaphthylene	NELAP	3.86		18.3	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Anthracene	NELAP	3.86		4.54	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Benzo(a)anthracene	NELAP	3.86		17.6	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Benzo(a)pyrene	NELAP	3.86		49.1	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Benzo(b)fluoranthene	NELAP	3.86		55.5	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	3.86		17.1	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Benzo(k)fluoranthene	NELAP	3.86		16.5	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Chrysene	NELAP	3.86		23.1	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	3.86		5.15	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Fluoranthene	NELAP	3.86		18.0	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Fluorene	NELAP	3.86	J	2.8	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	3.86		16.7	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Naphthalene	NELAP	3.86		11.4	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Phenanthrene	NELAP	3.86		10.2	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Pyrene	NELAP	3.86		30.2	mg/Kg-dry	10	7/30/04 1:27:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		77.8	%REC	10	7/30/04 1:27:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		67.9	%REC	10	7/30/04 1:27:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		87.9	%REC	10	7/30/04 1:27:00 AM	DMH
SW-846 5035, 8260B, VOLATI	E ORGANIC COME		BY GC/N					
Benzene	NELAP	34.9	DI CONV	3820	μg/Kg-dry	12.5	8/1/04 5:57:00 PM	HLR
Toluene	NELAP	174		3320	µg/Kg-dry	12.5	8/1/04 5:57:00 PM	HLR
Ethylbenzene	NELAP	174		1390	μg/Kg-dry	12.5	8/1/04 5:57:00 PM	HLR
Xylenes, Total	NELAP	174		5480	µg/Kg-dry	12.5	8/1/04 5:57:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-039

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-3 (2-3')

Collection Date: 7/22/04 8:33:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		94.3	%REC	12.5	8/1/04 5:57:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.4	%REC	12.5	8/1/04 5:57:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		97.1	%REC	12.5	8/1/04 5:57:00 PM	HLR
Surr: Toluene-d8	8:	2.8-112.8		100	%REC	12.5	8/1/04 5:57:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.023		0.695	mg/Kg-dry	2	8/2/04	JMW
SW-846 9010, 9014								
Cyanide	NELAP	0.62		2.31	mg/kg-dry	1	8/2/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.37		1	7/27/04 3:24:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

11-Aug-04

Report Date:

04070635-040

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-7 (6-7')

Collection Date: 7/22/04 9:10:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.9	%	4	7/27/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		77.1	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	13.2		169	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Acenaphthylene	NELAP	1.32		12.3	mg/Kg-dry	10	7/29/04 10:11:00 PM	DMH
Anthracene	NELAP	13.2		71.2	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Benzo(a)anthracene	NELAP	13.2		32.6	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Benzo(a)pyrene	NELAP	13.2		35.2	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Benzo(b)fluoranthene	NELAP	13.2		29.0	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.32		7.19	mg/Kg-dry	10	7/29/04 10:11:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.32		7.42	mg/Kg-dry	10	7/29/04 10:11:00 PM	DMH
Chrysene	NELAP	13.2		33.0	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.32		2.30	mg/Kg-dry	10	7/29/04 10:11:00 PM	DMH
Fluoranthene	NELAP	13.2		78.4	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Fluorene	NELAP	13.2		90.5	mg/Kg-dry	100	7/30/04 11:19:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.32		6.03	mg/Kg-dry	10	7/29/04 10:11:00 PM	DMH
Naphthalene	NELAP	65.8		794	mg/Kg-dry	500	8/2/04 11:46:00 AM	DMH
Phenanthrene	NELAP	32.9		247	mg/Kg-dry	250	7/30/04 11:57:00 PM	DMH
Pyrene	NELAP	32.9		114	mg/Kg-dry	250	7/30/04 11:57:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		71.8	%REC	10	7/29/04 10:11:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		71.8	%REC	10	7/29/04 10:11:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		80.0	%REC	10	7/29/04 10:11:00 PM	DMH
SW-846 5035, 8260B, VOLATI	LE ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	267		11200	μg/Kg-dry	125	8/1/04 6:29:00 PM	HLR
Toluene	NELAP	1340	J	740	µg/Kg-dry	125	8/1/04 6:29:00 PM	HLR
Ethylbenzene	NELAP	1340		46200	μg/Kg-dry	125	8/1/04 6:29:00 PM	HLR
Xylenes, Total	NELAP	1340		33700	μg/Kg-dry	125	8/1/04 6:29:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		91.8	%REC	125	8/1/04 6:29:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		101	%REC	125	8/1/04 6:29:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		98.5	%REC	125	8/1/04 6:29:00 PM	HLR
Surr: Toluene-d8	82	.8-112.8		100	%REC	125	8/1/04 6:29:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B506-17 (16-17')

Lab ID:

04070635-041

Collection Date: 7/22/04 10:00:00 AM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		90.1	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL	PETROLEUM HYDR	OCARB	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	554		12900 #	mg/Kg-dry	100	7/28/04 10:52:00 AM	DMH
Kerosene	NELAP	554		ND	mg/Kg-dry	100	7/28/04 10:52:00 AM	DMH
Mineral Spirits	NELAP	554		ND	mg/Kg-dry	100	7/28/04 10:52:00 AM	DMH
Motor Oil	NELAP	554		ND	mg/Kg-dry	100	7/28/04 10:52:00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	100	7/28/04 10:52:00 AM	DMH
SW-846 3550B, 8270C SIMS, 3	SEMI-VOLATILE OR	GANIC (COMPOU	NDS BY GC	/MS			
Acenaphthene	NELAP	31.8	7	54.6	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Acenaphthylene	NELAP	31.8		389	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Anthracene	NELAP	31.8		155	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Benzo(a)anthracene	NELAP	31.8		79.0	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Benzo(a)pyrene	NELAP	31.8		92.0	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Benzo(b)fluoranthene	NELAP	31.8		72.6	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	3.18		17.7	mg/Kg-dry	10	7/29/04 10:51:00 PM	DMH
Benzo(k)fluoranthene	NELAP	3.18		21.8	mg/Kg-dry	10	7/29/04 10:51:00 PM	DMH
Chrysene	NELAP	31.8		72.5	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	3.18		5.64	mg/Kg-dry	10	7/29/04 10:51:00 PM	DMH
Fluoranthene	NELAP	31.8		168	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Fluorene	NELAP	31.8		204	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	3.18		17.3	mg/Kg-dry	10	7/29/04 10:51:00 PM	DMH
Naphthalene	NELAP	318		2160	mg/Kg-dry	1000	7/31/04 12:35:00 AM	DMH
Phenanthrene	NELAP	318		613	mg/Kg-dry	1000	7/31/04 12:35:00 AM	DMH
Pyrene	NELAP	31.8		244	mg/Kg-dry	100	7/30/04 4:03:00 AM	DMH
Surr: 2-Fluorobiphenyl	1422/11	10-130		39.9	%REC	10	7/29/04 10:51:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		29.9	%REC	10	7/29/04 10:51:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		97.7	%REC	10	7/29/04 10:51:00 PM	DMH
SW-846 5035, 8260B, VOLAT	I E OPCANIC COM		BY GCM		731.			
Benzene	NELAP	7640	DI COM	444000	μg/Kg-dry	5000	8/2/04 12:00:00 PM	HLR
Toluene	NELAP	38200		676000	μg/Kg-dry	5000	8/2/04 12:00:00 PM	HLR
	NELAP	38200		122000	μg/Kg-dry	5000	8/2/04 12:00:00 PM	HLR
Ethylbenzene Yylonos, Total	NELAP	38200		549000	μg/Kg-dry μg/Kg-dry	5000	8/2/04 12:00:00 PM	HLR
Xylenes, Total		72_8-122		95.5	µg/кg-dry %REC	5000	8/2/04 12:00:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		75.6-120		101	%REC	5000	8/2/04 12:00:00 PM	HLR
Surr: 4-Bromofluorobenzene		10.0-120		101	MEG	5000	012107 12.00.00 FW	TILIX

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-041

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-17 (16-17')

Collection Date: 7/22/04 10:00:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121			99.2	%REC	5000	8/2/04 12:00:00 PM	HLR
Surr: Toluene-d8	82.8-112.8			101	%REC	5000	8/2/04 12:00:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder:

Report Date:

11-Aug-04

Lab ID:

04070635-042

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-28 (27-28')

Collection Date: 7/22/04 10:30:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.1	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		90.9	%	1	7/27/04	JRS
SW-846 3050B, 6010B, META	ALS BY ICP							
Arsenic	NELAP	2.50		4.57	mg/Kg-dry	1	8/3/04 11:11:59 AM	JMW
Barium	NELAP	0.50		20.1	mg/Kg-dry	1	8/2/04 6:49:05 PM	SAM
Cadmium	NELAP	0.20		< 0.20	mg/Kg-dry	1	8/2/04 6:49:05 PM	SAM
Chromium	NELAP	1.00		11.5	mg/Kg-dry	1	8/2/04 6:08:19 PM	JMW
Lead	NELAP	4.00		9.98	mg/Kg-dry	1	8/2/04 6:49:05 PM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 6:49:05 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 6:49:05 PM	SAM
SW-846 3550B, 8270C, SEM	-VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
1,2-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
1,3-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
1,4-Dichlorobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4,5-Trichlorophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4,6-Trichlorophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4-Dichlorophenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4-Dimethylphenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4-Dinitrophenol	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,4-Dinitrotoluene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2,6-Dinitrotoluene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2-Chloronaphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2-Chlorophenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2-Methylnaphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
2-Nitrophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
3-Nitroaniline	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	1.11		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4-Chloro-3-methylphenol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4-Chloroaniline	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
4-Nitroaniline	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-042

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-28 (27-28')

Collection Date: 7/22/04 10:30:00 AM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Acenaphthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Acenaphthylene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Benzo(a)anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Benzo(a)pyrene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Benzo(b)fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Benzo(g,h,i)perylene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Benzo(k)fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	0.505		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Butyl benzyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Carbazole		0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Chrysene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Di-n-butyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Di-n-octyl phthalate	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Dibenzofuran	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Diethyl phthalate	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Dimethyl phthalate		0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Fluoranthene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Fluorene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Hexachlorobenzene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Hexachlorobutadiene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Hexachlorocyclopentadiene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Hexachloroethane	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Isophorone	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
m,p-Cresol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
N-Nitrosodiphenylamine	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Naphthalene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Nitrobenzene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
o-Cresol	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Pentachlorophenol	NELAP	2.21		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-042

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B506-28 (27-28')

Collection Date: 7/22/04 10:30:00 AM

Matrix:	SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Phenol	NELAP	0.387		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Pyrene	NELAP	0.553		ND	mg/Kg-dry	1	7/30/04 5:36:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		79.1	%REC	1	7/30/04 5:36:00 PM	SML
Surr: 2-Fluorobiphenyl		14,6-132		82.2	%REC	1	7/30/04 5:36:00 PM	SML
Surr: 2-Fluorophenol		27-111		77.5	%REC	1	7/30/04 5:36:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		78.9	%REC	1	7/30/04 5:36:00 PM	SML
Surr: p-Terphenyl-d14		25-144		86.5	%REC	1	7/30/04 5:36:00 PM	SML
Surr: Phenol-d5		33.7-123		88.1	%REC	1	7/30/04 5:36:00 PM	SML
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,1,2-Trichloroethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,1-Dichloroethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,1-Dichloroethene	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,2-Dichloroethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
1,2-Dichloropropane	NELAP	4.6		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
2-Butanone	NELAP	46.1		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
2-Hexanone	NELAP	46.1		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
4-Methyl-2-pentanone	NELAP	46.1		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Acetone	NELAP	46.1		57.5	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Benzene	NELAP	0.9		2.3	μg/Kg-d r y	1	8/1/04 6:12:00 AM	HLR
Bromodichloromethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Bromoform	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Bromomethane	NELAP	9.2		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Carbon disulfide	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Carbon tetrachloride	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Chlorobenzene	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Chloroethane	NELAP	9.2		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Chloroform	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Chloromethane	NELAP	9.2		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	3.7		ND	μg/Kg-d r y	1	8/1/04 6:12:00 AM	HLR
Dibromochloromethane	NELAP	4.6		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Ethylbenzene	NELAP	4.6	J	1.3	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Methyl tert-butyl ether	NELAP	1.8		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
Methylene chloride	NELAP	4.6	J	1.6	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070625 04

Report Date:

04070635-042 11-Aug-04 **Client Project:**

A831-735002-012901-225/IP Champa

Client Sample ID: B506-28 (27-28')

Collection Date: 7/22/04 10:30:00 AM

Matrix:

Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
NELAP	4.6		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	4.6		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	4.6	J	3.6	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	4.6		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	3 7		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	4.6		ND	µg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	1.8		ND	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
NELAP	4.6	J	4.0	μg/Kg-dry	1	8/1/04 6:12:00 AM	HLR
	72.8-122		108	%REC	1	8/1/04 6:12:00 AM	HLR
	75.6-120	S	74.2	%REC	1	8/1/04 6:12:00 AM	HLR
	74.1-121		108	%REC	1	8/1/04 6:12:00 AM	HLR
82	2.8-112.8		87.9	%REC	1	8/1/04 6:12:00 AM	HLR
NELAP	0.010	J	0.008	mg/Kg-dry	1	8/2/04	JMW
COMPOUNDS E	BY GC/FI	D					
diamend of the same	11		ND	mg/Kg-dry	1	7/30/04 4:01:00 PM	SML
NELAP	1.00		8.16		1	7/27/04 3:26:00 PM	JLR
	NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP NELAP	NELAP 4.6 NELAP 4.6 NELAP 4.6 NELAP 4.6 NELAP 3.7 NELAP 4.6 NELAP 1.8 NELAP 4.6 NELAP 4.6 72.8-122 75.6-120 74.1-121 82.8-112.8 NELAP 0.010 COMPOUNDS BY GC/FI	NELAP 4.6 NELAP 4.6 NELAP 4.6 NELAP 4.6 NELAP 4.6 NELAP 3.7 NELAP 4.6 NELAP 1.8 NELAP 4.6 J 72.8-122 75.6-120 S 74.1-121 82.8-112.8 NELAP 0.010 J COMPOUNDS BY GC/FID	NELAP 4.6 ND NELAP 4.6 ND NELAP 4.6 J NELAP 4.6 ND NELAP 3.7 ND NELAP 4.6 ND NELAP 1.8 ND NELAP 4.6 J 4.0 72.8-122 108 75.6-120 S 74.2 74.1-121 108 87.9 NELAP 0.010 J 0.008 COMPOUNDS BY GC/FID 11 ND	NELAP 4.6 ND μg/Kg-dry NELAP 4.6 ND μg/Kg-dry NELAP 4.6 J 3.6 μg/Kg-dry NELAP 4.6 ND μg/Kg-dry NELAP 4.6 ND μg/Kg-dry NELAP 1.8 ND μg/Kg-dry NELAP 4.6 J 4.0 μg/Kg-dry NELAP 4.6 J 4.0 μg/Kg-dry 72.8-122 108 %REC 75.6-120 S 74.2 %REC 74.1-121 108 %REC 82.8-112.8 87.9 %REC NELAP 0.010 J 0.008 mg/Kg-dry COMPOUNDS BY GC/FID 11 ND mg/Kg-dry	NELAP 4.6 ND μg/Kg-dry 1 NELAP 4.6 ND μg/Kg-dry 1 NELAP 4.6 J 3.6 μg/Kg-dry 1 NELAP 4.6 ND μg/Kg-dry 1 NELAP 3.7 ND μg/Kg-dry 1 NELAP 4.6 ND μg/Kg-dry 1 NELAP 1.8 ND μg/Kg-dry 1 NELAP 4.6 J 4.0 μg/Kg-dry 1 72.8-122 108 %REC 1 75.6-120 S 74.2 %REC 1 74.1-121 108 %REC 1 82.8-112.8 87.9 %REC 1 NELAP 0.010 J 0.008 mg/Kg-dry 1 COMPOUNDS BY GC/FID 1 ND mg/Kg-dry 1	NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 J 3.6 μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 3.7 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 1.8 ND μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 J 4.0 μg/Kg-dry 1 8/1/04 6:12:00 AM NELAP 4.6 J 4.0 μg/Kg-dry 1 8/1/04 6:12:00 AM 72.8-122 108 %REC 1 8/1/04 6:12:00 AM 75.6-120 S 74.2 %REC 1 8/1/04 6:12:00 AM 74.1-121 108 %REC 1 8/1/04 6:12:00 AM 82.8-112.8 87.9 %REC 1 8/1/04 6:12:00 AM NELAP 0.010 J 0.008 mg/Kg-dry 1 8/2/04 COMPOUNDS BY GC/FID 11 ND mg/Kg-dry 1 7/30/04 4:01:00 PM

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070635

11-Aug-04

Lab ID: Report Date:

04070635-043

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B516-3 (2-3')

Collection Date: 7/22/04 11:40:00 AM

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.4	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0 1		79.6	%	1	7/27/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.50		28.7	mg/Kg-dry	1	8/3/04 11:13:56 AM	JMW
Barium	NELAP	1.00		134	mg/Kg-dry	2	8/3/04 9:58:58 AM	SAM
Cadmium	NELAP	0.40		1.36	mg/Kg-dry	2	8/3/04 9:58:58 AM	SAM
Chromium	NELAP	1.00		40.3	mg/Kg-dry	1	8/2/04 6:11:26 PM	JMW
Lead	NELAP	8.00		165	mg/Kg-dry	2	8/3/04 9:58:58 AM	SAM
Selenium	NELAP	4.00		< 4.00	mg/Kg-dry	1	8/2/04 6:54:24 PM	SAM
Silver	NELAP	1.00		< 1.00	mg/Kg-dry	1	8/2/04 6:54:24 PM	SAM
SW-846 3550B. 8270C SIMS.	SEMI-VOLATILE OR	GANIC C	OMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	18_1		ND	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Acenaphthylene	NELAP	18.1		40.1	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Anthracene	NELAP	18.1	J	9.7	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Benzo(a)anthracene	NELAP	18.1		42.2	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Benzo(a)pyrene	NELAP	18.1		119	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Benzo(b)fluoranthene	NELAP	18.1		130	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	18.1		50.4	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Benzo(k)fluoranthene	NELAP	18.1		36.4	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Chrysene	NELAP	18.1		62.3	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	18.1	J	14	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Fluoranthene	NELAP	18.1		27.2	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Fluorene	NELAP	18.1	J	4.0	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	18.1		46.9	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Naphthalene	NELAP	18.1	J	10	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Phenanthrene	NELAP	18.1	J	8.7	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Pyrene	NELAP	18.1		66.7	mg/Kg-dry	10	7/29/04 11:30:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	10	7/29/04 11:30:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	10	7/29/04 11:30:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	10	7/29/04 11:30:00 PM	DMH
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	1.2		5.1	μg/Kg-dry	1	8/2/04 12:35:00 PM	HLR
Toluene	NELAP	6.0	J	4.5	μg/Kg-dry	1	8/2/04 12:35:00 PM	HLR
Ethylbenzene	NELAP	6.0	J	5.4	µg/Kg-dry	1	8/2/04 12:35:00 PM	HLR
Xylenes, Total	NELAP	6_0	-	6.5	µg/Kg-dry	1	8/2/04 12:35:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070635

Lab ID:

04070635-043

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B516-3 (2-3')

Collection Date: 7/22/04 11:40:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	1	8/2/04 12:35:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		96.1	%REC	1	8/2/04 12:35:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		101	%REC	1	8/2/04 12:35:00 PM	HLR
Surr: Toluene-d8	8	2.8-112.8		98.5	%REC	1	8/2/04 12:35:00 PM	HLR
SW-846 7471A								
Mercury	NELAP	0.012		0.491	mg/Kg-dry	1	8/2/04	JMW
SW-846 9010, 9014								
Cyanide	NELAP	3.14		41.6	mg/kg-dry	1	8/4/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.53		1	7/27/04 3:27:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B516-5 (4-5')

Lab ID:

04070635-044

- -- -

Collection Date: 7/22/04 12:02:00 PM

Report Date:

11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		20.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	ED. 2540 G							
Total Solids		0.1 •		79.1	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYDR	OCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	634		5410	mg/Kg-dry	100	7/28/04 11:21 00 AM	DMH
Kerosene	NELAP	634		ND	mg/Kg-dry	100	7/28/04 11:21:00 AM	DMH
Mineral Spirits	NELAP	634		ND	mg/Kg-dry	100	7/28/04 11:21:00 AM	DMH
Motor Oil	NELAP	634		ND	mg/Kg-dry	100	7/28/04 11:21 00 AM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	100	7/28/04 11:21,00 AM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUR	DS BY GC	/MS			
Acenaphthene	NELAP	1.95		7.50	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Acenaphthylene	NELAP	1.95		4.97	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Anthracene	NELAP	1.95		3.75	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Benzo(a)anthracene	NELAP	1.95		7.19	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Benzo(a)pyrene	NELAP	1.95		15.5	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Benzo(b)fluoranthene	NELAP	1.95		13.3	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	1.95		4.98	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Benzo(k)fluoranthene	NELAP	1.95		4.25	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Chrysene	NELAP	1.95		8.45	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	1.95	J	1.3	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Fluoranthene	NELAP	1.95		7.63	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Fluorene	NELAP	1.95		5.51	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.95		4.47	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Naphthalene	NELAP	1.95		23.9	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Phenanthrene	NELAP	1.95		11.6	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Pyrene	NELAP	1.95		14.5	mg/Kg-dry	5	7/30/04 12:09:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		76.8	%REC	5	7/30/04 12:09:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		60.0	%REC	5	7/30/04 12:09:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		74.8	%REC	5	7/30/04 12:09:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	F ORGANIC COME	POUNDS	BY GC/N	S				
Benzene	NELAP	27.1		656	μg/Kg-dry	12.5	8/1/04 8:04:00 PM	HLR
Toluene	NELAP	135		289	μg/Kg-dry	12.5	8/1/04 8:04:00 PM	HLR
Ethylbenzene	NELAP	135		4720	μg/Kg-dry	12.5	8/1/04 8:04:00 PM	HLR
Xylenes, Total	NELAP	135		1480	μg/Kg-dry	12.5	8/1/04 8:04:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		95.6	%REC	12.5	8/1/04 8:04:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		98.5	%REC	12.5	8/1/04 8:04:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-044

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B516-5 (4-5')

Collection Date: 7/22/04 12:02:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane		74.1-121		95.6	%REC	12.5	8/1/04 8:04:00 PM	HLR
Surr: Toluene-d8	82	74.1-121 82.8-112.8		101	%REC	12.5	8/1/04 8:04:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B516-5D (4-5')

Lab ID:

04070033

Collection Date: 7/22/04 12:05:00 PM

Report Date:

04070635-045 11-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		21.8	%	4	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		78.2	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL PI	ETROLEUM HYDR	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	63.8		2000 #	mg/Kg-dry	10	7/27/04 2:53:00 PM	DMH
Kerosene	NELAP	63.8		ND	mg/Kg-dry	10	7/27/04 2:53:00 PM	DMH
Mineral Spirits	NELAP	63.8		ND	mg/Kg-dry	10	7/27/04 2:53:00 PM	DMH
Motor Oil	NELAP	63.8		ND	mg/Kg-dry	10	7/27/04 2:53:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140		102	%REC	10	7/27/04 2:53:00 PM	DMH
SW-846 3550B, 8270C SIMS, SE	MI-VOLATILE OF	GANIC C	COMPOUR	IDS BY GC	/MS			
Acenaphthene	NELAP	2.41		3.27	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Acenaphthylene	NELAP	2.41		3.69	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Anthracene	NELAP	2.41		2.67	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Benzo(a)anthracene	NELAP	2.41		7.73	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Benzo(a)pyrene	NELAP	2.41		15.4	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Benzo(b)fluoranthene	NELAP	2.41		14.3	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Benzo(g,h,i)perylene	NELAP	2.41		5.61	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Benzo(k)fluoranthene	NELAP	2.41		4.07	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Chrysene	NELAP	2.41		8.08	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Dibenzo(a,h)anthracene	NELAP	2.41	J	1.5	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Fluoranthene	NELAP	2.41		7.11	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Fluorene	NELAP	2.41		3.25	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	2.41		4.99	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Naphthalene	NELAP	2.41		9.25	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Phenanthrene	NELAP	2.41		7.08	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Pyrene	NELAP	2.41		14.2	mg/Kg-dry	10	7/30/04 12:48:00 AM	DMH
Surr: 2-Fluorobiphenyl		10-130		77.9	%REC	10	7/30/04 12:48:00 AM	DMH
Surr: Nitrobenzene-d5		10-130		67.7	%REC	10	7/30/04 12:48:00 AM	DMH
Surr: p-Terphenyl-d14		10-130		79.9	%REC	10	7/30/04 12:48:00 AM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	29.0		752	μg/Kg-dry	12.5	8/1/04 8:36:00 PM	HLR
Toluene	NELAP	145		199	μg/Kg-dry	12.5	8/1/04 8:36:00 PM	HLR
Ethylbenzene	NELAP	580		8490	μg/Kg-dry	50	8/2/04 1:07:00 PM	HLR
Xylenes, Total	NELAP	145		1670	μg/Kg-dry	12.5	8/1/04 8:36:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		94.5	%REC	12.5	8/1/04 8:36:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.9	%REC	12.5	8/1/04 8:36:00 PM	HLR

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070033

Report Date:

04070635-045 11-Aug-04 Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B516-5D (4-5')

Collection Date: 7/22/04 12:05:00 PM

Analyses	Certification RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	74.1-121		95.9	%REC	12.5	8/1/04 8:36:00 PM	HLR
Surr: Toluene-d8	82.8-112.8	74.1-121 82.8-112.8		%REC	12.5	8/1/04 8:36:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

11-Aug-04

Client Sample ID: B516-14 (13-14')

Lab ID:

Collection Date: 7/22/04 1:35:00 PM

Report Date:

04070635-046

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.1	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		87.9	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	0.570		1.94	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Acenaphthylene	NELAP	0.570		2.75	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Anthracene	NELAP	0.570		5.96	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Benzo(a)anthracene	NELAP	0.570		3.03	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Benzo(a)pyrene	NELAP	0.570		3.61	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.570		2.50	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.570		1.19	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.570		0.851	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Chrysene	NELAP	0.570		2.85	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.570	J	0.40	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Fluoranthene	NELAP	0.570		7.32	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Fluorene	NELAP	0.570		6.76	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.570		1.09	mg/Kg-dry	5	7/30/04 5:32:00 PM	DMH
Naphthalene	NELAP	11.4		126	mg/Kg-dry	100	8/2/04 12:26:00 PM	DMH
Phenanthrene	NELAP	11.4		18.0	mg/Kg-dry	100	8/2/04 12:26:00 PM	DMH
Pyrene	NELAP	8.54		9.53	mg/Kg-dry	100	8/2/04 12:26:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		54.7	%REC	5	7/30/04 5:32:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		48.9	%REC	5	7/30/04 5:32:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		74.7	%REC	5	7/30/04 5:32:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	90.9		5450	μg/Kg-dry	50	8/2/04 1:38:00 PM	HLR
Toluene	NELAP	454		1180	μg/Kg-dry	50	8/2/04 1:38:00 PM	HLR
Ethylbenzene	NELAP	454		11400	μg/Kg-dry	50	8/2/04 1:38:00 PM	HLR
Xylenes, Total	NELAP	454		25300	μg/Kg-dry	50	8/2/04 1:38:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		96.5	%REC	50	8/2/04 1:38:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		99.3	%REC	50	8/2/04 1:38:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.1	%REC	50	8/2/04 1:38:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		101	%REC	50	8/2/04 1:38:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B516-24 (23-24')

Lab ID:

04070635-047

Collection Date: 7/22/04 1:50:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.4	%	11	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		89.6	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	COMPOUN	DS BY GC	/MS			
Acenaphthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Acenaphthylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Benzo(a)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Benzo(a)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Chrysene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Fluoranthene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Fluorene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.113		ND	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Naphthalene	NELAP	0-113	J	0.057	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Phenanthrene	NELAP	0.113	J	0.018	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Pyrene	NELAP	0.113	J	0.012	mg/Kg-dry	1	7/29/04 12:01:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		65.1	%REC	1	7/29/04 12:01:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		55.6	%REC	1	7/29/04 12:01:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		81.5	%REC	1	7/29/04 12:01:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	0.8	J	0.7	μg/Kg-dry	1	8/1/04 9:39:00 PM	HLR
Toluene	NELAP	4.0	J	1.1	μg/Kg-dry	1	8/1/04 9:39:00 PM	HLR
Ethylbenzene	NELAP	4.0		ND	μg/Kg-dry	1	8/1/04 9:39:00 PM	HLR
Xylenes, Total	NELAP	4.0	J	1.5	μg/Kg-dry	1	8/1/04 9:39:00 PM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		100	%REC	1	8/1/04 9:39:00 PM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		95.0	%REC	1	8/1/04 9:39:00 PM	HLR
Surr: Dibromofluoromethane		74.1-121		99.7	%REC	1	8/1/04 9:39:00 PM	HLR
Surr: Toluene-d8	82	2.8-112.8		100	%REC	1	8/1/04 9:39:00 PM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

Work Order:

04070635

Client Sample ID: B514-3 (2-3')

Lab ID:

04070635-048

Collection Date: 7/22/04 2:20:00 PM

Report Date:

11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		12.4	%	1	7/27/04	JRS
STANDARD METHODS 18TH	ED. 2540 G							
Total Solids		0.1		87.6	%	1	7/27/04	JRS
SW-846 3050B, 6010B, META	LS BY ICP							
Arsenic	NELAP	2.40		11.3	mg/Kg-dry	1	8/3/04 11:15:53 AM	JMW
Barium	NELAP	0.48		128	mg/Kg-dry	1	8/2/04 7:00:13 PM	SAM
Cadmium	NELAP	0.19		0.29	mg/Kg-dry	1	8/2/04 7:00:13 PM	SAM
Chromium	NELAP	0.96		15.7	mg/Kg-dry	1	8/2/04 6:14:26 PM	JMW
Lead	NELAP	3.85		113	mg/Kg-dry	1	8/2/04 7:00:13 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 7:00:13 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 7:00:13 PM	SAM
SW-846 3550B, 8270C, SEMI-	VOLATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
1,2-Dichlorobenzene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
1,3-Dichlorobenzene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
1,4-Dichlorobenzene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4,5-Trichlorophenol	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4,6-Trichlorophenol	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4-Dichlorophenol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4-Dimethylphenol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4-Dinitrophenol	NELAP	16.0		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,4-Dinitrotoluene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2,6-Dinitrotoluene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2-Chloronaphthalene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2-Chiorophenol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2-Methylnaphthalene	NELAP	5 59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2-Nitroaniline	NELAP	16.0		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
2-Nitrophenol	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
3,3'-Dichlorobenzidine	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
3-Nitroaniline	NELAP	16.0		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4,6-Dinitro-2-methylphenol	NELAP	16.0		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4-Bromophenyl phenyl ether	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4-Chloro-3-methylphenol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4-Chloroaniline	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4-Chlorophenyl phenyl ether	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
4-Nitroaniline	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Work Order:

04070635

Lab ID:

04070635-048

Report Date:

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

Client Sample ID: B514-3 (2-3')

Collection Date: 7/22/04 2:20:00 PM

Report Date. 11-Aug-04								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Acenaphthene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Acenaphthylene	NELAP	5,59	J	2.6	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Anthracene	NELAP	5.59	J	2.4	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Benzo(a)anthracene	NELAP	5.59	J	4.6	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Benzo(a)pyrene	NELAP	5.59		5.86	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Benzo(b)fluoranthene	NELAP	5.59		7.59	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Benzo(g,h,i)perylene	NELAP	5.59	J	3.8	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Benzo(k)fluoranthene	NELAP	5.59	J	2.7	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Bis(2-chloroethoxy)methane	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Bis(2-chloroethyl)ether	NELAP	7.28		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Bis(2-chloroisopropyl)ether	NELAP	5,59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Bis(2-ethylhexyl)phthalate	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Butyl benzyl phthalate	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Carbazole		7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Chrysene	NELAP	5.59	J	4.9	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Di-n-butyl phthalate	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Di-n-octyl phthalate	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Dibenzo(a,h)anthracene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Dibenzofuran	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Diethyl phthalate	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Dimethyl phthalate		5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Fluoranthene	NELAP	5.59		6.30	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Fluorene	NELAP	5.59	J	1.9	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Hexachlorobenzene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Hexachlorobutadiene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Hexachlorocyclopentadiene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Hexachloroethane	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Indeno(1,2,3-cd)pyrene	NELAP	5.59	J	3.4	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Isophorone	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
m,p-Cresol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
N-Nitroso-di-n-propylamine	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
N-Nitrosodiphenylamine	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Naphthalene	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Nitrobenzene	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
o-Cresol	NELAP	7.98		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Pentachlorophenol	NELAP	31.9		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

11-Aug-04

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

Report Date:

04070635

Client Sample ID: B514-3 (2-3')

Collection Date: 7/22/04 2:20:00 PM

Lab ID:

04070635-048

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	5.59		6.52	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Phenol	NELAP	5.59		ND	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Pyrene	NELAP	7.98		8.53	mg/Kg-dry	5	8/2/04 7:49:00 PM	SML
Surr: 2,4,6-Tribromophenol		31-123		87.5	%REC	5	8/2/04 7:49:00 PM	SML
Surr: 2-Fluorobiphenyl		14.6-132		101	%REC	5	8/2/04 7:49:00 PM	SML
Surr: 2-Fluorophenol		27-111		85.2	%REC	5	8/2/04 7:49:00 PM	SML
Surr: Nitrobenzene-d5		28.9-113		94.7	%REC	5	8/2/04 7:49:00 PM	SML
Surr: p-Terphenyl-d14		25-144		101	%REC	5	8/2/04 7:49:00 PM	SML
Surr: Phenol-d5		33.7-123		102	%REC	5	8/2/04 7:49:00 PM	SML
SW-846 5035, 8260B, VOLAT	ILE ORGANIC COM	POUNDS	BY GC/M	S				
1,1,1-Trichloroethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,1,2-Trichloroethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,1-Dichloroethane	NELAP	5,9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,1-Dichloroethene	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,2-Dichloroethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
1,2-Dichloropropane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
2-Butanone	NELAP	59.1		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
2-Hexanone	NELAP	59.1		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
4-Methyl-2-pentanone	NELAP	59.1		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Acetone	NELAP	59.1		126	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Benzene	NELAP	1.2		32.6	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Bromodichloromethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Bromoform	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Bromomethane	NELAP	11.8		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Carbon disulfide	NELAP	5.9		10.9	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Carbon tetrachloride	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Chlorobenzene	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Chloroethane	NELAP	11.8		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Chloroform	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Chloromethane	NELAP	11.8		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	4.7		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Dibromochloromethane	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Ethylbenzene	NELAP	5.9		17.4	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Methyl tert-butyl ether	NELAP	2.4		ND	µg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Methylene chloride	NELAP	5.9	J	1.6	µg/Kg-dry	1	8/1/04 6:43:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

04070635

WorkOrder: Lab ID:

04070635-048

Report Date:

11-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: B514-3 (2-3')

Collection Date: 7/22/04 2:20:00 PM

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	5.9	J	3.2	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Tetrachloroethene	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Toluene	NELAP	5.9		10.3	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	5.9		ND	µg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	4.7		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Trichloroethene	NELAP	5.9		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Vinyl chloride	NELAP	2.4		ND	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Xylenes, Total	NELAP	5.9		25.4	μg/Kg-dry	1	8/1/04 6:43:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		118	%REC	1	8/1/04 6:43:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	69.7	%REC	1	8/1/04 6:43:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121	S	122	%REC	1	8/1/04 6:43:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8	S	82.6	%REC	1	8/1/04 6:43:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.110		4.20	mg/Kg-dry	10	8/2/04	JMW
SW-846 8015, MISCELLANEOU	US COMPOUNDS E	BY GC/FII	D					
n-Butanol		11		ND	mg/Kg-dry	1	7/30/04 4:17:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.57		16.6	mg/kg-dry	1	8/3/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.83		1	7/27/04 4:04:00 PM	JLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-3D (2-3')

Lab ID:

Collection Date: 7/22/04 2:22:00 PM

Report Date:

04070635-049 11-Aug-04

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		16.2	%	4	7/27/04	JRS
STANDARD METHODS 18TH ED). 2540 G							
Total Solids		0.1		83.8	%	1	7/27/04	JRS
SW-846 3050B, 6010B, METALS	BY ICP							
Arsenic	NELAP	2.40		13.4	mg/Kg-dry	1	8/3/04 11:17:50 AM	JMW
Barium	NELAP	0.48		134	mg/Kg-dry	1	8/2/04 7:05:32 PM	SAM
Cadmium	NELAP	0.19		0.45	mg/Kg-dry	1	8/2/04 7:05:32 PM	SAM
Chromium	NELAP	0.96		20.9	mg/Kg-dry	1	8/2/04 6:17:24 PM	JMW
Lead	NELAP	3.85		208	mg/Kg-dry	1	8/2/04 7:05:32 PM	SAM
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	8/2/04 7:05:32 PM	SAM
Silver	NELAP	0.96		< 0.96	mg/Kg-dry	1	8/2/04 7:05:32 PM	SAM
SW-846 3550B, 8270C, SEMI-VC	LATILE ORGANIC	COMP	OUNDS B	Y GC/MS				
1,2,4-Trichlorobenzene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
1,2-Dichlorobenzene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
1,3-Dichlorobenzene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
1,4-Dichlorobenzene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4,5-Trichlorophenol	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4,6-Trichlorophenol	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4-Dichlorophenol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4-Dimethylphenol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4-Dinitrophenol	NELAP	24.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,4-Dinitrotoluene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2,6-Dinitrotoluene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2-Chloronaphthalene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2-Chlorophenol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2-Methylnaphthalene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2-Nitroaniline	NELAP	24.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
2-Nitrophenol	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
3,3'-Dichlorobenzidine	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
3-Nitroaniline	NELAP	24.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4,6-Dinitro-2-methylphenol	NELAP	24.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4-Bromophenyl phenyl ether	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4-Chloro-3-methylphenol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4-Chloroaniline	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4-Chlorophenyl phenyl ether	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
4-Nitroaniline	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

Client Sample ID: B514-3D (2-3')

Lab ID:

04070635

11-Aug-04

Collection Date: 7/22/04 2:22:00 PM

Report Date:

04070635-049

SOLID Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
4-Nitrophenol	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Acenaphthene	NELAP	8.40	J	5.1	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Acenaphthylene	NELAP	8.40	J	5.1	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Anthracene	NELAP	8.40	J	7.1	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Benzo(a)anthracene	NELAP	8.40		10.7	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Benzo(a)pyrene	NELAP	8.40		11.2	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Benzo(b)fluoranthene	NELAP	8.40		13.5	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Benzo(g,h,i)perylene	NELAP	8.40		11.0	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Benzo(k)fluoranthene	NELAP	8.40	J	4.2	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Bis(2-chloroethoxy)methane	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Bis(2-chloroethyl)ether	NELAP	10.9		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Bis(2-chloroisopropyl)ether	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Bis(2-ethylhexyl)phthalate	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Butyl benzyl phthalate	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Carbazole		12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Chrysene	NELAP	8.40		11.5	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Di-n-butyl phthalate	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Di-n-octyl phthalate	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Dibenzo(a,h)anthracene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Dibenzofuran	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Diethyl phthalate	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Dimethyl phthalate		8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Fluoranthene	NELAP	8.40		17.1	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Fluorene	NELAP	8.40	J	6.0	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Hexachlorobenzene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Hexachlorobutadiene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Hexachlorocyclopentadiene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Hexachloroethane	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Indeno(1,2,3-cd)pyrene	NELAP	8.40		8.48	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Isophorone	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
m,p-Cresol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
N-Nitroso-di-n-propylamine	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
N-Nitrosodiphenylamine	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Naphthalene	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Nitrobenzene	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
o-Cresol	NELAP	12.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Pentachlorophenol	NELAP	48.0		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-3D (2-3')

Lab ID:

11-Aug-04

Report Date:

04070635-049

Collection Date: 7/22/04 2:22:00 PM

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Phenanthrene	NELAP	8.40		21.1	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Phenol	NELAP	8.40		ND	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Pyrene	NELAP	12.0		22.5	mg/Kg-dry	10	8/3/04 11:09:00 AM	SML
Surr: 2,4,6-Tribromophenol		31-123		107	%REC	10	8/3/04 11:09:00 AM	SML
Surr: 2-Fluorobiphenyl		14.6-132		131	%REC	10	8/3/04 11:09:00 AM	SML
Surr: 2-Fluorophenol		27-111	S	115	%REC	10	8/3/04 11:09:00 AM	SML
Surr: Nitrobenzene-d5		28.9-113	S	134	%REC	10	8/3/04 11:09:00 AM	SML
Surr: p-Terphenyl-d14		25-144		131	%REC	10	8/3/04 11:09:00 AM	SML
Surr: Phenol-d5		33.7-123	S	131	%REC	10	8/3/04 11:09:00 AM	SML
SW-846 5035, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/N	S				
1,1,1-Trichloroethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,1,2,2-Tetrachloroethane	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,1,2-Trichloroethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,1-Dichloroethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,1-Dichloroethene	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,2-Dichloroethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
1,2-Dichloropropane	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
2-Butanone	NELAP	59.5		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
2-Hexanone	NELAP	59.5		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
4-Methyl-2-pentanone	NELAP	59.5		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Acetone	NELAP	59.5		120	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Benzene	NELAP	1.2		19.2	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Bromodichloromethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Bromoform	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Bromomethane	NELAP	11.9		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Carbon disulfide	NELAP	6.0	J	5.9	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Carbon tetrachloride	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Chlorobenzene	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Chloroethane	NELAP	11.9		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Chloroform	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Chloromethane	NELAP	11.9		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
cis-1,2-Dichloroethene	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
cis-1,3-Dichloropropene	NELAP	4.8		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Dibromochloromethane	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Ethylbenzene	NELAP	6.0		8.0	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Methyl tert-butyl ether	NELAP	2.4		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Methylene chloride	NELAP	6.0	J	1.9	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-3D (2-3')

Lab ID:

Collection Date: 7/22/04 2:22:00 PM

Report Date:

04070635-049 11-Aug-04

Matrix: **SOLID**

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Styrene	NELAP	6.0	J	2.3	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Tetrachloroethene	NELAP	6.0		ND	µg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Toluene	NELAP	6.0	J	5.7	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
trans-1,2-Dichloroethene	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
trans-1,3-Dichloropropene	NELAP	4.8		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Trichloroethene	NELAP	6.0		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Vinyl chloride	NELAP	2.4		ND	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Xylenes, Total	NELAP	6.0		11.1	μg/Kg-dry	1	8/1/04 7:14:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		105	%REC	1	8/1/04 7:14:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120	S	73.8	%REC	1	8/1/04 7:14:00 AM	HLR
Surr: Dibromofluoromethane	•	74.1-121		108	%REC	1	8/1/04 7:14:00 AM	HLR
Surr: Toluene-d8	82	2.8-112.8		88.9	%REC	1	8/1/04 7:14:00 AM	HLR
SW-846 7471A								
Mercury	NELAP	0.115		4.46	mg/Kg-dry	10	8/2/04	JMW
SW-846 8015, MISCELLANEOU	JS COMPOUNDS B	Y GC/FI	D					
n-Butanol	7.	12		ND	mg/Kg-dry	1	7/30/04 4:33:00 PM	SML
SW-846 9010, 9014								
Cyanide	NELAP	0.58		18.3	mg/kg-dry	1	8/3/04	ADH
SW-846 9045C								
pH (1:1)	NELAP	1.00		7.81		1	7/27/04 4:05:00 PM	JLR

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

Work Order:

04070635

Client Sample ID: B514-8 (7-8')

Lab ID:

04070635-050

Collection Date: 7/22/04 3:30:00 PM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		22.7	%	1	7/27/04	JRS
STANDARD METHODS 18TH I	ED. 2540 G							
Total Solids		0.1		77.3	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	SEMI-VOLATILE OR	GANIC C	COMPOUN	NDS BY GC	/MS			
Acenaphthene	NELAP	12.7		48.1	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Acenaphthylene	NELAP	1.27		8.83	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Anthracene	NELAP	12.7		19.3	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Benzo(a)anthracene	NELAP	1.27		10.8	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Benzo(a)pyrene	NELAP	1.27		12.9	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Benzo(b)fluoranthene	NELAP	1.27		8.94	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	1.27		2.75	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Benzo(k)fluoranthene	NELAP	1.27		2.59	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Chrysene	NELAP	1.27		10.7	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	1.27	J	0.85	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Fluoranthene	NELAP	12.7		23.6	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Fluorene	NELAP	12.7		36.3	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	1.27		2.69	mg/Kg-dry	10	7/30/04 6:11:00 PM	DMH
Naphthalene	NELAP	12.7		105	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Phenanthrene	NELAP	12.7		71.5	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Pyrene	NELAP	12.7		33.0	mg/Kg-dry	100	8/2/04 3:18:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		63.8	%REC	10	7/30/04 6:11:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		54.0	%REC	10	7/30/04 6:11:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		85.9	%REC	10	7/30/04 6:11:00 PM	DMH
SW-846 5035, 8260B, VOLATII	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	63.0		3100	μg/Kg-dry	25	8/2/04 1:17:00 AM	HLR
Toluene	NELAP	315		446	μg/Kg-dry	25	8/2/04 1:17:00 AM	HLR
Ethylbenzene	NELAP	1260		23500	µg/Kg-dry	100	8/2/04 2:10:00 PM	HLR
Xylenes, Total	NELAP	315		19800	μg/Kg-dry	25	8/2/04 1:17:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		98.4	%REC	25	8/2/04 1:17:00 AM	HLR
Surr: 4-Bromofluorobenzene	•	75.6-120		96.8	%REC	25	8/2/04 1:17:00 AM	HLR
Surr: Dibromofluoromethane	•	74.1-121		98.7	%REC	25	8/2/04 1:17:00 AM	HLR
Surr: Toluene-d8	82	.8-112.8		101	%REC	25	8/2/04 1:17:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-17 (16-17')

Lab ID:

04070635-051

Collection Date: 7/22/04 4:10:00 PM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		9.9	%	1	7/27/04	JRS
STANDARD METHODS 18TH E	D. 2540 G							
Total Solids		0.1		90.1	%	1	7/27/04	JRS
SW-846 3550B, 8015, TOTAL F	PETROLEUM HYDI	ROCARBO	ONS (OA-	2) BY GC/F	ID			
Diesel	NELAP	1690		45900 #	mg/Kg-dry	50	8/1/04 4:42:00 PM	DMH
Kerosene	NELAP	1690		ND	mg/Kg-dry	50	8/1/04 4:42:00 PM	DMH
Mineral Spirits	NELAP	1690		ND	mg/Kg-dry	50	8/1/04 4:42:00 PM	DMH
Motor Oil	NELAP	1690		14800 #	mg/Kg-dry	50	8/1/04 4:42:00 PM	DMH
Surr: n-Tetracontane	NELAP	50.6-140	S	0	%REC	50	8/1/04 4:42:00 PM	DMH
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OF	RGANIC C	COMPOUN	NDS BY GC	MS			
Acenaphthene	NELAP	163		1490	mg/Kg-dry	250	8/2/04 1:06:00 PM	DMH
Acenaphthylene	NELAP	65.2		402	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Anthracene	NELAP	65.2		602	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Benzo(a)anthracene	NELAP	65.2		254	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Benzo(a)pyrene	NELAP	65.2		292	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Benzo(b)fluoranthene	NELAP	65.2		202	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	65.2		101	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Benzo(k)fluoranthene	NELAP	65.2	J	59	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Chrysene	NELAP	65.2		263	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	65.2	J	26	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Fluoranthene	NELAP	65.2		660	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Fluorene	NELAP	65.2		836	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	65.2		84.5	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Naphthalene	NELAP	652		7660	mg/Kg-dry	1000	8/2/04 2:38:00 PM	DMH
Phenanthrene	NELAP	163		2410	mg/Kg-dry	250	8/2/04 1:06:00 PM	DMH
Pyrene	NELAP	65.2		1030	mg/Kg-dry	100	7/30/04 4:53:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130	SD	0	%REC	100	7/30/04 4:53:00 PM	DMH
Surr: Nitrobenzene-d5		10-130	SD	0	%REC	100	7/30/04 4:53:00 PM	DMH
Surr: p-Terphenyl-d14		10-130	SD	0	%REC	100	7/30/04 4:53:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	F ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	1790		333000	μg/Kg-dry	1000	8/2/04 1:48:00 AM	HLR
Toluene	NELAP	8940		266000	μg/Kg-dry	1000	8/2/04 1:48:00 AM	HLR
Ethylbenzene	NELAP	44700		797000	μg/Kg-dry	5000	8/2/04 2:41:00 PM	HLR
Xylenes, Total	NELAP	8940		721000	μg/Kg-dry	1000	8/2/04 1:48:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		101	%REC	1000	8/2/04 1:48:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		97.7	%REC	1000	8/2/04 1:48:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-17 (16-17')

Lab ID:

04070635-051

Collection Date: 7/22/04 4:10:00 PM

Report Date:

11-Aug-04

Matrix:

SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
Surr: Dibromofluoromethane	7	74.1-121		102	%REC	1000	8/2/04 1:48:00 AM	HLR
Surr: Toluene-d8	82	82.8-112.8		101	%REC	1000	8/2/04 1:48:00 AM	HLR

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070635

Client Sample ID: B514-28 (27-28')

Lab ID:

04070635-052

Collection Date: 7/22/04 4:45:00 PM

Report Date:

11-Aug-04

Matrix: SOLID

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
ASTM D2974								
Percent Moisture		0.1		10.1	%	1	7/27/04	JRS
STANDARD METHODS 18TH B	ED. 2540 G							
Total Solids	7.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	0.1		89.9	%	1	7/27/04	JRS
SW-846 3550B, 8270C SIMS, S	EMI-VOLATILE OR	GANIC C	OMPOUN	IDS BY GC	/MS			
Acenaphthene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Acenaphthylene	NELAP	0.108		ND	mg/Kg-dry	:1	7/29/04 12:40:00 PM	DMH
Anthracene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Benzo(a)anthracene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Benzo(a)pyrene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Benzo(b)fluoranthene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Benzo(g,h,i)perylene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Benzo(k)fluoranthene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Chrysene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Dibenzo(a,h)anthracene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Fluoranthene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Fluorene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Indeno(1,2,3-cd)pyrene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Naphthalene	NELAP	0.108	J	0.085	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Phenanthrene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Pyrene	NELAP	0.108		ND	mg/Kg-dry	1	7/29/04 12:40:00 PM	DMH
Surr: 2-Fluorobiphenyl		10-130		64.1	%REC	1	7/29/04 12:40:00 PM	DMH
Surr: Nitrobenzene-d5		10-130		54.1	%REC	1	7/29/04 12:40:00 PM	DMH
Surr: p-Terphenyl-d14		10-130		75.1	%REC	1	7/29/04 12:40:00 PM	DMH
SW-846 5035, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	0.8	J	0.8	μg/Kg-dry	1	8/2/04 2:20:00 AM	HLR
Toluene	NELAP	3.8	J	1.4	μg/Kg-dry	1	8/2/04 2:20:00 AM	HLR
Ethylbenzene	NELAP	3.8	J	0.9	μg/Kg-dry	1	8/2/04 2:20:00 AM	HLR
Xylenes, Total	NELAP	3,8	J	1.8	μg/Kg-dry	1	8/2/04 2:20:00 AM	HLR
Surr: 1,2-Dichloroethane-d4		72.8-122		103	%REC	1	8/2/04 2:20:00 AM	HLR
Surr: 4-Bromofluorobenzene		75.6-120		92.4	%REC	1	8/2/04 2:20:00 AM	HLR
Surr: Dibromofluoromethane		74.1-121		102	%REC	1	8/2/04 2:20:00 AM	HLR
Surr: Toluene-d8	82	8-112.8		99.5	%REC	1	8/2/04 2:20:00 AM	HLR

APPENDIX M

CSI Groundwater Analytical Data Sheets

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

August 04, 2004

Jim Gould Philip Environmental 210 West Sand Bank Road Columbia, IL 622360230

TEL: (618) 281-7173 FAX: (618) 281-5120 NELAP Accredited #100226

RE: A831-735002-012901-225/IP Champaign

OrderNo. 04070740

Dear Jim Gould:

TEKLAB, INC received 19 samples on 7/28/04 2:00:00 PM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP/Part 186 except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

TEL: 618-344-1004

Client:

Philip Environmental

FAX: 618-344-1005

Project:

A831-735002-012901-225/IP Champaign

LabOrder:

04070740

Report Date: August 04, 2004

CASE NARRATIVE

Analytical Comments for METHOD V_BTEX_W, SAMPLE 04070740-012B, 13B, 16B: Elevated reporting limit due to matrix interference.

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

Surr - Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

M1 - Matrix interference

DNI Did Not Ignite

NELAP - IL ELAP and NELAP Accredited Field of Testing

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 112043

Lab ID:

04070740-001

Collection Date: 7/26/04 8:40:00 AM

Report Date:

04-Aug-04

Matrix: AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		92.1	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	μg/L	1	7/29/04 7:21:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/29/04 7:21:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/29/04 7:21:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/29/04 7:21:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		103	%REC	1	7/29/04 7:21:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113 3		99.0	%REC	1	7/29/04 7:21:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		102	%REC	1	7/29/04 7:21:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		103	%REC	1	7/29/04 7:21:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 102043

Lab ID:

04070740-002

Collection Date: 7/26/04 9:43:00 AM

Report Date: 04-Aug-04 Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		93.8	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/29/04 7:51:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/29/04 7:51:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/29/04 7:51:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/29/04 7:51:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		105	%REC	1	7/29/04 7:51:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		99.6	%REC	1	7/29/04 7:51:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		101	%REC	1	7/29/04 7:51:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		103	%REC	1	7/29/04 7:51:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

Report Date:

04070740

04-Aug-04

Client Sample ID: 110043

Lab ID:

04070740-003

Collection Date: 7/26/04 10:13:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0750		0.0876	mg/L	25	8/2/04	HE
Acenaphthylene		0.0375		0.0926	mg/L	25	8/2/04	HE
Anthracene	NELAP	0.00030		0.0151	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		0.00033	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		0.0121	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00750		0.00766	mg/L	25	8/2/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		0.0246	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.0150		0.0267	mg/L	25	8/2/04	HE
Pyrene	NELAP	0.00030		0.00525	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		96.2	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		15.6	μg/L	1	7/31/04 5:24:00 AM	RLH
Toluene	NELAP	5.0	J	2.3	μg/L	1	7/31/04 5:24:00 AM	RLH
Ethylbenzene	NELAP	5.0		67.5	μg/L	1	7/31/04 5:24:00 AM	RLH
Xylenes, Total	NELAP	5.0		37.3	μg/L	1	7/31/04 5:24:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		101	%REC	1	7/31/04 5:24:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	1	7/31/04 5:24:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		101	%REC	1	7/31/04 5:24:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		103	%REC	1	7/31/04 5:24:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 111043

Lab ID:

04070740-004

Collection Date: 7/26/04 10:45:00 AM

Report Date:

04-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	+	8/2/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	8/2/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	8/2/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	8/2/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	8/2/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	8/2/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	8/2/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	8/2/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	8/2/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	8/2/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	8/2/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Surr: Terphenyl-d14		62.5-135		99.4	%REC	1	8/2/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/29/04 8:53:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/29/04 8:53:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/29/04 8:53:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/29/04 8:53:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		105	%REC	1	7/29/04 8:53:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		99.4	%REC	1	7/29/04 8:53:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		102	%REC	1	7/29/04 8:53:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		102	%REC	1	7/29/04 8:53:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 109043

Lab ID:

04070740-005

Collection Date: 7/26/04 11:25:00 AM

Report Date:

04-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	8/2/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	8/2/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	8/2/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	8/2/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	8/2/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Benzo(k)fluoranthene	NELAP	0 00015		ND	mg/L	1	8/2/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	8/2/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	8/2/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	8/2/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	8/2/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	8/2/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	8/2/04	HE
Surr: Terphenyl-d14		62.5-135		96.7	%REC	1	8/2/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 5:55:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 5:55:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 5:55:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 5:55:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		94.6	%REC	1	7/31/04 5:55:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	1	7/31/04 5:55:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		96.6	%REC	1	7/31/04 5:55:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		103	%REC	1	7/31/04 5:55:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

04070740-006

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 104043

Collection Date: 7/26/04 11:27:00 AM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0 00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0 00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		95.9	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 6:26:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 6:26:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 6:26:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 6:26:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		93.2	%REC	1	7/31/04 6:26:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		105	%REC	1	7/31/04 6:26:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		96.8	%REC	1	7/31/04 6:26:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		101	%REC	1	7/31/04 6:26:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Philip Environmental

04070740

Lab ID:

04070740-007

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 108043

Collection Date: 7/26/04 2:03:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		85.4	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0	TOTAL .	ND	μg/L	1	7/31/04 6:56:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 6:56:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 6:56:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 6:56:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		94.8	%REC	1	7/31/04 6:56:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1 1-113.3		102	%REC	1	7/31/04 6:56:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		98.4	%REC	1	7/31/04 6:56:00 AM	RLH
Surr: Toluene-d8	8	34.1-114.5		102	%REC	1	7/31/04 6:56:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

Report Date:

04070740

04-Aug-04

Client Sample ID: 108943

Lab ID:

04070740-008

Collection Date: 7/26/04 2:07:00 PM

AQUEOUS Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	IS BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		0.00019	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		0.00029	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		94.2	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 7:27:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 7:27:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 7:27:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 7:27:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		94.0	%REC	1	7/31/04 7:27:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		104	%REC	1	7/31/04 7:27:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		98.6	%REC	1	7/31/04 7:27:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		102	%REC	1	7/31/04 7:27:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Project:

Lab ID:

04-Aug-04

Client Sample ID: 105043

Report Date:

04070740-009

Collection Date: 7/26/04 2:35:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0_00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		94.9	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 7:58:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 7:58:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 7:58:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 7:58:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		95.4	%REC	1	7/31/04 7:58:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	1	7/31/04 7:58:00 AM	RLH
Surr: Dibromofluoromethane	8	3.9-121.2		99.6	%REC	1	7/31/04 7:58:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		101	%REC	1	7/31/04 7:58:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

04070740-010

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: TB1

Collection Date: 7/19/04 2:30:00 PM

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 8:29:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 8:29:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 8:29:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 8:29:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		34.3-135		96.2	%REC	1	7/31/04 8:29:00 AM	RLH
Surr: 4-Bromofluorobenzene	81	.1-113.3		103	%REC	1	7/31/04 8:29:00 AM	RLH
Surr: Dibromofluoromethane	88	.9-121.2		98.0	%REC	1	7/31/04 8:29:00 AM	RLH
Surr: Toluene-d8	84	.1-114.5		101	%REC	4	7/31/04 8:29:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

04070740-011

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 106043

Collection Date: 7/26/04 2:46:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/Ĺ	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		91.0	%REC	1.	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	µg/L	1	7/31/04 8:59:00 AM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 8:59:00 AM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 8:59:00 AM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 8:59:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		97.0	%REC	1	7/31/04 8:59:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	1	7/31/04 8:59:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		98.4	%REC	1	7/31/04 8:59:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		102	%REC	1	7/31/04 8:59:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

04070740-012

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 107043

Collection Date: 7/26/04 3:20:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		0.0877	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		89.4	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	100		760	μg/L	50	7/31/04 11:56:00 AM	RLH
Toluene	NELAP	250		ND	μg/L	50	7/31/04 11:56:00 AM	RLH
Ethylbenzene	NELAP	250		ND	μg/L	50	7/31/04 11:56:00 AM	RLH
Xylenes, Total	NELAP	250	J	77	μg/L	50	7/31/04 11:56:00 AM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		95.6	%REC	50	7/31/04 11:56:00 AM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	50	7/31/04 11:56:00 AM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		98.4	%REC	50	7/31/04 11:56:00 AM	RLH
Surr: Toluene-d8	8	4.1-114.5		101	%REC	50	7/31/04 11:56:00 AM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

4070740

Client Project: A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 107943

Lab ID:

04070740-013

Collection Date: 7/26/04 3:23:00 PM

Report Date: 04-Aug-04

Matrix: AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		0.147	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		93.5	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	100		786	μg/L	50	7/31/04 12:26:00 PM	RLH
Toluene	NELAP	250		ND	μg/L	50	7/31/04 12:26:00 PM	RLH
Ethylbenzene	NELAP	250		ND	μg/L	50	7/31/04 12:26:00 PM	RLH
Xylenes, Total	NELAP	250	J	52	μg/L	50	7/31/04 12:26:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		96.8	%REC	50	7/31/04 12:26:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		102	%REC	50	7/31/04 12:26:00 PM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		99.6	%REC	50	7/31/04 12:26:00 PM	RLH
Surr: Toluene-d8	8	4.1-114.5		102	%REC	50	7/31/04 12:26:00 PM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

04070740-014

Report Date:

04-Aug-04

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 116043

Collection Date: 7/26/04 3:50:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	IS BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		97.2	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 12:56:00 PM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	7/31/04 12:56:00 PM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 12:56:00 PM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 12:56:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		96.8	%REC	1	7/31/04 12:56:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	1	7/31/04 12:56:00 PM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		100	%REC	1	7/31/04 12:56:00 PM	RLH
Surr: Toluene-d8	8	4.1-114.5		102	%REC	1	7/31/04 12:56:00 PM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

WorkOrder:

04070740

Lab ID:

Report Date:

04-Aug-04

04070740-015

Client Project:

A831-735002-012901-225/IP Champa

Client Sample ID: 113043

Collection Date: 7/26/04 4:08:00 PM

AQUEOUS Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	ICLEAR AROMATI	C HYDRO	CARBON	IS BY HPLC				
Acenaphthene	NELAP	0.00300		0.0339	mg/L	1	7/30/04	HĚ
Acenaphthylene		0.00150		0.0707	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		0.00236	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		96.1	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATII	LE ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	2.0		5.7	μg/L	1	8/2/04 9:45:00 PM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	8/2/04 9:45:00 PM	RLH
Ethylbenzene	NELAP	5.0	J	1.0	μg/L	1	8/2/04 9:45:00 PM	RLH
Xylenes, Total	NELAP	5.0	J	4.8	μg/L	1	8/2/04 9:45:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		98.4	%REC	1	8/2/04 9:45:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		98.4	%REC	1	8/2/04 9:45:00 PM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		99.2	%REC	1	8/2/04 9:45:00 PM	RLH
Surr: Toluene-d8	8	4.1-114.5		100	%REC	1	8/2/04 9:45:00 PM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 114043

Lab ID:

04070740-016

Collection Date: 7/26/04 4:40:00 PM

Report Date: 04-Aug-04

AQUEOUS Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.150		0.214	mg/L	50	8/2/04	HE
Acenaphthylene		0.0750		0.552	mg/L	50	8/2/04	HE
Anthracene	NELAP	0.00030		0.00104	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		0.00099	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		0.0206	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.150		3.65	mg/L	50	8/2/04	HE
Phenanthrene	NELAP	0.00060		0.00748	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		0.00064	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		92.4	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	100		628	μg/L	50	7/31/04 1:57:00 PM	RLH
Toluene	NELAP	250	J	120	μg/L	50	7/31/04 1:57:00 PM	RLH
Ethylbenzene	NELAP	250		868	μg/L	50	7/31/04 1:57:00 PM	RLH
Xylenes, Total	NELAP	250		425	μg/L	50	7/31/04 1:57:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		98.8	%REC	50	7/31/04 1:57:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		103	%REC	50	7/31/04 1:57:00 PM	RLH
Surr: Dibromofluoromethane	8	8-9-121.2		100	%REC	50	7/31/04 1:57:00 PM	RLH
Surr: Toluene-d8	8	4 1-114.5		102	%REC	50	7/31/04 1:57:00 PM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: 114543

Lab ID:

04070740-017

Collection Date: 7/26/04 5:05:00 PM

Report Date:

04-Aug-04

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		ND	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	.1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0 00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		93.4	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 2:27:00 PM	RLH
Toluene	NELAP	5.0	J	1.9	μg/L	1	7/31/04 2:27:00 PM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 2:27:00 PM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 2:27:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		97.8	%REC	1	7/31/04 2:27:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		101	%REC	1	7/31/04 2:27:00 PM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		99.2	%REC	1	7/31/04 2:27:00 PM	RLH
Surr: Toluene-d8	8	4.1-114.5		101	%REC	1	7/31/04 2:27:00 PM	RLH

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

04-Aug-04

Client Sample ID: 115043

Lab ID:

Report Date:

04070740-018

Collection Date: 7/26/04 5:10:00 PM

Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	ICLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		0.0135	mg/L	1	7/30/04	HE
Acenaphthylene		0.00150		0.0264	mg/L	1	7/30/04	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	7/30/04	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	7/30/04	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	7/30/04	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	7/30/04	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	7/30/04	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1	7/30/04	HE
Fluorene	NELAP	0.00030		0.00846	mg/L	1	7/30/04	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Naphthalene	NELAP	0.00300		ND	mg/L	1	7/30/04	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1	7/30/04	HE
Pyrene	NELAP	0.00030		ND	mg/L	1	7/30/04	HE
Surr: Terphenyl-d14		62.5-135		92.7	%REC	1	7/30/04	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		12.9	μg/L	1	8/2/04 10:16:00 PM	RLH
Toluene	NELAP	5.0		ND	μg/L	1	8/2/04 10:16:00 PM	RLH
Ethylbenzene	NELAP	5.0	J	1.2	μg/L	1	8/2/04 10:16:00 PM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	8/2/04 10:16:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		99.0	%REC	1	8/2/04 10:16:00 PM	RLH
Surr: 4-Bromofluorobenzene	8	1.1-113.3		100	%REC	1	8/2/04 10:16:00 PM	RLH
Surr: Dibromofluoromethane	8	8.9-121.2		100	%REC	1	8/2/04 10:16:00 PM	RLH
Surr: Toluene-d8	8	4.1-114.5		100	%REC	1	8/2/04 10:16:00 PM	RLH

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Philip Environmental

Client Project:

A831-735002-012901-225/IP Champa

WorkOrder:

04070740

Client Sample ID: TB2

Lab ID:

04070740-019

Collection Date: 7/19/04 2:30:00 PM

Report Date:

04-Aug-04

Matrix: TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	7/31/04 3:28:00 PM	RLH
Toluene	NELAP	5.0		ND	µg/L	1	7/31/04 3:28:00 PM	RLH
Ethylbenzene	NELAP	5.0		ND	μg/L	1	7/31/04 3:28:00 PM	RLH
Xylenes, Total	NELAP	5.0		ND	μg/L	1	7/31/04 3:28:00 PM	RLH
Surr: 1,2-Dichloroethane-d4		84.3-135		99.4	%REC	1	7/31/04 3:28:00 PM	RLH
Surr: 4-Bromofluorobenzene	81	.1-113.3		100	%REC	1	7/31/04 3:28:00 PM	RLH
Surr: Dibromofluoromethane	88	3.9-121.2		101	%REC	1	7/31/04 3:28:00 PM	RLH
Surr: Toluene-d8	84	1.1-114.5		101	%REC	1	7/31/04 3:28:00 PM	RLH

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

March 22, 2005

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503 FAX: (217) 355-1385 NELAP Accredited #100226

RE: CHMGP/62400674

OrderNo. 05030451

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 3/17/2005 9:05:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Director of Operations

5445 HORSESHOE LAKE ROAD COLLINSVILLE, ILLINOIS 62234

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client: Kelron Environmental Project:

CHMGP/62400674

LabOrder: 05030451 Report Date: March 22, 2005 REPORT CONTENTS

This reporting package includes the following:

13 pages	Analysis Results (this document)
1 pages	Chain of Custody
1 pages	Associated Information
1 pages	Sample Summary
NA pages	Dates Report
9 pages	QC Report
NA pages	Sub Contracted Lab Report

CASE NARRATIVE

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client: Kelron Environmental Project:

CHMGP/62400674

LabOrder: 05030451

Report Date: March 22, 2005

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 112051

Lab ID:

05030451-001

Collection Date: 3/15/2005 8:00:00 AM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	3/19/2005 8:34:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	3/19/2005 8:34:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/19/2005 8:34:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/19/2005 8:34:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/19/2005 8:34:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		94.8	%REC	1	3/19/2005 8:34:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1-113.3		96.8	%REC	1	3/19/2005 8:34:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		90.0	%REC	1	3/19/2005 8:34:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		105	%REC	1	3/19/2005 8:34:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 102051

Lab ID:

05030451-002

Collection Date: 3/15/2005 8:40:00 AM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	μg/L	1	3/19/2005 9:05:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/19/2005 9:05:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/19/2005 9:05:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/19/2005 9:05:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/19/2005 9:05:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	8	34.3-135		95.4	%REC	1	3/19/2005 9:05:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1-113.3		93.0	%REC	1	3/19/2005 9:05:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		91.2	%REC	1	3/19/2005 9:05:00 PM	GEK
Surr: Toluene-d8	84	.1-114_5		100	%REC	1	3/19/2005 9:05:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 111051

Lab ID:

05030451-003

Collection Date: 3/15/2005 9:25:00 AM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0	170	ND	μg/L	1	3/19/2005 9:36:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/19/2005 9:36:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/19/2005 9:36:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/19/2005 9:36:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/19/2005 9:36:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	+	84.3-135		97.2	%REC	1	3/19/2005 9:36:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	.1-113.3		92.2	%REC	1	3/19/2005 9:36:00 PM	GEK
Surr: Dibromofluoromethane	88	3.9-121.2		93.6	%REC	1	3/19/2005 9:36:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		102	%REC	1	3/19/2005 9:36:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 108051

Lab ID:

05030451-004

Collection Date: 3/15/2005 9:55:00 AM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1 3/	19/2005 10:07:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1 3/	19/2005 10:07:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1 3/	19/2005 10:07:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1 3/	19/2005 10:07:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1 3/	19/2005 10:07:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		95.6	%REC	1 3/	19/2005 10:07:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1.1-113_3		92.6	%REC	1 3/	19/2005 10:07:00 PM	GEK
Surr: Dibromofluoromethane	88	3.9-121.2		92.6	%REC	1 3/	19/2005 10:07:00 PM	GEK
Surr: Toluene-d8	84	1.1-114.5		103	%REC	1 3/	19/2005 10:07:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

05030451

Lab ID:

05030451-005

Report Date:

22-Mar-05

Client Project:

CHMGP/62400674

Client Sample ID 116051

Collection Date: 3/15/2005 10:32:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMI	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	3/20/2005 1:26:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/20/2005 1:26:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/20/2005 1:26:00 PM	GEK
Xylenes, Total	NELAP	5 0		ND	μg/L	1	3/20/2005 1:26:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/20/2005 1:26:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		101	%REC	1	3/20/2005 1:26:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		93.6	%REC	1	3/20/2005 1:26:00 PM	GEK
Surr: Dibromofluoromethane	88	3.9-121.2		96.8	%REC	1	3/20/2005 1:26:00 PM	GEK
Surr: Toluene-d8	84	1.1-114.5		101	%REC	1	3/20/2005 1:26:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 107051

Lab ID:

05030451-006

Collection Date: 3/15/2005 11:00:00 AM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	3/21/2005	TDN
Acenaphthylene	NELAP	0.00750		ND	mg/L	5	3/21/2005	TDN
Anthracene	NELAP	0.00030		ND	mg/L	1	3/21/2005	TDN
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	3/21/2005	TDN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	3/21/2005	TDN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	3/21/2005	TDN
Benzo(g,h,i)perylene	NELAP	0,00030		ND	mg/L	1	3/21/2005	TDN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	3/21/2005	TDN
Chrysene	NELAP	0.00045		ND	mg/L	1	3/21/2005	TDN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	3/21/2005	TDN
Fluoranthene	NELAP	0.00090		ND	mg/L	1	3/21/2005	TDN
Fluorene	NELAP	0.00030		ND	mg/L	1	3/21/2005	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	3/21/2005	TDN
Naphthalene	NELAP	0.0150		0.0532	mg/L	5	3/21/2005	TDN
Phenanthrene	NELAP	0.00060		ND	mg/L	1	3/21/2005	TDN
Pyrene	NELAP	0.00030		ND	mg/L	1	3/21/2005	TDN
Surr: Terphenyl-d14		56.3-117		71.5	%REC	1	3/21/2005	TDN
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	20.0		589	μg/L	10	3/20/2005 12:55:00 PM	GEK
Toluene	NELAP	5.0	J	4.0	μg/L	1	3/19/2005 1:21:00 PM	GEK
Ethylbenzene	NELAP	5.0		36.0	μg/L	1	3/19/2005 1:21:00 PM	GEK
Xylenes, Total	NELAP	5.0		64.1	μg/L	1	3/19/2005 1:21:00 PM	GEK
Naphthalene	NELAP	10		162	μg/L	1	3/19/2005 1:21:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		101	%REC	1	3/19/2005 1:21:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		98.2	%REC	1	3/19/2005 1:21:00 PM	GEK
Surr: Dibromofluoromethane	8	8 9-121.2		93.8	%REC	1	3/19/2005 1:21:00 PM	GEK
Surr: Toluene-d8	8	4.1-114.5		101	%REC	1	3/19/2005 1:21:00 PM	GEK

Sample Narrative

SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

Fluoranthene recovery was lower than the QC limits. The recovery in the LCS was within QC limits LCSD

Acenaphthylene did not recover due to matrix interference. MSD Acenaphthylene did not recover due to matrix interference. MS

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 114051

Collection Date: 3/15/2005 11:45:00 AM

Lab ID:

05030451-007

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0300		0.115	mg/L	10	3/21/2005	TDN
Acenaphthylene	NELAP	0.0150		ND	mg/L	10	3/21/2005	TDN
Anthracene	NELAP	0.00030		ND	mg/L	1	3/18/2005	TDN
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	3/18/2005	TDN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	3/18/2005	TDN
Benzo(b)fluoranthene	NELAP	0 00015		ND	mg/L	1	3/18/2005	TDN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	3/18/2005	TDN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	3/18/2005	TDN
Chrysene	NELAP	0.00045		ND	mg/L	1	3/18/2005	TDN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	3/18/2005	TDN
Fluoranthene	NELAP	0.00090		ND	mg/L	1	3/18/2005	TDN
Fluorene	NELAP	0.00300		0.0628	mg/L	10	3/21/2005	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	3/18/2005	TDN
Naphthalene	NELAP	1.50		5.58	mg/L	500	3/21/2005	TDN
Phenanthrene	NELAP	0.00060		0.0116	mg/L	1	3/18/2005	TDN
Pyrene	NELAP	0.00030		0.00040	mg/L	1	3/18/2005	TDN
Surr: Terphenyl-d14		56.3-117		91.9	%REC	1	3/18/2005	TDN
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	S				
Benzene	NELAP	50.0		736	µg/L	25	3/19/2005 5:28:00 PM	GEK
Toluene	NELAP	125		164	μg/L	25	3/19/2005 5:28:00 PM	GEK
Ethylbenzene	NELAP	125		1250	μg/L	25	3/19/2005 5:28:00 PM	GEK
Xylenes, Total	NELAP	125		899	μg/L	25	3/19/2005 5:28:00 PM	GEK
Naphthalene	NELAP	1000		8780	µg/L	100	3/20/2005 11:53:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		101	%REC	25	3/19/2005 5:28:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	31.1-113.3		98.4	%REC	25	3/19/2005 5:28:00 PM	GEK
Surr: Dibromofluoromethane	8	88.9-121.2		96.0	%REC	25	3/19/2005 5:28:00 PM	GEK
Surr: Toluene-d8	8	34.1-114.5		105	%REC	25	3/19/2005 5:28:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 114951

Lab ID:

05030451-008

Collection Date: 3/15/2005 11:47:00 AM

Report Date: 22-Mar-05 Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0300		0.101	mg/L	10	3/21/2005	TDN
Acenaphthylene	NELAP	0.0150		ND	mg/L	10	3/21/2005	TDN
Anthracene	NELAP	0 00030		ND	mg/L	1	3/18/2005	TDN
Benzo(a)anthracene	NELAP	0.00009		0.00020	mg/L	1	3/18/2005	TDN
Benzo(a)pyrene	NELAP	0 00012		0.00014	mg/L	1	3/18/2005	TDN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	3/18/2005	TDN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	3/18/2005	TDN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	3/18/2005	TDN
Chrysene	NELAP	0.00045		ND	mg/L	1	3/18/2005	TDN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	3/18/2005	TDN
Fluoranthene	NELAP	0 00090		0.00094	mg/L	1	3/18/2005	TDN
Fluorene	NELAP	0.00300		0.0484	mg/L	10	3/21/2005	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	3/18/2005	TDN
Naphthalene	NELAP	1.50		4.55	mg/L	500	3/21/2005	TDN
Phenanthrene	NELAP	0.00060		0.0110	mg/L	1	3/18/2005	TDN
Pyrene	NELAP	0.00030		0.00066	mg/L	1	3/18/2005	TDN
Surr: Terphenyl-d14		56.3-117		98.6	%REC	1	3/18/2005	TDN
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	50.0		726	μg/L	25	3/19/2005 5:59:00 PM	GEK
Toluene	NELAP	125		163	µg/L	25	3/19/2005 5:59:00 PM	GEK
Ethylbenzene	NELAP	125		1240	µg/L	25	3/19/2005 5:59:00 PM	GEK
Xylenes, Total	NELAP	125		920	μg/L	25	3/19/2005 5:59:00 PM	GEK
Naphthalene	NELAP	1000		7570	µg/L	100	3/20/2005 12:24:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		97.6	%REC	25	3/19/2005 5:59:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		97.6	%REC	25	3/19/2005 5:59:00 PM	GEK
Surr: Dibromofluoromethane	8	8.9-121 2		89.6	%REC	25	3/19/2005 5:59:00 PM	GEK
Surr: Toluene-d8	8	4.1-114.5		103	%REC	25	3/19/2005 5:59:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/62400674

WorkOrder:

05030451

Client Sample ID 115051

Lab ID:

05030451-009

Collection Date: 3/15/2005 12:48:00 PM

Report Date:

22-Mar-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		5.2	μg/L	1	3/20/2005 8:08:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/20/2005 8:08:00 PM	GEK
Ethylbenzene	NELAP	5 0		ND	µg/L	1	3/20/2005 8:08:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/20/2005 8:08:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/20/2005 8:08:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	;	84.3-135		102	%REC	1	3/20/2005 8:08:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	.1-113.3		96.8	%REC	1	3/20/2005 8:08:00 PM	GEK
Surr: Dibromofluoromethane	88	3.9-121.2		96.4	%REC	1	3/20/2005 8:08:00 PM	GEK
Surr: Toluene-d8	84	1-114.5		106	%REC	1	3/20/2005 8:08:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

05030451

Lab ID:

05030451-010

Report Date:

22-Mar-05

Client Project:

CHMGP/62400674

Client Sample ID Trip Blank

Collection Date: 2/23/2005 9:30:00 AM

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	1S				
Benzene	NELAP	2.0	H	ND	μg/L	1 3/	19/2005 12:50:00 PM	GEK
Toluene	NELAP	5.0	H	ND	μg/L	1 3/	19/2005 12:50:00 PM	GEK
Ethylbenzene	NELAP	5,0	H	ND	μg/L	1 3/	19/2005 12:50:00 PM	GEK
Xylenes, Total	NELAP	5.0	Н	ND	μg/L	1 3/	19/2005 12:50:00 PM	GEK
Naphthalene	NELAP	10	Н	ND	μg/L	1 3/	19/2005 12:50:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135	H	98.2	%REC	1 3/	19/2005 12:50:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3	H	93.0	%REC	1 3/	19/2005 12:50:00 PM	GEK
Surr: Dibromofluoromethane	88	8.9-121.2	H	90.8	%REC	1 3/	19/2005 12:50:00 PM	GEK
Surr: Toluene-d8	84	4.1-114.5	H	103	%REC	1 3/	19/2005 12:50:00 PM	GEK

Sample Narrative

SW-846 5030 Voa Prep Aqueous

PREP

The prep HoldTime was exceeded by 10.1 days

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/62400674

Lab Order:

05030451

Date Received:

3/17/2005 9:05:00 AM

DATES REPORT

Date: 22-Mar-05

Sample 1D	Client Sample ID	Collection Date Matrix Test Name	TCLP Date Prep Date	Analysis Date
05030451-001A	112051	3/15/2005 Groundwater BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
05030451-002A	102051	BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
05030451-003A	111051	BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
05030451-004A	108051	BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
05030451-005A	116051	BTEX, Aqueous, by GC/MS	3/20/2005	3/20/2005
05030451-006A	107051	PNAs, Aqueous, by HPLC	3/21/2005	3/21/2005
		PNAs, Aqueous, by HPLC	3/21/2005	3/21/2005
05030451-006B		BTEX, Aqueous, by GC/MS	3/20/2005	3/20/2005
		BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
		BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
		BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
05030451-007A	114051	PNAs, Aqueous, by HPLC	3/18/2005	3/21/2005
		PNAs, Aqueous, by HPLC	3/18/2005	3/21/2005
		PNAs, Aqueous, by HPLC	3/18/2005	3/18/2005
05030451-007B		BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
		BTEX, Aqueous, by GC/MS	3/20/2005	3/20/2005
05030451-008A	114951	PNAs, Aqueous, by HPLC	3/18/2005	3/18/2005
		PNAs, Aqueous, by HPLC	3/18/2005	3/21/2005
		PNAs, Aqueous, by HPLC	3/18/2005	3/21/2005
05030451-008B		BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
		BTEX, Aqueous, by GC/MS	3/20/2005	3/20/2005
05030451-009A	115051	BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005
		BTEX, Aqueous, by GC/MS	3/20/2005	3/20/2005
05030451-010A	Trip Blank	2/23/2005 Trip Blank BTEX, Aqueous, by GC/MS	3/19/2005	3/19/2005

Kelron Environmental 05030451 CLIENT:

Work Order:

CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

Date: 22-Mar-05

TestCode: SV 8310S W

Sample ID: MB-24516	SampType: MBLK	LK	TestCode	TestCode: SV_8310S_W		Units: mg/L	Prep Date:	e: 3/18/2005	05	Run ID: HP	Run ID: HPLC INST. C 050318A	50318A
Client ID: ZZZZZ	Batch ID: 24516	16	TestN	TestNo: SW8310			Analysis Date:	e: 3/18/2005	05	SeqNo: 956981	1981	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	Q	0.001	0.00300									
Acenaphthylene	N	0.0005	0,00150									
Anthracene	QN	0,0001	0.00030									
Benzo(a)anthracene	QN	0.00003	0.0000									
Benzo(a)pyrene	QN	0.00004	0,00012									
Benzo(b)fluoranthene	QN	0.00005	0,00015									
Benzo(g,h,i)perylene	QN	0,0001	0,00030									
Benzo(k)fluoranthene	QN	0.00005	0,00015									
Chrysene	QN	0.00015	0.00045									
Dibenzo(a,h)anthracene	QN	0.00006	0.00018									
Fluoranthene	QN	0.0003	0.00090									
Fluorene	QN	0.0001	0.00030									
Indeno(1,2,3-cd)pyrene	QN	0.0001	0.00030									
Naphthalene	QN	0.001	0.00300									
Phenanthrene	QN	0.0002	09000.0									
Pyrene	QN	0.0001	0.00030									
Surr: Terphenyl-d14	0.00838	0	0	0.01	0	83.8	58.3	113	0	0		
Sample ID: MB-24531	SampType: MBLK	LK	TestCode	TestCode: SV_8310S_W		Units: mg/L	Prep Date:	e: 3/21/2005	05	Run ID: HP	Run ID: HPLC INST. C_050321A)50321A
Client ID: ZZZZZ	Batch ID: 24531	131	TestN	TestNo: SW8310			Analysis Date:	e: 3/21/2005	05	SeqNo: 958117	3117	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	QN	0.001	0.00300									
Acenaphthylene	QN	0.0005	0.00150									
Anthracene	QN	0.0001	0.00030									
Benzo(a)anthracene	N	0.00003	0.0000									
Benzo(a)pyrene	QN	0.00004	0,00012									
Benzo(b)fluoranthene	QN	0.00005	0.00015									
Benzo(g,h,i)perylene	QN	0.0001	0.00030									
Benzo(k)fluoranthene	Q	0.00005	0.00015									
Ousl. NOt Detected at the Reporting Limit	the Renorting Limit	S - Snike	Recovery of	S Snike Recovery outside accented recovery limits	scovery limits				NOTE: LIMS MDL and POL are adjusted for dilutions	DI and POL are	adiusted for d	lintions
	IIIC Neporung comm	O DUIN	RECOVERY OF	JISIUC ACCEPICE IN	SCOVELY HITTER			-	NOTE: CHARLES	ひし ぬいひ・人 に とく	dujustee tot e	ILLEIOTIS.

J - Analyte detected below quantitation limits Qual: ND - Not Detected at the Reporting Limit

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 1 of 9

05030451 Work Order:

CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: MB-24531	SampType: MBLK	LK	TestCode	stCode: SV_8310S_W	W Units: mg/L	mg/L	Prep Date:	te: 3/21/2005)5	Run ID: HPLC INST. C_050321A	C_050321A
Client ID: ZZZZZ	Batch ID: 24531	31	TestN	TestNo: SW8310			Analysis Date:	te: 3/21/2005	35	SeqNo: 958117	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPDLimit	t Qual
Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Surr: Terphenyl-d14	N N N N N N N N N N N N N N N N N N N	0.00015 0.00006 0.0001 0.0001 0.0002 0.0001 0.0001	0.00045 0.00018 0.00030 0.00030 0.00300 0.00300	0.01	0	72.9	58.3	113	0	0	
Sample ID: LCS-24516	SampType: LCS	S	TestCode	TestCode: SV_8310S_W	W Units: mg/L	mg/L	Prep Date:	te: 3/18/2005	35	Run ID: HPLC INST. C_050318A	C_050318A
Client ID: ZZZZZ	Batch ID: 24516	516	Testh	TestNo: SW8310			Analysis Date:	te: 3/18/2005	05	SeqNo: 956982	
Analyte	Result L	Result LIMS MDL	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	t Qual
Acenaphthene	0.00735	0.001	0.00300	0.01	0	73.5	49.8	93.3	0	0	
Acenaphthylene	0.0068	0.0005	0.00150	0.01	0	68	43.3	94.4	0	0	
Anthracene	0.00801	0.0001	0.00030	0.01	0	80.1	62.5	103	0	0	
Benzo(a)anthracene	0.00759	0.00003	0.00009	0.01	0	75.9	63.9	98.4	0	0	
Benzo(a)pyrene	0.00728	0.00004	0.00012	0.01	0	72.8	53.8	109	0	0	
Benzo(b)fluoranthene	0.00722	0.00005	0.00015	0.01	0	72.2		6.96	0	0	
Benzo(g,h,i)perylene	0.00778	0.0001	0,00030	0.01	0	77.8		107	0	0	
Benzo(k)fluoranthene	0.00741	0.00005	0.00015	0.01	0	74.1		104	0	0	
Chrysene	0.00754	0.00015	0.00045	0.01	0	75.4		2.78	0	0	
Dibenzo(a,h)anthracene	0.0075	0.00006	0.00018	0.01	0	75	63.9	100	0	0	
Fluoranthene	0.00745	0.0003	0.000000	0.01	0	74.5	63	98.6	0	0	
Fluorene	0.0071	0.0001	0.00030	0.01	0	71	46.6	92.4	0	0	
Indeno(1,2,3-cd)pyrene	0,00767	0 0001	0.00030	0.01	0	76.7	63.5	104	0	0	
Naphthalene	0.00607	0.001	0.00300	0.01	0	2 09	44.6	9.06	0	0	
Phenanthrene	0,00755	0.0002	0.00060	0.01	0	75.5	56.9	98'6	0	0	
Pyrene	0.00729	0 0001	0.00030	0.01	0	72.9	9.75	88	0	0	
Surr: Terphenyl-d14	0.00823	0	0	0.01	0	82,3	58.3	113	0	0	

J - Analyte detected below quantitation limits

CLIENT: Kelron Environmental

Work Order: 05030451

Project: CHMGP/62400674

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: LCS-24531	SampType: LCS	S	TestCode	le: SV_8310S_W	V Units: mg/L	g/L	Prep Date:	3/21/2005		Run ID: HPL	Run ID: HPLC INST. C_050321A	1A
Client ID: ZZZZZ	Batch ID: 24531	531	TestN	TestNo: SW8310			Analysis Date:	3/21/2005	16	SeqNo: 958118	118	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	RPD Ref Val	%RPD	RPDLimit Qual	
Acenaphthene	0,00545	0 001	0 00300	0.01	0	54.5	49.8	93.3	0	0		
Acenaphthylene	0.00568	0.0005	0.00150	0.01	0	56.8	43.3	94.4	0	0		
Anthracene	0.00678	0.0001	0.00030	0.01	0	8 29	62.5	103	0	0		
Benzo(a)anthracene	0,00674	0.00003	600000	0.01	0	67.4	63.9	98.4	0	0		
Benzo(a)pyrene	0,007	0.00004	0.00012	0.01	0	70	53.8	109	0	0		
Benzo(b)fluoranthene	0,00674	0.00005	0.00015	0.01	0	67.4	64.5	6.96	0	0		
Benzo(g,h,i)perylene	0.00723	0.0001	0.00030	0.01	0	72.3	63.3	107	0	0		
Benzo(k)fluoranthene	0.00706	0.00005	0.00015	0.01	0	9.07	64.1	104	0	0		
Chrysene	0.0067	0.00015	0.00045	0.01	0	29	62.2	7.76	0	0		
Dibenzo(a,h)anthracene	0.00705	0.00006	0.00018	0.01	0	70.5	63.9	100	0	0		
Fluoranthene	0.00653	0.0003	0.00000	0.01	0	65.3	63	98.6	0	0		
Fluorene	0.00589	0.0001	0.00030	0.01	0	58.9	46.6	92.4	0	0		
Indeno(1,2,3-cd)pyrene	0.00767	0.0001	0.00030	0.01	0	76.7	63.5	104	0	0		
Naphthalene	0.00558	0.001	0.00300	0.01	0	55.8	44.6	9.06	0	0		
Phenanthrene	0.00639	0.0002	0.00060	0.01	0	63.9	56.9	98.6	0	0		
Pyrene	0.00644	0.0001	0.00030	0.01	0	64.4	9'29	88	0	0		
Surr: Terphenyl-d14	0.00754	0	0	0.01	0	75.4	58.3	113	0	0		
Sample ID: LCSDUP-24516	SampType: LCSD	SD	TestCode	TestCode: SV_8310S_W	N Units: mg/L	g/L	Prep Date:	e: 3/18/2005		Run ID: HPL	Run ID: HPLC INST. C_050318A	₩ 8
Client ID: ZZZZZ	Batch ID: 24516	516	TestN	TestNo: SW8310			Analysis Date:	B: 3/18/2005	10	SeqNo: 956983	983	
Analyte	Result 1	Result LIMS MDL	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit Qual	
Acenaphthene	0.00708	0.001	0.00300	0.01	0	70.8	49.8	93.3	0.00735	3.74	26.2	
Acenaphthylene	0,00672	0.0005	0.00150	0.01	0	67.2	43.3	94.4	0.0068	1 18	25.7	
Anthracene	0.00805	0.0001	0.00030	0.01	0	80.5	62.5	103	0.00801	0.498	18.2	
Benzo(a)anthracene	0,00789	0.00003	0.00009	0.01	0	78.9	63.9	98,4	0.00759	3.88	15	
Benzo(a)pyrene	0,00842	0.00004	0.00012	0.01	0	84.2	53.8	109	0 00728	14.5	15.1	
Benzo(b)fluoranthene	0.00762	0.00005	0.00015	0.01	0	76.2	64.5	6'96	0.00722	5,39	15.8	
Benzo(g,h,i)perylene	0,00807	0.0001	0.00030	0.01	0	80.7	63.3	107	0.00778	3,66	16.4	
Benzo(k)fluoranthene	0.0077	0 00005	0.00015	0.01	0	77	64.1	104	0.00741	3.84	15,2	
Chrysene	0.0078	0.00015	0.00045	0.01	0	78	62.2	2.26	0.00754	3,39	15.9	

Page 3 of 9

NOTE: LIMS MDL and PQL are adjusted for dilutions.

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Qual: ND - Not Detected at the Reporting Limit

05030451 Work Order:

CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV 8310S W

SPK Ref Val	Sample ID: LCSDUP-24516	SampType: LCSD	SD	TestCode	e: SV_8310S_W	W Units: mg/L	ıg/L	Prep Date:	3/18/2005	35	Run ID: HPI	Run ID: HPLC INST. C_050318A	50318A
Result LIMS MDL POL SPK value SPK Ref Val %REC LowLimit HighLimit Rep I North Control		Batch ID: 24	516	TestN	o: SW8310			Analysis Date		35	SeqNo: 956983	983	
0.00779 0.00006 0.00018 0.01 0 0 77.9 63.9 63.9 100 0.00078 0.0003 0.00030 0.01 0.01 0 0 76.3 63.9 68.6 0.0 0.00078 0.0003 0.00030 0.01 0.00030 0.0	Analyte	Result 1	IMS MDE	PQL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
0.00763 0,0003 0,0003 0,011 0 0 76,3 63 98,6 0 0.00707 0,0001 0,00030 0,011 0 0 70,7 46,6 92,4 0 0.00708 0,0001 0,00030 0,011 0 0 70,7 46,6 92,4 0 0.00708 0,0001 0,00030 0,011 0 75,6 57,6 8,8 0 0.00708 0,0001 0,00030 0,011 0 75,6 57,6 8,8 0 0.0085 1 Extroder SW_8310S_W Units: mg/L Ratio HighLimit RPD 0.00651 0,0001 0,00030 0,011 0 64,7 62,3 144,6 98,6 0 0.00651 0,0005 0,0012 0,011 0 0 64,7 62,3 143,3 143 0.00651 0,0001 0,00030 0,011 0 64,7 62,3 143,8 144,9 144,4	Dibenzo(a,h)anthracene	0.00779	9000000	0.00018	0.01	0	77.9	63.9	100	0.0075	3 79	16.3	
0.00754 0.0001 0.0030 0.01 0 0 70.7 46.6 924 0.00793 0.001 0.0030 0.01 0.01 0.0 79.3 65.5 104 0.0 0.0 0.0055 0.001 0.0030 0.01 0.0 75.6 56.9 98.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Fluoranthene	0.00763	0.0003	0600000	0.01	0	76.3	63	98.6	0,00745	2.39	16.8	
0.00795 0.0001 0.0030 0.01 0 0 62.5 44.6 90.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Fluorene	0.00707	0.0001	0.00030	0.01	0	70.7	46.6	92.4	0.0071	0.423	27.5	
0.00625 0.001 0.0030 0.01 0.01 0 0.03 0 0.01 0 0.04 0 0.05 0.00 0 0.01 0 0.005 0 0.01 0 0.005 0 0.01 0 0.00 0 0.01 0 0.00 0.0	Indeno(1,2,3-cd)pyrene	0.00793	0 0001	0.00030	0.01	0	79.3	63.5	104	0.00767	3,33	15.8	
0.00756 0.0002 0.00060 0.01 0 0 756 56.9 98.6 0 0.00756 0.0001 0.00030 0.01 0.01 0 0 75.6 57.6 88 0 0.0083 0.0001 0.00030 0.01 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.0	Naphthalene	0.00625	0.001	0.00300	0.01	0	62.5	44 6	90.6	0,00607	2.92	25	
SampType: LCSD TestCode: SPK Net Notice N	Phenanthrene	0.0076	0.0002	0.00060	0.01	0	9/	56.9	98.6	0.00755	0.660	23.2	
SampType: LCSD TestCode: SPK 810S Units: mg/L Prep Date: 3/21/2006 Batch ID: 24531 TestCode: SV 8310S Units: mg/L Prep Date: 3/21/2006 Batch ID: 24531 TestNo: SW8310 Units: mg/L Analysis Date: 3/21/2006 Result IIMS MDL PQL SPK value SPK Ref Val %REC LowLinit HighLimit RPD 0.00551 0.0016 0.0016 0.016 0.01<	Pyrene	0.00756	0.0001	0.00030	0.01	0	75.6	57.6	88	0.00729	3.64	16.7	
SampType: LCSD TestCode: SV_8310S_W Units: mg/L Analysis Date: 3/21/2005 Batch ID: 24531 TestNo: SWR Ref Val %REC LowLimit HighLimit RPD 0.00597 0.001 0.0030 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.005 0.01 0.001	Surr: Terphenyl-d14	0.0083	0	0	0.01	0	83	58.3	113	0	0	20	
ZAZZ Restrict ID: 24.531 TestNo: SW8310 PREPRIATE Analysis Date: 3/21/2005 3/21/2005 Result LIMS MDL PQL SPK Value SPK Ref Val %REC LowLinit High Limit RPD e 0.00551 0.0005 0.0015 0.0015 0.001 0.0	Sample ID: LCSDUP-24531	SampType: LC	SD	TestCode	SV_8310S		ıg/L	Prep Date		35	Run ID: HP	Run ID: HPLC INST. C_050321A)50321A
Result LIMS MDL PQL SPK value SPK Ref Val %REC LowLinit HighLimit RPD e 0.00557 0.001 0.0030 0.01 0.01 59.7 49.8 93.3 0 e 0.00567 0.0005 0.00150 0.01 0.01 64.7 62.5 49.8 93.4 0 e 0.00647 0.0001 0.0005 0.001 0.001 0.01 64.7 62.5 103 94.4 e 0.0064 0.00004 0.00004 0.001 0.01 0 64.7 62.5 103 98.4 0 e 0.00652 0.00004 0.00015 0.0015 0.01 0 66.4 63.9 94.4 0 ylene 0.000664 0.00005 0.00016 0.00016 0.0017 0 66.4 64.5 96.9 0 nthene 0.00659 0.00016 0.00016 0.00016 0.00016 0.0016 0.0016 0.0016		Batch ID: 24	531	TestN	o: SW8310			Analysis Date		35	SeqNo: 958119	119	
e 0.00551 0.001 0.00300 0.011 0 59.7 49.8 93.3 0 e 0.00551 0.0005 0.00150 0.011 0 0 55.1 43.3 94.4 0 goods 0.00051 0.00030 0.011 0 0 55.1 43.3 94.4 0 goods 0.00064 0.00003 0.00009 0.01 0 0 64.7 62.5 103 e 0.00652 0.00004 0.00012 0.01 0 0 65.2 53.8 109 e 0.00654 0.00005 0.00015 0.01 0 0 65.2 53.8 109 e 0.00654 0.00005 0.00015 0.01 0 0 0 65.2 53.8 109 e 0.00657 0.00016 0.00016 0.01 0 0 0 65.9 64.1 104 e 0.00657 0.0001 0.00030 0.01 0 0 0 0 65.9 64.1 104 e 0.00657 0.0001 0.00030 0.01 0 0 0 0 65.9 65.9 64.1 104 e 0.00657 0.0001 0.00030 0.01 0 0 0 0 65.9 65.9 68.5 63.5 104 e 0.00671 0.0002 0.00060 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyte	Result 1	IMS MDL	Pol	SPK value	SPK Ref Val	%REC			RPD Ref Vai	%RPD	RPDLimit	Qual
e 0.00551 0.0005 0.00150 0.011 0 0.01 0 55.1 43.3 94.4 0 0.00647 0.0001 0.00030 0.011 0 0 64.7 62.5 103 0 acene 0.0064 0.00003 0.0009 0.01 0 0 64.7 62.5 103 0 mthene 0.00664 0.00005 0.00015 0.01 0 0 65.2 53.8 109 rylene 0.00707 0.0001 0.00030 0.01 0 0 65.9 64.1 104 0 0.00659 0.00005 0.00015 0.01 0 0 0 65.9 64.1 104 0 mthene 0.00657 0.0001 0.00030 0.01 0 65.7 63.9 100 0.00657 0.0001 0.00030 0.01 0 0 0 65.7 63.9 100 0.00556 0.0001 0.00030 0.01 0 0 0 65.7 63.9 100 0.0057 0.0001 0.00030 0.01 0 0 0 0 65.7 63.9 100 0.0057 0.0001 0.00030 0.01 0 0 0 0 65.7 63.9 104 0.0057 0.0001 0.00030 0.01 0 0 0 0 65.7 63.9 98.6 0 0.0057 0.0001 0.00030 0.01 0 0 0 65.7 63.9 98.6 0 0.0057 0.0001 0.00030 0.01 0 0 0 0 67.1 65.9 98.6 0 0.0057 0.0001 0.00030 0.01 0 0 0 0 67.1 65.9 98.6 0 0.0057 0.0001 0.00030 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acenaphthene	0.00597	0.001	0.00300	0.01	0	59.7	49.8	93.3	0.00545	9.10	26.2	
0.00647 0.0001 0.00030 0.01 0.01 0.01 64.7 62.5 103 0.03 0.0064 0.00065 0.00003 0.00009 0.01 0 64.7 62.5 109 98.4 0 e 0.00662 0.00004 0.00015 0.01 0.01 0 66.4 64.5 96.9 0 e 0.00664 0.00005 0.00015 0.01 0.01 0 65.9 64.1 104 0 ene 0.00659 0.00015 0.00015 0.001 0.01 0 65.1 63.2 97.7 0 ene 0.00657 0.00016 0.00018 0.01 0 65.1 63.9 100 0 98.6 0 0.00656 0.0001 0.00030 0.01 0 65.1 63.9 98.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>Acenaphthylene</td><td>0.00551</td><td>0.0005</td><td>0.00150</td><td>0.01</td><td>0</td><td>55.1</td><td>43.3</td><td>94.4</td><td>0.00568</td><td>3.04</td><td>25.7</td><td></td></td<>	Acenaphthylene	0.00551	0.0005	0.00150	0.01	0	55.1	43.3	94.4	0.00568	3.04	25.7	
e 0.0064 0.00003 0.0010 0.01 64 63.9 98.4 0 e 0.00652 0.00004 0.0015 0.01 0 65.2 53.8 109 e 0.00664 0.00015 0.001 0.01 0 66.4 64.5 96.9 0 e 0.006707 0.00016 0.0015 0.01 0 65.9 64.1 104 0 e 0.00659 0.00015 0.0016 0.01 0 65.9 64.1 104 0 ene 0.00657 0.00015 0.00018 0.01 0 65.7 63.9 100 0 ene 0.00657 0.0001 0.0003 0.01 0 65.7 63.9 100 0 0.00556 0.0001 0.0003 0.01 0 65.6 46.6 92.4 0 0.00572 0.001 0.0030 0.01 0 61.1 56.9 86.5 0<	Anthracene	0.00647	0.0001	0.00030	0.01	0	64.7	62.5	103	0.00678	4.68	18.2	
0.00662 0.00004 0.00012 0.01 0.01 66.2 53.8 109 0.00664 0.00065 0.00015 0.01 0.01 0 66.4 64.5 96.9 0 0.00707 0.00015 0.0015 0.01 0 70.7 63.3 107 0 0.00659 0.00016 0.00015 0.001 0.01 0 65.9 64.1 104 0 0.00657 0.00016 0.00018 0.01 0 65.7 63.9 100 0 0.00656 0.0001 0.00030 0.01 0 65.1 63.9 98.6 0 0.00556 0.0001 0.00030 0.01 0 65.1 63.5 104 0 0.00572 0.0001 0.00030 0.01 0 67.2 44.6 90.6 0 0.00611 0.00050 0.00060 0.01 0.01 0 67.2 44.6 90.6 0 0	Benzo(a)anthracene	0.0064	0.00003	0.00009	0.01	0	64	63.9	98.4	0.00674	5.18	15	
0.00664 0.00005 0.00015 0.01 0 66.4 64.5 96.9 0 0.00707 0.0007 0.0001 0.00030 0.01 0 70.7 63.3 107 0 0.00659 0.00015 0.01 0 70.7 63.9 64.1 104 0 0.00657 0.00016 0.00045 0.01 0 65.7 63.9 107 0 0.00657 0.0006 0.00018 0.01 0 65.7 63.9 100 0 0.00566 0.0001 0.00030 0.01 0 65.6 46.6 92.4 0 0.00572 0.0001 0.00030 0.01 0 73.2 63.5 104 0 0.00572 0.0001 0.00030 0.01 0 67.2 44.6 90.6 0 0.00611 0.00060 0.00060 0.01 0 61.1 56.9 98.6 0 0.00613 0.0001<	Benzo(a)pyrene	0.00652	0.00004	0.00012	0.01	0	65.2	53.8	109	0.007	7.10	15.1	
h,i)perylene 0.00707 0.0001 0.00030 0.01<	Benzo(b)fluoranthene	0.00664	0.00005	0.00015	0.01	0	66.4	64.5	6.96	0.00674	1.50	15.8	
fluoranthene 0.00659 0.000055 0.000045 0.00045 0.001	Benzo(g,h,i)perylene	0.00707	0.0001	0.00030	0.01	0	70.7	63.3	107	0.00723	2.24	16.4	
the contraction of the contracti	Benzo(k)fluoranthene	0.00659	0.00005	0.00015	0.01	0	62.9	64.1	104	0.00706	6.88	15.2	
a.h)anthracene 0.00657 0.000065 0.00018 0.01 0 65.7 63.9 100 ene 0.00621 0.0003 0.0009 0.01 0 62.1 63.9 100 2,3-cd)pyrene 0.00732 0.0001 0.00030 0.01 0 73.2 63.5 104 ene 0.00572 0.001 0.00300 0.01 0 57.2 44.6 90.6 irene 0.00611 0.00060 0.001 0.001 0.001 0 61.1 56.9 98.6 0.00613 0.0001 0.00030 0.01 0 61.1 56.9 98.6	Chrysene	0.00635	0.00015	0.00045	0.01	0	63.5	62.2	2.76	0.0067	5.36	15.9	
ene 0.00621 0.0003 0.00090 0.01 0 62.1 63 98.6 2,3-cd)pyrene 0.00556 0.0001 0.00030 0.01 0 55.6 46.6 92.4 ene 0.00732 0.0001 0.0030 0.01 0 73.2 63.5 104 irene 0.00672 0.001 0.00300 0.01 0 57.2 44.6 90.6 irene 0.00611 0.00060 0.01 0 61.1 56.9 98.6 0.00613 0.0001 0.00030 0.01 0 61.3 57.6 88	Dibenzo(a,h)anthracene	0.00657	9000000	0.00018	0.01	0	65.7	63.9	100	0.00705	7.05	16.3	
2,3-cd)pyrene 0.00556 0,0001 0,00030 0.01 0 55.6 46.6 92.4 e.e. 0.00732 0.0001 0.00030 0.01 0 73.2 63.5 104 ene 0.00572 0.001 0.00300 0.01 0 57.2 44.6 90.6 irrene 0.00611 0.00060 0.010 0 61.1 56.9 98.6 0.00613 0.0001 0.00030 0.01 0 61.3 57.6 88	Fluoranthene	0.00621	0.0003	0600000	0.01	0	62.1	63	98.6	0.00653	5.02	16.8	S
0.00732 0.0001 0.00030 0.01 0 73.2 63.5 104 0.00572 0.001 0.00300 0.01 0 57.2 44.6 90.6 0.00611 0.00060 0.01 0 61,1 56.9 98.6 0.00613 0.0001 0.00030 0.01 0 61,3 57.6 88	Fluorene	0.00556	0,0001	0.00030	0.01	0	55.6	46.6	92.4	0.00589	5.76	27.5	
0,00572 0.001 0,00300 0.01 0 57.2 44.6 90.6 0,00611 0,0002 0.0060 0.01 0 61.1 56.9 98.6 0,00613 0,0001 0,00030 0.01 0 61.3 57.6 88	Indeno(1,2,3-cd)pyrene	0.00732	0.0001	0.00030	0.01	0	73.2	63.5	104	0 00767	4.67	15.8	
0,00611 0,0002 0.00060 0.01 0 61,1 56,9 98,6 0.01 0,00013 0,0001 0,00030 0.01 0 61,3 57.6 88	Naphthalene	0,00572	0.001	0.00300	0.01	0	57.2	44.6	9.06	0.00558	2.48	25	
0,00613 0,0001 0,00030 0.01 0 61,3 57.6 88	Phenanthrene	0,00611	0.0002	0.00060	0.01	0	61,1	56.9	98.6	0,00639	4.48	23.2	
	Pyrene	0,00613	0,0001	0,00030	0.01	0	61,3	57.6	88	0.00644	4.93	16.7	
Surr: Terphenyl–d14 0.00691 0 0 0.01 0 69,1 58.3 113	Surr: Terphenyl-d14	0.00691	0	0	0.01	0	69.1	58.3	113	0	0	20	

Qual: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

NOTE: LIMS MDL and PQL are adjusted for dilutions.

CLIENT: Kelron Environmental

Work Order: 05030451

Project: CHMGP/62400674

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Client ID: 107051												
	Batch IU: 24531	31	TestN	TestNo: SW8310			Analysis Date:	3/21/2005	c,	SeqNo: 958121	121	
Analyte	Result L	Result LIMS MDL	PaL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00736	0.001	0.00300	0.0111	0	663	34.3	103	0	0		
Anthracene	0.00903	0.0001	0.00030	0.0111	0	81.4	62.5	106	0	0		
Benzo(a)anthracene	0,00873	0.00003	60000'0	0.0111	0	78.6	63.9	102	0	0		
Benzo(a)pyrene	0.00974	0.00004	0.00012	0.0111	0	7.78	53,8	109	0	0		
Benzo(b)fluoranthene	0.00848	0.00005	0.00015	0.0111	0	76.4	64.5	97.7	0	0		
Benzo(g,h,i)perylene	0.00975	0.0001	0.00030	0.0111	0	87.8	61.5	107	0	0		
Benzo(k)fluoranthene	0.00856	0.00005	0.00015	0.0111	0	77.1	64.1	105	0	0		
Chrysene	0.00861	0.00015	0.00045	0.0111	0	77.6	62.2	99.2	0	0		
Dibenzo(a,h)anthracene	0.00855	0.00006	0.00018	0.0111	0	77	63.9	100	0	0		
Fluoranthene	0.0085	0.0003	0.00000	0.0111	0	76.6	54.2	105	0	0		
Fluorene	0.00797	0.0001	0.00030	0.0111	0	71.8	30.2	6.76	0	0		
Indeno(1,2,3-cd)pyrene	0.00974	0.0001	0.00030	0.0111	0	87.7	63.5	104	0	0		
Phenanthrene	0.00852	0.0002	0.000000	0.0111	0	76.8	54.9	106	0	0		
Pyrene	0.00821	0.0001	0.00030	0.0111	0	74	57.6	93.2	0	0		
Surr: Terphenyl-d14	0.00931	0	0	0.0111	0	83.9	56.3	117	0	0		
Sample ID: 05030451-006AMS	SampType: MS		TestCode	TestCode: SV_8310S_	W Units: mg/L		Prep Date:	3/21/2005	5	Run (D: HPL	Run ID: HPLC INST. C_050321A	50321A
Client ID: 107051	Batch ID: 24531	31	TestN	TestNo: SW8310			Analysis Date:	3/21/2005	S.	SeqNo: 958125	125	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Quai
Acenaphthylene	ON NEW YORK	0.0025	0.00750	0.0111	0	0 9	36.9	109	0 0	0 0		S
Naphthalene	0.0647	0.000	00100	0.0	7860-0	0.501	1 8 1	112	0			
Sample ID: 05030451-006AMSD	SampType: MSD		TestCode	TestCode: SV_8310S_W	W Units: mg/L		Prep Date:	3/21/2005	č.	Run ID: HPL	Run ID: HPLC INST. C_050321A	50321A
Client ID: 107051	Batch ID: 24531	31	TestN	No: SW8310			Analysis Date:	3/21/2005	5	SeqNo: 958122	122	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00703	0.001	0.00300	0.0111	0	63,3	34.3	103	0.00736	4.59	40	
Anthracene	0.00882	0.0001	0.00030	0.0111	0	79.5	62.5	106	0.00903	2.35	40	
Benzo(a)anthracene	0.00852	0.00003	60000'0	0.0111	0	76.8	63.9	102	0.00873	2.43	40	
Benzo(a)pyrene	29600 0	0.00004	0.00012	0.0111	0	87.1	53.8	109	0.00974	0,721	40	

Page 5 of 9

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

05030451 Work Order: CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: 05030451-006AMSD	SampType: MSD	Q	TestCode	TestCode: SV_8310S_W	W Units: mg/L	ا۔	Prep Date:	a: 3/21/2005	05	Run ID: HPI	Run ID: HPLC INST. C 050321A	50321A
Client ID: 107051	Batch ID: 24531	531	TestN	TestNo: SW8310			Analysis Date:	3/21/2005	05	SeqNo: 958122	122	
Analyte	Result 1	Result LIMS MDL	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	0.00831	0,00005 0,00015	0.00015	0.0111	0	74.9	64.5	7.76	0.00848	2.03	40	
Benzo(g,h,i)perylene	0,00939	0.0001	0.00030	0.0111	0	84.6	61.5	107	0.00975	3.76	40	
Benzo(k)fluoranthene	0.00839	0.00005	0,00015	0.0111	0	75.6	64.1	105	0.00856	2.01	40	
Chrysene	0.00858	0.00015	0,00045	0.0111	0	77.3	62.2	99.2	0.00861	0.349	40	
Dibenzo(a,h)anthracene	0.00846	0.00006	0.00018	0,0111	0	76.2	63.9	100	0.00855	1.06	40	
Fluoranthene	0.00835	0.0003	06000'0	0.0111	0	75.2	54.2	105	0.0085	1.78	40	
Fluorene	0.00783	0.0001	0.00030	0.0111	0	70.5	30.2	6 26	0.00797	1.77	40	
Indeno(1,2,3-cd)pyrene	0.00965	0.0001	0.00030	0.0111	0	86.9	63.5	104	0.00974	0.928	40	
Phenanthrene	0.00842	0.0002	0.00060	0.0111	0	75.9	54.9	106	0.00852	1.18	40	
Pyrene	0.00801	0.0001	0.00030	0.0111	0	72.2	57.6	93.2	0.00821	2.47	40	
Surr: Terphenyl-d14	0.00952	0	0	0.0111	0	85.8	56,3	117	0	0	40	
Sample ID: 05030451-006AMSD	SampType: MSD	OS.	TestCode	TestCode: SV_8310S_W	W Units: mg/L		Prep Date:	e: 3/21/2005	105	Run ID: HPI	Run ID: HPLC INST, C_050321A)50321A
Client ID: 107051	Batch ID: 24531	531	TestN	TestNo: SW8310			Analysis Date:	e: 3/21/2005	105	SeqNo: 958126	126	
Analyte	Result	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	QN	0.0025	0.0025 0.00750	0.0111	0	0	36.9	109	0	0	40	S
Naphthalene	0 0642	0 005	0 0150	0.0111	0.0532	99.1	19.7	112	0.0647	0.776	40	

J - Analyte detected below quantitation limits

Page 6 of 9

NOTE: LIMS MDL and PQL are adjusted for dilutions

Qual: ND - Not Detected at the Reporting Limit

05030451 Work Order:

CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: LCS-A050319-1	SampType: LCS1	Test(TestCode: V_BTEX_W	TEX_W	Units µg/L	µg/L	Prep Date:	3/19/2005		Run ID: 5971 INST. A_050319A
Client ID: ZZZZZ	Batch ID: 24551	Ľ	TestNo: SM	lo: SW8260B			Analysis Date:	3/19/2005		SeqNo: 957364
Analyte	Result LIMS MDL		PQL SPK	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit Qual
Benzene	48.3	0.5	2.0	50	0	96.6	77.4	120	0	0
Toluene	50.8	-	5.0	90	0	101.6	81.6	118	0	0
Ethylbenzene	54.9	τ-	5.0	90	0	109.8	78.5	122	0	0
Naphthalene	58	2	10	90	0	116	70	130	0	0
Xylenes, Total	114	<u></u>	5.0	100	0	114	80.7	122	0	0
Surr: 1,2-Dichloroethane-d4	47.4	0	0	20	0	94.8	84,3	135	0	0
Surr: 4-Bromofluorobenzene	48.5	0	0	20	0	26	81.1	113.3	0	0
Surr: Dibromofluoromethane	47.3	0	0	20	0	94.6	88.9	121.2	0	0
Surr: Toluene-d8	48.2	0	0	20	0	96.4	84.1	114.5	0	0
Sample ID: LCS-A050320-1	SampType: LCS1	Test	TestCode: V_BTEX_W	TEX_W	Units: µg/L	µg/L	Prep Date:	3/20/2005		Run ID: 5971 INST. A_050320A
Client ID: ZZZZZ	Batch ID: 24555	Ë	TestNo: SW8260B	/8260B			Analysis Date:	3/20/2005		SeqNo: 957780
Analyte	Result LIMS MDL		PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit Qual
Benzene	48 (0.5	2.0	50	0	96	77 4	120	0	0
Toluene	53.6	<u></u>	5.0	50	0	107.2	81.6	118	0	0
Ethylbenzene	56.5	-	5.0	20	0	113	78.5	122	0	0
Naphthalene	59.1	2	10	90	0	118.2	70	130	0	0
Xylenes, Total	115	-	5.0	100	0	115	80.7	122	0	0
Surr: 1,2-Dichloroethane-d4	48	0	0	20	0	96	84.3	135	0	0
Surr: 4-Bromofluorobenzene	48.2	0	0	90	0	96.4	81.1	113,3	0	0
Surr: Dibromofluoromethane	47	0	0	20	0	94	88.9	121.2	0	0
Surr: Toluene-d8	50.2	0	0	20	0	100.4	84.1	114.5	0	0
Sample ID: MBLK-A050319-1	SampType: MBLK	Test	TestCode: V_BTEX_W	STEX_W	Units	µg/L	Prep Date:	3/19/2005		Run ID: 5971 INST, A 050319A
Client ID: ZZZZZ	Batch ID: 24551	<u> </u>	TestNo: SW8260B	/8260B			Analysis Date:	3/19/2005		SeqNo: 957365
Analyte	Result LIMS MDL		PQL SPK	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit Qual
Benzene		0.5	2.0							
Toluene	QN :	·	5.0							
Ethylbenzene	Q		5.0							

Qual: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 7 of 9

NOTE: LIMS MDL and PQL are adjusted for dilutions.

CLIENT: Kelron Environmental

Work Order: 05030451

Project: CHMGP/62400674

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: MBLK-A050319-1	SampType: MBLK		TestCode	TestCode: V_BTEX_W	/ Units: µg/L	1/1	Prep Date:	3/19/2005		Run ID: 5971 INST. A_050319A
Client ID: ZZZZZ	Batch ID: 24551		TestN	TestNo: SW8260B			Analysis Date:	3/19/2005		SeqNo: 957365
Analyte	Result LIMS MDL	MDL	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	RPD Ref Val	%RPD RPDLimit Qual
Naphthalene	O S	2 +	10							
Ayleries, Total	2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	- <	9 6	C,	C	07	8 73	125	C	C
	0.00	> (> 0		o (2 3	2 0	o (· (
Surr: 4-Bromofluorobenzene	46.2	O	0 0	50	o (92.4	81.1	113.3	0	D (
Surr: Toluene-d8	49.3 52.1	0 0	0 0		00	104.2	84.1	114.5	0	0 0
Sample ID: MBLK-A050320-1	SampType: MBLK		TestCode	TestCode: V_BTEX_W	/ Units µg/L	1/1	Prep Date:	3/20/2005		Run ID: 5971 INST. A_050320A
Client ID: ZZZZZ	Batch ID: 24555		TestN	TestNo: SW8260B			Analysis Date:	3/20/2005		SeqNo: 957781
Analyte	Result LIMS MDL	MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	RPD Ref Val	%RPD RPDLimit Qual
Benzene	QN	0.5	2.0							
Toluene	Q	_	5.0							
Ethylbenzene	QN	_	5.0							
Naphthalene	QN	7	10							
Xylenes, Total	QN	₹	5.0							
Surr: 1,2-Dichloroethane-d4	90	0	0	90	0	100	84.3	135	0	0
Surr: 4-Bromofluorobenzene	45.5	0	0	20	0	91	81.1	113.3	0	0
Surr: Dibromofluoromethane	47.5	0	0	20	0	92	88.9	1212	0	0
Surr: Toluene-d8	50.7	0	0	50	0	101-4	84_1	114.5	0	0
Sample ID: 05030451-006BMS	SampType: MS		TestCode	e: V_BTEX_W	/ Units: µg/L	3/L	Prep Date:	3/19/2005		Run ID: 5971 INST. A_050319A
Client ID: 107051	Batch ID: 24551		Testh	TestNo: SW8260B			Analysis Date:	3/19/2005		SeqNo: 957368
Analyte	Result LIMS MDL	MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	RPD Ref Val	%RPD RPDLimit Qual
Benzene	796	0.5	2.0	56	731	116.1	70.8	122	0	0
Toluene	63.5	—	5.0	56	4	106.2	77 2	117	0	0
Ethylbenzene	97.3	-	5,0	56	36	109 5	81	113	0	0
Xylenes, Total	193	_	5.0	112	64.1	115.1	80.3	116	0	0
Surr: 1,2-Dichloroethane-d4	49.2	0	0	90	0	98.4	84 3	135	0	0
Surr: 4-Bromofluorobenzene	90	0	0	20	0	100	81.1	113.3	0	0
Qual: ND - Not Detected at the Reporting Limit		- Spike I	Recovery of	S - Spike Recovery outside accepted recovery limits	recovery limits			N N	TE: LIMS MI	NOTE: LIMS MDL and PQL are adjusted for dilutions.

Page 8 of 9

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

05030451 Work Order:

CHMGP/62400674 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: 05030451-006BMS Client ID: 107051	SampType: MS Batch ID: 24551	TestCod	stCode: V_BTEX_W TestNo: SW8260B	Units: µg/L		Prep Date: Analysis Date:	te: 3/19/2005 te: 3/19/2005		Run ID: 5971 IN SeqNo: 957368	Run ID: 5971 INST, A_050319A SeqNo: 957368	0319A
Analyte	Result LIMS MDL	Pal	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	O Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane Surr: Toluene-d8	45.3 0 50.9 0	0 0	50	0 0	90.6	88.9	121.2	0 0	0 0		
Sample ID: 05030451-006BMSD SampType: MSD Client ID: 107051 Batch ID: 2455	SampType: MSD Batch ID: 24551	TestCod	stCode: V_BTEX_W TestNo: SW8260B	Units: µg/L		Prep Date: Analysis Date:	te: 3/19/2005 te: 3/19/2005		Run ID: 5971 IN SeqNo: 957369	Run ID: 5971 INST. A_050319A SeqNo: 957369	0319A
Analyte	Result LIMS MDL	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	786 0.5	2.0	56	731	98.2	70.8	122	796	1.26	15	ш
Toluene	60	5.0	56	4	100	77.2	117	63.5	5.67	15	
Ethylbenzene	92	5.0	56	36	100	81	113	97.3	5.60	15	
Xylenes, Total	188	5.0	112	64.1	110.6	80.3	116	193	2.63	15	
Surr: 1,2-Dichloroethane-d4	48.6 0	0	50	0	97.2	84.3	135	0	0	0	
Surr: 4-Bromofluorobenzene	498 0	0	50	0	9 66	81.1	113,3	0	0	0	
Surr: Dibromofluoromethane	45 0	0	50	0	90	88.9	121.2	0	0	0	
Surr: Toluene-d8	50 1 0	0	50	0	100,2	84.1	114,5	0	0	0	

J - Analyte detected below quantitation limits

NOTE: LIMS MDL and PQL are adjusted for dilutions

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

WORK ORDER SAMPLE SUMMARY

Client:

Kelron Environmental

Project:

CHMGP/62400674

Lab Order:

05030451

Date: 22-Mar-05

Date	Received:	3/17/2005
Date	IXCCCITCU.	3/1//2003

Client Sample ID	Tag Number	Collection Date
112051		3/15/2005 8:00:00 AM
102051		3/15/2005 8:40:00 AM
111051		3/15/2005 9:25:00 AM
108051		3/15/2005 9:55:00 AM
116051		3/15/2005 10:32:00 AM
107051		3/15/2005 11:00:00 AM
107051		3/15/2005 11:00:00 AM
114051		3/15/2005 11:45:00 AM
114051		3/15/2005 11:45:00 AM
114951		3/15/2005 11:47:00 AM
114951		3/15/2005 11:47:00 AM
115051		3/15/2005 12:48:00 PM
Trip Blank		2/23/2005 9:30:00 AM
	112051 102051 111051 108051 116051 107051 114051 114051 114951 114951	112051 102051 111051 108051 116051 107051 114051 114051 114951 114951

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

June 16, 2005

Stu Cravens
Kelron Environmental
1213 Dorchester
Champaign, IL 61821
TEL: (217) 390-1503
FAX: (217) 355-1385

NELAP Accredited #100226

RE: CHMGP/162363 OrderNo. 05060318

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 6/10/2005 7:40:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Director of Operations

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

05060318

Report Date: June 16, 2005

REPORT CONTENTS

This reporting package includes the following:

Analysis Results (this document)13	pages
Chain of Custody 1	pages
Associated Information	pages
Sample Summary	pages
Dates Report 1	pages
QC Report 6	pages
Sub Contracted Lab Report NA	pages

IL ELAP and NELAP Accredited - Accreditation #100226

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

05060318

Report Date: June 16, 2005

CASE NARRATIVE

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

M1 - Matrix interference

DNI Did Not Ignite

NELAP - IL ELAP and NELAP Accredited Field of Testing

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

05060318

Client Sample ID 112052

Lab ID:

05060318-001

Collection Date: 6/9/2005 7:48:00 AM

Report Date: 16-Jun-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	μg/L	1	6/12/2005 7:13:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/12/2005 7:13:00 PM	GEK
Ethylbenzene	NELAP	5 0		ND	μg/L	1	6/12/2005 7:13:00 PM	GEK
Xylenes, Total	NELAP	5 0		ND	μg/L	1	6/12/2005 7:13:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 7:13:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	1	84 3-135		99.4	%REC	1	6/12/2005 7:13:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	.1-113 3		99.4	%REC	1	6/12/2005 7:13:00 PM	GEK
Surr: Dibromofluoromethane	88	3.9-121.2		98.0	%REC	1	6/12/2005 7:13:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		97.2	%REC	1	6/12/2005 7:13:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:
WorkOrder:

Kelron Environmental

0

05060318

Lab ID:

05060318-002

Report Date:

16-Jun-05

Client Project: Cl

CHMGP/162363

Client Sample ID 102052

Collection Date: 6/9/2005 8:21:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	6/12/2005 7:48:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/12/2005 7:48:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/12/2005 7:48:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/12/2005 7:48:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 7:48:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84 3-135		96.6	%REC	1	6/12/2005 7:48:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1-113.3		99.4	%REC	1	6/12/2005 7:48:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		98.4	%REC	1	6/12/2005 7:48:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		97.0	%REC	1	6/12/2005 7:48:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

05060318

Client Sample ID 111052

Lab ID:

05060318-003

Report Date:

16-Jun-05

Collection Date: 6/9/2005 9:02:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	6/12/2005 8:23:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/12/2005 8:23:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	µg/L	1	6/12/2005 8:23:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/12/2005 8:23:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 8:23:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	8	34.3-135		93.8	%REC	1	6/12/2005 8:23:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1-113.3		97.2	%REC	1	6/12/2005 8:23:00 PM	GEK
Surr: Dibromofluoromethane	88	9-121_2		98.0	%REC	1	6/12/2005 8:23:00 PM	GEK
Surr: Toluene-d8	84	1-114.5		95.0	%REC	1	6/12/2005 8:23:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

05060318

Client Sample ID 108052

Lab ID:

05060318-004

Collection Date: 6/9/2005 9:42:00 AM

Report Date:

16-Jun-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	OUNDS	BY GC/N	S				
Benzene	NELAP	2.0	TO YELL SE	ND	μg/L	1	6/12/2005 8:58:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/12/2005 8:58:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/12/2005 8:58:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/12/2005 8:58:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 8:58:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		94.8	%REC	1	6/12/2005 8:58:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		96.6	%REC	1	6/12/2005 8:58:00 PM	GEK
Surr: Dibromofluoromethane	88	9-121.2		98.2	%REC	1	6/12/2005 8:58:00 PM	GEK
Surr: Toluene-d8	84	1.1-114.5		95.2	%REC	1	6/12/2005 8:58:00 PM	GEK

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:
WorkOrder:

Kelron Environmental

. .

05060318

Lab ID: Report Date: 05060318-005

03000318

16-Jun-05

Client Project: CHMGP/162363

Client Sample ID 116052

Collection Date: 6/9/2005 10:10:00 AM

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	µg/L	1	6/12/2005 9:34:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	6/12/2005 9:34:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/12/2005 9:34:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/12/2005 9:34:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 9:34:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		95.4	%REC	1	6/12/2005 9:34:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	.1-113.3		96.0	%REC	1	6/12/2005 9:34:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		99.6	%REC	1	6/12/2005 9:34:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		94.6	%REC	1	6/12/2005 9:34:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

05060318

Client Sample ID 107052

Lab ID:

05060318-006

Collection Date: 6/9/2005 10:34:00 AM

Report Date:

16-Jun-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Acenaphthylene	NELAP	0,00750		0.0445	mg/L	5	6/14/2005 3:01:19 PM	HE
Anthracene	NELAP	0.00030		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Benzo(a)pyrene	NELAP	0,00012		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Chrysene	NELAP	0.00045		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Fluoranthene	NELAP	0.00090		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Fluorene	NELAP	0.00030		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00150		ND	mg/L	5	6/14/2005 3:01:19 PM	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Naphthalene	NELAP	0.0150		0.0594	mg/L	5	6/14/2005 3:01:19 PM	HE
Phenanthrene	NELAP	0.00060		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Pyrene	NELAP	0.00030		ND	mg/L	1 6	/14/2005 12:47:30 PM	HE
Surr: Terphenyl-d14		53.1-120		87.2	%REC	1 6	/14/2005 12:47:30 PM	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	IS				
Benzene	NELAP	10		549	μg/L	5 6	/12/2005 11 19:00 PM	GEK
Toluene	NELAP	25.0		ND	µg/L	5 6	/12/2005 11 19:00 PM	GEK
Ethylbenzene	NELAP	25.0		27.8	μg/L	5 6	/12/2005 11 19:00 PM	GEK
Xylenes, Total	NELAP	25.0		49.2	µg/L	5 6	/12/2005 11 19:00 PM	GEK
Naphthalene	NELAP	50.0		99.4	μg/L	5 6	/12/2005 11 19:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		96.8	%REC	5 6	/12/2005 11 19:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		97.2	%REC	5 6	/12/2005 11 19:00 PM	GEK
Surr: Dibromofluoromethane	8	8.9-121 2		100	%REC	5 6	/12/2005 11 19:00 PM	GEK
Surr: Toluene-d8	8	4.1-114.5		96.8	%REC	5 6	/12/2005 11 19:00 PM	GEK

Sample Narrative

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

SAMP

Elevated reporting limit due to high levels of target and/or non-target analytes

MSD

RPD was outside of QC limit.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

05060318

Client Sample ID 114052

Lab ID:

05060318-007

Collection Date: 6/9/2005 11:20:00 AM

Report Date:

16-Jun-05

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0150		0.222	mg/L	5	6/14/2005 3:53:34 PM	HE
Acenaphthylene	NELAP	0.00750		ND	mg/L	5	6/14/2005 3:53:34 PM	HE
Anthracene	NELAP	0.00030		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Benzo(a)anthracene	NELAP	0 00009		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Chrysene	NELAP	0.00045		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Fluoranthene	NELAP	0.00090		0.00107	mg/L	1	6/14/2005 1:39:45 PM	HE
Fluorene	NELAP	0.00150		0.0641	mg/L	5	6/14/2005 3:53:34 PM	HE
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	6/14/2005 1:39:45 PM	HE
Naphthalene	NELAP	0.600		5.12	mg/L	200	6/16/2005 10:09:19 AM	HE
Phenanthrene	NELAP	0.00060		0.0102	mg/L	1	6/14/2005 1:39:45 PM	HE
Pyrene	NELAP	0.00030		0.00065	mg/L	1	6/14/2005 1:39:45 PM	HE
Surr: Terphenyl-d14		53.1-120		82.6	%REC	1	6/14/2005 1:39:45 PM	HE
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	100	1000	867	µg/L	50	6/13/2005 1:04:00 AM	GEK
Toluene	NELAP	100		152	µg/L	50	6/13/2005 1:04:00 AM	GEK
Ethylbenzene	NELAP	250		1260	μg/L	50	6/13/2005 1:04:00 AM	GEK
Xylenes, Total	NELAP	250		932	μg/L	50	6/13/2005 1:04:00 AM	GEK
Naphthalene	NELAP	500		5920	μg/L	50	6/13/2005 1:04:00 AM	GEK
Surr: 1,2-Dichloroethane-d4		84_3-135		94.8	%REC	50	6/13/2005 1:04:00 AM	GEK
Surr: 4-Bromofluorobenzene	8	1.1-113.3		98.0	%REC	50	6/13/2005 1:04:00 AM	GEK
Surr: Dibromofluoromethane	8	8.9-121.2		100	%REC	50	6/13/2005 1:04:00 AM	GEK
Surr: Toluene-d8	8	4.1-114.5		96.4	%REC	50	6/13/2005 1:04:00 AM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

05060318

16-Jun-05

Lab ID:

Report Date:

05060318-008

Client Project:

CHMGP/162363

Client Sample ID 115052

Collection Date: 6/9/2005 12:01:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	2.0		8.3	μg/L	1 6	/12/2005 10:08:00 PM	GEK
Toluene	NELAP	5.0	J	1.1	μg/L	1 6	/12/2005 10:08:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1 6	/12/2005 10:08:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1 6	/12/2005 10:08:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1 6	/12/2005 10:08:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	8	34.3-135		97.6	%REC	1 6	/12/2005 10:08:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	1-113.3		99.0	%REC	1 6	/12/2005 10:08:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		99.8	%REC	1 6	/12/2005 10:08:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		97.2	%REC	1 6	/12/2005 10:08:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder:

Kelron Environmental

05060318

03000318

Lab ID: Report Date: 05060318-009

16-Jun-05

Client Project: Cl

: CHMGP/162363

Client Sample ID 115952

Collection Date: 6/9/2005 12:02:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		8.7	μg/L	1 6/	/12/2005 10:44:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1 6/	/12/2005 10:44:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1 6/	/12/2005 10:44:00 PM	GEK
Xylenes, Total	NELAP	5_0		ND	μg/L	1 6/	/12/2005 10:44:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1 6/	/12/2005 10:44:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	3	34,3-135		94.6	%REC	1 6/	/12/2005 10:44:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	.1-113.3		97.0	%REC	1 6/	/12/2005 10:44:00 PM	GEK
Surr: Dibromofluoromethane	88	.9-121.2		101	%REC	1 6	/12/2005 10:44:00 PM	GEK
Surr: Toluene-d8	84	.1-114.5		96.4	%REC	1 6	/12/2005 10:44:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

05060318

Lab ID:

05060318-010

Report Date:

16-Jun-05

Client Project:

CHMGP/162363

Client Sample 1D Trip Blank

Collection Date: 6/3/2005 9:05:00 AM

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	6/12/2005 5:28:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/12/2005 5:28:00 PM	GEK
Ethylbenzene	NELAP	5 0		ND	μg/L	1	6/12/2005 5:28:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/12/2005 5:28:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/12/2005 5:28:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		84.3-135		96.6	%REC	1	6/12/2005 5:28:00 PM	GEK
Surr: 4-Bromofluorobenzene	81	_1-113.3		99.8	%REC	1	6/12/2005 5:28:00 PM	GEK
Surr: Dibromofluoromethane	88	9-121.2		98.0	%REC	1	6/12/2005 5:28:00 PM	GEK
Surr: Toluene-d8	84	1-114.5		96.6	%REC	1	6/12/2005 5:28:00 PM	GEK

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

CHMGP/162363

Project: Lab Order:

05060318

Date Received:

6/10/2005 7:40:00 AM

DATES REPORT

Date: 16-Jun-05

Sample ID	Client Sample ID	Collection Date Matrix To	est Name	TCLP Date	Prep Date	Analysis Date
05060318-001A	112052	6/9/2005 Groundwater E	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-002A	102052	Е	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-003A	111052	E	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-004A	108052	E	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-005A	116052	Е	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-006A	107052	Р	NAs, Aqueous, by HPLC		6/14/2005	6/14/2005
		P	PNAs, Aqueous, by HPLC		6/14/2005	6/14/2005
		Р	NAs, Aqueous, by HPLC		6/14/2005	6/14/2005
05060318-006B		Е	STEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-007A	114052	P	NAs, Aqueous, by HPLC		6/14/2005	6/14/2005
		Р	PNAs, Aqueous, by HPLC		6/14/2005	6/14/2005
		P	NAs, Aqueous, by HPLC		6/14/2005	6/16/2005
		Р	NAs, Aqueous, by HPLC		6/14/2005	6/14/2005
05060318-007B		E	BTEX, Aqueous, by GC/MS		6/12/2005	6/13/2005
05060318-008A	115052	Е	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-009A	115952	E	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005
05060318-010A	Trip Blank	6/3/2005 Trip Blank E	BTEX, Aqueous, by GC/MS		6/12/2005	6/12/2005

Kelron Environmental CLIENT:

05060318 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

Date: 16-Jun-05

TestCode: SV 8310S W

Sample ID: MB-25734	SampType: MBLK	MBLK	TestCo	TestCode: SV_8310S_W		Jnits: mg/L	Prep Dat	Prep Date: 6/14/2005		Run ID: HPLC INST. C_050614A	050614A
Client ID: ZZZZZ	Batch ID: 25734	5734	Test	TestNo: SW8310			Analysis Dat	Analysis Date: 6/14/2005		SeqNo: 1020673	
Analyte	Result 1	Result LIMS MDL	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit	Qual
Acenaphthene	QN	0.001	0.00300								
Acenaphthylene	Q	0.0005	0,00150								
Anthracene	QN	0.0001	0,00030								
Benzo(a)anthracene	QN	0.00003	6000000								
Benzo(a)pyrene	Q	0.00004	0,00012								
Benzo(b)fluoranthene	Q	0.00005	0,00015								
Benzo(g,h,i)perylene	Q	0.0001	0,00030								
Benzo(k)fluoranthene	Q	0.00005	0,00015								
Chrysene	Q	0.00015	0,00045								
Dibenzo(a,h)anthracene	QN	0.00006	0.00018								
Fluoranthene	QN	0.0003	0.00000								
Fluorene	Q	0.0001	0,00030								
Indeno(1,2,3-cd)pyrene	Q	0,0001	0,00030								
Naphthalene	Q	0.001	0,00300								
Phenanthrene	Q	0.0002	0,00060								
Pyrene	Q	0.0001	0.00030								
Surr: Terphenyl-d14	0.00849	0	0	0.01	0	84.9	59.9	111	0	0	
Sample ID: LCS-25734	SampType: LCS	SOT	TestCo	Code: SV_8310S_W	V Units: mg/L	mg/L	Prep Date:	te: 6/14/2005		Run ID: HPLC INST. C_050614A	050614A
Client ID: ZZZZZ	Batch ID: 25734	5734	Test	TestNo: SW8310			Analysis Dat	Analysis Date: 6/14/2005		SeqNo: 1020674	
Analyte	Result	Result LIMS MDL	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Vai	%RPD RPDLimit	Qual
Acenaphthene	0.00876	0.001	0.00300	0.01	0	87.6	52.4	95	0	0	
Acenaphthylene	0.00853	0,0005	0.00150	0.01	0	85.3	44.3	97,4	0	0	
Anthracene	0 00911	0.0001	0.00030	0.01	0	91.1	59.1	108	0	0	
Benzo(a)anthracene	0.00936	0.00003	0.0000	0.01	0	93.6	61.7	109	0	0	
Benzo(a)pyrene	0,00939	0.00004	0.00012	0,01	0	93.9	53.7	119	0	0	
Benzo(b)fluoranthene	0.00932	0.00005	0.00015	0.01	0	93.2	60.3	107	0	0	
Benzo(g,h,i)perylene	0.00954	0.0001	0.00030	0.01	0	95,4	59.4	115	0	0	
Benzo(k)fluoranthene	0,00942	0.00005	0.00015	0.01	0	94.2	62.6	109	0	0	

S - Spike Recovery outside accepted recovery limits

NOTE: LIMS MDL and PQL are adjusted for dilutions.

05060318 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Composition of the control		Od. 17 100	2	ומפוני	Calcode: October		Cilis, IIIght	4	1 ch Date: 01 11 100	200	ים ווויס	KUN IU. HPLC INST. C USUSTAA	441 0000
Presult LIMS MOL POL SPK value SPK Ref Val %REC LowLinni HighLinni RPD Ref Val %REC %REC Ref Val %REC %REC Ref Val %REC %REC Ref Val %REC %REC Ref Val %REC		Batch ID: 3	25734	Test	:No: SW8310			Analysis [)ate: 6/14/2	900	SeqNo: 103	20674	
Compace Comp	Analyte	Result	LIMS MDL	Pol	SPK value	SPK Ref Val			HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Compact Comp	Chrysene	0.00956	0,00015	0.00045	0.01	0	956		110	0	0		
thene 0.00937 0.0003 0.0003 0.01 0.01 0.01 0.01 0.01	Dibenzo(a,h)anthracene	0.00926	900000	0.00018	0,01	0			108	0	0		
1,2, ccc 1,2,	Fluoranthene	0.00937	0.0003	0.00000	0.01	0			108	0	0		
1.23-ca)pyrene 0.00754 0.0001 0.00300 0.011 0.001	Fluorene	0.0089	0.0001	0.00030	0.01	0			103	0	0		
time 000753 0.01 0.00300 0.01 0.00300 0.01 0.00300 0.01 0.00300 0.01 0.00300 0.01 0.00300 0.01 0	Indeno(1,2,3-cd)pyrene	0.00924	0.0001	0.00030	0.01	0			112	0	0		
threne 0,00946 0,0002 0,00050 0,01 0 0 1 91,6 56 8 110 0 0 Tepheny-d14 0,00928 0,0001 0,00030 0,01 0 0 1 91,6 56 8 110 0 0 Tepheny-d14 0,00928 0,0001 0,0000 0 0 1 1 resit of 1 resit of 1 1 resit of 1 resit of 1 1 resit of 1 r	Naphthalene	0.00753	0.001	0.00300	0.01	0			91.9	0	0		
December	Phenanthrene	0.00916	0.0002	0 00000	0,01	0			110	0	0		
Terphenyl-d14 000029 0 0.01 0.01 92.9 59.9 111 0 LCSDID-26734 SampType: LCSD TestCode: SVL8310S_W Units: mg/L Analysis Date: 6/14/2005 Run ID: Prop. Date: 6/14/2005 <td>Pyrene</td> <td>0,00982</td> <td>0.0001</td> <td>0.00030</td> <td>0.01</td> <td>0</td> <td></td> <td></td> <td>109</td> <td>0</td> <td>0</td> <td></td> <td></td>	Pyrene	0,00982	0.0001	0.00030	0.01	0			109	0	0		
Discription	Surr: Terphenyl-d14	0.00929	0	0	0.01	0			111	0	0		
5: 22222 Batch ID: 26734 TestINO: SW8310 SPK Padr Value SPK Padr Value SMEC LowLimit High Limit RPD Ref Val SeqNo: 17026FF hthlene 0.00859 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0016 0.0015 0.0016 0.001	Sample ID: LCSDUP-25734	SampType:	CSD	TestCo	ode: SV_8310		nits: mg/L	Prep [005		LC INST. C	050614A
thrine Result LIMS MDL PQL SPK value SPK Ref Val %REO LowLimit High Limit RPD Ref Val %RPD RPD thribene 0.00869 0.0010 0.00360 0.011 0.0036 0.0156 0.0015 0.0016		Batch ID:	25734	Test	:No: SW8310			Analysis [Date: 6/14/2	005	SeqNo: 103	20675	
trhene 0,00869 0,001 0,00360 0,001 0,001 0,00360 0,001 0,00360 0,001 0,00360 0,001 0,00360 0,001 0,00360 0,0001<	Analyte	Result	LIMS MDL	PQL	SPK value	SPK Ref Va			HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
thylene 0,00853 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,000 0,0005 0,000 0,0005 0,000 <td>Acenaphthene</td> <td>69800'0</td> <td>0.001</td> <td>0.00300</td> <td>0.01</td> <td></td> <td></td> <td></td> <td>95</td> <td>0.00876</td> <td>0.803</td> <td>26.2</td> <td></td>	Acenaphthene	69800'0	0.001	0.00300	0.01				95	0.00876	0.803	26.2	
ene 0,00964 0,0001 0,00030 0,01 0,0003 <td>Acenaphthylene</td> <td>0,00853</td> <td>0.0005</td> <td>0.00150</td> <td>0.01</td> <td>0</td> <td></td> <td></td> <td>97.4</td> <td>0,00853</td> <td>0</td> <td>25.7</td> <td></td>	Acenaphthylene	0,00853	0.0005	0.00150	0.01	0			97.4	0,00853	0	25.7	
nanthracene 0.0106 0.00003 0.00004 0.000 0.001 0.000 1.4 1.6 61.7 109 0.0035 12.4 n)pyrene 0.01 0.0004 0.0012 0.001 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <t< td=""><td>Anthracene</td><td>0,00964</td><td>0.0001</td><td>0.00030</td><td>0.01</td><td>0</td><td></td><td></td><td>108</td><td>0.00911</td><td>5.65</td><td>18.2</td><td></td></t<>	Anthracene	0,00964	0.0001	0.00030	0.01	0			108	0.00911	5.65	18.2	
(h) pyrene 0.01 0.00042 0.00015 0.00015 0.0016 0.00015 <th< td=""><td>Benzo(a)anthracene</td><td>0.0106</td><td>0.00003</td><td>0.00009</td><td>0.01</td><td>0</td><td></td><td></td><td>109</td><td>0.00936</td><td>12,4</td><td>15</td><td></td></th<>	Benzo(a)anthracene	0.0106	0.00003	0.00009	0.01	0			109	0.00936	12,4	15	
(h,i)perylene 0.00979 0.00015 0.00015 0.00015 0.00016 0.00010	Benzo(a)pyrene	0.01	0.00004	0.00012	0.01	0			119	0.00939	6.28	15.1	
I,hi)perylene 0.0101 0.0001 0.00034 0.00036 0.001 0.01 0.00942 0.00035 0.001	Benzo(b)fluoranthene	0.00979	0.00005	0.00015	0.01	0			107	0.00932	4.92	15.8	
Milloranthene 0.00942 0.00045 0.00045 0.001 0.001 0.00942 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045 0.0004 0.000	Benzo(g,h,i)perylene	0.0101	0.0001	0.00030	0.01	0			115	0.00954	5.70	16.4	
le 0.00995 0.00016 0.00046 0.01 99.5 60.3 110 0.00956 4.00 (a,h)anthracene 0.00992 0.00006 0.00018 0.01	Benzo(k)fluoranthene	0.00942	0.00005	0.00015	0.01	J			109	0.00942	0	15.2	
(a,h)anthracene 0.00992 0.00006 0.00018 0.001 0.01 0.0092 6.88 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.89 6.88 6.89 <t< td=""><td>Chrysene</td><td>0.00995</td><td>0.00015</td><td>0.00045</td><td>0.01</td><td>S</td><td></td><td></td><td>110</td><td>0.00956</td><td>4.00</td><td>15.9</td><td></td></t<>	Chrysene	0.00995	0.00015	0.00045	0.01	S			110	0.00956	4.00	15.9	
hene 0.0098 0.0003 0.00090 0.01 0 98 59.3 108 0.00937 4.49 a consistent of the constant of th	Dibenzo(a,h)anthracene	0.00992	0,00006	0.00018	0.01	J			108	0.00926	6,88	16.3	
3 0,00961 0,0001 0,0003 0,01 0 96.1 44.8 103 0.0089 7.67 1,2,3-cd)pyrene 0,00981 0,0001 0,00030 0.01 0.01 0.01 0.003 0.01 0.001 0.001 0.003 0.01 0.001 0.	Fluoranthene	0.0098	0.0003	0.00000	0.01	J			108	0.00937	4.49	16.8	
1,2,3-cd/pyrene 0.00981 0.0001 0.00030 0.01 0.01 0.00300 0.01 0.01 0.00300 0.01 0.01 0.00300 0.01 0.01 0.00300 0.01 0.01 0.00030 0.01 0.01 0.00030 0.01 0.01 0.00030 0.01 0.0	Fluorene	0.00961	0.0001	0.00030	0.01	0			103	0.0089	7.67	27.5	
lene 0,00804 0.001 0.00300 0.01 0 80.4 45.6 91.9 0.00753 6.55 three 0.00987 0.0002 0.00060 0.01 0 98.7 55.8 110 0.00916 7.46 2 0.0102 0.0001 0.00030 0.01 0 94.5 59.9 111 0 0 0	Indeno(1,2,3-cd)pyrene	0.00981	0.0001	0.00030	0.01	0			112	0.00924	5.99	15.8	
threne 0.00987 0.0002 0.00060 0,01 0 98.7 55.8 110 0.00916 7.46 2: 0.0102 0.0001 0.00030 0.01 0 0.0102 0.0102 0.00982 3.80 14 Terphenyl-d14 0,00945 0 0 0.01 0 94.5 59.9 111 0 0 0	Naphthalene	0.00804	0.001	0.00300	0.01	J			91.9	0.00753	6.55	25	
0.0102 0.0001 0.00030 0.01 0 102 50.7 109 0.00982 3.80 11 Terphenyl-d14 0,00945 0 0 0.01 0 94.5 59.9 111 0 0 0	Phenanthrene	0.00987	0.0002	0.00060	0,01	J			110	0.00916	7.46	23.2	
0,00945 0 0 0.01 0 94.5 59.9 111 0 0 0	Pyrene	0.0102	0.0001	0.00030	0.01	0			109	0.00982	3.80	16.7	
	Surr: Terphenyl-d14	0.00945	0	0	0.01	0) 94.5		111	0	0	20	

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 2 of 6

05060318

CHMGP/162363 Work Order: Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: 05060318-006AMS	SampType: MS	MS	TestCc	TestCode: SV_8310S_W	M_SI	Units: mg/L		Prep Da	Prep Date: 6/14/2005	05	Run ID: HP	Run ID: HPLC INST. C 050614A	50614A
Client ID: 107052	Batch ID: 25734	5734	Test	TestNo: SW8310				Analysis Date:	ite: 6/14/2005	05	SeqNo: 1020677	20677	
Analyte	Result L	Result LIMS MDL	PQL	SPK value	SPK Ref Val		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00838	0,001	0.00300	0.01		0	83.8	17.5	116	0	0		
Anthracene	0 00871	0.0001	0.00030	0.01		0	87.1	55.5	111	0	0		
Benzo(a)anthracene	0,00864	0.00003	0.0000	0.01		0	86.4	52	115	0	0		
Benzo(a)pyrene	0.00916	0.00004	0,00012	0.01		0	91.6	46.8	122	0	0		
Benzo(b)fluoranthene	0 00845	0 00005	0.00015	0.01		0	84.5	52.6	112	0	0		
Benzo(g,h,i)perylene	0 00883	0.0001	0.00030	0.01		0	88.3	52.7	116	0	0		
Benzo(k)fluoranthene	0.00858	0 00005	0.00015	0.01		0	85.8	51.1	118	0	0		
Chrysene	0.00869	0.00015	0.00045	0.01		0	86.9	52.1	113	0	0		
Dibenzo(a,h)anthracene	0.00853	900000	0.00018	0.01		0	85.3	53.6	110	0	0		
Fluoranthene	0.00855	0 0003	060000	0,01		0	85.5	45.5	117	0	0		
Fluorene	0.00818	0.0001	0.00030	0.01		0	81.8	31.7	104	0	0		
Indeno(1,2,3-cd)pyrene	0,00845	0.0001	0.00030	0.01		0	84.5	52.1	117	0	0		
Phenanthrene	0,00843	0.0002	090000	0.01		0	84.3	47.3	120	0	0		
Pyrene	0.00871	0.0001	0.00030	0.01		0	87.1	51.2	108	0	0		
Surr: Terphenyl-d14	0.00882	0	0	0.01		0	88.2	53.1	120	0	0		
Sample ID: 05060318-006AMS	SampType: MS	MS	TestCo	TestCode: SV_8310S_W	W_S(Units: mg/L		Prep Date:	ate: 6/14/2005	105	Run ID: HP	HPLC INST. C_050614A	150614A
Client ID: 107052	Batch ID: 25734	5734	Test	TestNo: SW8310				Analysis Da	Analysis Date: 6/14/2005	900	SeqNo: 1020690	20690	
Analyte	Result 1	Result LIMS MDL	Pal	SPK value	SPK Ref Val		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	0.0567	0.0025	0.00750	0.01	0.0445	45	122 86	18.7	140	0 0	0 0		
					- 11		Ш						
Sample ID: 05060318-006AMSD	SampType: MSD	MSD	TestC	TestCode: SV_8310S_W	W_St	Units: mg/L		Prep Date:	ate: 6/14/2005	905	Run ID: HP	HPLC INST. C_050614A	150614A
Client ID: 107052	Batch ID: 25734	5734	Test	stNo: SW8310				Analysis Date:	ate: 6/14/2005	905	SeqNo: 1020686	20686	
Analyte	Result	Result LIMS MDL	PQL	SPK value	SPK Ref Val		%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.0076	0.001	0.00300	0.01		0	92	17.5	116	0.00838	9.76	40	
Anthracene	0,00892	0.0001	0.00030	0.01		0	89.2	55.5	111	0.00871	2,38	40	
Benzo(a)anthracene	0.00882	0.00003	6000000	0.01		0	88.2	52	115	0.00864	2.06	40	
Benzo(a)pyrene	0.00941	0.00004	0.00012	0.01		0	94.1	46.8	122	0.00916	2,69	40	

Page 3 of 6

NOTE: LIMS MDL and PQL are adjusted for dilutions

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Qual: ND - Not Detected at the Reporting Limit

05060318 Work Order: CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV 8310S W

Sample ID: 05060318-006AMSD	SampType: MSD	MSD	TestCα	TestCode: SV_8310S_W		Units: mg/L	Prep D	Prep Date: 6/14/2005	005	Run ID: HP	Run ID: HPLC INST. C_050614A	050614A
Client ID: 107052	Batch ID: 25734	5734	Test	TestNo: SW8310			Analysis D	Analysis Date: 6/14/2005	005	SeqNo: 1020686	20686	
Analyte	Result	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(b)fluoranthene	0.0087	0.00005	0.00015	0 01	0	87	52.6	112	0.00845	2.92	40	
Benzo(g,h,i)perylene	0,00905	0.0001	0.00030	0.01	0	90°5	52.7	116	0,00883	2.46	40	
Benzo(k)fluoranthene	0.0088	0.00005	0.00015	0.01	0	80	51.1	118	0,00858	2.53	40	
Chrysene	0 00897	0.00015	0.00045	0.01	0	89.7	52.1	113	0.00869	3.17	40	
Dibenzo(a,h)anthracene	0.00878	9000000	0.00018	0.01	0	87.8	53.6	110	0,00853	2.89	40	
Fluoranthene	0 00872	0.0003	060000	0.01	0	87.2	45.5	117	0.00855	1.97	40	
Fluorene	0 00851	0.0001	0.00030	0.01	0	85.1	31.7	104	0.00818	3.95	40	
Indeno(1,2,3-cd)pyrene	0.00864	0.0001	0,00030	0.01	0	86.4	52.1	117	0.00845	2.22	40	
Phenanthrene	0.0086	0,0002	0.00060	0.01	0	86	47.3	120	0.00843	2.00	40	
Pyrene	0.00892	0.0001	0.00030	0.01	0	89.2	51.2	108	0.00871	2,38	40	
Surr: Terphenyl-d14	0.00903	0	0	0.01	0	90.3	53.1	120	0	0	40	
Sample ID: 05060318-006AMSD	SampType: MSD	MSD	TestCo	TestCode: SV_8310S_W		Units: mg/L	Prep [Prep Date: 6/14/2005	9005	Run ID: HP	Run ID: HPLC INST. C_050614A	050614A
Client ID: 107052	Batch ID: 25734	25734	Tes	TestNo: SW8310			Analysis E	Analysis Date: 6/14/2005	900	SeqNo: 1020691	20691	
Analyte	Result	Result LIMS MDL	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	0.0561	0.0025	0.0025 0.00750	0.01	0.0445	116	18.7	140	0.0567	1.06	40	
Naphthalene	0.0668	0.005	0.0150	0.01	0.0594	74	24.5	115	0.068	1.78	40	

J - Analyte detected below quantitation limits

NOTE: LIMS MDL and PQL are adjusted for dilutions.

CLIENT: Kelron Environmental

Work Order: 05060318

Project: CHMGP/162363

Kelron Environmental

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX W

Analyte Result LIMS MDL PQL SPK value SPK Benzene 46.6 0.5 2.0 50 Toluene 53.9 1 5.0 50 Toluene 53.9 1 5.0 50 Naphthalene 51.3 2 1 5.0 50 Naphthalene 50.8 1 5.0 50 50 Surr. 1-2-Dichloroethane-d4 50.8 0 0 50 50 Surr. 1-2-Dichloroethane-d4 49.5 0 0 50 50 Surr. 1-2-Dichloroethane-d8 47.6 0 0 50 50 Surr. 1-2-Dichloroethane-d8 A7.6 0 0 50 50 Surr. 1-2-Dichloroethane-d8 Result LIMS MDL PQL SPK value SPK Analyte Result LIMS MDL PQL SPK value SP Barch ID: 22716 ND 1 5.0 C Surr. 1-2-Dichloroethane-d4 48.7 0 0				i.		i i		(C. 0) 12/2003		Null ID. 33/2 INST. G 030612A
Account Continue Continue		n ID: 25716	TestNo	SW8260B			Analysis Date:	ite: 6/12/2005		SeqNo: 1018111
46.6 0.5 2.0 50 Jene 46.3 1 5.0 50 ene 53.9 1 5.0 50 chee 51.3 2 10 50 2-Dichloroethane-d4 50.8 0 0 50 Brownfluorobenzene 49.5 0 0 50 Jibromofluoromethane 49.5 0 0 50 Olluene-d8 47.6 0 0 50 SZZZZ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value ND 1 5.0 Brompthorothane-d4 48.7 0 5.0 Brompfluorothane-d8 47.8 0 5.0 Brompfluorothane-d8 47.8 0 5.0 Brompfluorothane-d8 47.8 0 0 5.0 Brompfluorothane-d8 47.8 0 0 5.0 Brompfluorothane-d8 47.8 0 0 5.0 <th>œ</th> <th>esult LIMS MDL</th> <th></th> <th></th> <th>SPK Ref Val</th> <th>%REC</th> <th>LowLimit</th> <th>HighLimit RPD</th> <th>RPD Ref Val</th> <th>%RPD RPDLimit Qual</th>	œ	esult LIMS MDL			SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit Qual
2-Dichloroethane-d4 53.9 1 5.0 5.0 Total 107 1 5.0 5.0 1.2-Dichloroethane-d4 50.8 0 0 5.0 1.3-Dichloroethane-d4 49.5 0 0 5.0 2.Dichloroethane-d4 49.5 0 0 5.0 2.Dichloroethane-d4 49.5 0 0 5.0 2.ZZZZ Batch ID: 25716 TestCode: V_BTEX_Total ND			2.0	50	0	93.2	77.4	120	0	0
53.9 1 5.0 50 51.3 2 10 50 107 11 5.0 100 50.8 0 0 50 49.5 0 0 50 47.6 0 0 50 8ampType: MBLK TestCode: V_BTEX_N Result LIMS MDL PQL SPK value ND 0.5 2.0 ND 1 5.0 ND 1 5.0 ND 1 5.0 ND 48.7 0 0 50 49.2 0 0 50 49.2 0 0 50 49.8 0 0 50 47.8 0 0 50 8atch ID: 25716 TestNo: SW8260B Return LIMS MDL PQL SPK value SampType: MS TestCode: V_BTEX_N 8 SampType: MS TestNo: SW8260B		46.3	5.0	50	0	92.6	81.6	118	0	0
51.3 2 10 50 107 1 1 5.0 100 50.8 0 0 50 49.5 0 0 50 47.6 0 0 50 47.6 0 0 50 8ampType: MBLK TestCode: V_BTEX_I Result LIMS MDL PQL SPK value ND 0.5 2.0 ND 1 5.0 ND 1 5.0 ND 48.7 0 0 50 49.8 0 0 50 49.8 0 0 50 49.8 0 0 50 49.8 0 0 50 49.8 0 0 50 49.8 0 0 50 849.8 0 0 50 47.8 0 0 50 8atch ID: 25716 TestCode: V_BTEX_I SampType: MS TestCode: V_BTEX_I Result LIMS MDL PQL SPK value TestNo: SW8260B		53.9	5.0	50	0	107.8	78.5	122	0	0
107 11 5.0 100 50.8 0 0 50 49.5 0 0 50 49.2 0 0 50 49.2 0 0 50 50 49.2 0 0 50 50 8ampType: MBLK TestCode: V_BTEX_Y Result LIMS MDL PQL SPK value ND 1 5.0 ND 1 5.0 ND 1 5.0 ND 48.7 0 0 50 49.8 0 0 50 49.8 0 0 50 47.8 0 0 50 47.8 0 0 50 8atch ID: 25716 TestCode: V_BTEX_Y Result LIMS MDL PQL SPK value TestCode: V_BTEX_Y SampType: MS TestCode: V_BTEX_Y Result LIMS MDL PQL SPK value Result LIMS MDL PQL SPK value			10	50	2.2	98,2	70	130	0	0
50.8 0 0 50 49.5 0 0 50 49.5 0 0 50 49.5 0 0 50 47.6 0 0 50 50 47.6 0 0 0 50 50 8ampType: MBLK TestCode: V_BTEX		107	5.0	100	0	107	80.7	122	0	0
8 49.5 0 0 50 49.2 0 0 50 47.6 0 0 50 47.6 0 0 50 8 20 8 atch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value ND 0.5 2.0 ND 1 5.0 ND 1 5.0 ND 7.2 2 10 ND 48.7 0 0 50 49.8 0 0 50 49.8 0 0 50 47.8 0 0 50 8 atch ID: 25716 TestNo: SW8260B 8 atch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value	roethane-d4		0	50	0	101 6	84.3	135	0	0
49.2 0 0 50 47.6 0 0 50 47.6 0 0 50 SampType: MBLK TestCode: VBTEX Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value ND 0 5.0 ND 1 5.0 ND 1 5.0 48.7 0 0 50 49.8 0 0 50 47.8 0 0 50 47.8 0 0 50 47.8 0 0 50 8 SampType: MS TestCode: VBTEX_ Batch ID: 25716 TestNo: SPK value 754 2.5 10 250	Jorobenzene		0	20	0	66	81.1	113.3	0	0
SampType: MBLK	oromethane		0	90	0	98.4	88.9	121.2	0	0
SampType: MBLK TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value ND 0.5 2.0 ND 1 5.0 48.7 0 0 50 49.8 0 0 50 47.8 0 0 50 47.8 0 0 50 8 5716 TestCode: VBTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250	3		0	20	0	95.2	84.1	114.5	0	0
ZZZZZ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value Result LIMS MDL PQL SPK value ND 1 5.0 ND 1 5.0 ene 2.2 2 1 And ND 1 5.0 ND 1 5.0 50 School Total ND 1 5.0 50 -Bromofluorobenzene 48.7 0 0 50 50 Ollenne-d8 47.8 0 0 50 50 Ollenne-d8 47.8 0 0 50 50 Ollenne-d8 SampType: MS TestCode: V_BTEX TestNo: SW8260B 750 Batch ID: 25716 TestNo: SW8260B 750 754 2.5 10 250		Type: MBLK	TestCode	· V_BTEX_W	Units: µg/L	g/L	Prep Date:	ite: 6/12/2005		Run ID: 5972 INST. G_050612A
Result LIMS MDL PQL SPK value Lene ND 0.5 2.0 Lene ND 1 5.0 ene 2.2 2 10 -2.Dichloroethane-d4 48.7 0 0 50 -Bromofluorobenzene 49.8 0 0 50 -Bromofluoromethane 49.8 0 0 50 Olluene-d8 47.8 0 0 50 D: 050060318-006BMS SampType: MS TestCode: V_BTEX		h ID: 25716	TestNo	: SW8260B			Analysis Da	Analysis Date: 6/12/2005		SeqNo: 1018112
ND 0.5 2.0 ND 1 5.0 ene ND 1 5.0 ene 2.2 2 10 -2-Dichloroethane-d4 48.7 0 0 50 -Bromofluorobenzene 49.8 0 0 50 Oilbromofluoromethane 49.2 0 0 50 Oilbromofluoromethane 47.8 0 0 50 Oilbromofluoromethane 47.8 0 0 50 Sollone-d8 47.8 0 0 50 Batch ID: 25716 TestCode: V_BTEX. 754 PQL SPK value Result LIMS MDL PQL SPK value 250 754 2.5 10 250	Ľ	Result LIMS MDL			SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit Qual
ND 1 5.0 ND 1 5.0 2.2 2 10 ND 1 5.0 48.7 0 0 50 49.8 0 0 50 49.2 0 0 50 49.2 0 0 50 47.8 0 TestCode: V_BTEX_ SampType: MS TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value			2.0							
ND 1 5.0 2.2 2 10 ND 1 5.0 48.7 0 0 50 49.2 0 0 50 47.8 0 0 50 47.8 0 0 50 8ampType: MS TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value		ND 1	5.0							
2.2		ND 1	5.0							
ND		2.2 2	10							ſ
48.7 0 0 50 49.8 0 0 50 49.2 0 0 50 47.8 0 0 50 SampType: MS TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250		ND 1	5.0							
49.8 0 0 50 49.2 0 0 50 47.8 0 0 50 SampType: MS TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250	roethane-d4		0	20	0	97.4	84.3	135	0	0
49.2 0 0 50 47.8 0 0 50 SampType: MS TestCode: V_BTEX Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250	norobenzene		0	20	0	9.66	81.1	113,3	0	0
47.8 0 0 50 SampType: MS TestCode: V_BTEX Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250	oromethane		0	50	0	98.4	88.9	121.2	0	0
SampType: MS TestCode: V_BTEX_ Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value 754 2.5 10 250	82		0	20	0	92.6	84.1	114.5	0	0
D: 107052 Batch ID: 25716 TestNo: SW8260B Result LIMS MDL PQL SPK value e 754 2.5 10 250		Type: MS	TestCode	: V_BTEX_W	Units: µg/L	g/L	Prep Date:	ate: 6/12/2005		Run ID: 5972 INST. G_050612A
Result LIMS MDL PQL SPK value e 754 2.5 10 250		h ID: 25716	TestNo	SW8260B			Analysis Da	Analysis Date: 6/12/2005		SeqNo: 1018124
754 2.5 10	8	Result LIMS MDL			SPK Ref Val	%REC	LowLimit	HighLimit RPD	Ref Val	%RPD RPDLimit Qual
		2	10	250	549	82	59.8	141	0	0
Toluene 215 5 25.0 250			25.0	250	0	98	62.4	138	0	0
Ethylbenzene 264 5 25.0 250			25.0	250	27.8	94.5	64.8	141	0	0

Page 5 of 6

NOTE: LIMS MDL and PQL are adjusted for dilutions.

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Qual: ND - Not Detected at the Reporting Limit

05060318 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: 05060318-006BMS Client ID: 107052	SampType: MS Batch ID: 25716	TestCo	TestCode: V_BTEX_W TestNo: SW8260B	Units µg/L	ug/L	Prep D Analysis D	Prep Date: 6/12/2005 Analysis Date: 6/12/2005	വ	Run ID: 5972 INST. G_050612A SeqNo: 1018124	2 INST. G_0! 8124	50612A
Analyte	Result LIMS MDL	PQL	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Xylenes, Total	532 5	25.0	500	49.2	96.6	51.2	157	0	0		
Surr: 1,2-Dichloroethane-d4	241 0	0	250	0	96.4	84.3	135	0	0		
Surr: 4-Bromofluorobenzene	247 0	0	250	0	98 8	81.1	113.3	0	0		
Surr: Dibromofluoromethane	248 0	0	250	0	99.2	88.9	121.2	0	0		
Surr: Toluene-d8	244 0	0	250	0	9.76	84.1	114.5	0	0		
Sample ID: 05060318-006BMSD	SampType: MSD	TestCo	TestCode: V_BTEX_W	Units: µg/L	ng/L	Prep D	Prep Date: 6/12/2005	ŭ	Run ID: 5972 INST. G_050612A	2 INST. G_0	50612A
Client ID: 107052	Batch ID: 25716	Test	TestNo: SW8260B			Analysis D	Analysis Date: 6/13/2005	ž.	SeqNo: 1018125	8125	
Analyte	Result LIMS MDL	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	801 2.5	10	250	549	100.8	59.8	141	754	6.04	15	
Toluene	268 5	25.0	250	0	107.2	62.4	138	215	21.9	15	œ
Ethylbenzene	319 5	25.0	250	27.8	116.5	64.8	141	264	18.9	15	œ
Xylenes, Total	634 5	25.0	200	49.2	117	51.2	157	532	17.5	15	œ
Surr: 1,2-Dichloroethane-d4	236 0	0	250	0	94.4	84.3	135	0	0	0	
Surr: 4-Bromofluorobenzene	245 0	0	250	0	86	81.1	113.3	0	0	0	
Surr: Dibromofluoromethane	247 0	0	250	0	98.8	88.9	121.2	0	0	0	
Surr: Toluene-d8	240 0	0	250	0	96	84.1	114.5	0	0	0	

J - Analyte detected below quantitation limits

NOTE: LIMS MDL and PQL are adjusted for dilutions.

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

05060318

05000511

Date Received: 6/10/2005

WORK ORDER SAMPLE SUMMARY

Date: 16-Jun-05

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	
05060318-001A	112052		6/9/2005 7:48:00 AM	
05060318-002A	102052		6/9/2005 8:21:00 AM	
05060318-003A	111052		6/9/2005 9:02:00 AM	
05060318-004A	108052		6/9/2005 9:42:00 AM	
05060318-005A	116052		6/9/2005 10:10:00 AM	
05060318-006A	107052		6/9/2005 10:34:00 AM	
05060318-006B	107052		6/9/2005 10:34:00 AM	
05060318-007A	114052		6/9/2005 11:20:00 AM	
05060318-007B	114052		6/9/2005 11:20:00 AM	
05060318-008A	115052		6/9/2005 12:01:00 PM	
05060318-009A	115952		6/9/2005 12:02:00 PM	
05060318-010A	Trip Blank		6/3/2005 9:05:00 AM	

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

October 07, 2005

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503

FAX: (217) 355-1385

RE: CHMGP/162363

Dear Stu Cravens:

NELAP Accredited #100226

OrderNo. 05090845

TEKLAB, INC received 10 samples on 9/29/2005 8:10:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

5445 HORSESHOE LAKE ROAD COLLINSVILLE, ILLINOIS 62234

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

05090845

Report Date: October 07, 2005

REPORT CONTENTS

This reporting package includes the following:

	Analysis Results (this documen
, 1 pages	Chain of Custoo
	Associated Information
	Sample Summa
	Dates Repo
	QC Repo
	Sub Contracted Lab Repo
	MDL Repo

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

05090845

Report Date: October 07, 2005

CASE NARRATIVE

Cooler Receipt Tem 2.2 °C

A significant amount of headspace was present in one of the TB volatile vials.

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

M1 - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMC

CHMGP/162363

WorkOrder:

05090845

Client Sample ID 112053

12053

Lab ID:

05090845-001

Collection Date:

9/27/2005 8:14:00 AM

Report Date:

07-Oct-05

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	9/30/2005 4:32:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	9/30/2005 4:32:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/30/2005 4:32:00 PM	GEK
Xylenes, Total	NELAP	5 0		ND	μg/L	1	9/30/2005 4:32:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 4:32:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	7	73.9-129		87.8	%REC	1	9/30/2005 4:32:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		103	%REC	1	9/30/2005 4:32:00 PM	GEK
Surr: Dibromofluoromethane	3	33.8-118		94.6	%REC	1	9/30/2005 4:32:00 PM	GEK
Surr: Toluene-d8	8	35.5-115		102	%REC	- 1	9/30/2005 4:32:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

05090845

Lab ID:

05090845-002

Report Date:

07-Oct-05

Client Project:

CHMGP/162363

Client Sample ID 102053

Collection Date: 9/27/2005 9:01:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	µg/L	1	9/30/2005 5:03:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	9/30/2005 5:03:00 PM	GEK
Ethylbenzene	NELAP	5,0		ND	μg/L	1	9/30/2005 5:03:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 5:03:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 5:03:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		73 9-129		90.0	%REC	1	9/30/2005 5:03:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		104	%REC	1	9/30/2005 5:03:00 PM	GEK
Surr: Dibromofluoromethane		83.8-118		95.2	%REC	1	9/30/2005 5:03:00 PM	GEK
Surr: Toluene-d8		85.5-115		101	%REC	1	9/30/2005 5:03:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

CHMGP/162363

WorkOrder:

05090845

Client Project: CHMG
Client Sample ID 111053

Lab ID:

05090845-003

Collection Date: 9/27/2005 9:39:00 AM

Report Date:

07-Oct-05

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	<u>s</u>				
Benzene	NELAP	2.0		ND	μg/L	1	9/30/2005 5:33:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	9/30/2005 5:33:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/30/2005 5:33:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 5:33:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 5:33:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	7	73.9-129		90.4	%REC	1	9/30/2005 5:33:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		102	%REC	1	9/30/2005 5:33:00 PM	GEK
Surr: Dibromofluoromethane	8	33.8-118		94.2	%REC	1	9/30/2005 5:33:00 PM	GEK
Surr: Toluene-d8		35.5-115		102	%REC	1	9/30/2005 5:33:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

05090845

Lab ID:

05090845-004

Report Date:

07-Oct-05

Client Project:

CHMGP/162363

Client Sample ID 108053

Collection Date: 9/27/2005 10:13:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	9/30/2005 6:04:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	9/30/2005 6:04:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/30/2005 6:04:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 6:04:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 6:04:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	7	73 9-129		90.2	%REC	1	9/30/2005 6:04:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		103	%REC	1	9/30/2005 6:04:00 PM	GEK
Surr: Dibromofluoromethane	8	33.8-118		94.0	%REC	1	9/30/2005 6:04:00 PM	GEK
Surr: Toluene-d8	8	35.5-115		101	%REC	1	9/30/2005 6:04:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

05090845

Lab ID:

05090845-005

Report Date:

07-Oct-05

Client Project:

CHMGP/162363

Client Sample ID 116053

Collection Date: 9/27/2005 10:50:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	μg/L	1	9/30/2005 6:35:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	9/30/2005 6:35:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/30/2005 6:35:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 6:35:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 6:35:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	-	73_9-129		88.6	%REC	1	9/30/2005 6:35:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		104	%REC	1	9/30/2005 6:35:00 PM	GEK
Surr: Dibromofluoromethane	8	33.8-118		96.0	%REC	1	9/30/2005 6:35:00 PM	GEK
Surr: Toluene-d8	8	35.5-115		102	%REC	1	9/30/2005 6:35:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

05090845

Client Project:

CHMGP/162363

WorkOrder:

07-Oct-05

Client Sample ID 116953

Collection Date: 9/27/2005 10:51:00 AM

Lab ID:

Report Date:

05090845-006

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	2.0		ND	μg/L	1	9/30/2005 7:06:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	4	9/30/2005 7:06:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/30/2005 7:06:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 7:06:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 7:06:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	7	73.9-129		94.4	%REC	1	9/30/2005 7:06:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		102	%REC	1	9/30/2005 7:06:00 PM	GEK
Surr: Dibromofluoromethane	8	33.8-118		95.0	%REC	1	9/30/2005 7:06:00 PM	GEK
Surr: Toluene-d8	8	35.5-115		104	%REC	1	9/30/2005 7:06:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: Kelron Environmental

WorkOrder: 05090845

Lab ID: 05090845-007

Report Date: 07-Oct-05

Client Project: CHMGP/162363

Client Sample ID 107053

Collection Date: 9/27/2005 11:25:00 AM

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 3510C, 8310, POLYNU	ICLEAR AROMATI	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.00300		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Anthracene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Benzo(b)fluoranthene	NELAP	0,00015		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Benzo(g,h,i)perylene	NELAP	0,00030		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Chrysene	NELAP	0.00045		ND	mg/L	1	10/3/2005 4:00:39 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Fluoranthene	NELAP	0.00090		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Fluorene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Naphthalene	NELAP	0.0150		0.0580	mg/L	5	10/4/2005 12:11:46 PM	MAN
Phenanthrene	NELAP	0.00060		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Pyrene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:00:39 PM	MAN
Surr: Terphenyl-d14		53.1-120		95.6	%REC	1	10/3/2005 4:00:39 PM	MAN
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	10		344	μg/L	5	9/30/2005 12:15:00 PM	GEK
Toluene	NELAP	5.0	J	2.6	μg/L	1	9/30/2005 1:47:00 PM	GEK
Ethylbenzene	NELAP	5.0		17.1	µg/L	1	9/30/2005 1:47:00 PM	GEK
Xylenes, Total	NELAP	5.0		32.1	μg/L	1	9/30/2005 1:47:00 PM	GEK
Naphthalene	NELAP	10		82.6	μg/L	1	9/30/2005 1:47:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		73.9-129		86.0	%REC	1	9/30/2005 1:47:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		103	%REC	1	9/30/2005 1:47:00 PM	GEK
Surr: Dibromofluoromethane		83.8-118		94.8	%REC	1	9/30/2005 1:47:00 PM	GEŁ
Surr: Toluene-d8		85 5-115		102	%REC	1	9/30/2005 1:47:00 PM	GEŁ

Sample Narrative

SW-846 3510C. 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

MSD Acenapthylene was outside of QC limits due to matrix interference confirmed on mass spec Acenapthylene was outside of QC limits due to matrix interference confirmed on mass spec

SW-846 5030, 8260B. Volatile Organic Compounds by GC/MS

MSD RPD was outside of QC limit due to sample composition

MS Matrix spike recoveries were lower than the QC limits because of sample composition. Sample concentration of benzene

was greater than 5 times the spike concentration.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

CHMGP/162363

WorkOrder:

05090845

Client Project:

Lab ID:

07-Oct-05

Client Sample ID 114053

Report Date:

05090845-008

Collection Date: 9/27/2005 12:55:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analys
SW-846 3510C, 8310, POLYNU	CLEAR AROMATI	C HYDRO	CARBON	IS BY HPLC				
Acenaphthene	NELAP	0.150		0.208	mg/L	50	10/4/2005 11:54:18 AM	MAM
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Anthracene	NELAP	0.00030		0.00082	mg/L	1	10/3/2005 4:53:01 PM	MAM
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Benzo(a)pyrene	NELAP	0 00012		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Chrysene	NELAP	0.00045		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0,00018		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Fluoranthene	NELAP	0.00090		0.00109	mg/L	1	10/3/2005 4:53:01 PM	MAM
Fluorene	NELAP	0.00030		0.0444	mg/L	1	10/3/2005 4:53:01 PM	MAM
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	10/3/2005 4:53:01 PM	MAM
Naphthalene	NELAP	1.50		11.5	mg/L	500	10/4/2005 3:50:30 PM	MAM
Phenanthrene	NELAP	0.00060		0.00987	mg/L	1	10/3/2005 4:53:01 PM	MAM
Pyrene	NELAP	0.00030		0.00040	mg/L	1	10/3/2005 4:53:01 PM	MAM
Surr: Terphenyl-d14		53.1-120		73.3	%REC	1	10/3/2005 4:53:01 PM	MAM
SW-846 5030, 8260B, VOLATIL	E ORGANIC COM	POUNDS	BY GC/N	IS				
Benzene	NELAP	50.0		1130	μg/L	25	9/30/2005 1:17:00 PM	GEK
Toluene	NELAP	125		190	μg/L	25	9/30/2005 1:17:00 PM	GEK
Ethylbenzene	NELAP	125		1370	μg/L	25	9/30/2005 1:17:00 PM	GEK
Xylenes, Total	NELAP	125		1010	μg/L	25	9/30/2005 1:17:00 PM	GEK
Naphthalene	NELAP	2000		6420	μg/L	200	9/30/2005 4:01:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		73.9-129		90.4	%REC	25	9/30/2005 1:17:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		104	%REC	25	9/30/2005 1:17:00 PM	GEK
Surr: Dibromofluoromethane		83.8-118		96.0	%REC	25	9/30/2005 1:17:00 PM	GEK
Surr: Toluene-d8		85.5-115		103	%REC	25.	9/30/2005 1:17:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

05090845

Lab ID:

05090845-009

Report Date:

07-Oct-05

Client Project:

CHMGP/162363

Client Sample ID 115053

Collection Date: 9/27/2005 1:27:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/N	S				
Benzene	NELAP	2.0		12.5	μg/L	1	9/30/2005 7:37:00 PM	GEK
Toluene	NELAP	5.0	J	1.1	μg/L	-1	9/30/2005 7:37:00 PM	GEK
Ethylbenzene	NELAP	5.0	J	1.9	μg/L	1	9/30/2005 7:37:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 7:37:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 7:37:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	-	73.9-129		95.6	%REC	1	9/30/2005 7:37:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		104	%REC	1	9/30/2005 7:37:00 PM	GEK
Surr: Dibromofluoromethane	8	33.8-118		96.8	%REC	1	9/30/2005 7:37:00 PM	GEK
Surr: Toluene-d8		35.5-115		104	%REC	1	9/30/2005 7:37:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: Cl

CHMGP/162363

WorkOrder:

Report Date:

05090845

07-Oct-05

Client Sample ID TB

Collection Date: 9/16/2005 11:10:00 AM

Lab ID:

05090845-010

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	OUNDS	BY GC/M	S				
Benzene	NELAP	2.0		ND	µg/L	1	9/30/2005 9:39:00 AM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	9/30/2005 9:39:00 AM	GEK
Ethylbenzene	NELAP	5.0		ND	µg/L	1	9/30/2005 9:39:00 AM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/30/2005 9:39:00 AM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	9/30/2005 9:39:00 AM	GEK
Surr: 1,2-Dichloroethane-d4	7	73,9-129		90.0	%REC	1	9/30/2005 9:39:00 AM	GEK
Surr: 4-Bromofluorobenzene		83-113		103	%REC	1	9/30/2005 9:39:00 AM	GEK
Surr: Dibromofluoromethane	8	33,8-118		95.6	%REC	1	9/30/2005 9:39:00 AM	GEK
Surr: Toluene-d8	3	35.5-115		105	%REC	1	9/30/2005 9:39:00 AM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

January 09, 2006

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503

FAX: (217) 355-1385

RE: CH MGP/162363

NELAP Accredited #100226

OrderNo, 05120697

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 12/29/2005 8:45:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

5445 HORSESHOE LAKE ROAD COLLINSVILLE, ILLINOIS 62234

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CH MGP/162363

LabOrder:

05120697

Report Date: January 09, 2006

REPORT CONTENTS

This reporting package includes the following:

Analysis Results (this document)	13	pages
Chain of Custody	1	pages
Associated Information	. 1	pages
Sample Summary	NA	pages
Dates Report	NA	pages
QC Report	NA	pages
Sub Contracted Lab Report	NA	pages
MDL Report	NA	pages

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CH MGP/162363

LabOrder:

05120697

Report Date: January 09, 2006

CASE NARRATIVE

Cooler Receipt Temp

2.6 °C

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

* - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

M1 - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CH MGP/162363

WorkOrder:

05120697

Client Sample ID: 112054

Lab ID:

05120697-001

Collection Date: 12/27/2005 9:47:00 AM

Report Date:

09-Jan-06

Matrix: GRO

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	12/30/2005 2:29:00 AM	/ TAL
Ethylbenzene	NELAP	5 0		ND	μg/L	1.	12/30/2005 2:29:00 AM	/ TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/30/2005 2:29:00 AM	Λ TAL
Toluene	NELAP	5 0		ND	μg/L	1	12/30/2005 2:29:00 AM	Λ TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/30/2005 2:29:00 AM	Л TAL
Surr: 1,2-Dichloroethane-d4	73	9-129		106	%REC	1	12/30/2005 2:29:00 AM	Л TAL
Surr: 4-Bromofluorobenzene	8	33-113		101	%REC	1	12/30/2005 2:29:00 AM	Л TAL
Surr: Dibromofluoromethane	83	8-118		99.5	%REC	1	12/30/2005 2:29:00 AM	л TAL
Surr: Toluene-d8	85	5-115		101	%REC	1	12/30/2005 2:29:00 AM	Л TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CH MGP/162363

WorkOrder:

05120697

09-Jan-06

Client Sample ID: 102054

Lab ID:

Report Date:

05120697-002

Matrix:

Collection Date: 12/27/2005 9:20:00 AM

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILI	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/30/2005 3:00:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/30/2005 3:00:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/30/2005 3:00:00 AM	TAL
Toluene	NELAP	5.0		ND	µg/L	1	12/30/2005 3:00:00 AM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/30/2005 3:00:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		106	%REC	1	12/30/2005 3:00:00 AM	TAL
Surr: 4-Bromofluorobenzene	8	33-113		100	%REC	1	12/30/2005 3:00:00 AM	TAL
Surr: Dibromofluoromethane	83	8-118		99.4	%REC	1	12/30/2005 3:00:00 AM	TAL
Surr: Toluene-d8	85	.5-115		102	%REC	1	12/30/2005 3:00:00 AM	TAL

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CH MGP/162363

WorkOrder:

05120697

Client Sample ID: 111054

Lab ID:

05120697-003

Collection Date: 12/27/2005 10:18:00 AM

Report Date:

09-Jan-06

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILI	E ORGANIC COMPO	OUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/30/2005 3:30:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/30/2005 3:30:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/30/2005 3:30:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/30/2005 3:30:00 AM	TAL
Xylenes, Total	NELAP	5_0		ND	μg/L	1	12/30/2005 3:30:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	9-129		106	%REC	1	12/30/2005 3:30:00 AM	TAL
Surr: 4-Bromofluorobenzene		33-113		102	%REC	1	12/30/2005 3:30:00 AM	TAL
Surr: Dibromofluoromethane	83	8-118		99.8	%REC	1	12/30/2005 3:30:00 AM	TAL
Surr: Toluene-d8	85	5-115		103	%REC	1	12/30/2005 3:30:00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CH MGP/162363

WorkOrder:

05120697

Client Sample ID: 108054

Lab ID:

05120697-004

Collection Date: 12/27/2005 10:50:00 AM

Report Date:

09-Jan-06

Matrix: GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	DUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/30/2005 4:01:00 AN	I TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/30/2005 4:01:00 AM	I TAL
Naphthalene	NELAP	10		ND	µg/L	1	12/30/2005 4:01:00 AM	I TAL
Toluene	NELAP	5.0		ND	µg/L	1	12/30/2005 4:01:00 AN	I TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/30/2005 4:01:00 AM	I TAL
Surr: 1,2-Dichloroethane-d4	73	9-129		106	%REC	1	12/30/2005 4:01:00 AN	I TAL
Surr: 4-Bromofluorobenzene		83-113		101	%REC	1	12/30/2005 4:01:00 AN	I TAL
Surr: Dibromofluoromethane	83	8-8-118		99.2	%REC	1	12/30/2005 4:01:00 AM	I TAL
Surr: Toluene-d8	85	5-115		102	%REC	1	12/30/2005 4:01:00 AN	I TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CH MGP/162363

WorkOrder:

Lab ID:

05120697

Client Sample ID: 116054

Collection Date: 12/27/2005 11:25:00 AM

Report Date:

05120697-005 09-Jan-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPC	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/30/2005 4:31 00 AM	TAL
Ethylbenzene	NELAP	50		ND	μg/L	1	12/30/2005 4:31 00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/30/2005 4:31 00 AM	TAL
Toluene	NELAP	5.0		ND	µg/L	1	12/30/2005 4:31 00 AM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/30/2005 4:31:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	9-129		106	%REC	1	12/30/2005 4:31 00 AM	TAL
Surr: 4-Bromofluorobenzene	8	33-113		101	%REC	1	12/30/2005 4:31 00 AM	TAL
Surr: Dibromofluoromethane	83	8-118		99.6	%REC	1	12/30/2005 4:31 00 AM	TAL
Surr: Toluene-d8	85	.5-115		102	%REC	1	12/30/2005 4:31;00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CH

CH MGP/162363

WorkOrder:

05120697

Client Sample ID: 107054

Lab ID:

05120697-006

Collection Date: 12/27/2005 11:51:00 AM

Report Date: 09-Jan-06 Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ar	alyst
SW-846 3510C, 8310, POLYNUC	CLEAR AROMATIC	HYDRO	CARBON	S BY HPLC				
Acenaphthene		0.00300		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Anthracene	NELAP	0 00030		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Benzo(a)anthracene	NELAP	0 00009		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Chrysene	NELAP	0.00045		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Fluoranthene	NELAP	0.00090		ND	mg/L	1.1	12/30/2005 2:27:40 PM	MAN
Fluorene	NELAP	0.00030		ND	mg/L	17	12/30/2005 2:27:40 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Naphthalene	NELAP	0.0300	S	0.130	mg/L	10	1/3/2006 1:02:02 PM	MAN
Phenanthrene	NELAP	0.00060		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Pyrene	NELAP	0.00030		ND	mg/L	1	12/30/2005 2:27:40 PM	MAN
Surr: Terphenyl-d14	Ę	3.1-120		87.9	%REC	1	12/30/2005 2:27:40 PM	MAN
SW-846 5030, 8260B, VOLATILE	E ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	40.0		859	μg/L	20	12/30/2005 12:28:00 PM	TAL
Ethylbenzene	NELAP	25.0		46.5	μg/L	5	12/30/2005 5:01:00 AM	TAL
Naphthalene	NELAP	50.0		186	μg/L	5	12/30/2005 5:01:00 AM	TAL
Toluene	NELAP	25_0	J	5.4	μg/L	5	12/30/2005 5:01:00 AM	TAL
Xylenes, Total	NELAP	25.0		54.4	μg/L	5	12/30/2005 5:01:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	7	3 9-129		106	%REC	5	12/30/2005 5:01:00 AM	TAL
Surr: 4-Bromofluorobenzene		83-113		100	%REC	5	12/30/2005 5:01:00 AM	TAL
Surr: Dibromofluoromethane	8	33.8-118		96.6	%REC	5	12/30/2005 5:01:00 AM	TAL
Surr: Toluene-d8		35.5-115		102	%REC	5	12/30/2005 5:01:00 AM	TAL

Sample Narrative

SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

Matrix interference present in sample

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder:

Report Date:

Lab ID:

Kelron Environmental

05120697

05120697-007

09-Jan-06

Client Project: CH MGP/162363

Client Sample ID: 107954

Collection Date: 12/27/2005 11:58:00 AM

GROUNDWATER Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Ar	alyst
SW-846 3510C, 8310, POLYNUC	CLEAR AROMATIC	HYDRO	CARBON	S BY HPLC				
Acenaphthene		0.00300		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Anthracene	NELAP	0.00030		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Benzo(a)pyrene	NELAP	0 00012		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Benzo(g,h,i)perylene	NELAP	0_00030		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Chrysene	NELAP	0.00045		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Fluoranthene	NELAP	0.00090		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Fluorene	NELAP	0.00030		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Naphthalene	NELAP	0.0300		0.140	mg/L	10	1/3/2006 1:54:22 PM	MAM
Phenanthrene	NELAP	0.00060		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Pyrene	NELAP	0.00030		ND	mg/L	1	12/30/2005 3:20:01 PM	MAM
Surr: Terphenyl-d14		53.1-120		84.7	%REC	1	12/30/2005 3:20:01 PM	MAM
SW-846 5030, 8260B, VOLATILE	ORGANIC COME	POUNDS	BY GC/M	3				
Benzene	NELAP	40.0		998	μg/L	20	12/30/2005 1:59:00 PM	TAL
Ethylbenzene	NELAP	25.0		45.8	μg/L	5	12/30/2005 6:33:00 AM	TAL
Naphthalene	NELAP	50.0		181	μg/L	5	12/30/2005 6:33:00 AM	TAL
Toluene	NELAP	25.0	J	5.7	μg/L	5	12/30/2005 6:33:00 AM	TAL
Xylenes, Total	NELAP	25.0		54.6	μg/L	5	12/30/2005 6:33:00 AM	TAL
Surr: 1,2-Dichloroethane-d4		73.9-129		107	%REC	5	12/30/2005 6:33:00 AM	TAL
Surr: 4-Bromofluorobenzene		83-113		102	%REC	5	12/30/2005 6:33:00 AM	TAL
Surr: Dibromofluoromethane		83.8-118		97.7	%REC	5	12/30/2005 6:33:00 AM	TAL
Surr: Toluene-d8		85.5-115		103	%REC	5	12/30/2005 6:33:00 AM	TAL

Sample Narrative

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

05120697

Lab ID:

05120697-008

Report Date:

09-Jan-06

Client Project: CH MGP/162363

Client Sample ID: 114054

Collection Date: 12/27/2005 12:51:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	CLEAR AROMATIC	HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.300	J	0.236	mg/L	100	1/3/2006 2:11:48 PM	MAM
Acenaphthylene	NELAP	0.150		ND	mg/L	100	1/3/2006 2:11:48 PM	MAM
Anthracene	NELAP	0.00030		ND	mg/L	1	12/30/2005 3:37:28 PM	MAM
Benzo(a)anthracene	NELAP	0.00009		0.00111	mg/L	1	12/30/2005 3:37:28 PM	MAM
Benzo(a)pyrene	NELAP	0.00012		0.00107	mg/L	1	12/30/2005 3:37:28 PM	MAM
Benzo(b)fluoranthene	NELAP	0.00015		0.00049	mg/L	1	12/30/2005 3:37:28 PM	MAM
Benzo(g,h,i)perylene	NELAP	0.00030		0.00044	mg/L	1	12/30/2005 3:37:28 PM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	12/30/2005 3:37:28 PM	MAM
Chrysene	NELAP	0.00045		0.00122	mg/L	1	12/30/2005 3:37:28 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1:	12/30/2005 3:37:28 PM	MAM
Fluoranthene	NELAP	0.00090		0.00466	mg/L	1	12/30/2005 3:37:28 PM	MAM
Fluorene	NELAP	0.0300		0.0686	mg/L	100	1/3/2006 2:11:48 PM	MAM
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		0.00031	mg/L	1	12/30/2005 3:37:28 PM	MAM
Naphthalene	NELAP	1.50		5.98	mg/L	500	1/4/2006 10:25:16 AM	MAM
Phenanthrene	NELAP	0.00060		0.0128	mg/L	1	12/30/2005 3:37:28 PM	MAM
Pyrene	NELAP	0.00030		0.00229	mg/L	1	12/30/2005 3:37:28 PM	MAM
Surr: Terphenyl-d14	5	53.1-120		92.0	%REC	1	12/30/2005 3:37:28 PM	MAM
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	20.0		939	μg/L	10	12/30/2005 2:30:00 PM	TAL
Ethylbenzene	NELAP	50.0		1150	μg/L	10	12/30/2005 2:30:00 PM	TAL
Naphthalene	NELAP	2000		5750	μg/L	200	12/30/2005 6:34:00 PM	TAL
Toluene	NELAP	50.0		133	μg/L	10	12/30/2005 2:30:00 PM	TAL
Xylenes, Total	NELAP	50.0		891	μg/L	10	12/30/2005 2:30:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	-	73.9-129		106	%REC	10	12/30/2005 2:30:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		96.6	%REC	10	12/30/2005 2:30:00 PM	TAL
Surr: Dibromofluoromethane	8	33.8-118		97.2	%REC	10	12/30/2005 2:30:00 PM	TAL
Surr: Toluene-d8		35.5-115		102	%REC	10	12/30/2005 2:30:00 PM	TAL

Sample Narrative

SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

Surrogate diluted out.

Elevated reporting limit due to high levels of target and/or non-target analytes

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Report Date:

Kelron Environmental

Client Project:

CH MGP/162363

WorkOrder:

05120697

09-Jan-06

Client Sample ID: 115054

Lab ID:

05120697-009

Collection Date: 12/27/2005 1:52:00 PM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	DUNDS	BY GC/MS					
Benzene	NELAP	2.0		4.1	μg/L	1	12/30/2005 6:03:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	µg/L	1	12/30/2005 6:03:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/30/2005 6:03:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/30/2005 6:03:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/30/2005 6:03:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	3.9-129		103	%REC	1	12/30/2005 6:03:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		101	%REC	1	12/30/2005 6:03:00 PM	TAL
Surr: Dibromofluoromethane	83	3.8-118		100	%REC	1	12/30/2005 6:03:00 PM	TAL
Surr: Toluene-d8	85	5.5-115		99.1	%REC	1	12/30/2005 6:03:00 PM	TAL

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

05120697

09-Jan-06

Client Project: CH MGP/162363

WorkOrder:

Client Sample ID: Trip Blank

Lab 1D: Report Date: 05120697-010

Collection Date: 11/29/2005 8:45:00 AM

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
° SW-846 5030, 8260B, VOLATILI	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0	Н	ND	µg/L	1	12/30/2005 1:59:00 Al	√ TAL
Ethylbenzene	NELAP	5.0	Н	ND	µg/L	1	12/30/2005 1:59:00 Al	√ TAL
Naphthalene	NELAP	10	Н	ND	µg/L	1	12/30/2005 1:59:00 Al	VI TAL
Toluene	NELAP	5.0	Н	ND	µg/L	1	12/30/2005 1:59:00 Al	M TAL
Xylenes, Total	NELAP	5.0	Н	ND	μg/L	1	12/30/2005 1:59:00 Al	VI TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129	Н	107	%REC	1	12/30/2005 1:59:00 Al	M TAL
Surr: 4-Bromofluorobenzene	8	33-113	Н	101	%REC	1	12/30/2005 1:59:00 Al	M TAL
Surr: Dibromofluoromethane	83	8-118	Н	99.4	%REC	1	12/30/2005 1:59:00 Al	M TAL
Surr: Toluene-d8	85	.5-115	Н	101	%REC	1	12/30/2005 1:59:00 Al	V TAL

TEL: 618-344-1004

FAX: 618-344-1005

April 06, 2006

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503 FAX: (217) 355-1385 NELAP Accredited #100226

OrderNo. 06030912

RE: CHMGP/162363

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 3/31/2006 7:45:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely.

Michael L. Austin
Director of Operations

618-344-1004 ex.16

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06030912

Report Date: April 06, 2006

REPORT CONTENTS

This reporting package includes the following:

pages	13	Analysis Results (this document)
pages	1	Chain of Custody
pages	1	Associated Information
pages	NA	Sample Summary
pages	, , , , NA	Dates Report
pages	NA	QC Report
pages	NA	Sub Contracted Lab Report
pages	NA	MDL Report

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06030912

Report Date: April 06, 2006

CASE NARRATIVE

Cooler Receipt Temp

0.8 °C

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

06030912

Client Sample ID: 112061

Lab ID:

06030912-001

Collection Date: 3/30/2006 7:20:00 AM

Report Date:

06-Apr-06

Matrix: AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	3/31/2006 4:54:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/31/2006 4:54:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 4:54:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	3/31/2006 4:54:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	µg/L	1	3/31/2006 4:54:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		102	%REC	1	3/31/2006 4:54:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	33-113		106	%REC	1	3/31/2006 4:54:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		104	%REC	1	3/31/2006 4:54:00 PM	GEK
Surr: Toluene-d8	85	.5-115		99.4	%REC	1	3/31/2006 4:54:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

06030912

06-Apr-06

Client Sample ID: 102061

Lab ID:

06030912-002

Report Date:

Collection Date: 3/30/2006 7:47:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	DUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	3/31/2006 5:24:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	4	3/31/2006 5:24:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 5:24:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/31/2006 5:24:00 PM	GEK
Xylenes, Total	NELAP	5 0		ND	μg/L	1	3/31/2006 5:24:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		108	%REC	1	3/31/2006 5:24:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		106	%REC	1	3/31/2006 5:24:00 PM	GEK
Surr: Dibromofluoromethane	83	3.8-118		106	%REC	1	3/31/2006 5:24:00 PM	GEK
Surr: Toluene-d8	85	5.5-115		97.7	%REC	1	3/31/2006 5:24:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06030912

06-Apr-06

Client Sample ID: 111061

Collection Date: 3/30/2006 8:22:00 AM

Lab ID:

Report Date:

06030912-003

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	OUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	3/31/2006 5:54:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	µg/L	-1	3/31/2006 5:54:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 5:54:00 PM	GEK
Toluene	NELAP	5 0		ND	μg/L	1	3/31/2006 5:54:00 PM	GEK
Xylenes, Total	NELAP	5 0		ND	μg/L	1	3/31/2006 5:54:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		108	%REC	1	3/31/2006 5:54:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	33-113		106	%REC	1	3/31/2006 5:54:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		105	%REC	1	3/31/2006 5:54:00 PM	GEK
Surr: Toluene-d8	85	5-115		99.1	%REC	1	3/31/2006 5:54:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06030912

Client Sample ID: 108061

Lab ID:

06030912-004

Collection Date: 3/30/2006 8:55:00 AM

Report Date:

06-Apr-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	3/31/2006 6:25:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1 -	3/31/2006 6:25:00 PM	GEK
Naphthalene	NELAP	10		ND	µg/L	1	3/31/2006 6:25:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	3/31/2006 6:25:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	4	3/31/2006 6:25:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		109	%REC	1	3/31/2006 6:25:00 PM	GEK
Surr: 4-Bromofluorobenzene		33-113		106	%REC	1	3/31/2006 6:25:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		105	%REC	1	3/31/2006 6:25:00 PM	GEK
Surr: Toluene-d8	85	.5-115		99.0	%REC	1	3/31/2006 6:25:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

06030912

WorkOrder: Lab ID:

06030912-005

Report Date:

06-Apr-06

Client Project:

CHMGP/162363

Client Sample ID: 108961

Collection Date: 3/30/2006 8:57:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	3/31/2006 6:55:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/31/2006 6:55:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 6:55:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	4	3/31/2006 6:55:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	µg/L	1	3/31/2006 6:55:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		105	%REC	1	3/31/2006 6:55:00 PM	GEK
Surr: 4-Bromofluorobenzene	{	33-113		107	%REC	1	3/31/2006 6:55:00 PM	GEK
Surr: Dibromofluoromethane	83	.8-118		104	%REC	1	3/31/2006 6:55:00 PM	GEK
Surr: Toluene-d8	85	.5-115		99.3	%REC	1	3/31/2006 6:55:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

06030912

Lab ID:

06030912-006

Report Date:

06-Apr-06

Client Project:

CHMGP/162363

Client Sample ID: 116061

Collection Date: 3/30/2006 9:40:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	4	3/31/2006 7:26:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	3/31/2006 7:26:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 7:26:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/31/2006 7:26:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/31/2006 7:26:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		109	%REC	1	3/31/2006 7:26:00 PM	GEK
Surr: 4-Bromofluorobenzene		33-113		103	%REC	1	3/31/2006 7:26:00 PM	GEK
Surr: Dibromofluoromethane	83	.8-118		102	%REC	1	3/31/2006 7:26:00 PM	GEK
Surr: Toluene-d8	85	.5-115		99.0	%REC	1	3/31/2006 7:26:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06030912

Client Sample ID: 107061

Lab ID:

06030912-007

Collection Date: 3/30/2006 10:07:00 AM

Report Date:

06-Apr-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	CLEAR AROMATIC	HYDRO	CARBONS	BY HPLC				
Acenaphthene		0.00300		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Anthracene	NELAP	0.00030		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Chrysene	NELAP	0.00045		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Fluoranthene	NELAP	0 00090		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Fluorene	NELAP	0_00030		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Naphthalene	NELAP	0.0300		0.0578	mg/L	10	4/6/2006 9:41:21 AM	MAN
Phenanthrene	NELAP	0.00060		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Pyrene	NELAP	0.00030		ND	mg/L	1	4/4/2006 4:48:56 PM	MAN
Surr: Terphenyl-d14	5	3 1-120		88.0	%REC	1	4/4/2006 4:48:56 PM	MAN
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	40.0		231	μg/L	20	3/31/2006 8:57:00 PM	GEK
Ethylbenzene	NELAP	5.0		18.6	μg/L	1	4/1/2006 2:11:00 AM	GEK
Naphthalene	NELAP	10		100	μg/L	1	4/1/2006 2:11:00 AM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	4/1/2006 2:11:00 AM	GEK
Xylenes, Total	NELAP	5.0		28.6	μg/L	1	4/1/2006 2:11:00 AM	GEK
Surr: 1,2-Dichloroethane-d4	7	3.9-129		110	%REC	1	4/1/2006 2:11:00 AM	GEK
Surr: 4-Bromofluorobenzene		83-113		101	%REC	1	4/1/2006 2:11:00 AM	GEK
Surr: Dibromofluoromethane	3	3.8-118		98.6	%REC	1	4/1/2006 2:11:00 AM	GEK
Surr: Toluene-d8	8	35 5-115		99.1	%REC	1	4/1/2006 2:11:00 AM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06030912

Client Sample ID: 114061

Collection Date: 3/30/2006 12:18:00 PM

Lab ID:

06030912-008

Report Date:

06-Apr-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	LEAR AROMATIC	HYDRO	CARBONS	S BY HPLC				
Acenaphthene	NELAP	0.0300		0.0991	mg/L	10	4/6/2006 10:51:12 AM	MAN
Acenaphthylene	NELAP	0.00150		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Anthracene	NELAP	0.00030		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Benzo(a)anthracene	NELAP	0.00009		0.00041	mg/L	1	4/4/2006 5:41:20 PM	MAN
Benzo(a)pyrene	NELAP	0.00012		0.00027	mg/L	1	4/4/2006 5:41:20 PM	MAN
Benzo(b)fluoranthene	NELAP	0 00015		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Chrysene	NELAP	0 00045		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Fluoranthene	NELAP	0.00090		0.00181	mg/L	1	4/4/2006 5:41:20 PM	MAN
Fluorene	NELAP	0.00300		0.0494	mg/L	10	4/6/2006 10:51:12 AM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	4/4/2006 5:41:20 PM	MAN
Naphthalene	NELAP	3.00		6.00	mg/L	1000	4/6/2006 11:26:08 AM	MAN
Phenanthrene	NELAP	0 00060		0.0113	mg/L	1	4/4/2006 5:41:20 PM	MAN
Pyrene	NELAP	0,00030		0.00136	mg/L	1	4/4/2006 5:41:20 PM	MAN
Surr: Terphenyl-d14	5	3.1-120		104	%REC	1	4/4/2006 5:41:20 PM	MAN
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	20.0		875	μg/L	10	4/1/2006 3:43:00 AM	GEK
Ethylbenzene	NELAP	50.0		1220	μg/L	10	4/1/2006 3:43:00 AM	GEK
Naphthalene	NELAP	2000		5160	μg/L	200	3/31/2006 8:27:00 PM	GEK
Toluene	NELAP	50.0		123	μg/L	10	4/1/2006 3:43:00 AM	GEK
Xylenes, Total	NELAP	50.0		958	μg/L	10	4/1/2006 3:43:00 AM	GEK
Surr: 1,2-Dichloroethane-d4	-	3.9-129		109	%REC	10	4/1/2006 3:43:00 AM	GEK
Surr: 4-Bromofluorobenzene		83-113		96.6	%REC	10	4/1/2006 3:43:00 AM	GEK
Surr: Dibromofluoromethane	8	33.8-118		101	%REC	10	4/1/2006 3:43:00 AM	GEK
Surr: Toluene-d8	8	35 5-115		99.4	%REC	10	4/1/2006 3:43:00 AM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06030912

Client Sample ID: 115061

Lab ID:

06030912-009

Collection Date: 3/30/2006 1:30:00 PM

Report Date:

06-Apr-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	OUNDS	BY GC/MS					
Benzene	NELAP	2.0		2.7	µg/L	1	3/31/2006 7:56:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	µg/L	1	3/31/2006 7:56:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	3/31/2006 7:56:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	3/31/2006 7:56:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	3/31/2006 7:56:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		110	%REC	1	3/31/2006 7:56:00 PM	GEK
Surr: 4-Bromofluorobenzene	8	33-113		98.9	%REC	1	3/31/2006 7:56:00 PM	GEK
Surr: Dibromofluoromethane	83	.8-118		105	%REC	1	3/31/2006 7:56:00 PM	GEK
Surr: Toluene-d8	85	.5-115		98.1	%REC	1	3/31/2006 7:56:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

06030912

Lab ID:

Report Date:

06030912-010

06-Apr-06

Client Project:

CHMGP/162363

Client Sample ID: Trip Blank

Collection Date: 2/20/2006 12:10:00 PM

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	POUNDS	BY GC/MS					
Benzene	NELAP	2.0	Н	ND	µg/L	1	3/31/2006 11:49:00 AM	GEK
Ethylbenzene	NELAP	5.0	Н	ND	µg/L	1	3/31/2006 11:49:00 AM	GEK
Naphthalene	NELAP	10	Н	ND	μg/L	1	3/31/2006 11:49:00 AM	GEK
Toluene	NELAP	5.0	Н	ND	μg/L	1	3/31/2006 11:49:00 AM	GEK
Xylenes, Total	NELAP	5.0	Н	ND	μg/L	1	3/31/2006 11:49:00 AM	GEK
Surr: 1,2-Dichloroethane-d4	,	73.9-129	Н	99.4	%REC	1	3/31/2006 11:49:00 AM	GEK
Surr: 4-Bromofluorobenzene		83-113	Н	106	%REC	1	3/31/2006 11:49:00 AM	GEK
Surr: Dibromofluoromethane		83.8-118	Н	101	%REC	1	3/31/2006 11:49:00 AM	GEK
Surr: Toluene-d8		85.5-115	Н	96.7	%REC	1	3/31/2006 11:49:00 AM	GEK

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

June 29, 2006

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503

FAX: (217) 355-1385

RE: CHMGP/162363

OrderNo. 06060698

NELAP Accredited #100226

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 6/23/2006 8:00:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin Director of Operations

618-344-1004 ex.16

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06060698 Report Date: June 29, 2006 REPORT CONTENTS

This reporting package includes the following:

ysis Results (this document)13	pages
Chain of Custody 1	pages
Associated Information 1	pages
Sample Summary 1	pages
Dates Report 1	pages
QC Report 6	pages
Sub Contracted Lab Report NA	pages
MDL Report NA	pages

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06060698

Report Date: June 29, 2006

CASE NARRATIVE

Cooler Receipt Temp

4.2 °C

Qualifiers

DF - Dilution Factor RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DN1 Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

Client Sample ID 112062

Lab ID:

06060698-001

Collection Date: 6/22/2006 7:50:00 AM

Report Date:

29-Jun-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Analyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	6/25/2006 1:08:00 PM	l GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/25/2006 1:08:00 PM	I GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 1:08:00 PM	I GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/25/2006 1:08:00 PM	I GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	-1	6/25/2006 1:08:00 PM	1 GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		119	%REC	1	6/25/2006 1:08:00 PM	1 GEK
Surr: 4-Bromofluorobenzene		83-113		102	%REC	1	6/25/2006 1:08:00 PM	I GEK
Surr: Dibromofluoromethane	83	8-118		110	%REC	1	6/25/2006 1:08:00 PM	I GEK
Surr: Toluene-d8	85	5.5-115		101	%REC	1	6/25/2006 1:08:00 PM	I GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

Client Sample ID 102062

Lab ID:

06060698-002

Collection Date: 6/22/2006 8:20:00 AM

Report Date:

29-Jun-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPC	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	6/25/2006 2:09:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/25/2006 2:09:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 2:09:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/25/2006 2:09:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/25/2006 2:09:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		116	%REC	1	6/25/2006 2:09:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		101	%REC	1	6/25/2006 2:09:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		106	%REC	1	6/25/2006 2:09:00 PM	GEK
Surr: Toluene-d8	85	.5-115		96.7	%REC	1	6/25/2006 2:09:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

Client Sample 1D 111062

Lab ID:

06060698-003

Collection Date: 6/22/2006 8:55:00 AM

Report Date:

29-Jun-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	6/25/2006 2:40:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/25/2006 2:40:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 2:40:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/25/2006 2:40:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/25/2006 2:40:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		117	%REC	1	6/25/2006 2:40:00 PM	GEK
Surr: 4-Bromofluorobenzene	1	33-113		101	%REC	1	6/25/2006 2:40:00 PM	GEK
Surr: Dibromofluoromethane	83	.8-118		110	%REC	1	6/25/2006 2:40:00 PM	GEK
Surr: Toluene-d8	85	.5-115		97.2	%REC	1	6/25/2006 2:40:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder: Lab ID:

06060698

06060698-004

Client Sample ID 111962

Collection Date: 6/22/2006 8:57:00 AM

Report Date:

29-Jun-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	6/25/2006 3:10:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	- 1	6/25/2006 3:10:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 3:10:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/25/2006 3:10:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/25/2006 3:10:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		121	%REC	1	6/25/2006 3:10:00 PM	GEK
Surr: 4-Bromofluorobenzene	1	83-113		104	%REC	1	6/25/2006 3:10:00 PM	GEK
Surr: Dibromofluoromethane	83	.8-118		109	%REC	1	6/25/2006 3:10:00 PM	GEK
Surr: Toluene-d8	85	5.5-115		99.8	%REC	1	6/25/2006 3:10:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder: Lab ID:

06060698

Client Sample ID 108062

Collection Date: 6/22/2006 9:19:00 AM

Report Date:

29-Jun-06

06060698-005

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	6/25/2006 3:41:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/25/2006 3:41:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 3:41:00 PM	GEK
Toluene	NELAP	5.0		ND	μg/L	1	6/25/2006 3:41:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/25/2006 3:41:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	9-129		125	%REC	1	6/25/2006 3:41:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		105	%REC	1	6/25/2006 3:41:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		113	%REC	1:	6/25/2006 3:41:00 PM	GEK
Surr: Toluene-d8	85	5-115		102	%REC	1	6/25/2006 3:41:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

29-Jun-06

Client Sample ID 116062

Lab ID:

06060698-006

Report Date:

Collection Date: 6/22/2006 10:26:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	6/25/2006 4:11:00 PM	GEK
Ethylbenzene	NELAP	50		ND	μg/L	1	6/25/2006 4:11:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 4:11:00 PM	GEK
Toluene	NELAP	5.0		ND	µg/L	1	6/25/2006 4:11:00 PM	GEK
Xylenes, Total	NELAP	5.0		ND	μg/L	1	6/25/2006 4:11:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		127	%REC	1	6/25/2006 4:11:00 PM	GEK
Surr: 4-Bromofluorobenzene	3	33-113		104	%REC	1	6/25/2006 4:11:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		114	%REC	1	6/25/2006 4:11:00 PM	GEK
Surr: Toluene-d8	85	.5-115		102	%REC	1	6/25/2006 4:11:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

06060698

29-Jun-06

Lab ID:

Report Date:

06060698-007

Client Project:

CHMGP/162363

Client Sample ID 107062

Collection Date: 6/22/2006 10:58:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	CLEAR AROMATIC	HYDRO	CARBON	S BY HPLC				
Acenaphthene		0.00300		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Acenaphthylene	NELAP	0.00150		ND	mg/L	4	6/24/2006 6:18:24 AM	MAN
Anthracene	NELAP	0.00030		ND	mg/L	-1	6/24/2006 6:18:24 AM	MAN
Benzo(a)anthracene	NELAP	0 00009		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1.	6/24/2006 6:18:24 AM	MAN
Benzo(k)fluoranthene	NELAP	0 00015		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Chrysene	NELAP	0.00045		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Fluoranthene	NELAP	0.00090		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Fluorene	NELAP	0.00030		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Phenanthrene	NELAP	0.00060		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Pyrene	NELAP	0.00030		ND	mg/L	1	6/24/2006 6:18:24 AM	MAN
Surr: Terphenyl-d14	5	3.1-120		82.9	%REC	1	6/24/2006 6:18:24 AM	MAN
SW-846 5030, 8260B, VOLATILI	F ORGANIC COMP	OUNDS	BY GC/M	3				
Benzene	NELAP	10		289	μg/L	5	6/25/2006 5:43:00 PM	GEK
Ethylbenzene	NELAP	5_0		18.2	μg/L	1	6/25/2006 7:45:00 PM	GEK
Naphthalene	NELAP	10		106	μg/L	1	6/25/2006 7:45:00 PM	GEK
Toluene	NELAP	5.0	J	2.4	μg/L	1	6/25/2006 7:45:00 PM	GE
Xylenes, Total	NELAP	5.0		30.7	μg/L	1	6/25/2006 7:45:00 PM	GE
Surr: 1,2-Dichloroethane-d4	-	73_9-129		113	%REC	1	6/25/2006 7:45:00 PM	GE
Surr: 4-Bromofluorobenzene		83-113		101	%REC	1	6/25/2006 7:45:00 PM	GEŁ
Surr: Dibromofluoromethane	8	33.8-118		107	%REC	1	6/25/2006 7:45:00 PM	GE
Surr: Toluene-d8		35.5-115		96.5	%REC	1	6/25/2006 7:45:00 PM	GEŁ

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

CHMGP/162363

WorkOrder:

06060698

Client Sample ID 114062

Client Project:

Lab ID:

06060698-008

Collection Date: 6/22/2006 12:02:00 PM

Report Date:

29-Jun-06

AQUEOUS Matrix:

Analyses	Certification	n RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	LEAR AROMATIC	HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0750		0.159	mg/L	25	6/27/2006 3:03:17 PM	MAM
Acenaphthylene	NELAP	0.375		0.868	mg/L	250	6/26/2006 4:36:48 PM	MAM
Anthracene	NELAP	0.00030		0.00180	mg/L	1	6/24/2006 7:10:52 AM	MAM
Benzo(a)anthracene	NELAP	0.00009		0.00091	mg/L	1	6/24/2006 7:10:52 AM	MAM
Benzo(a)pyrene	NELAP	0 00012		0.00097	mg/L	1	6/24/2006 7:10:52 AM	MAM
Benzo(b)fluoranthene	NELAP	0.00015		0.00030	mg/L	1	6/24/2006 7:10:52 AM	MAM
Benzo(g,h,i)perylene	NELAP	0.00030		0.00068	mg/L	1	6/24/2006 7:10:52 AM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	6/24/2006 7:10:52 AM	MAM
Chrysene	NELAP	0.00045		0.00093	mg/L	1	6/24/2006 7:10:52 AM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	6/24/2006 7:10:52 AM	MAM
Fluoranthene	NELAP	0.00090		0.00338	mg/L	1	6/24/2006 7:10:52 AM	MAM
Fluorene	NELAP	0.00750		0.0428	mg/L	25	6/27/2006 3:03:17 PM	MAM
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		0.00030	mg/L	1	6/24/2006 7:10:52 AM	MAM
Phenanthrene	NELAP	0.00060		0.0140	mg/L	1	6/24/2006 7:10:52 AM	MAM
Pyrene	NELAP	0,00030		0.00274	mg/L	1	6/24/2006 7:10:52 AM	MAM
Surr: Terphenyl-d14		53,1-120		99.6	%REC	1	6/24/2006 7:10:52 AM	MAM
SW-846 5030, 8260B, VOLATILI	E ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	20.0		936	μg/L	10	6/25/2006 9:47:00 PM	GEK
Ethylbenzene	NELAP	50.0		1140	μg/L	10	6/25/2006 9:47:00 PM	GEK
Naphthalene	NELAP	2000		7510	μg/L	200	6/25/2006 9:17:00 PM	GEK
Toluene	NELAP	50.0		131	μg/L	10	6/25/2006 9:47:00 PM	GEK
Xylenes, Total	NELAP	50.0		1020	µg/L	10	6/25/2006 9:47:00 PM	GEK
Surr: 1,2-Dichloroethane-d4		73.9-129		118	%REC	10	6/25/2006 9:47:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113		97.9	%REC	10	6/25/2006 9:47:00 PM	GEK
Surr: Dibromofluoromethane		83.8-118		108	%REC	10	6/25/2006 9:47:00 PM	GEK
Surr: Toluene-d8		85_5-115		99.0	%REC	10	6/25/2006 9:47:00 PM	GEK

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

Client Sample ID 115062

Lab ID:

06060698-009

Collection Date: 6/22/2006 1:01:00 PM

Report Date:

29-Jun-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		11.7	μg/L	-1	6/25/2006 5:12:00 PM	GEK
Ethylbenzene	NELAP	5.0		ND	μg/L	1	6/25/2006 5:12:00 PM	GEK
Naphthalene	NELAP	10		ND	μg/L	1	6/25/2006 5:12:00 PM	GEK
Toluene	NELAP	5.0	J	1.4	μg/L	1	6/25/2006 5:12:00 PM	GEK
Xylenes, Total	NELAP	5.0	J	1.0	μg/L	1	6/25/2006 5:12:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	73	.9-129		119	%REC	1	6/25/2006 5:12:00 PM	GEK
Surr: 4-Bromofluorobenzene	;	33-113		99.0	%REC	1	6/25/2006 5:12:00 PM	GEK
Surr: Dibromofluoromethane	83	8-118		108	%REC	1	6/25/2006 5:12:00 PM	GEK
Surr: Toluene-d8	85	5-115		100	%REC	1	6/25/2006 5:12:00 PM	GEK

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06060698

Client Sample ID Trip Blank

Lab ID:

06060698-010

Collection Date: 6/5/2006

Report Date:

29-Jun-06

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	DUNDS	BY GC/MS					
Benzene	NELAP	2.0	Н	ND	μg/L	1	6/25/2006 12:38:00 PM	GEK
Ethylbenzene	NELAP	5.0	Н	ND	μg/L	1	6/25/2006 12:38:00 PM	GEK
Naphthalene	NELAP	10	Н	ND	μg/L	1	6/25/2006 12:38:00 PM	GEK
Toluene	NELAP	5.0	Н	ND	μg/L	1	6/25/2006 12:38:00 PM	GEK
Xylenes, Total	NELAP	5.0	Н	ND	μg/L	11	6/25/2006 12:38:00 PM	GEK
Surr: 1,2-Dichloroethane-d4	7:	3,9-129	Н	118	%REC	1.	6/25/2006 12:38:00 PM	GEK
Surr: 4-Bromofluorobenzene		83-113	Н	103	%REC	1	6/25/2006 12:38:00 PM	GEK
Surr: Dibromofluoromethane	8:	3.8-118	Н	111	%REC	1	6/25/2006 12:38:00 PM	GEK
Surr: Toluene-d8	8	5.5-115	Н	98.9	%REC	1	6/25/2006 12:38:00 PM	GEK

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004 FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

06060698

Date Received:

6/23/2006 8:00:00 AM

DATES REPORT

Date: 29-Jun-06

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
06060698-001A	112062	6/22/2006	Aqueous	SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-002A	102062			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-003A	111062			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-004A	111962			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-005A	108062			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-006A	116062			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-007A	107062			SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/26/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/24/2006
06060698-007B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-008A	114062			SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/27/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/24/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/26/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC	6/23/2006	6/27/2006
06060698-008B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-009A	115062			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006
06060698-010A	Trip Blank	6/5/2006	Trip Blank	SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS	6/25/2006	6/25/2006

TEKLAB, INC

Kelron Environmental 06060698 CLIENT:

Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

Date: 29-Jun-06

TestCode: SV_8310S_W

Sample ID: MB-31925	SampType: MBLK			Units: mg/L		Prep Date:	6/23/2006	RunNo: 80483	
Client ID: ZZZZZZ	Batch ID: 31925			SW3510C		Analysis Date:	6/23/2006	SeqNo: 1316711	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit High	HighLimit RPD Ref Val	%RPD RPDLimit	mit Qual
Acenaphthene	QN	0.00300							
Acenaphthylene	QN	0.00150							
Anthracene	QN	0.00030							
Benzo(a)anthracene	QN	6000000							
Benzo(a)pyrene	QN	0.00012							
Benzo(b)fluoranthene	QN	0.00015							
Benzo(g,h,i)perylene	QN	0.00030							
Benzo(k)fluoranthene	QN	0 00015							
Chrysene	QN	0.00045							
Dibenzo(a,h)anthracene	QN	0,00018							
Fluoranthene	QN	0.00090							
Fluorene	QN	0.00030							
Indeno(1,2,3-cd)pyrene	QN	0.00030							
Naphthalene	QN	0.00300							
Phenanthrene	QN	090000							
Pyrene	QN	0.00030							
Surr: Terphenyl-d14	0.00700		0.01000		70.0	59.9	111		
Sample ID: LCS-31925	SampType: LCS			Units: mg/L		Prep Date:	6/23/2006	RunNo: 80483	
Client ID: ZZZZZZ	Batch ID: 31925			SW3510C		Analysis Date:	6/23/2006	SeqNo: 1316712	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	mit Qual
Acenaphthene	0.00877	0.00300	0.01000	0	87.7	52.4	95		
Acenaphthylene	0.00848	0.00150	0.01000	0	84.8	44.3	97.4		
Anthracene	0.00983	0.00030	0.01000	0	98.3	59.1	108		
Benzo(a)anthracene	0.00981	6000000	0.01000	0	98.1	61.7	109		
Benzo(a)pyrene	0.0100	0.00012	0.01000	0	100	53.7	119		
Benzo(b)fluoranthene	0.00981	0.00015	0.01000	0	98.1	60.3	107		
Benzo(g,h,i)perylene	0.00993	0.00030	0.01000	0	99.3	59.4	115		
Qualifiers: E Value	Value above quantitation range		H Holdir	Holding times for preparation or analysis exceeded	on or analysi	pepeexes s	J Analyte detected	Analyte detected below quantitation li	
M Manua	Manual Integration used to determine area response	a response	ND Not D	Not Detected at the Reporting Limit	ng Limit		R RPD outside acce	RPD outside accepted recovery limits	Page 1 of 6
	Spike Recovery outside accepted recovery limits	y iimits							

CLIENT: Kelron Environmental

Work Order: 06060698

 Work Order:
 06060698

 Project:
 CHMGP/162363

ANALYTICAL QC SUMMARY REPORT

TestCode: SV 8310S W

Sample ID: LCS-31925	SampType: LCS			Units: mg/L		Prep Date:	6/23/2006	90	RunNo: 80483	က	
Client ID: ZZZZZZ	Batch ID: 31925			SW3510C		Analysis Date:	6/23/2006	90	SeqNo: 1316712	712	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	0.00982	0.00015	0.01000	0	98.2	62.6	109				
Chrysene	26600 0	0.00045	0.01000	0	99.7	60.3	110				
Dibenzo(a,h)anthracene	0.00929	0.00018	0.01000	0	92.9	61	108				
Fluoranthene	0.00973	060000	0.01000	0	97.3	59,3	108				
Fluorene	0.00915	0.00030	0.01000	0	91.5	44.8	103				
Indeno(1,2,3-cd)pyrene	0.00979	0.00030	0.01000	0	6,76	61	112				
Naphthalene	0.00814	0.00300	0.01000	0	81.4	45.6	91.9				
Phenanthrene	0.00983	0900000	0.01000	0	98.3	55,8	110				
Pyrene	0 00982	0.00030	0,01000	0	98.2	20.7	109				
Surr: Terphenyl-d14	0.00928		0.01000		92.8	59.9	111				
Sample ID: LCSD-31925	SampType: LCSD			Units: mg/L		Prep Date:	6/23/2006	90	RunNo: 80483	e .	
Client ID: ZZZZZZ	Batch ID: 31925			SW3510C		Analysis Date:	6/23/2006	90	SeqNo: 1316713	713	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00901	0.00300	0.01000	0	90.1	52.4	95	0.008765	2.81	26.2	
Acenaphthylene	0.00899	0.00150	0.01000	0	89.9	44.3	97.4	0.008479	5.80	25.7	
Anthracene	0.0104	0.00030	0.01000	0	104	59.1	108	0.009829	5.23	18.2	
Benzo(a)anthracene	0.0105	60000 0	0.01000	0	105	61.7	109	0,009807	6.82	15	
Benzo(a)pyrene	0.0107	0.00012	0.01000	0	107	53.7	119	0.01003	6'19	15,1	
Benzo(b)fluoranthene	0.0105	0.00015	0.01000	0	105	60.3	107	0.009814	7.10	15.8	
Benzo(g,h,i)perylene	0.0105	0.00030	0.01000	0	105	59.4	115	0.009934	5.90	16.4	
Benzo(k)fluoranthene	0.0105	0.00015	0.01000	0	105	62.6	109	0.009817	7,20	15.2	
Chrysene	0.0107	0.00045	0.01000	0	107	60.3	110	0.009974	6.95	15.9	
Dibenzo(a,h)anthracene	0.0103	0.00018	0.01000	0	103	61	108	0.009287	9.94	16.3	
Fluoranthene	0.0105	06000 0	0.01000	0	105	59.3	108	0.009727	7.90	16.8	
Fluorene	0.00982	0.00030	0.01000	0	98.2	44.8	103	0.009149	7.08	27.5	
Indeno(1,2,3-cd)pyrene	0.0105	0.00030	0.01000	0	105	61	112	0.009793	7.01	15.8	
Naphthalene	0.00839	0.00300	0.01000	0	83.9	45.6	91.9	0.008138	3.08	25	
Phenanthrene	0.0104	0.00060	0.01000	0	104	55.8	110	0.009828	6.08	23.2	
Pyrene	0.0106	0.00030	0.01000	0	106	20.7	109	0.009818	8.02	16.7	
Oualifiers: E Value abo	Value above quantitation range		H Holdi	Holding times for preparation or analysis exceeded	or analys	sis exceeded	-	Analyte detected	Analyte detected below quantitation li	ili	
V	and a property of the property	es reconse	N ON	Not Detected at the Benorting Limit	Jimit o		2	RPD outside accented recovery limits	nted recovery lim		

CLIENT:

Work Order:

CHMGP/162363 Project:

Kelron Environmental 06060698

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: LCSD-31925	SampType: LCSD			Units: mg/L		Prep Date:	6/23/2006		RunNo: 80483	
Client ID: ZZZZZZ	Batch ID: 31925			SW3510C		Analysis Date:	6/23/2006		SeqNo: 1316713	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	ef Val	%RPD RPD	RPDLimit Qual
Surr: Terphenyl-d14	0.0102		0.01000		102	59.9	111		0	20
Sample ID: 06060698-007AMS	SampType: MS			Units: mg/L		Prep Date:	6/23/2006		RunNo: 80483	
Client ID: 107062MS	Batch ID: 31925			SW3510C		Analysis Date:	6/24/2006		SeqNo: 1316748	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	ef Val	%RPD RPD	RPDLimit Qual
Acenaphthene	0.00830	0.00300	0.01000	0	83 0	17.5	116			
Acenaphthylene	0 00800	0.00150	0.01000	0	80 0	18.7	140			
Anthracene	0 00883	0.00030	0.01000	0	89.3	55 5	111			
Benzo(a)anthracene	0.00849	6000000	0.01000	0	84.9	52	115			
Benzo(a)pyrene	0.00901	0.00012	0.01000	0	90 1	46.8	122			
Benzo(b)fluoranthene	0.00851	0.00015	0.01000	0	85.1	52.6	112			
Benzo(g,h,i)perylene	0 00871	0.00030	0.01000	0	87.1	52.7	116			
Benzo(k)fluoranthene	0.00854	0.00015	0.01000	0	85.4	51.1	118			
Chrysene	0.00875	0.00045	0.01000	0	87.5	52.1	113			
Dibenzo(a,h)anthracene	0.00836	0.00018	0.01000	0	83.6	53.6	110			
Fluoranthene	0.00845	0.00090	0.01000	0	84.5	45.5	117			
Fluorene	0.00814	0.00030	0.01000	0	81.4	31.7	104			
Indeno(1,2,3-cd)pyrene	0.00849	0.00030	0.01000	0	84.9	52.1	117			
Phenanthrene	0 00869	0 00000	0.01000	0	86.9	47.3	120			
Pyrene	0.00847	0.00030	0.01000	0	84.7	51.2	108			
Surr: Terphenyl-d14	0.00874		0.01000		87.4	53.1	120			
Sample ID: 06060698-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	6/23/2006		RunNo: 80483	
Client ID: 107062MSD	Batch ID: 31925			SW3510C		Analysis Date:	6/24/2006		SeqNo: 1316749	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	ef Val	%RPD RPD	RPDLimit Qual
Acenaphthene	0.00755	0.00300	0.01000	0	75.5	17.5	116 0.00	0.008301	9.48	40
Acenaphthylene	0.00919	0.00150	0.01000	0	91.9	18.7	140 0.00	0.008002	13.9	40
Anthracene	0,00908	0.00030	0.01000	0	8.06	55.5	111 0.00	0.008926	1.70	40
Benzo(a)anthracene	0.00848	6000000	0.01000	0	84.8	52	115 0.00	0.008489	0.100	40
	Value above quantitation range			Holding times for preparation or analysis exceeded	n or analys	is exceeded	J Analyte d	etected be	Analyte detected below quantitation li	
M Manual Integ	Manual Integration used to determine area response	a response	O TON ON	Not Detected at the Reporting Limit	ig Limit			ide accebi	KPD outside accepted recovery inmits	(

Page 4 of 6

Kelron Environmental CLIENT:

86909090 Work Order: CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: 06060698-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	6/23/2006	90	RunNo: 80483	183	
Client ID: 107062MSD	Batch ID: 31925			SW3510C		Analysis Date:	6/24/2006	90	SeqNo: 1316749	16749	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Вепzo(а)ругепе	0.00891	0.00012	0.01000	0	89.1	46.8	122	800600'0	1,11	40	
Benzo(b)fluoranthene	0.00848	0.00015	0.01000	0	84.8	52.6	112	0.008505	0 274	40	
Benzo(g,h,i)perylene	0.00815	0.00030	0.01000	0	81.5	52.7	116	0.008714	6.74	40	
Benzo(k)fluoranthene	0.00853	0.00015	0.01000	0	85,3	51.1	118	0.008536	0.0961	40	
Chrysene	0.00879	0,00045	0.01000	0	87.9	52 1	113	0.008753	0.412	40	
Dibenzo(a,h)anthracene	0.00826	0,00018	0,01000	0	82 6	536	110	0.008365	1.32	40	
Fluoranthene	0.00839	0.00090	0.01000	0	83.9	45.5	117	0.008449	0.654	40	
Fluorene	0.00839	0.00030	0.01000	0	83 9	31.7	104	0.008138	3.10	40	
Indeno(1,2,3-cd)pyrene	0.00815	0.00030	0.01000	0	81.5	52.1	117	0.008490	4 08	40	
Phenanthrene	0,00870	0.00060	0.01000	0	87.0	47.3	120	0.008692	0.0874	40	
Pyrene	0.00844	0.00030	0.01000	0	84.4	51.2	108	0.008467	0 328	40	
Surr: Terphenyl-d14	0.00894		0.01000		89.4	53.1	120		0	40	
Sample ID: 06060698-007AMS	SampType: MS			Units: mg/L		Prep Date:	6/23/2006	90	RunNo: 80519	519	
Client ID: 107062MS	Batch ID: 31925			SW3510C		Analysis Date:	6/26/2006	90	SeqNo: 1317801	17801	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	0.0535	0.0150	0.01000	0.04938	41.2	24.5	115				
Sample ID: 06060698-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	6/23/2006	90	RunNo: 80519	519	
Client ID: 107062MSD	Batch ID: 31925			SW3510C		Analysis Date:	6/26/2006	90	SeqNo: 1317802	17802	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0	0 0	00000	0 0 4 0 0 0	62 4	316	4	0.05350	4 07	C.	

Value above quantitation range Qualifiers:

Manual Integration used to determine area response S Z E

Not Detected at the Reporting Limit π Q Spike Recovery outside accepted recovery limits

Analyte detected below quantitation li RPD outside accepted recovery limits - ≃ Holding times for preparation or analysis exceeded

Kelron Environmental 06060698 CLIENT:

Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Pach D: 31973 Swedon Swedon Analysis Dale: 6/25/2006 Seq No: 1315 Swedon Swed	Sample ID: MBLK-N060625-1	SampType: MBLK			Units: µg/L		Prep Date:	6/25/2006	RunNo: 80439	
Name Politic Politic		Batch ID: 31973			SW5030	•	Analysis Date:	6/25/2006	SeqNo: 1315837	
No	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC			%RPD RPDLimit	Qual
ND 50 ND 10 ND ND ND ND ND ND DELECTED at late in the proper of	Benzene	QN	2.0							
ND 50 50 50 50 50 50 50 5	Toluene	QN	20							
ND 50 10 113 73.9 129	Ethylbenzene	QN	5.0							
ND	Xylenes, Total	QN	5.0							
SampType: MS Soloo 113 739 129 129 129 130 131	Naphthalene	ON	10							
51.9 50.00 10.4 83 113 50.00 10.0 10.8 85.5 115 50.00 10.0 85.5 115 50.00 10.0 85.5 115 SampType: MS Batch ID: 31973 SWS030 Analysis Date: 6/26/2006 RunNo: 8043 SampType: MS 10 325.0 289.0 82.2 57.8 125 RunNo: 8043 Batch ID: 31973 Analysis Date: 6/26/2006 RunNo: 8042 Analysis Date: 6/26/2006 RunNo: 8043 SampType: MS 10 325.0 289.0 78.5 57.8 125 SeqNo: 1316 Batch ID: 31973 Analysis Date: 6/26/2006 RunNo: 8044 MREC LowLimit HighLimit RPD Ref Val RunNo: 8043 SampType: MS Analysis Date: 6/26/2006 RunNo: 8044 MREC LowLimit HighLimit RPD Ref Val RunNo: 8044 Samptype: MS Analysis Date: 6/26/2006 RunNo: 8044 MREC LowLimit HighLimit RPD Ref Val RunNo: 8044	Surr: 1,2-Dichloroethane-d4	26.7		50.00		113	73,9	129		
SampType: MS So 00 108 83.8 118	Surr: 4-Bromofluorobenzene	51.9		50.00		104	83	113		
SampType: MS Shoot Shoot	Surr: Dibromofluoromethane	53.9		20.00		108	83.8	118		
SampType: MS POL SPK Ref Val Los SPK Ref Val MREC LowLinit HighLinit RPD Ref Val SchWoo: 1315 Batch ID: 31973 SPK Ref Val SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD D SampType: MSD 10 325.0 289.0 82.2 57.8 125 RunNo: 8043 Batch ID: 31973 SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD Batch ID: 31973 SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD SampType: MSS SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD SampType: MS A 78.5 57.8 125 556.2 2.20 SampType: MS A A 78.5 57.8 125 556.2 2.20 SampType: MS A A 78.5 57.8 125 556.2 2.20 SampType: MS B A A A A	Surr: Toluene-d8	20.0		50.00		6.66	85.5	115		
147062MS Batch ID: 31973 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD SPG No. 1315 SPG No. 1316 SPG	Sample ID: 06060698-007BMS	SampType: MS			Units: µg/L		Prep Date:		RunNo: 80439	
Second S		Batch ID: 31973			SW5030		Analysis Date:		SeqNo: 1315847	
Diegobook Dieg	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			%RPD RPDLimit	Qual
SampType: MSD Units: lug/L Analysis Date: 6/25/2006 RunNo: 8043 Batch ID: 31973 SWS030 Analysis Date: 6/25/2006 SeqNo: 1316 Result PQL SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD SampType: MS 125 57.8 125 556.2 2.20 SampType: MS Units: lug/L Prep Date: 6/25/2006 RunNo: 8043 Batch ID: 31973 SWS030 Analysis Date: 6/25/2006 SeqNo: 1316 Result PQL SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 64.1 5,0 65.00 2.440 94.9 75.8 123 SRPD 173 5,0 65.00 18.20 99.2 72.8 123 173 5,0 65.00 106.3 0 0 0 102 10 106.3 <td>Benzene</td> <td>556</td> <td>10</td> <td>325.0</td> <td>289.0</td> <td>82.2</td> <td>57.8</td> <td>125</td> <td></td> <td></td>	Benzene	556	10	325.0	289.0	82.2	57.8	125		
Batch ID: 31973 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD SampType: MS 10 325.0 289.0 78.5 57.8 125 556.2 2.20 SampType: MS batch ID: 31973 A lonits: µg/L Prep Date: G/25/2006 67.50 RunNo: 8043 8043 8043 8043 8043 8043 8043 8049 8049 75.8 123 80400: 1316	Sample ID: 06060698-007BMSD	Ш			Units: µg/L		Prep Date:	Ш		
PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD %RPD SPG. 2.20 SPG. S	Client ID: 107062MSD				SW5030		Analysis Date:		SeqNo: 1315848	
SampType: MS 10 325.0 289.0 78.5 57.8 125 556.2 2.20 SampType: MS MS Monits: units: units: <td>Analyte</td> <td>Result</td> <td>PQL</td> <td>SPK value</td> <td>SPK Ref Val</td> <td>%REC</td> <td></td> <td></td> <td>%RPD RPDLimit</td> <td>Qual</td>	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			%RPD RPDLimit	Qual
SampType: MS Units: µg/L Prep Date: 6/25/2006 RunNo: 8043 Batch ID: 31973 SW5030 Analysis Date: 6/25/2006 SeqNo: 1316 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 64.1 5.0 65.00 2.440 94.9 75.8 123 82.6 5.0 130.0 30.68 110 73 127 173 5.0 130.0 30.68 110 73 127 102 10 106.3 0 0 0 0 e quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation e quantitation used to determine area response ND Not Detected at the Reporting Limit R RPD outside accepted recovery limit	Benzene	544	10	325.0	289.0	78.5	57.8		2.20 15	
2006 Seque Seque	Sample ID: 06060698-007BMS	SampType: MS			Units: µg/L		Prep Date:	1	RunNo: 80439	
Secondary Seco		Batch ID: 31973			SW5030		Analysis Date:		SeqNo: 1315855	
64.1 5.0 65.00 2.440 94.9 75.8 123 82.6 5.0 65.00 18.20 99.2 72.8 123 173 5.0 130.0 30.68 110 73 127 102 10 0 106.3 0 0 0 0 E Value above quantitation range H Holding times for preparation or analysis exceeded J M Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC			%RPD RPDLimit	Qual
123 124 125 125 127	Toluene	64.1	5,0	65.00	2.440	94.9	75.8	123		
173	Ethylbenzene	82.6	5.0	65.00	18.20	99.2	72.8	123		
E Value above quantitation range H Holding times for preparation or analysis exceeded J Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Xylenes, Total	173	2.0	130.0	30,68	110	73	127		
E Value above quantitation range H Holding times for preparation or analysis exceeded J Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Naphthalene	102	10	0	106.3	0	0	0		
S Spike Recovery outside accented recovery limits	ш ≥ ∨	quantitation range gration used to determine area reev l	esponse	1	ig times for preparatic	n or analys 1g Limit	papaaoxa si			Page 5 of 6

Page 6 of 6

Kelron Environmental CLIENT:

86909090 Work Order: Project:

CHMGP/162363

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: 06060698-007BMS Client ID: 107062MS	SampType: MS Batch ID: 31973			Units: µg/L SW5030		Prep Dai Analysis Dat	Prep Date: 6/25/2006 Analysis Date: 6/25/2006		RunNo: 80439 SeqNo: 1315855	39 5855	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	55 4		20.00		111	73,9	129				
Surr: 4-Bromofluorobenzene	202		50.00		101	83	113				
Surr: Dibromofluoromethane	52 2		20 00		104	83.8	118				
Surr: Toluene-d8	20.7		20.00		101	85.5	115				
Sample ID: 06060698-007BMSD SampType: MSD	SampType: MSD			Units: µg/L		Prep Date:	te: 6/25/2006		RunNo: 80439	39	
Client ID: 107062MSD	Batch ID: 31973			SW5030		Analysis Da	Analysis Date: 6/25/2006		SeqNo: 1315856	5856	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD	RPD Ref Val	%RPD	RPDLimit	Quai
Toluene	62.4	50	65.00	2,440	92.3	75.8	123	64.11	2.69	15	
Ethylbenzene	83.6	5.0	65.00	18.20	101	72.8	123	82,65	1.19	15	
Xylenes, Total	175	5,0	130.0	30.68	111	73	127	173.2	1.19	15	
Naphthalene	102	10	0	106.3	0	0	0	101.6	0 0492	0	
Surr: 1,2-Dichloroethane-d4	56.2		50.00		112	73.9	129		0	0	
Surr: 4-Bromofluorobenzene	50.3		50.00		101	83	113		0	0	
Surr: Dibromofluoromethane	52,9		50.00		106	83.8	118		0	0	
Surr: Toluene-d8	20.0		50.00		6.66	85.5	115		0	0	

'alue above quantitation range
ш
Qualifiers:

Manual Integration used to determine area response Σ S

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit π Q

Analyte detected below quantitation li RPD outside accepted recovery limits - ×

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

06060698

0000009

Date Received: 6/23/2006

WORK ORDER SAMPLE SUMMARY

Date: 29-Jun-06

Lab Sample ID	Client Sample 1D	Tag Number	Collection Date
06060698-001A	112062		6/22/2006 7:50:00 AM
06060698-002A	102062		6/22/2006 8:20:00 AM
06060698-003A	111062		6/22/2006 8:55:00 AM
06060698-004A	111962		6/22/2006 8:57:00 AM
06060698-005A	108062		6/22/2006 9:19:00 AM
06060698-006A	116062		6/22/2006 10:26:00 AM
06060698-007A	107062		6/22/2006 10:58:00 AM
06060698-007B	107062		6/22/2006 10:58:00 AM
06060698-008A	114062		6/22/2006 12:02:00 PM
06060698-008B	114062		6/22/2006 12:02:00 PM
06060698-009A	115062		6/22/2006 1:01:00 PM
06060698-010A	Trip Blank		6/5/2006

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

September 27, 2006

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503

FAX: (217) 355-1385

RE: CHMGP/162363

NELAP Accredited #100226

OrderNo. 06090621

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 9/21/2006 8:25:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest that have been tested. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted in the Case Narrative. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Director of Operations

618-344-1004 ex.16

5445 HORSESHOE LAKE ROAD COLLINSVILLE, ILLINOIS 62234

TEKLAB, INC.

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06090621

Report Date: September 27, 2006

REPORT CONTENTS

This reporting package includes the following:

Analysis Results (this document)	13	pages
Chain of Custody	1	pages
Associated Information	1	pages
Sample Summary	1	pages
Dates Report	1	pages
QC Report	6	pages
Sub Contracted Lab Report	NA	pages
MDL Report	NA	pages

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06090621

Report Date: September 27, 2006

CASE NARRATIVE

Cooler Receipt Temp

0.8 °C

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

27-Sep-06

Client Sample ID 112063

Lab ID:

Report Date:

06090621-001

Collection Date: 9/19/2006 8:23:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	9/21/2006 5:56:00 PM	TAL
Ethylbenzene	NELAP	5 0		ND	μg/L	1	9/21/2006 5:56:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1:	9/21/2006 5:56:00 PM	TAL
Toluene	NELAP	5 0		ND	μg/L	1	9/21/2006 5:56:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/21/2006 5:56:00 PM	TAL
Surr: 1.2-Dichloroethane-d4	73	9-129		91.7	%REC	1	9/21/2006 5:56:00 PM	TAL
Surr: 4-Bromofluorobenzene		33-113		103.7	%REC	1	9/21/2006 5:56:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		99.5	%REC	1	9/21/2006 5:56:00 PM	TAL
Surr: Toluene-d8	85	5-115		96.5	%REC	1	9/21/2006 5:56:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 112963

Lab ID:

06090621-002

Collection Date: 9/19/2006 8:25:00 AM

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	OUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	9/21/2006 6:27:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/21/2006 6:27:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 6:27:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	9/21/2006 6:27:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/21/2006 6:27:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	3.9-129		93.9	%REC	1	9/21/2006 6:27:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		102.8	%REC	1	9/21/2006 6:27:00 PM	TAL
Surr: Dibromofluoromethane	83	3.8-118		102.3	%REC	1	9/21/2006 6:27:00 PM	TAL
Surr: Toluene-d8	85	5.5-115		97.3	%REC	1	9/21/2006 6:27:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

06090621

27-Sep-06

Lab ID: Report Date: 06090621-003

Client Project:

CHMGP/162363

Client Sample ID 102063

9/19/2006 9:18:00 AM

Collection Date: Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATII	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/Ľ	1	9/21/2006 6:57:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/21/2006 6:57:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 6:57:00 PM	TAL
Toluene	NELAP	5 0		ND	μg/L	1	9/21/2006 6:57:00 PM	TAL
Xylenes, Total	NELAP	5_0	J	1.1	μg/L	1	9/21/2006 6:57:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		92.7	%REC	1	9/21/2006 6:57:00 PM	TAL
Surr: 4-Bromofluorobenzene	8	83-113		105.0	%REC	1	9/21/2006 6:57:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		102.0	%REC	1	9/21/2006 6:57:00 PM	TAL
Surr: Toluene-d8	85	.5-115		96.3	%REC	1	9/21/2006 6:57:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 111063

Lab ID:

06090621-004

Collection Date: 9/19/2006 9:52:00 AM

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	9/21/2006 7:28:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/21/2006 7:28:00 PM	TAL
Naphthalene	NELAP	10		ND	µg/L	1	9/21/2006 7:28:00 PM	TAL
Toluene	NELAP	5_0		ND	μg/L	1	9/21/2006 7:28:00 PM	TAL
Xylenes, Total	NELAP	5_0		ND	μg/L	1	9/21/2006 7:28:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		93.6	%REC	1	9/21/2006 7:28:00 PM	TAL
Surr: 4-Bromofluorobenzene	8	33-113		104.2	%REC	1	9/21/2006 7:28:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		102.0	%REC	1	9/21/2006 7:28:00 PM	TAL
Surr: Toluene-d8	85	.5-115		96.2	%REC	1	9/21/2006 7:28:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 108063

Collection Date: 9/19/2006 10:18:00 AM

Lab ID:

06090621-005

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	9/21/2006 7:59:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/21/2006 7:59:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 7:59:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	9/21/2006 7:59:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/21/2006 7:59:00 PM	TAL
Surr: 1.2-Dichloroethane-d4	73	.9-129		92.0	%REC	1	9/21/2006 7:59:00 PM	TAL
Surr: 4-Bromofluorobenzene		33-113		105.1	%REC	1	9/21/2006 7:59:00 PM	TAL
Surr: Dibromofluoromethane	83	8-118		101.1	%REC	1	9/21/2006 7:59:00 PM	TAL
Surr: Toluene-d8	85	.5-115		96.7	%REC	1.	9/21/2006 7:59:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

06090621

Lab ID:

Report Date:

06090621-006

27-Sep-06

Client Project:

CHMGP/162363

Client Sample ID 116063

Collection Date: 9/19/2006 11:00:00 AM

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPC	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	9/21/2006 8:29:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	9/21/2006 8:29:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 8:29:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	9/21/2006 8:29:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/21/2006 8:29:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		93.4	%REC	1	9/21/2006 8:29:00 PM	TAL
Surr: 4-Bromofluorobenzene	8	33-113		110.8	%REC	1	9/21/2006 8:29:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		102.8	%REC	1	9/21/2006 8:29:00 PM	TAL
Surr: Toluene-d8	85	.5-115		98.0	%REC	1	9/21/2006 8:29:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 107063

07063

Lab ID:

06090621-007

Collection Date:

9/19/2006 11:21:00 AM

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8310, POLYNUC	LEAR AROMATIC	HYDRO	CARBONS	BY HPLC				
Acenaphthene		0 00300	1	ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Acenaphthylene	NELAP	0.00150		0.00538	mg/L	1	9/22/2006 2:42:39 PM	MAM
Anthracene	NELAP	0,00030		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Benzo(a)anthracene	NELAP	0.00009		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Benzo(g,h,i)perylene	NELAP	0,00030		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Chrysene	NELAP	0.00045		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Fluoranthene	NELAP	0,00090		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Fluorene	NELAP	0,00030		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Naphthalene	NELAP	0.0750	S	0.180	mg/L	25	9/25/2006 3:24:04 PM	MAM
Phenanthrene	NELAP	0.00060		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Pyrene	NELAP	0.00030		ND	mg/L	1	9/22/2006 2:42:39 PM	MAM
Surr: Terphenyl-d14		53_1-120		77.1	%REC	1	9/22/2006 2:42:39 PM	MAM
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	20.0		1280	μg/L	10	9/21/2006 9:30:00 PM	TAL
Ethylbenzene	NELAP	50.0		69.1	μg/L	10	9/21/2006 9:30:00 PM	TAL
Naphthalene	NELAP	100		243	µg/L	10	9/21/2006 9:30:00 PM	TAL
Toluene	NELAP	50.0	J	11	μg/L	10	9/21/2006 9:30:00 PM	TAL
Xylenes, Total	NELAP	50.0		81.2	μg/L	10	9/21/2006 9:30:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	-	73.9-129		91.3	%REC	10	9/21/2006 9:30:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		103.7	%REC	10	9/21/2006 9:30:00 PM	TAL
Surr: Dibromofluoromethane		33.8-118		101.9	%REC	10	9/21/2006 9:30:00 PM	TAL
Surr: Toluene-d8		35.5-115		96.7	%REC	10	9/21/2006 9:30:00 PM	TAL

Sample Narrative

SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

Matrix spike was diluted out

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 114063

Lab ID:

06090621-008

Collection Date: 9/19/2006 1:15:00 PM

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	ı RL	Qual	Result	Units	DF	Date Analyzed Ar	nalyst
SW-846 3510C, 8310, POLYNUC	LEAR AROMATIC	C HYDRO	CARBON	S BY HPLC				
Acenaphthene	NELAP	0.0300		0.111	mg/L	10	9/25/2006 4:33:55 PM	MAN
Acenaphthylene	NELAP	0.0150		ND	mg/L	10	9/25/2006 4:33:55 PM	MAN
Anthracene	NELAP	0.00030		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Benzo(a)anthracene	NELAP	0.00009		0.00020	mg/L	1	9/22/2006 3:35:02 PM	MAN
Benzo(a)pyrene	NELAP	0.00012		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Benzo(b)fluoranthene	NELAP	0.00015		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Benzo(g,h,i)perylene	NELAP	0.00030		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Benzo(k)fluoranthene	NELAP	0.00015		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Chrysene	NELAP	0.00045		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Dibenzo(a,h)anthracene	NELAP	0.00018		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Fluoranthene	NELAP	0.00090		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Fluorene	NELAP	0.00030		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Indeno(1,2,3-cd)pyrene	NELAP	0.00030		ND	mg/L	1	9/22/2006 3:35:02 PM	MAN
Naphthalene	NELAP	3.00		7.88	mg/L	1000	9/26/2006 10:35:49 AM	MAN
Phenanthrene	NELAP	0.00060		0.0111	mg/L	1	9/22/2006 3:35:02 PM	MAN
Pyrene	NELAP	0.00030		0.00055	mg/L	1	9/22/2006 3:35:02 PM	MAN
Surr: Terphenyl-d14		53.1-120		88.2	%REC	1	9/22/2006 3:35:02 PM	MAN
SW-846 5030, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/M	S				
Benzene	NELAP	100		938	μg/L	50	9/21/2006 11 02:00 PM	TAL
Ethylbenzene	NELAP	250		1220	μg/L	50	9/21/2006 11-02:00 PM	TAL
Naphthalene	NELAP	500		6280	μg/L	50	9/21/2006 11:02:00 PM	TAL
Toluene	NELAP	250	J	150	μg/L	50	9/21/2006 11:02:00 PM	TAL
Xylenes, Total	NELAP	250		924	μg/L	50	9/21/2006 11 02:00 PM	TAL.
Surr: 1,2-Dichloroethane-d4		73.9-129		89.4	%REC	50	9/21/2006 11:02:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		105.4	%REC	50	9/21/2006 11:02:00 PM	TAL
Surr: Dibromofluoromethane		83.8-118		100.9	%REC	50	9/21/2006 11:02:00 PM	TAL
Surr: Toluene-d8		85.5-115		96.2	%REC	50	9/21/2006 11 02:00 PM	TAL

Sample Narrative

SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC

Elevated reporting limit due to high levels of target and/or non-target analytes.

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID 115063

Lab ID:

06090621-009

Collection Date: 9/19/2006 1:53:00 PM

Report Date:

27-Sep-06

Matrix:

GROUNDWATER

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		7.0	μg/L	1	9/21/2006 9:00:00 PM	TAL
Ethylbenzene	NELAP	5.0	J	1.4	μg/L	1	9/21/2006 9:00:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 9:00:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	9/21/2006 9:00:00 PM	TAL
Xylenes, Total	NELAP	5.0	J	1.2	μg/L	1	9/21/2006 9:00:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		94.4	%REC	1	9/21/2006 9:00:00 PM	TAL
Surr: 4-Bromofluorobenzene	8	3-113		104.8	%REC	1	9/21/2006 9:00:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		100.9	%REC	4	9/21/2006 9:00:00 PM	TAL
Surr: Toluene-d8	85	.5-115		97.4	%REC	1	9/21/2006 9:00:00 PM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06090621

Client Sample ID Trip Blank

Lab ID:

06090621-010

Collection Date: 9/19/2006 8:10:00 AM

Report Date:

27-Sep-06

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILI	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	9/21/2006 5:26:00 PM	TAL
Ethylbenzene	NELAP	5.0		ND	µg/L	1	9/21/2006 5:26:00 PM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	9/21/2006 5:26:00 PM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	9/21/2006 5:26:00 PM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	9/21/2006 5:26:00 PM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		91.3	%REC	1	9/21/2006 5:26:00 PM	TAL
Surr: 4-Bromofluorobenzene		33-113		108.0	%REC	1	9/21/2006 5:26:00 PM	TAL
Surr: Dibromofluoromethane	83	.8-118		101.2	%REC	1	9/21/2006 5:26:00 PM	TAL
Surr: Toluene-d8	85	.5-115		94.4	%REC	1	9/21/2006 5:26:00 PM	TAL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

06090621

Date Received:

9/21/2006 8:25:00 AM

DATES REPORT

Date: 27-Sep-06

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
06090621-001A	112063	9/19/2006	Groundwate	r SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-002A	112963			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-003A	102063			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-004A	111063			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-005A	108063			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-006A	116063			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-007A	107063			SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/25/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/22/2006
06090621-007B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-008A	114063			SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/26/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/22/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/25/2006
				SW-846 3510C, 8310, PolyNuclear Aromatic Hydrocarbons by HPLC		9/20/2006	9/25/2006
06090621-008B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-009A	115063			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006
06090621-010A	. Trip Blank		Trip Blank	SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		9/21/2006	9/21/2006

Date: 27-Sep-06

Kelron Environmental CLIENT:

06090621 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT TestCode: SV_8310S_W

Sample ID: MB-33509	SampType: MBLK			Units: mg/L		Prep Date:	9/20/2006	RunNo: 84023	
Client ID: ZZZZZZ	Batch ID: 33509			SW3510C		Analysis Date:	9/21/2006	SeqNo: 1386978	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	QN	0.00300							
Acenaphthylene	QN	0.00150							
Anthracene	QN	0.00030							
Benzo(a)anthracene	QN	600000							
Benzo(a)pyrene	QN	0,00012							
Benzo(b)fluoranthene	QN	0.00015							
Benzo(g,h,i)perylene	QN	0.00030							
Benzo(k)fluoranthene	Q	0.00015							
Chrysene	Q	0.00045							
Dibenzo(a,h)anthracene	QN	0.00018							
Fluoranthene	QN	0.00090							
Fluorene	QN	0.00030							
Indeno(1,2,3-cd)pyrene	QN	0.00030							
Naphthalene	Q	0.00300							
Phenanthrene	QN	0 00000							
Pyrene	QN	0.00030							
Surr: Terphenyl-d14	0.00768		0.01000		76.8	59.9	111		
Sample ID: LCS-33509	SampType: LCS			Units: mg/L		Prep Date:	9/20/2006	RunNo: 84023	
Client ID: ZZZZZZ	Batch ID: 33509			SW3510C		Analysis Date:	9/21/2006	SeqNo: 1386979	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	0.00823	0.00300	0.01000	0	82.3	52.4	95		
Acenaphthylene	0.00763	0.00150	0.01000	0	76.3	44.3	97.4		
Anthracene	0.00862	0.00030	0.01000	0	86.2	59.1	108		
Benzo(a)anthracene	0.00849	0.00009	0.01000	0	84.9	61.7	109		
Benzo(a)pyrene	0.00809	0.00012	0.01000	0	80.9	53.7	119		
Benzo(b)fluoranthene	0.00846	0.00015	0.01000	0	84.6	60.3	107		
Benzo(g,h,i)perylene	0.00825	0.00030	0.01000	0	82.5	59.4	115		
Qualifiers: E Value ab	Value above quantitation range		H Holdir	Holding times for preparation or analysis exceeded	ı or analysi	s exceeded	J Analyte detected	Analyte detected below quantitation li	
M Manual S Svite Re	Manual Integration used to determine area response	a response	ND Not D	Not Detected at the Reporting Limit	g Limit		R RPD outside acce	RPD outside accepted recovery limits	Page 1 of 6
	scovery ourside accepted recover	y Illiiits							

Kelron Environmental 06090621 CLIENT:

Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: LCS-33509	SampType: LCS			Units: mg/L		Prep Date:	9/20/2006	MULINO. 04023	
Client ID: ZZZZZZ	Batch ID: 33509			SW3510C		Analysis Date:	9/21/2006	SeqNo: 1386979	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzo(k)fluoranthene	0.00844	0.00015	0.01000	0	84.4	62.6	109		
Chrysene	0,00867	0.00045	0.01000	0	86.7	60.3	110		
Dibenzo(a,h)anthracene	0,00850	0.00018	0.01000	0	85.0	61	108		
Fluoranthene	0.00863	0.00090	0,01000	0	86.3	59.3	108		
Fluorene	0,00789	0.00030	0.01000	0	78.9	44.8	103		
Indeno(1,2,3-cd)pyrene	0.00851	0.00030	0 01000	0	85.1	61	112		
Naphthalene	0.00742	0.00300	0.01000	0	74.2	45.6	91.9		
Phenanthrene	0.00852	0.00060	0.01000	0	85.2	55.8	110		
Pyrene	0.00867	0.00030	0.01000	0	86.7	50.7	109		
Surr: Terphenyl-d14	0.00801		0.01000		80.1	59.9	111		
Sample ID: LCSD-33509	SampType: LCSD			Units: mg/L		Prep Date:	9/20/2006	RunNo: 84023	
Client ID: ZZZZZZ	Batch ID: 33509			SW3510C		Analysis Date:	9/21/2006	SeqNo: 1386980	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Acenaphthene	0.00824	0.00300	0.01000	0	82.4	52.4	95		
Acenaphthylene	0.00773	0.00150	0.01000	0	77.3	44.3	97.4		
Anthracene	0.00851	0.00030	0.01000	0	85.1	59.1	108		
Benzo(a)anthracene	0.00842	0.0000	0.01000	0	84.2	61.7	109		
Benzo(a)pyrene	0.00786	0.00012	0.01000	0	78.7	53.7	119		
Benzo(b)fluoranthene	0.00833	0.00015	0.01000	0	83.3	60.3	107		
Benzo(g,h,i)perylene	0.00814	0.00030	0.01000	0	81.4	59.4	115		
Benzo(k)fluoranthene	0.00825	0.00015	0.01000	0	82.5	62.6	109		
Chrysene	0.00852	0.00045	0.01000	0	85.2	60.3	110		
Dibenzo(a,h)anthracene	0.00845	0.00018	0.01000	0	84.5	61	108		
Fluoranthene	0,00857	060000	0.01000	0	85.7	59.3	108		
Fluorene	0.00785	0.00030	0,01000	0	78.5	44.8	103		
Indeno(1,2,3-cd)pyrene	0.00839	0.00030	0.01000	0	83.9	61	112		
Naphthalene	0.00743	0.00300	0.01000	0	74.3	45.6	91.9		
Phenanthrene	0.00845	0.00060	0.01000	0	84.5	55.8	110		
Pyrene	0.00868	0.00030	0.01000	0	86.8	20.7	109		
Qualifiers: E Value abo	Value above quantitation range		H Holdi	Holding times for preparation or analysis exceeded	on or analys	sis exceeded	J Analyte detected l	Analyte detected below quantitation li	
M Manual Ir	Manual Integration used to determine area response	sa response	ND Not D	Not Detected at the Reporting Limit	ng Limit		R RPD outside acce	RPD outside accepted recovery limits	
					,				Page 2 of 6

CLIENT: Kelron Environmental

Work Order: 06090621

Project: CHMGP/162363

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: LCSD-33509 Client ID: ZZZZZZ	SampType: LCSD Batch ID: 33509			Units: mg/L SW3510C		Prep Date: Analysis Date:	9/20/2006 9/21/2006	RunNo: 84023 SeqNo: 1386980	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Surr: Terphenyl-d14	0.00796		0,01000		79.6	59.9	111		
Sample ID: 06090621-007AMS	SampType: MS			Units: mg/L		Prep Date:	9/20/2006	RunNo: 84095	
Client ID: 107063MS	Batch ID: 33509			SW3510C		Analysis Date:	9/22/2006	SeqNo: 1388756	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	0,00805	0.00300	0.01000	0	80.5	17.5	116		
Acenaphthylene	0.0130	0.00150	0.01000	0.005382	76.3	18.7	140		
Anthracene	0.00805	0.00030	0.01000	0	80.5	55.5	111		
Benzo(a)anthracene	0.00778	0.00009	0.01000	0	77.8	52	115		
Benzo(a)pyrene	0,00767	0.00012	0.01000	0	76.7	46.8	122		
Benzo(b)fluoranthene	9//00/0	0.00015	0.01000	0	77.6	526	112		
Benzo(g,h,i)perylene	0.00832	0.00030	0.01000	0	83.2	52.7	116		
Benzo(k)fluoranthene	0.00780	0.00015	0.01000	0	78.0	51,1	118		
Chrysene	0.00799	0.00045	0.01000	0	6 62	52.1	113		
Dibenzo(a,h)anthracene	0.00778	0.00018	0.01000	0	77.8	53.6	110		
Fluoranthene	0.00786	06000.0	0.01000	0	78.6	45.5	117		
Fluorene	0.00742	0.00030	0.01000	0	74.2	31.7	104		
Indeno(1,2,3-cd)pyrene	0.00804	0.00030	0.01000	0	80.4	52.1	117		
Phenanthrene	0.00790	0.00060	0.01000	0	79.0	47.3	120		
Pyrene	0.00781	0.00030	0.01000	0	78.1	51.2	108		
Surr: Terphenyl-d14	0.00821		0.01000		82.1	53.1	120		
Sample ID: 06090621-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	9/20/2006	RunNo: 84095	
Client ID: 107063MSD	Batch ID: 33509			SW3510C		Analysis Date:	9/22/2006	SeqNo: 1388757	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	0.00710	0.00300	0.01000	0	71.0	17.5	116 0.008052	12.6	40
Acenaphthylene	0.0103	0.00150	0.01000	0.005382	49.1	18.7	140 0.01301	23.3	40
Anthracene	0.00757	0.00030	0.01000	0	75.7	55.5	111 0,008051	6.19	40
Benzo(a)anthracene	0.00734	0.00009	0.01000	0	73.4	52	115 0.007785	5.91	40

Page 4 of 6

Analyte detected below quantitation li RPD outside accepted recovery limits

- ~

Kelron Environmental CLIENT:

06090621 Work Order:

CHMGP/162363 Project:

TestCode: SV_8310S_W

ANALYTICAL QC SUMMARY REPORT

Sample ID: 06090621-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	9/20/2006	90	RunNo: 84095	92	
Client ID: 107063MSD	Batch ID: 33509			SW3510C		Analysis Date:	9/22/2006	90	SeqNo: 1388757	8757	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	0.00727	0.00012	0.01000	0	72.7	46.8	122	0 007674	5 38	40	
Benzo(b)fluoranthene	0.00733	0.00015	0.01000	0	73.3	52.6	112	0.007764	5.78	40	
Benzo(g,h,i)perylene	0.00750	0 00030	0.01000	0	75.0	52.7	116	0 008324	10.4	40	
Benzo(k)fluoranthene	0,00737	0.00015	0.01000	0	73.7	51.1	118	0.007800	5.65	40	
Chrysene	0.00753	0.00045	0.01000	0	75,3	52.1	113	0.007993	5.98	40	
Dibenzo(a,h)anthracene	0.00722	0.00018	0.01000	0	72.2	53.6	110	0.007784	7.45	40	
Fluoranthene	0.00940	0.00090	0.01000	0	94.0	45.5	117	0 007860	17.9	40	
Fluorene	0,00710	0.00030	0.01000	0	71.0	317	104	0.007424	4.53	40	
Indeno(1,2,3-cd)pyrene	0.00741	0.00030	0.01000	0	74 1	52.1	117	0.008044	8 18	40	
Phenanthrene	0.00742	0.00060	0 01000	0	74.2	47.3	120	0.007900	6.27	40	
Pyrene	0.00743	0.00030	0.01000	0	74.3	51.2	108	0.007812	5.07	40	
Surr: Terphenyl-d14	0.00768		0.01000		76.8	53.1	120		0	40	
Sample ID: 06090621-007AMS	SampType: MS			Units: mg/L		Prep Date:	9/20/2006	90	RunNo: 84172	72	
Client ID: 107063MS	Batch ID: 33509			SW3510C		Analysis Date:	9/25/2006	90	SeqNo: 1389598	39598	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	0 181	0-0750	0-01000	0.1799	8.2	24.5	115				တ
Sample ID: 06090621-007AMSD	SampType: MSD			Units: mg/L		Prep Date:	9/20/2006	90	RunNo: 84172	172	
Client ID: 107063MSD	Batch ID: 33509			SW3510C		Analysis Date:	9/25/2006	90	SeqNo: 1389599	39599	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
			0 0	0000	0 0 7 7	n 4.0	7 4 4	0 4 0	1,	ζ,	(

|--|

Manual Integration used to determine area response Σ«

Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded H Holding times for preparation or analy ND Not Detected at the Reporting Limit

Kelron Environmental 06090621 CLIENT:

Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: LCS-N060921-1	SampType: LCS1			Units: µg/L		Prep Date:	9/21/2006	RunNo: 84074	
Client ID: ZZZZZZ	Batch ID: 33549			SW5030		Analysis Date:	9/21/2006	SeqNo: 1387850	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	47.1	2.0	50.00	0	94.3	79.3	122		
Toluene	49.6	5.0	50.00	0	99 2	81.5	123		
Ethylbenzene	51.7	5,0	50.00	0	103.4	83	131		
Xylenes, Total	101	5.0	100.0	0	100.9	83.2	131		
Naphthalene	46.7	10	50.00	0	93.4	78.5	140		
Surr: 1,2-Dichloroethane-d4	44.9		50.00		89.7	739	129		
Surr: 4-Bromofluorobenzene	52.5		50.00		105.0	83	113		
Surr: Dibromofluoromethane	49.9		50.00		8.66	83.8	118		
Surr: Toluene-d8	47.8		50.00		95.5	85.5	115		
Sample ID: MBLK-N060921-1	SampType: MBLK			Units: µg/L		Prep Date:	9/21/2006	RunNo: 84074	
Client ID: ZZZZZZ	Batch ID: 33549			SW5030		Analysis Date:	9/21/2006	SeqNo: 1387852	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	QN	2.0							
Toluene	QN	5.0							
Ethylbenzene	QN	5.0							
Xylenes, Totai	ND	5.0							
Naphthalene	QN	10							
Surr: 1,2-Dichloroethane-d4	45 7		50.00		91,3	73.9	129		
Surr: 4-Bromofluorobenzene	52.2		50.00		104.5	83	113		
Surr: Dibromofluoromethane	49.0		50.00		98.0	83.8	118		
Surr: Toluene-d8	48.0		50.00		96.0	85.5	115		
Sample ID: 06090621-007BMS	SampType: MS			Units: µg/L		Prep Date:	9/21/2006	RunNo: 84074	
Client ID: 107063MS	Batch ID: 33549			SW5030		Analysis Date:	9/21/2006	SeqNo: 1387868	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	1660	20 0	540 0	1285	70.3	8 22 8	125		
Toluene	516	50.0	540 0	10 60	93.5	75.8	123		
Ethylbenzene	603	20.0	540.0	69.10	6 86	72.8	123		
Qualifiers: E Value above of Manual Integr	Value above quantitation range Manual Integration used to determine area response	response	H Holdi ND Not D	Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit	n or analys	is exceeded	J Analyte detected R RPD outside acce	Analyte detected below quantitation li RPD outside accepted recovery limits	دب و و
S Snike Recove	Spike Recovery outside accepted recovery limits	limits						7	rage 5 01 0

Page 6 of 6

Analyte detected below quantitation li RPD outside accepted recovery limits

-, ∠

CLIENT: Kelron Environmental

Work Order: 06090621

CHMGP/162363

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: 06090621-007BMS Client ID: 107063MS	SampType: MS Batch ID: 33549			Units: µg/L SW5030		Prep Date: Analysis Date:	9/21/2006 9/21/2006	RunNo: 84074 SeqNo: 1387868		
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPD	RPDLimit Qual	la la
Xylenes, Total Surr: 1.2-Dichloroethane-d4	1110	50.0	1080	81,20	95.7	73	127			
Surr: 4-Bromofluorobenzene	512		500.0		102.4	83	113			
Surr: Dibromofluoromethane	492		200 0		98.4	83.8	118			
Surr: Toluene-d8	463		200 0		92.6	85.5	115			
Sample ID: 06090621-007BMSD SampType: MSD	SampType: MSD			Units: µg/L		Prep Date:	9/21/2006	RunNo: 84074		
Client ID: 107063MSD	Batch ID: 33549			SW5030		Analysis Date: 9/21/2006	9/21/2006	SeqNo: 1387869		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPD	RPDLimit Qual	lal
Benzene	1690	20.0	540.0	1285	74.4	57.8	125 1665	1.32	15	
Toluene	530	90.09	540.0	10.60	96.3	75.8	123 515.7	2.83	12	
Ethylbenzene	621	50.0	540.0	69.10	102.1	72.8	123 602,9	2.91	12	
Xylenes, Total	1190	50.0	1080	81,20	103.0	73	127 1115	6.79	12	
Surr: 1,2-Dichloroethane-d4	454		500.0		8.06	73.9	129	0	0	
Surr: 4-Bromofluorobenzene	524		500.0		104.8	83	113	0	0	
Surr: Dibromofluoromethane	205		200.0		101.4	83.8	118	0	0	
Surr: Toluene-d8	478		500.0		95.6	85.5	115	0	0	

Holding tin	ND Not Detect
Η	QN
Value above quantitation range	Manual Integration used to determine area response
ш	Σ

Qualifiers;

S Spike Recovery outside accepted recovery limits

H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

WORK ORDER SAMPLE SUMMARY

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

Date Received: 9/21/2006

06090621

Date: 27-Sep-06

0090621	Date: 27-Sep-

Lab Sample ID	Client Sample ID	Tag Number	Collection Date
06090621-001A	112063		9/19/2006 8:23:00 AM
06090621-002A	112963		9/19/2006 8:25:00 AM
06090621-003A	102063		9/19/2006 9:18:00 AM
06090621-004A	111063		9/19/2006 9:52:00 AM
06090621-005A	108063		9/19/2006 10:18:00 AM
06090621-006A	116063		9/19/2006 11:00:00 AM
06090621-007A	107063		9/19/2006 11:21:00 AM
06090621-007B	107063		9/19/2006 11:21:00 AM
06090621-008A	114063		9/19/2006 1:15:00 PM
06090621-008B	114063		9/19/2006 1:15:00 PM
06090621-009A	115063		9/19/2006 1:53:00 PM
06090621-010A	Trip Blank		9/19/2006 8:10:00 AM

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

December 27, 2006

Stu Cravens Kelron Environmental 1213 Dorchester Champaign, IL 61821 TEL: (217) 390-1503

FAX: (217) 355-1385

NELAP Accredited #100226

OrderNo. 06120390

RE: CHMGP/162363

Dear Stu Cravens:

TEKLAB, INC received 10 samples on 12/14/2006 8:30:00 AM for the analysis presented in the following report. A list of report contents can be found on the following page.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. IL ELAP and NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Heather A. Barnes

Keadher A. Barnes

Project Manager

(618)344-1004 ex.20

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06120390

Report Date: December 27, 2006

REPORT CONTENTS

This reporting package includes the following:

alysis Results (this document)	pages
Chain of Custody	pages
Sample Receipt Checklist	pages
Associated Information NA	pages
Sample Summary	pages
Dates Report 1	pages
QC Report 6	pages
Sub Contracted Lab Report NA	pages
MDL Report NA	pages

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

LabOrder:

06120390

Report Date: December 27, 2006

CASE NARRATIVE

Cooler Receipt Temp 2.6 °C

Qualifiers

DF - Dilution Factor

RL - Reporting Limit

ND - Not Detected at the Reporting Limit

- Surrogate Standard added by lab

TNTC - Too numerous to count

IDPH - Illinois Department of Public Health

B - Analyte detected in the associated Method Blank

J - Analyte detected below reporting limits

R - RPD outside accepted recovery limits

S - Spike Recovery outside accepted recovery limits

X - Value exceeds Maximum Contaminant Level

NELAP - IL ELAP and NELAP Accredited Field of Testing

E - Value above quantitation range

H - Holding time exceeded

D - Diluted out of sample

MI - Matrix interference

DNI Did Not Ignite

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

06120390

Client Sample ID: 112064

Lab ID:

06120390-001

Collection Date: 12/13/2006 7:45:00 AM

Report Date:

27-Dec-06

Matrix: AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	alyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMP	DUNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/16/2006 12:23:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	- 1	12/16/2006 12:23:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 12:23:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 12:23:00 AM	TAL
Xylenes, Total	NELAP	5 0		ND	μg/L	1	12/16/2006 12:23:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	7:	3.9-129		101.8	%REC	1	12/16/2006 12:23:00 AM	TAL
Surr: 4-Bromofluorobenzene		83-113		105.9	%REC	1	12/16/2006 12:23:00 AM	TAL.
Surr: Dibromofluoromethane	83	3.8-118		103.3	%REC	1	12/16/2006 12:23:00 AM	TAL
Surr: Toluene-d8	88	5.5-115		96.3	%REC	1	12/16/2006 12:23:00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

WorkOrder:

06120390

Lab ID:

06120390-002

Report Date:

27-Dec-06

Client Project:

CHMGP/162363

Client Sample ID: 102064

Collection Date: 12/13/2006 8:20:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/16/2006 1;25:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/16/2006 1:25:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 1:25:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 1:25:00 AM	TAL
Xylenes, Total	NELAP	5.0	J	1.4	µg/L	1	12/16/2006 1:25:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		102.5	%REC	1	12/16/2006 1:25:00 AM	TAL
Surr: 4-Bromofluorobenzene	8	33-113		105.0	%REC	1	12/16/2006 1:25:00 AM	TAL
Surr: Dibromofluoromethane	83	.8-118		102.3	%REC	1	12/16/2006 1:25:00 AM	TAL
Surr: Toluene-d8	85	.5-115		98.7	%REC	1	12/16/2006 1:25:00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06120390

27-Dec-06

Client Sample ID: 111064

Lab ID:

06120390-003

Report Date:

Collection Date: 12/13/2006 8:50:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/16/2006 1:55:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/16/2006 1:55:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 1:55:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 1:55:00 AM	TAL
Xylenes, Total	NELAP	5.0		ND	µg/L	1	12/16/2006 1:55:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	9-129		99.4	%REC	1	12/16/2006 1:55:00 AM	TAL
Surr: 4-Bromofluorobenzene		33-113		104.9	%REC	1	12/16/2006 1:55:00 AM	TAL
Surr: Dibromofluoromethane	83	.8-118		101.7	%REC	1	12/16/2006 1.55:00 AM	TAL
Surr: Toluene-d8	85	.5-115		97.5	%REC	1	12/16/2006 1:55:00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

06120390

Client Sample ID: 108064

Lab ID:

06120390-004

Report Date:

27-Dec-06

Collection Date: 12/13/2006 9:20:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	malyst
SW-846 5030, 8260B, VOLATILE	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	μg/L	1	12/16/2006 2:26:00 AM	I TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/16/2006 2:26:00 AN	I TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 2:26:00 AM	I TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 2:26:00 AM	I TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/16/2006 2:26:00 AM	I TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		101.3	%REC	1	12/16/2006 2:26:00 AM	I TAL
Surr: 4-Bromofluorobenzene	8	33-113		106.6	%REC	1	12/16/2006 2:26:00 AM	I TAL
Surr: Dibromofluoromethane	83	.8-118		102.2	%REC	1	12/16/2006 2:26:00 AM	I TAL
Surr: Toluene-d8	85	.5-115		97.8	%REC	1	12/16/2006 2:26:00 AM	I TAL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06120390

Client Sample ID: 116064

Lab ID:

06120390-005

Collection Date: 12/13/2006 9:55:00 AM

Report Date:

27-Dec-06

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	12/16/2006 2:56:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/16/2006 2:56:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 2:56:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 2:56:00 AM	TAL
Xylenes, Total	NELAP	5.0		ND	μg/L	1	12/16/2006 2:56:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		106.5	%REC	1	12/16/2006 2:56:00 AM	TAL
Surr: 4-Bromofluorobenzene		33-113		105.7	%REC	1	12/16/2006 2:56:00 AM	TAL
Surr: Dibromofluoromethane	83	.8-118		104.2	%REC	1	12/16/2006 2:56:00 AM	TAL
Surr: Toluene-d8	85	.5-115		98.9	%REC	1	12/16/2006 2:56:00 AM	TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06120390

Client Sample ID: 107064

Lab ID:

06120390-006

Collection Date: 12/13/2006 10:27:00 AM

Report Date:

27-Dec-06

AQUEOUS Matrix:

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	nalyst
SW-846 3510C, 8270C SIMS, SE	MI-VOLATILE OR	GANIC C	OMPOUN	DS BY GC/M	S			
Acenaphthene		0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	TDN
Acenaphthylene	NELAP	0.00010		0.00020	mg/L	1	12/18/2006 3:38:00 PM	TDN
Anthracene	NELAP	0.00010		0.00014	mg/L	1	12/18/2006 3:38:00 PM	I TDN
Benzo(a)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	I TDN
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Chrysene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	I TON
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Fluorene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Naphthalene	NELAP	0.00010		0.0477	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Phenanthrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Total PNAs except Naphthalene		0.00006		0.00034	mg/L	1	12/18/2006 3:38:00 PM	1 TDN
Surr: 2-Fluorobiphenyl	4	11.1-108		65.3	%REC	1	12/18/2006 3:38:00 PM	1 TDN
Surr: Nitrobenzene-d5	3	37.6-105		63.5	%REC	1	12/18/2006 3:38:00 PM	1 TDN
Surr: p-Terphenyl-d14		49-113		79.2	%REC	1	12/18/2006 3:38:00 PM	1 TDN
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	OUNDS	BY GC/MS	3				
Benzene	NELAP	10		812	μg/L	5	12/16/2006 2:15:00 PM	1 TAL
Ethylbenzene	NELAP	25.0		44.1	μg/L	5	12/16/2006 2:15:00 PM	1 TAL
Naphthalene	NELAP	50.0		161	μg/L	5	12/16/2006 2:15:00 PM	1 TAL
Toluene	NELAP	25.0	J	7.1	μg/L	5	12/16/2006 2:15:00 PM	1 TAL
Xylenes, Total	NELAP	25.0		55.2	μg/L	5	12/16/2006 2:15:00 PM	1 TAL
Surr: 1,2-Dichloroethane-d4	7	73.9-129		100.1	%REC	5	12/16/2006 2:15:00 PM	1 TAL
Surr: 4-Bromofluorobenzene		83-113		102.5	%REC	5	12/16/2006 2:15:00 PM	1 TAL
Surr: Dibromofluoromethane	8	33.8-118		102.5	%REC	5	12/16/2006 2:15:00 PM	1 TAL
						_		

Sample Narrative

Surr: Toluene-d8

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

%REC

98.2

85.5-115

TAL

12/16/2006 2:15:00 PM

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06120390

27-Dec-06

Client Sample ID: 114064

Lab ID:

Report Date:

06120390-007

Collection Date: 12/13/2006 11:14:00 AM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	alyst
SW-846 3510C, 8270C SIMS, SE	MI-VOLATILE OR	GANIC C	OMPOUN	DS BY GC/M	s			
Acenaphthene	NELAP	0.0250		0.122	mg/L	250	12/19/2006 12:32:00 PM	TDN
Acenaphthylene	NELAP	0.00010		0.0209	mg/L	1	12/18/2006 5:29:00 PM	TDN
Anthracene	NELAP	0.00010		0.00140	mg/L	1	12/18/2006 5:29:00 PM	TDN
Benzo(a)anthracene	NELAP	0.00010		0.00023	mg/L	1	12/18/2006 5:29:00 PM	TDN
Benzo(a)pyrene	NELAP	0.00010		0.00011	mg/L	1	12/18/2006 5:29:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 5:29:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/18/2006 5:29:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 5:29:00 PM	TDN
Chrysene	NELAP	0.00010		0.00012	mg/L	1	12/18/2006 5:29:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2006 5:29:00 PM	TDN
Fluoranthene	NELAP	0.00010		0.00076	mg/L	1	12/18/2006 5:29:00 PM	TDN
Fluorene	NELAP	0.00010		0.0156	mg/L	1	12/18/2006 5:29:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 5:29:00 PM	TDN
Naphthalene	NELAP	0.0250		5.26	mg/L	250	12/19/2006 12:32:00 PM	TDN
Phenanthrene	NELAP	0.00010		0.00551	mg/L	1	12/18/2006 5:29:00 PM	TDN
Pyrene	NELAP	0.00010		0.00103	mg/L	1	12/18/2006 5:29:00 PM	TDN
Total PNAs except Naphthalene		0.00006		0.109	mg/L	1	12/18/2006 5:29:00 PM	TDN
Surr: 2-Fluorobiphenyl	,	41.1-108	S	200.0	%REC	250	12/19/2006 12:32:00 PM	TDN
Surr: Nitrobenzene-d5		37.6-105	S	200.0	%REC	250	12/19/2006 12:32:00 PM	TDN
Surr: p-Terphenyl-d14		49-113		75.4	%REC	1	12/18/2006 5:29:00 PM	TDN
SW-846 5030, 8260B, VOLATILE	ORGANIC COM	POUNDS	BY GC/MS	S				
Benzene	NELAP	200		1080	μg/L	100	12/16/2006 3:58:00 AM	TAL
Ethylbenzene	NELAP	500		1110	μg/L	100	12/16/2006 3:58:00 AM	TAL
Naphthalene	NELAP	1000		5420	μg/L	100	12/16/2006 3:58:00 AM	TAL
Toluene	NELAP	500	J	170	μg/L	100	12/16/2006 3:58:00 AM	TAL
Xylenes, Total	NELAP	500		1020	μg/L	100	12/16/2006 3:58:00 AM	TAL
Surr: 1,2-Dichloroethane-d4		73.9-129		103.0	%REC	100	12/16/2006 3:58:00 AM	TAL
Surr: 4-Bromofluorobenzene		83-113		103.5	%REC	100	12/16/2006 3:58:00 AM	TAL
Surr: Dibromofluoromethane		83.8-118		103.9	%REC	100	12/16/2006 3:58:00 AM	TAL
Surr: Toluene-d8		85.5-115		98.7	%REC	100	12/16/2006 3:58:00 AM	TAL

Sample Narrative

SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to sample dilution.

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes.

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project: CHMGP/162363

WorkOrder:

06120390

Client Sample ID: 114964

Lab ID:

06120390-008

Collection Date: 12/13/2006 11:16:00 AM

Report Date:

27-Dec-06

Matrix: AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed An	ıalyst
SW-846 3510C, 8270C SIMS, SE	MI-VOLATILE OR	GANIC C	OMPOUND	S BY GC/M	IS			
Acenaphthene	NELAP	0.0250		0.140	mg/L	250	12/19/2006 1:09:00 PM	TDN
Acenaphthylene	NELAP	0.00010		0.0220	mg/L	1	12/18/2006 6:05:00 PM	TDN
Anthracene	NELAP	0.00010		0.00117	mg/L	1	12/18/2006 6:05:00 PM	TDN
Benzo(a)anthracene	NELAP	0.00010		0.00016	mg/L	1	12/18/2006 6:05:00 PM	TDN
Benzo(a)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Benzo(b)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Benzo(g,h,i)perylene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Benzo(k)fluoranthene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Chrysene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Dibenzo(a,h)anthracene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Fluoranthene	NELAP	0.00010		0.00056	mg/L	1	12/18/2006 6:05:00 PM	TDN
Fluorene	NELAP	0.00010		0.0174	mg/L	1	12/18/2006 6:05:00 PM	TDN
Indeno(1,2,3-cd)pyrene	NELAP	0.00010		ND	mg/L	1	12/18/2006 6:05:00 PM	TDN
Naphthalene	NELAP	0.0250		5.98	mg/L	250	12/19/2006 1:09:00 PM	TDN
Phenanthrene	NELAP	0.00010		0.00584	mg/L	1	12/18/2006 6:05:00 PM	TDN
Pyrene	NELAP	0.00010		0.00083	mg/L	1	12/18/2006 6:05:00 PM	TDN
Total PNAs except Naphthalene		0.00006		0.115	mg/L	1	12/18/2006 6:05:00 PM	TDN
Surr: 2-Fluorobiphenyl		41.1-108	S	240.0	%REC	250	12/19/2006 1:09:00 PM	TDN
Surr: Nitrobenzene-d5		37.6-105	S	200.0	%REC	250	12/19/2006 1:09:00 PM	TDN
Surr: p-Terphenyl-d14		49-113		72.0	%REC	1	12/18/2006 6:05:00 PM	TDN
SW-846 5030, 8260B, VOLATILE	ORGANIC COMP	POUNDS	BY GC/MS					
Benzene	NELAP	100		1130	μg/L	50	12/16/2006 8:52:00 PM	TAL
Ethylbenzene	NELAP	250		1170	μg/L	50	12/16/2006 8:52:00 PM	TAL
Naphthalene	NELAP	500		5830	μg/L	50	12/16/2006 8:52:00 PM	TAL
Toluene	NELAP	250	J	150	μg/L	50	12/16/2006 8:52:00 PM	TAL
Xylenes, Total	NELAP	250		984	μg/L	50	12/16/2006 8:52:00 PM	TAL
Surr: 1,2-Dichloroethane-d4		73.9-129		99.4	%REC	50	12/16/2006 8:52:00 PM	TAL
Surr: 4-Bromofluorobenzene		83-113		106.6	%REC	50	12/16/2006 8:52:00 PM	TAL
Surr: Dibromofluoromethane		33.8-118		101.6	%REC	50	12/16/2006 8:52:00 PM	TAL
Surr: Toluene-d8		85.5-115		99.4	%REC	50	12/16/2006 8:52:00 PM	TAL

Sample Narrative

SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS

Surrogate recovery was outside QC limits due to sample dilution.

SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS

Elevated reporting limit due to high levels of target and/or non-target analytes...

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT: WorkOrder: Kelron Environmental

06120390

Lab ID:

06120390-009

Report Date:

27-Dec-06

Client Project: CHMGP/162363

Client Sample ID: 115064

Collection Date: 12/13/2006 12:00:00 PM

Matrix:

AQUEOUS

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	analyst
SW-846 5030, 8260B, VOLATIL	E ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		4.4	µg/L	1	12/16/2006 8:22:00 PM	1 TAL
Ethylbenzene	NELAP	5.0		ND	µg/L	1	12/16/2006 8:22:00 PM	1 TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 8:22:00 PM	1 TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 8:22:00 PM	1 TAL
Xylenes, Total	NELAP	5.0	J	1.2	µg/L	1	12/16/2006 8:22:00 PM	1 TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		100.1	%REC	1	12/16/2006 8:22:00 PM	1 TAL
Surr: 4-Bromofluorobenzene	8	33-113		105.0	%REC	1	12/16/2006 8:22:00 PM	1 TAL
Surr: Dibromofluoromethane	83	.8-118		100.5	%REC	1	12/16/2006 8:22:00 PM	1 TAL
Surr: Toluene-d8	85	.5-115		97.1	%REC	1	12/16/2006 8:22:00 PM	1 TAL

TEL: 618-344-1004

FAX: 618-344-1005

Laboratory Results

CLIENT:

Kelron Environmental

Client Project:

CHMGP/162363

WorkOrder:

06120390

Client Sample ID: Trip Blank

Lab ID:

06120390-010

Collection Date: 12/6/2006 2:45:00 PM

Report Date:

27-Dec-06

Matrix:

TRIP BLANK

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed A	alyst
SW-846 5030, 8260B, VOLATILE	ORGANIC COMPO	UNDS	BY GC/MS					
Benzene	NELAP	2.0		ND	µg/L	1	12/16/2006 11:42:00 AM	TAL
Ethylbenzene	NELAP	5.0		ND	μg/L	[4]	12/16/2006 11:42:00 AM	TAL
Naphthalene	NELAP	10		ND	μg/L	1	12/16/2006 11:42:00 AM	TAL
Toluene	NELAP	5.0		ND	μg/L	1	12/16/2006 11:42:00 AM	TAL
Xylenes, Total	NELAP	5.0	J	1.0	µg/L	1	12/16/2006 11:42:00 AM	TAL
Surr: 1,2-Dichloroethane-d4	73	.9-129		101.5	%REC	1	12/16/2006 11:42:00 AM	TAL
Surr: 4-Bromofluorobenzene		33-113		103.4	%REC	1	12/16/2006 11:42:00 AM	TAL
Surr: Dibromofluoromethane	83	.8-118		101.1	%REC	1	12/16/2006 11:42:00 AM	TAL
Surr: Toluene-d8	85	.5-115		98.8	%REC	1	12/16/2006 11:42:00 AM	TAL

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

06120390

Date Received:

12/14/2006 8:30:00 AM

DATES REPORT

Date: 27-Dec-06

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
06120390-001A	112064	12/13/2006	Aqueous	SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-002A	102064			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-003A	111064			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-004A	108064			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-005A	116064			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-006A	107064			SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS		12/18/2006	12/18/2006
06120390-006B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006
				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-007A	114064			SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS		12/18/2006	12/19/2006
				SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS		12/18/2006	12/18/2006
06120390-007B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/15/2006	12/16/2006
06120390-008A	114964			SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS		12/18/2006	12/18/2006
				SW-846 3510C, 8270C SIMS, Semi-Volatile Organic Compounds by GC/MS		12/18/2006	12/19/2006
06120390-008B				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006
				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006
06120390-009A	115064			SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006
				SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006
06120390-010A	Trip Blank	12/6/2006	Trip Blank	SW-846 5030, 8260B, Volatile Organic Compounds by GC/MS		12/16/2006	12/16/2006

CLIENT:

Work Order:

CHMGP/162363 Project:

Kelron Environmental 06120390

ANALYTICAL QC SUMMARY REPORT

Date: 27-Dec-06

TestCode: SV_8270S_W_SIMS

Sample ID: MB-34908	SampType: MBLK			Units: mg/L		Prep Date:	12/18/2006	RunNo: 87571	
Client ID: ZZZZZZ	Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006	SeqNo: 1459601	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	Q	0.00010							
Acenaphthylene	Q	0.00010							
Anthracene	Q	0.00010							
Benzo(a)anthracene	Q	0.00010							
Benzo(a)pyrene	QN	0.00010							
Benzo(b)fluoranthene	2	0.00010							
Benzo(g,h,i)perylene	Q	0.00010							
Benzo(k)fluoranthene	Q	0.00010							
Chrysene	QN	0.00010							
Dibenzo(a,h)anthracene	QN	0.00010							
Fluoranthene	QN	0.00010							
Fluorene	Q	0.00010							
Indeno(1,2,3-cd)pyrene	Q	0.00010							
Naphthalene	QV	0.00010							
Phenanthrene	QN	0.00010							
Pyrene	QN	0.00010							
Total PNAs except Naphthalene	QN	0.00013							
Surr: 2-Fluorobiphenyl	0.00307		0.005000		61.4	45.7	108		
Surr: Nitrobenzene-d5	0.00330		0.005000		0.99	39.4	112		
Surr: p-Terphenyl-d14	0.00393		0.005000		78.6	58.6	130		
Sample ID: LCS-34908	SampType: LCS			Units: mg/L		Prep Date:	12/18/2006	RunNo: 87571	
Client ID: ZZZZZZ	Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006	SeqNo: 1459602	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Acenaphthene	0.00335	0.00010	0.005000	0	67.0	50.1	103		
Acenaphthylene	0.00394	0.00010	0.005000	0	78.8	53.3	122		
Anthracene	0.00347	0.00010	0.005000	0	69.4	57.4	110		
Benzo(a)anthracene	0.00339	0.00010	0.005000	0	67.8	26	102		
Qualifiers: E Value above	Value above quantitation range		H Holding	Holding times for preparation or analysis exceeded	n or analysi	s exceeded	J Analyte detected	Analyte detected below quantitation li	
M Manual Inte	Manual Integration used to determine area response	a response	ND Not Det	Not Detected at the Reporting Limit	g Limit		R RPD outside acce	RPD outside accepted recovery limits	
S Spike Recov	Spike Recovery outside accepted recovery limits	y limits)				Page 1 of 6

Kelron Environmental CLIENT:

06120390 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_W_SIMS

Sample ID: LCS-34908	SampType: LCS			Units: mg/L		Prep Date:	12/18/2006		RunNo: 87571		
Client ID: ZZZZZZ	Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006		SeqNo: 1459602	0.5	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	if Val	%RPD R	RPDLimit	Qual
Benzo(a)pyrene	0.00403	0.00010	0.005000	0	80.6	55.4	125				
Benzo(b)fluoranthene	0.00385	0.00010	0.005000	0	77.0	59.3	127				
Benzo(g,h,i)perylene	0.00375	0.00010	0.005000	0	75.0	58.4	125				
Benzo(k)fluoranthene	0.00397	0.00010	0.005000	0	79.4	61.5	125				
Chrysene	0.00358	0.00010	0.005000	0	71.6	58,7	118				
Dibenzo(a,h)anthracene	0.00392	0.00010	0.005000	0	78.4	59.3	126				
Fluoranthene	0.00386	0.00010	0.005000	0	77.2	60.1	117				
Fluorene	0.00360	0.00010	0.005000	0	72.0	54.1	110				
Indeno(1,2,3-cd)pyrene	0.00366	0.00010	0.005000	0	73.2	58.1	123				
Naphthalene	0.00301	0.00010	0.005000	0	60.2	36.3	97.1				
Phenanthrene	0.00350	0.00010	0.005000	0	70.0	55.9	107				
Pyrene	0.00388	0.00010	0.005000	0	9-77	61.4	116				
Surr: 2-Fluorobiphenyl	0.00305		0.005000		61.0	41.9	97.9				
Surr: Nitrobenzene-d5	0.00328		0.005000		65.6	39.9	106				
Surr: p-Terphenyl-d14	0.00397		0.005000		79.4	53	116				
Sample ID: LCSD-34908	SampType: LCSD			Units: mg/L		Prep Date:	12/18/2006		RunNo: 87571		
	10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Copias			9000000000		Cocho 44506	603	
Client ID: ZZZZZ	Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006		Seqino: 1459603	503	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	ef Val	%RPD F	RPDLimit	Qual
Acenaphthene	0.00347	0.00010	0.005000	0	69.4	50.1	103 0.00	0.003350	3.52	20	
Acenaphthylene	0.00401	0.00010	0.005000	0	80.2	53.3	122 0.00	0.003940	1.76	20	
Anthracene	0.00354	0.00010	0.005000	0	70.8	57.4	110 0.00	0.003470	2.00	20	
Benzo(a)anthracene	0.00334	0.00010	0.005000	0	8.99	56	102 0.00	0.003390	1.49	20	
Benzo(a)pyrene	0.00400	0.00010	0.005000	0	80.0	55.4	125 0.00	0.004030	0.747	20	
Benzo(b)fluoranthene	0.00387	0.00010	0.005000	0	77.4	59.3	127 0.00	0.003850	0.518	20	
Benzo(g,h,i)perylene	0.00375	0.00010	0.005000	0	75.0	58.4	125 0.00	0.003750	0	20	
Benzo(k)fluoranthene	0.00397	0.00010	0.005000	0	79.4	61.5	125 0.00	0.003970	0	20	
Chrysene	0.00362	0.00010	0.005000	0	72.4	58.7	118 0.00	0.003580	1.11	20	
Dibenzo(a,h)anthracene	0.00394	0.00010	0.005000	0	78.8	59.3	126 0.00	0.003920	0.509	20	
Fluoranthene	0.00377	0.00010	0.005000	0	75.4	60.1	117 0.00	0.003860	2.36	20	
Qualifiers: E Value abov	Value above quantitation range		H Holdir	Holding times for preparation or analysis exceeded	n or analys	is exceeded	J Analyte de	etected be	Analyte detected below quantitation li	:=	
M Manual Int	Manual Integration used to determine area response	ea response	ND Not D	Not Detected at the Reporting Limit	ng Limit		R RPD outsi	de accep	RPD outside accepted recovery limits		(
	Spike Recovery outside accepted recovery limits	ry limits			,					F.5	Page 2 ot 6

CLIENT: Kelron Environmental

Work Order: 06120390

Project: CHMGP/162363

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_W_SIMS

Pack Batch D: 34908 Pack Pa	Sample ID: LCSD-34908	SampType: LCSD			Units: mg/L		Prep Date:	12/18/2006	RunNo: 87571	
Political Poli		Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006	SeqNo: 1459603	
1.2.3.cd)pyrate 0.00366 0.00010 0.005000 0.000	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC			%RPD	Limit Qual
1,2,2,cd pyrene 0,0003e 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,000000 0,000	Fluorene	0.00365	0.00010	0.005000	0	73.0	54.1			50
Figure Control Condition Condition	Indeno(1,2,3-cd)pyrene	0.00369	0.00010	0.005000	0	73.8	58.1			50
threne 0.00344	Naphthalene	0.00301	0.00010	0.005000	0	60.2	36.3			50
Participation Continue Cont	Phenanthrene	0.00348	0.00010	0.005000	0	9 69	55.9			50
Numberseries-declaration 0.00304 0.005000 0.005	Pyrene	0.00373	0.00010	0.005000	0	74.6	61.4			50
Discription	Surr: 2-Fluorobiphenyl	0.00304		0.005000		8.09	41.9	97.9	0	50
10.06120390-0066AMS SampType: MS SampType: MS	Surr: Nitrobenzene-d5	0.00333		0.005000		9.99	39.9	106	0	50
Discription	Surr: p-Terphenyl-d14	0.00389		0.005000		77.8	53	116	0	50
Pach	Sample ID: 06120390-006AMS	SampType: MS			Units: mg/L		Prep Date:	12/18/2006	RunNo: 87571	
hthere there are a consistent of the control of th		Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006	SeqNo: 1459753	
0.00375 0.00010 0.00556 0.0002000 79.2 42.4 117 0.00396 0.00010 0.00556 0.0002000 79.2 48.4 133 0.00396 0.00010 0.00556 0.0001400 68.8 52.4 115 0.00435 0.00010 0.00556 0.0001400 65.0 50.8 105 0.00435 0.00010 0.00556 0 72.0 53.5 131 0.00040 0.00010 0.00556 0 72.0 53.5 131 0.000415 0.00010 0.00556 0 72.0 54.6 127 0.00381 0.00010 0.00556 0 74.7 56.2 128 0.00381 0.00010 0.00556 0 76.5 54.8 127 0.0040 0.00010 0.00556 0 76.5 54.8 127 0.00390 0.00010 0.00556 0 70.2 47.7 119 0.00390 0.00010 0.00556 0 70.2 47.7 119 0.00390 0.00010 0.00556 0 71.3 53.2 125 0.0515 0.00010 0.00556 0 71.3 53.2 125 0.00390 0.00010 0.00556 0 71.3 53.2 125 0.00390 0.00010 0.00556 0 71.3 53.2 125 0.00390 0.00010 0.00556 0 70.0 70.0 51.1 108 0.00389 0.00010 0.00556 0 70.0 70.0 51.1 108 0.00372 0.000556 0 0.00556 0 78.5 55.9 121 0.00389 0.00010 0.00556 0 78.5 55.9 121 0.00389 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00380 0.00010 0.00556 0 78.5 55.9 121 0.00440 0.00372 0.00556 0 0.00556 0 78.5 55.9 121 0.00440 0.000372 0.000556 0 0.00010 0.00556 0 0 78.5 55.9 121 0.00440 0.000372 0.000556 0 0.00010 0.00556 0 0 78.5 55.9 121 0.00440 0.000372 0.000556 0 0.00010 0.00556 0 0 78.5 55.9 121 0.00440 0.000372 0.000556 0 0.00010 0.00556 0 0 78.5 55.9 121 0.00440 0.000372 0.000556 0 0.00010 0.00556 0 0 0 78.5 55.9 121 0.00400 0.000566 0 0.00010 0.00556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyte	Result	Pal	SPK value	SPK Ref Vai	%REC			%RPD	Limit Qual
0.00460 0.000160 0.005566 0.0002000 79.2 48.4 113 0.00396 0.00010 0.00556 0.0001400 68.8 52.4 115 0.00361 0.00010 0.00556 0.0001400 65.0 50.8 105 0.00400 0.00010 0.00556 0 72.0 53.5 131 0.00390 0.00010 0.00556 0 72.0 53.5 131 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00425 0.00010 0.00556 0 76.5 54.8 127 0.00440 0.00010 0.00556 0 70.2 54.8 127 0.00390 0.00010 0.00556 0 70.2 54.5 125 0.00380 0.00010 0.00556 0 70.2 54.5 124 0.00380 0.00010	Acenaphthene	0.00375	0.00010	0.005556	0	67.5	42.4	117		
0.00386 0.00010 0.005556 0.0001400 68.8 52.4 115 0.00361 0.00010 0.005556 0 65.0 50.8 105 0.00408 0.00010 0.00556 0 72.0 53.5 131 0.00409 0.00010 0.00556 0 72.0 54.6 127 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00425 0.00010 0.00556 0 74.7 56.2 128 0.00426 0.00010 0.00556 0 70.2 54.8 127 0.00440 0.00010 0.00556 0 70.2 54.8 122 0.00390 0.00010 0.00556 0 71.3 53.2 125 0.00380 0.00010 0.00556 0 71.3 54.9 124 0.00380 0.00010 0.005	Acenaphthylene	0.00460	0.00010	0.005556	0.0002000	79.2	48.4	133		
0.00361 0.000556 0 65.0 50.8 105 0.00435 0.00010 0.00556 0 78.3 53.3 126 0.00400 0.00010 0.00556 0 72.0 53.5 131 0.00390 0.00010 0.00556 0 74.7 56.2 128 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00425 0.00010 0.00556 0 76.5 54.8 127 0.00440 0.00010 0.00556 0 76.5 54.8 127 1e 0.00440 0.00010 0.00556 0 70.2 47.7 119 1e 0.00396 0.00010 0.00556 0 70.2 54.5 125 0.00396 0.00010 0.00556 0 70.2 54.5 125 0.00389 0.00010 0.00556 0 70.0 70.0 51 115 Alutural bucgastrion used to	Anthracene	0.00396	0.00010	0.005556	0.0001400	68.8	52.4	115		
0.000435 0.00010 0.000556 0 78.3 53.3 126 0.000400 0.00010 0.00556 0 72.0 53.5 131 0.00390 0.00010 0.00556 0 74.7 56.2 128 0.00381 0.00010 0.00556 0 74.7 56.2 128 0.00381 0.00010 0.00556 0 76.5 54.8 127 0.00382 0.00010 0.00556 0 76.5 54.8 127 0.00440 0.00010 0.00556 0 70.2 47.7 149 1e 0.00390 0.00010 0.00556 0 70.2 54.5 125 0.00390 0.00010 0.00556 0.04770 68.6 36.3 107 0.00380 0.00010 0.00556 0.004770 68.6 55.9 125 0.00380 0.00010 0.00556 0.00556 0.00556 70.0 70.0 51 108	Benzo(a)anthracene	0.00361	0.00010	0.005556	0	65.0	50.8	105		
0.000400 0.000556 0 72.0 53.5 131 0.00390 0.00010 0.00556 0 70.2 54.6 127 0.00415 0.00010 0.00556 0 74.7 56.2 128 0.00425 0.00010 0.00556 0 74.7 56.2 128 0.00426 0.00010 0.00556 0 76.5 54.8 127 0.00420 0.00010 0.00556 0 70.2 47.7 119 10 0.00396 0.00010 0.00556 0 71.3 53.2 125 0.0515 0.00010 0.00556 0.04770 68.6 36.3 107 0.00389 0.00010 0.00556 0 70.0 51 112 0.00436 0.00010 0.00556 0 70.0 55.9 121 0.00372 0.00387 0.00556 0.00556 69.7 37.6 105 0.00387 0.000556 0.00556<	Benzo(a)pyrene	0.00435	0.00010	0.005556	0	78.3	53.3	126		
9.000390 0.000556 0 70.2 54.6 127 9.00415 0.00010 0.00556 0 74.7 56.2 128 9.00425 0.00010 0.00556 0 74.7 56.2 128 9.00440 0.00010 0.00556 0 76.5 54.8 127 10.00390 0.00010 0.00556 0 70.2 47.7 119 10.00390 0.00010 0.00556 0.04770 68.6 36.3 127 10.00380 0.00010 0.00556 0.04770 68.6 36.3 171 10.00382 0.00010 0.00556 0.04770 68.6 55.9 121 10.00382 0.00010 0.00556 0.00556 70.0 70.0 51 11 2-d5 0.00387 0.00556 0.00556 0.00556 69.7 41.1 108 Manual Integration used to determine are response No Not Detected at the Reporting Limit 10 70.0 70 70 <td>Benzo(b)fluoranthene</td> <td>0.00400</td> <td>0.00010</td> <td>0.005556</td> <td>0</td> <td>72.0</td> <td>53.5</td> <td>131</td> <td></td> <td></td>	Benzo(b)fluoranthene	0.00400	0.00010	0.005556	0	72.0	53.5	131		
ne 0.000415 0.00010 0.005556 0 74.7 56.2 128 ne 0.00381 0.00010 0.005556 0 76.5 54.4 122 ne 0.00425 0.00010 0.00556 0 76.5 54.8 127 ne 0.00390 0.00010 0.00556 0 70.2 47.7 119 ne 0.00396 0.00010 0.00556 0 71.3 53.2 125 nnyl 0.00389 0.00010 0.00556 0.04770 68.6 36.3 107 o.00436 0.00010 0.00556 0.04770 68.6 55.9 121 d5 0.00372 0.000556 0.00556 0.70.0 78.5 55.9 121 Value above quantitation range H Holding times for preparation or analysis exceeded J 105 Annual Integration used to determine area response ND Not Detected at the Reporting Limit J 1	Benzo(g,h,i)perylene	0.00390	0.00010	0.005556	0	70.2	54.6	127		
thracene 0.00381 0.00010 0.00556 0 68.6 54.4 122 o.00425 0.00010 0.00556 0 76.5 54.8 127 0.00440 0.00010 0.00556 0 79.2 54.5 122 0.00390 0.00010 0.00556 0 70.2 47.7 119 0.0515 0.00010 0.00556 0.04770 68.6 36.3 107 0.00389 0.00010 0.00556 0 70.0 51 112 robiphenyl 0.00387 0.00010 0.00556 0 78.5 55.9 121 robiphenyl 0.00387 0.00556 0.00556 0 78.5 55.9 121 male above quantitation range R Holding times for preparation or analysis exceeded J 41.1 108 Manual Integration used to determine area response ND Not Detected at the Reporting Limit J 1 R	Benzo(k)fluoranthene	0.00415	0.00010	0.005556	0	74.7	56.2	128		
otheracene 0.00425 0.00010 0.00556 0 76.5 54.8 127 0.00440 0.00010 0.00556 0 79.2 54.5 122 0.00390 0.00010 0.00556 0 70.2 47.7 119 0.00396 0.00010 0.00556 0 71.3 53.2 125 0.00389 0.00010 0.00556 0 70.0 51 112 robjehenyl 0.00387 0.00056 0.00556 0 78.5 55.9 121 robjehenyl 0.00372 0.00556 0.00556 67.0 41.1 108 extendedds 0.00387 0.00556 0.00556 69.7 37.6 105 M Manual Integration used to determine area response ND Not Detected at the Reporting Limit Initial	Chrysene	0.00381	0.00010	0.005556	0	68.6	54.4	122		
Continuous Con	Dibenzo(a,h)anthracene	0.00425	0.00010	0.005556	0	76.5	54.8	127		
Comparison	Fluoranthene	0.00440	0.00010	0.005556	0	79.2	54.5	122		
d)pyrene 0.00396 0.00010 0.00556 0 71.3 53.2 125 0.0515 0.00010 0.00556 0.04770 68.6 36.3 107 0.00389 0.00010 0.00556 0 70.0 51 112 robiphenyl 0.00372 0.00556 0 78.5 55.9 121 enzene-d5 0.00387 0.00556 69.7 37.6 105 E Value above quantitation range H Holding times for preparation or analysis exceeded J M Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Fluorene	0.00390	0.00010	0.005556	0	70.2	47.7	119		
107 107	Indeno(1,2,3-cd)pyrene	0.00396	0.00010	0.005556	0	71.3	53.2	125		
112 12 12 12 13 14 15 15 15 15 15 15 15	Naphthalene	0.0515	0.00010	0.005556	0.04770	68.6	36.3	107		Ш
2-Fluorobiphenyl 0.00436 0,00010 0.005566 0 78.5 55.9 121 Nitrobenzene-d5 0.00372 0.00556 67.0 41.1 108 ers. E Value above quantitation range H Holding times for preparation or analysis exceeded J M Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Phenanthrene	0.00389	0.00010	0.005556	0	70.0	51	112		
Figure above quantitation range ND Not Detected at the Reporting Limit Not Detected at the Reporting Limit 41.1 108 41.1 108 41.1 108 69.7 37.6 105 105 105 107 105 108 105 109 105 101 105 102 105 103 105 104 105 105 105 106 105 107 105 108 105 109 105 100 105 106 105 107 105 108 105 109 105 100 105 107 105 108 105 109 105 100 105 100 105 107 105 108 105 109 105 109 105 100	Pyrene	0.00436	0,00010	0.005556	0	78.5	55.9	121		
robenzene-d5 0.00387 0.005556 69.7 37.6 105 E Value above quantitation range H Holding times for preparation or analysis exceeded J Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Surr: 2-Fluorobiphenyl	0.00372		0.005556		67.0	41.1	108		
E Value above quantitation range H Holding times for preparation or analysis exceeded J Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Surr; Nitrobenzene-d5	0.00387		0.005556		69.7	37.6	105		
M Manual Integration used to determine area response ND Not Detected at the Reporting Limit R	Э	quantitation range			ig times for preparation	or analysi	s exceeded		tected below quantitation li	
- :	Σ	ration used to determine are	a response		etected at the Reporting	Z Limit			de accepted recovery limits	
Spike Recovery outside accepted recovery limits		ery outside accepted recover	v limits						,	Page 3 of 6

Kelron Environmental CLIENT:

06120390 Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_W_SIMS

Sample ID: 06120390-006AMS	SampType: MS			Units: mg/L		Prep Date:	12/18/2006	91	RunNo: 87571	-	
Client ID: 107064MS	Batch ID: 34908			SW3510C		Analysis Date: 12/18/2006	12/18/200	9	SeqNo: 1459753	753	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Surr: p-Terphenyl-d14	0.00439		0.005556		79.0	49	113				
Sample ID: 06120390-006AMSD	SampType: MSD			Units: mg/L		Prep Date:	12/18/2006	9(RunNo: 87571	2-	
Client ID: 107064MSD	Batch ID: 34908			SW3510C		Analysis Date:	12/18/2006	90	SeqNo: 1459754	1754	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.00386	0.00010	0.005556	0	69.5	42.4	117	0.003750	2.89	20	
Acenaphthylene	0.00468	0.00010	0.005556	0.0002000	9.08	48.4	133	0.004600	1.72	20	
Anthracene	0.00409	0.00010	0.005556	0.0001400	71.1	52.4	115	0.003960	3.23	20	
Benzo(a)anthracene	0.00374	0.00010	0.005556	0	67.3	50.8	105	0.003610	3.54	20	
Benzo(a)pyrene	0.00451	0.00010	0.005556	0	81.2	53.3	126	0.004350	3.61	20	
Benzo(b)fluoranthene	0.00418	0.00010	0.005556	0	75.2	53.5	131	0.004000	4.40	20	
Benzo(g,h,i)perylene	0.00403	0.00010	0.005556	0	72.5	54.6	127	0.003900	3.28	20	
Benzo(k)fluoranthene	0.00425	0.00010	0.005556	0	76.5	56.2	128	0.004150	2.38	20	
Chrysene	0.00395	0.00010	0.005556	0	71.1	54.4	122	0.003810	3.61	20	
Dibenzo(a,h)anthracene	0.00438	0.00010	0.005556	0	78.8	54.8	127	0.004250	3.01	20	
Fluoranthene	0.00457	0.00010	0.005556	0	82.3	54.5	122	0.004400	3.79	20	
Fluorene	0.00393	0.00010	0.005556	0	70.7	47.7	119	0.003900	0.766	20	
Indeno(1,2,3-cd)pyrene	0.00408	0.00010	0.005556	0	73.4	53.2	125	0.003960	2.99	20	
Naphthalene	0.0512	0.00010	0.005556	0.04770	63.4	36.3	107	0.05151	0.565	20	ш
Phenanthrene	0.00401	0.00010	0.005556	0	72.2	51	112	0.003890	3.04	20	
Pyrene	0.00455	0.00010	0.005556	0	81.9	55.9	121	0.004360	4.26	20	
Surr: 2-Fluorobiphenyl	0.00368		0.005556		66.2	41.1	108		0	20	
Surr: Nitrobenzene-d5	0.00386		0.005556		69.5	37.6	105		0	20	
Surr: p-Terphenyl-d14	0.00447		0.005556		80.5	49	113		0	20	

Qualifiers:	П	Value above quantitation range
	Σ	Manual Integration used to determine area respon
	S	Spike Recovery outside accepted recovery li

Manual Integration used to determine area response

Holding times for preparation or analysis exceeded H Holding times for preparation or analy

ND Not Detected at the Reporting Limit

Analyte detected below quantitation li RPD outside accepted recovery limits ~ ~

Kelron Environmental 06120390 CLIENT:

Work Order:

CHMGP/162363 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX W

Sample ID: LCS-N061216-1	SampType: LCS1			Units: µg/L		Prep Date:	12/16/2006	RunNo: 87525	
Client ID: ZZZZZZ	Batch ID: 34904			SW5030		Analysis Date:	12/16/2006	SeqNo: 1458604	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	54.0	2.0	50.00	0	108.0	79.3	122		
Toluene	53.5	5.0	50.00	0	107.1	81.5	123		
Ethylbenzene	52.1	5.0	50.00	0	104.2	83	131		
Xylenes, Total	106	5.0	100.0	0	105.7	83.2	131		
Naphthalene	47.5	10	50.00	0	95.1	78.5	140		
Surr: 1,2-Dichloroethane-d4	20.7		50.00		101.4	73.9	129		
Surr: 4-Bromofluorobenzene	52.7		50.00		105.4	83	113		
Surr: Dibromofluoromethane	51.5		50.00		103.0	83.8	118		
Surr: Toluene-d8	47.9		20.00		95.9	85.5	115		
Sample ID: MBLK-N061216-1	SampType: MBLK			Units: µg/L		Prep Date:	12/16/2006	RunNo: 87525	
Client ID: ZZZZZZ	Batch ID: 34904			SW5030		Analysis Date:	12/16/2006	SeqNo: 1458606	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	QX	2.0							
Toluene	QN	5.0							
Ethylbenzene	QN	5.0							
Xylenes, Total	QN	5.0							
Naphthalene	QN	10							
Surr: 1,2-Dichloroethane-d4	50.9		50.00		101.7	73.9	129		
Surr: 4-Bromofluorobenzene	52.7		50.00		105.5	83	113		
Surr: Dibromofluoromethane	50.5		50.00		101.0	83.8	118		
Surr: Toluene-d8	49.3		20.00		98.7	85.5	115		
Sample ID: 06120390-006BMS	SampType: MS			Units: µg/L		Prep Date:	12/16/2006	RunNo: 87525	
Client ID: 107064MS	Batch ID: 34904			SW5030		Analysis Date:	12/16/2006	SeqNo: 1458612	
Analyte	Result	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	986	10	270.0	812.1	64.4	57.8	125		
Toluene	282	25.0	270.0	7.100	101.7	75.8	123		
Ethylbenzene	312	25.0	270.0	44.05	99.2	72.8	123		
Qualifiers: E Value above	Value above quantitation range		H Holdir	Holding times for preparation or analysis exceeded	n or analys	is exceeded		Analyte detected below quantitation li	
M Manual Integ	Manual Integration used to determine area response	response	ND Not D	Not Detected at the Reporting Limit	g Limit		R RPD outside acce	RPD outside accepted recovery limits	Dogs 5 of 6
S Spike Recov	Spike Recovery outside accepted recovery limits	limits							rage 3 01 0

Kelron Environmental CLIENT:

06120390 Work Order: Project:

CHMGP/162363

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: 06120390-006BMS Client ID: 107064MS	SampType: MS Batch ID: 34904			Units: µg/L SW5030		Prep Date: 12/16/2006 Analysis Date: 12/16/2006	Prep Date: 12/16/2006 Ilysis Date: 12/16/2006	RunNo: 87525 SeqNo: 1458612	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Xylenes, Total Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8	595 241 267 241 248	25.0	540.0 250.0 250.0 250.0 250.0	55.15	100 96.6 106.8 96.5 99.0	73 73.9 83 83.8 85.5	129 113 118		
Sample ID: 06120390-006BMSD SampType: MSD Client ID: 107064MSD Batch ID: 3490	SampType: MSD Batch ID: 34904			Units: µg/L SW5030		Prep Date: 12/16/2006 Analysis Date: 12/16/2006	Prep Date: 12/16/2006 llysis Date: 12/16/2006	RunNo: 87525 SeqNo: 1458613	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
Benzene	1040	10	270.0	812.1	84.4	57.8	125 986.1	5.33	15
Toluene	284	25.0	270.0	7.100	102.4	75.8	123 281.8	0.654	15
Ethylbenzene	323	25.0	270.0	44.05	103.4	72.8	123 312.0	3.59	15
Xylenes, Total	617	25.0	540.0	55.15	104.0	73	127 595.0	3.59	15
Surr: 1,2-Dichloroethane-d4	250		250.0		8.66	73.9	129	0	0
Surr: 4-Bromofluorobenzene	266		250.0		106.4	83	113	0	0
Surr: Dibromofluoromethane	253		250.0		101.0	83.8	118	0	0
Surr: Toluene-d8	239		250.0		95.8	85.5	115	0	0

Spike Recovery outside accepted recovery limits

Value above quantitation range Qualifiers:

Manual Integration used to determine area response n ≥ ∾

Holding times for preparation or analysis exceeded H Holding times for preparation or analy ND Not Detected at the Reporting Limit

Analyte detected below quantitation li RPD outside accepted recovery limits ~ ×

ENVIRONMENTAL TESTING LABORATORY

TEL: 618-344-1004

FAX: 618-344-1005

WORK ORDER SAMPLE SUMMARY

Client:

Kelron Environmental

Project:

CHMGP/162363

Lab Order:

Date Received:

06120390 12/14/2006 Date: 27-Dec-06

Lab Sample ID	Client Sample ID	Tag Number	Collection Date
06120390-001A	112064		12/13/2006 7:45:00 AM
06120390-002A	102064		12/13/2006 8:20:00 AM
06120390-003A	111064		12/13/2006 8:50:00 AM
06120390-004A	108064		12/13/2006 9:20:00 AM
06120390-005A	116064		12/13/2006 9:55:00 AM
06120390-006A	107064		12/13/2006 10:27:00 AM
06120390-006B	107064		12/13/2006 10:27:00 AM
06120390-007A	114064		12/13/2006 11:14:00 AM
06120390-007B	114064		12/13/2006 11:14:00 AM
06120390-008A	114964		12/13/2006 11:16:00 AM
06120390-008B	114964		12/13/2006 11:16:00 AM
06120390-009A	115064		12/13/2006 12:00:00 PM
06120390-010A	Trip Blank		12/6/2006 2:45:00 PM

APPENDIX N

CSI Laboratory QA/QC Reports

Date: 04-Aug-04

Philip Environmental 04070635 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TCN_S_MT

Sample ID: MB-R54277 Client ID: ZZZZZ	SampType: MBLK Batch ID: R54277	TestCode: I_TCN_S_MT TestNo: SW9014	Units: mg/kg	Prep Date: Analysis Date: 8/4/04	Run ID: DR2010_040804A SeqNo: 808594
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cyanide	< 0.01	0.01			
Sample ID: LCS-R54277 Client ID: ZZZZZ	SampType: LCS Batch ID: R54277	TestCode: I_TCN_S_MT TestNo: SW9014	Units: mg/kg	Prep Date: Analysis Date: 8/4/04	Run ID: DR2010_040804A SeqNo: 808595
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cyanide	0.23	0.01 0.2	0 115	85 115 0	0
Sample ID: LCSD Client ID: ZZZZZ	SampType: LCSD Batch ID: R54277	TestCode: I_TCN_S_MT TestNo: SW9014	Units; mg/kg	Prep Date: Analysis Date: 8/4/04	Run ID: DR2010_040804A SeqNo: 808596
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cyanide	0.23	0.01 0.2	0 115	85 115 0.23	0 10
Sample ID: 04070635-043A MS Client ID: B516-3 (2-3')	SampType: MS Batch ID: R54277	TestCode: I_TCN_S_MT TestNo: SW9014	Units: mg/kg-dry	Prep Date: Analysis Date: 8/4/04	Run ID: DR2010_040804A SeqNo: 808967
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cyanide	63.4	3.14 31.4	41.6 69.4	80 120 0	s 0
Sample ID: 04070635-043A MSD SampType: MSD Client ID: B516-3 (2-3') Batch ID: R542	SampType: MSD Batch ID: R54277	TestCode: I_TCN_S_MT TestNo: SW9014	Units: mg/kg-dry	Prep Date: Analysis Date: 8/4/04	Run ID: DR2010_040804A SeqNo: 808968
Analyte	Result	PQL SPK value SPK	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cyanide	81.7	3.14 31.4	41.6 128	80 120 63.4	25.2 15 SR

J - Analyte detected below quantitation limits

CLIENT: Philip Environmental

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TS_M_MT

Sample ID: LCS-R53963 Client ID: ZZZZZ	SampType: LCS Batch ID: R53963	TestCode: I_TS_M_MT Un TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/26/04	Run ID: INORGANICS_040726C SeqNo: 802564
Analyte	Result	PQL SPK value SPK Ref Val	'al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Solids	926	0.1 1000	0 97	97.6 90 110 0	0
Sample ID: LCS-R54018 Client ID: ZZZZZ	SampType: LCS Batch ID: R54018	TestCode: I_TS_M_MT Un TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/27/04	Run ID: INORGANICS_040727B SeqNo: 803578
Analyte	Result	PQL SPK value SPK Ref Val	'al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Solids	983	0.1 1000	36 0	98.3 90 110 0	0
Sample ID: LCS DUP Client ID: ZZZZZ	SampType: LCSD Batch ID: R53963	TestCode: I_TS_M_MT Un TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/26/04	Run ID: INORGANICS_040726C SeqNo: 802645
Analyte	Result	PQL SPK value SPK Ref Val	/al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Solids	966	0.1 1000	36 0	99.6 90 110 976	2.03 15
Sample ID: LCS DUP Client ID: ZZZZZ	SampType: LCSD Batch ID: R54018	TestCode: I_TS_M_MT Un TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/27/04	Run ID: INORGANICS_040727B SeqNo: 803628
Analyte	Result	PQL SPK value SPK Ref Val	/al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Solids	985	0.1 1000	0 98	98.5 90 110 983	0.203 15
Sample ID: 04070635-014ADUP Client ID: B508-28 (27-28')	SampType: DUP Batch ID: R53963	TestCode: LTS_M_MT Ur TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/26/04	Run ID: INORGANICS_040726C SeqNo: 802638
Analyte Total Solide	Result 90.1	PQL SPK value SPK Ref Val	/al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
			,	,	
Sample ID: 04070635-030ADUP Client ID: B509-8 (7-8')	SampType: DUP Batch ID: R54018	TestCode: I_TS_M_MT Ur TestNo: M2540 G	Units: %	Prep Date: Analysis Date: 7/27/04	Run ID: INORGANICS_040727B SeqNo: 803596
Analyte	Result	PQL SPK value SPK Ref Val	/al %REC	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers: ND - Not Detected at the Reporting Limi:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 2 of 43

CLIENT: Philip Environmental

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: I_TS_M_MT

Sample ID: 04070635-030ADUP SampType: DUP	SampType: DUP	TestCode	TestCode: I_TS_M_MT	. Units: %		Prep Date:	ie:		Run ID: INORGANICS_040727B	RGANICS 0	40727B
Client ID: B509-8 (7-8")	Batch ID: R54018	TestN	TestNo: M2540 G			Analysis Da	Analysis Date: 7/27/04		SeqNo: 803596	596	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Total Solids	76,3	0.1	0	0	0	0	0	77.8	1.95	15	
Sample ID: 04070635-051ADUP SampType: DUP Client ID: B514-17 (16-17') Batch ID: R540	SampType: DUP Batch ID: R54018	TestCode	TestCode: I_TS_M_MT TestNo: M2540 G	. Units: %		Prep Date: Analysis Date:	Prep Date: Analysis Date: 7/27/04		Run ID: INORGANICS_040727B SeqNo: 803618	RGANICS_0 618	40727B
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Total Solids	6.06	0.1	0	0	0	0	0	90.1	0.884	15	

CLIENT: Philip Environmental

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: L_PH_S_M

Sample ID: LCS-R53932 Client ID: ZZZZZ	SampType: LCS Batch ID: R53932	TestCode: L_PH_S_M TestNo: SW9045 C	M Units:		Prep Date: Analysis Date: 7/26/04	Run ID: PH METER - LOG IN_04 SeqNo: 802805
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
pH (1:1)	7.04	1.00	0	101	99.1 100.9 0	0
Sample ID: LCS-R54032 Client ID: ZZZZZ	SampType: LCS Batch ID: R54032	TestCode: L_PH_S_M TestNo: SW9045 C	M Units:		Prep Date: Analysis Date: 7/27/04	Run ID: PH METER - LOG IN_04 SeqNo: 803818
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
рН (1:1)	7.05	1.00 7	0	101	99.1 100.9 0	0
Sample ID: 04070635-022A DUP Client ID: B556-28 (27-28')	SampType: DUP Batch ID: R54032	TestCode: L_PH_S_M TestNo: SW9045 C	M Units:		Prep Date: Analysis Date: 7/27/04	Run ID: PH METER - LOG IN_04 SeqNo: 803829
Analyte	Result	PQL SPK value	SPK Ref Vai	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
рН (1:1)	8.25	1.00 0	0	0	0 0 8.15	1.22 10
Sample ID: 04070635-043A DUP SampType: DUP Client ID: B516-3 (2-3') Batch ID: R540	SampType: DUP Batch ID: R54032	TestCode: L_PH_S_M TestNo: SW9045 C	M Units:		Prep Date: Analysis Date: 7/27/04	Run ID: PH METER - LOG IN_04 SeqNo: 803839
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
рН (1:1)	7.5	1.00 0	0	0	0 0 7.53	0.399 10
Sample ID: 04070635-017A DUP Client ID: B557-12 (11-12')	SampType: DUP Batch ID: R54032	TestCode: L_PH_S_M TestNo: SW9045 C	M Units:		Prep Date: Analysis Date: 7/27/04	Run ID: PH METER - LOG IN_04 SeqNo: 803844
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
pH (1:1)	7.89	1.00 0	0	0	0 0 7.8	1.15 10

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_HG_SOLID

Sample ID: MB-21197	SampType: MBLK	TestCode: M_HG_SOLID Units: mg/Kg Prep Date: 7/26/04	Run ID: CVAA_040727A
Client ID: ZZZZZ	Batch ID: 21197	TestNo: SW7471 A Analysis Date: 7/27/04	t SeqNo: 802885
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
Mercury	< 0.010	0.010 0.01 0 -100 100	0 0
Sample ID: MB-21289 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21289	TestCode: M_HG_SOLID Units: mg/Kg Prep Date: 8/1/04 TestNo: SW7471 A Analysis Date: 8/2/04	Run ID: CVAA_040802A SeqNo: 806950
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
Mercury	< 0.010	0.010 0.01 0 0 -100 100	0 0
Sample ID: LCS-21197 Client ID: ZZZZZ	SampType: LCS Batch ID: 21197	TestCode: M_HG_SOLID Units: mg/Kg Prep Date: 7/26/04 TestNo: SW7471 A Analysis Date: 7/27/04	t Run ID: CVAA_040727A t SeqNo: 802884
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
Mercury	0.276	0.010 0.25 0 110 85 115	0 0
Sample ID: LCS-21289 Client ID: ZZZZZ	SampType: LCS Batch ID: 21289	TestCode: M_HG_SOLID Units: mg/Kg Prep Date: 8/1/04 TestNo: SW7471 A Analysis Date: 8/2/04	Run ID: CVAA_040802A SeqNo: 806949
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual
Mercury	0.246	0.010 0.25 0 98.4 85 115	0 0
Sample ID: 04070635-030AMS Client ID: B509-8 (7-8')	SampType: MS Batch ID: 21197	TestCode: M_HG_SOLID Units: mg/Kg-dry Prep Date: 7/26/04 TestNo: SW7471 A Analysis Date: 7/27/04	t Run ID: CVAA_040727A 5eqNo: 802910
Analyte	Result 0.372	PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.013 0.31 0.028 111 75 125	RPD Ref Val %RPD RPDLimit Qual 0 0
Sample ID: 04070635-042AMS Client ID: B506-28 (27-28')	SampType: MS Batch ID: 21289	TestCode: M_HG_SOLID Units: mg/Kg-dry Prep Date: 8/1/04 TestNo: SW7471 A Analysis Date: 8/2/04	Run ID: CVAA_ 040802 A SeqNo: 806974
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val %RPD RPDLimit Qual

Qualifiers: ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

rage 2 of 4

Philip Environmental 04070635 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M HG SOLID

										1
Sample ID: 04070635-042AMS	SampType: MS	TestCode: M_HG_SOLID		Units: mg/Kg-dry	Prep Date: 8/1/04	8/1/04		Run ID: CVAA 040802A	040802A	
Client ID: B506-28 (27-28")	Batch ID: 21289	TestNo: SW7471 A	4		Analysis Date: 8/2/04	8/2/04		SeqNo: 806974		
Analyte	Result	PQL SPK value	SPK value SPK Ref Val	%REC	LowLimit Hi	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD RI	%RPD RPDLimit Qual	<u>m</u>
Mercury	0.288	0.010 0.259	0.008	108	75	125	0	0		
Sample ID: 04070635-030AMSD SampType: MSD Client ID: B509-8 (7-8') Batch ID: 2119'	SampType: MSD Batch ID: 21197	TestCode: M_HG_SOLID TestNo: SW7471 A		Units: mg/Kg-dry	Prep Date: 7/26/04 Analysis Date: 7/27/04	7/26/04		Run ID: CVAA_040727A SeqNo: 802911	040727A	
Analyte	Result	PQL SPK value	SPK value SPK Ref Val	%REC	LowLimit Hi	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD R	RPDLimit Qual	<u>m</u>
Mercury	0.369	0.013 0.31	0.028	110	75	125	0.371	0.694	15	
Sample ID: 04070635-042AMSD SampType: MSD Client ID: B506-28 (27-28') Batch ID: 2128	SampType: MSD Batch ID: 21289	TestCode: M_HG_SOLID TestNo: SW7471 A		Units: mg/Kg-dry	Prep Date: 8/1/04 Analysis Date: 8/2/04	8/1/04		Run ID: CVAA_040802A SeqNo: 806975	040802A	
Analyte	Result	PQL SPK value	SPK value SPK Ref Val	%REC	LowLimit Hi	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD R	%RPD RPDLimit Qual	<u>a</u>
Mercury	0.268	0.010 0.259	0.008	100	75	125	0.288	7.19	15	

Page 6 of 43

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCod TestN	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/27/04		Run ID: ICP 2_040728B SeqNo: 803734	040728B	
Analyte	Result	PQL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	RPDLimit C	Qual
Chromium Lead	< 1.00 < 4.00	1.00	1 4	0 0	0 0	-100	100	0 0	0		
Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: 7/27/04 Analysis Date: 7/29/04	: 7/27/04		Run ID: ICP 2_040729A SeqNo: 805107	040729A	
Analyte	Result	Pal	SPK value SR	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	RPDLimit C	Qual
Chromium Lead	< 1.00 < 4.00	1.00	1 4	0 0	0	-100	100	0 0	0 0		
Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	: 7/27/04 : 8/2/04		Run ID: ICP_040802B SeqNo: 806911	0802B	
Analyte	Result	Pol	SPK value SI	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	RPDLimit G	Qual
Cadmium Lead Selenium	< 0.20 < 4.00 < 4.00	0.20 4.00 4.00	0,2	0	000	-100 -100 -100	100	000	0 0		
Sample ID: MB-21275 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21275	TestCod	(0)		Units: mg/Kg-dry	0 0	7/30/04		و 9		
Analyte	Result	PaL	SPK value SI	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	RPDLimit	Qual
Barium Cadmium	< 0.50 < 0.20	0.50	0.5	0 0	0 0	-100	100	0 0	0 0		
Lead	< 4.00	4.00	4	0	0	-100	100	0	0		
Selenium	< 4.00	4.00	4	0	0	-100	100	0	0		
Silver	< 1.00	1.00		0	0	-100	100	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 7 of 43

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M SOLIDS ICP

Sample ID: MB-21275	SampType: MBLK	TestCode: M_SOLIDS_ICP	IDS_ICP	Units: mg/Kg-dry	2	Prep Date:	7/30/04		Run ID: ICP 2_040802B	_040802B	
Client ID: ZZZZZ	Batch ID: 21275	TestNo: SW6010B	0B		An	Analysis Date:	8/2/04		SeqNo: 807218		
Analyte	Result	PQL SPK value		SPK Ref Val	%REC Lo	LowLimit Hig	HighLimit R	RPD Ref Val	%RPD R	RPDLimit	Qual
Arsenic Chromium Lead	< 2.50 < 1.00 < 4.00	2.50 2 1.00 4.00	2,5	0 0 0	000	-100 -100 -100	100	0 0 0	0 0 0		
Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCode: M_SOLIDS_ICP TestNo: SW6010B	IDS_ICP	Units: mg/Kg-dry		Prep Date: Analysis Date:	7/27/04		Run ID: ICP 2_040802B SeqNo: 807262	_040802B	
Analyte	Result	PQL SPK value		SPK Ref Val	"REC Lo	LowLimit Hig	HighLimit R	RPD Ref Val	%RPD R	RPDLimit	Qual
Arsenic Chromium	< 2.50 < 1.00	2.50 2	2.5	0 0	0 0	-100	100	0 0	0 0		
Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCode: M_SOLIDS_ICP TestNo: SW6010B	IDS_ICP 0B	Units: mg/Kg-dry		Prep Date: Analysis Date:	7/27/04		Run ID: ICP 2_040802B SeqNo: 807646	040802B	
Analyte	Result	PQL SPK value	- 1	SPK Ref Val	%REC Lo	LowLimit Hig	HighLimit R	RPD Ref Val	%RPD R	RPDLimit	Qual
Chromium	< 1.00	1.00	-	0	0	-100	100	0	0		
Sample ID: MB-21275 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21275	TestCode: M_SOLIDS_ICP TestNo: SW6010B	IDS_ICP 0B	Units: mg/Kg-dry		Prep Date: Analysis Date:	7/30/04		Run ID: ICP 2_040802B SeqNo: 807661	_040802B	
Analyte	Result	PQL SPK value		SPK Ref Val	%REC Lo	LowLimit Hig	HighLimit R	RPD Ref Val	%RPD R	RPDLimit	Qual
Chromium	< 1.00	1.00	-	0	0	-100	100	0	0		
Sample ID: MB-21276 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21276	TestCode: M_SOLIDS_ICP TestNo: SW6010B	IDS_ICP 0B	Units: mg/Kg-dry		Prep Date: Analysis Date:	7/30/04		Run ID: ICP 2_040802B SeqNo: 807674	040802B	
Analyte	Result	PQL SPK value		SPK Ref Val	%REC Lo	LowLimit Hig	HighLimit R	RPD Ref Val	%RPD R	RPDLimit	Qual
Chromium	< 1.00	1.00	+	0	0	-100	100	0	0		

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 8 of 43

04070635 Work Order: A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCode TestN	stCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/27/04		Run ID: ICP_040802E SeqNo: 807737
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPE	RPD Ref Val	%RPD RPDLimit Qual
Barium Cadmium	< 0.50 < 0.20	0.50	0.5	000	000	-100	100	000	0 0 0
Lead Selenium Silver	< 4.00 < 4.00 < 1.00	4.00 1.00	4 4 ←	000	0 0 0	-100 -100 -100	100	000	0 0
Sample ID: MB-21276 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21276	TestCode	stCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/30/04		Run ID: ICP_040802E SeqNo: 807753
Analyte	Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPI	RPD Ref Val	%RPD RPDLimit Qual
Barium Cadmium Lead Selenium Silver	< 0.50 < 0.20 < 4.00 < 4.00	0.50 0.20 4.00 4.00	0.5 0.2 4 4 4 1	00000	00000	-100 -100 -100 -100	100 100 100 100	00000	00000
Sample ID: MB-21276 Client ID: ZZZZZ Analyte	SampType: MBLK Batch ID: 21276 Result	TestCode TestN PQL	tCode: M_SOLIDS_ICP TestNo: SW6010B QL SPK value SPK	Re	Units: mg/Kg-dry f Val %REC	Prep Date: Analysis Date: LowLimit Hig	7/30/04 8/3/04 ghLimit	RPD Ref Val	Run ID: ICP 2_040803A SeqNo: 808065 %RPD RPDLimit Qual
Arsenic Lead	< 2.50 < 4.00	2.50	2.5	0 0	0 0	-100	100	00	0 0
Sample ID: MB-21275 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21275	TestCode	stCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/30/04		Run ID: ICP 2_040803A SeqNo: 808093
Analyte Arsenic	Result < 2.50	PQL 2.50	SPK value SF 2.5	SPK Ref Val	%REC	LowLimit High	HighLimit RPI	RPD Ref Val	%RPD RPDLimit Qual

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 9 of 43

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: MB-21219 Client ID: ZZZZZ	SampType: MBLK Batch ID: 21219	TestCode: TestNo	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: 7// Analysis Date: 8/	7/27/04 8/4/04	Run ID: ICP 2_040804A SeqNo: 808847	
Analyte	Result	Pal	SPK value SPk	SPK Ref Val	%REC	LowLimit HighLimit	mit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	< 2.50	2.50	2.5	0	0	-100	100 0	0	
Sample ID: LCS-21219 Client ID: ZZZZZ	SampType: LCS Batch ID: 21219	TestCode: TestNo	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: 7/: Analysis Date: 7/:	7/27/04 7/28/04	Run ID: ICP 2_040728B SeqNo: 803735	
Analyte	Result	Pal	SPK value SPk	SPK Ref Val	%REC	LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
Chromium Lead	20.5	1.00	20	0 0	103	85	115 0 115 0	0	
Sample ID: LCS-21219 Client ID: ZZZZZ	SampType: LCS Batch ID: 21219	TestCode: M. TestNo: S	stCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: 7/	7/27/04 7/29/04	Run ID: ICP 2_040729A SeqNo: 805108	
Analyte	Result	PQL	SPK value SPI	SPK Ref Val	%REC	LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
Chromium Lead	19.5 52.2	1.00	20	0 0	97.5	85	115 0 115 0	0	
Sample ID: LCS-21219 Client ID: ZZZZZ	SampType: LCS Batch ID: 21219	TestCode: TestNc	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: 7/ Analysis Date: 8/	7/27/04 8/2/04	Run ID: ICP_040802B SeqNo: 806910	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
Cadmium Lead Selenium	5.25 53.6 214	0.20 4.00 4.00	5 50 200	000	105 107 107	85 85 85	115 0 115 0 115 0	000	
Sample ID: LCS-21275 Client ID: ZZZZZ	SampType: LCS Batch ID: 21275	TestCode. TestNc	TestCode: M_SOLIDS_ICP TestNo: SW6010B	1	Units: mg/Kg-dry	Prep Date: 7/ Analysis Date: 8/	7/30/04 8/2/04	Run ID: ICP_040802B SeqNo: 806913	
Analyte	Result	Pol	SPK value SPI	SPK Ref Val	%REC	LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
Barium Cadmium	208	0.50	200	0 0	104	8 82	115 0 115 0	0 0	
Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits		S - Spike Re R - RPD out	S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	accepted recorecovery limits	very limits	B - Analyte detec	B - Analyte detected in the associated Method Blank $Page\ I0\ of\ 43$	lank of 43

04070635 Work Order: A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Client ID: ZZZZZ Analyte Lead Selenium Silver	Batch ID: 21275	TestN				Analysis Data	8/2/04		SeqNo: 806913	5	
Analyte Lead Selenium Silver						Allaysis Carr				313	
Lead Selenium Silver	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium Silver	52	4.00	50	0	104	85	115	0	0		
Silver	213	4.00	200	0	106	85	115	0	0		
	5.12	1.00	ις	0	102	85	115	0	0		
Sample ID: LCS-21275	SampType: LCS	TestCode	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	y/Kg-dry	Prep Date:	7/30/04		Run ID: ICP 2_040802B	2_040802B	
Client ID: ZZZZZ	Batch ID: 21275	Testh	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807220	220	
Analyte	Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	199	2.50	200	0	99.5	85	115	0	0		
Chromium	19.8	1.00	20	0	66	85	115	0	0		
Sample ID: LCS-21275	SampType: LCS	TestCod	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	y/Kg-dry	Prep Date:	7/30/04		Run ID: ICP 2_040802B	2_040802B	
Client ID: ZZZZZ	Batch ID: 21275	Testh	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807243	243	
Analyte	Result	POL	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead	47.6	4.00	90	0	95.2	85	115	0	0		
Sample ID: LCS-21219	SampType: LCS	TestCod	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	J/Kg-dry	Prep Date:	7/27/04		Run ID: ICP 2_040802B	2_040802B	bi .
Client ID: ZZZZZ	Batch ID: 21219	Test	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807263	263	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic Chromium	189	2.50	200	0 0	94.5	85 85	115	00	0 0		
Sample ID: LCS-21219	SampType: LCS	TestCod	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	y/Kg-dry	Prep Date:	. 7/27/04		Run ID: ICP 2_040802B	2_040802B	
Client ID: ZZZZZ	Batch ID: 21219	Test	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807647	347	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	20	1.00	20	0	100	85	115	0	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 11 of 43

04070635 Work Order:

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: LCS-21275	SampType: LCS	TestCode	TestCode: M_SOLIDS_ICP	:P Units: mg/Kg-dry	g/Kg-dry	Prep Date:			Run ID: ICP 2_040802B	2_040802B	
Client ID: 2222	Batch ID: 21275	lestN		17/19/10	(L C	Analysis Date:	8/2/04	10/13/00	SeqNo: 80/662	79.	Ç
Analyte	Kesult	7 2		SPN Rei Val	%KEC	- 1	- 1	D Kel val		AP DEIMIL	Gual
Chromium	19.7	1.00	50	0	98.5	85	115	0	0		
Sample ID: LCS-21276	SampType: LCS	TestCode	TestCode: M_SOLIDS_ICP	P Units: mg/Kg-dry	g/Kg-dry	Prep Date:	: 7/30/04		Run ID: ICP 2_040802B	2_040802B	
Client ID: ZZZZZ	Batch ID: 21276	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807675	175	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit F	HighLimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	18.7	1 00	20	0	93.5	85	115	0	0		
Sample ID: LCS-21219	SampType: LCS	TestCode	TestCode: M_SOLIDS_ICP	P Units: mg/Kg-dry	g/Kg-dry	Prep Date:	1/27/04		Run ID: ICP_040802E	040802E	
Client ID: ZZZZZ	Batch ID: 21219	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807736	.36	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit F	HighLimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	217	0.50	200	0	108	85	115	0	0		
Cadmium	5.28	0.20	5	0	106	82	115	0	0		
Lead	53.1	4.00	50	0	106	82	115	0	0		
Selenium	210	4.00	200	0	105	82	115	0	0		
Silver	4.7	1.00	(C)	0	94	85	115	0	0		
Sample ID: LCS-21276	SampType: LCS	TestCode	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date:	: 7/30/04		Run ID: ICP_040802E	040802E	
Client ID: ZZZZZ	Batch ID: 21276	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807752	752	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit F	HighLimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	212	0.50	200	0	106	85	115	0	0		
Cadmium	5.21	0.20	IJ	0	104	85	115	0	0		
Lead	51.9	4.00	20	0	104	85	115	0	0		
Selenium	207	4.00	200	0	104	85	115	0	0		
Silver	4.95	1.00	2	0	66	85	115	0	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 12 of 43

04070635 Work Order:

Project:

A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: M SOLIDS ICP

Sample ID: LCS-21276 Client ID: ZZZZZ	SampType: LCS Batch ID: 21276	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B	H	Units: mg/Kg-dry	Prep Date: Analysis Date:	7/30/04	Run	Run ID: ICP 2_040803A SeqNo: 808066	
Analyte	Result	Pol	SPK value SPK	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Arsenic Lead	194	2.50	200	0 0	97 99.2	85 85	115 115	0 0	0	
Sample ID: LCS-21275 Client ID: ZZZZZ	SampType: LCS Batch ID: 21275	TestCod TestN	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units; mg/Kg-dry	Prep Date: Analysis Date:	7/30/04 8/3/04	Run	Run ID: ICP 2_040803A SeqNo: 808094	
Analyte	Result	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit HighLimit	ghLimit RPD Ref Val		%RPD RPDLimit	Qual
Arsenic	194	2.50	200	0	97	85	115	0	0	
Sample ID: LCS-21219 Client ID: ZZZZZ	SampType: LCS Batch ID: 21219	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/27/04 8/4/04	Run	Run ID: ICP 2_040804A SeqNo: 808848	
Analyte	Result	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Arsenic	211	2.50	200	0	106	85	115	0	0	
Sample ID: 04070635-008AMS Client ID: B559-8D (7-8')	SampType: MS Batch ID: 21219	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/27/04 8/2/04	Run Seqh	Run ID: ICP 2_040802B SeqNo: 807654	
Analyte	Result	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Chromium	44.4	0.94	18.9	24.2	107	75	125	0	0	
Sample ID: 04070635-030AMS Client ID: B509-8 (7-8')	SampType: MS Batch ID: 21275	TestCod	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	7/30/04 8/2/04	Run Seq	Run ID: ICP 2_040802B SeqNo: 807673	
Analyte	Result	POL	SPK value SPK	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val		%RPD RPDLimit	Qual
Chromium	35.3	0.98	19.6	16.8	94.4	75	125	0	0	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 04070635-031AMS Client ID: B509-8D (7-8')	SampType: MS Batch ID: 21276	TestCode TestN	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date: Analysis Date:	e: 7/30/04 e: 8/2/04		Run ID: ICP 2_040802B SeqNo: 807678	10802B	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPD	RPDLimit Qu	Qual
Chromium	38.1	1.00	20	20	90.5	75	125	0	0		
Sample ID: 04070635-036AMS Client ID: B507-19 (18-19')	SampType: MS Batch ID: 21276	TestCode	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	e: 7/30/04 e: 8/2/04		Run ID: ICP 2_040802B SeqNo: 807684	10802B	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPD	RPDLimit Q	Qual
Chromium	18.8	0.94	18.9	2.49	86.3	75	125	0	0		
Sample ID: 04070635-030AMS Client ID: B509-8 (7-8')	SampType: MS Batch ID: 21275	TestCode	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	e: 7/30/04 e: 8/2/04		Run ID: ICP_040802E SeqNo: 807735	802E	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPC	RPDLimit Q	Qual
Barium Cadmium Lead	307 5.32 63.8	0.49 0.20 3.92	196 4.9 49	117 0 13.8	96.9 109 102	75 75 75	125 125 125	000	000		
Selenium Silver	186 4.54	3.92	196	0 0	94.9	75	125	0 0	0 0		
Sample ID: 04070635-008AMS Client ID: B559-8D (7-8')	SampType: MS Batch ID: 21219	TestCode	TestCode: M_SOLIDS_ICP TestNo: SW6010B		Units: mg/Kg-dry	Prep Date: Analysis Date:	e: 7/27/04 e: 8/2/04		Run ID: ICP_040802E SeqNo: 807745	802E	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RP[RPDLimit Q	Qual
Barium	341	0.47	189	147	103	75	125	0	0		
Cadmium	5.36	0.19	4.72	0.44	104	75	125	0	0		
Lead	66.4	3.77	47.2	20.6	26	75	125	0	0		
Selenium	167	3.77	189	0	88.4	75	125	0	0		
Silver	4.23	0.94	4.72	0	89.6	75	125	0	0		

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 04070635-031AMS	SampType: MS	TestCod	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date:	7/30/04		Run ID: ICP_040802E	
Client ID: B509-8D (7-8")	Batch ID: 21276	Test	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807758	
Analyte	Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit F	RPD Ref Val	%RPD RPDLimit	Qual
Barium	366	0.50	200	165	101	75	125	0	0	
Cadmium	5.49	0.20	5	0.33	103	75	125	0	0	
Lead	68.5	4,00	50	19.1	98.8	75	125	0	0	
Selenium	181	4.00	200	0	90.5	75	125	0	0	
Silver	5.65	1.00	5	0	113	75	125	0	0	
Sample ID: 04070635-036AMS	SampType: MS	TestCod	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date:	7/30/04		Run ID: ICP_040802E	
Client ID: B507-19 (18-19')	Batch ID: 21276	Test	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807762	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Barium	201	0.47	189	4.88	104	75	125	0	0	
Cadmium	4.76	0.19	4.72	0	101	75	125	0	0	
Lead	48.2	3.77	47.2	0	102	75	125	0	0	
Selenium	170	3.77	189	0	89.9	75	125	0	0	
Silver	4.51	0.94	4.72	0	92.6	75	125	0	0	
Sample ID: 04070635-031AMS	SampType: MS	TestCod	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date:	7/30/04		Run ID: ICP 2_040803A	
Client ID: B509-8D (7-8')	Batch ID: 21276	Test	TestNo: SW6010B			Analysis Date:	8/3/04		SeqNo: 808073	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	198	2.50	200	16.5	8.06	75	125	0	0	
Sample ID: 04070635-036AMS	SampType: MS	TestCoc	TestCode: M_SOLIDS_ICP		Units: mg/Kg-dry	Prep Date:	7/30/04		Run ID: ICP 2_040803A	
Client ID: B507-19 (18-19')	Batch ID: 21276	Test	TestNo: SW6010B			Analysis Date:	: 8/3/04		SeqNo: 808082	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	188	2.36	189	0	99.5	75	125	0	0	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 15 of 43

04070635 Work Order: A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 04070635-030AMS Client ID: B509-8 (7-8')	SampType: MS Batch ID: 21275	TestCode: M_SOLIDS_ICP Units: mg/Kg-dry Prep Date: 7/30/04 TestNo: SW6010B Analysis Date: 8/3/04	Run ID: ICP 2_040803A SeqNo: 808100
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Arsenic	196	2.45 196 12.7 93.5 75 125	0 0
Sample ID: 04070635-008AMS Client ID: B559-8D (7-8')	SampType: MS Batch ID: 21219	TestCode: M_SOLIDS_ICP Units: mg/Kg-dry Prep Date: 7/27/04 TestNo: SW6010B Analysis Date: 8/4/04	Run ID: ICP 2_040804A SeqNo: 808852
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Arsenic	196	2.36 189 8.95 99 75 125	0 0
Sample ID: 04070635-008ADUP Client ID: B559-8D (7-8')	SampType: DUP Batch ID: 21219	TestCode: M_SOLIDS_ICP Units; mg/Kg-dry Prep Date: 7/27/04 TestNo: SW6010B Analysis Date: 8/2/04	Run ID: ICP 2_040802B SeqNo: 807653
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Chromium	23.9	0.94 0 0 0 0 0 24.2	2 1.25 15
Sample ID: 04070635-030ADUP Client ID: B509-8 (7-8')	SampType: DUP Batch ID: 21275	TestCode: M_SOLIDS_ICP Units: mg/Kg-dry Prep Date: 7/30/04 TestNo: SW6010B Analysis Date: 8/2/04	Run ID: ICP 2_040802B SeqNo: 807672
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Chromium	17.3	0.98 0 0 0 0 0 16	16.8 2.93 15
Sample ID: 04070635-031ADUP Client ID: B509-8D (7-8')	SampType: DUP Batch ID: 21276	TestCode: M_SOLIDS_ICP Units: mg/Kg-dry Prep Date: 7/30/04 TestNo: SW6010B Analysis Date: 8/2/04	Run ID: ICP 2_040802B SeqNo: 807677
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual
Chromium	20.2	1.00 0 0 0 0 0	20 0.995 15
Sample ID: 04070635-036ADUP Client ID: B507-19 (18-19')	SampType: DUP Batch ID: 21276	TestCode: M_SOLIDS_ICP Units: mg/Kg-dry Prep Date: 7/30/04 TestNo: SW6010B Analysis Date: 8/2/04	Run ID: ICP 2_040802B SeqNo: 807683
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qual

ND - Not Detected at the Reporting Limit Qualifiers:

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank R - RPD outside accepted recovery limits

Page 16 of 43

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Client ID: B507-19 (18-19')	Batch ID: 21276	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807683	83	
Analyte	Result	PQL	SPK value SPK	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	2.75	0.94	0	0	0	0	0	2.49	9.93	15	
Sample ID: 04070635-030ADUP Client ID: B509-8 (7-8')	SampType: DUP Batch ID: 21275	TestCode	TestCode: M_SOLIDS_ICP TestNo: SW6010B	Units: mg/Kg-dry	/Kg-dry	Prep Date:	: 7/30/04		Run ID: ICP_040802E SeaNo: 807734	040802E	
	Result	PQL		SPK Ref Val	%REC	LowLimit	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	109	0.49	0	0	0	0	0	117	7.08	15	
Cadmium	0.11	0.20	0	0	0	0	0	0.1	0	15	7
Lead	14.4	3.92	0	0	0	0	0	13.8	4.26	15	
Selenium	< 3.92	3.92	0	0	0	0	0	0	0	15	
Silver	< 0.98	0.98	0	0	0	0	0	0	0	15	
Sample ID: 04070635-008ADUP	SampType: DUP	TestCode	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	/Kg-dry	Prep Date:	: 7/27/04		Run ID: ICP_040802E	040802E	
Client ID: B559-8D (7-8')	Batch ID: 21219	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807744	44	
Analyte	Result	PQL	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimit RI	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	151	0.47	0	0	0	0	0	147	2.69	15	
Cadmium	0.44	0.19	0	0	0	0	0	0.44	0	15	
Lead	20.4	3.77	0	0	0	0	0	20.6	0.976	15	
Selenium	< 3.77	3.77	0	0	0	0	0	0	0	15	
Silver	< 0.94	0.94	0	0	0	0	0	0	0	15	1
Sample ID: 04070635-031ADUP	SampType: DUP	TestCode	TestCode: M_SOLIDS_ICP	Units: mg/Kg-dry	/Kg-dry	Prep Date:	: 7/30/04		Run ID: ICP_040802E	040802E	
Client ID: B509-8D (7-8')	Batch ID: 21276	TestN	TestNo: SW6010B			Analysis Date:	8/2/04		SeqNo: 807755	55	
Analyte	Result	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimit Ri	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	165	0.50	0	0	0	0	0	165	0	15	
Cadmium	0.32	0.20	0	0	0	0	0	0.33	3.08	15	
Lead	18.7	4.00	0	0	0	0	0	19.1	2.11	15	
Selenium	< 4.00	4.00	0	0	0	0	0	0	0	15	
Silver	< 1.00	1.00	C	0	0	0	0	0	0	15	

Page 17 of 43

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

04070635 Work Order:

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: M_SOLIDS_ICP

Sample ID: 04070635-036ADUP	SampType: DUP	TestCode: M_SOLIDS_ICP	OLIDS_ICP	Units: mg/Kg-dry	1/Kg-dry	Prep Date:	7/30/04		Run ID: ICP_040802E	040802E	
Client ID: B507-19 (18-19')	Batch ID: 21276	TestNo: SW6010B	5010B		-	Analysis Date:	8/2/04		SeqNo: 807761	761	
Analyte	Result	PQL SPK	SPK value SPK F	SPK Ref Val	%REC	LowLimit Hig	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	4.71	0.47	0	0	0	0	0	4.88	3.55	15	
Cadmium	< 0.19	0.19	0	0	0	0	0	0	0	15	
Lead	3.6	3.77	0	0	0	0	0	3.22	0	15	7
Selenium	< 3.77	3.77	0	0	0	0	0	0	0	15	
Silver	< 0.94	0.94	0	0	0	0	0	0	0	15	
Sample ID: 04070635-031ADUP	SampType: DUP	TestCode: M_SOLIDS_ICP	OLIDS_ICP	Units: mg/Kg-dry	y/Kg-dry	Prep Date:	7/30/04		Run ID: ICP 2_040803A	2_040803A	
Client ID: B509-8D (7-8')	Batch ID: 21276	TestNo: SW6010B	6010B			Analysis Date:	8/3/04		SeqNo: 808072	072	
Analyte	Result	PQL SPK	SPK value SPK F	SPK Ref Val	%REC	LowLimit Hig	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	14.3	2.50	0	0	0	0	0	16.5	14.3	15	
Sample ID: 04070635-036ADUP Client ID: B507-19 (18-19')	SampType: DUP Batch ID: 21276	TestCode: M_SOLIDS_ICP TestNo: SW6010B	OLIDS_ICP 6010B	Units: mg/Kg-dry	3/Kg-dry	Prep Date: Analysis Date:	7/30/04		Run ID: ICP 2_C SeqNo: 808084	Run ID: ICP 2_040803A SeqNo: 808084	
Analyte	Result	PQL SPK	SPK value SPK F	SPK Ref Val	%REC	LowLimit Hig	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	< 2.36	2.36	0	0	0	0	0	0	0	15	
Sample ID: 04070635-030ADUP Client ID: B509-8 (7-8')	SampType: DUP Batch ID: 21275	TestCode: M_SOLIDS_ICP TestNo: SW6010B	OLIDS_ICP 6010B	Units: mg/Kg-dry	3/Kg-dry	Prep Date: Analysis Date:	7/30/04		Run ID: ICP 2_C SeqNo: 808099	Run ID: ICP 2_040803A SeqNo: 808099	
Analyte	Result	PQL SPK	SPK value SPK F	SPK Ref Val	%REC	LowLimit Hig	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	11.6	2.45	0	0	0	0	0	12.7	9.04	15	
Sample ID: 04070635-008ADUP Client ID: B559-8D (7-8')	SampType: DUP Batch ID: 21219	TestCode: M_SOLIDS_ICP TestNo: SW6010B	OLIDS_ICP 6010B	Units: mg/Kg-dry	g/Kg-dry	Prep Date: Analysis Date:	7/27/04		Run ID: ICP 2_0	Run ID: ICP 2_040804A SeqNo: 808861	
Analyte	Result	PQL SPK	SPK value SPK F	SPK Ref Val	%REC	LowLimit Hig	HighLimit RF	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	9.21	2.36	0	0	0	0	0	8.95	2.86	15	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 18 of 43

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S

Client ID: ZZZZZ Batch ID: 21215	21215	1							:		
4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		TestN	TestNo: SW8270C			Analysis Date:	7/29/04		SedNo: 805078	078	
Allalyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	Q.	0.500									
1,2-Dichlorobenzene	ΩN	0.500									
2-Chlorophenol	QN	0.500									
Bis(2-chloroethyl)ether	Q	0.500									
Bis(2-ethylhexyl)phthalate	Q	0.350									
Butyl benzyl phthalate	Q	0.350									
Di-n-butyl phthalate	QN	0.350									
Di-n-octyl phthalate	Q	0.350									
Diethyl phthalate	Q	0.500									
Hexachlorocyclopentadiene	Q	0.350									
sophorone	ΩN	0.350									
Nitrobenzene	ΩZ	0.500									
Surr: 2,4,6-Tribromophenol	2.7	0	3.33	0	81.1	57.7	123	0	0		
Surr: 2-Fluorobiphenyl	1.31	0	1.67	0	78.4	44.3	113	0	0		
Surr: 2-Fluorophenol	2.33	0	3.33	0	70	50.2	94.8	0	0		
Surr: Nitrobenzene-d5	1.17	0	1.67	0	70.1	39.9	103	0	0		
Surr: p-Terphenyl-d14	1.46	0	1.67	0	87.4	29	118	0	0		
Surr: Phenol-d5	2.72	0	3.33	0	81.7	67.9	103	0	0		
Sample ID: LCS-21215 SampType: LCS	S: TCS	TestCod	e: SV_8270S_S	S Units: mg/Kg	g/Kg	Prep Date:	9: 7/27/04		Run ID: 597	5971 INST. B_040729A	1729A
Client ID: ZZZZZ Batch ID	Batch ID: 21215	Testh	TestNo: SW8270C			Analysis Date:	7/29/04	_	SeqNo: 805073	5073	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	1.36	0.500	1.67	0	81.4	51.1	92.8	0	0		
2-Chlorophenol	2.37	0.500	3.33	0	71.2	44	102	0	0		
Surr: 2,4,6-Tribromophenol	2.76	0	3.33	0	82.9	41.5	127	0	0		
Surr: 2-Fluorobiphenyl	1.4	0	1.67	0	83.8	25.8	121	0	0		
Surr: 2-Fluorophenol	2.44	0	3.33	0	73.3	26.8	110	0	0		
Surr: Nitrobenzene-d5	1.25	0	1.67	0	74.9	13.3	117	0	0		
Surr: p-Terphenyl-d14	1.49	0	1.67	0	89.2	48.9	134	0	0		
Surr: Phenol-d5	2.79	0	3.33	0	83.8	49.9	109	0	0		

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S

Sample ID: 04070635-017AMS	SampType: MS	TestCod	le: SV_8270S_S	Units:	Units: mg/Kg-dry	Prep Date	Prep Date: 7/27/04		Run ID: 597	Run ID: 5971 INST. B_040730A	730A
Client ID: B557-12 (11-12')	Batch ID: 21215	Test	TestNo: SW8270C			Analysis Date:	3: 7/30/04		SeqNo: 806499	499	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	3.71	1.25	4.18	0	88.8	11.6	99.3	0	0		
2-Chlorophenol	6.36	1.25	8.33	0	76.4	26.7	106	0	0		
Surr: 2,4,6-Tribromophenol	6.8	0	8.33	0	81.6	31	123	0	0		
Surr: 2-Fluorobiphenyl	3.38	0	4.18	0	80.9	14.6	132	0	0		
Surr: 2-Fluorophenol	6.22	0	8.33	0	74.7	27	111	0	0		
Surr: Nitrobenzene-d5	3.18	0	4.18	0	76.1	28.9	113	0	0		
Surr: p-Terphenyl-d14	3.59	0	4.18	0	85.9	25	144	0	0		
Surr: Phenol-d5	7.13	0	8.33	0	85.6	33.7	123	0	0		
Sample ID: 04070635-017AMSD	SampType: MSD	TestCod	le: SV_8270S_S	Units:	Units: mg/Kg-dry	Prep Date:	9: 7/27/04		Run ID: 597	Run ID: 5971 INST. B_040730A	730A
Client ID: B557-12 (11-12')	Batch ID: 21215	Test	TestNo: SW8270C			Analysis Date:	9: 7/30/04		SeqNo: 806500	200	
Analyte	Result	PaL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	3.58	1.20	4.01	0	89.3	11.6	99.3	3.71	3.57	40	
2-Chlorophenol	6.25	1.20	7.99	0	78.2	26.7	106	6.36	1.74	40	
Surr: 2,4,6-Tribromophenol	6.49	0	7.99	0	81.2	31	123	0	0	40	
Surr: 2-Fluorobiphenyl	3.05	0	4.01	0	76.1	14.6	132	0	0	40	
Surr: 2-Fluorophenol	5.96	0	7.99	0	74.6	27	111	0	0	40	
Surr: Nitrobenzene-d5	2.97	0	4.01	0	74.1	28.9	113	0	0	40	
Surr: p-Terphenyl-d14	3.35	0	4.01	0	83.5	25	144	0	0	40	
Surr: Phenol-d5	96.9	0	7.99	0	87.1	33.7	123	0	0	40	

J - Analyte detected below quantitation limits

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

Sample ID: MB-21226	SampType: MBLK	TestCod	TestCode: SV_8270S_S_SIM Units: mg/Kg	SIM Units: mg	g/Kg	Prep Date:	7/28/04		Run ID: 597;	Run ID: 5972 INST. M_040728A	10728A
Client ID: ZZZZZ	Batch ID: 21226	Test	TestNo: SW8270C			Analysis Date:	7/28/04		SeqNo: 804519	519	
Analyte	Result	Pol	SPK value S	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	QN	0.100									
Acenaphthylene	QN	0.100									
Anthracene	QN	0.100									
Benzo(a)anthracene	QN	0.100									
Benzo(a)pyrene	QN	0.100									
Benzo(b)fluoranthene	QN	0.100									
Benzo(g,h,i)perylene	QN	0.100									
Benzo(k)fluoranthene	QN	0.100									
Chrysene	ON.	0.100									
Dibenzo(a,h)anthracene	QN	0.100									
Fluoranthene	QN	0.100									
Fluorene	QN	0.100									
Indeno(1,2,3-cd)pyrene	QN	0.100									
Naphthalene	QN	0.100									
Phenanthrene	QN	0.100									
Pyrene	QN	0.100									
Surr: 2-Fluorobiphenyl	0.127	0	0.167	0	92	17.5	123	0	0		
Surr: Nitrobenzene-d5	960'0	0	0.167	0	57.5	35	105	0	0		
Surr: p-Terphenyl-d14	0.144	0	0.167	0	86.2	53.6	122	0	0		
Sample ID: MB-21238	SampType: MBLK	TestCod	de: SV_8270S_S_SIM	SIM Units: mg/Kg	g/Kg	Prep Date:	7/28/04		Run ID: 597	Run ID: 5972 INST. M_040729B	40729B
Client ID: ZZZZZ	Batch ID: 21238	Test	TestNo: SW8270C			Analysis Date:	7/29/04		SeqNo: 805253	253	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	QN	0.100									
Acenaphthylene	QN	0.100									
Anthracene	QN	0.100									
Benzo(a)anthracene	QN	0.100									
Benzo(a)pyrene	QZ	0.100									
Benzo(b)fluoranthene	QZ	0.100									
Benzo(g,h,i)perylene	QN	0.100									
			::-3			1	٥	4.100 A		Mothod DI	1
Qualitiers: ND - Not D	ND - Not Defected at the Reporting Limit		o - opire	 Spike Kecovery outside accepted recovery limits 	accepiea ieco	very minus	ם	D - Analyte detected in the associated Method Dialik	du III uno associa	ובת זאובתווחת היו	Allk

Page 21 of 43

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

Packlet Pack	Patch ID: 21238 Testhor: SMR2TOC Analysis Date: 7/28/04	Sample ID: MB-21238	SampType: MBLK	TestCode	: SV_8270S_S	le: SV_8270S_S_SIM Units: mg/Kg	g/Kg	Prep Date:	te: 7/28/04		Run ID: 5972 INST. M_040729B	NSI. M 04072
ND	NE		Batch ID: 21238	TestN	o: SW8270C			Analysis Da			SeqNo: 80525	8
ND	ND	Analyte	Result	Pal		SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		
ND 0.100 ND 0.107 ND	ND 0,100 ND	Benzo(k)fluoranthene	QN N	0.100								
ND 0.100 ND 0.107 ND	ND 0.100 ND 0.107 ND 0.107 ND 0.167 ND	Chrysene	QN	0.100								
ND 0.100 ND 0.107 ND	ND 0.100 ND 0.167 0 68.9 17.5 123 0 0 0.167 NB 1.05 NB	Dibenzo(a,h)anthracene	QN	0.100								
ND 0.100 ND 0.107 ND	ND 0.100 ND 0.167 ND	Fluoranthene	ΩN	0.100								
ND 0.100 ND 0.107 ND	ND 0.100 ND 0.107 ND	Fluorene	QN	0.100								
ND 0.100 ND ND ND 0.100 ND ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.107 N	0.015 0.100 ND 0.105 0.105 0.100 ND 0.167 0 56.3 35 105 0 0 0.105 0 0.167 0 56.3 35 105 0 0 0.105 0 0.167 0 78.4 53.6 122 0 0.105 0 0.167 0 78.4 53.6 122 0 0 0.167 0 78.4 53.6 122 0 0 0.167	Indeno(1,2,3-cd)pyrene	QN	0.100								
ND 0.100 ND 0.100 ND 0.100 ND 0.100 O.145 0 0.167 0 68.9 17.5 123 0 O.094 0.167 0 56.3 35 105 0 O.094 0.167 0 78.4 53.6 122 0 SampType: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Analysis Date: 7/28/04 SqNo: 0.137 0.100 0.167 0 82 60.3 143 0 O.137 0.100 0.167 0 82 60.3 143 0 O.138 0.100 0.167 0 99.4 50.1 150 0 O.150 0.100 0.167 0 99.6 52 153 0 O.148 0.100 0.167 0 99.2 60.8 128 0 O.148 0.100 0.167 0 99.2 60.8 128 0 O.148 0.100 0.167 0 88.6 52 153 0 O.148 0.100 0.167 0 88.6 54.9 150 0 O.148 0.100 0.167 0 88.6 54.9 150 0 O.144 0.100 0.167 0 88.6 54.8 113 0	ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.107 O 0.167	Naphthalene	0.015	0.100								ſ
ND	ND 0.100 0.105 0.105 0.105 0.0094 0.0167 0.056.3 35 105 0.0094 0.0167 0.056.3 35 105 0.0094 0.0167 0.056.3 35 105 0.0094 0.0167 0.056.3 35 105 0.0094 0.0167	Phenanthrene	QN	0.100								
SampType: LCS	SampType: LCS TestCode: SV_82TOS_S_SIM Units: mg/Kg 77.5 72.3 0 SampType: LCS TestCode: SV_82TOS_S_SIM Units: mg/Kg 77.8104 78.4 78.4 78.6 77.8104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC Analysis Date: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC TestNo: 77.28104 78.4 78.4 Batch ID: 21226 TestNo: SW82TOC TestNo: 77.28104 78.4 Batch ID: 21226 TestNo: SW82TOC TestNo: 77.28104 78.4 Batch ID: 21226 TestNo: 78.4 78.4 Batch ID: 21226 TestNo: 78.4 78.4 78.4 Batch ID: 21226 TestNo	Pyrene	QN	0.100								
SampType: LCS TestCode: SV_BZ70S_S_SIM Units: mg/Kg	SampType: LCS TestCode: SV_8Z70SSIM Units: mg/Kg	Surr: 2-Fluorobiphenyl	0.115	0	0.167	0	68.9	17.5	123	0	0	
4 0.167 0 78.4 53.6 122 0 SampType: LCS TestCode: SV_8270S_SSIM Units: mg/Kg Prep Date: 7/28/04 Run ID: Prep Date: 7/2	SampType: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Prep Date: 7/28/04 Run ID: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Prep Date: 7/28/04 Run ID: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Prep Date: 7/28/04 Run ID: LCS TestNo: SW8270C Analysis Date: 7/28/04 SeqNo: SeqNo: LCS LCOM	Surr: Nitrobenzene-d5	0.094	0	0.167	0	56.3	35	105	0	0	
SampType: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Prep Date: 7/28/04 Run ID: PQL PREVO LowLimit PREVO LowLimit PRD Ref Val SeqNo: SW8270C Batch ID: 21226 TestNo: SW8270C Analysis Date: 7/28/04 7/28/04 SeqNo: SeqNo: SW8270C SeqNo: SeqNo: SW8270C SegNo: SeqNo: SeqNo: SeqNo: SeqNo: SeqNo: SeqNo: SeqNo: Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	SampType: LCS TestCode: SV_8270S_S_SIM Units: mg/Kg Prep Date: 7/28/04 Run ID: Prep Date: 7/28/04	Surr: p-Terphenyl-d14	0.131	0	0.167	0	78.4	53.6	122	0	0	
Batch ID: 21226 TestNo: SW8270C Analysis Date: 7/28/0 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.114 0.100 0.167 0 68.3 56.3 115 0.137 0.100 0.167 0 68.3 56.3 143 0.132 0.100 0.167 0 79 52.1 109 0.132 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 91.6 40.8 127 0.153 0.100 0.167 0 91.6 40.8 127 0.156 0.100 0.167 0 92.2 60.8 128 0.154 0.100 0.167 0 92.2 60.8 125 0.147 0.100 0.167 0 98.8 54.9 150 0.144 0.100 0.167 0 96.2 52.8 147 <tr< td=""><td>Batch ID: 21226 TestNo: SW8270C Analysis Date: 7/28/04 Seques SPK Ref Val WREC LowLinnit HighLinnit RPD Ref Val %RPD RPDLimit Louting Laborated Laborated Resout Re</td><td>Sample ID: LCS-21226</td><td>SampType: LCS</td><td>TestCode</td><td>SV_8270S_S</td><td>_SIM Units: m</td><td>g/Kg</td><td>Prep Da</td><td></td><td></td><td></td><td>NST. M_04072</td></tr<>	Batch ID: 21226 TestNo: SW8270C Analysis Date: 7/28/04 Seques SPK Ref Val WREC LowLinnit HighLinnit RPD Ref Val %RPD RPDLimit Louting Laborated Laborated Resout Re	Sample ID: LCS-21226	SampType: LCS	TestCode	SV_8270S_S	_SIM Units: m	g/Kg	Prep Da				NST. M_04072
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.114 0.100 0.167 0 68.3 56.3 115 0.137 0.100 0.167 0 82 60.3 143 0.132 0.100 0.167 0 77.8 52.1 109 0.133 0.100 0.167 0 91.6 40.8 127 0.153 0.100 0.167 0 91.6 40.8 127 0.156 0.100 0.167 0 91.6 40.8 125 0.156 0.100 0.167 0 91.6 50.1 158 0.157 0.100 0.167 0 98.6 52.8 125 0.147 0.100 0.167 0 98.8 54.9 150 0.126 0.100 0.167 0 88.5 52.9 147 0.126 0.100 0.167 0 88.5	Result PQL SPK Value SPK Ref Val WREC LowLimit HighLimit RPD Ref Val WRPD RPDLimit		Batch ID: 21226	TestN	o: SW8270C			Analysis Da			SeqNo: 80452	0
0.114 0.100 0.167 0 68.3 56.3 115 0.137 0.100 0.167 0 68.3 56.3 143 0.132 0.100 0.167 0 79 52.1 109 0.13 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 91.6 40.8 127 0.166 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 99.4 50.1 150 0.154 0.100 0.167 0 98.8 54.9 150 0.165 0.100 0.167 0 88.6 52 153 0.148 0.100 0.167 0 88.8 54.9 150 0.144 0.100 0.167 0 88.5 54.9 150 0.136 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 88.5 54.9 150 0.136 0.100 0.167 0 88.5 54.9 150 0.136 0.100 0.167 0 88.5 54.9 150 0.136 0.100 0.167 0 88.5 54.9 113	0.114 0.100 0.167 0 68.3 56.3 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyte	Result	Pal		SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		
0.137 0.100 0.167 0 82 60.3 143 0.132 0.100 0.167 0 79 52.1 109 0.143 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 91.6 40.8 127 0.154 0.100 0.167 0 98.8 52.1 153 0.154 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 98.8 54.9 150 0.136 0.100 0.167 0 88.6 52 153 0.147 0.100 0.167 0 98.8 54.9 150 0.136 0.100 0.167 0 86.2 52 147 0.100 0.167 0 75.4 54.8 113	0.137 0.100 0.167 0 79 60.3 143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acenaphthene	0.114	0.100	0.167	0	68.3	56.3	115	0	0	
0.132 0.100 0.167 0 79 52.1 109 0.153 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 91.6 40.8 127 0.156 0.100 0.167 0 99.4 50.1 150 0.154 0.100 0.167 0 88.6 52 153 0.154 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 98.8 54.9 150 0.136 0.100 0.167 0 88.6 55.7 125 0.136 0.100 0.167 0 86.2 52 147 0.100 0.167 0 75.4 54.8 113	0.132 0.100 0.167 0 79 52.1 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acenaphthylene	0.137	0.100	0.167	0	82	60.3	143	0	0	
0.153 0.100 0.167 0 77.8 52.8 112 0.153 0.100 0.167 0 91.6 40.8 127 0.153 0.100 0.167 0 91.6 40.8 127 0.156 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 88.6 52 153 0.154 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88.8 54.9 150 0.136 0.100 0.167 0 88.2 57. 125 0.136 0.100 0.167 0 86.2 52 147 0.100 0.167 0 181.4 57.8 125 0.126 0.100 0.167 0 75.4 54.8 113	0.153 0.100 0.167 0 77.8 52.8 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anthracene	0.132	0.100	0.167	0	29	52.1	109	0	0	
0.153 0.100 0.167 0 91.6 40.8 127 0.106 0.166 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 99.4 50.1 150 145 0.148 0.100 0.167 0 92.2 60.8 128 0.154 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.144 0.100 0.167 0 86.2 52 147 0.154 0.100 0.167 0 86.2 52 147 0.156 0.100 0.167 0 75.4 54.8 113	0.153 0.100 0.167 0 91.6 40.8 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzo(a)anthracene	0.13	0.100	0.167	0	77.8	52.8	112	0	0	
0.166 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 99.4 50.1 150 0.152 0.100 0.167 0 99.4 50.1 145 0.162 0.100 0.167 0 92.2 60.8 128 0.154 0.100 0.167 0 92.2 60.8 128 0.165 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 86.2 52 147 0.100 0.167 0 75.4 54.8 113	1.0 1.0	Benzo(a)pyrene	0.153	0.100	0.167	0	91.6	40.8	127	0	0	
0.152 0.100 0.167 0 91 52.8 145 0.168 0.109 0.167 0 91 52.8 145 145 0.148 0.100 0.167 0 92.2 60.8 128 0.154 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 86.2 52 147 0.100 0.167 0 86.2 52 147 0.100 0.167 0 75.4 54.8 113	0.152 0.100 0.167 0 91 52.8 145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzo(b)fluoranthene	0.166	0.100	0.167	0	99.4	50.1	150	0	0	
0.148 0.100 0.167 0 88.6 52 153 0.154 0.100 0.167 0 92.2 60.8 128 0.165 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 81.4 57.8 125 0.144 0.100 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	0.148 0.100 0.167 0 88.6 52 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzo(g,h,i)perylene	0.152	0.100	0.167	0	91	52.8	145	0	0	
0.154 0.100 0.167 0 92.2 60.8 128 0.165 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 81.4 57.8 125 0.144 0.100 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	0.154 0.100 0.167 0 92.2 60.8 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzo(k)fluoranthene	0.148	0.100	0.167	0	88.6	52	153	0	0	
0.165 0.100 0.167 0 98.8 54.9 150 0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 81.4 57.8 125 0.144 0.100 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	0.165 0.100 0.167 0 98.8 54.9 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chrysene	0.154	0.100	0.167	0	92.2	8.09	128	0	0	
0.147 0.100 0.167 0 88 58.7 125 0.136 0.100 0.167 0 81.4 57.8 125 0.144 0.100 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	Cd)pyrene 0.147 0.100 0.167 0 88 58.7 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dibenzo(a,h)anthracene	0.165	0.100	0.167	0	98.8	54.9	150	0	0	
0.136 0.100 0.167 0 81.4 57.8 125 0.144 0.100 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	0.136 0.100 0.167 0 81.4 57.8 125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fluoranthene	0.147	0.100	0.167	0	88	58.7	125	0	0	
0.126 0.167 0 86.2 52 147 0.126 0.100 0.167 0 75.4 54.8 113	0.144 0.100 0.167 0 86.2 52 147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fluorene	0.136	0.100	0.167	0	81.4	57.8	125	0	0	
ne 0.126 0.100 0.167 0 75.4 54.8 113	ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated associated accepted recovery limits D DDD outside accepted recovery limits D DDD outside accepted recovery limits	Indeno(1,2,3-cd)pyrene	0.144	0.100	0.167	0	86.2	52	147	0	0	
20 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated	Naphthalene	0.126	0.100	0.167	0	75.4	54.8	113	0	0	
ND - Not Detected at the Reporting Limit	D DDD Autfeids accounted necessary limits		etected at the Reporting Limit		S - Spike	Recovery outside	accepted reco	very limits		3 - Analyte detec	ted in the associated	Method Blank
nite.		etilon - I	detected below amountation		, Udd d		:					

04070635 Work Order: A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

	001.526.4				,	900				101 101 231 1101 III 040 200	2071
Client ID: ZZZZZ	Batch ID: 21226	Test	TestNo: SW8270C			Analysis Date:	e: 7/28/04		SeqNo: 804520	520	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	0.132	0.100	0.167	0	62	60.4	121	0	0		
Pyrene	0.148	0.100	0.167	0	88.6	57.9	129	0	0		
Surr: 2-Fluorobiphenyl	0.121	0	0.167	0	72,5	35.3	113	0	0		
Surr: Nitrobenzene-d5	0.125	0	0.167	0	74.9	33.9	108	0	0		
Surr: p-Terphenyl-d14	0.142	0	0.167	0	85	58.4	122	0	0		
Sample ID: LCS-21238	SampType: LCS	TestCod	TestCode: SV_8270S_S	SIM Units: mg/Kg	g/Kg	Prep Date:	e: 7/28/04		Run ID: 597	5972 INST. M_040729B	0729B
Client ID: ZZZZZ	Batch ID: 21238	Test	TestNo: SW8270C			Analysis Date:	ie: 7/29/04		SeqNo: 805254	254	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0,117	0.100	0.167	0	70.1	56.3	115	0	0		
Acenaphthylene	0.137	0.100	0.167	0	82	60.3	143	0	0		
Anthracene	0.127	0.100	0.167	0	9/	52.1	109	0	0		
Benzo(a)anthracene	0.123	0.100	0.167	0	73.7	52.8	112	0	0		
Benzo(a)pyrene	0.143	0.100	0.167	0	85.6	40.8	127	0	0		
Benzo(b)fluoranthene	0.154	0.100	0.167	0	92.2	50.1	150	0	0		
Benzo(g,h,i)perylene	0.162	0.100	0.167	0	26	52.8	145	0	0		
Benzo(k)fluoranthene	0.137	0.100	0.167	0	82	52	153	0	0		
Chrysene	0.147	0.100	0.167	0	88	8.09	128	0	0		
Dibenzo(a,h)anthracene	0.17	0.100	0.167	0	102	54.9	150	0	0		
Fluoranthene	0.142	0.100	0.167	0	85	58.7	125	0	0		
Fluorene	0.132	0.100	0.167	0	79	57.8	125	0	0		
Indeno(1,2,3-cd)pyrene	0.149	0.100	0.167	0	89.2	52	147	0	0		
Naphthalene	0.126	0.100	0.167	0,015	66.5	54.8	113	0	0		
Phenanthrene	0.124	0.100	0.167	0	74.3	60.4	121	0	0		
Pyrene	0.14	0.100	0.167	0	83.8	57.9	129	0	0		
Surr: 2-Fluorobiphenyl	0.115	0	0.167	0	68.9	35.3	113	0	0		
Surr: Nitrobenzene-d5	0.124	0	0.167	0	74.3	33.9	108	0	0		
Surr: p-Terphenyl-d14	0.134	0	0.167	0	80.2	58.4	122	0	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 23 of 43

04070635 Work Order: A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

Sample ID: 04070635-029AMS	SampType: MS	TestCode	TestCode: SV_8270S_	S SIM Units: mg/Kg-dry	ng/Kg-dry	Prep Date:	7/28/04		Run ID: 597	Run ID: 5972 INST. M_040729C	40729C
Client ID: B509-3 (2-3')	Batch ID: 21238	TestN	TestNo: SW8270C			Analysis Date:	7/30/04		SeqNo: 805344	344	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1.36	1.16	0.389	0	350	36	135	0	0		S
Acenaphthylene	2.03	1.16	0.389	1.18	219	17.2	167	0	0		S
Anthracene	4.85	1.16	0.389	0.334	1160	39.3	124	0	0		S
Benzo(a)anthracene	8.43	1.16	0.389	1.47	1790	10	183	0	0		S
Benzo(a)pyrene	12.9	1.16	0.389	3.31	2470	10	204	0	0		S
Benzo(b)fluoranthene	13.8	1.16	0.389	3.46	2660	10.6	178	0	0		S
Benzo(g,h,i)perylene	3.34	1.16	0.389	1.65	434	10	168	0	0		S
Benzo(k)fluoranthene	4.76	1.16	0.389	1.03	959	27.6	181	0	0		S
Chrysene	9.87	1.16	0.389	2.02	2020	10	176	0	0		S
Dibenzo(a,h)anthracene	1.1	1.16	0.389	0.413	189	12.2	156	0	0		SL
Fluoranthene	29.5	1.16	0.389	2.03	7060	10	227	0	0		SE
Fluorene	2	1.16	0.389	0.122	483	35.2	148	0	0		ഗ
Indeno(1,2,3-cd)pyrene	3.39	1.16	0.389	4.1	512	10	164	0	0		S
Naphthalene	9.0	1.16	0,389	0.291	79.9	14.7	128	0	0		\neg
Phenanthrene	21.2	1.16	0.389	0.818	5240	32.8	143	0	0		SE
Pyrene	25.3	1.16	0.389	3.12	2200	10	180	0	0		SE
Surr: 2-Fluorobiphenyl	0.245	0	0.389	0	63	10	104	0	0		
Surr: Nitrobenzene-d5	0.303	0	0.389	0	77.9	29.8	103	0	0		
Surr: p-Terphenyl-d14	0.291	0	0.389	0	74.8	41.9	125	0	0		
Sample ID: 04070635-002AMS	SampType: MS	TestCode	le: SV_8270S_S_SIM		Units: mg/Kg-dry	Prep Date:	7/28/04		Run ID: 597	5972 INST. M_040730B	40730B
Client ID: B558-7 (6-7')	Batch ID: 21226	Test	No: SW8270C			Analysis Date:	7/30/04		SeqNo: 806318	3318	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	8.95	1.29	0.216	8.14	375	36	135	0	0		S
Acenaphthylene	2.52	1.29	0.216	2.41	50.9	17.2	167	0	0		
Anthracene	7.45	1.29	0.216	6.82	292	39.3	124	0	0		S
Benzo(a)anthracene	3.48	1.29	0.216	3.21	125	10	183	0	0		
Benzo(a)pyrene	3.92	1.29	0.216	3.49	199	10	204	0	0		
Benzo(b)fluoranthene	3.08	1.29	0.216	2.76	148	10.6	178	0	0		
Benzo(g,h,i)perylene	_	1.29	0.216	0.926	48.1	10	168	0	0		7

Page 24 of 43

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

04070635 Work Order: A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

Sample ID: 04070635-002AMS	SampType: MS	TestCode	s: SV_8270S_	TestCode: SV_8270S_S_SIM Units: mg/Kg-dry	g/Kg-dry	Prep Date:	7/28/04		Run ID: 597	Run ID: 5972 INST. M_040730B	40730B
Client ID: B558-7 (6-7")	Batch ID: 21226	TestN	TestNo: SW8270C			Analysis Date:	7/30/04	_	SeqNo: 806318	318	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	1.1	1.29	0.216	0.82	111	27.6	181	0	0		7
Chrysene	3.53	1.29	0,216	3.14	181	10	176	0	0		ഗ
Dibenzo(a,h)anthracene	0.39	1.29	0.216	0.361	12.5	12.2	156	0	0		\neg
Fluoranthene	7.9	1.29	0.216	7.34	259	10	227	0	0		ഗ
Fluorene	7.54	1,29	0.216	8.87	-616	35.2	148	0	0		ഗ
Indeno(1,2,3-cd)pyrene	0.99	1.29	0.216	0.858	59.7	10	164	0	0		7
Naphthalene	0.2	1.29	0.216	0	94	14.7	128	0	0		7
Pyrene	12.4	1.29	0.216	11.5	417	10	180	0	0		ഗ
Surr: 2-Fluorobiphenyl	0.147	0	0.216	0	68.1	10	104	0	0		
Surr: Nitrobenzene-d5	0.16	0	0.216	0	74.1	29.8	103	0	0		
Surr: p-Terphenyl-d14	0.147	0	0.216	0	68.1	41.9	125	0	0		
Sample ID: 04070635-002AMS	SampType: MS	TestCode	TestCode: SV_8270S_S_SIM		Units: mg/Kg-dry	Prep Date:	s: 7/28/04		Run ID: 597	5972 INST. M_040802A	40802A
Client ID: B558-7 (6-7")	Batch ID: 21226	Testh	TestNo: SW8270C			Analysis Date:	8/2/04		SeqNo: 807269	269	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	19.9	3.23	0.216	21.6	-787	32.8	143	0	0		S
Sample ID: 04070635-029AMSD	SampType: MSD	TestCode	e: SV_8270S	TestCode: SV_8270S_S_SIM Units: mg/Kg-dry	ıg/Kg-dry	Prep Date:	e: 7/28/04		Run ID: 597	5972 INST. M_040729C	40729C
Client ID: B509-3 (2-3')	Batch ID: 21238	Test	TestNo: SW8270C			Analysis Date:	e: 7/30/04		SeqNo: 805345	345	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Acenaphthene	0.28	1.19	0.396	0	70.7	36	135	1.36	0	49.7	7
Acenaphthylene	1.62	1.19	0.396	1.18	111	17.2	167	2.03	22.4	33.3	
Anthracene	0.62	1.19	0.396	0.334	73.2	39.3	124	4.85	0	51.1	7
Benzo(a)anthracene	1.91	1.19	0.396	1.47	111	10	183	8.43	126	40.6	<u>~</u>
Benzo(a)pyrene	5.05	1.19	0.396	3.31	439	10	204	12.9	87.5	56.4	SR
Benzo(b)fluoranthene	4.65	1.19	0.396	3.46	301	10.6	178	13.8	99.2	49.7	SR
Benzo(g,h,i)perylene	2.26	1.19	0.396	1.65	154	10	168	3.34	38.6	36.5	œ
Benzo(k)fluoranthene	1.78	1.19	0.396	1.03	189	27.6	181	4.76	91.2	42.6	SR
Chrysene	2.41	1.19	0.396	2.02	98.5	10	176	9.87	121	45.1	œ

Page 25 of 43

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_SIMS

Sample ID: 04070635-029AMSD	SamoTvoe: MSD	TestCod	e. SV 8270S	TestCode: SV 8270S S SIM Units: ma/Ka-dry	na/Ka-dry	Pren Date:	e. 7/28/04		Run ID: 597	Run ID: 5972 INST. M 040729C	40729C
Client ID: B509-3 (2-3')		Test	TestNo: SW8270C	1		Analysis Date:			SeqNo: 805345	345	
	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Dibenzo(a,h)anthracene	0.95	1.19	0.396	0.413	135	12.2	156	1.15	0	39.9	7
Fluoranthene	2.32	1.19	0.396	2.03	73.2	10	227	29.5	171	66.2	œ
Fluorene	0.41	1.19	0.396	0.122	72	35.2	148	2	0	65.6	7
Indeno(1,2,3-cd)pyrene	2	1.19	0.396	4.1	152	10	164	3.39	51.6	36.5	œ
Naphthalene	0.42	1.19	0.396	0.291	33.3	14.7	128	0.602	0	39.6	7
Phenanthrene	_	1.19	0.396	0.818	48.5	32.8	143	21.2	0	35.4	7
Pyrene	3.65	1.19	0.396	3.12	134	10	180	25.3	150	60,1	œ
Surr: 2-Fluorobiphenyl	0.253	0	0.396	0	63.9	10	104	0	0	40	
Surr: Nitrobenzene-d5	0.296	0	0.396	0	74.7	29.8	103	0	0	40	
Surr: p-Terphenyl-d14	0.284	0	0.396	0	71.7	41.9	125	0	0	40	
Sample ID: 04070635-002AMSD	SampType: MSD	TestCod	TestCode: SV_8270S_SIM		Units: mg/Kg-dry	Prep Date:	e: 7/28/04		Run ID: 597	5972 INST. M_040730B	140730B
Client ID: B558-7 (6-7')	Batch ID: 21226	Test	TestNo: SW8270C			Analysis Date:	e: 7/30/04		SeqNo: 806319	1319	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	10.1	1.29	0.215	8.14	912	36	135	8.95	12.1	49.7	v
Acenaphthylene	2.77	1.29	0.215	2.41	167	17.2	167	2.52	9.44	33.3	S
Anthracene	8,66	1.29	0.215	6.82	856	39.3	124	7.45	15.0	51.1	S
Benzo(a)anthracene	4.26	1.29	0.215	3.21	488	10	183	3.48	20.2	40.6	S
Benzo(a)pyrene	4.56	1.29	0.215	3.49	498	10	204	3.92	15.1	56.4	S
Benzo(b)fluoranthene	3.5	1.29	0.215	2.76	344	10.6	178	3.08	12.8	49.7	S
Benzo(g,h,i)perylene	1.2	1.29	0.215	0.926	113	10	168	1.03	0	36.5	7
Benzo(k)fluoranthene	1.1	1.29	0.215	0.82	135	27.6	181	1.06	0	42.6	7
Chrysene	3.79	1.29	0.215	3.14	302	10	176	3.53	7.10	45.1	S
Dibenzo(a,h)anthracene	0.43	1.29	0.215	0.361	30.2	12.2	156	0.388	0	39.9	\neg
Fluoranthene	9.28	1.29	0.215	7.34	905	10	227	7.9	16.1	66.2	S
Fluorene	6.58	1.29	0.215	8.87	-1070	35.2	148	7.54	13.6	9.59	S
Indeno(1,2,3-cd)pyrene	1.1	1,29	0.215	0.858	122	10	164	0.987	0	36.5	7
Naphthalene	0.21	1.29	0.215	0	98.1	14.7	128	0.203	0	39.6	7
Pyrene	14.6	1.29	0.215	11.5	1440	10	180	12.4	16.3	60.1	ഗ
Surr: 2-Fluorobiphenyl	0.151	0	0.215	0	70.2	10	104	0	0	40	
Oualifiers: ND - Not Detec	ND - Not Detected at the Reporting Limit		S - Spil	- Spike Recovery outside accepted recovery limits	e accepted reco	very limits	m	- Analyte detect	- Analyte detected in the associated Method Blank	ted Method B	lank
	J - Analyte detected below quantitation limits		R - RPI	R - RPD outside accepted recovery limits	recovery limits					Page 26 of 43	of 43
										0	C

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8270S_S_SIMS

Sample ID: 04070635-002AMSD SampType: MSD	SampType: MSD	TestCod	e: SV_8270S	TestCode: SV_8270S_S_SIM Units: mg/Kg-dry	ıg/Kg-dry	Prep Dat	Prep Date: 7/28/04		Run ID: 597	Run ID: 5972 INST. M_040730B	40730B
Client ID: B558-7 (6-7")	Batch ID: 21226	TestN	TestNo: SW8270C			Analysis Date: 7/30/04	e: 7/30/04		SeqNo: 806319	319	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Surr: Nitrobenzene-d5	0.155	0	0.215	0	72.1	29.8	103	0	0	40	
Surr: p-Terphenyl-d14	0.146	0	0.215	0	67.9	41.9	125	0	0	40	
Sample ID: 04070635-002AMSD SampType: MSD	SampType: MSD	TestCod	e: SV 8270S	TestCode: SV_8270S_S_SIM Units: mg/Kg-dry	ıg/Kg-dry	Prep Dat	Prep Date: 7/28/04		Run ID: 597	Run ID: 5972 INST. M_040802A	40802A
Client ID: B558-7 (6-7')	Batch ID: 21226	Test	TestNo: SW8270C			Analysis Date: 8/2/04	e: 8/2/04		SeqNo: 807270	7270	
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Phenanthrene	23.1	3.23	0,215	21.6	869	32.8	143	19.9	14.9	35.4	ഗ

J - Analyte detected below quantitation limits

Work Order: 04070635

Project:

A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_ALC_S

Sample ID: MB-072904	SampType: MBLK	TestCode: SV_ALC_S	Units: mg/Kg	Prep Date:	Run ID: GC INST. L_040730A
Client ID: ZZZZ	Batch ID: R54192	TestNo: SW8015M		Analysis Date: 7/30/04	SeqNo: 806754
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
n-Butanol	QN	10			
Sample ID: LCS-072904	SampType: LCS	TestCode: SV_ALC_S	Units: mg/Kg	Prep Date:	Run ID: GC INST. L_040730A
Client ID: ZZZZ	Batch ID: R54192	TestNo: SW8015M		Analysis Date: 7/30/04	SeqNo: 806755
Analyte	Result	PQL SPK value	SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
n-Butanol	57	10 50	0 114	50 150 0	0
Sample ID: 04070635-022AMS	SampType: MS	TestCode: SV_ALC_S	Units: mg/Kg-dry	Prep Date:	Run ID: GC INST. L_040730A
Client ID: B556-28 (27-28')	Batch ID: R54192	TestNo: SW8015M		Analysis Date: 7/30/04	SeqNo: 806763
Analyte	Result	PQL SPK value	SPK Ref Val %REC	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
n-Butanol	46	11 55	0 83.6	50 150 0	0
Sample ID: 04070635-022AMSD SampType: MSD	SampType: MSD	TestCode: SV_ALC_S	Units: mg/Kg-dry	Prep Date:	Run ID: GC INST. L_040730A
Client ID: B556-28 (27-28')	Batch ID: R54192	TestNo: SW8015M		Analysis Date: 7/30/04	SeqNo: 806762
Analyte	Result	PQL SPK value	SPK Ref Val %REC	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
n-Butanol	48	11 55	0 87.3	50 150 46	4.27 25

J - Analyte detected below quantitation limits

04070635 Work Order: A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SV OA2 S

Sample ID: MB-21196	SampType: MBLK	TestCode: SV_OA2_S	DA2_S	Units: mg/Kg	Prep Date:	e: 7/26/04		Run ID: 8015 INST. D 040726A	10726A
Client ID: ZZZZZ	Batch ID: 21196	TestNo: SW8015M/OA2	3015M/OA2		Analysis Da	Analysis Date: 7/26/04		SeqNo: 802798	
Analyte	Result	PQL SPK	SPK value SPK Ref Val	ef Val %REC	C LowLimit	HighLimit RPD Ref Val	ef Val	%RPD RPDLimit	Qual
Diesel Kerosene Mineral Spirits Motor Oil Surr: n-Tetracontane	ND ND ND ND 79.0	5.00 5.00 5.00 5.00	0.67	0 100	59.5	122	0	0	
Sample ID: LCS-21196 Client ID: ZZZZZ	SampType: LCS Batch ID: 21196	TestCode: SV_OA2_S TestNo: SW8015M/OA2	0A2_S 3015M/OA2	Units: mg/Kg	Prep Date: Analysis Date:	e: 7/26/04 e: 7/26/04		Run ID: 8015 INST. D_040726A SeqNo: 802799	10726A
Analyte	Result	PQL SPK	SPK value SPK Ref Val	ef Val %REC	C LowLimit	HighLimit RPD Ref Val	of Val	%RPD RPDLimit	Qual
Diesel Surr: n-Tetracontane	9.84	5.00	16.7 0.67	0 58.9 0 97	9 45.8 7 58	131	0 0	0	
Sample ID: 04070635-017AMS Client ID: B557-12 (11-12')	SampType: MS Batch ID: 21196	TestCode: SV_OA2_S TestNo: SW8015M/OA2	0A2_S 8015M/0A2	Units: mg/Kg-dry	Prep Date: Analysis Date:	Prep Date: 7/26/04 Analysis Date: 7/27/04		Run ID: 8015 INST. D_040728A SeqNo: 803260	40728A
Analyte	Result	PQL SPK	SPK value SPK Ref Val	ef Val %REC	LowLimit	HighLimit RPD Ref Val	ef Val	%RPD RPDLimit	Qual
Diesel Surr: n-Tetracontane	575 # 0.46	62.2 0	20.8 0.83	467 519 0 55.4	9 20.3 4 53.9	167 153	0 0	0 0	S
Sample ID: 04070635-017AMSD Client ID: B557-12 (11-12')	SampType: MSD Batch ID: 21196	TestCode: SV_OA2_S TestNo: SW8015M/OA2	DA2_S 8015M/OA2	Units: mg/Kg-dry	Prep Date: Analysis Date:	te: 7/26/04 te: 7/27/04		Run ID: 8015 INST. D_040728A SeqNo: 803261	40728A
Analyte	Result	PQL SPK	SPK value SPK Ref Val	ef Val %REC	C LowLimit	HighLimit RPD Ref Val	ef Val	%RPD RPDLimit	Qual
Diesel Surr: n-Tetracontane	724 # 0.57	61.9	20.7 0.83	467 1240 0 68.7	0 20.3 7 53.9	167 153	575 0	22.9 34	S

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: V 8260S S

Sample ID: MBLK-F040731-1	SampType: MBLK	TestCod	TestCode: V_8260S_S	Units: µg/Kg	Prep Date:	7/31/04	Run ID: 5972 INST. F_040731B	040731B
Client ID: ZZZZZ	Batch ID: 21288	Testh	TestNo: SW8260B		Analysis Date: 7/31/04	7/31/04	SeqNo: 806243	
Analyte	Result	Pal	SPK value	SPK Ref Val %REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	QN	5.0						
1,1,2-Trichloroethane	Q	2.0						
1,1-Dichloroethane	QN	5.0						
1,1-Dichloroethene	QN	5.0						
1,2-Dibromo-3-chloropropane	QN	5.0						
1,2-Dibromoethane	QN	5.0						
1,2-Dichloroethane	QN	5.0						
1,2-Dichloropropane	QN	5.0						
Acetone	20	20.0						っ
Benzene	QN	1.0						
Bromochloromethane	QN	5.0						
Bromoform	QN	5.0						
Bromomethane	QN	10						
Carbon disulfide	QN	5.0						
Carbon tetrachloride	QN	5.0						
Chlorobenzene	ΩN	2.0						
Chloroform	ON	2.0						
cis-1,2-Dichloroethene	QN	2.0						
cis-1,3-Dichloropropene	QN	4.0						
Dibromochloromethane	QN	5.0						
Ethylbenzene	QN	5.0						
m,p-Xylenes	QN	5.0						
Methyl tert-butyl ether	QN	2.0						
Methylene chloride	0.1	5.0						つ
o-Xylene	QN	2.0						
Styrene	QN	2.0						
Tetrachloroethene	QN	2.0						
Toluene	QN	5.0						
trans-1,2-Dichloroethene	QN	5.0						
trans-1,3-Dichloropropene	QN	4.0						
Trichloroethene	QN	2.0						

Page 30 of 43

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

Philip Environmental 04070635 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V 8260S S

Sample ID: MBLK-F040731-1	SampType: MBLK	TestCode	TestCode: V_8260S_S	Units: µg/Kg	/Kg	Prep Date:	9: 7/31/04		Run ID: 5972 II	Run ID: 5972 INST. F 040731B	_
Client ID: ZZZZZ	Batch ID: 21288	TestN	TestNo: SW8260B			Analysis Date:	P: 7/31/04		SeqNo: 806243	e .	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit Qual	
Vinyl acetate	QN	50.0									
Vinyl chloride	QN	2.0									
Xylenes, Total	QN	5.0									
Surr: 1,2-Dichloroethane-d4	52.4	0	20	0	105	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	47.8	0	20	0	92.6	75.6	120	0	0		
Surr: Dibromofluoromethane	51.8	0	50	0	104	74.1	121	0	0		
Surr: Toluene-d8	50.2	0	20	0	100	82.8	112.8	0	0		
Sample ID: MBLK-F040801-1	SampType: MBLK	TestCode	TestCode: V_8260S_S	Units: µg/Kg	/Kg	Prep Date:	s: 8/1/04		Run ID: 5972 II	Run ID: 5972 INST. F_040801B	
Client ID: ZZZZZ	Batch ID: 21301	TestN	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806487	7	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit Qual	
Ethylbenzene	QN	5.0									
m,p-Xylenes	QN	5.0									
o-Xylene	QN	5.0									
Xylenes, Total	-	5.0								<u>.</u> .	
Surr: 1,2-Dichloroethane-d4	49	0	90	0	86	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	49.6	0	20	0	99.2	75.6	120	0	0		
Surr: Dibromofluoromethane	50.2	0	20	0	100	74.1	121	0	0		
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0		
Sample ID: LCS-F040731-1	SampType: LCS	TestCode	TestCode: V_8260S_S	Units: µg/Kg	J/Kg	Prep Date:	e: 7/31/04		Run ID: 5972 i	5972 INST. F_040731B	
Client ID: ZZZZZ	Batch ID: 21288	TestN	TestNo: SW8260B			Analysis Date:	e: 7/31/04		SeqNo: 806242	2	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit Qual	
1,1,1-Trichloroethane	48.1	5.0	20	0	96.2	81.8	129	0	0		
1,1-Dichloroethene	55.3	5.0	50	0	111	9.89	145	0	0		
1,2-Dibromoethane	51.6	5.0	20	0	103	20	130	0	0		
1,2-Dichloroethane	49.6	5.0	20	0	99.2	83.5	127	0	0		
Benzene	51.9	1.0	50	0	104	84.2	125	0	0		
Carbon tetrachloride	47.3	5.0	20	0	94.6	77.8	130	0	0		
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spik	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	m	- Analyte detect	B - Analyte detected in the associated Method Blank	Method Blank	
J - Analyte det	J - Analyte detected below quantitation limits		R - RPI	R - RPD outside accepted recovery limits	ecovery limits	40				Page 31 of 43	

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: V_8260S_S

Sample ID: LCS-F040731-1	SampType: LCS	TestCode	TestCode: V_8260S_S	Units: µg/Kg	ug/Kg	Prep Date:	7/31/04		Run ID: 597	Run ID: 5972 INST. F_040731B	0731B
Client ID: ZZZZZ	Batch ID: 21288	Testh	TestNo: SW8260B			Analysis Date:	7/31/04		SeqNo: 806242	242	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RI	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	50.4	5.0	20	0	101	86.1	127	0	0		
Chloroform	52.2	5.0	50	0	104	83.4	126	0	0		
Dibromochloromethane	51.6	5.0	20	0	103	80.7	131	0	0		
Ethylbenzene	51	5.0	20	0	102	84.7	127	0	0		
m,p-Xylenes	50.4	5.0	50	0	101	83.3	131	0	0		
Methyl tert-butyl ether	50.1	2.0	50	0	100	70	130	0	0		
Methylene chloride	60.2	5.0	50	1.9	117	67.5	135	0	0		
o-Xylene	20	5.0	20	0	100	85.5	129	0	0		
Tetrachloroethene	47.1	5.0	20	0	94.2	74	129	0	0		
Toluene	51.5	5.0	20	0	103	84	126	0	0		
Trichloroethene	50.4	5.0	50	0	101	82.3	127	0	0		
Xylenes, Total	100	5.0	100	0	100	83.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	51.3	0	50	0	103	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	47.6	0	50	0	95.2	75.6	120	0	0		
Surr: Dibromofluoromethane	51.7	0	20	0	103	74.1	121	0	0		
Surr: Toluene-d8	49.9	0	20	0	8.66	82.8	112.8	0	0		
Sample ID: LCS-F040801-1	SampType: LCS	TestCod	TestCode: V_8260S_S	Units: µg/Kg	ид/Ка	Prep Date:	8/1/04		Run ID: 597	Run ID: 5972 INST. F_040801B	0801B
Client ID: ZZZZZ	Batch ID: 21301	Test	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806485	485	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	50,1	5.0	50	0	100	84.7	127	0	0		
m,p-Xylenes	20	5.0	50	0	100	83.3	131	0	0		
o-Xylene	49.7	5.0	50	0	99.4	85.5	129	0	0		
Xylenes, Total	2.66	5.0	100	_	98.7	83.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	47.9	0	50	0	95.8	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	49.4	0	50	0	98.8	75.6	120	0	0		
Surr: Dibromofluoromethane	50.2	0	50	0	100	74.1	121	0	0		
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0		

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 32 of 43

Philip Environmental 04070635 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_8260S_S

	Sampighe. LCSD	TestCod	TestCode: V_8260S_S	Units: µg/Kg	ıg/Kg	Prep Date:	te: 7/31/04	₹†	Run ID: 597	Run ID: 5972 INST. F 040731B	10731B
Client ID: ZZZZZ	Batch ID: 21288	Testh	TestNo: SW8260B			Analysis Date:	te: 8/1/04		SeqNo: 806244	5244	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	45.4	5.0	20	0	90.8	81.8	129	48.1	5.77	15	
1,1-Dichloroethene	51.3	2.0	50	0	103	68.6	145	55.3	7.50	15	
1,2-Dibromoethane	48.2	5.0	50	0	96.4	70	130	51.6	6.81	15	
1,2-Dichloroethane	46.9	5.0	50	0	93.8	83.5	127	49.6	5.60	15	
Benzene	49.4	1.0	20	0	98.8	84.2	125	51.9	4.93	15	
Carbon tetrachloride	44.1	5.0	50	0	88.2	77.8	130	47.3	7.00	15	
Chlorobenzene	47	5.0	50	0	94	86.1	127	50.4	6.98	15	
Chloroform	49.7	5.0	50	0	99.4	83.4	126	52.2	4.91	15	
Dibromochloromethane	49.4	5.0	50	0	98.8	80.7	131	51.6	4.36	15	
Ethylbenzene	47.8	5.0	50	0	92.6	84.7	127	51	6.48	15	
m,p-Xylenes	47.6	5.0	50	0	95.2	83.3	131	50.4	5.71	15	
Methyl tert-butyl ether	46.6	2.0	50	0	93.2	70	130	50.1	7.24	15	
Methylene chloride	59.5	5.0	50	1.9	115	67.5	135	60.2	1.17	15	
o-Xylene	46.7	2.0	50	0	93.4	85.5	129	50	6.83	15	
Tetrachloroethene	43	5.0	50	0	86	74	129	47.1	9.10	15	
Toluene	48.3	5.0	50	0	9.96	84	126	515	6.41	15	
Trichloroethene	47.2	5.0	50	0	94.4	82.3	127	50.4	6.55	15	
Xylenes, Total	94.3	5.0	100	0	94.3	83.3	131	100	5.87	15	
Surr: 1,2-Dichloroethane-d4	52.3	0	50	0	105	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	46.8	0	90	0	93.6	75.6	120	0	0	0	
Surr: Dibromofluoromethane	52.3	0	50	0	105	74.1	121	0	0	0	
Surr: Toluene-d8	50	0	20	0	100	82.8	112.8	0	0	0	
Sample ID: LCSD-F040801-1	SampType: LCSD	TestCod	le: V_8260S_S	Units: µg/Kg	ıg/Kg	Prep Date:	ite: 8/1/04		Run ID: 59.	5972 INST. F_040801B	40801B
Client ID: ZZZZZ	Batch ID: 21301	Test	TestNo: SW8260B			Analysis Date:	ite: 8/1/04		SeqNo: 806486	6486	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	49.7	5.0	20	0	99.4	84.7	127	50.1	0.802	15	
m,p-Xylenes	49.4	5.0	90	0	98.8	83.3	131	50	1.21	15	
o-Xylene	49.3	5.0	50	0	98.6	85.5	129	49.7	0.808	15	
Xylenes, Total	98.7	5.0	100	_	97.7	83.3	131	2.66	1.01	15	

Page 33 of 43

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

04070635 Work Order:

Project:

A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: V 8260S S

Sample ID: LCSD-F040801-1	SampType: LCSD	TestCode	TestCode: V_8260S_S	Units: µg/Kg	Kg	Prep Da	Prep Date: 8/1/04		Run ID: 5972 INST. F_040801B	72 INST. F_0	40801B
Client ID: ZZZZZ	Batch ID: 21301	TestN	TestNo: SW8260B			Analysis Date: 8/1/04	ite: 8/1/04		SeqNo: 806486	3486	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Surr: 1,2-Dichloroethane-d4	47.8	0	20	0	92.6	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	49.4	0	20	0	98.8	75.6	120	0	0	0	
Surr: Dibromofluoromethane	50.4	0	50	0	101	74.1	121	0	0	0	
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0	0	

Qualifiers:

J - Analyte detected below quantitation limits

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-F040729-2	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	3/Kg	Prep Date:	3: 7/29/04		Run ID: 5972 INST. F 040729C	ST. F_0407290
Client ID: ZZZZZ	Batch ID: 21279	TestN	TestNo: SW8260B			Analysis Date:	5: 7/30/04		SeqNo: 805578	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RP	RPDLimit Qual
Benzene	49.7	1.0	50	0	99.4	84.2	125	0	0	
Toluene	47.6	5.0	20	0	95.2	84	126	0	0	
Ethylbenzene	46.6	2.0	20	0	93.2	84.7	127	0	0	
Xylenes, Total	91.7	5.0	100	1.	90.6	83.3	131	0	0	
Surr: 1,2-Dichloroethane-d4	51.2	0	50	0	102	72.8	122	0	0	
Surr: 4-Bromofluorobenzene	48.1	0	20	0	96.2	75.6	120	0	0	
Surr: Dibromofluoromethane	51	0	20	0	102	74.1	121	0	0	
Surr: Toluene-d8	49.9	0	50	0	8.66	82.8	112.8	0	0	
Sample ID: LCSD-F040729-2	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	3/Kg	Prep Date:	5: 7/29/04		Run ID: 5972 IN	5972 INST. F_040729C
Client ID: ZZZZZ	Batch ID: 21279	TestN	TestNo: SW8260B			Analysis Date: 7/30/04	3: 7/30/04		SeqNo: 805579	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RP	RPDLimit Qual
Benzene	51,3	1.0	20	0	103	84.2	125	49.7	3.17	0
Toluene	48.4	5.0	20	0	96.8	84	126	47.6	1.67	0
Ethylbenzene	48.2	5.0	20	0	96.4	84.7	127	46.6	3.38	0
Xylenes, Total	94.2	5.0	100	£.	93.1	83.3	131	91.7	2.69	0
Surr: 1,2-Dichloroethane-d4	50.5	0	20	0	101	72.8	122	0	0	0
Surr: 4-Bromofluorobenzene	48.6	0	50	0	97.2	75.6	120	0	0	0
Surr: Dibromofluoromethane	50.6	0	20	0	101	74.1	121	0	0	0
Surr: Toluene-d8	49.5	0	20	0	66	82.8	112.8	0	0	0
Sample ID: LCS-F040730-1	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	g/Kg	Prep Date:	9: 7/30/04		Run ID: 5972 INST. F_040730A	ST. F_040730
Client ID: ZZZZZ	Batch ID: 21285	Test	TestNo: SW8260B			Analysis Date:	9: 7/30/04		SeqNo: 806188	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RP	RPDLimit Qual
Benzene	45.7	1.0	50	0	91.4	84.2	125	0	0	
Toluene	46.2	5.0	50	0	92.4	84	126	0	0	
Ethylbenzene	46	5.0	20	0	92	84.7	127	0	0	
Xylenes, Total	91.4	2.0	100	0	91.4	83.3	131	0	0	
Surr: 1,2-Dichloroethane-d4	46.8	0	20	0	93.6	72.8	122	0	0	
Qualifiers: ND - Not Deter	ND - Not Detected at the Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	B - A	Analyte detect	B - Analyte detected in the associated Method Blank	Aethod Blank
J - Analyte det	J - Analyte detected below quantitation limits		R - RPI	R - RPD outside accepted recovery limits	ecovery limits				I	Page 35 of 43
										,

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-F040730-1	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	ı/Kg	Prep Date:	ite: 7/30/04		Run ID: 59	5972 INST. F_040730A	40730A
Client ID: ZZZZZ	Batch ID: 21285	TestN	TestNo: SW8260B			Analysis Da	Analysis Date: 7/30/04	_	SeqNo: 806188	6188	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	50.5	0	50	0	101	75.6	120	0	0		
Surr: Dibromofluoromethane	49.5	0	50	0	66	74.1	121	0	0		
Surr: Toluene-d8	49.8	0	90	0	9.66	82.8	112.8	0	0		
Sample ID: LCSD-F040730-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	J/Kg	Prep Date:	ate: 7/30/04		Run ID: 59	Run ID: 5972 INST. F_040730A	40730A
Client ID: ZZZZZ	Batch ID: 21285	Testh	TestNo: SW8260B			Analysis Date:	ate: 7/30/04	_	SeqNo: 806189	6189	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	51	1.0	50	0	102	84.2	125	45.7	11.0	0	
Toluene	52	2.0	20	0	104	84	126	46.2	11.8	0	
Ethylbenzene	51.6	5.0	20	0	103	84.7	127	46	11.5	0	
Xylenes, Total	102	5.0	100	0	102	83.3	131	91.4	11.0	0	
Surr: 1,2-Dichloroethane-d4	47.3	0	90	0	94.6	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	50.3	0	50	0	101	75.6	120	0	0	0	
Surr: Dibromofluoromethane	49.7	0	20	0	99.4	74.1	121	0	0	0	
Surr: Toluene-d8	49.6	0	20	0	99.2	82.8	112.8	0	0	0	
Sample ID: LCS-F040731-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	g/Kg	Prep Date:	ate: 7/31/04	4	Run ID: 59	Run ID: 5972 INST. F 040731A	040731A
Client ID: ZZZZZ	Batch ID: 21288	Test	TestNo: SW8260B			Analysis Date:	ate: 7/31/04	=	SeqNo: 806237	6237	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylenes	50.4	5.0	50	0	101	83.3	131	0	0		
Methyl tert-butyl ether	50.1	2.0	50	0	100	70	130	0	0		
o-Xylene	20	2.0	20	0	100	85.5	129	0	0		
Benzene	51.9	1.0	50	0	104	84.2	125	0	0		
Toluene	51.5	5.0	20	0	103	84	126	0	0		
Ethylbenzene	51	5.0	90	0	102	84.7	127	0	0		
Xylenes, Total	100	2.0	100	0	100	83.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	51.3	0	20	0	103	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	47.6	0	50	0	95.2	75.6	120	0	0		
Surr: Dibromofluoromethane	51.7	0	20	0	103	74.1	121	0	0		
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spil	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits		B - Analyte detected in the associated Method Blank	ted in the associ	iated Method	Slank
J - Analyte det	J - Analyte detected below quantitation limits	100	R - RPI	R - RPD outside accepted recovery limits	ecovery limits					Page 36 of 43	5 of 43
)	ì

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-F040731-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	ug/Kg	Prep Date:	7/31/04		Run ID: 5972 IN	5972 INST. F_040731A	731A
Client ID: ZZZZZ	Batch ID: 21288	Test	TestNo: SW8260B			Analysis Date:	: 7/31/04		SeqNo: 806237		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RP	RPDLimit C	Qual
Surr: Toluene-d8	49.9	0	20	0	96.8	82.8	112.8	0	0		
Sample ID: LCSD-F040731-1	-1 SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	ug/Kg	Prep Date:	: 7/31/04		Run ID: 5972 INST. F_040731A	ST. F_0407	731A
Client ID: ZZZZZ	Batch ID: 21288	Test	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806239		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RP	RPDLimit G	Qual
m,p-Xylenes	47.6	5.0	20	0	95.2	83.3	131	50.4	5.71	0	
Methyl tert-butyl ether	46.6	2.0	20	0	93.2	70	130	50.1	7.24	0	
o-Xylene	46.7	5.0	20	0	93.4	85.5	129	50	6.83	0	
Benzene	49.4	1.0	50	0	98.8	84.2	125	51.9	4.93	0	
Toluene	48.3	5.0	90	0	9.96	84	126	51.5	6.41	0	
Ethylbenzene	47.8	5.0	20	0	92.6	84.7	127	51	6.48	0	
Xylenes, Total	94.3	5.0	100	0	94.3	83.3	131	100	5.87	0	
Surr: 1,2-Dichloroethane-d4	d4 52.3	0	90	0	105	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	sne 46.8	0	50	0	93.6	75.6	120	0	0	0	
Surr: Dibromofluoromethane	ane 52.3	0	50	0	105	74.1	121	0	0	0	
Surr: Toluene-d8	20	0	20	0	100	82.8	112.8	0	0	0	
Sample ID: LCS-F040801-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	на/Ка	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801A	IST. F_0408	301A
Client ID: ZZZZZ	Batch ID: 21301	Test	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806466		
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	RPDLimit	Qual
m,p-Xylenes	20	5.0	50	0	100	83.3	131	0	0		
Methyl tert-butyl ether	48.3	2.0	20	0	9.96	20	130	0	0		
o-Xylene	49.7	5.0	50	0	99.4	85.5	129	0	0		
Benzene	20	1.0	20	0	100	84.2	125	0	0		
Toluene	50.9	5.0	20	0	102	84	126	0	0		
Ethylbenzene	50.1	5.0	20	0	100	84.7	127	0	0		
Xylenes, Total	7.66	5.0	100	_	98.7	83.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	-d4 47.9	0	20	0	95.8	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	ene 49.4	0	20	0	98.8	75.6	120	0	0		
Qualifiers: ND - Not	ND - Not Detected at the Reporting Limit		S - Spik	S - Spike Recovery outside accepted recovery limits	le accepted reco	overy limits	<u> </u>	3 - Analyte detect	B - Analyte detected in the associated Method Blank	Method Blan	~
J - Analy.	J - Analyte detected below quantitation limits	iits	R - RPI	R - RPD outside accepted recovery limits	l recovery limit	S			I	Page 37 of 43	43

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-F040801-1	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	ıg/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801A	INST. F_04	0801A
Client ID: ZZZZZ	Batch ID: 21301	TestN	TestNo: SW8260B			Analysis Date: 8/1/04	8/1/04		SeqNo: 806466	99	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	50.2	0 0	50	00	100	74.1	121	00	0 0		
			3	>		05:0	2.7				
Sample ID: LCSD-F040801-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	ıg/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801A	INST. F 04	0801A
Client ID: ZZZZZ	Batch ID: 21301	Test	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806467	191	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylenes	49.4	5.0	20	0	98.8	83.3	131	20	1.21	0	
Methyl tert-butyl ether	48.4	2.0	50	0	96.8	20	130	48.3	0.207	0	
o-Xylene	49.3	5.0	50	0	98.6	85.5	129	49.7	0.808	0	
Benzene	20	1.0	20	0	100	84.2	125	20	0	0	
Toluene	50.5	5.0	20	0	101	84	126	50.9	0.789	0	
Ethylbenzene	49.7	2.0	20	0	99,4	84.7	127	50.1	0.802	0	
Xylenes, Total	98.7	2,0	100	_	97.7	83.3	131	2 66	1.01	0	
Surr: 1,2-Dichloroethane-d4	47.8	0	20	0	92'6	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	49.4	0	90	0	98.8	75.6	120	0	0	0	
Surr: Dibromofluoromethane	50.4	0	20	0	101	74.1	121	0	0	0	
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0	0	
Sample ID: LCS-F040801-1	SampType: LCS1	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	ıg/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801C	INST. F 04	0801C
Client ID: ZZZZZ	Batch ID: 21302	Testh	TestNo: SW8260B			Analysis Date: 8/1/04	9: 8/1/04		SeqNo: 806502	502	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	47.7	1.0	20	0	95.4	84.2	125	0	0		
Toluene	47.1	5.0	50	~	92.2	84	126	0	0		
Ethylbenzene	45	5.0	20	0	06	84.7	127	0	0		
Xylenes, Total	88.2	5.0	100	1.1	87.1	83.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	49.7	0	20	0	99.4	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	49.4	0	20	0	98.8	75.6	120	0	0		
Surr: Dibromofluoromethane	51	0	20	0	102	74.1	121	0	0		
Surr: Toluene-d8	50.7	0	20	0	101	82.8	112.8	0	0		
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spik	S - Spike Recovery outside accepted recovery limits	e accepted reco	overy limits		- Analyte detec	B - Analyte detected in the associated Method Blank	ed Method Bl	ank
J - Analyte det	J - Analyte detected below quantitation limits		R - RPD	R - RPD outside accepted recovery limits	recovery limit	SO.				Page 38 of 43	of 43

Work Order: 04070635

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

Clinic C. 2.2.2.2.2 Reach D. 21992 Pol. SPR Per Verlage S	Sample ID: LCSD-F040801-1	SampType: LCS1	TestCode	e: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	te: 8/1/04		Run ID: 597	5972 INST. F_040801C	40801C
Persult Poll SPK value SPK Ned Val %RRC LowLinit HighLinit RPD Ref Val %RRC RRC RRC		Batch ID: 21302	TestN	o: SW8260B			Analysis Da			SeqNo: 806	503	
1.0 1.0	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
18 5 5 5 5 5 5 5 5 5	Benzene	49.3	1.0	50	0	98.6	84.2	125	47.7	3.30	0	
A 17 2	Toluene	48.8	5.0	50	←	926	84	126	47.1	3.54	0	
100 100	Ethylbenzene	47.2	5.0	90	0	94.4	84.7	127	45	4.77	0	
Hand	Xylenes, Total	92.4	5.0	100	-	91.3	83.3	131	88.2	4.65	0	
e 494 4 0 50 0 98 8 75.6 120 0 50.6 0 50 0 101 73.1 121 0 SampType: LCS1 TestCode: V_BTEX_S Units: pg/Kg Prep_Call Prep_Call R204 Run ID: Batch ID: 21323 TestCode: V_BTEX_S Units: pg/Kg NSREC LowLimit HighLimit RPD Ref Val SRD 49.3 5.0 5.0 5.0 98.6 84.2 125 0 6 5.0 5.0 5.0 98.6 84.7 125 0 7 49.3 5.0 5.0 0 98.6 84.7 125 0 9 5.0 5.0 5.0 0 98.6 84.7 125 0 9 5.0 5.0 5.0 98.3 83.3 131 0 0 6 5.0 5.0 5.0 98.3 122 125 0 6	Surr: 1,2-Dichloroethane-d4	49.6	0	20	0	99.2	72,8	122	0	0	0	
SampType: LCS1	Surr: 4-Bromofluorobenzene	49.4	0	50	0	98 8	75.6	120	0	0	0	
SampType: LCS1 TestCode: V_BTEX_S Units: µg/Kg Prep Date: pg/Kg Prep Date: pg/Kg Run ID: Prep Date: pg/Kg Run ID: Page Page <th< td=""><td>Surr: Dibromofluoromethane</td><td>50.6</td><td>0</td><td>20</td><td>0</td><td>101</td><td>74.1</td><td>121</td><td>0</td><td>0</td><td>0</td><td></td></th<>	Surr: Dibromofluoromethane	50.6	0	20	0	101	74.1	121	0	0	0	
SampType: LCS1 TestCode: V_BTEX_S Units: µg/Kg Prep Date: R204 R/L04 Run DD Batch ID: 21323 TestINo: SW8260B Jessuit POL SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %ARC 49.3 1,0 50 0 98.6 84.2 125 0 50 50 50 0 98.6 84.7 127 0 e 49.7 0 50 0 98.6 84.7 127 0 e 49.7 0 50 0 98.6 84.7 127 0 e 49.7 0 50 0 98.4 75.6 120 0 e 49.7 0 50 0 98.4 75.6 120 0 e 50.2 0 50 0 98.4 75.6 120 0 e 50.4 0 50 0 98.4 75.6 122 <	Surr: Toluene-d8	50,1	0	90	0	100	82.8	112.8	0	0	0	
Batch ID: 21323 TestNo: SW08260B Aralysis Date: 8/204 8/204 SRPR 49.3 1.0 50 98.6 84.2 125 0 49.3 5.0 5.0 98.6 84.7 125 0 49.3 5.0 100 98.6 84.7 125 0 98.3 5.0 100 98.6 84.7 127 0 e 49.7 5.0 100 98.3 83.3 131 0 e 49.7 5.0 100 98.6 72.8 122 0 e 49.7 5.0 0 98.4 75.6 120 0 e 50.2 0 96.2 72.8 122 0 0 e 50.4 5.0 0 96.4 75.6 120 0 e 50.4 5.0 0 96.4 76.6 12.1 0 sath ID: 21	Sample ID: LCS-F040802-1	SampType: LCS1		e: V_BTEX_S		/Kg	Prep Da	ll .			72 INST. F_0	40802A
ABA ABA		Batch ID: 21323	TestN	lo: SW8260B			Analysis Da			SeqNo: 807	.840	
49.3 1.0 50 0 98.6 84.2 125 0 49.8 5.0 5.0 5.0 5.0 0 98.6 84.7 127 0 98.3 5.0 5.0 5.0 0 98.6 84.7 127 0 0 98.3 5.0 100 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 0 0 98.3 83.3 131 83.3 131 83.3 131 98.3 13.1 98.3 98.3 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
50 50 60 100 84 126 0 49.3 5.0 50 98.6 84.7 127 0 98.3 5.0 100 98.3 83.3 131 0 98.3 5.0 100 98.3 83.3 131 0 e 48.1 0 50 0 96.2 72.8 122 0 e 50.2 0 50 0 74.1 121 0 e 50.2 0 50 0 101 74.1 121 0 sampType: LCS1 TestNo: SM826B Units: µg/kg Prep Date: 8/2/4 Randlysis Date: 8/2/4 Randlysis Date: 8/2/4 SeqNo: 10.0 Sexult Date: Paralyse Sexult PQL SPK Ref Val %REC LowLimit HighLimit RPD Analyse december Preported Precovery limits 122 49.3 2. feetered below quantitation limits R. SRD outside accentred recovery limits R - Analyte detected in the ass	Senzene	49.3	1.0	50	0	98.6	84.2	125	0	0		
Harring Harr	Toluene	20	5.0	20	0	100	84	126	0	0		
4 8.1 detected below cuantitation limits 98.3 b.0 b.0 b.0 b.2	Ethylbenzene	49.3	5.0	20	0	98.6	84.7	127	0	0		
4.8.1 0 50 0 96.2 72.8 122 0 e 49.7 0 50 0 99.4 75.6 120 0 e 50.2 0 50 0 100 74.1 121 0 SampType: LC51 TestCode: V_BTEX_S Units: µg/kg Prep Date: 8/2/04 R/204 Run ID: 8/2/04 Batch ID: 21323 TestNo: SW8260B Analysis Date: 8/2/04 R/204 SeqNo: 8/2/04 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RE 50.7 10 50 0 101 84.7 125 49.3 2. 50.3 50 50 0 101 84.7 127 49.3 2. 100 5.0 100 96.4 72.8 122 0 0 50.3 5.0 100 96.4 72.8 127 49.3 1. 64ccted at the Repo	Xylenes, Total	98.3	5.0	100	0	98.3	83.3	131	0	0		
e 49.7 0 50 0 99.4 75.6 120 0 e 50.2 0 50 0 101 74.1 121 0 South 0 50 0 101 74.1 121 0 SampType: LCS1 TestCode: V_BTEX_S Units; µg/Kg Prep Date: R2.8 112.8 Run ID: Date: Rank Batch ID: 21323 TestNo: SW8260B Analysis Date: Recovery outside accepted at the Reporting Limits PQL SPK Ref Val WREC LowLimit HighLimit RPD Ref Val RANK 50.7 1.0 50 0 101 84.2 125 49.3 2. 50.3 5.0 50 0 101 84.7 127 49.3 1. 6cted at the Reporting Limit R - RPD outside accepted recovery limits R - RPD outside accepted recovery limits R - Analyte detected in the ass	Surr: 1,2-Dichloroethane-d4	48.1	0	90	0	96.2	72.8	122	0	0		
e 50.2 0 50 0 100 74.1 121 0 SampType: LCS1 TestCode: V_BTEX_S Units; µg/Kg Prep Date: 8/2/04 Run ID: Batch ID: 21323 TestNo: SW8260B Analysis Date: 8/2/04 Run ID: Result PQL SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %REC 50.7 1,0 50 0 101 84.2 125 49.3 2. 50.3 5,0 50 0 101 84.7 127 49.3 2. 50.3 5,0 50 0 100 83.3 131 98.3 1. 48.2 0 50 0 96.4 72.8 122 0 48.2 0 50 0 96.4 72.8 18.Analyte detected in the ass Result Reporting Limit Result Reporting Limits Result Reporting Limits Result Reporting Limits Result Result Reporting Limits Result Reporting Limits Result Result Reporting Limits Result R	Surr: 4-Bromofluorobenzene	49.7	0	50	0	99.4	75.6	120	0	0		
SampType: LCS1 TestCode: V_BTEX_S Units; µg/Kg Prep Date: 8/2/04 Run ID: Batch ID: 21323 TestNo: SW8260B Analysis Date: 8/2/04 Run ID: Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF 50.7 10 50 0 101 84.2 125 49.3 2. 50.3 50 50 0 101 84.7 126 50 2. 100 5.0 100 0 101 84.7 127 49.3 2. 100 5.0 100 96.4 72.8 122 0 110 8.3.3 131 98.3 1. 110 8.48.2 0 96.4 72.8 122 0 110 8.48.2 0 96.4 72.8 122 0 110 8.48.2 0 96.4 72.8	Surr: Dibromofluoromethane	50.2	0	90	0	100	74.1	121	0	0		
SampType: LCS1 TestCode: V_BTEX_S Units: µg/Kg Prep Date: 8/2/04 Run ID: Batch ID: 21323 TestNo: Sw8260B Analysis Date: 8/2/04 SeqNo: Result PQL SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RF 50.7 1,0 50 0 101 84.2 125 49.3 2. 50.3 5,0 50 0 101 84.7 127 49.3 2. 100 5,0 50 0 101 83.3 131 98.3 1. 48.2 0 50 0 96.4 72.8 122 0 etected at the Reporting Limit R - RPD outside accepted recovery limits R - RPD outside accepted recovery limits Analyte detected in the ass	Surr: Toluene-d8	50.4	0	20	0	101	82.8	112.8	0	0		
Patch ID: 21323 TestNo: SW8260B Analysis Date: 8/2/04 SPK Ref Val SPK Ref Val WREC LowLimit HighLimit RPD Ref Val WRPD RPDLimit RPD Ref Val WRPD RPD Ref Val WRPD RPD Ref Val WRPD RPD Ref Val WRPD RPD Ref Val WRPD	Sample ID: LCSD-F040802-1	SampType: LCS1	TestCod	S. V. BTEX.S		/Kg	Prep Da	1			72 INST. F 0	40802A
Secult PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit RPD Ref Val RPD		Batch ID: 21323	TestN	lo: SW8260B			Analysis Da			SeqNo: 807	841	
50.7 1,0 50 0 101 84.2 125 49.3 2.80 51.4 5.0 50 0 103 84 126 50 2.76 50.3 5.0 50 0 101 84.7 127 49.3 2.01 100 5.0 100 83.3 131 98.3 1.71 chloroethane-d4 48.2 0 50 0 96.4 72.8 122 0 0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits R - RPD outside accepted recovery limits	Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
51.4 5.0 50 0 103 84 126 50 2.76 50.3 5.0 50 0 101 84.7 127 49.3 2.01 100 5.0 100 0 100 83.3 131 98.3 1.71 chloroethane-d4 48.2 0 50 0 96.4 72.8 122 0 0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits R - RPD outside accepted recovery limits	Benzene	50.7	1,0	50	0	101	84.2	125	49.3	2.80	0	
50.3 5.0 50 0 101 84.7 127 49.3 2.01 100 5.0 100 0 100 83.3 131 98.3 1.71 chloroethane-d4 48.2 0 50 0 96.4 72.8 122 0 0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyze detected in the associated J - Analyze detected below quantitation limits R - RPD outside accepted recovery limits	Toluene	51.4	5.0	50	0	103	84	126	50	2.76	0	
100 5.0 100 83.3 131 98.3 1.71 chloroethane-d4 48.2 0 50 0 96.4 72.8 122 0 0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated in the associated accepted recovery limits B - Analyte detected in the associated in t	Ethylbenzene	50.3	2.0	50	0	101	84.7	127	49.3	2.01	0	
-Dichloroethane-d4 48.2 0 50 0 96.4 72.8 122 0 0 0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Xylenes, Total	100	5.0	100	0	100	83.3	131	98.3	1.71	0	
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B - Analyte detected in the associated J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	Surr: 1,2-Dichloroethane-d4	48.2	0	20	0	96.4	72.8	122	0	0	0	
R - RPD outside accented recovery limits		ted at the Reporting Limit		S - Spik	ce Recovery outside	accepted reco	very limits		3 - Analyte detec	ted in the associa	ited Method B	lank
	J - Analyte dete	ered below anantitation limit		R - RPI	Doutside accepted re	envery limits					Dago 30	2613

04070635 Work Order:

A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX S

Sample ID: LCSD-F040802-1	SampType: LCS1	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	ıg/Kg	Prep Date:	8/2/04		Run ID: 5972 INST. F 040802A	0802A
Client ID: ZZZZZ	Batch ID: 21323	TestN	TestNo: SW8260B			Analysis Date:	8/2/04		SeqNo: 807841	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD RPDLimit	Qual
Surr: 4-Bromofluorobenzene	50.4	0	50	0	101	75.6	120	0	0	
Surr: Dibromofluoromethane	20.7	0	50	0	101	74.1	121	0	0 0	
Surr: Toluene-d8	50	0	20	0	100	82.8	112.8	0	0 0	
Sample ID: MBLK-F040729-2	SampType: MBLK	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	ig/Kg	Prep Date:	7/29/04		Run ID: 5972 INST. F_040729C	0729C
Client ID: ZZZZZ	Batch ID: 21279	Testh	TestNo: SW8260B			Analysis Date:	7/30/04		SeqNo: 805580	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD RPDLimit	Qual
Benzene	Q.	1.0								
Toluene	QN	5.0								
Ethylbenzene	Q	5.0								
Xylenes, Total	1.1	5.0								7
Surr: 1,2-Dichloroethane-d4	51.3	0	50	0	103	72.8	122	0	0	
Surr: 4-Bromofluorobenzene	48.4	0	20	0	96.8	75.6	120	0	0	
Surr: Dibromofluoromethane	51.2	0	20	0	102	74.1	121	0	0	
Surr: Toluene-d8	49.7	0	20	0	99.4	82.8	112.8	0	0	
Sample ID: MBLK-F040730-1	SampType: MBLK	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	ıg/Kg	Prep Date:	7/30/04		Run ID: 5972 INST. F_040730A	0730A
Client ID: ZZZZZ	Batch ID: 21285	Test	TestNo: SW8260B			Analysis Date:	7/30/04		SeqNo: 806190	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPDLimit	Qual
Benzene	QN	1.0								
Toluene	QN	5.0								
Ethylbenzene	QN	9.0								
Xylenes, Total	Q	5.0								
Surr: 1,2-Dichloroethane-d4	49.5	0	90	0	66	72.8	122	0	0	
Surr: 4-Bromofluorobenzene	48.2	0	50	0	96.4	75.6	120	0	0	
Surr: Dibromofluoromethane	49.2	0	20	0	98.4	74.1	121	0	0	
Surr: Toluene-d8	50.3	0	20	0	101	82.8	112.8	0	0	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 40 of 43

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX S

Sample ID: MBLK-F040730-2	SampType: MBLK	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	μg/Kg	Prep Date:	7/30/04		Run ID: 5972 INST. F_040730D
Client ID: ZZZZZ	Batch ID: 21287	TestN	TestNo: SW8260B			Analysis Date:	: 7/31/04		SeqNo: 806219
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RI	RPD Ref Val	%RPD RPDLimit Qual
Benzene	QN	1.0							
Toluene	_	5.0							7
Ethylbenzene	QN	20							
Xylenes, Total	<u>_</u> +	20							Г
Surr: 1,2-Dichloroethane-d4	47	0	20	0	94	72.8	122	0	0
Surr: 4-Bromofluorobenzene	51	0	20	0	102	75.6	120	0	0
Surr: Dibromofluoromethane	49.1	0	50	0	98.2	74.1	121	0	0
Surr: Toluene-d8	49.2	0	20	0	98.4	82.8	112.8	0	0
Sample ID: MBLK-F040731-1	SampType: MBLK	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	рд/Кд	Prep Date:	: 7/31/04		Run ID: 5972 INST. F_040731A
Client ID: ZZZZZ	Batch ID: 21288	TestN	TestNo: SW8260B			Analysis Date:	: 7/31/04		SeqNo: 806238
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit R	RPD Ref Val	%RPD RPDLimit Qual
m,p-Xylenes	QN	5.0							
Methyl tert-butyl ether	QN	2.0							
o-Xylene	QN	5.0							
Benzene	QN	1.0							
Toluene	QN	5.0							
Ethylbenzene	QN	5.0							
Xylenes, Total	QN	5.0							
Surr: 1,2-Dichloroethane-d4	52.4	0	50	0	105	72.8	122	0	0
Surr: 4-Bromofluorobenzene	47.8	0	20	0	92.6	75.6	120	0	0
Surr: Dibromofluoromethane	51.8	0	20	0	104	74.1	121	0	0
Surr: Toluene-d8	50.2	0	20	0	100	82.8	112.8	0	0
Sample ID: MBLK-F040801-1	SampType: MBLK	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	µg/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801A
Client ID: ZZZZZ	Batch ID: 21301	Test	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806468
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD RPDLimit Qual
m,p-Xylenes	QN	5.0							
Methyl tert-butyl ether	QN	2.0							
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spik	S - Spike Recovery outside accepted recovery limits	de accepted reco	overy limits	B-	Analyte detect	B - Analyte detected in the associated Method Blank

Philip Environmental 04070635 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

Sample ID: MBLK-F040801-1	SampType: MBLK	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801A	1A
Client ID: ZZZZZ	Batch ID: 21301	Testh	TestNo: SW8260B			Analysis Date:	8/1/04		SeqNo: 806468	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPDLimit Q	Qual
o-Xylene	ON S	5.0								
Benzene		0.1								
Toluene	9	5.0								
Ethylbenzene	QN	5.0								
Xylenes, Total	-	5.0								_
Surr: 1,2-Dichloroethane-d4	49	0	20	0	86	72.8	122	0	0	
Surr: 4-Bromofluorobenzene	49.6	0	90	0	99.2	75.6	120	0	0	
Surr: Dibromofluoromethane	50.2	0	20	0	100	74.1	121	0	0	
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0	
Sample ID: MBLK-F040801-1	SampType: MBLK	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	8/1/04		Run ID: 5972 INST. F_040801C	01C
Client ID: ZZZZZ	Batch ID: 21302	Testh	TestNo: SW8260B			Analysis Date:	8/2/04		SeqNo: 806504	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD RPDLimit Q	Qual
Benzene	QN	1.0								
Toluene	_	2.0								_
Ethylbenzene	QN	5.0								
Xylenes, Total	1.1	2.0								¬
Surr: 1,2-Dichloroethane-d4	50.5	0	20	0	101	72.8	122	0	0	
Surr: 4-Bromofluorobenzene	49.1	0	20	0	98.2	75.6	120	0	0	
Surr: Dibromofluoromethane	50.4	0	50	0	101	74.1	121	0	0	
Surr: Toluene-d8	50.1	0	20	0	100	82.8	112.8	0	0	
Sample ID: MBLK-F040802-1	SampType: MBLK	TestCod	TestCode: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	8/2/04		Run ID: 5972 INST. F_040802A	32A
Client ID: ZZZZZ	Batch ID: 21323	Test	TestNo: SW8260B			Analysis Date:	8/2/04		SeqNo: 807842	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD RPDLimit C	Qual
Benzene	QN	1.0								
Toluene	Q	2.0								
Ethylbenzene	ΩN	5.0								
Xylenes, Total	QN	5.0								
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	accepted reco	very limits	B	- Analyte detect	B - Analyte detected in the associated Method Blank	
	I - Analyte detected below manifation limits	U	R - RPD	R - RPD outside accepted recovery limits	spovery limits				Page 42 of 43	43
in a firming		3	:						12001)

Work Order: 04070635

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX S

Client ID: ZZZZZ		- מאניסימים	lestCode: V_BIEX_S	Onits: pg/kg	/Kg	Prep Date:	8/2/04		Run ID: 5972	Run ID: 5972 INST. F 040802A	802A
Analyte	Batch ID: 21323	TestN	TestNo: SW8260B			Analysis Date:	8/2/04		SeqNo: 807842	12	
	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD F	RPDLimit (Qual
Surr: 1,2-Dichloroethane-d4	48.3	0	20	0	9.96	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	50.3	0	90	0	101	75.6	120	0	0		
Surr: Dibromofluoromethane	49.7	0	20	0	99.4	74.1	121	0	0		
Surr: Toluene-d8	50.3	0	20	0	101	82.8	112.8	0	0		
Sample ID: LCS-F040730-2	SampType: LCS	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	7/30/04		Run ID: 5972	5972 INST. F_040730D	730D
Client ID: ZZZZZ	Batch ID: 21287	TestN	TestNo: SW8260B			Analysis Date:	7/30/04		SeqNo: 806217	17	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD F	RPDLimit (Qual
Benzene	26.8	1.0	32.4	0	82.7	72.2	98.3	0	0		
Toluene	163	5.0	153	_	106	90.4	121	0	0		
Ethylbenzene	35.8	5.0	36	0	99.4	92.6	128	0	0		
Xylenes, Total	176	5.0	174	1.1	101	94.3	131	0	0		
Surr: 1,2-Dichloroethane-d4	47.6	0	20	0	95.2	72.8	122	0	0		
Surr: 4-Bromofluorobenzene	50.8	0	90	0	102	75.6	120	0	0		
Surr: Dibromofluoromethane	48.6	0	90	0	97.2	74.1	121	0	0		
Surr: Toluene-d8	50.2	0	20	0	100	82.8	112.8	0	0		
Sample ID: LCSD-F040730-2	SampType: LCSD	TestCode	TestCode: V_BTEX_S	Units: µg/Kg	/Kg	Prep Date:	7/30/04		Run ID: 5972 INST. F 040730D	INST. F_040	730D
Client ID: ZZZZZ	Batch ID: 21287	TestN	TestNo: SW8260B			Analysis Date:	7/30/04		SeqNo: 806218	81	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD F	RPDLimit	Qual
Benzene	26.6	1.0	32.4	0	82.1	72.2	98.3	26.8	0.749	15	
Toluene	164	5.0	153	_	107	90.4	121	163	0.612	15	
Ethylbenzene	36.7	5.0	36	0	102	92.6	128	35.8	2.48	15	
Xylenes, Total	175	5.0	174	1,1	99.9	94.3	131	176	0.570	15	
Surr: 1,2-Dichloroethane-d4	47	0	20	0	94	72.8	122	0	0	0	
Surr: 4-Bromofluorobenzene	50.8	0	20	0	102	75.6	120	0	0	0	
Surr: Dibromofluoromethane	48.8	0	90	0	97.6	74.1	121	0	0	0	
Surr: Toluene-d8	49.9	0	50	0	8.66	82.8	112.8	0	0	0	

Page 43 of 43

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers:

TEKLAB, INC

Philip Environmental 04070740 CLIENT:

Work Order:

A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

Date: 04-Aug-04

TestCode: SV_8310S_W

Sample ID: MB-21250	SampType: MBLK	TestCod	TestCode: SV_8310S_W	Units: mg/L		Prep Date:	7/29/04		Run ID: HPLC INST. C_040730A	: INST. C_040	730A
Client ID: ZZZZZ	Batch ID: 21250	Test	TestNo: SW8310			Analysis Date:	7/30/04		SeqNo: 807990	00	
Analyte	Result	PQL	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit Q	Qual
000000000000000000000000000000000000000	2	008000									
		000000									
Acenaphthylene	QN	0.00150									
Anthracene	QN	0.00030									
Benzo(a)anthracene	QN	6000000									
Benzo(a)pyrene	QN	0.00012									
Benzo(b)fluoranthene	QN	0.00015									
Benzo(g,h,i)perylene	QN	0.00030									
Benzo(k)fluoranthene	QN	0.00015									
Chrysene	QN	0.00045									
Dibenzo(a,h)anthracene	QN	0.00018									
Fluoranthene	QN	0.00090									
Fluorene	QN	0.00030									
Indeno(1,2,3-cd)pyrene	ΩX	0.00030									
Naphthalene	QX	0.00300									
Phenanthrene		0 0000									
0.000		0.00030									
F			2	c	0	7	000	C	c		
Surr: Lerpnenyl-d14	0.00925	0	10.0	o	92.5	71.4	120	o	O		
Sample ID: LCS-21250	SampType: LCS	TestCod	TestCode: SV_8310S_W	Units: mg/L		Prep Date:	3: 7/29/04		Run ID: HPLC INST. C_040730A	: INST. C_040	730A
Client ID: ZZZZZ	Batch ID: 21250	Test	TestNo: SW8310			Analysis Date:	7/30/04		SeqNo: 807988	38	
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD F	RPDLimit Q	Qual
Acenaphthene	0.0402	0.00300	0.05	0	80.4	55.1	93.1	0	0		
Acenaphthylene	0.0789	0.00150	0.1	0	78.9	63.2	106	0	0		
Anthracene	0.00461	0.00030	0.005	0	92.2	73.6	104	0	0		
Benzo(a)anthracene	0.00412	0.0000	0.005	0	82.4	70.2	98.4	0	0		
Benzo(a)pyrene	0.00436	0.00012	0.005	0	87.2	65,5	99.1	0	0		
Benzo(b)fluoranthene	0.00878	0.00015	0.01	0	87.8	71.1	9.66	0	0		
Benzo(g,h,i)perylene	0.00903	0.00030	0.01	0	90.3	70.4	104	0	0		
Benzo(k)fluoranthene	0.00441	0.00015	0.005	0	88.2	71.9	109	0	0		
Qualifiers: ND - No	ND - Not Detected at the Reporting Limit		S - Spike Re	S - Spike Recovery outside accepted recovery limits	pted recov	very limits	В	- Analyte detecte	B - Analyte detected in the associated Method Blank	d Method Blank	
J - Analy	J - Analyte detected below quantitation limits	ts	R - RPD out	R - RPD outside accepted recovery limits	ery limits					Page 1 of 7	f7

Work Order: 04070740

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: SV_8310S_W

Sample ID: LCS-21250	SampType: LCS	TestCod	TestCode: SV_8310S_W	N Units: mg/L		Prep Date:	7/29/04		Run ID: HPLC INST. C_040730A	C INST. C	340730A
Client ID: ZZZZZ	Batch ID: 21250	Test	TestNo: SW8310			Analysis Date:	7/30/04		SeqNo: 807988	988	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chrysene	0.00409	0.00045	0.005	0	81.8	70.6	99.3	0	0		
Dibenzo(a,h)anthracene	0.0104	0.00018	0.01	0	104	75.6	110	0	0		
Fluoranthene	0.00858	0.00090	0.01	0	85.8	71.6	100	0	0		
Fluorene	0.00774	0.00030	0.01	0	77.4	54.5	97.6	0	0		
Indeno(1,2,3-cd)pyrene	0.00447	0.00030	0.005	0	89.4	71.6	102	0	0		
Naphthalene	0.0349	0.00300	0.05	0	69.8	43.3	92.6	0	0		
Phenanthrene	0.00444	09000.0	0.005	0	88.8	64.3	93.4	0	0		
Pyrene	0.00379	0.00030	0.005	0	75.8	63.8	88.9	0	0		
Surr: Terphenyl-d14	0.00982	0	0.01	0	98.2	77.5	115	0	0		
Sample ID: LCSDUP-21250	SampType: LCSD	TestCod	TestCode: SV_8310S_W	N Units: mg/L		Prep Date:	7/29/04		Run ID: HPI	Run ID: HPLC INST. C_040730A	240730A
Client ID: ZZZZZ	Batch ID: 21250	Test	TestNo: SW8310			Analysis Date:	7/30/04		SeqNo: 807989	989	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	0.0398	0.00300	0.05	0	79.6	55,1	93.1	0.0402	1.00	21.9	
Acenaphthylene	0.0808	0.00150	0.1	0	80.8	63.2	106	0.0789	2.38	22.7	
Anthracene	0.00466	0.00030	0.005	0	93.2	73.6	104	0.00461	1.08	20	
Benzo(a)anthracene	0.00431	6000000	0.005	0	86.2	70.2	98.4	0.00412	4,51	18.8	
Benzo(a)pyrene	0.00451	0.00012	0.005	0	90.2	65.5	99.1	0.00436	3.38	19.8	
Benzo(b)fluoranthene	0.00881	0.00015	0.01	0	88.1	71.1	9.66	0.00878	0.341	19	
Benzo(g,h,i)perylene	0.00895	0.00030	0.01	0	89.5	70.4	104	0.00903	0.890	19.4	
Benzo(k)fluoranthene	0.00442	0.00015	0.005	0	88.4	71.9	109	0.00441	0.226	19.2	
Chrysene	0.00423	0.00045	0.005	0	84.6	70.6	99.3	0.00409	3.37	18.2	
Dibenzo(a,h)anthracene	0.0102	0.00018	0.01	0	102	75.6	110	0.0104	1.94	17.6	
Fluoranthene	0.00884	0.00090	0.01	0	88.4	71.6	100	0.00858	2.99	18.1	
Fluorene	0.00816	0.00030	0.01	0	81.6	54.5	97.6	0.00774	5.28	26.9	
Indeno(1,2,3-cd)pyrene	0.00455	0.00030	0.005	0	91	71.6	102	0.00447	1.77	19	
Naphthalene	0.0374	0.00300	0.05	0	74.8	43.3	97.6	0.0349	6.91	30	
Phenanthrene	0.00453	0.00060	0.005	0	90.6	64.3	93.4	0.00444	2.01	20	
Pyrene	0.00391	0.00030	0.005	0	78.2	63.8	88.9	0.00379	3.12	18.9	
Surr: Terphenyl-d14	0.0099	0	0.01	0	66	77.5	115	0	0	20	
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	pted reco	very limits	B	- Analyte detect	B - Analyte detected in the associated Method Blank	ted Method B	ank
in atrian A - I	ativitatitus un moled betoete etulent - I		APP.	stimil vestones between shirt on DD and stimils	om, limite	,					7
or America	וברוכת טכוטיי קעמוונומנוטיו ווייי	2	7 21 - 72	Unisiae accepted teces	CITY IIIIII					rage 2 of /	7 of /

Work Order: 04070740

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

Sample ID: LCS-A040730-2	SampType: LCS1	TestCode	TestCode: V_BTEX_W	Units: µg/l	١.	Prep Date:	te: 7/30/04		Run ID: 5971 INST. A_040730D	F. A 040730D
Client ID: ZZZZZ	Batch ID: 21306	TestN	TestNo: SW8260B			Analysis Date:	te: 7/30/04		SeqNo: 806583	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	imit Qual
Benzene	47.9	2.0	50	0	92.8	77.4	120	0	0	
Toluene	47.9	2.0	50	0	95.8	81.6	118	0	0	
Ethylbenzene	49	5.0	50	0	86	78.5	122	0	0	
Xylenes, Total	96	5.0	100	0	96	80.7	122	0	0	
Surr: 1,2-Dichloroethane-d4	49.1	0	90	0	98.2	84.3	135	0	0	
Surr: 4-Bromofluorobenzene	20	0	50	0	100	81.1	113.3	0	0	
Surr: Dibromofluoromethane	50.2	0	50	0	100	88.9	121.2	0	0	
Surr: Toluene-d8	51.1	0	20	0	102	84.1	114.5	0	0	
Sample ID: LCS-A040731-1	SampType: LCS1	TestCode	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/31/04	+	Run ID: 5971 INST. A_040731A	F. A_040731A
Client ID: ZZZZZ	Batch ID: 21312	TestN	TestNo: SW8260B			Analysis Date:	te: 7/31/04	=+	SeqNo: 807114	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	imit Qual
Benzene	43.2	2.0	20	0	86.4	77.4	120	0	0	
Toluene	44.6	5.0	20	0	89.2	81.6	118	0	0	
Ethylbenzene	45.6	5.0	90	0	91.2	78.5	122	0	0	
Xylenes, Total	91	5.0	100	0	91	80,7	122	0	0	
Surr: 1,2-Dichloroethane-d4	46.2	0	20	0	92.4	84.3	135	0	0	
Surr: 4-Bromofluorobenzene	51.2	0	20	0	102	81.1	1133	0	0	
Surr: Dibromofluoromethane	48.5	0	90	0	26	88.9	121.2	0	0	
Surr: Toluene-d8	51	0	20	0	102	84.1	114.5	0	0	
Sample ID: LCS-A040802-2	SampType: LCS1	TestCode	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 8/2/04		Run ID: 5971 INST	5971 INST. A_040802B
Client ID: ZZZZZ	Batch ID: 21330	TestN	TestNo: SW8260B			Analysis Date:	te: 8/2/04		SeqNo: 807962	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Limit Qual
Benzene	46.7	2.0	20	0	93.4	77.4	120	0	0	
Toluene	44.5	5.0	20	0	88	81.6	118	0	0	
Ethylbenzene	47.7	5.0	90	0	95.4	78.5	122	0	0	
Xylenes, Total	92.9	2.0	100	0	92.9	80.7	122	0	0	
Surr: 1,2-Dichloroethane-d4	47.7	0	20	0	95.4	84.3	135	0	0	
Qualifiers: ND - Not Detec	ND - Not Detected at the Reporting Limit		S - Spike	- Spike Recovery outside accepted recovery limits	cepted reco	very limits		3 - Analyte detect	B - Analyte detected in the associated Method Blank	thod Blank
J - Analyte dete	J - Analyte detected below quantitation limits		R - RPD	R - RPD outside accepted recovery limits	overy limits	-			I	Page 3 of 7

Work Order: 04070740

A831-735002-012901-225/IP Champaign

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: LCS-A040802-2	SampType: LCS1	TestCode	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 8/2/04		Run ID: 5971 INST. A_040802B
Client ID: ZZZZZ	Batch ID: 21330	Test	TestNo: SW8260B			Analysis Date:	te: 8/2/04		SeqNo: 807962
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Surr: 4-Bromofluorobenzene	49.6	0	920	0	99.2	81.1	113.3	0	0
Surr: Dibromofluoromethane	49	0	20	0	86	88.9	121.2	0	0
Surr: Toluene-d8	49.5	0	20	0	66	84.1	114.5	0	0
Sample ID: MBLK-A040728-2	SampType: MBLK	TestCod	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/28/04		Run ID: 5971 INST. A_040728G
Client ID: ZZZZZ	Batch ID: 21260	Test	TestNo: SW8260B			Analysis Date:	te: 7/29/04	_	SeqNo: 804495
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Benzene	QN	2.0							
Toluene	Q	2,0							
Ethylbenzene	S	2.0							
Xylenes, Total	QN	2,0							
Surr: 1,2-Dichloroethane-d4	47.4	0	50	0	94.8	84,3	135	0	0
Surr: 4-Bromofluorobenzene	50.3	0	20	0	101	81.1	113.3	0	0
Surr: Dibromofluoromethane	48.8	0	20	0	97.6	88.9	121,2	0	0
Surr: Toluene-d8	50.1	0	20	0	100	84.1	114.5	0	0
Sample ID: MBLK-A040730-2	SampType: MBLK	TestCod	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/30/04		Run ID: 5971 INST. A 040730D
Client ID: ZZZZZ	Batch ID: 21306	Test	TestNo: SW8260B			Analysis Date:	te: 7/30/04		SeqNo: 806584
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Benzene	QN	2.0							
Toluene	QN	2.0							
Ethylbenzene	QN	5.0							
Xylenes, Total	QN	5.0							
Surr: 1,2-Dichloroethane-d4	50.5	0	50	0	101	84.3	135	0	0
Surr: 4-Bromofluorobenzene	50.4	0	20	0	101	81.1	113.3	0	0
Surr: Dibromofluoromethane	50.2	0	20	0	100	88.9	121.2	0	0
Surr: Toluene-d8	51.3	0	20	0	103	84.1	114.5	0	0

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 4 of 7

Work Order: 04070740

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX W

Sample ID: MBLK-A040731-1	SampType: MBLK	TestCode	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/31/04		Run ID: 5971 INST. A_040731A	40731A
Client ID: ZZZZZ	Batch ID: 21312	Test	TestNo: SW8260B			Analysis Date:	te: 7/31/04		SeqNo: 807115	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPDLimit	Qual
Benzene	QN	2.0								
Toluene	QN	5.0								
Ethylbenzene	Q	5.0								
Xylenes, Total	Q	5.0								
Surr: 1,2-Dichloroethane-d4	47.5	0	20	0	92	84.3	135	0	0	
Surr: 4-Bromofluorobenzene	50.2	0	20	0	100	81.1	113.3	0	0	
Surr: Dibromofluoromethane	49	0	20	0	86	88.9	121.2	0	0	
Surr: Toluene-d8	50.7	0	20	0	101	84.1	114.5	0	0	
Sample ID: MBLK-A040802-2	SampType: MBLK	TestCode	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 8/2/04		Run ID: 5971 INST. A_040802B	40802B
Client ID: ZZZZZ	Batch ID: 21330	Test	TestNo: SW8260B			Analysis Date:	te: 8/2/04		SeqNo: 807963	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPDLimit	Qual
Benzene	QN	2.0								
Toluene	Q	5.0								
Ethylbenzene	QN	2.0								
Xylenes, Total	Q	2.0								
Surr: 1,2-Dichloroethane-d4	48	0	50	0	96	84.3	135	0	0	
Surr: 4-Bromofluorobenzene	49.5	0	50	0	66	81.1	113.3	0	0	
Surr: Dibromofluoromethane	48.2	0	50	0	96.4	88.9	121.2	0	0	
Surr: Toluene-d8	49.3	0	20	0	98.6	84.1	114.5	0	0	
Sample ID: LCS-A040728-2	SampType: LCS	TestCod	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/28/04		Run ID: 5971 INST. A_040728G	40728G
Client ID: ZZZZZ	Batch ID: 21260	Test	TestNo: SW8260B			Analysis Date:	te: 7/29/04		SeqNo: 804493	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD RPDLimit	Qual
Benzene	25.5	2.0	32.4	0	78.7	67.7	99.7	0	0	
Toluene	155	5.0	153	0	101	90.2	122	0	0	
Ethylbenzene	36.5	2.0	36	0	101	90.1	121	0	0	
Xylenes, Total	178	2.0	174	0	102	92.4	124	0	0	
Surr: 1,2-Dichloroethane-d4	49.2	0	20	0	98.4	84.3	135	0	0	
Qualifiers: ND - Not Dete	ND - Not Detected at the Reporting Limit		S - Spike	S - Spike Recovery outside accepted recovery limits	cepted reco	very limits	B	- Analyte detect	B - Analyte detected in the associated Method Blank	lank
J - Analyte det	J - Analyte detected below quantitation limits	s	R - RPD	R - RPD outside accepted recovery limits	very limits				Page	Page 5 of 7
)	,

Work Order: 04070740

Project: A831-735002-012901-225/IP Champaign

ANALYTICAL QC SUMMARY REPORT

TestCode: V_BTEX_W

Sample ID: LCS-A040728-2 Client ID: ZZZZZ	SampType: LCS Batch ID: 21260	TestCod	TestCode: V_BTEX_W TestNo: SW8260B	Units: µg/L		Prep Date: Analysis Date:	te: 7/28/04 te: 7/29/04		Run ID: 5971 INST. A_040728G SeqNo: 804493	1 INST. A_04	.0728G
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene Surr: Dibromofluoromethane Surr: Toluene-d8	51 48.9 50.7	000	50	000	102 97.8 101	81.1 88.9 84.1	113.3	000	000		
Sample ID: LCSD-A040728-2	SampType: LCSD	TestCod	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/28/04		Run ID: 5971 INST. A_040728G	1 INST. A_02	.0728G
Client ID: ZZZZZ	Batch ID: 21260	Test	TestNo: SW8260B			Analysis Da	Analysis Date: 7/29/04	1	SeqNo: 804494	494	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	24.6	2.0	32.4	0	75.9	2.79	99.7	25.5	3.60	15	
Toluene	150	2.0	153	0	98	90.2	122	155	3.27	15	
Ethylbenzene	35.7	2.0	36	0	99.2	90.1	121	36.5	2.22	15	
Xylenes, Total	171	5.0	174	0	98.3	92,4	124	178	4,01	0	
Surr: 1,2-Dichloroethane-d4	48.3	0	20	0	9.96	84.3	135	0	0	0	
Surr: 4-Bromofluorobenzene	50.8	0	90	0	102	81.1	113.3	0	0	0	
Surr: Dibromofluoromethane	48.7	0	20	0	97.4	88.9	121.2	0	0	0	
Surr: Toluene-d8	20"2	0	20	0	101	84.1	114.5	0	0	0	
Sample ID: 04070740-004BMS	SampType: MS	TestCod	TestCode: V_BTEX_W	Units: µg/L		Prep Date:	te: 7/28/04		Run ID: 5971 INST. A_040728G	1 INST. A_0	10728G
Client ID: 111043	Batch ID: 21260	Test	TestNo: SW8260B			Analysis Da	Analysis Date: 7/29/04	_	SeqNo: 804499	499	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	46.5	2.0	56	0	83	70.8	122	0	0		
Toluene	52.3	5.0	56	0	93.4	77.2	117	0	0		
Ethylbenzene	52.9	5.0	56	0	94.5	81	113	0	0		
Xylenes, Total	109	5.0	112	0	97.3	80.3	116	0	0		
Surr: 1,2-Dichloroethane-d4	52	0	20	0	104	84.3	135	0	0		
Surr: 4-Bromofluorobenzene	50.2	0	20	0	100	81.1	113.3	0	0		
Surr: Dibromofluoromethane	51.2	0	20	0	102	88.9	121.2	0	0		
Surr: Toluene-d8	51	0	20	0	102	84.1	114.5	0	0		

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Page 6 of 7

04070740 Work Order: A831-735002-012901-225/IP Champaign Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: V BTEX W

Sample ID: 04070740-004BMSD SampType: MSD Client ID: 111043 Batch ID: 2126	SampType: MSD Batch ID: 21260	TestCod	TestCode: V_BTEX_W TestNo: SW8260B	Units: µg/L		Prep Date: 7/28/04 Analysis Date: 7/29/04	Prep Date: 7/28/04 alysis Date: 7/29/04	4 4	Run ID: 5971 IN SeqNo: 804587	Run ID: 5971 INST. A_040728G SeqNo: 804587	40728G
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Qual
Benzene	45.9	2.0	56	0	82	70.8	122	46.5	1.30	15	
Toluene	52.6	5.0	56	0	93.9	77.2	117	52.3	0.572	15	
Ethylbenzene	53.6	5.0	56	0	95.7	81	113	52.9	1.31	15	
Xylenes, Total	107	5.0	112	0	95.5	80.3	116	109	1.85	15	
Surr: 1,2-Dichloroethane-d4	52.4	0	20	0	105	84.3	135	0	0	0	
Surr: 4-Bromofluorobenzene	51.1	0	50	0	102	81.1	113.3	0	0	0	
Surr: Dibromofluoromethane	51.1	0	50	0	102	88.9	121.2	0	0	0	
Surr: Toluene-d8	50.9	0	20	0	102	84.1	114.5	0	0	0	

J - Analyte detected below quantitation limits